

International marine engineering

International Marine Engineering

VOLUME XVI

JANUARY TO DECEMBER, 1911

PUBLISMED BY
MARINE ENGINEERING
ancorporated

17 BATTERY PLACE, NEW YORK, U. S. A.

INDEX.

NOTE,-lliustrated urticlen are marked with an (*) anterink.

Dentroyers terkans and Stercets. "bl
Destroyern Warringtas and Maytant..... " 287
Development in sea tranesortation of
Swedah orc, recent, Jobnson........ 298

Picsil motors, marime 153
|lrewel olfengined veswel Toiler............ 255
Hock elevatar 310
Itorking facslitifes of New York.......... "2ab
Bredge, combind atachons and bocket.... 'Ipl
Dredge, hydrazlic pipe line.............. *15s
Itedge. New Ostrans, U. S. suction..... "19: Prolece, Owenaminaue, self.pronelled.... . Ins

Bredge, 20 inch bydrawhe
$+$
Diediger, bucket, Truto Mara.............. ${ }^{181}$

Difeleser, ciayechiting buctran.
Beedger, Ilsin 1lo, iwio-screw. 1bredger, saction. Werf Conrad......... ${ }^{*} 189$
Deedeer ["ewetav, sell.poopelling. Dry dock electrically-centrolled raitway $2 w 4$
Dry dock for 13razit, $22,0 \mathrm{mb}-\mathrm{Ian}$
Dryidork for the United States government, side haul raitway.
Hiry-dork of the Toledo Stripbuilding Ca - 69

Dutchesa, sczew ferry best
$\cdot 11$
Esanumicat handline of freisht 289
Economatal morkine of reciturocating ma-
rine engines ast theit auxithaties.

Economy of oil fuel invtallation. " 158
Engineering pronrens, naval. Cone...... it
Electric zeberating plants, distribution
and intecior eomenanication systems... *265
Eleatric drixe in Aldevardenuunu.... 270
Electric stering gear 88
E.fectrical equipenent of Mauretania....... ${ }^{*} 775$

Electrical equipment of shipyard tonls... $\mathbf{7 : 9}$
Electrical pmpultalin of vesuels. 254
Electrical wicink of stenmahips........... 278
Electrically-operated nuniliary apparatus. *2sp
Electrically-controlled raifay dey-duck... 244
Elecerification of marime werk4. 27t
Flectifity for dreftring gold............. *1R?
Fallicott dredge ${ }^{\text {. } 188}$
Excellenela, kingle.srrew river steamer... - 55 ?
Ferity Aria Arbnt No. 5. *168
Frity stesmer Prupuike ${ }^{2 / 24}$
Fersy-brat Dutcherst :11

Ferry bat San Pedro ${ }^{383}$
Fint oil ensine ...

Plonting crane. twinserew *q2
Floatink dyy dock for Braril............... - 1
Fioating ilry-docks in the United Staten,
relative valur of wood and steel for
their corteruction, Doanelly 150
Foun. Ancricantaift steam trawles. ... *935
Forges and Chantiern io la Moditerranfe. 11 a
Fitancteco Salles, gtem aheel stesmer, ... ${ }^{* 44}$
Freight, economical hannling of 2F9
Freigh1, frechanleal handlitg of. Fawler. 19\%
F-eight sleamshick. desigh of, Hardine.. ${ }^{\text {PIS7 }}$
Feciphtitrnefetring enarkinery at Ant-
werp. Mct. Harding 480

Gas envines Percy $\frac{887}{\text { 8265 }}$

Indikaler, mamine. Instilution of Xoval Areshtects, jubiler meetiog of

221
Italy's firnt tatbinedriven cryiter, the
San Marco 4 .
I. Prierpent Morgan, lake cartikr......... *144

Ioyense, itwinscrew motor sacbr........ "is
Aunnealy, hinh speed ferty boit 208

lake freisbter, random notes mn a ... ${ }^{\text {. } 141}$

Lien-Ching, twim-screw yacht •140
1.aght-draft hue Maria Hendrika $111 . .$. "450

Lisbting ships *207
Lion, British batle cruiner 117
Levadink plants, econanical revolts...... . ses
J.sbinity dredge ${ }^{\text {•178 }}$

Wacline tools for alimarde.......... *129
Machinery for the Oympic
Madinils, steanshan
Slane, sayk of the weeciked battieshij.... 354
Siaria llendriks IIt., light-dyaft tup. ... **50
Hatine enkines and theur auxiliarles, eca-
nomical working of. Morixam........5s, ps
 Sauretania, electrical equipment of...... ${ }^{275}$ slayrant, toriviln-lwiat destraset. 2827
Mendaza, Argethine deotrayr-
Sfrcthatioal handilins of frecelht Fowlef.. 122
Shrehant ahips, powering and tesime of. . "310
Merchunt vraterle stalatity of. Nichol. "164
Metapan, frat searuship ${ }^{\text {B/36 }}$
Jhele \& Wrins ail sgeine................. ${ }^{6464}$
Mishapat to vesaets, somie recenl. ${ }^{\bullet}{ }^{162}$
Miscolefi River novigution, renewat of 448
Mital. Wiahi Dockyard and Yngine Wotka. "c9

Plontono, for Porto Rican service........ *ses
Soothead, Rar harbor stelmief............. ©t
Motor boat, flying. Terkins............ 155
Motor hoat for China, commercial...... 442
Molar boats, ttern-wheel, Allen 448
Motor ships, French ausiliart, Feltier, *198
Motor yacht 引nyeluse 70
Motors, Diesef marine 153
Varal collier Cyclope Martin.......... *i95
Saval enkinecring progte=s. Conir........ 14
Sival pragizimme for I911
Nernl review, Anserman.
Saral reverls. Poses and conlracts for..... 15
Navigation on the M-steari Rivet, renewal *44

Shysard of Formes \＆Chantiers de la
Vediterraise Mediterranbe
Shnpyasd of Mesask Cien．Ansalde－Arm－
 Shipyard of the Newport News Shiptuild
ing \＆1）ry．lhork C＇o．．．．．．．．．．．．．．．．．．．．．． ing \＆1）ry－lhork（＇o．．．．．．．．．．．．．．．．．．．． 4．Eumberma Co．

2110
Shpyan ds，clectrie drive in．．．．．．．．．．．．
Shipyards of the Mitsu Bishi Co．．．．．．．． 88
Shipyards of Varron \＆Co．．Ltd．．．．．．．．．
Side－haul railway dry－bork ．．．．．．．．．．．．． 10 ．
Siouk，steanver ．．．．．．．．．．．．．．．．．．．
sweiety of Saval Architects and Marane
Soeiety of Saval Architects and Marine
Fngitwets，nineternth annunl merting．
Socety Naval Archifecto and Xarife Fin．
gineers，nithetrenth annual moveting．
Southport，sicamet
Southwark，twe liont
Soverrunt， 35 －mile steam yacht
Sorereim＂s mb－hinery
Sperry Giyro comapash ．．．．．．．．．．．．．．．．．．．．．．．
Stability of mrrebant veisels．Nickot．
Stesm yawht Sovereign
Steaminat inapection rules
Steatner Bonsrheart ．
Steamet Charles Rnur
Steamer Currier
Steamer Rochambeat
Steamer Sankaty
Steamer Sions
Steamer Three Kivers ．．．．．．．．．．．．．．．．．．．．．．
Stramers City of Ralimote and City of Norfa＇k
Steamers Southport and Westport．．．
Stearing Rear．electric
Stearmship Iepeas
Steamship Madisnn
Steamslap Metapan
Steamship Olynpac，machinery for．．
Steansbip Irince Kupet1
Steamship Siwanwee
Sleamolaips Corozal and Montoso．
Sterrett，infpedo beat destroyer．．
Slern－wherl motor hoats，Allen．．
Stern wheel river boats．Amerlcan built．．
Stern－wheel slebuer Francenco Salles．．．
Sters wheel steamer firenfell．．
Submarine boat wrecker
Subapurfine signalliog ．．．．．．．．．．．．．．．．．．．．．．．
Submarine vektl．Dietne ．．．．．．．．．．．．．．．．25：\＄4t
Suction drefige Nrw Orleans．．．．．．．．．．．．．．$\frac{18}{218}$
Suction dredger
Suffolk．sinale－secew strara collier．
Stilrer Dietel engine．
Surface eondonser．Japanese design．．
Survey sicamer Cartier
$S_{\text {wwaner }}$ pavenger and freighter．
Switchboarits

Tank steamer C＇urrier
Telephones
ener
Terminale，control and extuipment of．
Test of a Mosher matine briler．
Testinge corrosian redstance In tahen．
Three Riveru，Chreapcake Ray stumer．
Titanic，lanneh of
Toiler，a Diesel sil－engines vrovel．
Tellerlo Sbipthuildune Co．，dry－rlacie of．．．
Tonnage and trade of the pert of Londen，
Tneboute fof Florida River．
Transatlantic steam Hires，old．Aradlee．
Tranaferripge eargore from Seattle dowh Trawler
Trasler，stram
rief lutatm
Tug buat Sonthwark and Kensington．
Teg Maria Ileadtiks I11．s Jight draft．
Tug．single－serew eterl river．
Tugs and colliers for the U．S．Savy．
Tunxhts Miriant，a shallow draft，es foot matar vescel for the British celonies． Tunnel famnch Connaukhi
Tomen steamer for the Ambaron
Turbune reluction pear．Westinglowse，
Tophine meanuer Charles Rous．

Turbincs for Italian semet cruikety．．．．．．． 466
Turbines，ratuanal application of to the
phopeslavn of warships Kateau．．．．．．． $8 \$ 1$
Twin－lateb tleanmes with ventral deck bal
lant tank ．．．．．．．．．．．．．．．．．．．．．361

U．S．dratroyers Perkins and Sterrett．．． 351
Clited stases naval grogranme for 1011．169
Lnafhcial repert：．．．．．．．．．．．．．．．．．．．．．． 4 401

Ventilation ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 280 ．
Vicntilation of pastenger slipet．Macl＇hee．＊102
Vibration phenomena of stramers，our
pecwent knowledxe of，Sichlivk ．．．．．．．．＊3s
V＇ulcan，wreckang sulbnarine baat．．．．．．．．．＊30
Warsinglon，torpedo－boat destroyer．．．．．ang

Wiyrdeas telegraphy．develowmewts in．．．．eq78
Wirimg ．．． 270
Wiring of stesmsbips ．．．．．．．．．．．．．．．．．．．．．．这
fiacht Lien Ching ．．．．．．．．．．．．．．．．．．．．．．．．．． 110
Yarrow \＆ CO_{4} lisa．works of ．．．．．．．．．． 10 ？

COMMUNICATIONS
Hearing surface of boiler thbea．．．．．．．．．．． 121
Information wanted ．．．．．．．．．．．．．．．．．．．．．．．．．．㕸
More revarik on cargo loading ．．．．．．．．．．害 40
Notes on the strenkth of shlp columns．．．tad
Nmajman＇s rule for beam of a vessel．．．．．．si

tise of cobrrete in a steel bull．．．．．．．．．． 211

EDITORIALS

（atain Towaye on Cierman rivers．．．．．．．．． 10
Hevelopment of the oil engine．．．．．．．．．．．
Dredges and dredge work ．．．．．．．．．．．．．．
Ficononsy of oll fuel．．．．．．．．．．．．．．．．．．． 170
Econonsical handliar of freinht．．．．．．．．．248，qus
Electricity for marine wark．．．．．．．．．．．．． 2 ．
llarbor marme engincering ．．．．．．．．．．．．．．．．燢出

Batters of interest from the jubilee meet－ ing of the Institution of Naval Areli．

Niaval architectst merting．．．．． 1.
Naval etgenceting pregreas．．．．．．．．．．．．．．．

I＇ractical operation of steam furbines．．．．．． 38
Pronfes，in marine eaginecring and nawal
arehitcetart ．．．．．．．．．．．．．．．．．．．．．．．．．．．．
Nenfaring men is，enginerta．．．．．．．．．．．．．．．$\frac{378}{18}$
Shiphnidane revisal in the C＇mited States．4e
A！gniferant chanke
The mendern shipzard ．．．．．．．．．．．．．．．．．．．．．18
Three remarkatile ship：．．．．．．．．．．．．．．．．．．
f＇es of concrete on board shiy．．．．．．．．．．．aks

EVGINEERIVO SPECIALTIES．

Avetylene meldink and cuttink machine．．＊ag7
．．ir pusnp，marine type．＂Lehlanc＂．．．．．．＂951
Jiender and atraikhtever，power．．．．．．．． 187 Wowing ontfits．Howleship and yacht．．．．．＊ses Thiler circulator，marine，Rass－Schnfield．＊ans Hhiler eleaner．electric safety．．．．．．．．．．．．
Poiler＂Maxim＂with Allison economizer
and aecb drum Allen Stirling．
122

Boiler＂Rohb－Mrady，＂Rob Enginecriug．＂is6 Centralized valve gear ror thern paddle－ wheel engines，Marine tron Works．．．＊4：2 Centrifugal pumps and electric planta．．．．＊296 Chuck，high－aperd universal＂Columbia＂．．＂3sz Coal－oil apparatus，＂Gregory＂patent．．．．＂697 Coaling outfit．Withann J．Inglabee ．．．．．＂ass Condenser packine tooL E．P．Strode．．．${ }^{4} \mathbf{4 2}$ Conveyor，portable．＂Jeffres＂．．．．．．．．．．．．＂2yn
Dienel engine．Kind －328
Drill，electically－driven radial．．．．．．．．．．．．．＊212
Drive for fat twist drill．．．．．．．．．．．．．．．．．．•120
Electric drive for shipyard tools．Viekers．＊日ッ？
Electric fight setr，direct－friven．．．．．．．．．．．． 2 2ns
Elective lighting sets，＂Brash＂．．．．．．． 390 ，sit
Electric lighting rets，compact．．．．．．．．．．．＂8s2
Electric Pozkah ．．．．．．．．．．．．．．．．．．．．．．．．．．．•58s
Engine，caloric．Svex Caloric Engine Co．＊⿴囗十心
Engines，Dhecel，for auxilitary purpowe．．．．－s92
Engines，hotitontal．B，F．Startevant Co， 40
Exhaost wilence？
Fan＂Veotura．＂American Mower Co．，＂etss
Fans，＂F．M．T．，＂cabin．．．．．．．．．．．．．．．．．．．${ }^{\text {2897 }}$
Fogometer．Smith
Freight carrier．Reno Inclined Elczatar．＂elt
Freight chute．G．A．Swain．．．．．．．．．．．．．．4is
Fuel oil burner．Ingram Fuel Oil Burner．＂84
Hoac－rouplling atraincr，＂Qui玉＂pneumatic．＊12s
Howdra draft for dredren．．．．．．．．．．．．．．．． 115
Ifydraolie prese．Watmon－Stiltman Co．．．＂996
Indieating and tecording pyrometera，cons－
bination．Rristol Co
-295
Indientor，engine．McNah．．．．．．．．．．．．．．．．．．．．04
Indieator，apeed and direction．Purvis．e．＊251
l．ever aplitting shearn，＂Beloit＂．．．．．．．．．．＂s：
$1 . \mathrm{tgbting}$ set．American Blawer Co．．．．．．．＂39n
L．ighting met，19－K．W．Speedway gasolene．＂998 Lifbting aleamehip piers．．．．．．．．．．．．．．．．．${ }^{\text {• }}$ 127 Lubricator．＂Holerop，＂autocnatic．．．．．．．．．＊s＊s
Machine vervas hand method of stoking．．＊478
Motor．J．W．Brooke \＆Co．．．．．．．．．．．．．．．．•解
Moters，electric，for shipyard toala ．．．．．．＂19？
Naolical instrument．Heatl \＆Co．，L1d．．＊295
Packing automatic．Ideol Antomatic．．．．＊ 4 ：
Piston packior．automatic ．．．．．．．．．．．．．．．．．＊s 33
Press，hydraule．Watson Stillmen $\mathrm{Ca} . .$. ets
Pump gavernor，automatic．．．．．．．．．．．．．．．．．©
Pumps，senterifugal ．．．．．．．．．．．．．．．．．．．．．．．．＊211
Reversing molor drive ．．．．．．．．．．．．．．．．．．．．．＂384
Kiveter，electre－hydranlic portable．．．．．．．．sot
Rope．Columbian Rope Ca ．．．．．．．．．．．．．．．${ }^{\text {• } 383}$
Rope Ieste Plywouth Cordage Co．．．．．．．＊mi
Searcblight．Carligle \＆Fiuch．．．．．．．．．．＊ 8
Searchlights．Carliale a Fincla Co．．．．．．．＊＊93
Searchlighta．Surment tyrathers＇．．．．．．．．．．＊≥ 10
separators in conmection with live and ex－ haust steacr
＂34
Ship furniture in ateel．．．．．．．．．．．．．．．．．．．．．＊34．
Shipyard equipunent supplemarnt．．．．．．．．．．．${ }^{-189}$
Soot blowet，bew frout and ．．．．．．．．．．．．．． 343
Spark plug wrench．William，\＆Co．．．．．．＇81
Splattiog shear．Henry Pelv \＄Co．．．．．．．．＊ige
Steama cock，＂Thadford＂．．．．．．．．．．．．．．．．．．＂6 ．

Steam Irap＂Kume．＂Linten Machine Co．＂A1
Steam trap Lytton Manufacturing Co．．．© 92
Steam turbine ountive for electice wetl－
evations．Gecenuocu4 \＆Hasley，B．td．．．．gan
Steel in dredger wark．Edgar Allen \＆Co．esle
Stoker，＂Jones．＂as applied to dredges．．．．＂aso
Stop valve．Jophanswn．Fertanti patent．．＊ess
Stub yoke and rod ends ．．．．．．．．．．．．．．．．＂211
Testing set，portable．Queen \＆Co．．．．．．．＊3n．2
Thermit welding pmerse．．．．．．．．．．．．．．．．．．．＊2ta
Torch，keramenc．Hauck Mig．Co．．．．．．．．＂211
Triplex pump．elestrkally opernted．．．＊＊＊2
Valves，＂Dermatine＂
－3s：
Valvea，＂II，R．＂Witting Bros．，Led．．．．＂\＆
Ventilativg fans．Imprican Blower Co．．＂295
Wincbes and capstana，shipyard．Rayke．．＊293

PRACTICAL EXPERIENCES OF MARINE ENOINEERS

A little comparison ．．．．．．．．．．．．．．．．．．．．．．．．．．．T9
Sir－pamp troobles ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．
Another tnethod of reparing a fractured
shatt，Masou ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 629
Bulge purmp ram，broken．Mclaren．．．．．，＊e4n
thoiler experiences at sea．．．．．．．．．．．．．．．．．． 3 ． 3 ：4
Eroken reversing block ．．．．．．．．．．．．．．．．．．．．． 167
Broken sanitary muction pipe．．．．．．．．．．．．．．．＊ 205
firnoen thrust ahaft ．．．．．．．．．．．．．．．．．．．．．．．．ss
Broken winch valve spindle，Brown．．．．．© 80
Aroken warni of stretingerar enmane
shaft
Aurst eondenser
－ 280
Calking and welding at rem．．．．．．．．．．．．．．．＊gos
Caps：an motor，trouble with．Rooth．．．．．．ass
Concrete In an old hall．Miller．．．．．．．．． 28 A
Condenser，burst ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．＊286
Condenser luben，plotting of．Percy．．．．．＂ass
Cut－off for midzear position．Molloway，＂632
Cylinder blown out，high．prensure．．．．．．．．go
Eecrntric atrap，Broken
＊…．．．．．．．．．．．．＊98
Engeners＊Ileense in America and Eog land

Explosion of a valve recriver
Fred pump bartel，fracture of ．．．．．．．．．．．figs
Feed－pump troublet ．．．．．．．．．．．．．．．．．．．．．．．．．．क）
Fire at vea ．．．．．．．

Frature | al |
| :--- |
| 13 |

Fractured shaft，another method of re． pairing．Maton ．．．．．．．．．．．．．．．．．．．＊ 4

Iligh－preaware cylinder side and bottom knocked out ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．
liow a spare propeller and ahaft were fitted at seen
How the work wan done hy＂Coupling＂．
Ice－making experinuent
Indicater earde from tipiceexpansion en－ sine．Mason

Jatking engine，repairs to．．．．．．．．．．．．．．．．＂40t
Knifing out valve seats in place．．．．．．．．．．${ }^{3}$ ：
I．eaky condenmer ．．．．．．．．．．．．．．．．．．．．．．．．．．．． 163
Staking use of odds and ends．Fisfield．，＊as
Mending a eracked shalf． －977
Hinnesots，breakdowin of．Hitl $\quad 420$
Oil－tank ateamer，trouble on．．．．．．．．．．．．．． 468
One way of making a false valve seat for marine enciane
Parsonn turhines，practical operation of
Pipe woik，steam and cahawst．．．．．．．．．．．．＊ssis
Plottine condenter fuhen，Perey．．．．．．．．．©sss
Practical operation of Parqons turbines． 33
Remankabie series of breakdowns HILL．．＊ 426
Repair of bruken rudider pintle bolts．．．．＂164
Repair to brriken alide spindle sland．．．．．＊o
Repaizing a broken thaft．Webmer．．．．．． $3: 3$
Repairing a broken low－prestotre eyilinder
At aca
Repairing a broken shalt s6e
Rectaining pins，experimeot with．．．．．．．．．event
Reversing block．broken ．．．．．．．．．．．．．．．．．． 1 fi
Ruditer pietle balts，rrpair of．．．．．．．．．${ }^{* 164}$
Sanitary＊uction pige brokeq．．．．．．．．．．．．．．＊gob
Setting propeller titades on the Cireat I akes

4206
\＄haft，repairs to ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 3 ．
Slup on fire at wea
Slide valve spindle，repair of．．．．．．．．．．．．．．\＄1
Spinille glacd，repair of．．．．．．．．．．．．．．．．．．
Sieam and ealiaust pipe work on board
ahip ．．${ }^{38}$
Temporary tepair of a high presaure allde valre spiodle
Tiller loose on the rudder head．．．．．．．．． 87
Thrust shaft，broken ．．．．．．．．．．．．．．．．．．．．．．． 83
Trouble with a ramsen motor．Booth．．． $4 \geq 3$
Trouble with feed pump．80
Turbinen practical operation of Parsona．
$\cdot 247$
Use of air vrancle
167
Vacuum question
Valve aeats，the kwifing out of． － 97
Welfing and ralking at sea $\cdot 205$
Winct valve mpinitle broken． －so

technical phiblications

Annual Keport of the Mercantile Maine Bureau for the year 1909.1816 ．Japan，
Aonwers on Refrigeration and low Making．Harris

423
Applied Thermodynamica for Engineera． 171
Blue Book of Americau Sbipping
Buecaneer Bollads．Visjak 381
Burcau Veritan，1910－1011 48
Cape Cod Canal 474
Care，Operation and Management of the Patsont Marinc Steam Turbine，Nizon． 200Cold Storage．Heating and Ventilating onBoard Ship．Walker
81Design and Coostraction of Shipa Biles．Pie Seliffoschraube und ihre Wirkung
auf dan Wasmer．Phemm． 21zDirectory of Smipownerm，Shipbailders andMarine Enginecra， 1911.Elemerta of Machine Work．Smith．361
214Engines and Boilera MeQuade
Enginerring Deacriptive Geometry 299
Essential Factora in the Formation of Prodocer Gas 428
Fight Shipm．Jane 3
Gas Engines．Marshall and Sankey 841
Handbook for lron Foundera．
174
171
Hest．Ogiten
Induacrial Planta Day $1 ; 1$
Loyd＂s Register of American Yachts． 181
Machiae Shop Mechanics．Colvin． 814
Marine Engine Design 881
Marine Gan Enguen and Their Construc． tion and Management．Clark．．．．．．．．．．． з80Mechanical World Electrical T＇ooketbookfor 1 19t1
87Mechanical World Pocket Diayy and Yea
Book for 19 97
Motian Study．Gilbrelh 171
Xautical Techaical Dietiopary a7
Power．Lacke 361
Practica！Applied Electricity．Moreton． 426
Practical Mariac Engincering． 476
431
Prieciplea of Machine Work，Smith． 216
Ralway Shop Kinkc．Kight． aso
Kecard of American and Forcign Shig－ pinge 914
S．S．Cruack，or the Scheme that Failed． 116
Scientific Management of Railwaya． 215
Self－Taughe Nechanical Drawing in Ele－ 426Ship Turbin
stem Turbines，Koc 313
Temperature Entropy Dhagram，Berry 214
Text－loook on Steam and Steam Engines．． 300
The Finginecring Index Antual for 1810. 214
478The Gas Turbine．Suplee
The Indicator Ilandhook．Pickworth 474
The Naval Anmual．Brassey 8 8
The Naval Pocket Beok．Clowes．．． 429
215
The slide Kule．Pirkworth 424
V＇alve Gcars，Spankler 880
Werk，Wages and Profita．Gant？ 48

International Marine Engineering

JANUARY, 1911.

A 22,000-TON FLOATINO DRY DOCK FOR BRAZIL.

The Brazilian Government has recently received delivery at Rio de Janerio of the new 22,00o-ton floating duck built by Messrs. Vickers, Sons \& Maxim, Limited, of Barrow-in-Furness. This dock is intended for accomodating the Minas Geraes and Sao Panlo, the two super-Dreadnoughts lately built for Brazil by Sir W. G. Armstrong. Whitworth \& Co., Limited, of Elswick-on-Tyne, and Messrs. Vickers, Sons \& Maxim, Limited, of Barrow-in-Furness, and it will be moored in the entrance channel between Governador Island and Boqueira Island, the Brazilian naval store yard at Rio de Janiero.

The dock is of the double-sided, self-docking type known as

the boited-sectional type, and has been built from designs prefared by Messrs. Clark \& Standfield, consulting engincers, of Westminster, London. It consists of a pontoon, or liftiug portion, and two parallel side walls, btilt on to, and forming part of, the same, and the whole is divided lengthwise into three sections of unequal length by vertieal joints running round the whole profile of the dock. The following is a table of some of the leading dimensions:

The pontoon consists of a rectangular structure plated in all round, with the exception of the portion of the deck whieh cones directly under the walls, and stiffened internally by longitudinal and transverse girders. It is divided into three sections by two joint ehambers. The middle section is 165 feet 3 inches long, and rectangular in plan, and the two end sections are each 167 feet 734 inches long, and have their outer extremities built in the form of a point or bow, terminating in
a working platform, carried on strong plate and braced girders.

The geteral construction of all three sections is, however, the same. The bottom plating runs transersely in the home and rider strakes, and is lap-jointed. The top or deck plating is similar, but here there are end butt joints with inside covers. The sides of the pontoons are formed by the back plating of the walls. The pontoon is divided into six compartments by five longitudinal watertight plate bulkheads, occurring one at the eenter or keel line, and the others (called the imer, intermediate, and outer intermediate bulkheads) on each side of the eenter. These bulkheads are of varying heights to suit the eamber of the deck of the pontoon. The deck of the pontonn is built with a camber. The eentral portion under the keel blocks is flat ior a width of to feet thus affurding a parallel base for the kecl blocks. Outside, the plating cambers off until at its junction with the wall it is 6 inches lower than at the eenter. Transversely the pontoons are divided (in addition to the joint chambers) into fifty bays, sixteen in the central section and seventeen in each end section, by transverse girders. The end bay in the points is 5 feet long, but all the others are 10 feet long. The walls of the dock are rectangular structures in plan, but they have a batter to the face or inside. They are in two tiers or stores, and are situated on the top of the pontrons, of which they form a continuation. At a distance of 20 feet below the top deck is the enginedeck, which is eontinnous over the whole length of the side walls. On this deek are placed the boilers, engines, dynatnos, and machinery, the various rooms containing these being divided off by partition butheneads. Above the same deck the necessary accommodation for the erew of the ship is provided. The engine-deck, which is longitudinally plated and single riveted throaghout, is attached to the side plating by an angle ring. and is watertight over its whole length. Each wall is divided, in addition to the joint chambers, into twelve watertight divisions by plate bulkheads conning in line with the hulkheads in the pontoon, of which they are a continuation. These extend to the height of the engine deck, and are plated transversely, and single riveted throughous. In each end seetion of the dock the engine-leck is divided off by watertight collision bulkbeal, locing a continuation of the first watertight belkhead in the side wall. The engine-deek of the end sections is further divided by three non-watertight partition lulkheads, a doorway being provided to kive aceess from one room to another. The upper portion of one of these bulkheads is made watertight to form an end to the water tank. Each wall of the ceneral section is divited by similar partition bulkheads. The joint butkheads of all sections are made watertight, and provided with a watertight door at the enginedeek level to give acces, from one section to another.

About i foot helow the top deck an iron rumning deck extends from ladder to ladder, as shown on the general view of the dock, consisting of ehequered plate and an edging angle, and carrying on its outer edge a ruhbing timber supported by brachets projecting from the face plating of the wall. These brackets necur in way of every other side frame. At a distance of about 8 feet 6 inches and ig feet, respectively, below this, two further stages, known respectively as painting and shoting stakes, are provided. They are of similar construction to the running deck. The ronning deck is provided for enabling ropes to be easily handled and run from one end of the dock to the other outside the stanchions. On it are placed the timber heads, fairlcads to capstans, and such fittings as are required in berihing the vessel.
The berthiug stage is chiefly fitted for slinging stages from it to the vessel for the purpose of painting, and to a moderate extent it might be used as a sloring stage. The shoring stake, which occurs at the level of the engine deck, is speeially stifferied and built for the purpose of shoring up the sides
of the vessel by means of borizoutal shores, a timber walling being provided along the face of the wall, against which the heel of the shores may be wedged up.
In elose proximity to each boiler a coal bunker is fitted into the engine room, and a fresh water tank, of a capacity of alout tell tons, is likewise provided in the wall close up to each boiler. The space in the upper chambers of the side wall above the engine deck, which is not utilized for the main or anxiliary machinery of the dock, has been fitted up for the accommeslation of a crew of 600 men and $; 0$ officers, as far as regards their sanitary requirements and the eooking of their necessary food.

Both ends of the central section and the stuare ends of the terminal sections are provided with a joint chamber and joint, by means of which the sections ean be joined together or parted. The length of the joint ehamber is 5 feet 3 irshes eenter to center of the joint bulkhead plate. This length is equally divided over the two sections. These sections are stiffened, top and botoms, by means of Jugs and gussets falling in line with the frames on the joint bulkhead, and by a continuation of the longitudinal bulkheads. The actual joint across the bormm and up the sides is by means of angles. siveted to the bottom and side plating by a zig-rag pitch of rivets. Over this portion the plating is donbled, the doubling plate being flush with the joint angle, and extending back as far as the first rider plate, but the plating itself on the eentral section is $8 / 4$ inches short of this, to form a recess into which a rubber or other compressible ring may be inserted, and which, when pressed against the flat face of the half of the joint chamber, makes a watertight joint. The joint angle is piereed by holes to take the joint bolts which connect the two scetions together. The joint above the angle across the pontoon deck, and up the sides of the wall to the level of the top strake of the side plating, is formed by a single cover-plate. holted of riveted to the skin plating, watertightness being obtained by means of a canvas or felt strip. The joint over the top strake of plates is similar, but it hav double covers. Across the top deck the deck plate is tutbled, and the joint made with double covers. In way of the intermediate and longitudinal bulkheads of the pontoon a further connection is made by prolonging those bulkheads into the joint chamber, the two beeng joined by a single cover plate.
The hull of the dock has been constructed througlout of mild Siemens-Martin steel of the quality used in shipbuilding under Lloyd's rules, and all the plates were punched in a muttiple punching machine, whereby the abolute accuracy and correct distance of every hole, lengthways and crostways, was atsured, the design of the dock having been so arranged that all lengths and breadths of plates, positions of butts, frames, and bulkhead rings were multiples of the unit river pitch of the dack All countersunk holes were countersunk to at least three quarters of the thichness of the plate. The rivets throughout the dock consist of 3 -inch steel rivets, except where the seantlings are under $7 / 16$ inch, in which case ξ_{4}-inch rivets have been used. The riveting of the whole of the outsile of the pontoon is flush countersunk, the remainder of the work being risetel according to Vickers' general practice, and where non-countersunk work was used the proints were earefully set un so as invarinbly to kave a sufficient quantity of metal outside the hole. The pitch of the rivets on all watertight seams has not exceeded 3 inches, and that on non-watertight seams and frames 6 inklh. On the flange of the joint angles attached to the plating where zig-zak riveting was specifed the pitch of the rivets was $41 / 2$ inches.

The machinery of the dock comprises the boilers, engines, pumping plant. valver, and the valve lifting gear, and everything necectary for the sinking and raising of the dock. There are two identieal installations, one situated in the port and the other in the starboard wall. This machinery is capable, when
combined, of lifting a vessel drawing 28 feet, and of a displacement not exceeding 22,000 tons, within a period of four hours, counting from the mean of the times when the ship bears on the keelblocks fore and aft, until the pontoon deck at the center of keel line is 7 inches out of the water, duc allowance being made for any total stoppage of the machinery for berthing the vessel or other purposes, The plant in each wall consists of three boilers and three engines and pumpsone in each section-sucking from a continuous main drain extending the whole length of the wall. Any one of the three pumps can therefore empty its entire half of the clock.

Each installation consists of three Babcock \& Wikcox portable type boilers, each of goy square feet heating surface and of tyo pounds steam pressure. One spare boiler is provided, making, therefore, seven for the whole dock. The hoilers were manufactured at Vickers, Sons \& Maxim's Works at Barrow. A feed pump, with connecting piping, is supplied with each boiler and suction piping. leading to the reserve water tank. A branch is provided on the discharge for attaching a bose for washing-down purpeases. A 3 -inch steel steam pipe extends the full length of each wall with connections, fitted with stop valves to each separate boiler. This steam piping serves all the auxiliary engines, such as capstans, etc., thus allowing any one boiler to be used for this purpose.

The centrifugal pumps are of the "Invincible" type, as manufactured by Gwynnes, Lid. The suction and delivery pipes are 18 inches diameter. They are each driven directly by a compound non-condensing engine, with cylinders it inches and 17 inches by 10 inclies, placed at rixht angles to each other, the engine being placed on its side, and driving direct on to the end of a long vertical shaft, which descends to the pumps at the bottom of the dock. The engines are carried on strong bed-plates, secured to the deek of the engine room, and arrangements have been made to reduce vibration to a minimum, and the interior of the walls in way of the engines has been suitably stiffened. A sensitive high-speed governor controlling the throttle valve is fitted to each engine, and arrangements are made to enable them to be turned by hand. The harring gear is of the self-liberating type. The serew-down regulating valves, opening against the steam pressure, which are fitted to each engine elose to the slide valve casing, are worked from the starting position with worm or other suitable gear, so as to prevent jar of the valve and gear when the engines are at work. While the engine cranks are directly attached to the top of the vertical pump shafts, this attachment is not rigid, but allows slight vertical movement. so that the weight of the pump shaft is entirely supported on its own :hrust bearings, and does not hang on the engine crankshaft.

Each vertical shaft is supported at intersals it gunmetal. lined plummer blocks attached to the internal framing of the dock. On the upper extremity of these shafts is cottered the upper portion of the ball bearing which earries the weight of the vertical shaft and pump dise. The lower portion of the ball bearing is carried in a casting bolted to the engine deck. The upper portion of the ball bearing is made with a lip to come over the lower portion and prevent dust getting into the races, A watertight gland, which has an extra long sleeve, so as to form a side guide to the shaft, is fitted to the vertical shafts where they pass through the engine deck.

The pumps are seated directly on the top of the main drain running along the bottom of the walls. They take their water entirely from the under side-which is clear of all foot bearings-and discharge it direct at their own level through the skin plating of the wall. Their bodies are of cast iron, carefully finished and specially designed so as to be easily taken apart for the purpose of inspecting or removing the impellers. The bottom of the pump and of the flange of

the discharge are faced. The impeliers are of gumuetal, and they are firmly keyed and pinnned to the spindle, which is of stecl. An extra long stufting box or guide is providex on the top of the pump to ensure steady ruming, anil the end of the spindle terninates in a forged coupling with turned face and socketed for attaching by means of turned boits to the terminal coupling of the vertical shafts. The pump discharges are in cast iron, with flanges faced and bolted, one end to the discharge valve and one to the skin plating of the dock. The sea end has a projecting lip passing through the plating and fitting into the hole eut therein.
Each discharge is governed by a serew-lown stuice valse, placed between the pump delivery flange and the discharge pipe. The body and sluices or gates are in cast iron, and bushed with gunmetal to all moving parts. The lifting screw of the valve is an inside one. The value spindle is coupled hy a decp socket and double-pinned to a solid shaft, which is led up to the top deck, and there furnished with a remusable hand wheel. Where the valve rod passes the engine and top dechs it is furnished with east iron stuffing box bushed with gumenetal and a gunmetal gland. A standard is erected on the tep deck to steady the rod when being turned, and there is an indicator to show the position of the valve.
The pamp discharges are proteeted by an altomatic rubberfaced flap valve making itself tight against the projecting lip of the disclarge pipe. The base or seatings of the pumps are bolted directly on to a main alrain rumnitg the whole length of the walls, and they have licen placed as low down as possible, being seated direetly on the top of the floors. They are of east iron of varying diameters, in suitable lengths, with expansion joints and with connection piece between the different sections of the dock.
There are two systemis of continuous main drain, one in each wall of the dock. On each system of main drain six floshing inlets-making twelve for the whole dock-branch out of the same. They are in the form of easy beets, standing on top of and botted to flanges cast on the main drains. These bends are at right angles to the line of the drain and carry a serew-down gunmetal faced valve, similar in every respect 10 the discharge values, and the spindles likewise are led up to the top deck. The flushing valves are bolted by flanges to a chorn length of east iron pipe passing throngh the back plating of the wall with a projecting lip, as in the case of the pump discharges. The flushing branch through the back plating is further governed hy a flap valve making itself tight agamst the projeeting lip of the discharge pipe. This llap is provided with a lever on its face, so that it can be opened and held open by means of rexis and chains rumning over pulleys attached to a small hatd winch with pawl. Each of these flushing inlets is protected by mealts of a grid, which is of such dimensions as not scriously to obstruct the free flow of water into the flusher.
The branches to which the distrihuting pipes leading to the different watertight compartulents of the dock are bolted are cast on the main drain. Each branch leaves the main drain either in the form of a bend of casy radius or with a wellformed cone. They are provided with a faced and drilled flange at the outer end to receive the distributing valve. The distributing valve attached to each of these flanges is of the direet-lifting type, with double gunmetal ports, held apart by springs and fastened to a gunnetal spindle by a pin of the same material. The body of the valve is of eavt iron, gunmetal bushed on the contact surfaces and with gunmetal glands. The valve rods are of galvanized iron pipe, screwed on by means of a socket to the valve spindle and pinned to the same. They are led up through the engine-deck, being fitted with a gunmetal-bushed, watertight gtand where passing through this deck. On the other side of the distributing valves, and bolted to them with wrought iron flanges,
are the distributing pipes leading to their respective chambers. The ends of these pipes are turned down in their respective trotghs. Each separate watertight compartment is fitted with a galvanized wrought iron air pipe led up above the deepest draft line of the dock.
At each corner of the dock, gage or draft buards of timber, painted in figures to show the draft over the keel blocks, are affixed. These are carried on hinges so that they may be swing back out of danger when a ship is entering the tock.
In each seetion of the dock and on each wall a vertical duplex phmp of Hayward-Tylet \& Company's manafacture is plated in the enkine-room, taking its steam from the line of the anxiliary steam piping. The steam portion of the pump is in the engine room, but the pump barrel is placed in the interior of the dock abont the level of the pontoon deck, the piston rouls from the cylinders passing stuffing glands on the dock and connecting to the pump plungers. Each of these pumps is capable of providing a full stream of water for two $21 / 2$-inch fire hoses at a pressure of 120 pounds. The suction of this pump is connected to the main drain of the dock, so that it may be used as a drainage service for emptying any one particular compartment. The delivery is on the face of the dock about the level of the running deck, and is in the form of breeches pipe, finished with two serewed nozzles protected by brase eaps and stoponcks. There are six pumps for the whole dock, making therefore twelve fire branches, Twenty-four fo-foot lengths of eanvas fire hose with twelve fire nozzles are provided.
Fach watertight compartment of the dock is provided with a means of medicating in the valve house the level of the water inside 15. These indicators, supplied by Chadburn's (Ship) Telegrash Company, Letl., are in the form of an iron inverted cup of about 4 inclies diameter fastened to the frames in the bottom of each eompartment. From the top of these cups or bells a pipe is led up through the interior of the dock into the valve house. These pipes are in continuous lengths, and where the pipes pass throtgh watertisht bulkheads or deeks they have a watertight joint. In the valve house the ends of these pipes are soldered into a T-piece. one end of which is conneeted to an aneroid sage, eaprable of reading by pressure from a 6 -inch head of water up to the highest head that can oceur in the compariment in question. The other lead of the T communicates with a receiver pipe, common to all the indicators in the hlock, and such branch is governed by a small plug valve. The receiver pipes are conmected to a small air resersoir, so that by opening the plug valve air may he forced through any of the tubes and into the compartment, the pressure necessary to do this being rekistered on the dial of the ancroid pressure gage. The gages are placed in the ralve house, and in a prominent position as near as possible to the levers that control the valves of the compartments they indicate.

The compartment valves of the dock are all operated from ane eontrol valve house, 24 fret ling hy 9 feet wide, situated on the sfarboard wall. For this purpose the Westinghouse eleetro-preumatic system is used. It is based on the principle of operating presses by air compressed to 3 or 6 atmospheres. and controlling the same from a distance by nteans of valves operated by an electric magnet requising less than I watt to energize it. The position of the apparatus is indicated back to the valve table by electrical means. At the engine deck level each distributing salve rod is attached to the stirrup of its own press, which is of 6 inches diameter and lias a stroke of 12 inches. The standard Westinghonse clectro-magnetic valve is mounted on the wall of the Alock U'pon the magnet being energized the exhaust passage to the press is closed and the inlet opened, and the air passes into the press, thereby lifting the distributing salve. The inlet is suitably proportioned, so that the press lifts as slowly as desired. All the time the magnet remains energized the distributing valve is lifted, but
as soon as the current is cut off by the motion of the lever on the valve table the weight of the valve and valve rud expels the air from the press, and the valve closes. Attached to the left arm of the stirrup is a eircuit breaker of standard type, which indicates to the operator in the valve house the position of the press and distributing valve. A Westinghouse nonscizable cock is inserted in the air pipe of each press, so that the air ean be cut off or throttled, as may be required. In the event of a failure of the efectric emrrent the control valves can be operated by hand. Should the air pressure fail, a jack or lever ean be placed under the stirrup, and the valve thereby lifted by hand. The valve tables in the valve house are of timber, polished and fimished in oil. On this table small levers, placed in positions corresponding to the compartments of the dock they control. actuate the necessary conracts, and clectrical indicators alongside indicate the position of the distributing valves: that is, whether open or slut. The water level gages indicating the actual depth of water in the different compartments are placed to the right of the levers. The apparatus on the table is connected ly wires to the battery and moors on the engine deck. There are no pipes in the valve house.

The air is supplied by a Westinghouse 8 -inch by $81 / 2$-inch pump into a reservoir, from whence an air pipe is taken along each engine deek in oriler to supply the different presses. The capacity of the ptomp at tco strakes per minute is so cubic feet of free air per minute. The size of the reservoir is such that the fump can raise the pressure in less than ten minutes. and that then all the valves can be lifted and elosed three times in one minute without lowering the pressure too nuch for successfal opseration. A duplicate air pmmp is provided as a stand-3y. The reservoir is placed near the pump, and it has a saícty valve and blow-eff cock

The air piping is of wrought iron steam piping, and the wires are chielly No, is copper of high condactivily, insulated with vaicanized india rubber of 600 mosohm grade. They run in wooden tronghing outhe engine decks, and in 4 -inch watertight piping between the port and starboard decks. Where air or cable pipings pass through watertight lowlkheads the joint, have been made waterijolt.

Electric eurrat is provided from the main, current being reduced to required voltage. On the valve table there is a switch for eatting off the battery, so that no current is consumed for indicating the position of she pump valves except when the attendant operates the same.

For the convenience of eontrolling the dock, eertain oi the watertight divisions are grouped together, in which ease such sroup is controlled by a single lever on the valve table. Robinson's mechanical telegraphe communieate from the valve house to the engine-room. The valve house has also been fitted with two large spirit levels-at right angles to each other -so as to indicate the levelness of the dock, in order that the valve master may have under his hand indicators kiving all the information requirel to entable hims to control the lifting and sinking of the dock from the valve house.

The electrical installation on the dock was supplied from the Sheffield works of Vickerc, Sons \& Maxim. Ltd. The large electrical generating unit is capable of a eontinuous output of about 600 amperes at 220 volts, the engine, which is of the Brotherhood vertical compound type, being eonnceted to and supplied with steam from the main boilers. The small generating unit is capable of a continuous output of 60 amperes at 220 volts. The engine is connected to a vertical boiler fixed adjacent to the enginc, and provided with a chimney, waterfeed pump and injector emmplete independent of the main boilers. But the steam piping is arranged, and the necessary valves provided, for connecting this engine to the main boilers should it be desirel to run it from this source. Each engine is providert with an approved type of governor, which main-
tains the speed constant within 4 percent between full load and no load. All moving parts are provided with means for contintous lubrication. The platt is capable of developing 25 pereent overload for a period of two hours withont andue beating. The dynamos are of the compound-wound type, arranged to give 2 percent above the stated pressure when working at full luad, while the commutators are of hard-drawn or strip-forked copper, and provided with a sufficient number of segments to ensure sparkless commutation at all loads without shifting the brushes. The brushes are of the earbon type, having sufficient contact surface to prevent rise in temperature. The magnet and armature windings are of a section to ensure that the rise in temperature of any part does not exceed 70 degrees F. (21 degrees C.) above the surronnding air temperature when running continuously at full load.
There is a main switchboard erected in a position adjacent to the gencratimg sets. On the panels of the switchbuard are motuted one pair of coplier bus bars, which can be divided into two parts by removalile copper comecting links. One part of the bus-bars is costnected by two single-pole switches and fuses to the large generator, and the other part by two singlepole switches and fuses to the small generator. To the end of the bus-bars joined to the larke xenerator are connected through fuses the cables lealling to the main connection box on the dock wall. To the other end of the bus bars are connected single-pole switches and dotuble-pole iuses controlling the duck lighting eirctits and the cross-dock eable. On this hoard arc motmted one ammeter for each dynamo, indicating np to 25 percent above the normal ontput of each dynamo, and one voltmeter reading to 250 volts, which, by means of a snit able switch. can be connected to any of the dynamos or bus bars.

In an aceessible pusition on the dock wall is a watertight cast trom box having a linged door. Inside this box is mounted a donble-pole switch having a carrying and breakiug capacity 25 percent alove the full load ontput of the generating plant, provided with four terminals, two on each pole, suitable to receive the thimbles attached to the cables for supplying juwer to the ship om the dock. On the opposite wall of the dock to the kenerating plant is eroced a suitable switch pillar haviug a hinged door, and fited inside with a slate or marble panel, provided with bus hars to which the cross dock eables are connected. There are also single-pole switches and double pole fises controlling the bimpa, ete., on this side of the dock.

The outside lighting of the dock is carried out by a number of deck standards, erected at intervals along the top of the dock wall, and provided with brackets which overhang sufficiently to allow the lamps to illunimate the space between the tlock wall . These brackets are capable of being turned a quarter of a revolution to prevent damage whelt a ship is heing docked. In the hase of each standard a hinged door is proyided to give access to a double-pole switch and fuse mounted iuside the standard. At the end of the bracket an enameled iron shade and guard is fixed, containing six lamp holders and lamps of not less than 50 candlepower, All the neeessary pendent electric lamps and wall plugs are controlled by separate switches and fuses, grouped together and monnted in watertight hoves with hinged doors. At intervals along the dock walls above, lut accessible from the gangway attached thereto, are mounted watertight chambers having hinged fronts and containing sockets to recrive plags for portable lamp elusters. Portable lamp clusters, consisting of four lamps contained in enameled iron shades and guard, are provided. Also single-lamp shades and gatards with leads and plugs attached.

All the lamps in fixed positions and on deck standards are of the metallic filament type, working with not more than two watts per caudle power. This also applies to all portable
lamp clusters where there are more than two lamps in one cluster. Single portable lamps are of the carbon type, taking not more than 4.5 watts per candle-power.

The cables have been drawn into scamless steel tubing with serewed joints. At all places where bends oceur watertight inspection chambers are provided, and where tappings are made there are watertight tee boxes. Distribution switch fuse boards are enclosed in cast iron watertight boxes, into which the conduit has beent screwed. All cablex and conduit; are fixed inside the dock walls. The cross dock cable is of the concentric type, lead covered and armored. The valve-house, engine and boiler-rooms, and all the compartments in the top wall are wired for clectric lighting, and wall plugs have also been provided in all compartments, from which inspection lamps, or small ventilating fans, or other gear can be carricd to any portion of the compartments. A system of electric mains is carried inside the dock along the cutire length of each of the walls, with plug boxes accessible from the outside of the dock. From these plag boxes flexible wires and lamp clusters can be led to illumiuate any portion of the ship's interior.

All conductors consist of eopper wire not less than 100 percent of Mathliessen standard of conductivity. No cable carries more than 1,000 amperes to the square inch. The area of cable is such that the drop in pressure from the switchboard to the farthest limp does not exceed $21 / 2$ percent of the working pressure. The eables are insulated so as continuously to withstand a temperature of too degrees F. without deterioration. It was further specified that the insulation of the calles, after immersion in water for forty-cight hours, had not been less than 5,000 megohms per mile, and that the cross dock cable should be capable of periodic immersion in salt water without deterioration of the armoring or insulation.

There are two traveling cranes, onc on each wall of the dock. Both were supplied by the Appleby Crane \& Transporter Company, Limited. These cranes have a radius of 45 fect from the eenter of pivot to ecnter of chain, and a lift of 45 feet from the top deck to the bottom of the slinging boek. They each run over the entire letigth of the top deck. The gear is carried on top of a four-legged traveling platform rumbing along jbe rails fixed on each side of the wall of the dock. The height of the plat form permits of the crancs passing over the salie louses and cowls, etc., on deck, and over the funsels, which have luest made telescopic or lowering for this purpose.

Fach crane is capable of lifting 5 tons on two falls of rope reeved through a snatch block, or $21 / 2$ tons on a single fall. The speed of hoist in the first eave is 15 feet per minute, and in the second, zo fret per minnte. Slewing is performed at speeds not execeding (bo fect per minute, according to the load being bandled, while traveling is at the rate of fo feet per minute. The cranes are traveled by hand by means of wire ropes secured to them and workod from the capstans. Alt the aforementioned movements are performed witt the full load of 5 tons slung from the jib.

A substantial cast iron roller path is provided, machined on the tread, and with turned conical rollers. In addition to the stability obtained by the use of a lalance weight, a pair of clip plates is fixed on each side to prevent the tipping of the cranes due to accident or rough baulling, or the heeling of the dock. These eonsist of vertical plates, each 9 feet long, with lipe projecting uncer the beals of the rails. Ordinary rail clips are provided at each comer to prevent the crane launching itself during docking. To suit the above clips the rails are of the flat-bottom type, with a wright of about \&o pounds per yard, and they have a wide head to afford gnod grip.

There are eight capstans-snpplied by Messers: Hasfield.

The capstan on the top deck of the wall is of cast iron. It has efficient pawling gear, and is fitted with a row of bar holes for working by hand, and has a brass cover at its head. The capstan spindle is of forged stcel, and is carried down through the deck to the engine deck, and stepped into a gunmetal bushed bearing on the engine bedplate. The capstan baseplate is of east iron, and bushed with gunmetal. Where the spindle passes through it a wrought steel collar is fitted under the boss of the capstan base, so as to prevent the spindle from lifting. The engine is of the horizontal type, with two cylinders, each 8 inches diameter by $t 2$ inches stroke. and fitted with piston slide valves, having hard gunmetal rings. The reversing of the engines is effected by a eylindrical value, having hard gummetal rings, and is arranged to be worked by right-hand screw and gear, with movalle handle from the top deek. Gear is supplied to enable the eapstans to run at two speeds in the ratio of about it to 3 , one for rapidly taking in slack, and the other when the full load is on the capstan. Fifteen tons are taken at 20 feet, and seven tons at 60 feet.
The control of the capstans is by removable levers of handles from the top deek of the dock.

Bollaris strong cnongh for holding vessels of the larkest size the dock is capable of accommodating are fixed on the top and at each end of the upper deck, while similar heavy bellards are provided on the projecting ends of the low wall at the stern end, and smaller bollards at the joint ends of the separate sections, for mancuvering thent when they are being self-docked. Cast iron timberheads or snubbing posts are along the edge of the running decks for the purpose of checking or snubbing sessels entering the deck. Eight mechanical side shores are provided.
These shores eonsist of timber working inside a wronght iron tube built into the side wall of the dock. The shore carrics on its underside a cast iron rack, by means of which it can be screwed in or ottt by a *tandard fixed on the tup deck, and provided with two handles. The shores are marked to a scale showing the distance to which they project, and are placed opposite to each other, that is, four on each wall of the dock, so that a vessel may be centered beiween them. The keel and bilge blocks are of three types. Firit, the keel blucks proper, occurring oser the central axis of the dock. Sccondly, the side or docking keel-blocks, and, thirdly, the bilge blocks. The keel blocks consist of a lower portion about 2 feet bigh, formed of cast stecl, and an upper portion consisting of a pair of oak wedges hopped at each end and strapped together, making up a height of i foot 9 inches. On top of these a thort capping piece, also of oak, 3 inches thick, is aftixed, to bring up the total height of the keel blocks to 4 feet. There are $20 t$ of these keel blocks proviled for the whole dork. The dokling keel-blocks-sisty-six in namber-are similar in every respect to the keel blockt, with the exception that their base is a little longer, so as to spread the load more uniformly over the floor of the printon. The bilge block-sixty-eight in number-as regards the lower portion, are again similar to the two other types, but monewhat longer, so that they can be nived anywhere on the deck of the dock outside the specially strengthened zone. They earry on the top of the lower portion, which is of steel, sliding oak wedges, which ean be pulled in and out by means of ropes or chains carried over pulleys and led $u p$ to the tup deck. The length of thess bilge blocks is to feet, so as to allow the bige blocks prope. to be prilled into the shape of the ship when she has taken the keel blocks. The whole of the blocks are movable, and can be shifted from one position to the other.
The working platforms at each end of the dock are strong enough to atford very appreciable support to a ship with a greater length of straight keel than 300 feet, which might have to come on the deck. For such a ship it is evident that the
side docking keel blocks woald not be required, and they could, therefore, be shifted and placed as desired anywhere over the platforms. At the stern end of the dock, and on each wall, is a large timber roller fender, strongly supported on brackets, and projecting slightly beyond the line of the rubbing timbers on the painting stages. These roller fenders protect the structure of the dock from possible damage by an incoming vessel.

At the buw end oi the dock a pair of flying gangways or swinging bridges affording access from one wall to the other are fixed on top of the low wall. They are of lattice construction, with their top formed of a clequered plate 3 feet wide, and protected by Jamlrails. Means are provided for opening these gangways should the necessity arise for passing a ship out at the end of the dock. In addition to these there are two light timber bridges of a length of 20 feet, and two of a length of 30 feet, for the purpose of giviug aecess irom the top deck of the walls to the deck of the vessel on the dock.

Accommodation ladders with easy rises and treads lead from the upper deck of the dock down to the pontoon deck. There is such a ladder at each end of the wall, and, in addition, ladders lead down into all the compartments of the wall above the engine deck, while ordinary service ladders lead into each compartment of the lower wall and each watertight division of the pontoons.

Distilling apparasus of the Normandy standard type, as manufactured by the Thames 1ronworks, Shipbuilding \& Engineering Company, Limited, is provided on the dock, and is capable of producing 1,000 gallons of fresh water in twentyfour hours. The boiler and anxiliary boiler rooms, the engine and auxiliary engine rooms, and all portions of the dock walls where steam is used are efficiently ventilatell by means of electric fans.

During the progress of the construction of the floating dock the Brazilian Government have been represented at Rarrow-inFurness by Captain J. M, de San Jatn and Dr. Olympio de Assis, assisted by Dr. Frederico Rurlamaqui.

The dock left Barrow-in-Furness July 4 and arrived at Rio de Janeiro Srpt. 20. On the journey to Rio the towing gear was composed as follows: On one part of the dock two heavy chain bridles were attached, and on to these were spliced $41 / 2$-inch circamference, specially flexible Bullivant steel wires of a lenkth of 35 feet each. These wires were connected to extra superior manila rupes, 18 inches circumference and 120 fathoms length On the othes end of the ropes thete were again $4^{\text {t/S}}$-inch steel wires fastened on to the towing bits of the tuga. The towing was done by Mesrs. Smit \& Company, of Rotterdam, and this is the seventeenth floating dock which this company has delivered to oversea ports. They also have now in hand the towage to Bahia of a 1,250 -ton dock, built by Messrs. William IJamilton \& Company, of Port Glasgow, and another of 5.000 lifting cajacity, which Messrs. Vickers, Sons \& Maxim, Ltd., have on order for Aberdeen.

In the annual report of the Bureat of Construction and Repair of the United States Navy it is stated that the United States can build first-class hattleships in as short a period of time as any other shiphuilding country, and actual experience seems to demonstrate that the rapidity of construction in the United States is greater than the average rate of construction in the principal foreign shighuilding countries. This decreased time of construction has leen olstained concurrently with a decrease in the unit cost of constraction. In fact, the total cost per ton of displacement of battleships built by contract for the United States nasy within the past few years has been less than the total cost per ton of displacement of similar vessels built in foreign countries.

OLD TRANSATLANTIC STEAM LINERS.*
 ay maxcts n. C. bkadles.

To meet this formidable opposition, the Cunards (who had started their New York service with the Hibermia in January, 1848) placed the paddle steamers Asia and Africa on the line. They were sister ships and magnificent steamers for their day, built in 1850 by Robert Steele, at Glasgow, of oak, double-planked, 2,226 tons gross, 266 feet long, 40 feet beam, side-lever eugines by Napier, with two cylinders, each $96 \frac{1}{4}$ inches in diameter, 9 feet stroke, indicating about 1,800 horscpower, but, either owing to their models or boilers, they were not quite as fast as the Collins boats, their best passage West being 10 days 10 hours, and East 10 days.

In 1852 the Cunard line built the Arodio; she was their last wooden paddle steamer and also the first of their fleet to be fitted with tubular boilers instead of the old return Alue type. The Arabia was 2.403 tons gross, 285 feet long and had a set of very powerful side-lever engines (by Napier), indicating over 3,000 horsepower, bist consuming mo less than 120 tons of coal daily. She proved very fast in smooth water, but in a head sea she buried herself, and her engines being too poweritul for her hull, she gradually worked herself to pieces and eventually was brohen up. Her best time from New York to Liverpool was 9 days 17 hours in August, 1853 .

Extraordinary interest was manifested in the competition on both sides of the Atlantic and heavy bets were constantly made. Notwithstanding the fact that the Collins line carried, in 185230 percent more passengers 10 New York and 30 percent more to Liverpool than the Cunards, and that Congress increased their subsidy from $\$, 38,000(\$, 9,000)$ to $\$ 8,8,000$ ($\mathbf{f 1 7 6 , 0 0 0 \text {) per annuns, they were not surcessiul financially, }}$ probably owing to bad management and reekless extratagance. and a series of disasters completed their ruin. The strctic, while on her pascage from Liverpol to New York, was run into September 2 \%, 1854 , about 65 miles from Caje Race, during a dense fog by the French iron screw steamer Vesta. She was struck a few feet forward of the paddle boxes and was so severely injured that she fllled in about three hours and sank stern foremost, engulfing 322 out of the 368 sonls on board. Captain Luce lost control of his crew, or of the larger portion of 3 , who seized the boats and sought to save themselves regardless of others. Mr. E. K. Colliths, one of the proprietors of the line, lost his wife, only son and two daughters, and among other passengers lost were the Duc de Grammont, an attaché of the French Fmhassy in Washington : F. Catherwood, a well-known artist; Edward Sanford, a distingushed New York lawyer; Professor Henry Reed, of the Unisersity of Pennsylvania, etc. It is interesting to note that at this time none of the wooden transatlantic liners were equipped with watertight buikheads. The only ones having any were the Inman iron screw steamers, then running from Liverpool to Philadelohia, and two iron propeller steamships of the Cunard line, the Andes and the Alps, built in 3852 for their freight and cmigrant service. Nor did any of the liners at that time, as far as can be traced, have steam fog horns, or show the now obligatory colored lights at night.
A. Fraser McDonald, who made a passage in $18 \not 8$ from Liverpool to Boston in the Cunard Niugara, says in "Our Ocean Railways," that the only fog signal was made by a sailor standing on the forecastle and blowing a tin horn at intervals, and it was not until some time after the loss of the Arctic that it was stated in the Cnnard line advertisement that "the Britinh \& North American Royal Mail steamers now carry a green light on the starboard side, red on the port and a white light at the masthead." Only a little more than a year elapsed after sinking of the Arctic when the

[^0]Collins line lost the Pocific. She left Liverpool for New York, ruuning against the new Cunarder Persis, on January 23. 1856, with 45 passengers and a crew of 141 persons on board and was never heard of again.
From wreckage that was picked up and the experience of other steamers at about the same time, it was thought that
house of his vessel with the engine-room bell pull in bis hand and trembled for the safety of his vessel and passengers, for he was aware of the great risk he ran in dashing ahead at such a rate of speed in a fog, but it was necessary that time be made."
The last and largest of the Collins line fieet was the

CCKARD STEAMAMIF ABABEA (1853).
the Pacufic ran into an enormous ice floe and went down intmediately with all hands. That these disasters were, in part, due to the intense desire of the managers of the Collins line to make fast passages there is no doubt. John II. Morrison,

Adriatic (she was originally called the Antarctic), designed and built at New Vork by George Steers, of the yacht America fame. She was originally started in 1855 , but owing to numterous changes in the engines was not completed until

WOOD, SIDE.WHEEL. STEAMER FASDEEBLLT (1R5B)
in his "History of American Steam Navigation," says, "This driving ahead at such a speed under conditions similar to this case (the dense fog at the time of the loss of the Arctic) was deemed extremely hazardous by some of the captains of the line, and one who was thought to be a very prudent commander is knowtt to have said that he has been in the pilot
late in 1857, and in December of that year she mate her first and only trip in the Collins service. The Adriatic was built of oak, with diagonal double-laid iron straps, was brig rigged, had two very lofty funnels and was divided into six watertight compartments. The tonnage (gross) was 4.14: dimensions : length, 351 feet ; beam, 4^{8} feet ; depth. 8.3 feet ; the ma-
chinery consisted of two oscillating engines having cylinders each 100 inches in diameter, 12 feet stroke; the indicated horsepower ranged over 4,000 , giving a speed of about $131 / 2 \mathrm{knots}$ on a coal consumption of 95 tons daily. The Adriatic was commanded by Captain James West, formerly of the Atlantic. After the withdrawal of the Collins line in February, 1858, the Adriatic was land up for some time and then sold to the North Atlantie Steamship Company (an American live), who ran her between New lork and Havre via Southampton until the early part of 1861, when she was again sold to the (English) Galway line, and while in their service ran from St. Johns, N. F., 10 Galway, Ireland. in 5 days 19 hours and 45 minutes (May, 1861).

When the Galway line was finally givell up in 1864, the Adriatic was laid up in Liverpool for some time, then made into a sailing vessel, and was as late as $t 890$ used as a coal hulk at Sierra Leone. Such was the fate of a steamer that
wheels were of enormous diameter, 41 feet; there were four return tubular boilers, carrying a pressure of 18 pounds to the square inch; the indicated horsepower was 2,800 .
The Vanderbilt was a success as a fast boat, breaking the record by running from Southampton to New York, in 8860 . in 9 days 7 hours, bur not so much so as a comfortable onc. as she rolled like a barrel and her vibration was excessive. She and several smaller boats of the sante type, named the North Star, Illinois, Ariel, Ocean Queen, all with "walking beam" engines, some double and some single, except the Illinois, ran between New York and Havre, and sometimes Bremen via Southampten, during the summer months from 1855 to 1861. They did not attempt to run in the winter at all, as the "walking beams" perched up high overhead were found ill adapted to the wild weather of the "western ocean." Indeed, it is said that in stormy weather these engines would only make four or five revolntions per minute, and that the

THE CABROLL OY THE DALIIMORE AND LIVEAPOOL SYEANSHIP COMFAKY (IB05).
originally cost over $\$ 1,100,000$ ($\{225,000)$. The ftlanite and Baltic were used as transports during the Civil War, and during $1866-67$ were employed on the North American Lloyd's line (promoted by Messrs. Ruger, of New York) between New York and Bremen via Sonthampton. The Aflantic was broken up at New York in September, 1N71, and the Baltic, after several years" existence as a sailing vessel, was broken up at Boston in 1880 .

One of the first American screw steamers to cross the Atlantic was the Sawnel S. Lefuis from Boston to Liverpool and return in October, 1851. She was a wooden boat, fitted with a pair of vertical direct-acting engines (that were not a success), having cylinders 60 inches by 40 inches stroke.

In 1855 Cornelius Vanderbilt, or "Commodore" Vanderbilt as he was betrer known, who had presiously been identified with the Long Island Sound and coastwise lines, determined to enter the transatlantic trade. He tried to get a subsidy from the United Siates Government for carrying the mails, but failed, and agreed to make the experiment of transporting them for what was known as the "sea postage" only, so much per letter. He had built at New York by Jeremiah Simonson (his nephew) a large wooden side-wheel steamer named after himself, the Vanderbilt, She was 3.321 tons, 331 feet long, 37 feet beam, with two "walking beam" engines, built by the Allaire Works, New York, having two cylinders, each 9 inches in diameter, 12 feet stroke: the paddle
engineers had to stand by to help them over the center with the starting bar.

During the Civil War Commodore Vanderbilt presented the V'anderbilt to the United States Government to help easch the Confederate Alahamg, as she was one of the few Ameriean ocean steaners capable of maintainiug a speed of 13 knots. In 1863 she missed the Alabama at Cape Town by only a few hours, and some time before that, in 1862 , just before the engagement of the Merrimac and Monitor, when the Monifor was an unknown quantity, the Government at Washington seriously considered loading the Vanderbilt and the old Collins liner Baltic with stone and having them run down and siuk the Merrimac by sheer force of weight. Some years after the Civil War the Vanderbilt was made into a sailing vessel and called the Threc Brothers (for some years she was the largest sailing vessel in the world): she is now a coal hulk at Gibraltar.

After the Civil War the first attempt to start a line of American transatlantic steamers was made by the Baltimore \& Ohio Railroad Company, who bought three wooden screw steamers that had been built at New York in 1862 for the Government service. These were the Worcester, Carroll and Somerset. The Worcester was the largest of the shree, being 1.500 tons gross; dimensions, 218 feet by 35 feet by 20 feet, with inverted direct-acting engines having two cylinders, each 44 inches in diameter by 48 inches stroke. The Somerset
opened the line by leaving Baltimore for Liverpool with the United States mail on board in October, 1865. The boats, however, were too small and slow for the trade and were withdrawn in October, 1868. The Worcester and Carroll afterwards ran for many years on the Plam line between Boston and Halifax, N. S., but have now disappeared, probably in the "bone yard."
After the Civil War trade conditions in the United States were in a very unsettled condition, and especially so was
regularity until 1870 , when it was given up, the reason given by the proprietors being "that a combination was formed by the English and German steamship lines to put on a steamer for New York at the sause port and on the same day that the vessels for this line were advertised to sail, and to take freight and passengers to New York at reduced rates. The result of this combination was death to our line." In the carly (oo's the Cunarders made only bi-monthly trips to Boston. This was felt to be not enough to accommodate the

THE EBHE (186\%), LaEGEST WOODEN SCEEW STEAMEE EVKR ETILT,
everything concerned with the shipping business, but, nevertheless, in 1866, William H. Webb, the noted New York shipbuilder, and Messrs. Ruger Brothers determined to try their luck in the transatlantic steamship business and accordingly formed what was known as the "North American Lloyd." Their route was from New York to Bremen via Southampton, and during the last part of their career the European
growing passenger and freight business of the port, and so the American Steamship Company was organized in 1864. Its board of directors included many merehants and bnsiness men of high standing.
After many difficulties and delays the company had built by Genrge Jackman, Jr., at Newburyport, Mass., in 1866, two magnificent wooden (oak and hackmatac) serew steamers, the

terminus was Copenhagen and wometimes Stettin. To carry on the line the old Collins liners Attantic and Baltir and the New York and Havre Fulton were bought, and various steamers, such as the Quaker City. Hicstern Metropolis (which had a "walking beam" engine that had been in use on the Great Lakes in a steamer of the same name) and the Merrimac, an iron screw steamer built in 1862 by Harrison Loring at South Boston, were chartered.
The service was begun in 1866 and lasted with more or less

Ontaria and Fire. They were 2.900 tons each, divided imo five water-tight compariments, 325 feet long, 43 feet beam and 29 feet deep; the engines, designed by George W. Copeland, of New York, were built by Harrison Loring at South Boston, and consisted for each vessel of a vertical-geared engine having two cylinders, each 74 inches in diameter, 4 feet stroke, the indicated horsepower being $1, z 00$. These twe ships, at the time they were built, were considered the handsomest vessels that had ever entered Boston harbor. The

Ontario, Captain Hallet, sailed on her first arip to Liverpool on August 5, 1867; she made three round voyages and proved herself very fast, but on her arrival front Liverpool in January, 1868, she was laid up and the American Steamship Company went out of business. This was partly through lack of capital and partly because they failed to secure a mail contract.

The Erie never made a trip on the lise, and after laying up for a long time both steamers were sold to the United States \& Brazil Mail Steamship Company about 1870 . The Erie was burnt at sea January 1, 1873, with a cargo of coffee on board valued at $\$ 1,500,000$ ($\$ 310,000$), and the Ontario was broken up in Boston in 1885.

After 1870 there were no lines of American transatlantic steamers until the Pennsylvania Railroad Company organized the International Navigation Company in 1872 to run steamers between Philadelphia and Liverpool. The Cramp Shipluilding Company built and engined for the line four iron screw steamers, all alike, the Ohio, Indiana, Illinois and Pennsylvania, each ship being $3 . t 19$ tons gross, 343 feet long, 43 feet broad, $34^{1 / 2}$ feet deep, brig rigged, with vertical two-crank compound engines having cylinders 37 and go inches in diameter, 4 feet stroke, boiler pressure 60 pounds to the square inch. In May, 1873, the Pennsyleomia inaugurated the service

SCREW FERRYBOAT DUTCHESS.

The Dutchess is a screw ferryboat of the following dimensions, designed and built by the T. S. Marvel Shipbuilding Company :

The principal scantlings of the hull are shown in the 'midship section, Fig. 之. The stem and thoe are of cast steel, the stem 4 inches by 7 inches and 4 inches by $61 / 2$ inches, and the shoe $51 / 4$ inches by 9 inches. The keelson angles are $31 / 2$ inches by 3 inches by 6.6 pounds. The intercostals are of 12.5 -pound plate. Between the collision bulkheads the frames are spaced 21 inches centers and at the ends 12 inches. In the engine and boiler space the reverse frames are double.

In accordance with the ferryboat law there are five watertight bulkheads. The bell frames are 11 inches wide and the

which is maintained to this day, only, as the International Company gradually expanded its fleet, the new ships were buitt in England and flew either the English or Belgian flag. as being cheaper to operate. After getting control of the Red Star line, running between Antwerp, New York and Phitadelphia, the International Company, in IR86, bought out the Inman (English) line, rumuing between New York and Liverpool, and in 1893 a new service was begun to Southampton under the name of American line. At the same time two of the English ships, the City of Jew York and City of Paris, were by special act of Congress admitted to American registry and renamed Nrw York and Paris, the Paris being now called the Philadelphia. In 1895 the American line added to its flet the two now well-known steel twin screw steamships St. Lowis and St. Paul, which, with the Nerv York and Philadelphia, earry on the serviee, and there the matter stands to-day.

The Bureau of Navigation of the Department of Commerce and Labor reports that 70 wail and steam vessels of 16,349 gross tons were buitt in the United States and officially numbered during the month of November, 1910. Three steel steamers, aggregating 6,355 gross tons, were built on the Atlantic and Gulf coasts, and 3 steel steamers, aggregating 7,760 gross tons, were built' on the Great Lakes. The total tonnage of sailing vessels built during the month was 206, and all were of wood. The largest ship built on the coast during the month was the EI Ocrident, $6.00 \$$ gross tons.
deck beams 5 inches by 3 inches by $7 / 8$ inch on every frame amidships and on alternate frames at the ends. The guard beams are 5 inches by 11.6 -pound zee bars.
The deck over the hull is entirely plated with 10.2 -pound plate. The centerhouse and side bulkheads of the team gangway are of steel, 1022 pounds to the square foot. The shell plating is 20 pounds for the garboards, 13 pounds for the shell amidships and 17 pounds for the sheer strake. The waterline plating is 20 pounds at the ends. All seams have joggled edges. The hull is stiffened by a longitudinal truss of channels on each side.

There is a coal bunker athwartship forward of the boilers. Cylindrical water tanks are provided with a total capacity of 6,000 gallons.
The rudders are of the balanced type with 6 -inch stocks covered with 12 -pound plates. There are four escape ports, $t 2$ inches by 18 inches, and the gangway coamings are of steel.
The plank sheer is 4 inches by 18 inches, reduced to 3 inches by $t 5$ inches at the ends. The balance of the deck planking is 3 inches by 5 inches in the teamway and $21 / 2$ inches by $21 / 2$ inches in the cabins.
The joinery work is of pine and cypress. There is a stairway on each side leading to the upper deck. The general design is colonial, modified to suit marine work. The inboard sides of the cabins are finished in canvas panels and the outboard sides with canvas panels between stationary windows. There is an awning deek over the upper deck leading from pilot-house to pilot-house.
machinery
The ressel is propelled by two comopund engines on one shaft coupled together. Each engine has cylinders 15 inches and 30 inches diameter, with a eommon stroke of 22 inches. Slide valves are fitted to each cylinder, operated by double-bar Stevenson link motion. Steam reversing sear is fitted and all pamps are independent. The main shaft is $7^{\frac{1}{2}}$ inches diameter. The propeller shaft is covered with a brass casing in the stern tuhes between bearings. There are two thrast bearings of the horseshoe type.

The condenser ontfit consists of a Blake vertical simple air pump and jet condenser, artanged to draw from a tank and
total heating suriace of the boilers is 1,395 square feet; the total grate surface gt square feet, making a ratio of heating surface to grate surface of 30.6 to 1 .

A vertical donkey boiler is installed in the center house and piped to the boiler circulating pumps, etc. A Reilly feedwater heater is fitted. Products of combustion from all boilers are exhausted through a double stack, 65 inches outside dhameter, which extends to a height of about $\$ 3$ feet 6 inches above the base line.
Electricity is supplied by a simgle $t 5$ kilowatt, direct-connected General Electric generating set. Tuo 18 -inch searchlights are installed.

the sea. The suze is 10 inches loy 22 inches by 12 inches. There are two sea suctions of large size on each side to allow water to be drawn from the side of the boat most free of ice.

The fire pump is extra powerful, being $18 \frac{1}{2}$ noches by 12 inches by 12 inches. It is of the horizontal duplex ispe, ar= ranged to discharge at stations in the gangway and on the upper deck. Monitor nozzles are fitted at each pilot-house.

The feed pump is $71 / 2$ inches by 3 inches by 6 inches. There are two boiler circulating pumps, $5!/ 1$ inshes by $3!/ 2$ inches by 5 inches.

The propellers are of cast steel, designed for winter service. They are about 7 fect 6 inches diameter.

Steam is furuisled by two Scotch boilers, designed by the T. S. Marvel Shiphuilding Company, and buite lys P. Delaney \& Company, Newburgh, X. Y. 'The boilers are to feet 9 Inches diameter by II feet 6 inches long, designed for 1.35 pounds working pressure. Each has two Morison corrugated furnaces, 42 inches inside diameter, of the horse-collar type. There is a steam drum which takes steam from both boilers, and a 7 -inch steam main leads from this to the enginex. The

There are tho sets of Welin quadrant davits complete with metallic lifeboass.
In scrvice no viloration is noticeable, and the coal consumption is $5^{1 / 2}$ gross tons in a period of eighteen mours, of a workink day.

CONCERNING THE LNITED STATES NAVY.

In his anmual report, recenty published, the Secretary of the Navy makes recommendations which slumuld result in eventual economy and tend to increase the rficiency of the naval establishment. In this eonnection some of the more important suggestions concern the ahandonment of the naval stations at Xew Orleans, Pensacola, San Juan, Port Royal, New London, Sacketts Harbor and at Cavite. Secretary Meyer points out that all of these smaller stations are unnecessary and, on the whole, useless, as their location and equipment are not such as 10 emable a general overhanl or
accommodation of ships of the size as now built for the navy. For the protection of the Gulf and the Panama Canal, the Secretary advorates Guantanamo as possessing strategic superiority, and that this station should be properly equipped as a naval base. Owing to the increased cost in maintaining the Aeet on the Pactific, it does not seem advisable, in the Secretary's opinion, 10 transfer any large portion of the battleship fleet there at the present time.

Although at a disadvantage, owing to its lack of railroad communications and its great distance from the labor market, the Secretary regards the Bremerton yard as necessary, and should, therefore, be developed. The Mare lsland yard has the disadvantage of locing inaccossible, owing to the shallowness of the channel leading to it and the impurities in the water. Too much noney, however, hay already been expended 10 abandon this yard, ant it should lue tused for the repair of such ships as can readily be sem there. San Francisco Bay seems the logical point in the future to establish a docking and repair station for hattleships.

The principal insular defense base should be made at Pearl Harbor, in Hawaii, aud Alougapo, in the Philippines, should be made a repair station and Cavite disposed of.

With respect to new constructions, Secretary Meyer recommends the authorization and building of two battle-ships, one collice, one gunboal, one river gumboat, two sea-going tugs, itwo submarines and one submariue tenter.
kEIOKT OF THE ENGINEEK-IN-CHIEF.
Satisfactory progress has been made on the machinery for the Florids, now bnilding at the New York navy yard. As an example of the efficient organization now existing in the machinery department of this yard, is cited the successful casting of all the turbite casings for this vessel without the loss of a single casting

One of the most important pieces of work carried out at the Norfolk yard was changing the engines of the Lowisiona and Virginia from in-turaing to ont-turning A highly gratifying fealure of this work rests in the fact that it was done for about 55 percent of what the contractors, who built these two ships, wanted for doing this work after the engines had been completed as in-turning

Boilers of both Babeock \& Wilcox and Mosher type have been tested by the builders of said boilers in acconlance with requirements stipulated in the burean's spectfications, with special regard to acceptance for battleship installations.

In order to determine the relative backing power of ships with turbines anl reciprocating engines exhanstive trials were undertaken with the three scoul cruisers, Rirningham, Chester and Salem.

The experience gained with the burning of oil fuel as auxiliary to coal in the battleships Delaware and North Dakota shows that satisfactory burning of the oil, which, when used as indicated, is sprayed on top of the coal, and, therefore. with teasened furnace volume and space for combustion, has been difticult of accomplishment. As installed in tliese two vessels, it is intended to be used only to assist in maintaining power on long full-power rhus.

A high-speed marine turbine, with reduction gear, is being installed in the collier Nrpfunc. This is a twin-screw vessel of tg. 360 tons displacemen, with a speed of $1+$ knots. Steam is supplied to each of the two W'estinghouse-Parsons turbines at 200 pomals gage. The power expected is 4.000 horsepower on each shaft when the furhines revolve at 1,500 revolutions per minute, while the propellers run at 1.36 revolutions per minute. The reduction gear is of the Melville-Macalpine type.

Recommendation is renewed for an appropriation of $\$ 250$,On ($£ 51.400)$ for the pruchase of insernal combustion engines, to be installed in a naval collier, should it be thought advisable to experiment along these lines.

BIDS AND CONTRACTS FOR UNITED STATES NAVAL. vessels.

TORPEDO-BOAT DESTROYERS.
On Nov. 8 last, bids were opened at the Navy Department, Washington, for six torpedo-boat destroyers, the contracts for which were awarded on Sov, 22. The awards were made as follows :

The Bath Iron Works, Bath, Me, two destroyers at \$645,000 ($£ 132.500$) each, to be completed within 24 months and a guaranteed speed of 30 knots ,
The Newport News Shipbuilding \& Dry Dock Company, Newport News, Va., one destroyer; to be completed within 24 months and a puarantied speed of $291 / 2$ knots, at a price of $\$ 630,000(~(1+29,400)$.

The New York Shipbuilding Company, Camden, N. J, one destroyer at $\$ 6,40,000(\mathbf{~} 1,3 \mathrm{t}, 500)$, to be completed within 24 months and a guaranteed speed of $291 / 2 \mathrm{knots}$.

The Wim. Cramp \& Sons Ship and Fingine Building Company, Philadelphia, Γ_{2}., one destroyer at $\$ 653,000$ ($£ \mathbf{1} 3,000$). to be completed within 2.4 months and a guaranteed speed of 291/2 knots.

The Fore River Shipbuildiug Company, Quincy, Mass,, one destroyer at $\$ 4 \%, 800(\$ 133200)$, to be completed within 24 months and a guaranteed speed of $29^{1 / 2}$ knots.

The machinery of the first five are to lee turbines of Parsons type, and that of the last-named to have Curtis turbines with twins screws. The boats to be built by the Bath Iron Works and the Fore River Ship Building Company to have their trials on the regular Government trial course off Rockland, Me.; the others on the Lewes-Delaware course, for the privilege of which the builders made a reduction of $\$ 5.000$ ($£ \mathrm{r}, 030$) on each boat.

All of the foregoing destroyers have practically the same dimensions as those contracted for in September, 1908, and May, to09, which are 712 -toms displacemens and have 12.300 horsepower.
bittiesmifs New vork and texas.
Owing to restrictions comained in an amendment to the bill atthorizing the construction of the two latest battleships, Nos. 34 and 35, which provide for an cight-hotr workday, only one bid was received by the Deparisnent Dec, 1 , the date set for opening bids. The bid referred to was by the Newport News Ship Rutilding and Dry Dock Company; Newport News, Va., who offered to build one battleship (No. 35) according to the following schedule:

Class 1. Department's plans for hull and machinery, with turbines of Parsons ispe, for $\$ 5,790,000(51,191,000)$. or with turbinen of Curtis type for $\$ 5,775,000$ ($\mathbf{E t , 1 8 t , 0 0 0 \text {). Class } 2 , ~}$ Department's plans for hull and huilders' plans for machinery, with reciprocating engines, for $\$ 58.30 .000$ (fral $\left.^{2}(\boldsymbol{n}), 0 \times 0\right)$).

The ship to be completed in 36 monthe and have a scuaranteed speed of at knots. The bill also authorizes the Secretary of the Navy to butild one of these two ships at a navy yard, but, owing to the increased cost, this will not be decided upon before Congress authorizes the limit of the increase in cost. Meanwhile, the Newport News Company has iniormed the Department of its willingness to construct hoth ships at a price for each given in their bid for one. Should Congress decide to build the New York by private contract new bids for this ship would probably be invited.

The Gencral Flectric Company in their bid for machinery offered to build machinery of a turbo-electric type for $\$ 352,000$ ($t 72,400$).

COLlises.

Two bids were received for the construction of colliers Nos. 9 and 10. One of these, from the Union Iron Works, San Francisco, Cal., offers to build one vessel for $\$ 1,595,000$ ($£_{3} 38$,©o0) in accordance with the Department's specifications.

The other bid, from the Moran Company, Seatle, Wash., offers to build one vessel, on specifications prepared by the company for the machinery and the Department's plans for hull, for $\$ 887,000$ ($£ 203.000$).

The first bid exceeds the limit of the appropriation by $\$ 595$.000 ($f 122,300$), and the second bid was unaccompanied by the required bond, and irregular also in other respects.

GUN'S AND ARMOR.

The Midvale and Bethlehemt Steel Companies sutmitted identical bids for the armor plates to be used in the construction of battleships, and were as follows:

Class A, 11,340 tons at $\$ 880$ ($\mathrm{fy}(\mathrm{y})$) per ton.
Turret armor, 1,16 tons at $\$ 480$ (600) per tom.
Class C. at $\$ 770$ (597) per ton.
Class D, at $\$ 655$ ($\mathbf{t 1 3 5 \text {) per ton. }}$
Class E, at $\$ 512$ ($\mathbf{~}$ ros) (Midvale), and $\$ 508$ ($£ 104$) (Bethlehem).

Bids for ten r_{4}-inch gans eomplete, including some spares, but withour run carriages, the Midsale Steel Company's bid was $\$ 7+7,700$ ($\$ 153.700$), and that of the Bethlehem Steel Company $\$ 770.000$ (6160,000). The time oi delivery of the first sun of the former company was $13^{1 / 2}$ months, and that of the latter it months, thereafter one gun every to days.

NAVAL ENGINEERING PROQRESS.

SCOETT TKIALS.

Extensive triats have been carried on with the Birningham, Chester and Salem-scout eruisers, similar in design except as regards their machinery installation. The Birmingham has reciprocating engines on two shafts: the Chester, Parions turbines on four shafts; and the Satem. Curtis turbines on two shafts. The boilers on the Birmingham and Salem are identical in design, while thome on the Chester are of sitnilar type.

At a speed of abont ten knots the total water per hour for the main engines only is 21,088 pounds for the Rirmingham, 25492 for the Chester and 30,182 for the Satem.

On full power, with respective speeds of $24: 5,2467$ and 25.32 knots, thix water consumption is $253,3,3 / 2$ pounds for the Birmingham, 253.6\%2 pounds for the Chester and 292,751 pounds for the Satem, or $17 \not \$_{2}$ pouuds per indicated horsepower, 13.7 pounds per shaft horsepower and 16.2 pounds per shaít horsepower, respectively.

The speeds on contract trials were: Birminghan, 24.325 linots: Chester, 26.52 ktrots; Salenn, 25.947 knots.

An interesting point developed in the trials is the economy obtained in the Parsons system by the use of conising turbines at low power. These eraising turbines have been omitted in recent British designs. At 10 knots, with the cruising turbines, a water rate of 281 pounds per shaft horsepower was chtaised: while without the eruising turbines this increased to 4.9 pounds per shaft horsepower.

In comparing the results of these trials it should be rememhered that the Curtis turbines of the Salem represent a much earlier period of development than do the Parsons turbines of the Chester.
stras tkials of the dflawiak and wouth dakota.
The trials of the Delmance and North Dakoto present an interesting study in similar ships of the comparative efficietcies of reciprocating engines and Curtis turbines in batteships.
The Delaware, which is our latest and perhaps last recip-rocating-engined hattleship, showed such an excellent performance on her contract trial that there is doubt in the minds of somse of us as to the superiority of the turbine for a battle-

[^1]ship of that type and speed. The steam consumption per indicated horsepower of the main engines was is. 48 pounds at 12 knots, 12.7 pounds at 19 knots and 12.9 pounds at 28 knot -
As compared with the North Dakota the main engines of the Deloware showed a smaller steam consumption at all speeds, and at 12 knots this superior ceonomy amounted to about one-third the total consumption. Translated into cruising radius, this superiority, if maintained on service, is significantly important.
The principa! improvements in the Delatware"s machinery over that of her predecessor's consist in:
(a) lmproved eylinder zation and reduced clearance in main engines.
(b) Forced lubrication of main bearings, crank pins, eccentrics and cross-head pins.
(c) The use of supertheated steam.

Foreed Inbrication similar to that of the Delacarre is being applied to the older vessels. During the present year it will be fitted to the Vermont, Newe Hampshire, Georgia, North Carolika. Colifornia and Colorado, and, if it provés successful. as rapidly as possible to the other armored vessels of the fleet.
Some difficulties have developed in connection with the use of superheated steam, due to crosion of valves in the steam lines of the Delowars, and there is still some doubt as to whether the economy gaited is not couaterbalanced by the increased difficulty of maintenance of plant. We are experimenting with metals suited to high temperatures, and hope to find a valve material to overcome these troubles.
the macking power of tiraines as compareo with mrctpbocating engines.
With reciprocating engines a backing power equal to the ahead power is afforded withotut any increase in weight except that of the backing eccentrics, rons and links. With turlinies, however, the alility to reverse requires additional turbines, with a considerable increase in weight.
It is necessary, therefore, to restrict the hacking power of turbines to that actually required by tactical considerations. The intention has been to provide a backing power estimated at 50 percent of the ahead power. In practice, however, the backing power of turhine vessels has been found not 10 exceed 40 percent of the ahead power.

Trials have recently been held with the three scout cruisers to determine the sufficiency of the hacking power provided by Parsons and by Curtis turbines, as compared with that obtained by reciprocating engines. The baxis of comparison bas heen taken as the distance ahead reached by the vessel during the interval required to bring her dead in the water from a given speed ahead.
These triats were condscted with great care and thoroughness, the condition of displacement, sea speed. and number of boilers in wee, were practically identical for all, and the results may be taken as an authoritative indication of the relative backing powers of the threc types of machinery as now installed.
The speeds selected for the trials were 10, 16, 22 and 24 knots. Three runs were made by each vessel at each of the two lower speeds, two runs at 23 knots, and one run at the high speeds. At each speed onty the boilers required for a sustained run at this speed were used.
There was no bottling up of steam preparatory to backing. and no speeding up of blowers during the backing imtervat. It was required that the boiler pressure be not reduced to such extent as to cause priming.
It was found that at al! speeds the reciprocating engine provides better backing power than the Curtis furbines, and that the fatter is superior to the Parsons turbine.

The commanding officer of the Chester (with l'arsons turbines) states: "However, under all the usnal experiences of service, 1 have felt, during the past four munths' experience, no uneasiness as to the adequacy of the backing power, provided I always had six boilers in operation." The Chester has twelve boilers, and on the trials six were used at 10 knots with natural draft.
The adequacy of the Chestor's backing power is, 1 believe, llebatable, and 1 submit it to you gentlemen, it being a tactical rather than an engineering question.

Similar trials are to be carried out with the North Dakota and Delowetre.
The British battleship Dreadnewght, displacing $\mathbf{t 7 . 0 0 0}$ tons, and with 23,000 shaft horsepower in Parsons turbines, at a speed oi 20 knots, was stopped in three minutes in 3.9 ship lengths, and at 12 knots in 4.2 ship lengths, the titue for the latter speed not being given.

The strategical features governing the design of naval machinery are quite different in the case of other nations with whose vessels ours are ordinarily compared. Certam Furopean natious, for instance, are building flects for service in the Nurth Sea. Their probable enemies are clase at hatd, the probable sphere of their naval activities is limited, and, as a result, their flects must be frepared to make short cbanges of base at bigh speed. The result is apparent in recent Pritish designs, in which the predominant features are high speed and simplicity of machinery, at the expense of craising radius. For their purpose the increased economy ganned by the use of eruising turbines is not justified by the increased weight, space and complexity involved.

We, however, must build our shups for sersice beyond the seas. Feomomy of facl at cruising speed is to us of paramonnt impertance, and onr problem becones the difficult one of combining a maxinum of cruising radius with an ability to make the speed required by tactical considerations.
This extends even to our destroyers. Their cruising radius should approximate that of the batteship flect, and this at a sustained speed of 15 knots. We are now considering in the designs of the new destroyers methods of reducing their steam consumption at 15 knots, in an endeavor to build up their eruising radius at this speed. Two methods present themselves. In the one the ecuising turbines hitherto shown in our three-thaft destroyers are replaced by small high-speed turbines connected by mechanical reduction gear to the low-pressure shafts. A clutch contpling is interposed to permit throwing out the cruising element at the highest speeds and when backing. The small turbine works the steam from the boiler pressure down to about atmospherie pressure, and exhausts through the main turbines, the power at t5 knots being about equally divided between the three shafts.
The other proposition is to install a small reciprocating engine in place of the high-speed turbine and reduction gear. On account of the low power required for 13 knots (about 450 horsepower on each shait), and because of the eomparatively high efficiency of the reciprocating engine when working in the range of pressure presented, the design of an engine which will be satisfactory on service is by no means difficult. A moderate piston specd and forced lubrication can be provided which should insure ease of upkeep.
Either of these proposed cruising elements ean be installed within the weight and space of the eruising turbines hitherto used, and each method promises an improvement in economy of about 20 percent. The resulting inerrase in ertising radius may justify the departure from simplicity of plant entailed by the employment of one of these methods, particalarly since total disability of the cruising elements would still leave a full-powered plant.

FROSPECTIVE DEYELOPMENTS IN METHODS OF PROPULSTON.
Although there have been marked improvements in the design of recent turbine machinery, an all-turbine installation in a battleship is still unsatisfactory as regards economy of roal at eruising speeds, due to the inefficieney of the turbine at low peripheral speeds. There is, therefore, a well-defined need for a method of propulsion wheh, at cruising speeds, will allow a high-speed turbine to drive a slowly-revolving propeller shaft, thus eonserving both turbine and propeller efficiencies. It is probable that three methods of proputsion radically different fromesisting types and all aiming to accontilith this end will be tried within the next two years.

This form of drive is to be installed in the coltier Neptunet, building at the works of the Maryland Steel Company, Sparrows Point, Md. She is to be a t win-serew vessel, similar to the Cyclops, displacing 10.360 tons, with a speed of 14 knots. Steam at pressure of zoo ponnds will be supplied by three double-end Scotch boilers to a Westingloutse-Parsons turbine for each shaft, each turbine develoging abwut 4,000 shaft horsepower on 1.500 revolutions at full power. BeIween cach turbine and ifs propeller shaft is to be interposed a Melville-Maealpine gear, reducing the propeller speeds to 135 revolutions per minute at \mathbf{I}_{4} knots. Low speeds are obtained by slowing down the turbine, and astern turlines are provided for barking

It is expected that, incidental to the trial of this nethod of propulsion, the installation in the collier will afford an opportunity to benefit by the broad experience of the Westing house Company in the development of details of the work. For instance, it is proposed to adapt the company's electropneumatic railway-switch-operating inechanism to permit the opration of the mathinery front tle bridge. Again, the installation will pernit a trial of the Leblanc air pump, as used by the company in its commercial work, and of radical elaanges in design and construction of the Parsons turbine.

This installation is being matle on very liberal terms to the Government, the cost being that of the reciprosating ensines originally contemplated, and the Crovernment being duly suaranted against possible failure.

The principal points to be developed with this installation are the extent of wear on the gears, quietness of operation, and the adaptability of the gears for reversing. In shop tests the gear has transmitted 4.500 shaft horsepower for 40 hours, with an efficiency in excess of 98 percent, and with no apparent tendency to wear.

EMMET'S METHOD OF ELECTMIC PROPULSTON.

Mr. W. L. R. Emmet, an engitueer of the General Electrie Company, has submitted a form of electrie propulsion in which General Electric high-speed turbo-generators drive motors on the propeller shafts at speeds considered proper for propeller efficiency. He estimates an efficiency of trans* mission of 94 percent. His installation in a battleslip contemplates two turbo-generators driving four notors on two main shafts. By this multiglicity of units, eombined with pole-changing devices on two of the motors, an economy close to the maximum is promised at all speeds above ten knots.

In the case of a collier, whose cruising speed would probably be near her maximum, the installation proposed consists of two generators and two motors, one on cach propeller shaft. The motors would not be arranged for poleehanging, but would be equipped with resistance for reversing. At speeds below is knots one generator would be used on both motors. At a speed of 14 knots a water rate of 12.6
pounds per shaft horsepower per hour is promised, and at to knots the water rate is stated to be less than 15 pounds.

It is hoped that this method of propulsion may be installed in a collier authorized by the last Congress, similar to the Nieptume, under conditions similar to those governing the Westinghouse installation in the latter vessel.

Although many of the features of the electric drive proposed by Mr. Emmet have been developed as the result of actual installations in shore plants, there are so many novel features involved that the system will require careful scrutiny before its use in an important vessel is considered. It is difticult to predict what disadvantages, if any, will be found, but the following points will be the subject of special investigation in the trial installation:
(a) Weight as compared with all-turbine drive.
(b) Ventilation of the generators and motors, there being considerable heat generated in the armatures.
(c) Cooling of resistances. Under certain conditions there are large quantities of heat to be suddenly dissipated from the resistances.
(d) The possible failure of the machines, or parts of the machines, due to access of water.
(e) Complexity of accessories-switches, pole-changing devices, resistances, etc.
(f) The degree of delicacy of speed control.
(g) The effect on chronometcrs, compasses, and personnel of grounds, the tension being in excess of 2,000 volts.

THE mavid and COULSON SYSTEM OF ELECTEIC DEIVE

This system is based on an ingenious spinner motor, which gives three speeds in either direction at maximum motor efficiency, control being had from two double-throw switches.

The motor consists of an ordinary squirrel-cage rotor on the main shaft. Concentric with the rotor and around it, adapted to revolve freely on extensions of the main-shaft bearings, is a spinner, provided with a brake. On its inside surface the spinner is wound to drive the rotor, while on its outside periphery the spinner has a squirrel-cage winding that enables it, in turn, to be driven as a motor by a surrounding stator built into the ship. Thus the machine consists of two motors concentrically arranged around a common axis, either of which may be made to revolve in either direction, or the spinner may be held by the brake while the rotor is revolving. The speed of the spinner, in this manner, may be added to or subtracted irom that of the rotor, giving three speeds in either direction without the use of resistances in the rotor circuit, without varying the periedicity of the main cirsuit and without pole changing. The relative speeds of the rotor and spinner are determined by the number of the poles in the spinner and stator.

In the case of a battleship similar to the Florida, this method would contemplate a three-shaft arrangement, developing 30 ,coo electrical horsepower at 150 revolutions per minute. The estimated loss in transmission in dynamos and motors is 10 percent, which, it is clained, would be more than compensated for by the gain in turbine and propeller efficiencies.

The turbo-generators would have a speed of $t, 200$ revolution per minute. The rotor revolves at go revolutions per minute, the stator at bo. The three speeds at which maximum efficiency would be obtained are, therefore, 30,90 , and 150 revolutions per minute, corresponding, respectively, to steerage way, to to knots, and to 20.5 knots.

The equipment would weigh considerably more than an all-turbine arrangement. The overall diameter of motors would be $t 5$ leet.

It is reported that an installation of bituminous producersas engines, driving generators for this method of propulsion, is to be installed on a eargo vessel on the Great Lakes during
the present year. No reliable data concerning this instaltation have been received. Its developuent will be followed with kreat interest.

NUMBER OF PROPELLER SHAFtS.
Having definitely abandoned the single serew for all impurtant vessels, it is almost axiomatic that an arrangement of propelling machinery on two shafts is the best that reztains, for reasons of simplicity and of propeller efficiencies. But we are sometimes foreed into a three or four shaft arrasugement for reaction-turbine ships by the excessive length of engine room which otherwise would be required. This is not without advantages, however, in the ease of overhaul afforded by the smaller turbines and in the minimizing of the effect, on the total propulsive power of the vessel, of damage to one of the units.
As between three shafts and four shafts the latter are preferred for large vessels, on account of the probability of better propeller efficiencies. Our lack of experience renders the design of the center propeller in a tharee-shaft arrangement rather difficult. The proxintity of this propeller to the hull and the likelihoud of its being robbed of its water by the wing propellers introbluces an element of uncertainty as to its efficiency. It is probahle that when properly designed and located three screws will give almost the same efficiency as iwo or four, yet there are startling instatees of trials of triple-serew vessels in which the best speeds were obtained with the center screw idle. We have rejected the three-shaft arrangement for the new battleships, because with reaction turbines the four-shaft arrangement requires a shorter engine room. With impulse turbines the two-shaft design gives mure roon and greater smplicity on less weight; but, in case we go to higher powers in our future battlechigs, three screws witl probably be necessary in order to avoid excessively large units.
In the case of destroyers we use three shafts for Parsons turbines and two shafts for the Curtss and Zoelly turbines.
enternal-combustion engines.
Tests have recently been completed at the Norfolk Navy Yard of internal-combustion engines for launches. Nineteen representative makers submitted engines for the tests. Each engine was tested for four or five days in the shop, and an equal length of time in a 40 -foot launcls.
A. a result of these tests, eight 4 ecycle kasoline (petrol) engines and one 2 -cycle kerosene (paraftin) engine wcre found suitable for naval use.

A gasoline (petrol) engine, to be sufficiently reliable for service use, must be of lieavy construction and securely mounted in a heavily-built boat. It has been conclusively demonstrated that a lightly-built thigh-speed engine, however carefully built and operated, will not serve. A 4 -cyele engine should weigh not less than 45 pounds per horsepower, and the 2 -cycle cngine (for small powers) not less than 35 pounds per horsepower. The revolutions should not be much greater than 500 per minute.

Designs are locing prepared in the Bureau of Steam Engineering for standard gasoline (petrul) engines for service use. It is probable that eventually the heavy-oil engine will displace the gasoline (petrol) engine on aceount of the danger incident to kecping gasaline (petrol) on board ship. The depariment is bemling every effort towards the development of an oil cnsine sutitahle for small boats.

The use of internal-combustion engines for propulsion of large vessels has long been an attractive subject to naval enginecrs. Such engines have shown marked economy in large units on shore with constant load when run by producer gas. We are often asked why we do not use such engines in naval vessels. The variations in load, the provision that must be
made for reversing, and the necessity for a control of speed in a marine installation, sufficiently delicate for maneuvering. present difficulties that have not thus far been successfully met. There are difficulties, too, in connection with the design of a producer suitable for bituminous coal. The size of gas-engine cylinders suitable for marine work is at present limited to about 100 horsepower on account of temperature difficulties in larger cylinders. Thus, in the present state of the art, an installation for one of the new battleships would require 320 cylinders, and, needless to say, limitations of space alone would prohibit such an installation. With a gas engine, too, the cylinders are absolutely independent, one of the other; there is no mutual tuderstanding, as with the cylinders uf a steam engine, in which each cylinder is very much eoneerned with the performance of its neighbors. For this reason the problem of simultancously reversing all the cylinders of a gas engine is a difficult one.

The British gunboat Rafter was in commission for about eight months, with an anthracite producer supplying gas to at 5 -cylinder, 500 horsepower single-acting engine, making 120 revolutions per minute, exhausting into the smokestack. Speed could not be reduced below 65 turns. A hydraulic clutch was used for reversing; this wore hadly and was unsatisfactory. The weight of the installation was greater than that of a steam plant of equal power.
At present, therefore, internal-combustion engines are unsuited for marine installations of greater than 1,000 horsepower, and in small installations are justified unly in special cases. There is, however, prospect of a considerable improvement in the design of bituminous producers, and a welldirected effort to overcome the difficulties which I have enumerated, so that the subject is still very much alive.

Our experience with internal-combustion engines in launches is that their maintenance is very expensive, amounting to 35 percent per annum of the original cost.

In the British and German navies, heavy-oil engines are used to drive a portion of the dynamo plant on some of the recent vessels. Such an arrangement permits the lighting and ventilation of the ship when, for purposes of overhaul, all boilers are eold.
With us, however, this contingency is so remote that the use of internal-combustion dynamo engines has not been justified. Our principal navy yards are all capable of furnishing current to ships whose dynamo plants are disabled.

OIL-ATRNING BATTLESHIPS.

Our experience with liquid fuel, while limited, has been sufficient to convice me that, considered from an engineering point of view, the expediency of its use in battleships to the exclusion of coal is clearly indicated.
The principal argument advanced against the use of liquid fuel, in large vessels, is the alleged difficulty and uncertainty of obtaining it in the seaports of the world. This is a strategical question, and belongs to you gentlemen rather than to me, but I will discuss it very briefly. New oil felds are being developed in many localities where until recently they were unknown. The Argentine Government has directed the installation of oil burning as an auxiliary in their battleships that are being built in this country, and in connection with this appears the statement that large oil fields have recently been discovered in Paragonia. California produces an excellent grade of fuel oil, but we are sending Pocahontas eoal around the Horn for use in our vessels on the West Coast. I have seen the statement that the new oil fields in Oklahoma produced last year an amount of oil equal to twice the coal burned by the United States navy during the same time,
The United States produces more than half the world's oil supply, and it is being shipped abroad for use as fuel in
the vessels of foreign navies. It would appear that fear of difficulty in obtaining oil should not seriously interfere with the adoption of this ideal fuel for use in United States naval vessels.

In time of war we must depend on the ftuel stored at our naval bases or carried in our cargo vessels; and it is easier to store and carry oil than coal. With the Panama Canal completed, oiling stations at our possessions in the Pacific, together with some oil-carrying vessels, would afford a certainty of fuel supply at least equal to that now provided for coal.

It should be remembered that all our future destroyers will probably be oil burners, and that their work is with the battle fleet. Thus we are already committed to the establishment of means of supplying oil for the destroyers at all bases at which it would be required by battleships.

That oil-burting battleships have not been advocated more seriously abroad is due entirely to the fact that, with the exception of Rnssia, no European nation has a supply of oil that can be depended on in time of war. It is logical, therefore, that our nation, producing, as it does, more than onehalf the world's supply of fuel oil, should be the first to accept the great military advantages of oil-burning battleships. These advantages have been argued so often that I will not dwell upon them now. Briefly, with liquid fuel, we can:
(a) Reduce the weights and space required for boilers.
(b) Reduce the fireroom personnel.
(c) Eliminate ashes and cinders, and practically eliminate smoke.
(d) Increase the eruising radius.

The principal advantage, from a military point of view, of oil burning in a turbine-driven vessel, lies in the ability of such a vessel to be driven at full power with but slightly greater effort on the part of the personnel than at low speed, and in the fact that full speed can be maintained for periods limited only by the supply of fuel.

I wish to place myself emphatically on record as advocating oil-burning battleships for our service.

IMPROVEMENTS IN ECONOMY ON BATTLESHIP TLEET.
In comparing the present coal consumption of the battleship fleet, which means its crusing radius, we will use as a standard that shown on the cruise of the battle fleet from San Francisco to Hampton Roads, during which, as you will remenber, a considerable improvement was shown over the first leg of the world cruise.

The average coal consumption per knot of the battle fleet at present, referred to a standard speed, is 6 percent better than that of the best ship on the world eruise.

The average eoal consumption per knot of the battle fleet at present, at 12 knots , is practically the same as that at 10 knots on the world cruise.

Since the world cruise there has been an improvement in coal consumption per knot in the battle fleet of 20 percent.

There is a similar improvement in the small vessels of the service.

The arntored cruisers have apparently not improved, but are burning a little over 1 percent more eoal per knot than last year.

In eonsumption of lubricating oil per knot there has been an improvement of 8 percent from December, 1909, to April, 1910, over that of the preceding year for all vessels of the navy: The average cost per knot of lubricating oil for all vessels is now 3.9 cents. This is not as good as the best merchant practice, but is constantly being improved. Our best ships cost less than one cellt per knot.

As illustrating the ability of ships to maintain themselves, the cost of repairs due to casualties was four-tenths of a
cent per horsepower during the last year. The cost of new machinery and boilers for naval vessels, included under the head of "navy yard repairs and changes," was 53 cents per horsepower during this period.
Including the power of the anxiliary machinery the average cost of developing one horsepower in the navy is now about 2.04 pounds of coal per hour. This includes all expenditures of coal for whatever purpose, and also meludes all power developed for whatever purpese. The figure is the average resuft, as shown by the steam logs of vescels in service. The ratio between the average power developed and the maximum power of naval vessels is extremely low as compared with any economical commercial practice. Considering this low-power factor the present result is not bad. The coal effeciency compares very favorably with that obtained under steaming conditions elsewhere. According to reports received, in one very large navy the cost in coal of developing a horsepower-hour is 25 percent greater than in the United States navy. These improvements in coal economy have been principally due to the following causes:
(a) The converting of etaporating flants from single to double cffect. The power to distil iresh water sufficient for all purposes is a most essential feature in self-maintenance. and especially so if engaged in a compaign. The economy in making water simply means that the radius of action is increased accordingly. The gain in ceonomy from the use of the double effect is theoretically $\not \& 8$ percent. Actual pains of from 35 to to percent are obtained. There is no appreciable reduction in the capacity of the plant.
(b) More careful and systematic firing, induced by analysis of smoke-pipe gases. Most of the larger ships have been equipped with ayparatus for sampling smoke-pipe gasce, and determining the proportion of CO_{3} therein. It is found that the percentage of CO_{2} gives an accurate measure of the effciency of combustion when coal is used as fuel. The principal furnace loss is the heat in the exeets air which passes up the funnel. With a CO_{z} percentage of t_{4}, a condition of maximum efficiency is obtained in which there is no excess of air. Should this drop to 5 percent, as was the condition in many of our ships when this apparatus was first installed, there is a loss in efficiency of 24 percent, dne to excess air. In some of the ships a record of the CO , percentage of each fireman is kept, and the ability of the fireman is rated thereby. On one ship, where this system is followed, it was found that the number of buckets of coal required per watch varied progressively from 30.5, with a CO_{4} percentage of 119 to 3.4. with a percentage of 00 , the amount of steam generated remaining the same. One of the first things learned by gas analysis was that our boiler casings leaked air. These have been made tight, with a corresponding saving in coal, reported in some cases to amount to as much as eight percent.
(c) The tightening of the pressure parts of boilers, particwlarly the buttom. blow values. A new type of value has been fitted on the larger ships during the past year, which removes a serions source of loss that has hitherto existed, due to the inability to keep the valves of the old type tight.
(d) More efficiont propellers have been fitted on the Kamsas and North Carolind, and are being made for the Mississippi and V'crmont. As 50×3 as accurate data on the effciency of existing propellers under service conditions can be obtained, it is hoped to improve the efficiency of the fleet as a whole by replacing those propellers which are least efficient at cruising speeds.
(e) Greater attention to steam traps. It is found that leaky traps have in the past caused considerable tosses.
(f) A more careful attention to auxiliary machinery, particularly to the condition of the valves and steam cylinders. In a battleship at cruising speed, one-third of all the steam generated by the boilers is used in the auxiliaries.

As the service in general fully realizes, smokeless combustion is greatly to be desired, and, while we have made some progress along this line, notably in the new coal-burning destroyers, still the problem has not been solved as yet. There are a number of smoke-consuming deviees on the markel, but we have been unable to find one that is even fairly efficient in a shore plant, and practically all are prohibitive in serviec installations because of confined space and high rate of combustion, and especially from the fact that nearly every one of them requires the expenditure of considerable steam for ins operation.

MCLHONER TXIALS OF RATLESHIPS,

Full-prower trials of the battleships were held off fitranta namo last winter, as compared with their trial performances.

With the exception of wakness in the feed pumps and blowers of three of the shipn the trials were most sativfactory Omitting these vessels, the fleet, with an average displacement 8_{30} tons greater than on contract trial, developed an average sperd +19 kthot greater than the designed speed, and .oxio knot greater than the average contract trial speets-
On these trials the main engines withstood overloads atnounting, in the case of one ship, to 40 pereent, in exeess of the desikned load.

An interesting feature. developed by the trials is the improved propeller efficiency of the Virginia and Lewisiana. whose engines were changed from in-turning to out-turning shortly before the trials.

Compakison of meisured-ming onurbes at kuchland. provinchtown and drlaware greak watek.
The Buard of Inspection and Survey for Ships has recently held exhatstive comparative trials of the Michigan, Reid and Flusser over the measured-mile courses at Rockland, Provincetown and Delaware Breakwatcr, to determine the effect of depth on speed.

The depth on the Rockland course varies from ,3.30 to +80 fect ; that at Provinectown from iso to too feet, and at Delaware Breaknater from 13510150 feet.
These triais indicate that the Michigan, with 16,000 tons displacement and 24 feet 6 inches mean draft, requires about t,goo less indicated horsepower for a speed of 19 knots on the Rockland course than at the Delaware Breakwater, and somewhat less power for this speed at Provineetown than at the Breakwater. There is a corresponding effect in the case of destroyers. The Roid. displacing 700 tons, and with a mean draft of 8 feet $1 / 2$ inch, requires for a speed of 31 knots about t,000 less shaft horsepower at Rockland than at the Break water, and less at Provincetown than at the course in Delaware Bay.

kepalr sulp.

Our battieship fleet is, to a greater degree than ever before. self-sustaining as regards repairs to engineering material. This is evident in a decreased amount of navy-yard work. The machine-tool equipment of many of the ships has been increased to as great a degree as is possible within the limitations of space avaitalile. In some of the ships small cupolas capable of mehing 100 pounds of brass and 60 pounds of iron have been improvised, and have proved very valuable for the mansfacture of small castings not subject to much stress. A standard oil-burning furnace will be supplied to all the larger ships.

The repair ship Panther has rendered most valuable aid to the flect and has done much of the work heretofore done at the yards.

For times of war, however, whes the ability of the fleet to be self-sustaining may be of the utmost strategie importance, our facilities for repairs are hopelessly inadequate. Realizing
this, there have been prepared designs of a proposed repair ship of 13.500 tons displacenent and 14 knots speed, with an equipment which will enable it to-
(a) Make patterns and castings up to four tons in weight. This includes all iron castings for small vessels, and, in case of a battleship, all except main cylinders and turbine casings. (These, in any event, would be repaired by a welding process.)
(b) Forge anything on board ship except main shafting.
(c) Roll and bend any plate that may be required for the hull or for boiler drums.
(d) Build up lengths of copper piping, and repair and tin defective piping
(f) Do any required machining.
(f) Carry all materials for the prosecution of this work.

The proportion of foundry and forge equipment is such as to provide sufficient material for its own machine shop and for the machine-shops of all vesseis of the fleet. Thus, in emergencies, all the equipment of the individual ships, as well as that of the repair ship, could be run at full capacity.

The design of the repair ship provides for convenient and efficient handling of material progressively from its raw condition through the process of casting, forging and machining in well lighted shops.

The acquisition of such a vessel is of vital military importance to the fleet, in that it will, in time of war, enable the fleet to repair damages sustained in action to a sufficient extent to render it seaworthy and capable of renewing action. In time of war or peace it will render the fleet self-sustaining as regards all repair work to machinery, hull or ordnance equipments, except that necessitated in general refitting.

The experience of the world eruise of the battle fleet dem. onstrated rather conclusively that extensive cruising does not of itself contribute to deferioration of steam machinery, provided the nature of the cruising is such that fixed periods for periodie overhaul are provided.
It has been too frequently the case that in arranging itineries no attention has been paid to this point, and in many eases commanding officers hesitate at allowing disablement of the main engines for periods greater than twenty-four hours, although such disablement is required in the interests of an efficient maintenance of the plant.
An instance of this has recently developed in the ease of two armored exuisers which require such extensive repairs in their engineer department as to render it necessary to lay them tup for a period extending over several months. Until these repairs are completed these ships are without strategic value as a component part of the fleet. The present condition of the machinery of these vessels can best be de* seribed as generally run down. This is due in great degree to the nature of service to which they have been subjectedextensive cruising with improper spacing of overhaul intervals.
Undoubtedly, our most important duty as regards the machinery of the fleet is that of upkeep-the taking of the proverbial stitch in time which will prevent the accumulation of trouble in such quantities as to disable the fieet as a fighting unit.

This, however, requires co-operation, such as is being accomplished under the present organization.
botifers.
The question of the trpe of boiler for future battleships is one that is receiving tue attention. The present Rabcock \& Wilcox boiler is eiving satisfaction, and that company has recently completed an exhanstive series of tests of a sample boiler for the Wyowsing and Arkansas. In these tests the boiler more than mects every guarantee, and, in fact, attains improved economics of evaporation at all rates of combustion. The boiler stood further test of forcing under five inches of
air pressure, burning 70 pounds of coal per square foot of grate surface; all without signs of damage.

Notwithstanding all this, there is a growing sentiment favoring the small-tube express type of boiler for battleships, as giving more elasticity in forcing, especially in a turbine installation, as well as saving weight, on almost the same econony. The Experimental Station at Anapolis has been engaged in research work for more than a year, with considerable success, in an endeavor to determine proper methods and materials for the interior preservation of our boilers. This, of course, is quite essential if we adopt small or bent tubes in boilers.

In-swinging iurnace doors have been fitted on all the battleships and are rapidly being installed in other naval vessels. The design of these donrs is such as to cause them to close automatically in the event of a ruptured tube. Already. in the Georgia, they have prevented serious injury to the fireroom force.

Mosher boilers are being installed in the battleships Kearsarge, Kentucky and /linois, to replace their Scotch boilers. The contract for these boilers calls for a guaranteed evaporation of tty pounds of water per hour per pound of combustible at fisil power, when burning 40 pounds of coal per square foot of grate.

The difficulties lieretofore existent with the reeiprocating engines of forced-draft blowers have been overcome by the adoption of turbine-driven blowers for destroyers and motordriven blowers for battleships.

Our new destroyers, propelled by turbines, with liquid fuel and turbine-driven fans, are provided with a machinery installation from which most of the frailties hitherto existent on vesscls of this type are eliminated, and which should render them capable of running at full power at any time on demand and for periods limited only by the fuel supply.

Turbine-driven centrifugal feed pumps are being developed and, although at present they are somewhat handicapped by exceasive weight and space required, it is probable that these disadvantages will be overeome to a sufficient extent to allow us to show them in new designs. Experience with these purnps in shore plants indicates that they are less prone to disabiement than reciprocating pumps.

In conclusion, I will say that enginecring in our naval service is to-day in a position more nearly commensurate with its importance to the fleet than seemed possible a few years ago. This is due in part to the enthusiastic efforts of the younges line officers who in recent years have operated out machinery afloat, more to the legacy of experience, ahility and good will from the old Engineer Corps, but is principally the result of an appreciation of the importance of engincering on the part of the older officers in the service, who, in responsible administrative positions, both in the Department and in the Fleet, under our ahle Secretary, are welding the personnel and matericl of engincering into the organization of the fleet in swch manner as cannot fail to produce perfect homokencity.

Lloyd's Annual Report.

According to the anmual repnrt of Lloyd's Register of Shipfing, for the year toco-19to, classes were assigned to 540 new vessels, the total gross tonnage of which wa* 929.946 . Of this new constraction 66 percent was buitt for the United Kingdom, and 34 percent for the Reitish Colonies and foreign countries. Over 99 percent of the new vessels were steamers. Few features of exceptional interest from the point of siew of the designer are mentioned, the most noteworthy being. perhaps, the inerease in the number of vessels buile on the Isherwond system of longitudinal construction. Up to the present time forty-three vessels of this type have been approved for classification by the society.

A TANK STEAMER FOR THE MOLASSES TRADE.

There has just been completed at the yards of the Fore River Shipbuilding Company, Quincy, Mass., the steamer Currier, named for Mr. Guy W. Currier, of the well-known law firm of Currier, Rollins, Young \& Pillsbury, of Boston, and specially designed for the Cuba Distilling Company, of New York, to run between Cuba, Porto Rico and New York in the molasses trade.
The Currier is a single-screw steamer with the machinery located aft, constructed of steel to the highest elass in Lloyd's Register, being specially surveyed under construction by the officers of that society to obtain the Class 100-A-1, and specially designed to operate in either the molasses, bulk petroleum or general freight trades, a combination rarely met with in vessels of this type. To provide for the safety of the vessel

The general arrangement of the ship consists of five double tanks bounded by transverse and centerline bulkheads, with a general cargo hold forward and aft of these tanks, the machinery being placed right aft and separated from the after cargo hold by a cross bunker. The main tanks are isolated at the forward and after ends by cofferdams extending the full depth of the ship and by a continuous inner bottom 4 feet deep, which is fitted as far forward and aft as practicable. These tanks may be utilized for the transportation of either molasses or bulk petroleum oil, a special pumping system having been installed for loading and discharging liquid cargo, and a steam-heating system for liquefying the cargo as well as to efficiently clean all the spaces by steam.

The total capacity for stowing molasses is 138,000 eubic feet, representing over $1,000,000$ gallons of molasses. When used as a bulk petroleum carrier the vessel has a capacitv, with

and crew the most modern methods and equipment are employed, including wireless telegraph and submarine signals.
The principal dimensions are as follows:

general akbangement.

The general arrangement and scantlings of the vessel are shown on the accompanying deck plans and section.
She has a straight stem, semi-elliptical stern, two continuoussteel decks, and a full poop, bridge and topgallant forecastle.
Accommodations are provided in the 'midship house for the officers, with saloon, guest room, pantry, bath and toilets, and on the bridge deck is a specially arranged suite of rooms for the captain, having a commodious pilot house and chart house over same. In the "midship honse there is a room fitted up for the wireless telegraph outfit.
The long poop encloses quarters for the firemen, seamen. oilers and petty officers, and in the Liverpool house on the poop deck are arranged the quarters for the engineers, with officers' and engineers' mess, bath and toilet. The crew of the Currier eomprises forty men.
oil carried in the tanks and inner hottom, of $1,400,000$ gallons. with the usual allowance in the expansion trunk to take up the expansion of the oil.

If it is desired to operate this vessel as a general cargo and freight steamer, freight may be carried in the five molasses tanks by removing the portable swash bulkhead, after cleaning out the tanks hy steam. The cargo may be handied through steel cargo hatches 8 feet 3 inches by 5 feet. The wing compartments may also be used for freight space, operating through 8 feet 6 -inch hy 6 feet 6 -inch hatches fitted with wooden covers. In addition to this, two large cargo holds occnpy the forward and after boundaries of the tanks. these holds having steel cargo hatches 8 feet 6 inehes by 20 feet.
The total cargo space avilable for stowage of keneral freight is about 255,000 cubic feet, and on 23 feet mean draft. with the vessel carrying 1,000 tons of bnnker coal, feed water and stores, a dead-weight cargo of 5.800 tons may be carried.
The vessel is rigged with three pole masts, the fore and main mast being of steel and the mizzen mast of wood. The cargo booms consist of four 53 -foot and four 40 -foot wood derricks. each eapable of working a load of 5 tons. A complete suit of sails is provided for the sessel, comprising fore and main sails and stay sails.
The poop deck from the front of house and bridge deck is laid with 3 -inch by 5 -inch clear, long-leaf yellow pine, having a s-inch margin plank worked in way of deck house and waterway. The flats of cargo holds are laid out with $21 / 2-$

inch yellow pine ceiling in portable shutters, and portable sparring is fitted for sikles of vessel for general cargoes.

The joiner work and furniture in quarters is finished gencrally in oak. Transoms and seats are tuphoistered in leather. The floors in officers' quarters are covered with linoleum. The
galley floor is laid in unfinished red tile, and the bath rooms in ceramic tile. The pilot-house and chart roon are bailt of teak. The sanitary arrangements are very complete, flowing water being supplied to all fixtures. The salt water is kept under pressure by a salt-water sanitary pump, while the fresh water

Hows by gravity from a daily service tank supplied by the fresh-water sanitary pump. The ofticers' lavatories are supplied with hot as well as cold water.

In addition to the usual ventilators for the engine-room and fire-room, of which there are two $2 t$-inch for the former and two 36 -inch for the latter, at cach cargo hold, there are installed four 18 -inch ventilators and two for the pump-room. Cast iron swan-neck ventilators are also fitted on top of expansion trunks.

The life-saving outtit consists of two 24 -foot wooden lifeboats, one to-foot wooden dinghy and one 20 -foot wooden gig. fitted with gasoline engine. The lifeboats are handled by the ordinary round-bar davits, and the dinghy and gig handled by davits of the Mallory type.

DESK MACRTNFRY.
The steering gear is of the Hyde steam serew gear type, with an 8 -inch by 8 -inch engine, operated through shafting and bevel gears from steering stands in the pilot house on the flying bridge and top of the after-house. Hand wheels for hand steering are direct connected to screw gear in after stecring compartment. An emergency steering gear is fitted, by which the vessel may be steered by a tackle leading from a spare tiller to a steam capstan on the poop deck.

A No. io Hyde steam brake windlass is located on the forecastle deck, operated by a worm and spindle from a vertical engine on upper deck. The wildeats on the windlass are suitable for 2% inches diameter stud link cable. Large quick operating warping ends are fitted on each side of the windlass.

Four Hyde double drum, double cylinder, reversible steam horsting winches with eylinders 8 inches diameter by 8 inches stroke are located on deck, for cargo handling purposes. Two of these winches are fitted with extended warping ends.
A Hyde reversible steam capstan of the quick warping type is located aft on the poop deck, operated by an 8 -inch by 8 -inch engine under the deck.

pLMPING System.

The pumping system on the Currier for handling liquid cargo was especially designed for pumping heavy viscous liquids such as molasses or oil. The eargo pump is of the Blake horizontal duplex piston type, with steam cylinder t6 inches diameter, pump cylinder 12 inches diameter with 88 -inch stroke.

A 14 -inch suction main of wrought iron extends through the cargo holds on the port side above the innner bottom, with 12 -inch branches extending into suction wells in each tank, each branch being fitted with a brass gate valve and bell mouth suction end.

A to-inch discharge main of wrought iron pipe extends through the wing compartments below the main deck, on each side with branches leading to each tank, and to overboard discharge connections, forward, anidships and aft.

Sluice valves are fitted in the centerline and transverse bulkheads dividing the main holds, so that the cargo may be trimmed the full length of hold spaces.

The entire system is so arranged that the cargo pump can pump from the cargo tanks and discharge overboard, from storage tanks on shore direct to the eargo tanks, from any cargo tank to any other, from sea to any cargo tank for ballast purposes. The tanks may also be filled througb the diwh harge main,

The vessel is designed primarily to carry molasses in bulk, in which case the double bottom in way of cargo tanks is used for water ballast. In the event of the vessel carrying oil in bulk, the double bottom manhole covers are removed and the double bottom compartments used as a part of the oil cargo space. Portable bolted plates are fitted in the bottom
of all molasses suction wells, so that when the vessel is to carry oil these plates may be removed and an extension piece attached to each suction branch, thereby making the branch sufficiently long to pump oil from double bottom compartments.

The forward ballast system consists of a steam pump located in the forward pump room, with a manifold having conslections to sea, bilge and forward double bottom compartments.

The after ballast system cousists of a steam pump in the engine room, with manifolds having connections to sea, bilges and double bottom. The double bottom compartments under the molasses tanks are so arranged that they may be entirely cut off from the remainder of the ballast system.
The electric lighting plant consists of one 15 kilowatt direct connected General Electric Co. marine generating set, with combined generating and distributing switchboard. The distribution is on the two-wire system and supplies current for one $t 8$-inch searchlight and $t 30$ t 6 -candlepower incandescent lamps in addition to running and signal lights.

The wireless telegraph outfit supplied by the United Wireless Company is installed in the bridge house. In addition, the recciving apparatus of the Submarine Signal Company is provided, nothing having been omitted which would add to the comfort or safety of the vessel or crew.

propllling machtiney.

The propelling machinery, located in the stern of the ship, consists of a vertical inverted, three-cylinder, triple expansion engine with cylinders $25 \cdot 4 \mathrm{t}$-68 inches diameter having a stroke of 48 inches, supplied with steam at tgo pounds pressure by three single-ended Scotch boilers working under a heated forced draft system.
The bedplate of the main engize is of the usual box section type of cast iron in three sections, laving six main bearings of cast iron lined with white metal. Bearing caps are forged steel. All lower main bearings may be removed while the crank shaft is in position.

The cylinders are supported by six cast iron columns of box section, three front and three back. All crosshead guides are fitted for water circulation.

The crankshaft is of the built-tp type, of forged steel throughout, in three interchangeable reversible sections. The diameter of the shaft at the bearings is $13 \% / 4$ inches. The crank pins are 14 inches diameter by $t 4$ inches long, the crank slabs $253 / 4$ inches wide by $91 / 2$ inches thick, and all couplings are 27 inches diameter $31 / 4$ inches thick, joined by six steel bolts.
The cylinders are arranged, beginning at the forward end of the engine, high-pressure, intermediate-pressure and lowpressure. The high-pressure eylinder is fitted with a liner, and the valve is of piston type, 13 inches diameter, taking steam in the middle and exhausting over the ends. The intermediate and low-pressure cylinders are fitted with double ported slide valves working on cast iron false seats. All valves are fitted with balance cylinders for taking weight of valves and gear. In addition, the intermediate-pressure and low-pressure slide valves are fitted with balance rings on the back for relieving pressure on valve seat.

The pistons are of conical form, the high-pressure is of cast ison, while the intermediate-pressnre and low-pressure are cast steel. All pistons are fitted with Mudd's rings and east iron followers. The piston rods are 6 inches diameter, the low-pressure being fitted with a tail rod, 4 inches diameter, Piston rods and valve stems are packed with metallic packing. The forged steel crossheads are secnred to the piston rods by steel nuts, the lower ends of the rods being apered to fit the crossheads. Crosshead slippers are cast sron faced with white metal and crosshcad pins are 7 inches diameter and $71 / 2$ inches long. The connecting rods are forged steel. 9 feet between centers. The top and bottom end boxes are cast steel lined
with white metal, the caps being secured by forged stecl bunders. The valve gear is of the usual Stephenson double har link gear type.

An 8 -inch balanced throttle valve worked by a hand wheel, and a butterfly valve worked by a hand lever, control the supply of steam to the high-pressure valve chest. The receivers are cast with the eylinders. The main exhaust pipe to the condenser is of eopper, 21 inches dianteter.

The reversing gear consists of a direct acting steam cylithder, 12 inches diameter and 18 inches struke, secured to the back of the intermediate-pressure cylinder. A reverse shaft, $61 / 2$ inches diameter, carried in bearings at the back of the eugine, transmits motion from the reverse engine to the links. The cut-off of each valve may be adjusted separately by means of a sliding block working in slotted reverse shait arms. Smooth action of the reversing enginc is secured by a 6 -inch diameter piston working in a hydraulic cylinder.

A 6 -inch by 6 -inch single cylinder turning engine is secured to the after end of she main engine bedplate.

The thrust shaft is $133 / 4$ inches diameter, with tune collars 20 inches diameter, $1 / 8$ inches thick, forged solid with the shaft. The propeller shaft is $14 \frac{1}{4}$ inches diameter, protected throughout its entire length by composition sleeves shruak and pirined in place. The propeller is secured to the tapered end of the shait by a forged steel nut and feather. All shaft couplings are 26 inches diameter $31 / 4$ inches thick, connected by six forged steel bolts $3 \frac{1 / 4}{4}$ inches diameter.
The thrust bearing is of the usual horseshoe type having vine adjustable east iron horseshoes faced with white metal Each shoe may be adjusted separately, while the entire bearing may be ruoved fore and aft by means of wedges. The boftom of the pedestal forms an oil chamber into which the collars project. The stern tube bearings are of composition lined with lignumvitae.
The propeller is of the built-up type 16 feet 9 inches tiameser, 18 fect pitch, 92.3 square feet developed area, having four adjustable bronze blades secured to a cast iron hub by bronze studs and nuts. The pitch may be adjusted from 17 feet to 10 fect.

utiniakies

The air pump is of the Filwards type, 24 inches diameter, an-inch stroke, driven by beams and links from the low-pressure crosshead. The lody of the pump is cart iron having a composition liner.

The condenser, placed on brackets at the back of the engine, liar a cylindrical steel plate shell with east iron water chests and covers. There are $1394 \mathbf{3}$-inch brass tubes, 11 fect long. between tube shects, giving a cooling surface of zott square feet. The tube ends are packed in the usual manner with cotion wicking sectured by brais glands screwed into rolled composition tube sheets. Circulating water for the condenser is taken from a eentrifugal pump of the Fore River type having 12 inch suction discharge. The pump, driven by an 8 -inch by 8 -inch vertical engine, has the following connections: Suction from sea, and discharge overbuard through eondenser, also a small connection is fitted to the evaporator.

The following atllitional pumps are fitted:
Two feed 10 -inch by 7 -inch by 10 -inch vertical duplex Winth. ington Admiralty tyme, with suctions from sea, after tank, auxiliary eondenser, feed tank and brilers and discharge throwgh the feed-water heater or direct to the boiler through the main or auxiliary feed lime, or overboard. The conneetions are such that either pump can be used independently of the other. When acting as feed punus they are automatically controlled by a float in the feed tanks.
Orie ballast, 10 -inch by 12 -inch by 10 -inch vertical duplex,
with suction from sea, bilge manifold, ballast manifolds, and from engine and fire-room bilges, and discharge to fire main, hallast manifolds and overboard.

One forward hallast system pump, 8-inch by $81 / 2$-inch by 12 . inch horizontal duplex.

Two bilge pumps, $4^{1 / 2}$-inch by 20 -inch planger type, connected to the main air pump crosshead, have suction from the engine and fire-room bilges and bilge manifolds, with discharge overboard.

One salt-water deck service and fire pump, 6 -inch by 4 -inch by 6 -inch horizontal duplex, with suction from sea and discharge to the sanitary system, fire main, deck-washing pipe and engine-water service. This pump is intercliangeable with the auxiliary condenser circulating pump.

One fresh-water, $31 / 2$-inch by 4 -inch by 4 -inch forizontal duplex, with suction from fresh-water tanks and discharge to ship's fresh-water system.

One auxiliary eondenser circulating, 6 -inch by 4 -inch by 6 inch, with suction from sea, discharge end of eondenser and after tank, and discharge through the auxiliary condenser overboard and deck-service lines.

One cargo pump, 16 -inch by 12 -inch by 18 -inch horizontal duplex.

One 2-inch Ilancock injector is fitted, with suction from the reserve feel tank auxiliary condencer and sea discharge to the auxiliary feed line and hose eonnertion.

The ressel is fitted with one double circular stack, 9 feet 6 inches outside diameter and about so feel high above the grates.

The boilers are 13 feet 9 incher mean diameter and it feen 1 inch long over the heads, arranged in a single fire room Fach boiler has three Morison furnaces, 42 irthes inside diameter and three combastion chambers. The tubes are $21 / 2$ inches outside diametcr. The total heating surface for three boilers is 6.501 square fect, with 15.45 square feet of grate, giving a ratio of about 42 to 1 . The grates are ahout 5 feet long.
Air for the heated forced draft is delivered to the furnaces by a fan located in the fire room and driven by a 6 -inch by 5 -inch vertical engine working at a steam pressure of 125 pounds. The fan is 84 inches diameter, and at 3 t 2 revolutions per minute delivers 24.000 culie fect of air per minute at a pressure of 3 inches of water. On each uptake there is a beater box eontaining $19.33^{\dagger} \frac{4}{4}$-inch tubes 3 feet 6 inches long. around which the air passes before entering the furnaces.
An anxiliary condenser containing abont 400 square feet of cooling surface is located in the engine room. Circulating water for this condenser is taken from the ballast and sanitary panive.
A feed-water heater of the Quigkins vertical type is located in the engine room on the discharge side of the feed pumps. The heater has a rated capacity of 2,700 horsepower.

All living quarters of the ship are beated by steam. Radiators eonstructed of iron pipe are used throughont the ship exeept in the pilot honse, where brass pipe is used.

One 25 -ton evaporator of the Blake type is installed in the after end of the engine room. Steam for operating is taken from the auxiliary steam line and the vapor is discharged to the condenser, feed tank, and after tank.
The refrigerating plant consists of a 2 -ton Brunswick ammonia eompressor, driven by a vertical engine

Roth fire-room ventilators are fitted with sheaves for hoisting ashes. A Hyde double-cylinder ach-hoist engine is fitted for raising ashes to the spar deck, where they are handled on trolley ways on earh side of the ship. A hand ash-hoint gear is also fitted.

During the four hour trial the ship averaged a little over 105/2 knots.

COLUMN TABLES FOR SHIP WORK-III. by a, EARLE Amdzabor.
 EFFECT OF FORM AND THICKNESS.

The relative dimensions and the form of parts composing the cross-section of a column must necessarily bave a considerable influence upon its strength. The matter is one which has rested largely upon the judgment of the designer, and there is an almost entire absence of data, either experimental or theoretical, throwing any light on the subject. All accepted column formulas, including those dealt with in the proceeding sections, contain the area of the section and the radius of gyration, and in sone cases the distance to the extreme fiber appears in a secondary manner. No other functions of the cross-section appear. To a person devoid of judgment it would seem that the greater the radius of gyration the smaller might be the area, even to the extent of a radius of gyration approaching infinity with an area approaching zero. Thus, in the case of a tubular column, there is nothing in the formulas to indicate that the efficiency cannot be indefinitely increased by making the diameter very great and the thickness of wall an inappreciable quantity. This is, of course, absurd, but the limit below which it is rational and above which it is absurd unfortunately remains undetermined.

In the case of compression members built of plates and angles or otherwise having wehs and flanges there are two rules in existence, both of which appear to be entirely empirical. Johnson's "Framed Structures" (chapter by C. W.

Byran) gises a rule for box or latticed columns that when pin-connected the thiekness of the web plates normal to the pin should be not less than one-thirtieth the distance between the lines of rivets, and the thickness of the plates parallel to the pis should be not less than one-fortieth the distance between rivets; in the case of square or fixed ended eolumns both thicknesses are limited to one-thirtieth (Framed Structures, page 253). This rule appears to be based upon Bouscaren's experiments (Trans. Am. Soc. C.E., Vol. IX. page 452).
The American Railway Engineering and Maintenance of Way Association limits the ratio of unsupported width of outstanding parts to ten times the thickness of metal.

While these two rules are empirical and apparently rest more upon a basis of judgment than experiment, they have evidently been acceptable, and have given satisfactory results, For the present purpose they may be stated thus:

In the cross-section of a eompression member the thickness of each part must be at least one-thirtieth the breadth of that part between supporting parts, and in the case of outstanding parts at least one-tenth the outstanding breadth (see Fig. 4).

If will be observed that neither of these rules is applicable to a tubular column.

As previously stated, a series of experiments has been made by Prof. W. L. Lilly on the effect of secondary flexure or wrinkling on the strength of columns, with a view to determining the relation between the strength of a column and the form and relative dimensions of its eross.section.

These experiments are at present only partially complete
and have so far been applied only to certain elementary forms. He obtains a formula for the limiting stress, which contains the thickness and a constant, the latter depending on the form of the cross-section and on the material. This formula expresses the limiting load on a column of one wave length (i.e., the length of one wrinkle of the secondary flexure) and is as follows:

$$
p=\frac{i}{1+k \frac{y}{t}}
$$

where t is sone constant and t is the thickness. This formula bas a rational hasjs but rest' upon empirical constants. The rational basis is practicatly that of Rankine's formula

He also states that \& takes the form $N f / E$, where N is a constant depending only on the form of the section.

He gives the values of N as follows:

$$
\begin{aligned}
& \text { for o section, } N=50 \\
& \text { for } \square \text { section, } N=60 \\
& \text { for }+ \text { section, } N=120 \\
& \text { for } \Delta \text { section, } N=80 \\
& \text { for } I \text { section, } N=70
\end{aligned}
$$

(Note.-In Landon Enginecring these values of N are incorrectly given and are corrected in the pamphlet The Design of Columns and Struts.)

Dr. Dilly then puts this limiting stress into Rankine's formula, with the following result:

$$
p=\frac{f}{x+K \frac{t}{t}+C \frac{P}{r^{\prime}}}
$$

where C is an additional constant. He goes to considerable length to show that this formula is rational, but it is to be noted that not only C and K are empirically evaltated, but f also.

In the usual form of Rankine's formula f is taken as ahout twor-thirds of the ultimate tensile strength. Dr. Lilly. in his proposed formula, takes f as something greater than the ultimate tensile strength. olserving that his tests for $1 / r$ close to xero show a value of the average tuit stress exceeding the tensile streagth. The values of the other constants, therefore, rest upon this assumption. While Dr Lilly's tests are by no means the only ones which show a high value of p at $/ / r$ nearly zers, other tests, notably those of Tetmajer and Marshall. made for the specific purpose of evaluating f, do not show such high values.

The objections raised against Rankine's formula apply equally to Dr. Lilly's in the form in which he proposes it, and it should be noted that the formula contains no factor for inherent eccentricity.

It is interesting now to eompare Dr. Lilly's expression for the limiting strength with the results of the tests made at the Norfolk Navy Yard. For $21 / 2$-inch by $1 / 2$-inch tubing, with an alimate tensile strength of 65,500 pounds, we have by Lilly's formula, for the limiting compression stress on a column of at least one wave length (using $f=80,000$ and $K=1 / 4$. as given by Lilly):

$$
p=45.600
$$

The highest observed stress on this tuhing was about 60,000 pounds per square inch (for $1 / r=21 / 2$), and wrinkling occurred at an average unit stress of 66.000 pounds at $t / r=13$ For $13 / 4$-inch by $1 / 6$-inch tubing, with an ultimate tensile strength of 60,000 pounds, we have by L.illy's formula :

$$
r=54.300
$$

The highest observed stress was 79.000 , with wrinkling occurring at 75,000 at $\mathrm{d} / \mathrm{r}=13$.

In the case of the Watertown tests referred to in Section V1 (Eng. News, Auk. 26, 1909), the tubes were 5 inches by 0.36 inch. By Litly's formula the limiting stress for a tube of one wave length would be

$$
p=54,400 ;
$$

while for $l / r=121 / 2$ the Watertown tests ran as high as (0 , ooo pounds per square inch.
In view of the above it docs not seent best to accept the formula proposed by Dr. Lilly at the present time, and it is unfortunate that the results of his experiments have not been interpreted by means of some formula more elosely in accordance with general experimental data and more strictly rational than Rankine's. It should be noted also that the formula does not lend itself to tabulation.
Use may be made of the formula, however, for determining a rule for limiting the thinness of tubular columns.
Assuming that wrinkling occurs when the average stress is equal to the elastic limit (inspection of the Watertuwn tests cited above seems to bear out this assumption) and that the elastic limit is $f, / 2$, we would have for s / t the value 8 . If we take f as 80,000 , as given by Liilly, and put $\eta=30,000$ for the elastic limit, we have $r / t=13$. It would seem reasonable to take the limiting value of r / t as 10 , and this will eause no serious hindrance in reasonable proportioning
The radius of gyration of a tube is:

$$
r-\frac{1}{4} i^{\prime} d^{2}+\overline{d_{i}}
$$

For a thin tube no great error is made if the inside and outside diameters be taken as equal, so that we may write:

$$
v^{\prime}=\frac{d}{4} f^{\prime}=0.354 d
$$

Expressing t in terms of d then, instead of in terms of r, we have for $r / t=t 0$, the corresponding value $d / t=28.3$. which, to bring an even figure, may be called 30.
The following rule is, therefore, proposed for the thickness of tubular colmnns and struts:
The thickness of wall must be not less than owe-thirtieth the diameter.

consthection of the tables.

In applying Moncrieff's formula to a given material, the two properties of the material which are used are the modulus oi elasticity and the ultimate compressive strength.

For wrought iron, and the various classes of steel, the ultimate compressive strengths have been taken as equal to the corresponding tensile strengths and the commonly accepted values of the modulus of elasticity have been used, namely, $28,000,000$ for wrought iron and $30,000,000$ for steel. There is no sufficient evidence to show that the modulus of elas. ticity for steel varies with the tensle streugth or with the chemical composition; in fact, abundant authority may be cited to the contraty. The actual tensile strengths used cortespond to those required by the navy specifications,

For the compositions (brasses and bronzes) the ultimate compressive strengths were also taken as equal to the eorresponding tensile strengths: and as no very definite strength classifications exist for these materials, the three values of 40 . 000 pounds, 60,000 pounds and 80,000 pounds were taken as alout covering the range of tensile strengths obtainable with the various compositions, the unit column strengths for other values of the tensile strength being obtainable from the tables by interpolation. The modulus of elasticity varies somewhat for the various compositions and is not as definitely determined as for steel. The value $13,000,000$ was used as fairly well representing all classes of composition, this being a conservative figure based upon a careful examination of the test data published by Prof. R. T. Thurston, "Materials
of Engineering, Part 111, Brasses, Bronzes and Other Alloys," These tests are a part of a very full investigation made by the Committee on Metallic Alloys of the United States Board appointed to test iron, steel and other metals. So far as the writer has been able to discover, there are no published test data for composition columns. The broad experimental basis of Moncrieff's formula allows us, however, to extend it to this elass of material with a reasonable degree of confidence.

In the case of the various kinds of wood the ultimate compressive strengths are much less than the corresponding tensile strengths, and the compressive strengths themselves have therefore been used. The values employed for the ultimate compressive strength and the modulus of elasticity are as follows:

Modutus Elaticity.
1.400,000
1.700.000

1,600.000
$2,000.000$
$2.000,000$
These figures are based upon tests made for the Department of Agriculture by Prof. J. B. Johnson (see U. S. Forestry Circular No, 15 and Johnson's Materials of Construction, pp. 671). They are strictly applicable only to timber having a "standard moisture" of 12 percent-that is, for timber thoroughly scasoned-and consequently for timber less well seasoned a proper allowance should be made in the factor of safety. Green timber may be expected to show about half the strength indicated in the tables.
In Fig. 5 are shown curves plotted from Moncrieff's formula for the various classes of steel, wrought iron and composition. It will be seen from these curves that for the lower values of l

- the value of f has a considerable influence, while for t
the higher values of the controlling factor is the modulus r of elasticity. The result of this is that for values of $\frac{l}{r}$ less than, say, 100 there is an appreciable advantage obtained by using a material of high tensile strength, while beyond too this adsantage rapidly diminishes and finally becomes inappreciable.

It will also be seen that the low value of the modulus of elasticity of composition causes its strength to fall off very rapidly as $\frac{t}{r}$ increases, so that as compared with steel of equal tensile strength the strength of brass or bronze columns may be only about one half that of the stiffer material for usual values of $\frac{l}{r}$. This is an important fact that is perhaps little appreciated

It is desirable to point ont that the usc of the Construction and Repair tahles will iead to no very great change in practice except as they give information for elasses of material for which eolnmn data have not before been presented in sufficiently convenient form to permit of general use. In Fig. 6 is shown a eurve ploted from these tables for the safe unit loat for columne of for,000pound steel with a nominal safety factor of 4 . in compariton with a number of other accepted working formulas placed as nearly as practicable upon the same basis. The great diversity of results obtainable from these various formulas is again itlustrated in this figure, but it will be seen that the curve representing the Construction and Repair tables,

white somewhat conservative, lies within the field occupied by the other formulas. The fact that it most nearly corresponds to the Peneoyd curve is significam, inasmuch as the Pencoyd
curve is based solely upon tests without the intervention of any formula, either empirical or rational. The corresponcleace would be still closer were it not for the fact, already

Fic. 0.

For Sufe Londs, divide values giver in tahle by six teatho of nominal salety far ur															
\cdots			Steed of os,000 Plounde Tensle Sreegh.	Smed 72.009) Fomas Teawis Strengeth.		Stieel 50 50,000 Pronch Terale Stresath.		Comproni- tuun of 40,000 Tound Tovsle Sorength	Cansprat- ater of e) 000 Tousto Strengih.	Compusbins of 80.000 Fixande Tencic Strenath	Whate Fites.	$\begin{aligned} & \text { Douglas } \\ & \text { Fir } \\ & \text { (1) } \\ & \text { Fine). } \end{aligned}$	Spruce and A.an.	Yellow Pise.	Wai
$\begin{aligned} & 23 \\ & 30 \\ & 30 \\ & 40 \end{aligned}$	78.100 $2 k .100$ 26100 $3 i, 450$	36,100 35.509 34.400 31,000	36.050 36.150 $5 i 500$ 20.800	02,100 82,200 41.100 32,909	44.750 43.700 \$2.860 41.400	47.1009 40.500 43.100 43,700	30.350 86.720 32.009 50,500	$\begin{aligned} & 231090 \\ & 31090 \\ & 2.2000 \\ & 21100 \end{aligned}$	$\begin{aligned} & 34,200 \\ & 31,1,906 \\ & 39,450 \end{aligned}$		$\begin{aligned} & 3,139 \\ & 3,689 \\ & 2.606 \\ & 2,740 \end{aligned}$	$\begin{aligned} & 3.350 \\ & 2.250 \\ & 3.120 \\ & 3.1200 \end{aligned}$	$\begin{aligned} & 4120 \\ & 3,900 \\ & 3,2,10 \\ & 3,510 \end{aligned}$	$\begin{aligned} & 4.631 \\ & 4,470 \\ & 4.250 \\ & 4,060 \end{aligned}$	$\begin{aligned} & 4,570 \\ & 4710 \\ & 4300 \\ & 4,200 \end{aligned}$
$\begin{aligned} & 4.5 \\ & 50 \\ & 3.5 \\ & 50 \end{aligned}$		33.100 12.100 31.000 22.700	34,300 34.109 32.009 31,600	83, 200 37,100 35.300 28,700			4R 350 45,450 6x,400 40.700	20190 19.40 16.360 17.2000	27,463 88,450 88,450 21,500		$\begin{aligned} & 2.410 \\ & 2,4,40 \\ & 2,260 \\ & 2,110 \end{aligned}$	$\begin{aligned} & 24.50 \\ & 2,740 \\ & 2,540 \\ & 2,360 \end{aligned}$	$\begin{aligned} & 3,397 \\ & 3,3,04 \\ & 2, .800 \\ & 2,020 \end{aligned}$	$\begin{aligned} & 2,850 \\ & 3.6 \times 4 \\ & 3.80 \\ & 2.80 \\ & 2000 \end{aligned}$	1.000 3730 3.400 3.1500
$\begin{aligned} & 63 \\ & 70 \\ & 70 \\ & 30 \end{aligned}$		88.000 27.100 25.800 24.400		28.050 30.310 25.700 27.100	38,000 31,100 29.100 27,400	84, 300 22, 208 80,180 20,200		18,100 18.090 18.400 13,050	19710 15000 16409 is.000	$\begin{aligned} & 21.29 \\ & 19.790 \\ & 17,000 \\ & 16050 \end{aligned}$	1,900 1,000 1,043 1,830	2.800 2000 1.910 1.770	$\begin{aligned} & 2,400 \\ & 2,160 \\ & 3,000 \\ & 1, N 00 \end{aligned}$	$\begin{aligned} & 2.440 \\ & 2 n 20 \\ & 2600 \\ & 2.210 \end{aligned}$	2.430 2.640 2.480 $\mathbf{2} .860$
$\begin{gathered} 35 \\ 0 \\ 0 \\ 0 \\ 100 \end{gathered}$	$19, \ldots 00$ 10.800 17.000 10,200	23.100 21.400 20, 18.400		23,450 23.500 22.200 20,800	28,759 20,100 24.1050 21,100	96, 400 76.290 24.1190 21.800		12.109 11.270 10.470 8,700	(12.300	14.100 12.150 11.950 10,000	1.419 1.309 1.700 1.150	1.830 1.150 1.400 1,200	$\begin{aligned} & 1,6,0) \\ & 1, k+10 \\ & 1,4,0 \\ & 1,3 \in 0 \end{aligned}$	2.680 1,470 1,740 1,400	2.070 1.000 1.740 1.610
$\begin{aligned} & 105 \\ & 110 \\ & 116 \\ & 120 \end{aligned}$	10.017 15.160 11.350 13.080	18.300 17.200 16.403 15.800	18,800 17.700 16.60 15,600	19,200 18,200 17.100 16,000		2,190 18.730 17.500 16.000	21,00n 15,200 1.160 10,80	(1000		10,000 9.206 0.90 7.250	$\begin{gathered} 1000 \\ 980 \\ 8000 \\ 630 \end{gathered}$	1.20 1.120 1.649 8.80	1,500 1.110 1.030 .850	1.670 1864 1.860 1,170	1.480 1.370 1.270 1.180
$\begin{aligned} & 125 \\ & 120 \\ & 195 \\ & 160 \end{aligned}$	12.850 12.150 11.110 10.900	14.400 $1 / 200$ 12.600 12.160	14.729 16.929 13.120 12.260	15.000 14.180 13.500 12.510	18.200 11.300 13.400 12.620				7.100 6880 68100 8.5100	$\begin{aligned} & 7,300 \\ & 6 \times 00 \\ & 6,160 \\ & 6,4 \times 20 \end{aligned}$	$\begin{aligned} & 760 \\ & 770 \\ & 760 \\ & 645 \\ & 645 \end{aligned}$	$\begin{aligned} & 410 \\ & \text { sin } \\ & \text { sin } \\ & 750 \end{aligned}$	$\begin{aligned} & \text { kis } \\ & x \geq 3 \\ & 775 \\ & 725 \end{aligned}$		1.100 1.020 .350 300
$\begin{aligned} & 145 \\ & 150 \\ & 160 \\ & 170 \end{aligned}$	10.290 9.000 8.650 8,000	11.400 10.800 9.700 $k .30$	21.700 11,020 9.300 8.450	11.830 11.180 380 880 $\times 850$		12,000	12,350 12.640 10,250 8.300		8.179 8.170 6.00 4.160		$\begin{aligned} & 3 \mathrm{~ns} \\ & 5 \times 0 \\ & 4603 \\ & 440 \end{aligned}$	$\begin{aligned} & 716 \\ & 060 \\ & 90 \\ & \$ 10 \end{aligned}$	$\begin{aligned} & 600 \\ & 540 \\ & 850 \\ & 510 \end{aligned}$	$\begin{aligned} & \text { K35 } \\ & 755 \\ & 76401 \\ & 620 \end{aligned}$	835 788 680 680
$\begin{aligned} & 120 \\ & 190 \\ & 200 \\ & 210 \end{aligned}$	$\begin{aligned} & 7,330 \\ & 8.600 \\ & 8116 \\ & 2.570 \end{aligned}$	$\begin{aligned} & 7.900 \\ & 7,310 \\ & 6.550 \\ & 6.000 \end{aligned}$		4,100 7.400 6.60 4.100	8.110 8.36 6800 6.100	8.200 7.100 6750 8150	$\begin{aligned} & 8,900 \\ & 7.300 \\ & 6,400 \\ & 6,200 \end{aligned}$	3,500 3.800 2,000 2080 2,7600	3.900 3.100 3.600 2.750	$\begin{aligned} & 3.700 \\ & 2800 \\ & 3000 \\ & 3.720 \end{aligned}$		$\begin{aligned} & 470 \\ & 470 \\ & 380 \\ & 380 \end{aligned}$	$\begin{aligned} & 4100 \\ & 170 \\ & 370 \\ & 340 \end{aligned}$	$\begin{aligned} & 509 \\ & 510 \\ & 500 \\ & 140 \\ & 145 \end{aligned}$	360 510 460 418
$\begin{aligned} & 320 \\ & 230 \\ & 240 \\ & 230 \end{aligned}$	$\begin{aligned} & 5,100 \\ & 4,700 \\ & 48.010 \\ & 4,030 \end{aligned}$	5800 5.100 50.7100 4.150	8,550 8.150 6.700 $4,3 \% 0$	4,000 3,100 1760 1600	5.009 5.109 .7408 4.400	3.80 8.200 18010 1.450	$\begin{aligned} & 5.700 \\ & 5.730 \\ & 4.300 \\ & 4.650 \end{aligned}$	2.490 2. 240 2, 100 2. 280	$\begin{aligned} & 2.400 \\ & 1,200 \\ & 21100 \\ & 1.200 \end{aligned}$	$\begin{aligned} & 2.500 \\ & 2201 \\ & 2101 \\ & 1.430 \end{aligned}$	$\begin{aligned} & 205 \\ & 240 \\ & 288 \\ & 220 \end{aligned}$	$\begin{aligned} & 300 \\ & 200 \\ & 700 \\ & 235 \end{aligned}$	$\begin{aligned} & 713 \\ & 220 \\ & 2 \pi 0 \\ & 24.5 \end{aligned}$	$\begin{aligned} & 380 \\ & 345 \\ & 390 \\ & 390 \end{aligned}$	380 368 380 300
$\begin{aligned} & 206 \\ & 200 \\ & 250 \\ & 200 \\ & 200 \end{aligned}$		$\begin{aligned} & 4,040 \\ & 3,150 \\ & 3,500 \\ & 3,100 \\ & 3,100 \end{aligned}$	$\begin{aligned} & 4,070 \\ & 3,500 \\ & 1,500 \\ & 3,700 \\ & 3,100 \end{aligned}$	$\begin{aligned} & 4,100 \\ & 3 \times 10 \\ & 3,520 \\ & 2,310 \\ & 3,100 \end{aligned}$	$\begin{aligned} & 4.100 \\ & 2.510 \\ & 2.320 \\ & 3.310 \\ & 3.100 \end{aligned}$	$\begin{aligned} & 1.180 \\ & 3 \times 50 \\ & 3.650 \\ & 3.330 \\ & 3.100 \end{aligned}$	$\begin{aligned} & 4.130 \\ & 3.150 \\ & 1.550 \\ & 3 ., 560 \\ & 3.100 \end{aligned}$	$\begin{aligned} & 1,260 \\ & 1,660 \\ & 1,850 \\ & 1,460 \\ & 1,200 \end{aligned}$	$\begin{aligned} & 1,700 \\ & 1,6 * 8 \\ & 1,460 \\ & 1.460 \\ & 1300 \end{aligned}$	$\begin{aligned} & 1.760 \\ & 1.500 \\ & 1.500 \\ & 1460 \\ & 1.050 \end{aligned}$.	,		$-\cdots$ $-\cdots$ $-\cdots$

mentioned, that the safe loads given by the Pencoyd tables are obtained from the ultimate loads by means of a factor of t
safcty which increases with the value of

THE MARINE STEAM ENQINE INDICATOR-XVIL.*

THE EXPANSION LINZ,

The law of the compressibility of sases was first published by Boyle in 1662, and by Mariotte in 1699, the latter having made experiments entirely independent of Boyle. In Great Britain this law is commonly spoken of as "Boyle's Law," and on the Continent as the "Law of Mariotue." It is as follows:

The temperature remaining the same, the whwe of a given quantity of gas is inversely us the presswre which if bears.
Until quite recent times, Boyle's law was supposed to be true for all gases at all pressures. Depretz was the first to obtain results incompasible with the law. The experiments of Regnault in 1847 were distinguished by the extreme nicety with which they were made and finally established the fact that the law is not exact. Regrault's conclusions were, in part, as follows: "That no gas rigorously obeys Boyle's law :

[^2]the divergeace being small for low pressures but increasing with the pressure." The divergence irom the law is greater with casily liquefiable gases, such as carbonic acid and att monia, than for (the gases called in Regratult's time) permanent gases, such as oxsgen and mirrogen. Thus so reduce air to $1 / 20$ of its orignal volume, he found that a pressure of 19.72 almospheres (19.73×147 pounds) was required, instead of 20 , hydrogen fequired 20.27 , while carbonic acid required only 1671 atmospheres.

Turning now to expansion in the steam cylinder: It is safe to say that all engines (excepting direct acting steam pumps and certain clases of auxiliaries) use steam expanvively, that is, the supply of steam is cut off before the piston reaches the end of its stroke. James Watl was the first to apply the cut-off and used this as one of several methods to increase the ecotromy of his engines. He assumed that the law of Boyle was true in the case of stearn and explained the superior ecotromy of his engines (so much as was due 10 using the cut-off) by the aid of what he termed a "diagram of work done during expansion." His meahod of reasoning was somewhat as follows: Work (in the case of an engine) may be defined as pressmere multiplied by the distance throwgh which it acfs. Suppose we have a piston of roo square inches area, the piston working through a stroke of i foot. If this piston is acted upon by a pressure of 1 pound per square inch, the load on the piston is 100 pounds and the work 100 pounds times i foot or 100 fool-pounds per stroke. To get this $t 00$ fout-puunds it is necessary that the cylinder be completely
filled with steam from the botler at each stroke. If the steam be cut off at half stroke the average or mean pressure per stroke will be about K_{5} pround per square inch with 1 pound initial pressure; the total load on the piston will be 85×100 pounds and the work per stroke $85 \times 100 \times 1$ or 85 foot-pounds. Without cut-off, a whole cylinder full of steam gives 100 foot-pounds, while with cut-off at half stroke a whole cylinder full of stean will drive the piston through two strokes and produce 85×2 or 170 foot-pounds, a result showing 70 percent more work for the same quantity of steans than was produced without cut-off. This gain, however, is purely theoretical and, for various reasons, which will be discussed later, is considerably more than is actually realized.
quently hear it referred to as a p vecurve. There are many simple methods in use for layitg out this curve, bat in the uriter's opinion the best way is to locate the points by computation as follows.

Get the value of $p v$ first. In the curve of Fig. 101, $p=100$ and $:^{*}=\mathrm{t}$. Therefore $p=\sim=$ too. Next compute the valuc of v at any desired number of places above the line $O . A$ (which is drawn at 45 degrees with $O X$ and $O Y$) thus: $100 \div 90=1.11,100 \div 80=1.25$ and so on to $100 \div 35=285$. Locate the points on the co-ordinate lines. Now, beginning on the other side of $O A$, solve for p instead of v $100 \div 4=25,100 \div 5=20$, and so on until the final pressure $100 \div t 0$ is reached. As a check, the point where the

Referring to Fig. sol, the upper curve (or curve No, 1) is a rectangular or common hyperbola, rectangular, because its co-ordinates form an angle of 90 degrees with each other. Its equation ${ }^{2}$ is $p \forall=$ constant, where $p=$ pressure and $y=$ volume. This curve, as drawn in the figure, represents graphically the expansion of one cubic foot of a perfect gas at too pounds absolute pressure to 10 cubic feet, all at constant semperature, in accordance with Boyle's law. Its height above the zero line of pressure, or base, shows the gas pressare at the corresponding volume. In mathematics, this curve is known as a hyperbola, as stated above, and in consequence expansion which takes place in accordance with Boyle's law is often ealled hyperbolic expansion. The curve is also known as an isothermal or eurve of equal temperatures and we fre-

[^3]curve crosses $O A$ may be computed from the following formula:

Let $T=$ the distance $X C$, $L="$ " from O to to on the X axis, $T \times L \neq D$ (in inches)
and let $F=$ the distance in inches from O at which the hyperbola crosses the diagonal O.A
Then will $F=\sqrt{2} D$.
In Fig. 101, if we assume each of the lincs forming the squares to be one inch apart and substitute these dimensions in the formula we shall have $T L=D$ or $20 \times 2=D$ and hy substifuting this value of D in $F=\sqrt{2} D$ we lave

$$
\begin{aligned}
F & =\mathrm{V} \overline{\mathrm{O}} \\
\text { or } F & =8.9 \text { inches. }
\end{aligned}
$$

VANADIUM CAST STEEL ENGINE BED PLATE FOR MARLNE TORPEDO BOAT

Vanadium Steel is Efficiency Steel

For smaller repair [bills, for lless weight per unit of strength, for greater safety, for unexcelled vitality, for the severest services in the highest classes of mechanical construction,

Vanadium Steel is the Ideal Steel

The reasons why and the mode of applying Ferro-Vanadium for the solution of the hardest problems of Engineering as far as steel is concerned, are fully presented in our booklet.
 Other Vanadium allogs conlait lmpurities that destroy the beoffite of the Vanadium. As developers of the ganedium Industry in Amotrica we have processes of mandacture that insare the highest qualities in our alloys.

American Vanadium Company

Miners of Vanadium Ores

Largest producers of Vanadium Alloys in the world 318 Frick Building, Pittsburgh, Penna.

MARINE ENGINEERS SHOULD SPECIFY THESE METALS-

VICTOR VANADIUM

 BRONZE CASTINGSThis Bronze composition is particularly adapted for Modern Marine Service, and is rendered tough, strong and uniform by the incorporation of Vanadium, which is considered the greatest of all scavenger alloys, imparting to the metal greater wearing qualities. This bronze is ten per cent lighter in actual weight than any other bronze casting of the same pattern.

These castings can be forged.
The structure is close and clean, capable of withstanding high pressure for valve service.

A cylinder 9-16 of an inch thick, three inches in diameter and fifteen inches long has been subjected to a pressure of nine thousand pounds.

TENSILE STRENGTH on 1" Section: 56000 to $\mathbf{6 5 0 0 0}$ lbs. per square inch. ELASTIC LIMIT:

22000 to 34000 lbs. per square inch.
This metal is used in submarine vessels in Japan, Austria, Russia and every vessel of this type in the United States.

VICTOR VANADIUM NON-CORROSIVE SILVER METAL

This Metal is non-corrosive and is particularly useful for sea-going service.

It finishes to a silver color and takes a high polish whose lustre can be maintained quite readily by simply rubbing, adding greatly to its usefulness and effect as ornamental hardware for marine use

It is an ideal metal for propellers, for it withstands salt water and all vegetable and mineral acids, nitric acid excepted. It is of great strength and toughness and should be used for valves and couplings for fire apparatus on account of its non-corrosive qualities, in place of nickeled castings, as nickel finally peels off, and this metal not being plated, cannot peel.

TENSILE STRENGTH:

 66000 tbs. per square inch.
ELASTIC LIMIT:

36000 lbs. per square inch.
This metal will be found indispensable to marine service when once used.

WRITE FOR CATALOG VANADIUM METALS COMPANY

FRICK BUILDING PITTSBURGH, PENNA.

PRACTICAL EXPERIENCES OF MARINE ENGINEERS.

Incidents Relating to the Design, Care and Handling of Marine Engines, Boilers and Auxiliaries, Breakdowns at Sea and Repairs.

Explosion of a Valve Recelver.

Have you heard of an explosion happening in an engine while cool?
This was what occurred in the steamship Cantabria off the coast of the Philippine Islands, where I was third engineer. This steamer, formerly named Formosa, of the Hong-kong-Manila Line, was fitted with a triple-expansion engine of approximately 700 indicated horsepower. The cylinders and valve chests were arranged in the following order, beginning from the foreside: Intermediate-pressure valve receiver, highpressure piston valve, high-pressure cylinder and low-pressure
ing with his right hand a bunker lamp and went to examine the valve leads, reflecting the light into the valve chest on the same side where the connecting pipe was fixed. At the precise moment that he got the light inside we heard a tremendous noise that produced a great commotion in the whole ship, as if a charge of dynamite had exploded. A large quantity of grease and black smoke escaped from the open receiver, tarnishing the bulkhead, which was about 28 inches away, and burning part of the chief engineer's face and right eye.

After a brief moment of very natural fright we went to the assistance of the chief. The captain and other officers who advanced to the skylight to inquire about the cause of the

eylinder; the low-pressure valve and receiver were placed at the post side of its corresponding cylinder. This receiver was fitted with two covers, one vertically and the other horizontally placed. (See Figs. I and 2.) One steam pipe connected the intermediate-pressure and low-pressure receivers. As is seen in Fig. I there were two stay-rods of a-inches diameter, with straps fastened to the cylinder walls to keep them closed.

On the morning of Good Friday of 1904 we arrived at the port of Legazpi, at the foot of the volcano Mayon. After cleaning out the grease we allowed the engine to become cool. The chief engineer, on the next day, about to o'clock A. M. gave us orders to get the engine ready for examining the leads of the three steam valves. After connecting the turning gear we turned our attention to the high-pressure piston valve, removing the cover head, scraped the eake oil and turned the engine in an effort to find the high dead point of the highpressure crank. After examining the leads of both go-ahead and astern we turned the engine and placed the crank at its lower dead point. The chief examined the leads, and finding both bottom and top $\mathrm{O} . \mathrm{K}$., ordered us to cover the valve and take off the cover of the intermediate-pressurc. We did so, and when we got it opened and placed the intermediate-pressure crank at its high dead point the chief came down, grasp-
explosion called out attention to a light white smoke noticeable between the low-pressure receiver and its vertical cover. I went there, and to my great surprise readily saw that the cover was broken in two pieces (Fig. 3). I also noted two I-inch studs with their respective nuts laying on the floor; studs which had been rooted out from their location on the broken cover (Fig. 3 c.).

Then we aided the chief in going to his bunk, where he was assisted by the deck officers. The second engineer and myself turned back to the engine room, where we proceeded to make a more complete investigation of the thing which we looked upon as phenomenal. We removed the broken cover, as well as part of the cylinder lining, and at once saw several cracks in the fore part of the receiver (Fig. 2) and two more on the stud-holes of the upper edge, where were fixed the rooted-out studs of the vertical cover, one of the cracks extending to the upper eorner, reaching the port side edge of the upper cover.

We also noticed that there were several cracks existing and also, as could be plainly seen, patches. So we concluded that the recent explosion had a precedent in the same engine, which idea was reinforced on our part by the two stay-rods and straps that were fixed for strengthening the upper part of the engine.

As we had to continue the Irip, and, moreover, as there was no machine shop in the town, we set about making the necessary temporary repairs with the tools and materials that we had at our disposal on board. First we drilled a row of $7 / 16$. inch holes along the edge of each broken piece of the cover, having a distance of about $\$ / 8$ inch and about $21 / 2$ inches apart from center to center. The holes were tapped with $1 / 2$-inch thread. Then, with one ?-inch iron plate, the only plate that we had on board, we made a patch, giving it a width of about 6 inches to cover the sinuous line of fracture, making the rivets with one $1 / 2$-inch iron rod, threaded at one end to screw down the cover, and subseyuently fixing the patch on the inside face of the cover by means of gond riveting

As we had only one drill (ratehet) we were compelled to finish one part of the repair before attacking another. So after having concluded the cover we then proceeded to remedy as quickly anl as well as pussible the larger cracks recently produced on the recciver. This we fixed by several bolts along the cracks to hold them within their dimits, until our arrival at Manila, where better means for good and permanent repairs could be accomplished. We completed the repairs and were able to set steam 24 hours after the explosion. The trip was continued with sume steam leakage through the cracks.

As may be supposed, from the moment of the explosion we began to inquire (among ourselves) how such breakdown conld have happened and what was its prime canse. The engine was cool,'as has been said, and several complete turns had been given it, and furthermore a light, the same bunker lamp used by the chief (and which acted as a fuse) was introduced in the high-pressure cylinder valve, without disturbance of any kind. The supervising engineers of the ship and of the insurance company, who boarded the ship immediately on our arrival at Manila, after investigating the conditions, gave as their opinion that the cause of the disaster was due to decomposed gases, caused probably in part by the cylinder oil and in part by the petroleum used on the boiler by former engineers.

That this oil and petroleum by accumulation in the pipe had converted itself in a specy like a cannon.

Can any opinion be given different from the one expressed?
When we arrived at Manila and after the supervising engineers authorized the repairs, we began the fixing of a new cover and patching the cracks of the receiver. And in order to augment solidity to the weakened receiver (and it could not be renewed, for the cylinder and receiver were of a solid piece and the machine shop liad no materials to cast a new one), an iron frame $1 / 2$ inch thick, of the shape of the upper cover, was fitted, renewing, of course, all studs by larger ones. (Fig. 4.)

The ship was unfortunate and subsequently was wrecked by a typhoon in September, 1906, when every soul perished in her.

Philippine Islands. Aucusto Suzara.

A Broken Thrust Shaft.

The S. S. "R-" while on a voyage from India to Fingland, with a full cargo of tea, broke her thrust shaft, which the engineers of the ship managed to repair temporarily. The repair was made in this way: We cut a slot through the broken ends and inserted one of the crank shaft keeps into the slot, keeping the shaft ends and keeps in position with wrought iron bands. After we had traveled several hundred miles, however, the repairs gave out, and we were left helpless; at this point of the soyage we were out a long way from Bombas; so our captain decided to make for this point under sail; after five days, we reached this port
safely under the aid of onr wanty sails alone, which, 1 might say, were mate from canvas hatch covers. We then set about looking for another shaft, and after considerable hunting, we got one which turned out to be something near what we wanted. We had it cut to suit the length, and turned out to suit the thrust block rings; it was also fitted with two cast iron couplings, 9 inches thick at either end. The couplings were secured to the shaft by longitudinal keys. Having had these repairs completed, we proceeded up the Red Sea and through the Canal without anything unusual happening, execpt of course that we had to keep a strict watch on the shaftiug. After leaving Port Said, however, for a Mediterranean port, it was observed from the working of the thrust block and stern tube that the whole of the shafting and its connection seemed to be strained and out of true alinement, so much so that the inner end of the stern tube worked rotud with each revolution no less than lialf an isch, causing a constant and serious leakage of water imo the ship. However, by keeping the pumps at work all the time, we managed to get to port safely, and there we underwent an examination and had an entirely new thrust shaft, bearings, antl tube fitted.
F. J. S. N.

Practical Operation of Parsons Turbines.

A vencrable Scotchman, the seniur chief engineer of a certain line of 'cross Channel steamers, was transferred to the latest addition to the fleet, a bigh-speed vessel, driven by Parsons' turbines. After the new job had been running a few weeks the superintendent of the line, feeling that the old man would find the turbines a vast change from the slow-speed paddle eagines to which he had been accustomed, asked him if he found any difficulty with the new system. "No," said he, "I do not. "I'll tell ye (very confidentially), it's just like this with the turbines-you open the regulator and trust in God,"
So far as it went, his observation was entirely correct, but there are other things required in the suecessful management of a turbine installation in addition to faith, and the object of these notes is to point out what some of these other things are.
Coming from the reciprocating engine, with its multiplicity of working parts to lubricate and adjust, the engincer will naturally consider the operation of the turbine, with its absence of visible working parts and antomatic Iubrication, to be a much simpler business. So it is, but, all the same, the turbine calls for intelligent handling and in some respects is a much more delicate piece of machinery than a reciprocating engine.

In a Parsons turbine there are hundreds of revolving blades with their tips running within from $25 / 1000$ to $t / 10$ inch of the stationary cylinder, and hundreds of stationary blades with the revolsing portion running at similar clearances from them. In addition, the fore-and-aft clearance between the revolving dummy and the stationary dumny riugs is usually about 20/1000 inch. Should any of these clearances disappear the result would be disastrous.

On the other hand, it must not be imagined from this that breakdowns are frequent-far front it. In fact. it may be said that when properly designed and constructed and intelligently handied it would be difficult to improve upon the Parsons turbinc, as far as freedom from breakdown is concerned. A breakdown with a reciprocating engine is seldom of such a nature that it cannot be repaired at sea. However, with the turbine, wheu breakdown does oceur, it is usually in connection with the blading or dunmy rings, and stuch an accident is often in the nature of a coluplete smash which is beyond the
prwer of the operating engineers to repair. It behooves the engineer in charge, therefore, to heep the idea of these fine clearances (which are entirely out of his sight and control) constantly before him, and to err always on the side of caution and take no risks.

Nuw the oneration of a turbine installation may be divided into three sections:

1. Heating up the turbines and getting under was:
2. Operation whet muder way.
3. Overhauling.

Considering Soction t it is evident that the turbine cylinkers, although perfectly eylindrical and symmetrical when cold, will distort to some cxtent when hot, consequently the blade-tip elearances will be reduecd. The clearances are usually made ample to allow for this. On the other band, if the turbine is quickly or carelessly warmed up so that uncqual expatsion results, the distortion of the eylinder becontes very much greater and a grave risk is run of stripping the blading when the turbine is started up. Thas, the greatest care is necessary to make the heating-up process as long and gradual as possible. With even the smallest installation it is adsisable to take not less than six hours to the operation, and about twelve hours with large turbines.
The procedure in warming up nay he somewhat as follows, ahhoush, of cource, it may lie modified to suit individual circumstances:

L'sually an anxiliary builer is set away previously, so as to have anxilaty steans available. If water-tube boilers are installed a single beriler may be selected for warming up, but if eylindrical loilers are fittel they will all have to be lighted up as soon as possible.

When fires are set away and all air cleared off and steam showing, crack open the looiler stop-valve. Open the bulkhead stop-talves and regulator values, and any drain eocks that may be fitted to the main steam range. The self-closing valves in the receiver pipes between the surbines should be opened wide, so as 10 allow the rapor to pars through the turbines to the combenser, Open full all the turbine drain valves and also the valve (usually fitted at the air pump) which drains the turbines to the bilge.
The circulating m mps should be started up and kept going slowly during the process of heating up. After the air has lecen driven off and steam is blowing at the drain to bitge, elose this valve and start the air pumps, kecping them just on the mose.

The pressure on the tarbine should not be allowed to exeeed about 12 pounds per square inch for the first few hours. It is the usial practice to put in the furning gear and give the rotors a turn, say, every half hour, to insure that they expand extaally, but if pienty of time is given to leating up this may be dispensel with. Ifter six to eight hours, the turning gear may be taken out. Wurang this lime the available steam pres. cure will have risen considerably, and it will have been neeessary to almost close dewn the main regulating valve.
When fnll pressure is reacliel, the turbines being now hot, very liztle is feressary to set them moving. The regulator may be opetted at intervals for a few minutes at a time to keep the turbines thoroughly warmed up, without actually moving them, until nearer the time for getting under way. Before reporting ready, the lubricating oil pump should be started and kept groing slowly, and the oil test cosk and sight doors on the bearing looked to, to see that the oil is moving properly. Steam may now be put on the onter pockets of the turbine glants, the valves leing adjusted to give a pressure of about t pomnd per square inch. The various drain cocks about the steam system should also be tried, to make sure that all water is cleared out.

Having ancertained that the propellers are all clear, suff-
cient steam may be given to each turbine in succession (including the astern turbine) to cause it to move a few revolations, and steam should be left on the turbines that will be used for maneuvering. The air, circulating and fored lubrication pumps may be speeded up in readiness for starting and every. thing being sasisfactory "All ready" may be reported.

Just before starting, the drain valves on the turbines which are actually to be used shonld be closed. If the usual threeshaft arrangemeat of th: lines is fitted, with the high-pressure outhe center shaft and the low-pressure and astern turbines on the wing shafts, the wing shafts only will be required in working out of harbor. The high-pressure turbine will be allowed to revolve idly in a vacuum, its drain valve being left open, which is practically equivalent to connecting it to the condenser. This applies so any turbine whiclo is allowed to zevolve without doing work, no matter what arrangement of turbines is installed. Thus, when eruising turbines are fitted, their drain salves are kept open when these turbines are not developing power. The dratin valves of the turbines in which work is being done are kept clused when under way, the whole system being drainet from the exhaust end of the lowpressure turbine throngh a non-return valve of the "Kinghorn" type and a water seal.

When starting the turbines it is of great importance to open the regulating or maneuvering valves gradually. If this is not done a sudden rush of steam will result which is very apt to start priming and canse danage to the blading. The turbine has the reputation of being nutuch more liable to cause priming than the reciprocating engine, and the writer's experience bears this ont.

The enginecr should remember that the turbine can take up as much steam at starting as when it has run up to specd, wliereas the reciprocating engine's appetite for steam only increases with the speed at which it runs. Gradual opening out is especially necessary when operating the astern turbines, as with them only comparatively few rows of blades separate the boilers from the condenoer. This caution is essential, and even when gradually opened out, full steam should not be given to the astern turbines unless full boiler power is available.
Several eases of severe friming with turbine jols have come within the writer's experience which were due to the boiler stop valves being opened ton widely. The stop valves on the boilers nearest the turbines should ouly be opened slightly if priming is to be avoided. This applies more especially with ordinary cylindrical boilers.

Turning uww to Scetiont 2, operation when under way, once in open waters the turbines must be changed over from maneuvering to running conditions. Thus, if the usual threeshaft arrangernent is fitted, the high-pressure turbine drain valses should be closed, the manetivering steam valves (ahead or astern) slut, and main steam admitted to the highpressure turbine. If cruising turbincs are installed, the proportion of full power to be develoged will decide which (if any) are to be used in conjunction with the main turbines, or whether they are to revelve idty with their drain valves open. If the vacuum angmentor system is adopted, circulating water may be put on the ansmentor eondenser and steam admitted to the augmentor jet. The air and circulating pmomps should be operated to give the highest vacuum attainable. The vaccum is a most important point in a turbine installation and should receive the fullest attention. With a turbine (unlike a reciprocating engine) the vacuun cannot be too high, every increase showing a masked decreate in the steam consumption for the same power. The engineer in charge cannot give too much attentiou to this part of the system, and additional care with the jointing that is subject to the vacuum will be well repaid. Only the turbiues should exhaust to the main
condensers if a high vacuum is to be obtaitred. If the elosed exhanst arrangement is fitted it should certainly be used. With this arrangement the exhanst from the auxiliary enkines is eonnected to any one of several peints on the main turbinesthe connection to be selected dejeending on the degree of power being developed by the turbines. This decieles at which connection a suitable prossure will be found. Thus, bt low powers the ansxiliary engine exhatsts may lee connected to the beginming of the second expansion of the high-pressure turbine (if cruising turbincs are fitted), while at full power the suitable point would probably be the second expansion of the lowpressure turline. Again, at intermediate-powers the exhausts may be put into the receiver pipes between the high-pressure and low-pressure furlines. By adopting this system not only is arditional power obtaited by utilizing the atuxiliary engine exhatsts, hit the improved vacuum results in a gain in economy.
It will be readily understood than any steam connection which enters the turhines in way of the blading requires careful handling, as any sulden rise in temperature is very liable to cauee local distortion, with the risk of blade stripping. Thus, when operating such of the closed exhasst connections which enter the turhines in way of the Nading, the controlling valve should he first well drained lvefore being gradually opened.

The by-pass valve which admits full-presaure steam to the end of the first expansion of the high-pressure turbine calls for cautions operation, and several aceidents have heen caused hy carcless handling of this fitting.

The steam to the turhine glands should be adjusted to allow a slight escape of steam, just sufficient to insure that no air can leak in. A preseure of ahostt 4 to 5 pounds per square inch in the outer gland poeket will usually suffice. The high-preseure and ernising turbines are usually fitted with slands having two and sometimes three steam prekets. The inner of these have valve-controlled connections led to some point of lowerpressure to which the steam which eacapes past the first rows of gland fins is "leaked-off."
Thus the inner poekets of a cruising turline gland would be connected to some point down the expansions of the highpressure turbine, while the high-pressure turhine inner gland pocket may be connected to the second expansinns nf the lowpresenfe turhines. The nuter pockets of the high-pressure and eruising turhine glands have generally a steam connection to obviate air leaks, and in addition a connection for leakingoff the escaped steam to the eondenser, should the inner pocket leak-off be tuable hy itcelf to relieve the pressure. The engineer shonld endeavor to keen a evitable pressure in the onter poeket without having to wee the ennnection to the condenser. If the high-pressure or a eruising turbine be revolving idly in a vacunm, the inner pocket leak-off must be elosed. and the steam on the outer pneket will keep ont the air.
The Inw-pressure turbine glands are always subject to a tacuum, so that a single poeket fited with a steam connection only is alt that is sequired. The actual operation of the gland steam is prohably simpler than the explanation. bist the aro rangements adonpted wary to such an extent that it is only possibte to treat the swhirct gencrally. In merchant vessels the connections are ustally very simple, the more claborate arrangements being fitted to naval veseels in which ernising thrhines are adopted.

A vital point in a turline svatem is the Inbrication. Forced luhrication is generally fittell, the oil beine pumped throngh a cooler (similar to a surface enndenaer) on ita way 10 the bearinge. The circulating water for this eooler is sometlmes taken from the discharge side of the main circulating pumpe. or a anecial numn is fited, which should, of conrse, he started un with the foreed luhrication mimp. On the turhine hearing cane are fitter sight doors, a gressure mage, and a test eock, which eall for frequent ohservation. The nil after leaving the
bearings flows by gravity to the oil-lisain tank, from which the pumps draw, the oil passing through a strainer on its way to the pumps. The ptumss are usually in duplicate, one acting as a stand-ly, and it is a great advantage to have two oil-drain tanks, as one can he used to allow the oil to settle and cool, while the other is in service. The oil coolers are not always very effective and they are very liable to trap air. The writer has found the fitting of an air cock to be of considerable advantage in some eases.

It is nsual to carry an oil pressure of almut if potund per square inch at the bearings, as a higlt-pressure is very liable to eanse leakage, hut every job should be treated on its own merits. The temperature of the hearings is generally higher than is usual with reciprocating eugines. Trouble with hot bearings is not eommon with turbines, but when a bearing does heat up it heats up quickly. The oil supply must never be allowed to cease even for the shortest period. A case oceurred within the writer's experience in whith the stoppage of the oil pumps was unnoticed for a few moments, and he is not likely to forget the result. As an additional precaution reserve oil tanks arranged as high up as possible are sometimes fitted, and these tanks can in an emergeney supply oil to the bearings by gravity. Thermometer connections are now commonly fitted to indicate the temperature of the oil leaving the bearings, and the temperature so indicated should be recorded,
When under way the turbine pequires little attention in comparison with the reciprocating engine. Every effort should be made to keep the vacuum high while the oil pressure and bearing temperatures shonld be carcfully observed. In addition, a lookout should be kept for any variation in the steam presstares at the various turbines and gland pockets. The dumnty clearance slotuld he tried at the "finger piece" every wateh, while a more aceurate measurement hy means of the dummy clearance mierometer may be made every day. However, the detailed explanation of the method of carrying out these operations would require a special article in itself.

The engineer should, of course, pay attention to any variation in the usual noise of the furhines, as the presence of loose binding strips, ete., or foreign matter in the blading may sometimes be detected in this way. The presence of water in the turbine also modifies the sound.

On the other hand, the writer remembers a turbine which at one particular speed made a noise resembling a brass band, although the blarting was quite sound. Again, on the trial trip of a certain 'eross Channel steamer, at which the writer was present, when on the measured mile a tremendoas, shrieking noise was set up. As this was in the early days of the turhine trouble with the blading was feared, and the engines were immediately stopped.

After some investigation, the cause of the trouble was eventually iraced to the main regulator valve. This valve was fitted with flexible disc seats and at one particular pressure these flexible discs vibrated, causing the shrill noise.

overtauling.

The overhauling of a set of turbines is generally a big job. A lot of pipes and fittings have to be dismantled and stowed away, and often a considerable amonnt of gear has to be erected before the actual work of opening up the turbines can he commenced. At least a week would be reguired for the overhad of even the smallest job, while three or even four weeks would not be excessive with some of the larger installations. Thus the opening up of a set of turbine machinery is carried ont at much longer intervals than is usual with reciprocating engines.

On the other hand, there is no doubt that the engineer in charge should see the inside of his turbines and ascertain the conditions of the blading, dummy rings, ete., as often as
possible. If it is impossible to get the time necessary for a contplete overhaul, only one turbine may be opened out whenever an opportunity occurs. The various steam strainers should be examined at intervals, the cages being withdrawn and cleaned. The bridge gage which measures the wear-down (if any) of the turbine rotors should be tried at the end of every trip and the results carefully recorded.

Before proceeding to ojen up any of the turbines, the engineer in charge should carefully consider what operations are to be carried out, exaetly how they are to be carried out, and in what order, if confusion is to be avoided. The exact arrangement of the turbine lifung gear to be adopted depend on several eircumstances, and naturally varies with the arrangement of turbines and the space available. The builders nsually supply a drawing with the ships which indicates the methods to be followed, and a carcful study of this will usually repay the engineer.

One point should be noted. When the astern turbine is incorporated with the low-pressure (as is ustal), it must be remembered that the astern cylinder joint (which is inside), must be broken before the low-pressure cylinder eover can be lifted. The writer rencmbers a case where this point was forgotten, with the result that one of the lifting lugs (cast with the cylinder) was broken off.

After a cylinder cover is lifted on the four guide pillars it is nsually traversed by the lifting blocks in either a fore and aft or athwartship direction and deposited. Or it smay be suspended from the deck. The rotor may then be lifted and secured on the special guides provided, leaving the lower part of the easing also open to inspection.

With very large turlines the cover is sometimes raised and secured to the four guide pillars, which are in this case attached to the ship's strueture at their upper ends. Then, when the examination of the blading, etc., of the cover is coneluded the rotor may be raised inside it and also secured.

When completely exposed the blading should be gone over very earefully, the tips of the blades heing examined for indieations of fouling, while particular attention should be paid to the condition of the binding wire and lacing. The engineer should look out for any bent or twisted blades and atty signs of looseness. He should note the condition of the dummy rings and examine the pins of the radial dummies and of the turbine glands. He should see that the ramsbottom rings in the glands are sound and wearing well and if their lubrication appears to be sufficient.

If there is a dirty sediment in the turbine the engineer will know that water has been brought over, and all sediment must be carefully cleaned out. The rotor should be examined for any signs of pitting or corrosion, which is oftem the result of allowing the turbine to stand with the drains unopened. The interior of the rotor drums should also be looked in for any indication of corrosion, and may be given a ecat of graphite plaint. The screwed pins which secure the rotor drum to the wheels should be earefully examined for slackness. The bearings and adjusting bloeks must, of course, be overlauled and the oil ways and holes eleared of any rummy deposit. Any hard places on the faces of the adjusting block may be slightly eased with a scraper, but it is scarcely likely that there will be any necessity for this.
The oil wells under the bearings should be emptied and all sediment cleaned out. The lower half of the turbine cylinder with the bearings and adjusting block, when not actually ander examination, should be kept covered up and the greatest care should be taken to insure that nothing has been left in the blading before closing up again.
The most vital point in the overbauling of the turbines-alie adjustment of the dummy clearance-has not been mentioned. A complete treatment of the methods to he adopted would unduly extend these notes, so that this subject would he best
considered separately, Lintil the engineer is thoroughly familiar with the method of carrying out those adjustments he should leave the dummy clearance (if satisfactory) severely alone.
Assuming that the dummy clearance is satisfactory and that no adjustment is to be made, the adjusting nuts (which fix the fore and aft position of the adjusting-block cap) should be carefully marked before the cap is lifted, and set to the same position when reassembling
K.

Making Use of Odds and Ends.

The following mishap and its repair, I think, tend to show marine engineers aboard tranp steamers the value of taking care of what appeared at the time to be useless articles; for it proved to me the advantage of having retained from the junk dealer an old windlass stop valve which had been knifed up, or rather the valve seat had been knifed up so often that it had become thin enough to allow the steaun to pass through the somewhat porous metal of which it was made.

At the time of this accident I was chief of a fairly large tramp stcamer fitted wath eleetric lights and all the usual modern auxiliary machinery, etc. Owing to the cheap and simple steam-pipe arrangenents, when steam was on the dy namo enkine, steering kear. etc., it was also on the deck pipe, only being shut off hy the usual valves, of which two were fittel in a box on the boiler-room casing. This valve box waty joined to the plating on one side and the stean pipe from the boilers on the other side, the whole being boled together by six $1 / 4$-inch holte passing through two flanges and the plate between, thus making a double joint. About 2 feet from this valve box, nearer the vessel's side, was a trimming batch to the side bunkers.

One day at sca-that is, when steam was in use in the steering engine, dyuamo, etc, this value hox lourst at the point shown in the sketch. Fortunately no one was in the immediate vicinity, or he would have been badly scalded. There

hat lseen no previous sign of leakage or weakness about the salve box, but on closing the stop valve on the boiler top and examining the fracture it was found to be only about $1 / 32$ inelh thick, whereas the bottom part was nearly $1 / 8$ inch thick, a condition of things which was probably caused hy some movement of the pattern when casting the valve box.
As it was altesost imperative to have steam on deck again as soon as possible, 1 decided not to attempt to repair the damaged casting. On looking around our storeroon I came across the old windlass stop valve, which I decided to use as a T-piece, although it was sonte 4 inches shorter than the original valve box. The two end flanges were already drilled to the same templet as the deck stean pipe flanges. I rentoved the cover and valve and valve spindle (and here I must add that the cover was flanged and not serewed, as many, especially American, valve covers are). I took out the studs and found the
diameter of the cover flange, which was such as permitted it to be placed against the plating, the holes for the bolts of the double joint heing clearly outside. I then jointed the steam pipe with bolts through the original holes with plate washers on the back side, taking the flange of the old windlass stop valve and further placed our 5 -ton screw jack between the flange and the above-mentioned bunker hatch. I then had to hook back one of the elips on the deck pipe and coax the pipe along in order to join up the pipes to the end flanges of our new T-piece. When this was done steam was turned on, and as the steam pipes were constructed with large expansion bends they sprang along further and I found the job to be quite safe as long as we did not ship any heavy seas. Further than this we were only a couple of hours in making the change.
As the vessel was bound to Moulmein, Burmah, and was to be there only a day or two, I had no time to get a new casting made and did not feel justified in going across the Bay of Bengal, etc., deeply laden with the job as it was. Fortunately, I was able to obtain very cheaply an old cast iron T-piece, with flanges somewhat near the required size and the proper length, the end flanges of which had already been drilled. These holes I had plugged up and fresh ones drilled as required, and I also had the side flange, which had not been drilled, drilled to suit the holes in the plating and the casing and the steam pipe to the boiler. It was a very simple job to joint this in place and all seemed well again except that we could not shut off steam from the forward and aft parts of the vessel, and, as the deck steam pipes passed very near the officers' accommodation, this was certainly no improvement from their point of view, especially in so hot a climate. It was suggested that I fit blank flanges in between the T-piece and the steam pipes. This I did not deem to be right, for in river navigation one never can tell when an anchor may have to be manipulated or some other deck order required, so the steam remained on.
This T-piece withstood the pressure of 180 pounds for some days, when I was lucky enough to observe a pin-hole "weep" in it, and we then and there removed same for further repairs and improvement which were fitted as follows, and the job then lasted until our arrival in Germany, where a new valve box was obtained, the original valves, valve spindles, glands, covers, studs, etc., being used, which considerably lessened the cost of our new outfit.
After removing the cast iron T-piece for repair the method I employed was this: I eut a piece of iron pipe the length of the casting and also drilled a large hole and cut it to suit the branch leading to the steam pipe from the boilers. As this pipe was some $\frac{3}{6}$ inch too small in diameter, I placed it central with small pieces of wood, also placing a wood plug up the branch to the boilers. Then I melted a quantity of old white metal which we hart taken out of a bottom end brans sometime previously, and ran this in around the iron pipe inside the casting: then withdrew the wood plug and rejointed the T-piece which, as I said before, proved a satisfactory repair.

Thus, in this case, the use of the old brass valve as well as the white metal shows the advisability of keeping many old things which one is tempted to dispose of, for one never knows what situation he may be forced to meet, nor how useful old odds and ends can become under certain circumstances.

Enfitid.

Tiliter Loose on the Rudder Head.

In one instance, during a voyage to the River Plate, the tiller of a vessel became loose on the rudder head and the trouble was seen to be getting worse and worse. As the effect of the looseness was to wear away the key and keyway and to grind the hole in the tiller larger and larger, it was decided to try and fix the tiller to the rudder head at sea.

The rudder was, first of all, firmly lashed and when this had been done the tiller was then taken off. Next a fire was made on the iron deck, being raised off the deck by means of firebricks and bars. The tiller head was heated in this fire to a dull red heat. In the meantime the keyway in the rudder head was made larger and a new key was made to fit, this key being, of course, of two different sizes. After this a sheet of tin was bound round the rudder head by means of copper wire, and then the heated tiller was put into place and then contracted on to the rudder head by playing a stream of water on it from a hose pipe. The new key was then driven firmly into place. This arrangement held the tiller hard and fast and made a good repair, which held out until the vessel arrived home some three months later, when a new tiller was obtained.

Knifing Out Vaive Seats in Place.

The check valves and other valves for steam and water on board ship very often give trouble, owing to the fact that some hard substance has got between the valve and ita seat. This leaves a nasty hole or bend in the mitre, and it is impossible to make a tight job by simply grinding the valve in, according to the usual practice. On stopping the engines the boiler water will leak back into the hot well if the suction and delivery valves are not tightly shtt down.
It is possible, however, to knife out the valve seats in place and restore them into perfect order by means of a very simple device made out of materials which can be found on board any boat. A piece of hard wood, such as a boat oar, may be taken, and by using a rough file or rasp it can be reduced in diameter

until the wood is just a turning fit by hand in the valve seat. When this is the case, the wood should be marked off at the top of the valve seat and a small piece of sheet steel should be driven into the wood parallel with its axis at about this mark. A suitable piece of metal can be obtained by using the corner of an old firing shovel. This tool can be worked down into the valve seat. The projecting piece of steel should be made into shape, either flat or tapered, so as to suit the mitre required, this forming the knife on the top of the wood. A square head should be made, so that the mandrel thus formed can be turned round either by hand or spanner. By means of this simple tool the valve seat can be cleaned up satisfactority. After thia has been done the valve should be ground in the usual way, and it will be found that the surface will operate as well as ever.

Published Monthly at
17 Battery Place New York
By MARINE ENGINEERING, INCORPORATED
H. L. ALDRICH, President and Treasurer and at
Christopher St., Finsbury Square, London, E. C.
\therefore E. J. P. BENN, Director and Publisher howard h. brown, Editor

Notice to Advertiaers.
Changas io be mode in copy, or in orders for advertiving. mant be in ose hands nol later than the 550 h of the monsh, to inrure the carrying
 the mpmoth. the mpenth.

A Significant Change.

According to press dispatches, the Hamburg-American Liner Dcutschland is undergoing extensive alterations and when she is again placed in commission it will be as an 18 -knot cruiser instead of a 23 -knot flyer. This change in the speed of the vessel means a reduction in the horsepower required for propulsion of about 50 percent and a reduction in the weight of the propelling machinery of some 3,000 tons. The Deutschtand is the first of the crack Atlantic passenger steamships to be remodeled in this manner, and the change is significant, coming, as it does, after the remarkable performances of the latest and largest turbine-driven ships. The advent of the Lusitania and Maurctania has settled the question of the speed supremacy of the Atlantic for some time to come, and it is doubtful if any steamship company will soon have an opportunity of building fast mail ships under such advantageous terms as the Cinnard Line was able to do. Extreme speed can be obtained only at a tremendous sacrifice in the earning power of the vessel, and it is only under the stimulus of large subsidies that such ships can be made to pay. Undoubtedly there are other fast ships besides the Dertischland which would pay larger divi-
dends if their speed was reduced. The present tendency in the design of the Atlantic liners seems to be in the direction of large ships of moderate speed with ample cargo-carrying capacity, for there are now under construction no less than four stcamships larger than the Lusitunia and Maurctonia, all of which are being built for moderate speeds. With the increased dimensions of these new slips speets of 21 or 22 knots can be obtained cconomically, where in a smaller ship the cconomical speed would probably he 18 or 19 knots. During the ten years in which the Deutschland has been in service she has more than once held the record for the fastest passage across the Atlantic, proving a crellit in every way to both her builders and owners; thus the change in her design is simply a significant indication of the moslern trend of commercial steam navigation.

Practical Operation of Steam Turbines.

Steam turbines are coming to play such an important part in the propulsion of both merchant and naval vessels that it belooves every marine engineer to master thoroughly the details of their operation and upkeep. Those who have not been so fortunate as to have an opportunity to stukly this problem from a practical standpoint will find much valuable information in the article on the practical operation of Parsons turbines which is contributed this month to our Department of Practical Experiences of Marine Engineers. The subject is, of course, too broad to be exhausted within the limits of a single article, lut our correspondent has brought out many valuable points which shonkld give the practical man food for thought. He points ont that there is one striking difference between the reciprocating engine and the turbine which the operating engineer must bear in mind, and that is that, whereas most of the breakdowns which occur with a reciprocating engine can be repairell at sea, on the other hand a breakdown with a turbine is a more serious matter, and it is seldom that satisfactory repairs can be made at sea. Therefore, it is of the utmost importance for the man in charge of turbine engines to kecp the strictest watch over the machinery and prevent as far as possible any opportunity for a breakdown to occur. The importance of preventing even the slightest breakdown with turbines is evident when it is realized that it takes at least a week, and usually from three to four wecks, to overlaul a turbine. For this reason the opening of a sct of turbine machinery is carried out at much longer intervals than is usual with reciprocating engines. It is true that breakdowns are much less frequent with turbine machinery than with reciprocating engines, because the turbine is a simpler machine. But, at the same time, the turbine is a more delicate piece of machinery, and the clearances between the moving and stationary parts are so small that neglect or anything less than the most rigid care
are inexcusable. The proverbial "stitch in time" is nowhere of more importance than in the operation of marine steam turbines.

In operating turbine machinery all parts of the turbine should be warmed up evenly and thoroughly to prevent distortion; particular care should be taken to drain off all water, and when steam is admitted the valves should be opened gradually so as to prevent priming, and the lubricating system should be maintained in the most efficient condition possible, with a constant watch on the temperatures of the bearings. The efficiency of the turbine depends largely on the vacuum maintained and, therefore, the condensers and air and circulating pumps shoukl be given most careful attention. Once under way, if no maneuvering is required, the turbines need little attention, as compared with reciprocating engines. This does not mean, however, that the strictness of the watch should be relaxed, but merely that there is less work involved in their operation.

Naval Engincering Progress.

The Bureau of Steam Engincering of the United States Navy has been actively engaged during the last year in important iuvestigations with a view to improving, from both an engineering and a military point of view, the efficiency and economy of present and fitture warships. A comprehensive ressumé of this work is given in the lecture by Engineer-in-Chief Cone before the Naval War College, which is published elsewhere in this issue.

The first, and perhaps the most important, probIem discussed by Rear Admiral Cone is the question of propulsion. The introduction of the steam turbine has made imperative radical changes in the design of propellers, anxiliary machinery, lubricating systems, etc., and the Navy Department is to be congratulated on its far-sighted policy in designing a sufficient number of sister ships of varions types and installing upon them rival types of engines, so that comparative data regarding their performance could be obtained. The thoroughness with which this has been done has given the engincering world some invaluable information and, incidentally, has upset some popular theories regarding the comparative value of reciprocating and turbine engines. As a result of these tests, while practically every naval power is adopting without reservation the turbine for propulsion of battleships, the United States will install reciprocating engines in her latest battleship.

In the effort to improve the efficiency and economy of naval vessets certain tendencies in design can be noted along which improvement may be expected in future. Although the question of boilers seems to have been satisfactorily settled for the present, yet there is a decided tendency toward the use of small-tube express boilers, and it is quite probable that this type of boiler will play an important part in battleship de-
sign in the future. The use of oil fuel on all future United States battleships is urgently recommended. Aside from the question of the relative merits of the direct-connected reciprocating and turbine engines, the development of reduction gears for turbine drive is progressing rapidly, and either the mechanical, electrical or hydraulic gear may prove to be the means of establishing the supremacy of the turbine drive beyond a donbt. In another direction the possibility of gas propulsion is not so remote as to preclude investigation into its merits. For sinall powers this seems to be thoroughly practical at the present time, and, on account of the opportunities for effecting economy, it seems probable that a decided effort will be made to develop satisfactory engines and prolucers for large powers. For small auxiliary engines the heavy oil engine is now becoming recognized as a valuable type.

Not the least important part of the work done by the Navy Department in the last year, however, is the improvement in the economy of existing vessels. A detailed account of various ways in which economies have been effected is given in the lecture to which wc have referred, and we commend this to the carcful perusal of every marine engineer. The results speak for themselves.

A most important point to keep in mind in any attempt to increase the efficiency of a marine steam plant is the matter of boiler efficiency. It has been found that air leakage in boiler settings is largely responsible for poor economy in many boilers. Leakage of air immediately affects the percentage of CO_{2} in the gases. In one instance the percentage of CO_{z} was increased from 4 to 11 simply by carefully plugging all the air holes that conld be found in the boiler setting. As an indication of what is going on in the furnace it is advisable to fit CO_{2} recorders to every boiler. If the CO_{2} recorder is accurate and is properly installed, it will give a good indication of what the firemen are doing and are capable of doing, so that a check can be kept upon their work. As stated in Rear-Admiral Cone's report, the use of automatic CO_{z} recorders showed that the boiler casings on most naval vessels leaked air, and, as a consequence, after due attention had been given to the prevention of air leakage, the resuit was a saving in cosil which, in some cases, amounted to as much as 8 percent. On ships where Seotch boilers are fitted the question of air leakage. of course, is not so important; but the use of a CO_{2} recorder here will give a valuable and systematic check on the work of the fireroom force. and its use should lve beneficial. Another practical means of indicating boiler economy is hy autographic registration of the furnace temperature. A continuous record of the furnace temperature, taken by means of a pyrometer and recording gage, can be secured with little tronble, and it will show at a glance any great drop in the economy of the boiler.

Progress of Naval Vessels.

The Bureau of Construction and Repair, Navy Department, reports the following percentages of cumpletion of vessels for the United States navy:

ENGINEERING SPECIALTIES.

Sturtevant Horizontal Engines.

The engine illustrated is of the horizontal center crank type, built by the B. F. Sturtevant Company, Hyde Park, Mass. It is designed and built for both throttling and automatic regulation, and for medium, high and low-pressures. The manufacturers elaim for these engines compactness, durability, quiet and satisfactory operation. The frame is equipped with openings which render the recipocating parts easy of access. yet which may be elosed, oil and dust tigh by covers provided for the purpose. The cylinder is thoronghly insulated and equipped with relief valves adjustable to operate at any desired pressure. A water-shed partition prevents the passage of the oil from the frame into the cylinder, and steam from the cylinder into the frame. The linlngs of all bearings are Sturtevant white metal, which has proven its value for

high speed work for fifty years. The main bearing combines the best points of both the two and four-part boxes, and is designed in such a manner that it is impossible for any oil to flow along the shaft. The lubrication is of the gravity type, oil supply being contained in an elevated tank of large capacity, from whence pipes convey the oil to all bearings. A Rites governor located on the fly wheel of the automatic type
gives accurate speed regulation. The throttling engines may be equipped with any type of throttling governor.
The Sturtevant Company claim that in this engine they are putting the best material and workmanship obtainable, and that for all work requiring a quiet running high-speed efficient engine, for either high, medium or low pressure, this engine will meet all requirements if they are within its field.

The Bradford Steam Cock.

The chief feature of the Bradford steam cock, manufaclured by Miller, Dennis \& Company, Vietoria Works, Bradford, is its non-liability to jam under any conditions. This, it

is claimed, makes it especially durable. It is self-grinding, the plug being inverted and held in place by a strong spring which allows for expansion under steam pressure. These cocks are made in gunmetal and iron in all sizes, both screwed and flanged.

The Ideal Automatic Pump Oovernor.

The Ideal automatic pump governor is an oil-controlled, piston actuated, pressure controlling valve for governing pumps working under a specific pressure. These governors are manufactured by the Ideal Automatic Manufacturing Company, 125 Watts street, New York City, and the Style-A governor for fuel-oil service pumps, fuel-oil supply pumps, engine-room and fire-room and bilge pumps, foreed lubrication service pumps, salt-water sanitary pumps and salt-water fire pumps, is shown in Fig. I. The valves and governor are made of the best steam bronze metal for marine purposes. No diaphragms or cup leathers are used, and the body of oil in the trap and pressure eylinder on top of the water or other liquid being pumped fnllows the piston in both its upward and downward strokes, thu* shorouglaly lubricatiug and protecting the wearing surface of the cylinder walls and piston from all liability to corrode and stick fast when the pump is called upon to act. It is claimed that this piston working in oil at all times makes the gowernor sensitive and quiek acting, as the pump will start at the slightest break in the pressure.

At the hottom of the oil trap of each governor is a pet cock, so that any dirt or oediment collecting may be readily blown off without affecting the working of the valve; for this reason it is claimed that the Ideal governors are not affected by salt water or other liquids that might corrode or leave a deposit.

As the governor hangs in a perpendicular position and under the steam line, no heat reaches the working parts, consequently the heat ean have no effect on the working of the governor.

Fig. 2 shows the Ideal compound-pressure pump governor Style-13 This govemor has been designed for special work on the same lines as the Style-A governor, but to give a better range of presaure than is possible with a single spring operating she piston. It is applicable to most boiler feed and other pumps where varying pressures are required. By simply shifting the lever on the quadrant up or down the working pressure desiren is casily ohtained. If a low-pressure is needed, the
low-pressure spring is in action, and if a high-pressure is needed the high-pressure spring is brought into action by means of the lever tension on the high-pressure spring compounding or bringing into aetion both springs until the desired pressure to do the work is obtained.
A special feature of this style of governor is, that in case of an accident to the apparatus being handled it is possible to use this device as a hand-operated stop valve by reversing the lever to an upward position on the quadrant, bringing the lever

Fic. 1.
P1a. 1
in contact with the flanged nut on the valve stem proper, thus shatting the valve off tightly and stopping the pump. The pump stands in this position until the lever is shifted to the low-pressure or central position on the quadrant when the low-pressure spring is in operation, or by shifting the lever in a downward movement on the quadrant to any desired position for any intermediate-pressure by bringing into operation the high-pressure spring. This method of adjustment allows the engineer to control the pump from a low to a high-pressure. or at any intermediate-pressure which he might desire.

The Komo Steam Trap.

One of the principal causes of the loss of steam and fuel in operating the steam equipment of ships has been the use of steam traps which are worked by the nse of a bueket, float or other internal mechanism which is constantly affected by the pitching of the rolling of the ship and which causes a trap of this type to open and blow through steam. The Komo steam trap, manufactured by the linton Machine Co., New York, contains no complicated or interual mechanism, stuch an buckets, floats, tubes or diaphragms, which wonld be affected by the motion of the ship. It is elaimed that this trap operates equally well on high or low-pressure steam, removing condensation continually and maintaining a steady steam pressure when used upon steam piping, engine cylinders, steam separators, evaporators, cooking tables, boiling kettles, heating sytems, laundry machinery, etc.

The bowed side rods, as shown in the illustration, operate the valve upon the Komo, and these bowed rods multiply the movement of the receiver tuber ahout io to 1 , thus insuring a large opening of the valve port. The springs upon the upright rods combat the pressure underneath the dise and this makes a balance valve at the outlet. and allows the Komo to operate on a varying steam pressure of about to pounds, something which, it is claimed, no other trap operated by the expansion
of metal has yet been able to do. This spring pressure follows down the loss of steam presure underneath the disc and keeps it tight to the valve seat. This is an important advantage for marine service, as the steam pressure carried, when a ship is moving, is sometimes nuch higher than when the steamer is at dock and when only enough steam pressure is carried to operate the anxiliaries. When adjusted, there is steam in the receiver tubes, and as soon as any condensation forms, being cooler than the steam, it causes the tubes to contract and open the valve and the trap immediately discharges the water. When the steam is shut off the system and the trap is closed the disc is at least $1 / 4$ off seat and the trap drains the system of all condensation, thus preventing the system or the trap from becoming air bound or freezing up.

The salient feature of the Komo is the large valve outlet, which, it is claimed, insures a large capacity, and it can pass through its outlet the same amount of water whieh could be delivered to its inlet connection. This advantage insures the free flow and instant discharge of all condensation, thus taking care of any floods or rush of water which may be delivered to the trap. No bypass is required and the trap can be cleansed of any scale or dirt by simply opening the valve and blowing out the trap thoronghly.

The yoke and adjustment can be thrown to one side, upon the hinged upright rods, so the disc may be inspected or renewed without the disconnecting of any pipe, flanges or pack joints.

As water from the steam collects, the receiving pipe cools and contracts, bringing the brackets toward each other and bending the horizontal rods so that they rise in the middle, foreing the vertical rods upwards. The lower nuts on the vertical rods then come in contact with and raise the yoke which carries the valve stem to lift the valve from its seat. The water is then forced from the receiving pipe up through the inner tube and outlet. As the water leaves the receiver, steam enters, expanding the pipe by its higher temperature. wo that the brackets separate, pulling the horizontal rods

nearer a straight line and lowering the vertical rods, with their nuts, until the valve is reseated. Excessive expansion of the receiving pipe will merely cause the lower nuts on the vertical rods to be drawn further below the ends of yoke and the valve will be held to its seat by spring pressure until contraction of the receiving pipe brings the lower nuts again in contact with the ends of yoke, to raise the same, unseating the valve, as above explained.
No permanent water seal of 3 or 4 inches, which is constantly cooling and causing subsequent condensation, is required, as the valve is made with the tube which runs from the base of the valve seat too near the bottom of the receiver ehamber. This tube prevents any escape of steam while the trap is in operation, as the condensation must be
forced by this tube and out the valve opening; and as the steam enters and travels along the top of the receiver tubes, heating the trap and closing it, it is prevented by this tube, which acts as a seal.

Wittling's H. B. Valves.

Fig. I is an illustration of a section through a Witting's patent II. B. valve (manufactured by Witting Bros., IAd., \$) Camnon street, I.ondon, E. C.) serewed into a position that may have been originally occupied by an ordinary valve. The bedy is made of gun metal in one piece, the upper part B being eontinuous with the lower part A by six pillars or lug* between which the liquid flows. This comnection, however, is not shown in the section. The working valve consists of two movable brass, phosphor bronze or steel rings made of thin sheet metal $1 / 32$ inch to $3 / 32$ inch thick, the outer edge of which forms a kind of bird's mouth opening all round; these.

via. 1.
when elosed, cover the annular orifice C. The outer edges are about $3 / 16$ inch to $1 / 4$ inch wide, and form the valve. These rings are spun and are of great strength and resistance, and when not working the inner sides rest against the immovable body. The metal rings are kept in position and receive the necessary spring load by the V-shaped rubber rings E, which are sprung on and held in position by tension in the grooves in the body, and also press the metal rings against each other.

The V-shaped rubber rings form at the same time the packing between the single stages and between the value bottom and seat ring; thus no special packings are required for multistage H. B. valves.

Figs. 2 and 3 ase : לlustrations of the application of the value in a multiple foris, there being two scparate valves in the one. This form can le s:wisiplied to suit circumstances. The width of the orifice dies not exceed $1 / 4$ inch; thus each lip ring moves only $1 / 8$ isch. This very low lift, combined with

pta. 2.
the lightuess of the moving part, makes the II. B. valves particularly applicable to high-speed pumps.

Fig. 2 illustrates the valve closed, the bird's-mouth adges being closed together and held so by two rubber rings. Fig. 3
shows the open valve, both outlets being open. It is elaimed these valves work equally satisfactorily, whether fixed vertically, horizontally or fuclined, jamming or edging being impossible.

From careful examination and investigation of them when at work it appears that the Witting valve complies with the

nic. \mathbf{s}.
essentials of an ideal pump valve, for the reduction of noise, cfficiency, durability and simple and economical renewal of parts. The working parts weigh less than a tenth part of an ordinary valve in use for similar work. The elosing is prompt and uniform.
The flow of the liquid is uniform and widespread round the lips of the valve, which noisclessly close without friction. Spare valves and rings, which are the smallest and simplest parts of the mechanism, are readily and speedily substituted.

Ideal Automatic Packlng.

The illustration shows a semi-metallic and fibrous automatic packing, designed and adapted for use on valve stems, piston rods and shafts under pressure where tight packing is necessary to prevent undue friction. This packing is manufactured with a float ring in the bottom of the box with distance lugs on it, distancing it off from the bottom of the box to form a pressure chamber. Above the float ring is a soft fibrous pack-

ing especially mate for stcam or gas or water, and above this the double female internally-coned ring in the center of the box, above which is again the fibrous soft packing, and above that a flont ring next to the gland, performing the same operation as the float ring in the bottom of the box, holding the piston tight on both its forward and backward strokes. This packiug is manufactured by the Ideal Automatic Manufacturing Company, 125 Watts street, New York City.

Electric Safety Boller Cleaner.

An electrically-driven tool for removing scale from steam boilers is manufactured by the Electric Safety Boile: Cleaner, Ltd., 6 Lloyds avenue, Fenchurch street, 1.ondon, F. C. The apparatus is intended to supersede the old method of hand chipping, and it is mot only more rapid but is apparently more efficient as regards the complete removal of scale. As can be scen from the illustration, the eleaner consists of several circular cutters about $21 / 2$ inches diameter, held in a frame on the same spindle and driven by a shaft which passes

through the handle of the apparatus and which receives its motion from a flexible slaft driven by a $1 / 2$-horsepower electric motor. The number of cutters can be varied from one to threc, according as the tool is to he used in confined narow spaces, or where there is plenty of room. The speed of the cutters may be varied from 1,400 to 4,000 revolutions per minute, but the usual speed is 3000 revolutions per minute. The handle of the device may be shortened or lengthened as desired to suit the position of the different parts to be scaled, and no particular skill is required by the operator, as the cutters are merely moved over the parts to be cleaned.

PERSONAL

John Karklin, formerly first assistant engineer of the steamship City of Augusta, has been transferred to the position of first assistant engineer of the City of Mcmphis, running between Savannah, Ga., and Boston, Mass. Marry Stewart is now chief engineer of the City of Memphis.

Walter L. Pierce, secretary and general manager of the Lidgerwond Manufacturing Company, New York, died suddenly of heart failure Dec. to, tgto.

Growne. Simpson, formerly naval architect with the Fore River Shiphuilding Company, Quincy, Mass., is now identified with the firm of John Reid \& Company, naval architects and marine engineers, 17 Battery l'lace, New York.

Paul E. Stevenson, atuthor of "A Deep Water Voyage." "By Way of Cape 110 "n" and the "Race for the Emperor's Cup," died suddenly of pneunsonia Dec. 20 at Garden City, L. 1.

M. E. B. A. No. 33.J

The annual entertainment and reception of the Marine Engineers' Beneficial Association No. 33 was held at the Lexington Avenue Opera House, New York City, on the evening of Dec. 7. The attendance was-large and the entire programme a splendid success.

COMMUNICATION.

Information Wanted

Ejtror International Marine Engineering:
In looking over Simpson's "Naval Constructor" (Van Nostrand Company, sgo4), 1 find on page 45 a formula (No. 14) which somewhat mystifies me. If any of your correspondents, or, perhaps, the author, could explain this it might be of interest to those who are using this book.

The formula is intended to give a vessel's beam for a certain metacentric height, when the displacement, the load draft, the coefficients of displacement, load waterline and transverse moments of inertia are given, and is as follows:

$$
\text { Beam }=\sqrt{M-d\left(\frac{\sum^{\alpha-2}}{6 \alpha}\right) \times \frac{d}{m}}
$$

where $d=$ load draft $; \alpha=$ coefficient load waterline $; \mathbf{d}=$ Hock coefficient ; $m=\frac{i}{s}(i=$ moment of inertia coefficient).

The term M is not given on page 45, but is given on page 8 as $M \equiv$ metacenter and moment, which is somewhat indefinite.

TECHNICAL PUBLICATIONS.

Buccaneer Ballads. By E. H. Visiak. Size, 4 by $63 / 4$ inches. Pages, 43. London, 19to: Elkin Matthews, Vigo street. Price, 15, net.
This volume includes some thirty short poems, many of which have appeared in various periodicals during recent years. No more picturesque subject could be found for the exercise of poetical imagination than the old-time buccaneer. He is largely a creature of the imagination and, to many, seems more symbulical than real. Mr. Visiak's ballads, however, give true expression to the spirit of the sea, and will reach the heart of many an old sailor.
Bureau Veritas, 1910-1911. Forty-first year. Geacral List of Merchant Shapapg. Two volumes, Steamers: Size, 101/4 by 11 inches; pages, 1,111. Sailing vessels: Size, $101 / 4$ by 11 inches; pages, 1,008 . Paris, 8 Place de la Bourse. London, is5 renchureh street, E. C. Price of complete work, $\mathbf{f}_{3} 3 \mathrm{3s}$. Steamers, $\mathrm{fi}_{1} \mathrm{t5s}$.; sailing vessels, if tos.
The general list of merchant shipping published by the Bureau Veritas is a carefully edited and conveniently arranged reference book, containing statistics not only of all important steam and sailing vessels in the world's merchant marine, but also particulars of vessels arranged according to various classifications, such as their nationality, the kind of trade in which they are engaged, etc. Lists are given of steamers and sailing vessels which have had their names changed during the past year, and also of iron and steel shipbuilders arranged according to nationality; of steamship owners, arranged according to rationality, with the names and the gross tonnages of their ficets. There are also lists of the principal dry-docks, patent slips, etc., throughout the world.
Work, Wages and Profits. By H. I., Gantt. Size, 5 by $71 / 2$ inches. Pages, 194. Charts, 6. New York, 1910: The Enginecring Magazine. Price, \$2.00.
The author of this book has been closely interested in advanced work in the field of labor management for more than twenty years and for more than ten years he has been prominently identified with certain methods of labor management which are becoming recognized as of the highest importance. The subject is still obscure, however, and there seems to be a woeful lack of information on the part of many works managers. To such we can lighly recommend this book as
presenting the resulits of a most careful scientific investigation leading to certain conclusions which give bright promise for betterment in industrial conditions. The book conlains nine chapters which treat of the following subjects: The application of the scientific method to the labor problem; the utilization of labor; the compensation of workmen; day work; piece work; task work with a bonus; training workmen in habits of industry and co-operation : fixing habits of industry, and profits and their influence on the cost of living.

SELECTED MARINE PATENTS.

The publication in this column of a patent specification does not necessarily imply editorial commendation.

American patents compiled by Delbert H. Deeker, Esq., registered patent attorney, Loan \& Trust Building, Washington, D. C.
968.82s. PROPELLING DEVICE GEORGE WESTINGHOUSE, OF PITTSBUKG, PA
Claim 2-The combination of a prime nover and a fluid pamp coespriaing primary and secoadary elemeots, the primary elemeat of which fo driven by the prime mover, a propeller sttached directly to and driven by the secondary element of the pump, the arrengement beine foch that the fow of fluid throsgh the ecoondary elemeot in otifiued for aiding in
FR71,409, PROPELLER. THEODORE ROGGENBUCK, OF SAN FRANCISCO CAL
Claim 1,-The combination in a propeller of redial and pitched vanea said vanes having overhangiog plates at the end with the anter edges of said plates inturned anbstantially toward the axis of the propelle?. Four claim.
971,240, RUDDER. WILLIAM R. BENNETT, OF ST. JOHN, NEW BRUNSWICK CANADA.
Claim,-A rudder compriaing a pent having braces and piatle knuchle integrally formed therewith, in combination with platee baving their rear sectiona deffected outwardly, said plates being pecured to maid post by sald braces. One claim.
OPCHOES HYDROPLANE BOAT, WILLIAM HENRY FAUBER, OF CHICAGO, ILL
Choim 1.-A hydroplane boat provided at each side of the center tine
of the bottom of lis hull with a series of hydroptane members which

form the totation sarface of the sald bottom and are srranged in stepped relation and inclined laterally and dowewardly toward the keel liee of the baat. Teo claims.
CERVELT, PROPELLING AND DRIVING MECHANISM, JOSE ONE-THIRD TO JOSE MOLINARI AND ONETHIRD TO JEAN BERNASCONI, OF BUENOS AYRES, ARGENTINA.
Clain,-Mechanism designed to be exaployed for the propulsion of sipa, eubmarinee and aerostate, as well as for the production of motive power by means of a current of air or water, which mechanism com prises a rotary driving or propelling shaft, a beiring in two parta formed by the said elaft itself, a trunnion locsted to said bearing perpendicalariy to the esis of the suid shaft, blades tigidly connected to said truaoion, placed at an angle of su degrees to each other and provided at with relation to one another so an to form an annular guiding grobve for the blades of euch e form as to guide the boame thereof is a constrained fashion on elther side throughoot their revalviog motion, with the abject of correctly and owrely causiog at each half revolation of the propeller shaft a movenaent of sotation of 90 degrees of the blede-trunsioo sind conuequently a reveras of the pesition of the bledes between positions which are paraliel aod transverts reapectively to the propelles shaft. One claim.
972,18n. SAFETY APPLIANCF FOR SHIPS CONSTANTINO FUGAZZI, OF WEST PHILADELPH1A, PA
Claim 1.-In a ship, the combination with a portioo of the body of the ship, of a sofety-appliance compriaing an air-containing receptacle sdapted to serve as a floet or buoy, means for aupporting baid aif-containing receptacle upoo a portion of the upper and outer part of the ship, and mechanism for foweriog said air cootaining receptacle over the side of the ship, comprisiog sprocket-wheels, syrocket-chaina pastiog over sald eprocket-whecls, end thexible confections between asid air-containing receptaciee sod sid chaink. Twenty claima
972,337. VIAKATING PROPELLER, BAKTON H. COFPEY, OF BOSTON, MASS.
Clavm 1.-A vibrating propeller consiating of matually reacting motorplanes, each plane provided with means to oscillate it opon an anis and to hold it substantially motionless at the termination of eack ascillatioo; the several seans belog so orgenised that there shall subsiantielly alwaye
be places in motios and planes at rest. Six claims.

British patents compiled by G. E. Redfern \& Company, chartered patent agents and engineers, 15 South street, Finsbury, E. C., and 22 Southampton building, W. C., London.
22.021. STEEKING AND CONTROLLING DEVICES FOR SCREW SHIPS. J. P. H. LUND, ROCKHAMPTON, QUEENS LAND.
Feletes to $t w i n$ balanced rudder, which by this invention are edapted to be moved paralles with one anotber for ateering purposes of to he the apeed of to stop the vessel. Io steering, the tiller is simply moved

about ite fulcrum, then toothed aegments tura pinions fixed oo the rudder posts simultancously, aod the rudders are parallet in any position. In causing the rudders to act al a brake or to direct the weter forward, a Fheel is turaed by chains pasaing over pulleys to torn a serew and so move e not and coonecting rods, which thus move the segments relatively
2z,712. SELP.DUMPING BARGES. A. F. WIKING, STOCK. HOLM, SWEDEN.
In the eave of a barge, to dump the load, compremsed air from 5 weight causce the barge to aspume, more or leas, the eecond position

shown, in which the contents of hold 18 ere discharged. Weter from tank 2 in then allowed to run dowo into tank 3 to allow the weight of be exposed hull to right the vensel when tank 3 can be emptied back into tank if by erevity.
26.389. DRIVING AND STEERING VESSELS AND THE LIKE. R. C. SAYER, BRISTOL

A propeller, with or thinoul lta moter, is mounted so that in may be turned ahout shaft for steeriog or seversing by meama of a worm and

wheel. It may elso be ralsed or lowered to lacreate efficiency on alides in guidea by means of a hand wheel and eircular teeth. The arraogement is also adapted for submarines by moanting it on half gimbal ringe and a circular slide.

International Marine Engineering

FEBRUARY, 1911.

MODERN METHODS OF COALING VESSEIS.

Every marine engineer knows the exasperation which is caused by the usual methorls of bunkering coal. This work not only consumes much of the time while a vestel is in port but it is costly and dirty as well. In order to abviate such troubles attempts have been made in the direction of construct-
of coal delivered to a vessel, thus in many cases saving a considerable anount of dispute.
Another difficulty which has been experienced in connection with the older methods has been that it appeared almost impossible to transfer coal to the bunkers of a vessel without

ing mechanical coaling barges of more or less efficient types, and the attention which has been paid to this branch of industry has gradually led to the perfecting of appliances for rapid, clean and economical bunkering with the additiotal advantage that in many of these equipments automatic weighing machines are included so that an accurate register is kept of the amount
breaking $n t$ up from the large sizes, which are so desirable, into small coal, which is not nearly so efficient from a firing point of view. Any appliance which obviates this breaking up deserves the most careful consideration, and it is our intention tn tlestribe some of the equipnents which have been constructed by the firm of A. F. Smulders, of Schiedam, near

Rotterdam, for the economical handling of coal into bunkers. Before giving such description, it may be well to preface the matter by saying that one of the important points which will be noted is the entire enclosure of the coal-carrying chutes, so that the evil of depositing coal dust over the vessel, which involves so much cleaning after the boat has left port, is done away with to great advantage.
The first step in the question of bunkering a vessel is that of conveying the eoal from the nearest adjacent delivery head to the vessel itself, and this is not unirequently a very serious problem. The more important ports are, of course, now usually equippred with coal staithes, or other coal-handling appliances,

whereby the fuel can be transferred directly into the hold of the vessel lying alongside at the wharf; but in smaller ports these appliances, which are costly to construct, and in some cases costly to maintain, are absent. In addition to this, however, is the fact that it is often a matter involving considerable delay if a vessel has to wait its turn at such a coaling point, as accommodation must necessarily be limited, and other things being equal it is far preferable to have some device whereby the vessel at anchor in the roadway or in its normal position for dischargmg or receiving cargo can be simultaneously coaled. For this reason self-propelling coaling vessels of the type illustrated in Fig. 1, showing the process of bunkering a $17,000-t$ on ocean-going stcanter, have become of great importance, inasmuch as they can obtain their cargo of coal at any convenient point adjacent to a railway line where a small craft can anchor and then proceed under their own steam to the larger vessel which requires bunkering, and which may be occupying more important wharfing space, and there can discharge their cargo into the bunkers of the ocean-going vessel. The bunker space of the steamer permitting, 250 tons of coal per hour can be conveyed from one of these vessels with a total crew of only seven men. Moreover, to load or discharge cargo is well nigh impossible when an army of coal heavers are continually streaming up and down both sides of the steamer, so that the advantage of the new system in saving time is apparent

These self-propelled coaling veveck have a hold which is divided into compartments by means of transverse bulkheads. and there is, theoretically, no limit to the size and number of these compartments. Hence the total hold capacity of the vessels depends entirely on the requirements of the port or harhor in which they are to serve. There is no teason why the hold capacity of such a vessel should not be as much as 2.500 tons or even more, and one such vessel has been constructed having a capacity of alout $\mathrm{e}, 100$ metric tons. The vessel shown in the illostration has a hold capacity of from coo to 700 metric tons and a rate of diecharge of 250 tons per hour. By means of sliding doors the compartments formed by the transverse bulkhead empty themselves one after another into the buckets which run in a tunnel along the ship's keel. This endless conveyor or hucket chain is driven by either of the two engine; which propel the twin screws of the vessel.

Before reaching the upward bend which enables the bucket chain to pass on to the ladder shown in the illustration after the fashion of an elevator, the conveyor runs over an automatic weighing machine, which can weigh accurately within t percent, even if the vessel lies with a list of to degrees either fore, aft or athwartship. By means of the self-registering arrangement the weight of the coal delivered can be read off at any moment.
Two points with regard to this system of coal conveying may be noticed. The first is that the motion is exceedingly smooth and gentle, so that the coal during the process of manipulation does not suffer in the least, and is therefore not broken up into smaller pieces. Moreover, the shape of the buckets of the eonveyor, which has the appearance of a vertebrate belt, has been so designed as to prevent the spilling of coal during its transfer from the coaling vessel to the steamer.
is even possible to fill the starboard bunkers if the coaling vessel is moored at the portside of the steamer (Fig. 3). An examination of Figs. 2 and 3 will also show an improvement in the method of handling this chute. In the carlier form the telescopic chute was manipulated by means of a derrick, while the more modern practice is to raise, lower or move the chute to right or left by means of a pivoting erane fitted at the top of the receiver. These self-propelled coaling vessels have twin screws, enabling them to proceed at a fair speed actuated by two engines fed by a Scotch boiler. The coaling vessels are lighted by eleetrieity, so that bunkering may be proceeded with at night.

Fig. 4 shows one of these coal-carrying bunkering vessels engaged in bunkering a steamer while the latter is being refaired in drydock, and is illustrative of the saving of time by these modern means.

Turning now to the elevator portion of the vessel the ladder which is fixed at the stem performs the office of a conveyor in its ascending motion to the receiver. In the earlier types of coaling vessels of this description the ladder was made movable, being suspended by cables, as shown in Fig. t , so that it conld be raised or lowered according to the height of the bunkers to he filled. When the buckets reached the top of the ladder they bent over and emptied the coal into the receiver, from which the coal traveled through the chtte shown in the illustration into the steamer's bunkers without being exposed to the open air. As the ladder was movable the receiver in its turn had to be made movable also; it was therefore suspended in a position abutting on the top of the ladder by means of a shaft on which it was pivoted.
In suhsequent designs the ladder and recejver were made fixed, as shown in Fig 2. A telescopic chute, through which the eoal reaches the bunkers of the steamer, is attached to the receiver by means of a universal joint, so that when the eoaling large is moored alongside the varions bunkers of a ship ean be reached with a minimum amount of manipulation. It is evidert that bunkering may be effected by this means at a considerable distance between the coaling vessel and the steamer by the simple means of lengthening the chute, and it

When the hold of the coaling vessel is filled with coal, she moors alongside the steamer which is to be supplied, or if lighters happen to lie alongside for purposes of loading or discharging eargo she moors alongside the lighters, A fore steam winch sets the crane on the receiver in motion, and the telescopie discharge chute is forthwith given the desired direction and inclination as well as the requisite length, causing the chute to reach immediately above or into the bunkering hatch. The eaptain of the coaling vessel having been warned hy a signal that all is ready. telegraphs the engineer to start the engines, and this having been done he orders the tunnelman in the same way to admit coal to the conveyor. By means of a very simple system of leverage the tunnelman opens one of the sliding doors in the sides of the tunnel and allows the coal to glide on to the conveyor. The floor of the tunnel on which the tunnelman moves alount is made of planks, placed a little apart. so that he is able by the light of the incandescent lamps to watch the conveyor moving underneath, and lyy opening the doors to a greater or less extent he is ahle absolutely to control the supply of eoal to the conveyor. A elinometer in the tunnel enables the man to ascertain whether the vessel preserves an even keel athwartships.
The sliding doors mentioned above are of sufficient size for
the largest lumps of coal to pass through, while the levers which open these doors are so arranged that a single pressure downward will immediately close a sliding door. This is often necessary to prevent the conveyor from being overloaded by a rush of fine coal following the admission of a hig lump.

The loaded conveyor, lefore reaching the ladder, passes over a weyghing machine which adds automatically and with great accuracy the quantity of coal being earried over it, and from it the quantity of coal delivered to the steamer alongside may at any moment be read off.

Whenever a bunker has been filled up and it becomes neces-
apparatus is a traveling coal transporter, ant lig a shows a coaling versel having a capacity of 1,060 tonv of coal, and also provisled with a traveling enal transporter of the grab type, ly which the vessel is alle while actually engaged in bunkering a steamer to assist in replenishing the coal in its own hold.

The apparatus consists of an electric transporter musuted on four supports which ron along the entire length of the hatch coamings, and take the coal from the lighters alongside. The telescopic portions of the gear, which may be seen in the illustration, can be extended either to port side or starboard in

sary for the discharge chute to be shifted to another hatch the supply of coal to the conveyor is stopped and also the engine driving the conveyor. It is remarkable to see during the process of bunkering how easily the coaling vessel and her apparatus are handled. While actually loukering only, the fireman who regulates the supuly of steam, the engineer watching his engine and the tunnelman are at work, and the vessel can in this way discharge 250 tons of coal an hour until her hold is quite empty, the sloping sisle of the hold causing the coal to glide down of its own weight, and no trimming is required.

Up to now we have dealt with the froblem in its simplest form, namely, givell a coaling vessel of a definite capacity how to transfer its contents to a steamer with a minimum amount of time, trouble and deterioration of fuel. It is evident, however, that with the arrangement described above some los* of time must occur in transit of the coal vessel to and from the steamer when its contents are exhausted. Should the prohlems of rapid coaling demand that in the ease of larger vessels additional facilities be given in order to make the coaling process as nearly as possible continuous, the provision of duplicate self-propelled vessels would be an expensive matter, and in order to deal with this proposition the firm above memiuned has developed an auxiliary picce of apparatus on its later vessels which has the effect of increasing their capacity. This
this way, and form a track for the grab or bucket running to a certain divtauce over the vessel's side. This grab has a capacity of 70 cubic feet, and can casily handle 50 tons of coal per hour. This is not, of course, a maximum figure, for such a process as installations for the same end of a very much larker capacity can be luxilt. It will be seen that the operation of this grab does not interfere with the simultaneous replenishment of the cargo by other means, and which has the advantage that, owing to the telescopic arrangement, the transporter can be contracted when the apparatus is at rest so completely that it presents no obstacle to the proper navigation of the vessel.

We may now deal with one of the lateot types of apparatus used in coraling a vessel which has been constructed up to an hourly output of soo tous of coal. This is illustrated in Fig. 5 . and its use is to take coal out of the hold of barkes moored alongside and to discharge it into the bunkers of the steamers, the hold of coaling or other vevels, or to deposit it on to railway trucks or on the shore. It is really a combination of a hucket elevator and a coaling vessel. As, however, it does not have to carry coal but simply to take it out of barges moored alongside and discharge into a ship or on shore, it has no hold. heing erected on a very strong pmontom which easily licars the heavy weight of the structure. Although it can be built self. propelling this type of apparatus has not up to the present been
made self-portalble. The coal is taken out of the barges by means of a hydranlically-operated swinging ladder, seen to the left of the illustration, suspended to the end of a movable bearing arm and fitted with a double row of buckets. This bearing arm is lowered until the buckets which have been set in motion reach the coal in the barge's hold and fill themselves. The buckets then go up on the poutoon side of the swinging ladder. When they reach the bearing arm, which during the operation of digging hangs in a nearly horizontal position, their position changes from vertical to a horizontal one, so that they empty their contents into a channel which has nearly the same crosssection as the buckets. In this channel the coal is pushed forward by the luckets, which move along the bearing arm until it reaches the end and pasves into a fixed receiver. while the empty buckets return to the swinging ladder along the upper side of the bearing arm.

When the coal is in the receiver it has two alternative paths. If it is to he discharged into the hold of coaling or other vessels, into trucks on shore, it passes from the fixed receiver on an endless conveyor supported by a movable bearing arm (shown projecting over the line of rails on the quay), which during the work is kept in a nearly horizontal position. If, however, it is required to discharge directly imo the bunkers of steamers the coal passes to a ladder and telescopic chute at the stern of the pontoon, provided with self-segistering weighing machines in the same way as in the self-propelled coal vessels devcribed above. When the apparatus is at rest or in tow the first three charge and discharge chutes can be hoisted until they do not overhang the pontoon in any direction. This allows the elevator to be taken in tow without interfering with navigation in crowded harbors.

As the swingirg ladder has occasionally to operate at a considerable distance outside the pontoon, and therefore the latter would list to such an extent that the accurate working of the weighing apparatus might be interfered with, an arrangement is provided which canses water to be antomatically pamped into tanks fitted opposite to the wwinging ladder as soon as the list exceeds a low limit, thus maintaining the equilibrium of the whole structure. Moreover, the hull of the elevator is divicled into a large number of watertight compartments, so that if a collision were to take place the danger of sinking would be reduced to a minimum.

The above description, which is illustrative of the work of one firm in this specialized direction, is valuable as indieating the line along which the problems of coal bunkering can be best attacked and overcome. A very large proportion of success in this sphere of industry is only ohtained hy the actual encountering of practical difficulties and the overeoming of these olostacles by attention to detail in construction, so that an account of acinal plant manufactured and in use is of far more value than a good deal of theory on the matter. For this reason it is hoped that the above notes may be of interest to all engineers interested in the problems eoncerning the efficient handling of coal.

[Speed Trials of H. M. S. Gloucester.

H. M. S. Glowcester is a second-elass protected eruiser, 450 feet long, 4,8oo tons displacement, built at the naval construction works of William Reardmore \& Company, at Dalmuir, Clyde. She is fitted with Parsons turbines on four shafts, and her boilers are of the Yarrow watertuhe type, adaptable for hoth coal and oil fuel. The boilers were also constructed by Beartimore \& Company. Her armament consists of one 6 -inch gun forward on the forecastle and one aft on the upper deek, with ten 4 -inch guns, for hroadside work.

The official trials were for speed, gun practice, torpedo practice and maneuvering. They were effected on the Firth of Clyde.

The first speed trial was for twelve consecntive hours progressively. This trial was subdivided into three periods of four hours each for $1,600,4,400$ and 8,800 shaft-horsepower each. The speeds attained at these powers were $128.37,17.549$ and 20.790 knots, respectively. A second trial was of a thirtyhour run. It was divided into two periods-one of eight hours at 18,000 and one of twenty-hours at 13.500 shaft-horsepower. The result in speed was 25.0 K 4 and 23.447 knots, respectively. Later, after the gun and torpedo trials, there was a full-power run of eight hours. On this the mean speed attained was 26.3 knots, or 1.3 knots in excess of the estimate of 25 knots. The contract indicated horsepower was 22,000 and the actnal was 24.150. These results were necessarily regarded as satisfactory. 'The maneuvering trials were equally satisfactory. After they were completed the ship was taken back to Dalmuir, where in the large fitting-out basin she was opened out for close inspection before being commissioned.

NEW BRITISH BATTLESHIP CONQUEROR.

The British battleship Conqueror, which is being built on the Clysle at the Dalmuir Naval Construction Works of Messrs. Heardmore of Glasgow, is expected to be ready for lannching carly in 19:1. She is a sister ship of the Monarch and Thwnderer, which are being constracted at the shipbrilding yards of Messrs, Armstrong. Whitworth \& Company, Neweastle-on-Tyne, and the Thames Ironworks Company of London, respectively. The keel of the Conqueror was laid in March, 1910, and her constrnction has progressed in a very satisfactory manner, but she would have been launched two months earlier if the recent lockout of the shipyard ironworkers had not taken place.

She is some 55 feet longer than the I readnowght; that is to say, her length between perpendiculars is 545 feet, as compared with the Drcadnowght's length of 490 feet between perpendicalars.
The following particulars and principal dimensions of the two hoats will give some idea of the rapid progress which has been made in battlerhip design in the short time that has elapsed since the Dreadnowght was built:

Dreadwowht. 480
21 kr
Ten $12{ }^{\text {m }}$ gun4
icen - $^{\text {-guns }}$
¢1.250.000
\$8,080,00

Conguarrof:

$188^{\circ} 6^{*}$
27^{\prime}
$6^{\prime \prime}$

27,500
27,000
2) knote

Ten 13.5^{*} guns
Swieen $4.7^{* *}$ Futs
\& $1.750,006$
Official verification of these dimensions of length and beam, etc., is unobtainable on account of the British Admiralty having followed out that system of vecrecy which is employed ly the Admiralties of other nations. But as our information is from a reliable sonrec, the particulars may be accepted as sufficiently accurate.

The outward appearance of the Conqueror will greatly re semble that of the Dreodnought, with two smoke stacks and one tripod mast. The nast will carry the fire control station, also the receiving wires in connection with the wireless telegraph system, and it will be placed about midships. With this tripod arrangement there will be no wire-stay ropes to the mast, so that a clear deck for action will be obtained. Like the Drcadnonght, the Conqueror is of the one-caliber, allbig'gun type.

Many improvements have been made in the internal arrangements of the hatileship, and one of the most notable of these is the placing of the officers' rooms in the forward part of the ship, while the crew's quarters are situated at
the stern. The old system of fitting sheep pens and hen runs on the weather deck has been abandoned, and the more modern cold storage room will he provided and fitted with the necessary refrigerating machinery to enable the ship to carry frozen meats. The ship will have stockless anchors, each weighing about 8 tons, and they will be stowed in the hawse pipes.

The machinery installation of the Cenyweror will consist of steam turbines and watertube boilers, together with the usual anxiliary machinery, electric lighting machinery, steam heating and evaporating plants, deck machinery and steam eapstans for maneuvering.
The turbine machinery is of the Parsons type and consists of ten turbine units on four shafts. On each outboard shaft there will be one ligh-pressure ahead turbine, and one astern turhine, and on the port inboard shaft there will be one lowpressure ahead and astern turbine, and one high-pressure cruising turbine, while on the inboard starboard shaft there witl be one intermediate-pressure ceuising turbine and one low pressure ahcad and astern turhine- As is usual in the latest four-shaft turbine arrangement, all of the turbines are designed to turis outboard when driving the ship ahead. The shaft horsepower will be 27,000, and the speed of the ship at sea will be 21 knots.

The engine room has a central fore-and-aft bulkhead, dividing the engine power into two completely independent sections, each with complete sets of auxiliary machinery con-

sisting of condensers, air pumps, centrifugal circulating pumps, evaforators, distillers, fire and bilge pumps, etc.

The eighteen watertube boilers will be arranged in three independent watertight compartments, and the uptakes from all the boilers will be connected up to two large oval funnels. The steam pressure at the boilers will be about 200 pounds. and 175 pounds at the throttle valve of the high-pressure turhines. The boilers are designed for coal or oil fuel, and the fuel capacity will give the vessel an exceptionally wide range of action. The coal capacity is 2,700 tons, and the oil fuel 1,000 tons.

The Conqueror is provided with five harbettes, and each harbette will be fitted with two : 3 -5-inch guns. All the barbettes are on the center line of the ship. This arrangement of guns is a departure from that adopted on the Dreadnowght, but is somewhat similar to the latest American practice. Our sketch shows the approximate poxitions of the guns in both ships. In the American designs the middle barbette is usually placed at such a height that the guns in it can be fired over the guns in the two after barbettes, and the inner of the barbettes forward and aft are at a higher lesel than the outer barhettes. But in the Conqueror the middle barbette is, like the two forward of it, on the forecastle deck. The two after barbettes are on the upper deck. In the Dreadnowght there are five barbettes, each having two 12 -inch guns. The forward barbette is placed on the forecastle deck and the others ase all on the upper deck. With this arrangement, only eight kuns can be fired on either broadside on the Dreadnought, but on the Conqueror all of the ten guns will be availahle for use
on cither broadside, and four will be able to fire straight ahead or straight astern, the second and fourth barbettes being higher than the first and fifth. This dispossition of guns seems to be a better one than the American, for the greater astern fire of the American ship does not fully compensate for the placing of the weight of the two central guns so high up.
The secondary armament of the Conquiror will consist of sixteen 4 - 7 -inch quick-firing guns, but the positions of these guns can at present only be conjectured.

The armor protection is the element of a battleship's design of which, perhaps, least is known. This is ehiefly because the extent and the thickness of the belt is not perceptible to the eye. However, it is accepted that in the Conqueror and her sister ships the belt armor is about 400 feet long amidships, and that the protective deck, which is 1 inch in thickness inside this armor, is 3 inches thick at the extremities forward and aft. Where the belt ends, armored bulkheads are fitted to complete the citadel. On the ship's sides the armor extends upwards for 20 feet from about 4 feet below the waterline, and the thicknesses range from 8 inches for the highest strake to 12 inches for the lowest. There is nothing unusual in this thickness, and the disposition is similar to the latest warship practiee.

To protect the ship from torpedo attack below water, she will be fitted with the latest type of torpedo defense nets all fore and aft. These metallic nets will extend from about 3 feet above the waterline to well below the vessel's keel. When not in use the nets will be stowed on the ship's deck all along the sides.

The ship has twin rudders of the battle-axe type. They are hung from the stern structure and are unsupported outside of the hull. This double-rudder system will give the ship a greater turning power than could be obtained with the usual single rudder. On each of the four propeller shafts there is one three-bladed solid bronze propeller The two outer propellers are situated some distance forward of the inner ones. To reduce the rolling of the ship at sea, very deep bilge keels are provided.

Steel Tug Auburn.

The Staten Island Shiphuilding Company, Port Richmond, N. Y_{n}, has recently completed the steel tugbnat Asburn for the Lehigh Valley Railroad Company. The vessel is 108 feet long, $361 / 2$ feet beam, and 14 feet draft. Her deck, deck-house and pilot-house are of steel.

The vessel is propelled by a fore-and-aft compound engine, witls cylinders 20 to 42 incher in diameter by 28 inches stroke of pistons, and develops goo indicated loorsepower. One steel boiler (the largest in any New York tug with the exception of the Mary F. Srwlly), $161 / 2$ feet in diameter, and containing four Morison corrugated furuaces, built by the Continestal Iron Works, of Brookiyn, N. Y., furnishes steam at 150 pounds pressure. The boiker is covered with Keasby's magnesia sectional covering The auxiliary machincry includes a fire pump that will throw 1,000 gallons per munute. A Bates stean steerer makes rasy work for the captam. and a Yale \& Towne differential chain pulley block in the engine-rixim enables the engmeer to remove the cylinder heads quickly and without mueh effort on his part. There is a Kahnweiler metalic lifeboat, and in the pilot-house is a "Rescue" patent fire extinguisher, furnished by the S. F. Hayward Company, of 30 Park Place, New York. This craft has $\mathbf{t} 50$ electric lights, which are fed by a continnous-current electric esenerator, furnished by the General Filectric Comparyy, of Schenectady. N. Y, and she is the 5 ,3oth vessel built by the Staten Island Shipbuilding Company. She represents an ontlay of about $\$ 75.000$ ($\mathbf{\$ 1 5 . 4 0 0}^{5}$).-Marine Journal.

TORPEDO BOAT DESTROYERS PERKINS AND SERRETT.

The Perkins and Sterrett are two of the ten torpedo boat destroyers, authorized by an act of Congress, May, 1908, which have recently completed their official contract trials. The contract for these vessels was awarded to the Fore River Shipbuilding Company, of Quincy, Mass., in October, 1908. The contract time was, respectively, twenty-three and twentyfour months, and the price for each was $\$ 610,000$ ($\$ 125,400$), which is exclusive of equipment and certain other articles furnished by the government.

The principal hull dimensions and other data are given below:


```
length belween perpendiculars.
l,emgth beiwrea perpendicutars
    280 ft 0 ine
Rleam extreme over cuarda..
Heam on L.W .L..
Mean drafl
```



```
Capacity of oil fuel tanks
Capacity of oil fuel tankis
```



```
Tofal bormepower . ..........................................................................
```

Armament: Five 3 -inch, 50 -caliber semi-automatic guns; three 5 -meter by 45 -centimeter deck torpedo tubes; three 3 -inch guns, all of which are furnished by the government.

propelling machinezy.

The propelling machinery consists of two 72 -inch, 14 -stage Curtis marine turbines, operating two shafts, each with one propeller. The backing turbines are contained within the same casings as the ahead turbines and form the after part of
long, and are fitted in the tube sheets with packed glands. The combined cooling surface of the two condensers is 9.546 square feet. The cooling water enters at the bottom and leaves at the top of the condenser. There are installed neither dry vacuum pumps nor augmenters. Two independent engine-driven circulating pumps are placed, one on each side of the ship, immediately forward of each condenser. There are also placed in the engine room two evaporators and one distiller, a feed heater, two 6 -kilowatt turbine-driven dynamo sets, two lubricating oil pumps with oil cooler and oil cooler circulating pump, fire and bilge pumps, feed tank and an auxiliary condenser.

boilers.

There are four Yarrow express type watertube boilers, placed in two watertight compartments, with one fire-room between each two boilers. The boilers are made for burning oil only, and contain each one furnace without grate. They are designed for a working pressure of 265 pounds, and have no superheaters. The tube-heating surface is 4.500 square feet in each boiler, the two inner tube rows (near the furnace) heing $11 / 4$ inches diameter, while all others are 1 inch diameter.

The oil-fuel tanks are located forward of the forward boiler room, and the oil-settling tanks abreast of the boilers. The oil burners are of the Koerting patent type, and consist of seven oil sprayers, the oil being sprayed by mechanical atomization without the use of either steam or compressed air. The air required for combustion is supplied to each boiler room by two turbine-driven forced draft blowers. The oilburning arrangement, with respect to pumps and heaters, is in its essential details similar to that deseribed in a general way in an article-"Modern Torpedo Boat Destroyers"-which ap-

cach tarbine. The main exhaust nozzle is located on each turbine casing, in such a manner as to conduct the exhaust steam from both backing and ahead turbines to the condenser placed on the outboard side of each turbine. When going ahead the turbines turn outboard, the starboard propeller being righthand and the port propeller left-hand. The turbines, together with all the engine-room anxiliaries, are placed in one compartment aft of the boilers. The turbine-operating valves are placed on the forward engine-room bulkhead, and consist of throttle valves connecting respectively the ahead and backing steam chests by lines of steam piping to the main steam lines situated on each side of the ship.

There are two main twin, single-acting air pumps placed aft, one on each side and near the center line of the ship. Two simplex double-acting feed pumps are also located aft in the engine room on starboard side.

The condensers are box-shaped, with semi-cylindrical top and bottom. The tubes are $\$ / 8$ inch diameter by 14 feet 2 inches
peared in the August number (19io) of Intinnational. Maaine Enginezrinc.
There are three smoke pipes, of which the middle pipe serves the two middle boilers, and is fitted with a division plate.

Besides the fuel-oil supply and service pumps in the fireroom an auxiliary boiler feed pump is installed in each fireroom.

PROPELLES AND SIIAFTING.
The propellers are cast solid, and are made of Monel metal. They have each three blader, machined to give a true pitch of 6 feet $31 / 2$ inches, with a diameter of 6 feet 634 inches, the projected area of the three blades being 88.21 square feet.

The line shafting is made of Class A steel forgings, 81/4 inches diameter with 4 -inch hole. The rotor shafts are made hollow in one piece.

TRIAL DATA.
The standardization trials of both of these destroyers were
made on a course off Rockland, Me., for the Perkins on Sept. 27, and for lhe Sterrell Nov. 1, 1910. The offictall speed trials of the Sterrell were anderiaken on Nov, 2, 3 and 6 , over a course off the New Fngland coast, and the dala appended below are for this ship only.

4-hour full-speed trial: Average pressure al hoilers, gage	363 pourts.
Average pressure at engine room, gage	350
Average jreasure al auxiliary exhaush, gas	$13.6{ }^{4}$
Noazles open, eneh turbine	14
Average pressure at torbine steam ehesi,	288.5
Average pressure at first shead stage of tnitine, rase,	87 \% ${ }^{27}$
Average vactum	27.25 ins.
Average pressare in fre	3.28
Average revolutions per minute. forced draft hlowern.	1,537
Aversge ptessure in Insricating-oil system.	15 pounds.
Average douhle sirokes, main air pumps	38
Average revolutions per minnic, eirculating pemps	180
Average temperature injection, degrees P.	50
Average temperature discharge, degreea	89
Total shaft horstepewer	789
Pounds of water per hour per horsepower, all purposes,	1485
Nautical miles run per ton of fuel oil	3.738
Poundn of faet oit per slaft horsepower per hou	1.425
Ponnds of water evaporated per pound of fael oil per howr	10.427
Draft, mean, on tri	ft. $59 / 16$ int
Corresponding displaceme	554 tone
Speed per bour	knot
Average revolptions per minute of	631
Stip of propellers	226 percent.
14-howr, 25-knot sperd triat:	
Average pressure al boilers, gage	245 pounds,
Average pressure at engine room,	252
Average prespure al auxiliary exhauss, sage	$8.2{ }^{\text {s }}$
Nozzles open in each turbine.	7
Average pressure at turbine stemm cheat,	243
Averake pressure as first ahead stage of surbine. gage.	40.5 *
Averase vactutam	2m. 76 inches
Average petsaure in fire room. Inches	1.82
Average revalutions per minute, forced-draft blowets	1.514
Average prestare in lubricatinis-oil syatem	15.8 pounds.
Averake double strokes, maln air jompo	30
Average revolutionn per minute, circulating	112
Average temperature injection, degrees F,	60
Averame lemperature discharge, degrees	\%
Total shaft horsepower	6,765
Poands of water per hour per horsepower, all parposes.	15.54
Nanilical mites run per ton of fuel sil.	6.388
Pounde of fnel oil per shaft horsepower per hov	1819
Ponnds of water evaporsted per pound of fuel oil per hout	11.858
Drafe, mean, on trial	8 fe. S/4 ins,
Corresponding dimplacemest	\$56.5 tons.
Speed per hour	25.21 knote.
Average revolstions per mintute	489
Number of bollers uned.	4
Slip of propellers.	$1 \% .13$ percenl.
12. howr, 16-thet sperd trial -	
Average pressure at beilert, same	964.5 peunds.
Average presature al engine room, shge	732.5
Averare premsare al aunlliary exhaust, gage	
Nozzles open in each turkine....	?
Average presware at inrbine atcam cbest.	103 pounde.
Aveinge presevie si fint ahead slage, rage.	
Aversge vacuum	28 inches.
Average pressure in fire room, inc	1.41
Average revolutions per minnte, foreed draft blowers.	1,222
Average prestert in labricating system.	14.5 pounds.
Average donhle strokes, main air pumps	34
Average revolutions per minute, eirculating pump	-
Average temperature, injection, demrees F	50
Averare temperature, discharge, degrees	86
Total shsft hormepower..	1,596
Pounds of water per hour per horsepower, ill parposes,	20.9
Nausical miles run per ton of fuel oil....	12.8
Pounds of fuet ofl per shaft horsepower per hour	1. 57 poundk
Pounda of water evaporated per pound of fuet oit per hoar	11.71 ab
Oraft, mean, on iri	Aft. $61 / 2 \mathrm{ins}$,
Corresponding displaeerment	Test tons.
Speed per hour	16.36 knols.
Average revolutions per minute of turi	2 pR
Slip of propellers	12.92 percent.

The Bureau of Navigation reports 59 sail and steam vessels of 7.341 gross tons were built in the United Slates and officially numbered during the month of December, 1910. Three steel steamers, aggregating 67 t gross tons, were built on the Atlantic and Gulf coasis, and three sicel steamers, aggregaling 3.574 gross tons, were built on the Gireat Lakes. There was also one steel steamer of $2,18_{3}$ gross tons built on the Pacific Coast.

For the six months ending Dec, 31. 1910, the Bureau of Navigation reports 5_{180} sail and steam vessels of $1,37,5 / 8$ gross tons were built and officially numbered. This, ae compared with 562 vessels, aggregating 82.425 gross ions, which were built during the corresponding period of 1009 . shows an increase of 4.8 percent in number and 67 percent in tonnage.

THE MARINE STEAM ENGINE INDICATOR-XVIII*

The value of $p y$ may be determined by taking co-ordinate neasurements at any point on the curve and the curve Iraced ly solvitg the equations for p only or for v only. But a litIle thought will show that the curve can be more accurately laid down when we solve for that dimension, which will be as near at right angles to the curve as possible. For instance, the curve of Fig. 103 (see January issue) will be more accurately determined for the poini $v=2$ and $p=50^{3}$ when we solve for v instead of p, because the curve is quite steep at this point, and a small crror in p wonld cause a large horizonial displacement of the curve from its true position,

A simple rule for solving for ponly is as follows: Multiply the absolute pressure at the point of cut-off by the fraction made by writing the number of inches of the stroke completed af CUT-OFF as a numerator over the number of inches of stroke completed at that point as a denominator. For example, suppose that we have an engine of 32 inches stroke, cutting of al

16 inches, the initial pressure beiug 100 pounds. The pressure at cul-off will be $100 \times 16 / 16=100 ;$ al 20 inches, $100 \times 16 / 20$ $=80 ;$ at 24 inches, $100 \times 16 / 24 \sim(616:$ at 28 inches, $100 \times$ $16 / 28=57.1$, and a1 32 inches, $100 \times 16 / 32=50$.
The curve may be laid out geometrically in a number of ways, but only one methorl will be nuticed here as being of keneral use in indicalor work. Lel C (Fig, 102) represent any point on the hyperbolic curve. Draw $C D$ parallel to $O X$. From O draw $O B$, entting $C D$ at any desired distance from C. Draw $B C$ "square" with $C D$, protucing it to cul $O B$ in B. Complete the rectangle, as shown hy the broken lines $A B$ and $A D$. The curve will pass through I and C. By drawing a sufficient number of these rectangles the whole curve may be laid out from a single point. Great care must be taken to licate O accurately.
Heat and work are mutually convertible. One heat unit being equal to 777.5 foot-pounds." If we lad an ideal engine so constructed that no heat conld enter or leave the working gas through the cylinder walls or piston, or through any of their attachments, we should find that the teruperauture of the gas wrould fall in spite of the non-conductivity of the cylinder. The gas in expanding and driving the piston ahead of it would convert a certain part of its heat into mechanical work, and in the ideal engine the loss of heat would be the exact equivalent of the work done at the cross-head. This would canse a continual decrease in the gas tenuperalure as the piston advanced, and as all gases contract in cooling it is readily seen that an expansion curve made under these conditions would fall below the hyperhola or constant temperature curve. This type of curve is known as an adiabalic, or curve of no transmission of heat, and derives its name from two fireek words

[^4]signifying "not passing through." The equation of this curve is $f v^{3 n / 2}=$ comstant. It canaot be traced by comptutation without the ait of logarithons, and its keonetrical constrmetion is too tedious to be of general ntse.

When stean is formed in a vessel in contact with water, it has a certain definite pressure and temperature ${ }^{2}$ and is said to
ing to the pressure at which the specific volume was taken. For example, 1 cubie font of stram at 100 pounds pressure weighs 2258 punnel'. The specific volume at 50 pounds absolute gressure is 8.51 , and the actual volune of 1 cubic foot at 100 jounds explanded to a pressure of 50 pounds is $2258 \times$ $8.51=1.92$ culic fect This locales a point on the curve at

be saturated. If, at the same time, it holds no liguid in susperision in the form of spray it is said to be dry and saturated. Curve No. 2 (Fig. 101) shows the relation between volume and pressure for dry and satnrated steam. This eurse is readily traced from any steam table by taking the weight of steam tnvolved and multiplying this weight by the specific volume ${ }^{*}$ at the different pressures. The praduct is the volume correspond-

[^5]$v=t, y z, f=50$. A curve may ako be computed with close approximation to the above by means of the equation o $w^{38 *}$ $=$ constant, and its actual computation will be taken up when we come to consider the tuse of loxarithms. This curve could be reproduced on an indicator diagram if dry-saturated stean were admitted to a jacketed cylinder if just enough heat could be added to keep it dry and no more.

Superheated steam is steam whose temperature is greater

[^6]than that of saturated steam of the same pressure. Curve No. 4 (Fig. 10t) represents adibatic expansion of superheated steam where the superheated condition continues to the end of the stroke. The equation of this curve is $p v^{3.3}=$ constont. To attain such a result a high degree of initial superheat would be necessary. Curve No. 5 is the adiabatic for dry air.
With 100 pounds absolute pressure and ten expansions, the mean pressures for the various curves shown in Fig tor would be as follows:

Saturation, $\rho v^{n / 4}=$ constant $\ldots \ldots \ldots \ldots \ldots . . .31 .4$ pounds
Adiabatic, dry steam, $\phi y^{10 \beta}=$ constant30.3 pounds
Adiabatic, superheated steam, $p v^{\prime \prime}=$ constant, 26.6 pounds.
Adiabatic, dry air, $p v^{3.4}=$ constant.............24.5 pounds
From the above table it will be noted that the superheated steam diagram shows the lowest mean pressure of any of the steam diagrams, and any reader who has served on a vessel fitted with a superheater will at once recognize the phenomenon. It is a matter of common observation that an engine working with saturated steam will slow down immediately the steam is passed through the superheater, even though the pressure at the throttle remains the same. If it is desired to maintain the same speed as before, it is necessary to run the links out for a later cut-off. This is in accordance with the fact that superheated steam will give out less work per snit of volume than sasurated stcam" if the latter is kept dry to the end of the stroke, all of which is in agreement with the diagram.
When steam first enters a cylinder at the beginning of the stroke it strikes surfaces which have just been exposed to the temperature of the exhaust and a purtion of it is immediately condensed, its place being immediately taken by fresh steam from the value chest. This is termed initial condrnsation, and if the ports and passages are ample no pressure drop will be indicated on the diagram. After cut-off takes place condensation will continue until the temperatures equalize, and this will show on the diagram by the expansion line being somewhat lower than the theoretical curse. As expansion continues, the emperature of the steam will drop below that of the metal parts of the eylinder and piston, and some of the water of the initial eondensation will re-craporatc. This additional steam will add to the pressure and raise the expansion line above its computed position. If the steam is superheated on entering, or if the cylinder walls are kept above the initial steant temperature by some means external to the cylinder, the eylinder condensation will be eliminated in whole or in part, and the curve drawn by the indicator will closely approach the $p 2^{3 \pi / m}$ or the $p v^{2 n /}$ curve.
The expansion curve is very liahle to be altered in form by leakage into or from the eylinder. Fig toz shows a diagram taken by the writer from an old, single-eylinder marine engine, whose valves and piston were known to be leaky. But a glance at the diagram will show that the expansion line coincides almost exactly with the isothermal curve, whieh is also drawn on the card. Here various bad conditions have produced a good expansion line. If the valves only had leaked, the expansion line would lave heen ligher than shown; while, if the leakage had been entirely at the piston packing, the line wenld have been considerably lower.
Owing to the many factors which affect the expansion line it is not well to attempt to judge of the tightness of pistons and valves by its position on the diagram. This is hetter determined in small engines by shoring the eross-head and testing under stean, and in larke engines by running water on top of the piston and into the ports when the cylinders are open and noting the rate of leakage.

[^7]The various theoretical curves are of value as a basis for comparison, but unless the diagrams form a part of a very precise and elaborate test, the work of laying down any but the isothermal curve ($\rho \mathrm{z}=6$) is not justified.

Relative to the equation for the aliabatic curve ($p \tau^{2 \rightarrow / 月}=$ constant). Prof. C. 11. Peabody says, "There does not appear to be any good reason for using an exposential equation in this connection, and the action of a lagged steam-engine cylinder is far from being adiahatic. * * For general purposes the hyperbela is the best curve for comparison with the expansion curve of an indicator card."

For the purpose of quick and easy comparison, if much of such work is to be done, it is convenient to have drawn and ready to hand a number of hyperlolic eurves, as shown in Fig. 103. These should be carefully laid out on paper and afterwards inked in on tracing cloth.

The axis of x or hase should be 10 inches long and the axis of y about 13 inches: only that part of the hyperbola, above the diagonal $O A$ need be computed, as the other half is a duplicate for the lower 10 inches of the upper side. The diagram should be made of the size indieated, so that it will be of use when working with large combincd diagrams as well as with small cards. To use the tracing, the clearance line and line of ecro presswre must be carcfully draten on the card. The tracing may then be plared over the indicator eard, so that o x and o y will coincide with the reference lines drawn on the card. The actual expansion line will show through and may be easily compared with the hyperbolic curve.

(To be contimued.)

Gas Power for Marine Propulsion.*

The future of gas power for marine propulaion fooms big on the horizon. Mach has been writen of the produecr-gas system, but it must be confessel that the oil-burning engite is more attractive from the standpoint of convenience and compactucss. The advastage of storing oil in the ship's double bottom is great from a standpoint of cargo eapacity. Furogean countries have been active in this development: Russia with its tank ships, France with its submarines and the coast conntries with their fishing flects. Suceessful producer pas cyuipments ate to be found on some of the inland waterways of Europe, where coal is the cheaper fuel, and a hoat is being exuipped here for service in New York harhor.

Recently the announcement has come of the adoption of oil engines for the R,ono-ton, 12.5 knot freight hoats now being built by the Hamlurg-American Line. These will be eqtipped with two 1 seo-horsepower Diesel engines built by the Augsburg and Nurnberg works, and if the experiment is shtcessial passenger vessels will be constructed. One American builder, at least, has taken tip the Diesel engine for marine work.

The annual Motor Boat Show for 1915 , held under the auspices of the National Aesociation of Engine and Boat Manat facturers, will open Tueslay, Felo 25, at noon, and close Salurslay, March 4. at it P. M. The Show will be lield at the Madison Spuare Garden, New York City, and will be-open daily from 9 A. M. to 11 P. M., excepting Sunday.

Advice has been received from Rio dr Janeiro that all the ten torpedo boat restroyers built for the Brazilian government by Messrs. Yarrow have now arrived there without the slightest mishap. either as regards the vesols or their ma clinery. The Parand, the last of these vessels, reached Rion on the 18th of December.

T Thermodypamies of the steam enkine and other heat ensines

- From an address on gas power development, hy James kowland filb. bina, before the American Society of Mcclaticat Enginecrs, Deccinber, 1910.

THE ECONOMICAL WORKING OF RECIPROCATING MARINE ENGINES AND THEIR AUXILIARIES.*

Sever in the history of steamshop owuing has competition rendered it so difficult to earn an adequate return on invested capital as during the past few years, and as coal cousumption is an important factor in the economics of a steamship, the present would seem to be a particularly opportune time for reviewing the syotems on which main empises and their anxiliaries are worked, in order to elucidate by proposition and disctussion the methads that favorably affect conmerctal results.

It is also appropriate that this question ,heuld be dealt with by an institution such as ours, for the reason that the memtiership includes not only engmeert of acknowledged repute as designers and constructors, but also enginect, who sugerintend the working of the machinery of large fleets, and whose opiaions are based on prolonged practical experience.

Freclom from breakdown and mamimus cost of epkeep are so imperative for successful ship mandegement that matme engincers often hesitate to depart from standardized methods, but if this tendency be carried to exeess, in these keenly competitive times, there is a danger that the rraditions of apparently successful pratice may be insidiously responsible fos perpetuating systems of working which are technically unsuund and eommercially wasteful.

Consderable aftention is now being given to the influence of vacuum on the steam economy of triple and quadruple marine elugines, and as there appears to be diversity of opinion on the subject anmag marine engincers, it is well worth investigation.

The usual and iraditional practice is to carry a low vacutum in the condenser, because it produces a high temperature of air pump discharge water, this practice being associated with the assumption that any vacumm above, say, 25 inches in the condenser is a source of waste in the steain ecousonyy of the engines, while a few inches less make no material difference, because the feed water becomes so much hotter.

In considering this question it must be remembered that from 15 to 20 percent more steam is generated in the boilers of a steamship than is supplied to the main engines, this amount being used in the various steam auxiliaries. If an anxiliary high-pressure engine, such as a fan engine or a steeriug engine, exhansts into a condenser, about 8o pereent of the heat in the stcam supplied to the engine is last in the condenser, and if the engine exhausts into low-pressure receiver of the main engines, this percentage loss is approximately the same. In the latter ease, however, the compound principle is introduced and the prower developed by the steam onght to lue obtained with more economy, but as eonsiderable water is discharged into the receiver with the exhaust stean, and is often allowed to pass through the engine without bemg trapped, it is very questionable indeed whether much actual slean economy results from the arrangement This is of very minor importance, however, compared with the fact that, if the heat in the exhant steam from the auxiliaries can be absorbed by the feed water, the 8o pereent, insteal of being wholly wasted in the condenser. is wholly utilized by benz returned to the boiler.

I need wot deal at length with the quantity of steam eved hy the auxiliaries on shipbriard, in view of the excellent paper on that subject recently read before the lnstitution of Engincers and Shipbuilders in Scotland by Mr. C. F. A. Fyfe, of Liverpool, but for purposes of illustration the following es. timates may be taken as approximating the quantities used

[^8]under average conditions at sea in a semi-passenger steamer of 5,000 indicated horsepower and a cargo steamer of $\mathbf{1 . 5 0 0}$ indicated horsepower.

TABLE 1-SEMM-PASSENGER STEAMER, S,000 1. H. P.
Estimaled stram consumption, 14 Ibe. per I. H P. per hour $-20,000$ ibe per hour Prewure masiotained in exhaust steam receiver $=2 \mathrm{fbs}$. per square ibll
 AKILAKES

Aexilianies	Pounde Per Hour.	Tempers. purv.	B. T. U.
Evaporalor ateam at 6 tore per t. 000 1. H. P. net 24 hours Waler draimage from etuporatior cocls Water druinage from 1. P. cavigg diacharked by walet trap, entimated at $\$$ percent as 50 time. prossure Siecring ragioce exhaust. Independent lowt pump exhast 1 vilependent circulatuag pwip rthass. Fin engine evtrual. Electer Inght engine tr mavi	2.600	218	2.304 .000
	3.350	250	870,260
	2,709	208	623.800
	1,000	218	$1.180,000$
	- 950	218888	$1,12.000$ 2124.090
	1.8100	21888	2.124 .000 1.534 .0000
	Man	218	W4.000
	\$14.110		11703.040
Vacuus un condenact. Irmperature of feed waier diacharged be air yump H. T. U', in feed water $-70.000 \times 8 \%$ Mifing. B. T. U. an auriliary exhausta and drains			24 is ms. 97 degree
			$=18,000,000$
Tonal B. T. U.			17.793,040
Avtra Mrxivi. $17.703,040$			
Trmperature of ferd waler		,	211 degrew

TABLE IL-CARGO STEAMER, 1.500 I. H. P.
Extimated uloum comaumption, 14 Bos. per 1. H. P. per hour $=21,000 \mathrm{me}$. per hour

Acxilamize	Ponands Per How.	Tem-peraHurt.	B.T. U.
Evaporalor weram at 7 tuas per 1,000 1. II. P. per 24 homars	0×0	218	1,150,400
Water drainage from crayorator coilh Waber drainage from t . P. ciaing discharged	1,178	280	
by whtrer map, estimated at 8 pertent at 30 lhe perterve.	890		187.740
Sterting ragine ralasal	30	218	448600
Electric light engne ethaust	300	218	254.000
	8.468		2,431,124

The highest temperature water the ordinary single acting marine ran feed puups will draw with the usnal small head is tyo degrees. But if the head is increased as by an elevated direct contact heater, an independent float controlled feed pump will deal with the water at as ligh temperature as exhaust steam at a pressure slightly above atmospheric can heat it, so that in both the alove examples it is possible to raise the entire feed water to a temperature exceeling the pumping limit by condertsing among it exhaust steam from the anxiliaries, and this can be accomplished in association with a high vacuum in the condenser.

The atl-important question, therefore, is, what is the influence of high vacuum on the steam consumption of triple and quad. ruple marine engines? I have very carefully examined data published by the leading ansthorities on this subject, and there is complete agreement that in a triple and quadruple engine having stitably designed and progortioned low pressure cylinder poris and exhaust pasanges the power of the engine increases
and the consumption of steam per brake horsepower decreases with approximate uniformity up to the highest vacuum that can be reawonably earried on a steamslip, the rate depending on the ratio of expansion and the number of cylinders in which the expansion is effected; the order in cconomy in recoprocating marne engine jractice being comporand, iriple, quadimple.

It is unnecessary to set forth all the supporting evidence, but reference may be made to the classical research on this question carried out by that cminent investigator, the late Mr. Willans, in which he definitely proved that in his cennral valve compound engine the consumption of steam per brake-horsepower decreased with increased vacuum at the rate of fitlly t percent per inch up to 27 inches, which in those days was constelered a high vacuum for eompound engines and was the high limit of the experiments.

Dr. Mellanby has also favored me with the results of vacumb tests (Appendix A) made on the compound engine at the Technical College, Glasgow, and which confirm the experiments made by the late Mr. Willans.

In order to ascertain the latest practice of the builders of land engines, I asked Mr. R. K. Morcom if he would connmunicate to our Institision the sesults of one of his firm's triple expansion engmes, and 1 am greatly indebted to Messrs. Belliss \& Morconn for the complete report of an engine trial, as set forth in Appendix B. It is worthy of record that every engine manufactmred by this company is thoroughly tested under all loads by a trained staff and with the wlocle equipment necessary for olnaining the greated aceuracy, the meihods employed being those recommented by the Institution of Civit Engmeers Commitice for steam engine and boiler trials.

Broadly, Mr Moscom shows that in a Belliss triple expansion high-speed engine the increase in stean consumption per brake-horsepower is at the rate of 1.77 percent jeer inch of decrease in vacuum from 28 inches down to 22.5 inches, which were the high and low limits of the tes1s.

With a view of meeting the objections of those marine engineers who hesitate to be gnided by land engine results, I recently presented to Armstrang College a new low-pressure eylinder with enlargel ports and passages for the equalruple marine type engine on which so much valuable researeh work has been carried ont in the past, and we are once agan indebted to Profexsor Weighton for kindly offering to test the effect of this cyliniter on the Colleke engines under varying vacua when arranged as three-cylinder trigles and four-cylinder quadruples. The cylinder was only fitted a few days ago, so that the exact results will be given by Professor Weizhton at our next meeting, but the preliminary texts afford contirmatory evidence of the economy oltainable with high vacunm both in eriples and quadruples.

It is difficult to obtain absolute accuracy fromt marine engines, bnt through the courtesy of the owners and their superintendens I am able to inclurle in Appendices C, D, E the revults of three representative types of steamships the engines of which which were designed for high vacuum, namely:
(1) Steamship Indrabarah, Australian thin scres frozenmeat steamer, with iriple expansion engines of 5,000 indicated horseprower, by Richardsons, Westgarth \& Co., Led.
(2) Steamship Anglo-Potagoniav, cargo steamer, with quadruple expansion engines of 2,000 indicated horseqouer, by Nessrs. The North-Eastern Marine Vingincering Co_{n}, Letd.
(3) Steanship Djerissa, cargo steamer, with triple-expansion engines of t, Im indicated horsepower, by Messts. The Central Marine Fngineering Co., 1.td.

The results are as communicated, the original logs are ont the table and all the particulars were obtained with great care. On referring to the Appendices, it will he seen that the recordy in each case are exceptionally gonod, and as the Contraflo sys-
tem of condensing and temperature regulation was fitted in each of the ships, it is clearly evident that the economical possibilities were realized and that the system contribnted to the general excellence of the performanes.

For the parposes of this investigation the points of interest are the vacua earricd in the eondensers and the pressurcs recorded on the low-presoure diagrams, Broadly, on voyage conditions in each of the three ships a condenser vacuum of 94 percent, or 2 Nt - inches (barometer 30 inches), can br carried in sea water of 60 degrees and 91 percent. or $371 / 4$ behes vacuum in sea water of 80 degrees, and at these vaeua the pressures recorded in the low-pressure diagrams ape approximately 13 pounds and $121 / 2$ pounds, respectively, helow the atmospheric line. The low prossure diagrant (Fig. 6) is refiresentative of what ean be oltained on an ordinary cargo beat at full power and was one of a series sent honte by the chief engimeer. The condenser wacuum was $271 / 2$ inches, the revolutions 60 per minnte, and a pressure of 13 ponnis is recorded below the atmospheric line. In the trials of the steamship Indraharah the revolutions of the engines were go and the vacuum $28 \frac{1}{2}$ inches, and yet under these high-speed eonditions the pressure on the low-pressure diagram was 13 pounds below the atumplueric line, so that within the range of ordinary practice the desigrt and proportions of the lowpressure petts, passages and valves present no difficulty,
It is needless to dognatize on these results, lut there are many hundreds of steamships in which the condensers cannot earry more than 20 inclies to 22 inches int the tropies, and in which there is wo pruvision for the malizatoon of the heat in exhatst stesm. If these eondensers had been designed to earry 27 itheses in the tropties, and if the engines had beell ssitably progontioned and the feed-heating arrangements adequate, the saving would tinquestionably have been approximately 10 percent There are, therefore, economic possibnlities in reciprocating marine engites that have been allowed to remain latent, but which, nevertheless, afford definite opportunities for materially decreasing the coal bill and thereby increasing the profitearning power on the capital invested in steamships.

The valse and effect of vactum have hitherto been so cavtally considered by marine engineers generally that it is difficult to ascertain from a ship's log what vacum has acthally leesil carried on a voyage, and it is still more difficule to atcertain the eorrect vacuum by consulting an ordinary sacuum gange in an engine room. It is for this reaven probably that trial trip data often include vacua observations so impossible as to reflect either a considerable elasticity of conception or a total disregard for natural laws.

In the absence of an acurate mercury column and stuch stability of ship as will enable a correct observation to be taken, I have found that to record the temperatures in, vay, two places along a condenser top is preferalule to seliance on the aterage sacuum gage, and chicf engitects should alwaye include these temperatures in the ir lowe. All that is necessary in the permanent insertion of small brass tubular pockets in the condenser top, in which the thermometers are placed among. water or, preferably, mercury, and when the temperatures are recorded the correyponding vacua may lo acertained from the ustral tables. This involves a slight inaceuracy, however, as the tables are based on the pressures and corresponding temperaturev of water vaquer and not of a mixture of air and water valmir. But as the amount of air at the top of a condenser ahove the tubes is, under normal conditions, very small indeed compared with the amount of water vapor, the inaceuracy is tucgligithe and the method is certainly far more reliable for sea service than the indications of an ordinary vacutm kage. Recorils should not be taken for this purpose lower down in the condenser among of helow the condenser tuhes. because of the gradual increase in air pressure, there-
fore the temperature readings should be strictly confined to the exhaust pipe and the eondenser top.

Since the publication of $m y$ investigations on surface condensers in 1904 and the paper read hy Professor Weighton before the Institution of Naval Architects in 1906, the principles underlying efficiency have been better understood than previously. There are evidences that appreciation remains latent in some cases, lut a pernsal of Professor Weighton's paper and a comparison of the practice then and now will conclusively show that engineers generally are greatly indebted to him for a research which has proved of world-wide service.

While I am fully conversant with the possibitities of condensers having a relatively small amount of tube surface anal a great amount of water passing through the tuhes, such, for example, as are now permitted in warship practice, my long experience in mercantile marine engineering enables me to express my conviction that the warship proportions sometimes advocated for condensers on mercantile steamships fitted with reciprocating engines are not conducive to commercial success. The first essential in any condenser is such a disposition of the surface as will result in the greatest over-all efficiency. but the mere fact that a condenser has a large surface per horsepower is no criterion of its condensing capacity, becanse much of it may be ineffective, as is the case in the majority of the marine condensers at present in use. It is the treatment of the air in a condenser which is so vital to it efficiency, and from this point of view that condenser is the best which provides the air pump with anr at maximum density.

Air pump efficiency is in effect a governing factor in any condensing plant, and although in inrbine inslallations the quantity of air leaking into the system may and should be very small, get in ordinary reciprocating engines it is normally considerable, and it is folly to assume that the tightness which can be obtained by careful tuning up on the trial trip will continue to be maintained under average working conditions at sea. Tropical sea water has also a highly prejulicial effect on airpump capacity by reason of the smaller difference in temperature of the water Howing throngh the tubes and the acrated vapor outside the tubes in the lower part of the condenser. For example, with a vacuum of 28 inches and sea water at 50 degrees, there is a temperature differente of 50 degrees , whereas with a vacuum of 27 inches and sea water at 85 degrees there is a temperature difference of wo degrees only, or to percent less. This physical fact is largely responsible for the great fall in vacuum that invariably takes place in the eropies, and so universal is this fall that marine engineers accest its evil consequence as inevitable; but they are by no means inevitable and can be overcome in an exiremely simple manner.

Condensers and air pumps are interdependenit, in that looth must be efficient in order to produce the best avaibble results. For stalle conditions the amount of air entering a condenses in a given time must be the same as the amount withdrawn by the air pump in the same time, otherwise air would aceumulate in the condenser and the vacum would fall. Under all comditions there must always be air in every condenser, but it nun-conducting properties are so very detrimental that in order to ohtain the highest efficiency of heat transmission through the tubes the quantity of air which remains in a condenser should be reduced to an absolute minimum. The condensers shown in Figs. 1 and 2 are designed with this object.

Fig. I is a condenser for a torpedo-hoat destroyer. It is cylindrical in section and is fitted with air-concentrating plates, so arranged that the velocity of the incoming steam drives the air uniformly towards a very narrow outlet, where it is very highly concentrated and densified. Another result of the guide plates is that much of the water of maximum temperature formed in the upper part of the condenser is caught on the

plates and is prevented from producing undesirable effects lower down.
Fing. 2 illustrates one of the main condensers for the turbine steamer La France, huilt by Messrs. Chantiers de L'Atlantique, St. Nazaire, and comtaining $2 t, 000$ square feet of tube surface. This condenser embodies a special devaporizing compartment and a water-charged receiver in the base of the condenser, to which further reference will be made.

Fig. 3 illnstrates a condenser having a temperature regulator, and Fig. 4 its application to the engines of the steamship Tamele, owned by Messrs. Eider, Dempster, of Liverpool, and as the vessel trades in very hot waters the condensing plant enables a vacuum of 27 inches to be maintained in sea water of go degrees.
Although independent air pumps are neccssary in turbine ships, yet in reciprocating engines the single air pump worked

Mic. 2.
by levers from the main engines is still the standard practice, and long experience has proved it to be simple and reliable, requiring but little attention at sea and little cost in upkeep. This practice still prevails, even in the largest steamships, and it is of interest to note that the steamship Bolmaral Castle, which has one of the latest and finest examples of reciprocating engines afteat, still retains the air pumps driven by the main engines.

The air-withdrawing capacity of any reciprocating air pump of given size depends on the difference between the vacuum that can be probluced in the pump hartel on its suction stroke ant the vacuum in the conklenser. But if water of condensation eatered the pump at the temperature corresponding to the vacuum in the condenser, it would obvionsly boil as suon as the pump bncket commencel its suction stroke and the re-

sultant vapor, by filling the barrel, would impair the inflow of air from the condenser. If, on the other hand, the water entering the pump were so cold that it did not boil during any portion of the vacuunt-producing stroke of the air pump, then the vacuun prodnced in the larrel would be much higher than in the condenser and the flow of air into the pump would be a maximum. Therefore, an air pump can be rendered very tlexille in air-witldrawing eapacity by temperature, ant if there are neans for controlling the temperature, then the airwithdrawing eapacity of a single pimp can be regulated in accordance with the quantity of air to be withdrawn. The condenser illustrated in Fig. 3 contains a divided-off receiver in its base, which is always completely filled with water of condensation. At a distatice above this water receiver is a diaphragm which eatches the water of condensation formed in the condensing chamber above it. There is a pipe connecting the top of the water collecting diaphragm and the water receiver, and in the pipe there is inserted a two way cock or
valve, one way leading to the air pump suction pipe and the other to the water receiver. If there is a clear way between the water-collecting diaphragm and the water receiver, all the water of condensation passes throngh the receiver and is reduced in temperature before it passes into the air pump, the flow through the receiver being caused by the head represented by the distance the water-collecting diaphragm is above the reeciver top. If, on the other hand, there is a clear way between the collecting diaphragm and the pump, all the water of condensation pases at a maximum temperature into the pump. The temperature of the pump, and therefore its airwithdrawing capacity, is under complete control by the partial of the full use of the temperature regulator, and exiended experience has demonstrated that by this simple apparatns the vacuum can be raised in the tropics by from $1 \frac{1}{2}$ inches to 3 inches and often more, depending on the amount of air prevailing, and, at the same time, the air purnp discharge water is kept at the highest temperattre consistent with the maintenance of the highest available vacuttm in the condenser.

Although manufacturers may fit abnormally large air pumps with the object of maintaining vacuum in the tropics, a considerable fall is inevitable in high emperature sea waters, tinless the temperature of the air pump can be reduced below what is possible with the standard dexigns now in use. The temperature regulator natmally decreases the size of air pump necessary in all temperatures of sea water, hut, in ny opinion, an air pump driven by the main engine should in the mercantile marine be of sufficient size to deal with the normal amount of air when in sea water from 55 to 60 degrees, without the assistance of the temperature regulator. In such waters, therefore, the temperature regulator is very helpful when abnormal air leakage occurs, but in tropical temperatures it hecomes a necessity, even with normal air leakages.

Keferring again to the condenser designs fitted with air concentrators, it has now been shown that the withdrawing cffect of an air pump can be greatly increased by redacing its temperature. But its function is to withdraw air, and it will withdraw air in maxinum quantity only when the condenser delisers that air to it as free as possible from water vapor. Therefore the interilependence of air pamp and condenser is obvicus and the action of the one so influences the action of the other that hath must be correctly designed if the available results are to be realized.
There are three accepted methods by which heat in exhaust steam ean be absorbed by feed water, namely:
f. By steam nozzles subuserged in a hody of feed water on the suction side of the feed pump.
2. By the ordinary water-shower system in an elevated direct-contact heater on the suction side of the feed pump.
3. By a tubular surface heater on the discharge side of the feed pump.
For the purpose of this invectigation let it be assumed that the condensing plant of a steanship fitted with reciprocating engines is allie to maintain under vogage conditions $28 \% / 4$ inches of vacuum in sea water of 60 degrees and $27 \frac{1}{4}$ thehes sacuun in sia water of \&) degrees, and that the water discharged by the air pamp is 10 degrees below the vacunm ten. perature, or 87 deerees and 102 degrees respectively:

Fig. 4 shows one illustrative arrangement of the $t, 500$ indicated horsepower eargo bnat proposition already referfed to on page 57 . The feed pumps are of the ondinary ram type, drisert by the mann engines, and if fitted with suction valves and passages snitably proportioned they will deal with water up to a temperature of 170 degrees without trouble. The water discharged by the air pump pasess into what is known as a cawade feed heater and filter. Fig. 5 shows this apparatus in detail. The air pump tisharge water flows into the first com partment, in which free oil, if there is any, floats on the surface and can be schmmed off periodically. The water then

passes into a heating reservoir fitted with exhaust steam nozzles, thence it flows through a filter box into the final suction chamber, which is usually fitted with a float controlled valve, so as to prevent the feed pump from drawing more air than is actually required for cushioning purposes. Some air is necessary, and it can be admitted in controllable quantity by shifting the valve in the usual manner, but it is futile to expect the best available results either in boilers or engines if this air is allowed to pass into the boilers and back through the engine into the condenser. If there is a tubular heater on the pressure side of the feed pumps it should always be fitted with an air discharger, and if there is no such heater then the air vessel should be fitted with an air discharger. Fig. 7 shows a simple device for that purpose. The air, on passing from the air vessel, is discharged into an air collector of preferably conical form, so that at its base the inward and upward velocity of flow is much greater than the downward and outward flow. Air accumulates at the top, whenee it can be discharged continuously through a small cock leading to the hotwell or filter, thus preventing the loss of the small quantity of water that flows out with the air.

The particular design of heater and filter (Fig. 5) was prompted by a desire to obtain a simple apparatus in which exhaust steam could be utilized (a) to heat a body of feed water quickly and (b) to afford an easy means for its filtra-

tion. In practice it is much favored by engineers at sea, as it gives them an exeellent opportunity of watching the condition of the feed water as influenced by the use of an excessive quantity of oil or oil of inferior quality. All the exhausts from the auxiliaries, as well as the steam from the evaporator, discharge into a receiver, and between the receiver and the auxiliary condenser is an ordinary spring valve, loaded when at sea, to say, 2 pounds per square inch above atmosphere. Steam from the exhaust receiver flows direct to the heating nozzles in the heater and reference to Table II shows that it contains sufficient heat to raise the temperature of the feed from 87 to 175 degrees. But the pumping limit is 170 degrees,

72. 6.
so that a small proportion of the available heat must be sacrificed. Of the total available heat, however, no less than 95 percent can be utilized for heating the feed water with a condenser vacuum of $281 / 4$ inches and ordinary ram feed pumps.
There are two ways of dealing with the small amount of surplus heat. If the valve between the exhaust receiver and the heater is closed down a little, the surplus will flow into the auxiliary condenser. But it can perform a more useful function, as by opening the temperature regulator (Fig. 3) and allowing a portion of the water of condensation to pass through the water-charged receiver the temperature of the water discharged by the air pump can be so reduced that all the exhaust steam will be condensed in the heater without the pumping limit of 170 degrees being exceeded. This method increases the available capacity of the air pump for withdrawing air and is useful, even in low temperature sea water, if conditions are such that increased capacity is necessary. Now, suppose the vessel to be in tropical waters of 80 degrees, with a condenser vacuum of $271 / 4$ inches and an air pump discharge

ne. 7.
temperature of toz degrecs, If all the exhaust steam is condensed among the feed water, its temperature would be raised to 187 degrees or 17 degrees above the pumping limit, so that in this case K_{3} percent of the swailable heat is utilized. Hut under these conditions the air-withtrawing eapacity of the air pnoup shonld be at the maximum possible, so that all the water of condensation can with great advantage be pasced through the water receiver (Fig. 3) and the air pump discharge water so lowered in temperature that it will absorb all or the greater part of the surplus heat.

A live steam heater is slown in the illustration on the dis-
charge side of the feed mumps, but its influence on economy does not comte within the scope of this paper.
Fig. 8 illustrates a diagrammatic arrangement of the 5,000 horsepower proposition. In this ease the feed pumps are independent and are supplied with water mader control from an elevated direct-contact heater in the usual way: Refereace to Table I will show that the heat in the exhaust stean and water drainage is sufficient to raise the temperature of the entire feed to 21 t degrees under the conditions set forth, but as the heater is under atmospheric pressure the limit of tensperature is about 207 degrees to 210 degrees, a temperature which is well within the pumping limits of the independent feed pump. Ho that in this ease 98 pereent of the available heat is utilized. At $271 / 4$ inclies vacuum the surplus heat is a little greater, but can be dealt with by the use of the temperature regulator as already explained.

It will be evident that the steam from the auxiliaries is somewhat vily, and this is especially the case with the deck machinery, so that if this particular arrangement is used in port it is very advantagrous if the direct-contact feed heater is fitted with an oil separator. For port use the water from the fecd tank has to be discharged into the elevated heater by an independent punp, which can conveluently be fitted near the filter tank atul resulated by a float controlled value therein.

Fig. 9 shows an arrangement having a tubolar heater on the diwharge side of the feed pinups. Botls at wea and in port the auxiliary exbansts flow through this heater into the auxiliary condenter and thence into the filter tank. As the temperature of the water passing through the feed pumps is raised by water drainage only, it is so nuth below the pumping limit that no head on the suction side is necessary.

When usiths dech ansiliaries in gort many engincers prefer the auxiliary condenser to be under a moxlerate vacuum. Fig. to shows a simple apparatus for that purpuse. A eentrifugal pump is employed for circulating sea water throngh the consdenser, and on the same shaft is another small centrifugal pump whicll draws mater from the filter tank and discharges it through a kinetic air ejectot and again into the tank in continuous circulation. When this apparatus is applied for port use to the arrangement in Fig 9, with the surface heater

on the discharge sisle of the feed pams, the ieed water is drawn from the filter tank by an auxiliary feed pump in the ordinary manucr, bat when applied to the arrangement in Fig. \& for port use, and when the main engines are stopped. the water from the filter tank has to be discharged into the elevated direct-cottact heater. For this purpose the pressure in the discharge pipe to the kinetic air ejector is maintained sufficiently high to force the water up into the enntact heater. The amonnt of water dischargel to the heater is, of course, equivalent to the antunt comensed in the condenser, and its flow is regulated by a float control valve in the filter tank
In such an arrangement the temperature oltainable is within a few degrecs of the temperature corresponding to the vacuum carriel, but as the leater, when of the direct-contact type, nunst be at sech a beight that the infurnce on the vacuam will unt interfere with the satisfactory working of the feed pump, the vacuum shontd be moderate and should be controlled by the use of a spring valve, which admuits air when the desitel limit of vachum is reached.

In all these arrangements the supply of exhaust steam from the steering thgine, the ash hoist, the electric light engine and any auxiliary donkey that may be in temporary use is somewhat intermittent and irregular, but as the evaporator provides a considerable proportion of the entire low pressure steam it can with great alvantage le fitted with an attomatic rexulating valve, so that whenever the pressure in the exhaust receiver exceeds the assumed limit pressure of 2 pounds the steam supply to the evaporator coils is throteled and the supply of generated steam is inmediately decreased. In this way the steam supply to the exhaust steam feed heater can be rendered uniform, notwithstanding that some of the anxiliary engines work irregularly or intermittently.

These calculations afford incontestable proof that the feel water in any steamship can the beatel up to pumping limits hy the availalile anxiliary exhanst steam; so that to ignore the economical possilibitics of high vacuum in the engines and to work at a low vacuum in the condenser with the sole object of obtaining a high temperature of air pump discharge water, and then to throw away leat hy deliberately discharging exhaust steam into the condenser hecause the feed water is already ton hot to alsorth it is, in my opinion, a system of working marine machinery that involves a considerable and continuous loss of available profit to the shipowner throughout the life of the ship.

The sulject under consideration is one that directly appeals to the siperintendent engineer, as while he cannot produce results beyond those which the machinery he controls is eapalic of giving. yet it is mbviously his ohject to obtain initially such a design of machinery as is capable of yielding maximum

results, and then to work it so that his owners are placed in the best position for achieving maximum commercial success.

I therefore trust that, in the interest of engineering progress, the contributions to the discussion will be so liberal as to afford a solution to the question as to whether it is, or is not, commercially advisable to adopt a higher range of vacuum in reciprocating engines on shipboard than is at present customary, in combination with the heating of feed water by the exhaust steam from the auxiliaries.

THE GYROSCOPE FOR MARINE PURPOSES.*

 EY ELMER A. spesky.The uses of the gyroscope at sea fall properly under four general divisions: First, in affording means for resisting and I reventing rolling of vessels or even rolling and controlling their motions at will; second, its use as a marine compass; laird, for holding automobile torpedoes to their course; fourth, for artificial horizons in connection with observations at sea. There are two other uses which may be noted, that of recording the motions of ships, and also the use of a small gyroscope in controlling the oseillation of large active gyroscopes for purposes of preventing rolling motions of the ship in their inception, and thus holding the ship against rolling. The first three only will be treated briefly in this paper.

Previous to the introduction of the gyroscope, there have been three methods of steadying ships which afforded resistance to roll. "The oldest steadying gear," as pointed out by
heaviest rolling. Quite large bilge keels were found to equal about three-fourths of the surface hull and keel action for all angles of roll. The comparison between bilge keels and z percent of water ballast in athwartship tanks is interesting. Very large keels were found to be only one-eighth as effective at 3 degrees roll from the vertical, one-fourth as effective at 5 degrees roll, only equaling at 12 degrees roll, and being three times as effective at 18 degrees roll. They are also known to inerease materially the resistance, skin frietion and motive power required in all weathers. Sir John I. Thornycroft introduced a method of anticipating the rolling by the means of a controlling mechanism compounded of many active features involving a short and a long pendulum, a retarding deviee and a cataract all organized to co-act, these were operated on the floating link principle, a moving ballast being operated by heavy hydraulic machinery in the hold of the ship.
It is more than probable that the true engineering significance and the enormous power of the gyroscope were first discerned in this country ; that is, observations concerning it were first made here in connection with early torpedo work.
The most extensive use of the gyroscope to-day is probably the automatic steering gear in Whitchead torpedoes. This gear is simply used for the purpose of lateral guiding of the torpedo and holding same to a straight course. This little gyroscope has a secondary ring which may precess-it offers positive resistance to any effort to turn it from its course, and this resistance is used to operate valves and, through a secondary motor, the rudders. This use originated with Obrey, an Austrian naval officer.

Sir John I. Thornycroft, "was probably the sail, though not originally intended for that purpose." He goes on to say "that the extended use of steam is depriving passenger vessels of this ancient steadying gear and causing increased rolling. For comfort at sea, we require in our ships some device that will afford resistance to roll, the need being an increasing one."

Lord Kelvin has measured angles of roll in crossing the Atlantie of 40 degrees each side of the vertical, giving a total angle of motion in a single roll of 80 degrees.
The early work of Froude, his co-laborers and successors, in applying athwartship tanks for prevention of rolling is well known. These, together with rolling ballast and the great moving weight of Thornycroft himself, all fall under the head of moving the center of gravity of the ship in attempting to balance the wave effect and prevent rolling.

About this time bilge keels were introduced and their characteristics are quite well understood, being effective only in

[^9]Our own member, Mr. I.eavitt, engincer of the E. W. Bliss Company, of New York, and inventor of the Bliss-Leeavitt tor pedo, has greatly increased the efticiency of the "gyro" gear of torpedoes, as he has greatly improved the torpedo itself. Figaring from the increased speed and radius of action, he has inereased the power factor of the old Whitehead torpedo twenty times and without materially inereasing the air pressure carried. He aecomplished this by a wonderfully bold piece of engineering; that is, by automatically burning a fuel directly in the pressure air current, thus greatly increasing its temperature. The reciprocating engine of the Whitehead is replaced by a pair of little Curtis turbines. It should be remembered that every doubling of the absolute temperature doubles the volume, and whereas he starts out with a small amount of air, he reaches the turbine with an immense quantity of air, under the requisite pressure, enormously inereasing the power generated. an exceptionally interesting piece of engineering!

The L.eavitt directing gyroscope is small, and he has increased its accuracy by unloading the base ring; instead of
asking the base ring to do the work of moving a valve, he cuts the duty required down to about one-hundredth of that required in the Obrey gear, and makes it give a simple directive factor to an extremely small pivoted pawl at the instant the pawl is otherwise perfectly idle.

Dr. Schlick has done much in connection with the gyroscope. He is a noted engineer of Hamburg, Germany. It is to Dr. Schlick's genius that we largely owe the vibrationless reciprocating marine engine. This engineer bas gone further in the installation of large gyroscopes for steadying ships than any other. His gyroscope is of the passive type. He is a practical engineer, and at first called to his assistance a number of other engineers and mathematicians and designed the first machine.

In Germany, in 1g09, Fingineer Dr. Frahnn had suceceded in overcoming one of the reasons for climinating the water chambers from the old English men-of-war-that was, the noise of the hundreds of tons of water rushing from side to side. which is said to have been intolerable-by using an inverted siphon. The trouble with this arrangement is that the central opening has to be of such a character as to cause the movement of the water to be synchronous with the boat's period; that is, in addition to the simple gravitational factor of the water the kinetic energy of the rushing water must be utilized; while the boat in still water has a fairly uniform period, and the movement of the water in the arrangement can be made to conform to a given period, however, in rough scas, the boat is not periodic, varying a great deal. I have seen automatic diagrams of rolling where the period varied from seven seconds to. seventeen seconds. Now when the flow of this great quantity of water gets out of synchronism it becomes a menace, and makes the boat roll more and behave worsc.
The great engineer, Sir John I. Thornycroft, of England, did much valuable work in attempts to overcome the last-named difficulty. He placed a great moving weight on a vertical axis which could move as a pendulum in the hold of the ship. An equipment of hydraulic apparatus was provided for swinging this weight from side to side. By tbis means the center of gravity of the ship could be changed at will. The weight was about 5 percent of the total displacement of the ship, but it was governed by the controlting apparatus mentioned above, in such a way that he succeeded admirably in anticipating all the needs of the ship up to the capacity afforded by this moving weight. The weight had the power of tilting the ship just 2 degrees either side of the vertical when swang to its extreme lateral positions. In sea trials of this arrangement, Sir William White states that it reduced 18 degrees of roll to 9 degrees. To eliminate wind and weather conditions the boat was made to sweep through an entire great circle in heavy seas. This was the first attempt to steady a ship by a controlled reactionary force. The difficulties encountered with this, the water tanks and all other gravitational methods, are that each pound of weight is enabled to do the work of only I pound, and the weights and auxiliary machinery required have been thought to be prohibitive; and, furthermore, the weight, when on one side or the other, constitutes a persistent unbalancing or listing force, whereas the gyroscope is enabled to deliver stresses pure and simple without disturbing the balance of the boat or introducing any such list whatever. The problem of preventing rolling of ships at sea has been attacked by a great many engineers.
last year, while in Hamburg, Germany, I saw the latest arrangement by Engineer Frahns, installed on some naval vessels for the Russian government now being built with his arrangement for steadying ships, involving enormous tanks amidships, which will contain from 350 to 400 tons of water, through the rushing of which, back and forth, a part of the true periodic roll will be extinguished, but only a part and only when periodic. The cminent authority. Dr. Schlick, states with reference to this arrangement that it will become
a positive menace and cause excessive rolling when the sbip's oscillation falls out of period, which it invariably does in a storm. This, however, is interesting, as showing the great desire to prevent rolling of ships and especially war vessels.
The gyroscope, on the other hand, is not limited to any particular period of the boat; it simply responds to whatever motion the ship has-synchronous or non-synchronous. The question is often asked: Why is the gyroscope better than a moving weight in a ship for roll quenching? Barring the matter of list produced by the changes of center of gravity of the ship by the moving weight, the reason is perfectly apparent when you recall the magnitude of the stresses obtainable from a small machine. Every pound in the rotating mass of the gyroscope can easily be made to do the work of from 150 to 200 pounds, and directed in any desired line or plane, whereas, when we use water or any other form of moving weight, each

 TRUE EMGINERETMG TRINCIFLE OF THE GYBoscork oaigixal HOW IT EEMSHOTON MUSEVM.
pound represents a pound only, and can do the work of only a pound, and only in a vertical direction.

The gyroscope is probably the only device in the world by? means of which stresses and also energy may be transferred "around a corner," so to speak. With the gyroscope it is possible to create and maintain a very powerful fulerum in spaced cffective for the heaviest kind of mechanical duty.

Now on board ship there is one factor that is stiff and is now available, and that is the fore-and-aft stability of the ship. In the gyroscope, for the first time, we have the means of rendering it possible to reach out and transfer this stability around a corner, so to speak, to the athwartship plane and thus hold the ship against rolling. We can do this with a surprisingly small mass, because, as I have said, every pound in that mass can be made to do a very large amount of work, owing to the velocity that may, at low cost, be impressed upon it.

A primary motion on the part of a body-for instance, the slow athwartship or rolling motion of a ship-exerts gyroscopic forces upon any vertical spinning shaft and in a fore-and-aft direction. These forces tend to dampen the rolling motion, but only feebly, and the fore-and-aft reaction, owing to the absence of motion, does not at all. It is a part of the general plan to so utilize this force as to make it create extremely large reactions atbwartship or in the proper direction to be effective. This is accomplished by the ingenious yet simple expedient of mounting the aforesaid vertical shaft in a pivoted frame so that it can tilt and utilize the primary fore-and-aft reaction to cause the axis of the spinning mass to tilt fore and aft. This motion is of much higher velocity than the angular
motion of the vessel which produces it. By means of this rilting motion an entirely new gyroscopic force is set up, again at right angles as in the first instance, but now to the plane of tilt (fore and aft) which brings it back to the original athwartship plane just where neelesl; and, what is equally important, the reaction is in a direction exactly opposed to the roll of the ship which primarily called it into action, as well as this whole chain of phenomena which we have thus traced throngh a complete cycle of s8o degreex of angle, and also thronkli ant enormous augmentation of righting noment and stabilizing power.
The passive type of gyroscope fails to reopond to all the stnalles angles. It responds freely to the large ones or wide angle oscillations, hut either dhes not respond at all or moves very slightly with the smaller oscillations, as stated. Not responding, it canuot, of course, control or extinguish these smaller oscillations. It being desired, especially in connection

 BHTEKM ACTIVE AND PaBsive TYPES,
with improvement in conditions for gunnery on battleships and war vessels generally, that the gunner should operate if possihle from a level gun platform, it therefore becomes desirable to act on these smaller oscillations of roll of the ship so as to completely extitguish them and hold the ship on a practically even beam. This especially as now all the larger war vessels are designed for broadside service and volley fire The gunner, therefore, is compelled to keep an absolutely true and incessant aim upon the target. If the ship is rolling much or little this is a more diffecult task. Again, the recoil of the volley fire throws the boat over and sets up rolling, and it is the duty of the gyroscope to extinguish and prevent all rolling disturbances, from whatever source. As we have seen, the lesser angle rolling cannot be taken care of by the passive type of gyroscope. We must rely upon the active type. By this means the full angle operation of the gyroscope is secured where necessary, independently of the amount of motion, or, in fact, any motion whatever, on the part of the ship, and is therefore in readiness to deliver to the boat stresses which are equal and opposite to those received hy the boat from any source and prevent thern from causing the boat to roll.

It is interesting to note that when the boat is held free from motion, as by the delivery of stresses equal and opposite to balance the wave effort, no power is required to actuate the gyroscope other than to overcome inertia and friction, which is
almost negligible. When the roll is being suppressed and the boat is moving then the boat is doing work upon the gyroscope, and it then beconies the province of the actuator to emplace the ovcillations of the gyro properly with reference to those of the boat, and at such angular velocity as to best suit the conditions, structure and mountings,

The work of Sir John I. Thornycroft for preventing rolling involsed changing the center of gravity of the vessel, and thus introducel an adelitional disturhing and unstabling elenient which required additional treatment; his device involved a great moving weight ruming as high as 5 percent of the total displacement of the loiat, and a very large amount of hydraulie machinery for handlugg these weights and a considerable anoont of mosive power for operating them. But with the active type of gyroscope, we find that a small part of t percent of the displacement of the ship will perform a very substantial service, down to the point of practically fully extinguishing the rolling Hy the use of this device there is entire absence of any shift of the center of gravity of the vessel, and its stability remains unchanged. The sizes, weights, speeds and location of a gyroscope for this purpose are among the points which have leen cauvasserl in tests carried on at the Washington navy yard durisg the past year.

Experiments were made with a working model of a 26,000 ton battleship of the super-Dreadnought class, with 5 feet metacentric height and eighteen seconds period of roll, capahle of rolling through a total are of to degrees; means were provided for autographically recording all motions, both of the ship's model and the gyroscope, upon same. The gyroscope was operated both passively and actively; means were also provided for emplacing the discharge of the active gyroscope variously with regard to the ship's oscillation, so that the effect of different combinations, might be studied. Many other auxiliaries were provided, one of which permitted the actual velocities of the gyro wheel to be counted while in operation. This was accomplished by the stroboscopie apparatus of Capt. 1). W Taylor, similar to that used by him in his investigations of propellers under service conditions ; in fact, both the ingenuity and reliability of performance of the model ship and the auxiliarics are directly due to Capt. Taylor and his assistants at the Washington navy yard. By means of this very complete equipment studies and records have been made and cliarts of performapce prepared and other valuable data accumulated, much of which is new, as many of the observations, we believe, were never before undertaken. The inveatigations with the active type of gyroscope are in a new line of research: the results ohtained are important in point of much more perfect control of the ship's roll than heretofore possible.

Capt Taylor has prepared a very full report npon this work, forming a part of which is a so-page appendix, in which he freats the question in a most masterly manner under some sixteen heads. In this most unique and valuable work, Capt. Taylor has given an original mathematical treatise on practically all the phases and bearings of this question, including an original investigation of the underlying phenomena of the gyroscope itself. It is of the greatest value to this important art that its prohlems should have come under the oheervation and been reviewed by so able a mathematician, experienced in all hranches of experimental research, and fitted by long training to judge of the practical hearings of the results extending. as does this experience, to the very largest undertakings and structures in marine work. It is to be hoped that the author himself may be prevailed upon to give the society a paper including this valuable treatise.

The practical effect in operation of the active type of gyroscope is to secure a large reduction of weight over and above that possible with the passive type. With the passive type with the smaller angles of roll, the gyroscope would have to be large enough so that its small angles of response would

develop the required eneryy for extinguishing or still further reducing the roll, complete extinguishment being impossible; whereas with the active type the full ifo degrees oscillation of the gyroscope is always available, where required, for the extinguishment of large or even the smallest angles of roll as necessary. Thus an extremely small machine, taking advantage of the larger angles, between twenty and thirty times as large, is sufficient to accomplish this purpose.
Fig. 5 illustrates three curves, one at the top giving the number of oxcillations of the ship's model before it was brought to rest by the natural friction, having been originally tilted to 25 degrees to one side of the center. The shorter or eentral curve illustrates the number of oscillations of the model with the gyroscope acting passively or on Dr. Schlick's plan, the several rolls of smaller magnitude at the end being omitted where the passive type of gyroscope failed to respond: and a still shorter eurve at the bottom shows the number of oscillations of the ship in being brouglit to rest, absolute freedom from motion being possible by the same gyroscope when operated actively. These are among the interesting results reached in the investigations referred to alove.
When the motive power of vessels changed from an upsetting force to one almost exclusively of forward thrust, the design of ships underwent quite radical changes in connection with lines affecting the stability. decreasing this factor and favoring decreased resistance, aiding the attainment of higher speeds. Now that stability may be imparted to a structure of naturally small rightiug moment, and, as is well known. even to structures in unstable equilibrium, it is possible that we are on the eve of even more radical ehanges in design. Ships may now he designed that are practically free from those ballistic qualities which favor rolling structures to which unequal sea pressures easily impart motion need no longer be employed, as a comparatively small gyroscope which can easily be present in duplicate may very readily hold them practically free from rolling motions in such a way that ordinary seas will have little or no effect upon them, while an exceptional wave will have only a temporary effect. It has been suggested in connection with such vessels that they need not piteh if of sufficient length; be this latter fact as it may, it is apparent that a point has now been reaehed and a situation created with
reference to the resisting and prevention of rolling and motion of ships at sea, to say the least, is interesting in many quarters. 1 heartily commend this subject to those who are interested in providing safety and comfort to passengers at sea, and as also preventing deterioration of certain classes of freight; for instance, live stock is known to suffer heavy depreciation in

stormy weather. This is entirely outside naval uses, especially as related to gunnery, trimming ships to secure level gun platform, suppression of recoil from broadside firing, and other uses.
It is evident from what we know that the early workers were hampered by too close adherence to the earlier treatment of statical stability, and the direct effect of wave slope, together with some other elementary factors, rather than the more practical considerations of the effect of movements of the ship, stresser involved, etc.
In 1904. Dr. Schlick presented a paper before the Institution of Naval Architects. Accompanying this paper in the form of an appendix is a mathematical treatise of the theory of the gyroscope and its application to steadying ships. There seems, however, to be little in this treatise which we find useful in the practical application of the gyroscope, eapecially the active type of gyroscope to ships. The eminent authority. Capt. Taylor, in his report on this subject states of this treatise that it is a very elaborate mathematical theory, but that it largely ignores practical considerations.
The problem is a comparatively simple one, namely, of hold ing the ship against rolling by neutralizing with the gyroscope each disturbing influence as it reaches the ship while availing ourselves of all the aid possible through the design of the hutl and disposition of the masses. With this end in view we do not yet know the best relation leetween these two factors. With the last adjusted to best fit the new conditions it is believed that the gyro-steadying plant of the active type will be well within practical limits of space, weight and cost. Especially is this true when compared with the practical results of its operation. A great many ships as they now stand could, with profit, utilize the gyro-steadying gear of this class, which is at present available, and some important installations are now being contemplated. In this connection it is interesting to note that the weight of an active gyroscope for each degree of roll-quenching power on a modern battleship would be about one-tenth that of the submerged armor displaced, and cost much less, this being outside of the very important contsideration of having the entire ship under control, either automatically to extinguish roll or at the will of the commander, with its many evident advantages.

Referring to the use of the gyroscope as a compass, it is interesting to note that the possibility was first brought out in 1852 by Foucoult, who, after many attempts, succeeded finally in making up an apparatus so delicate and beautifully constructed as to demonstrate the working of the instrument in the shopt period of duration of spins of a small disc, the observations being taken through a telescone, the directive factor being only a fraction of that of the magnetic needle, with this difference, however, that magnetism or the location and variations in the positions of the magnetic meridian have nothing whatever to do with its directive feature, and, in fact, it points to exact geographical north, not to magnetic north.

Abont this time Foucoult took this apparatus to England. and there aroused the greatest enthusiasm in scientific circles by exhibiting it in operation to the Royal Society Hopkins in America, associated with the Scientific American, in 1878 made a small electric-driven gyroscope by means of which better and more persistent results were obtained. More recently, attempts have been made by a German firm to use mercury floats for sustaining the rotating wheel constituting a gyrostat, which, in this instance, rins at the enormous speed of between 22,000 and 23.000 revolutions per minute, which has lieen considered by many to he impractical. Those familar with the use of mercury in its mechanical and atso electrical applications usually find it very mosatisfactory. At best it is a volatile liquid, subject to many changes with differences in temperature, and, which is worse, is also subject to the phe. nomenon known as "sickening, ${ }^{\text {" }}$ which affects the surface and
the mercury, and for some distance under the surface, altering its mechanical behavior and also its viseosity. The best engineering practice has for some years avoided the use of mercury, drawing away from its use in every possible way, and especially where electrical connections were involved, and substituted, in their stead, simple mechanical methods which are free from these serious objections. Working in this line I have found simple details by means of which the whole gyroscope proposition is reduced to a strictly mechanical basis, easily within the comprehension of all and containing no unknown quantities and correspondingly easily dealt with In the cases where the gyroscope is employed as a battle compass, the apparatus is placed below decks, and small instruments about the size of an ordinary compass are distributed in different positions on the ship. giving the exact indications of the gyroscopic compass itself.

My work has extended to the point where action of such instruments can be controlled from the gyroscopic compass and distributed as desired, the indications being accurate to a very small fraction of a single degree Many observations have heen made indicating that they are accurate to thirty-six hundredths of an entire circle. The battle compass as it is mounted on an artificial ship gives all changes of heading, as well as automatic continuous roll and pitch to which the compass is continually subjected. Both roll and pitch may be varied at will as to angle and period.
Among the points never before realized is the automatic correction of the northerly or southerly eomponent of vessels' speed at sea, this correction heing made between the gyroscopic compass and its transmitting member, in such a manner that the indications received by the navigator and elsewhere about the ship are thus absolute and maintain true geographical north. It is felt that the navigator has now at hand a most desirable aid and one that greatly simplifies his work. It will be understood that this type of eompass is not affected in the slightest degree by the steel of the ship or cargo, nor any magnetic disturbances in either; neither should shifting cargo. turning turrets or gun-fire disturb its accuracy or reliability. nor is it affected in the slightest by those disturhanees technically known as deviation or variation.

Rulings of the Office of the Supervising Inspector-Qieneral of the United States Steamboat) Inspection Service.

The Taylor Water Tube Boiler Company of Detroit, Mich., in a letter dated Novemher 2, 19t0, ealled the attention of this Burean to an evident contradiction in Section 20, Rule II, General Rules and Regulations, which seetion reads in part as follows:
"Hard brass, bronze * * may be used in the construction of all fittings up to and inclading t2 inches in diameter, and for all pressures not exceeding 300 pounds per square inch, except that it will not be allowed where the steam reaches a temperature of 400 degrees F. * and stated that:
"Inasmuch as the temperature of saturated steam at 235 pounds is 400 degrees, this paragragh seems to earry a contradiction, and we would therefore ask if it would be permissible for us to use hrass or bronze globe valves and unions. up to 2 inches in size for these boilers."

This Burcau, in a letter dated the 5 th instant, replied in part as follows: "Your statement that saturated steam at 235 pounds pressure has a temperature of 400 degrees Fahrenheit is practically correct * * *"
"As the ohject of the rule was to limit the use of these fittings to a temperature of 400 degrees Fahrenheit, you are informed that you cannot use the fittings in question for steam
pressures of more than 235 pounds, and the service generally will be advised of this decision."

With reference to that part of Section 20, Rule II, General Rules and Regulations, under the head of Cast Steel, Semisteel, etc., which reads:
"Screwed bonnets on cast fron valves are positively prohibited," the Supervising Inspector General, in a letter dated November 7, 1910, advised that "the rule is plain and means just what it says, and there is no distinction whatever in the use of a valve on a water line or steam line. The rule prohibils the use of a east iron valve with a screwed bonnet, and if such a valve is found in nse it must be removed at once."

With reference to Section 28 , Rule II, General Rules and Regulations, which reads:
"On all boilers huilt after July 1, 1896, a stop cock or valve shall be placed between all eheck valves and boilcr and hetween all steam and water pipes and the boiler.
" z Il boiler connections of over 2 inches in diameter, except the connections for safety valves. shall be permanently flanged and bolted directly to the hoiler. Where the connecting point on the boiler is of circular form, distance pieces shall be allowed in order to square the point of attachment of the flanged fittings, but no such disfance piece shall be allowed to exceed 6 inches in length on its shortest side," the local inspectors at Detroit, Mich., in a letter dated November 4 , 1910, stated:
"We enclose herewith a blue print showing one method of attaching the auxiliary stop valve, which shows a cast steel distanee piece about 3 inches in length on its shortest side, riveted to the boiler : to this distance piece is bolted a cast iron tee about 12 inches high, the safety valve being boited to the top opening of this tee, and on the side of this tee is bolted the auxiliary stop valve leading to the small engines throughout the ship.
This method of attachment is used for the purpose of using one opening in the boiler for both the safety valve and the auxiliary steam valve, and we ask if such method of attachment can be allowed, or whether the auxiliary stop must be attached to the boiler at a separate opening, properly rein. forced and with the required distance piece."

This office, in reply thereto, in a letter dated November 7. 19to, stated that:
"This appears to be good practice, and in my opinion is not prohibited by the rule which you quote and which governs this question. If this 4 -inch valve were really a boiler connection it would have to be bolted directly to the boiler, and would not be allowed to meet a nipple or other fitting, except that if fitted to a circle it would be allowed to meet a distance piece as provided by the rule.

It is not attached directly to the boiler, and hence it can meet the fitting as you describe it and which I think makes a good job. I would much rather see this tee made of cast steel, but inasmuch as we allow cast iron for fittings when properly stamped and made in accordance with the prescribed formula, we have no anthority to require anything better."
Referring to the last paragraph of Section 28, Rule II, General Rules and Regulations, which reads:
"All bniler connections of over 2 inches in diameter, except the connections for safety valves, shall be permanently flanged and bolted directly to the boiler. Where the connecting point on the hoiler is of circular form, distance pieces shall be allowed, in order to square the point of attachment of the flanged fittings but no such distance piece shall be allowed to exceed 6 inches in length on its shortest side," the Supervising Inspector General, in a letter dated November 7, 1910, advised the local inspectors at Detroit, Mich., that "The rule in equestion does not apply to safety valve connections."

TEST OF A MOSHER MARINE BOILER.

By an order issued by the Navy Department, Washington, a board of naval officers, made up of Commander C. W. Dyson, Lieutenant-Commander J. K. Rohispn and Lieutenant W. G. Diman, met at the works of the Mosher Boiler Company, Ossining, N. Y., to witness the evaporation tests of one of the boilers built under contract for the E'nited States ships Kear. sarge and Kenterly.
The object of the test was to ascertain whether the boiler was capable of evaporating an amount of water into dry steam equivalent to 11 pounds from and at $2 t 2$ degrees $F_{\text {r }}$, per hour, per pound of combustible, when burning coal at the rate of 40 pounds per square foot of grate. Also to ascertain the evaporation from and at 212 degrecs F. per pound of comhustible at rates of combustion of 15,25 and 35 pounds per square foot of grate, respectively.

The tests started at $8 \mathrm{~A} . \mathrm{M}$. Nov. r, and continued without intermption until 8 A. M. Nov. 5 , when they were completed, each of the four tests thus occupying twenty-four hours.

DESCRIPTION OF THE BOILER.

The boiler in question is known as type \mathbf{B} in contradistinction to type A, which is used in the torpedo boat destroyers I.amson and $S_{\text {with }}$ as well as various other vessels. It consists of one large steam drum connected by means of curved tubes to a semi-circular water drum having an arched tube sheet. Two large diameter down-comers, one at each end of the steam drum, connect to a return tuhe on each side and form a junction at the rear end to the water drum, thereby constituting a self-contained mint. The boiler rests on steel saddles, casing and grate-bar bearers being built up and connecting to it. The boiler furnace, from the grate-bars to the tubes and drums, is lined with special firebrick The baffling of the gases is accomplished in a manner quite similar to that adopted in the Babcock \& Wilcox marine boiler, thus forming a first, second and third tuhe pass within which the gases traverse before the np-take is reached. Unlike the boiler mentioned, however, the gases in the Mosher boiler enter the tube nest near the steam drum and leave at the opposite or water drum end This arrangemem insures a positive circulation of water and steam within the tubes at practically any rate of combustion, but invites a possible short circuiting of air entering the furnace, which, if $s 0$, would result in impaired combustion of the gases within the tuhe nest. The boiler tested was full size, being one out of the lot intended for installation in the Kearsarge and Kentucky, and had the following dimensions:
Heating surface $3 . y^{80}$ square feet.
Grate surface 91.25 square feet.
H. S. \div G. $S . \ldots \ldots \ldots$.

Diameter steam dram. 48 inches.
Water space
Steam space
222 cubie feet.
Number of gencrating tubes.
tol cubic feet.
Diameter of generating tubes. 883
2 ins. No. 8 B.W.G.
Total weight of boiler, inelusive of
water
8 feet $51 / 2$ inches.

Weight per square foot $G . S \ldots \ldots \ldots$
Weight per square foot $H, S \ldots \ldots \ldots$
1,003 pounds.
Wi, 23 pounds.
Steam pressure 180 ponnds.

abrange ment of testing plant

The boiler was erected in a practically air-tight house, furnished with air locks used when the test room was under pressure. There was an overhead platform, from which observations of the weighed water. steam pressure and stack pressure were made. The regulation of the steam pressure
was also performied here by manipulating the stop valve forming the connection between the main steau pripe on the boiler and the bleeder to the atmosphere. Safety valves and calorimeter were also plaeed above this platform.

Fored draft was produced by a Buffalo Finge Company fan, driven by a helt transmission from a single-eylinder reciprocating engine. The blower was located ottsille the boiler roum, discharging into it diagonally towards the rear of the boiler, whereby continuous ventilation of the fire roont was oftainet.

The feed-water entered at ahont the center line of the steam drum, and was heated to a high degree by first passing through a multi-coil Reilly feed heater. Steam from the boiler was used as heating medium in the feed heater, which was fitted with a continuous recording temperature gage.

The feed pimp was located just outside the boiler room and close to the circular feed tank, into which was discharged the water weighed in each of the two weighing tankw, placed on platform scales immediately above on the raised plat form previously referred to.

Calibrated thermoneters were placed, one in the feed line on the discharge side of the heater as elose to the boiler as was practicable, the other in the stection pipe from the feed pump to the feed tank.

The fire-roont temperature was measured by a thermometer placed in front of the boiles under the boiler grating. A con-tinnous-pressure recording kage wax placed on the steam line, and a Taylor Cambridge electric pyrometer was fastened on the wall of the boiler-room, where connection to it was effected by means of metallic rods, which were inserted at different points through the side of the boiler whenever readings were taken. A nitrogen pymmeter was placed in the flue to obtain the emperature of the pases.

An Ellison multiplying draft gage was placed on the opposite side of boiler room, connections being made through the dusting dooss of the boiler casing by means of a long pipe attached to rubber tubing. An ordinary U-tube was placed near the smokestack to obtain the draft at this point.

An Orsat ga* analysis apparatus was located within the fireroom near the rear end of the boiler, samples of the gases being taken continuously and records made at frequent intervals. As the gas was drawn off continuously, very close average gas conditions were obtained. A Barrus throttling ealorimeter was fitted on the steam pipe between the boiler and the safely valves, and was in continuous operation during the entire test.

> WEGGHING OF CDAL AND WATER.

The platform seales for weighing eoal were placed outside of fire-room. The coal wan plaeed in barrows arranged to give net weights of 250,200 and 150 pounds, in order to facilitate tabulation of the weights of the two kinds of coal used, viz.: Pocahontas and Somerset.
The water was taken from the eity main and delivered into two cylindrical tanks placed on separate scales and weighed. By means of quick-opening valves it was discharged into the calibrated feed tank placed directly below. The height of the water in this tank was noted at the beginning and end of each test.

MOISTUEE IN STEAM AND COAL
The moisture in the steam was determined from the temperature readings taken at definite time intervals during each test, and the average temperatures obtaincd by calibration of the calorimeter at the completion of the tests. The moisture in the coal was obtained by laboratory tests made with samples collected at definite times during the tests.

COAL LSED AND MPTHON OF FTBING,
It was found necessary to nse, in connection with the Pocahontas coal obtained purposely for the test, as certain propor-
tion of Somerset coal, in order to more readily hreak up the clinkers which spread over the grate, partly stopping up the air spaces when using Pocahontas alote. The slag formed by the Poeahontas coal seenued to accumulate about the ash of the Somerset in such a way as to euable dislodging by slicing the clinkers without too much frouble.

The method of firing adlopted was the so-called alternate system, consisting of spreading the coal evenly over the grates, with resular time intervals between each firing and a certaint number of shovelsful fired at cacls door. These varied between two to six, depending upon the rate of combustion. The thickness of the fires varied irom 4 to 6 inches at the front and bet ween 6 and 10 incher at the rear.

The ashpan was hauled at the end of one test and the beginning of the next; the anount was weighed and corrections made for moisture.

The propurtions of coal used were as follows: First test, 2 Pocahontas to t Somerset ; seeond test, 3 Pocahontas to 2 Somersct; third test. 5 Pocahontas to $11 / 2$ Somerset; fourth test, same as third, except that for the last four hours Pocahontas ecal was used exclusively.

pesurts

Test Nu. t, at 1,5 pounds enal per square foot of grate per hour, began 8 A. 31 Noy, t, and finished at 8 A. M. Nov. 2. Weather clear; the compartment was open. The rate of evaporation from and at 212 degrees F. per phand of consInstible was 12.09 pounds of water into dry steati.

Test No. 2, at 25 pounds coal per square foot of grate, began 8 A. M. Nov. 2, and finished at 8 A. M. Nov. 3 . Weather clear at beginning, then eloudy and rainy: the compartment was closed, with an average air pressure of $t .04$ inches of water. The rate of evaporation, figured on same hasis as test No. 1 , was 1158 pounds of water into dry steam.

Test No. 3, at 35 pounds coal per sprare font of grate, began at 8 A. M. Nov. 3, and finished at 8 A. M. Nov. 4 Weather, rainy; compartment was elosed with an average air pressure of 1.65 inches of water. The rate of evaporation, figured same as before, was $t 085$ pounds of water into dry stearn.

Test No, i, at 40 pounds coal per squtare foot of grate, began at 8 A. M. Nov. 4. and finished at 8 A. M. Nov. 5. Weather rainy during firot half, then clear. The compartment was closed; fan in operation, with an average air pressure in the fire-room of 1.62 inches of water. The rate of evaporation, figured same as before, was 11.048 pounds of water into dry steam. The actual amount of coal burnt per square of grate was 39.91 pounds.

Difference between pressure in fire-room and draft in flue for the four terts was 0.23 , o.64, 1.5^{8} and 18 inches, respectively.

Average moisture in coal used for the four tests was 331, 223. 3.31 and 306 percent, respectively.

The average percent of refuse in 才ry coal was 8.54. 7.15. 5.18 and 584. respectively.

The proximate analysis of the fuel used gave:

	Somerset. Percent.	Pocaliontas Pereent.
Fixed carbon.	71.53	75.68
Volatile matter	14.91	1967
Moisture	4.57	234
Ash	800	2.30
Sulphur	8.60	. 72

Calorific value of coal by calorimeter per pound of combustible: Somertet $=15068$ British themmal units, Poeahantas $=15-464$ British thermal units,

After completion of the tests the hoiler was opened up and examined ard found in good condition.

NEW DRY-DOCK OF THE TOLEDO SHIPBUILDING COMPANY.

A large dry-dock, involving sume unigute features of construction, has recently been built at the yards of the Toledo Shipbuikling Company, Toledo, Ohio. The dock is 100 feet by 700 feet, and is designed to accommodate the largest vessels operating on the Gireat Lakes. It is buift throughout of concrete, and there is in conjunction with it a building berth located on one side of the dock, so that vessels can be sidelausched directly into the slock. This is the first time that such an arrangenewt has leen carried ont, and its advantages, of course, are olvions. The hulding berth, with its gautry
from either side to the center drain, and a drop of 3 feet 3 inches in the total length. The east dock wall is of uniform section from end to cnd, with a footing 2 by 14 feet and wall 14 feet across the base, 3 feet across the top and 25 feet 6 inches high. The top of the west wall, which is the launching side, is necessarily level, so that the wall section varies in height from 22 feet 6 inches at the portal to 19 feet 3 inehes at the far end. The footing is uniformly 2 feet by 14 feet and the top 4 feet 2 inches. The walls rest on firm blue clay and 20-foot piling. The piling rows are spaced 5 feet and the piles abont 4 feet.

Both walls have sets of four steps at every alternate 10 -foot sections for shoring, and have the necessary sheaves for bilge

crane, the dock walls and portals are built entirely of steel and concrete. The only timber used is in the pile foundations, the floor system and the temporary end of the dock, which is designed to be lengthened should it ever become necessary to provide for ships longer than the 600 -foot class.

This new dock is built on the site of an old wooden dock, which was 50 feet by 150 feet. The entrance is irregular in outline, because the dock and harbor line are not at right angles. Its dimensions are 114 feet 7 iuches along the harbor line, 37 feet across the west end, 30 feet across the east end, and it has a depth of 27 feet. The clear portal entrance dimeusions are 94 feet and 8_{2} feet across the top, and still levels respectively with a depth of 21 feet 6 inches. These dimensions will admit any boat now in use on the Lakes, or which is likely to be constructed for some time to come.

The photographs and drawings show the nature of construction and the general arrangement of the dock relative to some of the shops in the yard. A complete description of the dock appeared in a recent issuc of the Enginecring Record, from which the following is taken: The dimensions of the dock proper are 78 feet width along the floor sill line, 95 feet width face to face of dock walls at mean water level, and 659 feet lenkth from the dock side of the portal to the end along he center line. The floor of the dock has a pitch of 6 inehes
block chains. In addition, the west wall has large cast iron smubbing posts set flush with the wall top and face for 40 feet, and malleable iron pedestals every to feet for supports to the 9 -inch clannel stringers carrying an \mathbf{A}-frame track.
The timber floor is carried on the clay and on piling. White oak 12 -inch by 12 -inch caps run lengthwise of the dock, and every to feet 6 inches carry 14 -inch by 14 -inch yellow pine sills level from wall to wall. Short 14 -inch by 4 -inch white oak sills carry intermediate sets of keel blocks. The long sills carry 3 -inth by 18 -inch white oak slides, and on these the bilge blocks have their bearing. The 2 -inch overhang of the $\mathbf{8}$-inch planks serves as a grip for the bilge hlock anchors. The bilge and keel blocks are built up with 12 -inch by $\mathbf{t 2}$-inch and 14 -inch by 14 -inch timbers drifted together. The 3 -inch oak plank flooring is laid between the sille, having a pitch of 6 inches toward the center to facilitate drainage.

The end of the dock is construeted of timber, in order to simplify the matter of lengthening if such action should be deemed necessary in the future.
The building berth has introduced an entirely new feature in dock construction, in that it is entirely of reinforced concrete. It has a width of 79 feet: the full length of the dock. Concrete ways are located every to feet and concrete cross-tic beams every 7 feet 6 inches, the whole supported by 30 -foot

DETARLS OF EESNPOACED CONCAETE EURESMG WAYB
pile foundation. The ways have a section of 24 inches by 27 inches, reinforeed with six and eight $7 / 3$-inch plain bars and 7/r6-inch stirrups.
The ways have a rise of 3 feet in the 40 feet next to the dock, and in this part heavier reinforcement is placed to take care of the launching strain due to the motion of the sliding boat. The concrete cross-tie beams have reinforcement of eight $9 / 16$-inch plain bars and $/ 3 / 6$-inch stirrups. Trigger lugs

GAya of New Dky-pock
are east on the ways on the side away from the horizontal center line of the berth. An 15 -foot 3 -inch by 3 -foot 5 -inch by to-foot concrete rudder well is provided near the south end of the berth.

It was necessary to construct a cofferdarn and in connection with the excavation to remove the old wooden dock. The tearing out of the old dock timbers was started on March 15, 1909, and the new dock was made ready for a boat Dec. 18 , 1909. The general layout and design were prepared by Mr.
A. V. Powell, M. Am. Soc. C. E, of Chicago. The design of the steel work, reinforced concrete ways and gate was worked out at the shipbuilding company's engineering department under the direction of Mr. C. B. Calder, general manager. Mr. Harry C. McClure acted as inspector for the company. The work was executed by the A. Bentley \& Sons Company, of Toledo, Mr. C. O. Lasley, Assoc. M. Am. Soc. C. E, being engineer.

TWIN-SCREW MOTOR YACHT JOYEUSE.

One of the most suecessful boats designed for use as a gentleman's yacht during the past season is the twin-screw eraft Joycuse, designed by Messrs. Cox \& Stevens, of New York, and built by the Pusey \& Jones Company, of Wilmington, Del., for Mr. Henry W. Savage, of New York. The principal dimensions are: Length over alt, 98 feet; beam, 16 feet; draft, 4 feet 6 inches.

The motor power consists of two six-cylinder, air-starting Standard engines, with a nominal horsepower of 100 , but which develop better than 125 horsepower apiece, and give a speed of at least 15 miles an hour. The engines are situated amidships, and are in a compartment separated from the rest of the vessel by heavy steel watertight bulkheads, without any openings in them whatsoever; this compartment also contains the gasoline supply, which is of 1,500 gallons, carried in three eopper tanks of 500 gallons each. The engine compariment contains in addition an electric light plant of sufficient capacity to light the boat throughout, including a large searchlight.

The general appearance of the boat is pleasing, her freeboard being moderately high, and the vessel being of flushdeck type, with bulwarks which tend to reduce the apparent height of the deckhouses, of which there are two. The forward house is used as a music room, and the after-house is the dining room; this arrangement being decided upon for the reason that the owner's quarters are forward and the crew aft. Two pole mmsts are carried, on which sail can be spread when

desired, these masts and the stack being so arranged that they can be taken down in passing under canal bridges.

The construction of the hull of the vessel is of steel, sufficiently strong to make the boat a durable one, and not so heavy as to overload her; this form of construction being adopted for the reason that it gives much more available space below for quarters than as if the vessel were built of wood. In addition to the steel bulkheads enclosing the engine room, there is a forward and also an aft collision bulkhead, so that the hull is well sub-divided for protection against collision.

The deck houses and all the skylights, hatches, hand rails, etc., are of mahogany, the deck itself being of white pine, all the deck fittings being of bronze, and all appointments of every description being of the best possible character. The owner's room is just forward of the engine space, and separated from it by a double bulkhead to reduce the noise from the engines. This room extends the full width of the vessel, and is 10 feet in length. In finish this room is of satinwood, handsomely paneled, and furnishings consist of a large double berth on the port side, with a wardrobe forward of same, and on the starboard side a writing desk, bureau and seat, which

IKIEAIOR OF THE DOCK, SHOWING KEEL AND BILCE NLOCKB IB DLACE
may also be used for stowage space. On the after end of this room, on the starboard side, a 7 -foot sofa is placed against the buikhead, and on the port side, completely shut off from the stateroom, is a lavatory; this portion of the room being so arranged by an ingenious layout of pillars and columns so
two single rooms just ntentioned is utilized as a large stateroom, having on the port side a double buitt-in berth and bureat, and on the starboard side a wash basin, wardrobe and settee. All these rooms are finished in Colonial style, with mahogany furniture, doors and irim, the balance being white

as to make a very attractive appearance and at the same time give the owner a great deal of comfort.
On the starboard side of the passage the space underneath the stairs is utilized as a storcrom, having in it a berth that in an emergency can be noed for a valet. On the port side

13. 2.-Aitell pack.
of the passage, opposite the stairs, is a large bathroom, having a 5 -foot 6 -inch tub, wash basin, toilet and linen locker; this room being tiled floor and having a wainscoting tiling also. Forward of the bathroom on the port side is a single stateroom, with a built-in berth, bureau and seat, a similar stateroom being oppopite this room on the starboard side. At the end of the passage and opening into it, the space forward of the
enamel finish with egg-shell gloss, handsomely paneled.
The forward house, to which reference has already been made, has at its forward end a stairway on the starboard side leading to the quarters below, and on the port siele ppholstered transoms, which can be used as berths in an emerkency, and

otherwie form comfortable seals. In the after end of this honve is a piano and writing desk. This house is of very liberal dimensions, being $9!/ 3$ feet wide and 16 feet long, and forms a very comfortalle lounging space. The finish inside and out is of carefully selected mahogany, handsomely paneled, and the color scheme of the upholstery is green, making a very pleasing combination.

 matabar.

The after-house is the same breadth as the forward house, and is 16 feet in length. The forward part of this house is utilized for a pantry, and contains an ice-box, dish rack, sink, glass cupboard, dumbwaiter to the galley, which is below, and has on the port side a recess, partitioned off, forming the entrance to the engine-room. The pantry is fimished in mahogany, and the floor tiled with interlocking rubber tiling. This room commanicates by swinging doors to the diningroom, which is in the after portion of the house. The only fixed furniture in the dining-room is a very handsome Colonial sideboard in the forward end, there being a round extension table, capable of accommodating twelve persons when fully opened, and the necessary number of mahogany dining chairs.

On deck there is ample room for the owner and his guests, the deck being exceptionally clear and free from obstructions. The vessel is navigated from on top of the forward house, there being an awning over this house, so that it makes a very comfortable place for the owner and his guests as well as for the helmsman. This vessel is also very fully equipped in each department, the outfit of boats including a 16 -foot motor boat, with a speed of 8 miles an hour, and also a 14 -foot dinghy or eervice boat.

The yacht has attracted wide interest on account of her variation from the conventional design of yachts, and while Messrs. Cox \& Stevens have turned out a boat that is entirely unique, many of the little details and conveniences show careful thought on the part of Mr. Savage, who is not only an ardent yachtsman but a sailor of long experience.

The tunusual Rexibility and reliable performance of the boat's engines on her maiden trip from Wilmington to New York, through the canal, is a matter of comment. The ease with which she handled in and out of canal locks, at times when absolute stopping and starting of the engines was neeessary, was a source of great satisfaction. Later on, in deep waters, during a period of very heavy weather, her performance was equal to that of hoats twice her size-the full, flaring bow keeping her practically dry through the worst of it, and her roll being remarkably easy.

The first steamboat ever built in Venezuela was lauriched November 6, 1910 . The ressel is of 61 tons displacement.

Tribute to Rear Admiral Meiville.

Tuesday, the toth of January, being the seventieth birthday of Rear Admiral George W. Melville, engineer-in-chief of the United States navy, retired, a few of his friends, with very little preliminary notice, recognized the occasion by presenting him an engraved plaque. At the top was a picture of the Columbia, at the bottom a picture of the Melville reducing gear, and at the sides badges of the Grand Army of the Republic and the Loyal Legion. The photograph shown herewith gives a very excellent idea of the appearance of the plaque. Accompanying this was an engraved address of congratulations with the names of the ninety-six contributors,
Rear Admiral Melville was for sixteen years engineer-inchief of the United States navy. During this time be was responsble for new designs of machinery for about one hundred and twenty vessels of all elasses, including twenty-four battleships and forty-one armored vessels of all kinds. The aggregate horsepower was close to a million and a quarter. One of the most notable triumphs of his professional career was the use of triple screws on the cruisers Columbia and Minneapolis, while to-day his development of reduction gearing for marine steam turbines bids fair to solve one of the most important enginecring problems of the day.

New Offices for International Marine Engineering.

The increased demands put upon us for office facilities have necessilated our moving into much more spacious quarters, and, beginning Feb, I, our offices in the "Whitehall Building," 17 Battery Place, New York, will be in the recentlycompleted addition to the hnilding in rooms 934 and 935 . We shall have considerably more floor area and better facilities in

every way for expediting husiness．On the pictnre shown herewith the four office windows facing the west have been marked to locate the new offices．The rooms extend back across the greater part of the north end of the building．As we command a view of New York harbor，the Statue of Liberty，and all of the shipping passing in and out，we invite our friends to call and not only inspect our spacious new offices but also enjoy the view from our windows．

SHIPBUILDING IN 1910.

According to figures published in the Glasgow Herald，the total tonnage of vessels，including warships，built in the world in 1910 was 3.6 percent greater than that built in 9909 ．In the United Kingdom there was an increase of t3－4 percent；in the United States an increase of 25 percent，and in Japan an in－ erease of 11.1 percent．Most of the other important ship－ building countries suffered a marked decline．In Germany the total tonnage，including warships，built in 1910 was 21 percent less than that built in 1909 ．In France there was a decrease of 17 percent；in Italy a decrease of 9.8 percent；in Russia a decrease of 16 percent ；in Belgium a decrease of 12.2 percent，and in Holland a decrease of 29 percent．The figures are as follows：

	1910.		1209.		Increased Tonnage Beily Perceni．
	Tons．	1．II．P．	Toal．	I．H．P．	
Srentand．	420,250 782,136	624.268 881.091	427,325 635,299	者敞，310	-18 18 8
Ireland．．	167，102	137.730	120，904	123，750	根 2
U．X，totats	1，384．488	1，623899	1，t41．528	1．470．443	184
Colonlal	24.077	9.187	17.428	818，419	351
United Stater	351，389	304.689	281.271	211，770	250
Cerranay．．	217,748	303.937	877.155	444．647	－210
Holland	124，115	86,919	174， 220	72.409	－ 29
France．．	110.278	170.010	132，877	186，480	-170
fapan．．．	c， 192	98，438	54,154	52，204	111
Norwav．	28，075	62.600 30.800	40,020 32,216	82，719	－3 21
Audria－Hungary．	2，121	29.796	55，198	70，850	－41 8
Belsiain ．．．	15．202	26.95	17，423	1.305	-122
Denmart	t1．922	10.758	11，958	10，308	－0
Soerles．	0.733	23，940	7，005	28.400	372
Other countries	t0，319	3.545	10，274	8，593	04
Grand intal	2，375．735	2．750，953	2．293，522	2，616，782	58

A comparison of the work done in the principal shipbuilding centers of the world is shown by the following：

	Veselh．	Tons．	1．H．P．
The Clyde	${ }^{238}$	392.302	592．840
Unitord States．	151	351．309	301.089
The Trae	81	238.588	272091
Germany T （ese and Hardepools．			
Tees and Hardepools．	${ }_{88}^{88}$	187，${ }^{1806}$	$\begin{aligned} & 118,978 \\ & 124,205 \end{aligned}$

As was the case last year the largest tonnage launched by any one concern during the year was by Harland \＆Wolff，at Belfast．The leading shipbuilders in the order of tonnage launched during the year are given below：

	Vewels	Tonas
Harland \％Woife	8	115881
Americas Sbipbuildies Co．（7 yard）	17	70.308
Rusell and Company	18	60，462
Swit Huater and Wighan Richardion	18	\％ 8 \％，208
Wialam Gray and Compeny．	13	\＄t，917

The most important launch of the year was that of the White Star liner Olympic at Belfast，as described in our December issue．This vessel，it will be recalled，was of 45,000 tons．The next largest vessel launched was the France，

23,000 tons，of the Compagnie Generale Transatlantique，build－ ing at the Atlantic Works，St．Nazaire，France．Other large vessels launched during the year included the Cunard Fran－ conid， 19,150 tons，by Messrs．Swan，Hunter \＆Wigham Rich－ ardson；the Edinbwrg Castle，13，326 tons；the Maloja，13，000 tons，and the Themistocles， 11,500 tons；all by Messrs．Harland ＊Wolfi．

In the United States，where the most pronounced increase in shipbuilding occurred，the total tonnage of merchant vessels built in 1910 was 332,719 ．This，as compared with the 207，309 gross tons built in $t 909$ ，is an increase of 61.3 percent．The most significant fact connected with this satisfactory increase was the large amount of merchant tonnage built on the At－ lantic coast．The gross tonnage of steel steamships built on the Atlantic and Gulf coasts（t08，436 tons）was 102 percent greater than in 1909 ．Only twice in the last ten years have these figures been exceeded－once in 1902 and again in 1907. Both of these years，however，were years of exceptional pros－ perity in the shipbuilding industry．On the Great Lakes the increase in the gross tonnage of steel steamships during the last year as compared with $t 909$ amounted to 70.7 percent．

A large number of vessels of 6,000 and 7,000 tons gross were built by the American Shipbuilding Company，as well as many freighters of 3,000 and 4,000 tons．On the coast the greatest volume of merchant work was done at the yards of the Newport News Shipbuilding \＆Dry Dock Company，Newport News，Va．The output of this company included four ships of over 6,000 tons each for the Southern Pacific Company； two passenger and freight steamers of 5.425 tons for the Ocean Steamship Company；two freighters of 4,100 tous for the San Francisco \＆Portland Steamship Company，two Isher－ wood framed freighters for the A．H．Bull Company，New York，and the oil earrier J．A．Chanslor of 4,938 tons．Three steamships of over 6,000 tons were built by the Maryland Steel Company，at Sparrows Point，Md．，for the American－Ilawaiian Steamship Company．This company also delivered two mod－ ern bay steamers．The New York Shipbuilding Company，of Camden，N．J．，built two colliers of over 4,000 tons each for the coastwise Transportation Company，Hoston，and the prin－ cipal merchant work at the Fore River Shipbuilding Company， Quincy，Mass．，included a 3，800－ton freighter for the Union Sulphur Company，New York，and a molasses steamer of 4.711 gross tons，for the Cuba Distilling Company，besides the magnificent steam yacht Aloha，built for Commodore James， of the New York Yacht Club．Two new Wilson Line steamers were built by the Harlan \＆Hollingsworth Company，Wilming－ ton，Del．，and this company also turned out the steamer North－ land， 3,282 tons，for the Maine Steamship Company．A large part of the work done by coastwise shipyards，however，ex－ clusive of warship construction，consisted of smaller craft，such as tugs，car floats，ferryboats，river steamers，yachts，trawlers， etc．
During the year the battleship Delazuare was completed by the Newport News Shiphuilding Company，and the North Dakota by the Fore River Shipbuilding Company．Eight de－ stroyers were also completed，one by William Cramp \＆Sons， one by the New York Shipbuilding Company，two by the Bath Iron Works，two by the Newport News Shipbuilding \＆Dry Dock Company，and two by the Fore River Shipbnilding Com－ pany．The Fore River Shipbuilding Company also delivered two submarines．The warships now under construction in the United States include four first class battleships with another one soon to be laid down；nine destroyers with contracts in hand for six more，and nine submarines with three others con－ tracted for but not yet laid down．In addition to this there are 27，000－ton battleships building for the Argentine govern－ ment at the yards of the Fore River Shipbuilding Company and the New York Shipbuilding Company，as well as a number
of government vessels building at Cramp's for the Cuban navy. Shipbuilding in the United Kingdom during 1910 was distributed as follows:

	1910.			1008.		
	Vessels.	Tons.	t. H. P.	Vensela.	Tons.	1. H. P.
The Clyde	358	392.302	593,840	354	403,157	610.085
The Forth.	17	0,385	5,925	17	0.224	8,100
The Tay.	is	5.8152	7,100	11	8,074	${ }_{10,300}^{10.35}$
Dee and Moray Firth...	60	12,491	16,093	116	10,849	10.635
The Tyne.............	St	23, 6 , ${ }^{\text {a }}$	272,901	112	199,207	202,960
Tees and Harilepools...	85	187,303	116.975	46	122,733	69.025 05.536
The Wear	54	173,673	124.205	57	122, 238	-5,536
Rayal Doolyyards.	5	52.621 41.615	144.801	6	46,812 68,728	
Mersey to Solway	77	41, 48	164.801 42.710	82	65,228 24.414	14,980
The Thames.	142	11,397	30,660	90	2, 7,053	11,618
Esalloh Chanerl	03	11,373	128,969	104	0. 8.20	68,101
Enstal Channel	66	9,173	717.790	57	8,209	782
Ireland. .	. .	167,102	137.730	,	120.804	123,750

It will be noticed that, with the exception of the Clyde and the Mersey to Solway districts, there was a substantial gain in all parts of the United Kingdom. The decrease on the Clyde was due very largely to labor troubles, which resulted in the shipyard lockott, and does not give a true indication of the condition of business. On the whole, the amount of work turned out on the Clyde has been very satisfactory, and, in view of the large number of orders which are now in hand, the prospect is exceedingly good. There has been a falling off in warship tonnage, although in one case, that of the Fairfield Shipbuilding Company, a record was made by building complete seven destroyers within the year. Also at the Clydebank yard of the John Brown Company, a cruiser and three destroyers were built, which is also a good showing. The Fairfield Shipbuilding Company have to their eredit the production of the largest total indicated horsepower of engines of any firm in the United Kingdom, althongh Messrs. Harland \& Wolff approach very closely their figures. The largest merchant vessel huilt on the river during the year was the Rotwrug, $11, t 30$ tons. This vessel is also notable as the third vessel to use the combination of reciprocating and turhine engines. At present there is an enormous tonnage of both naval and mercantile shipping in hand on the Clyde, and the coming year should prove a record breaker. The placing of the contract for the Cunard Line's new mammoth liner with John Brown \& Company is the most important order for merchant ships now in hand.

Nearly all English shipyards report a revival in trade and kood business prospects for the coming year. On the Tyne are building the Cunard steamer-Fronconia, at the yards of Messrs. Swan, Hunter \& Wigham Richardson; the battleship Hercules, at Jarrow ; cruiser W'eymowth, at Elswick, and three destroyers at Hebburn. Messrs. Swan, Hunter \& Wigham Richardson have to their credit the largest tonnage launched on the Tyne during the last year. On the Wear, a district which suffered severely during the recent depression, the shipyards have been extremely active during part of the previous year, and have a good volume of business on hand for the coming year. The largest merchant work is being carried out at Sunderland, where two vessels for Norwegian owners are being built which will have a carrying capacity of 12,500 tons each. As previously stated, the Mersey to Solway distriet showed a decrease in the total tonnage built in 1910 , and this is largely due to the fact that no large warship was launched during 5910. A large amount of engine building was carried ont, bowever, and for the coming year a contract has been placed at Barrow for a Japanese Dreadnowght. Here also a British cruiser is being built. The British Admiralty have also placed an order for a first class hattleship at Birkenhead.
The forggoing review, alihough bricf, is sufficient to show
the general revival in shipbuilding which has occurred in Great Britain and America during the last year, and when it is noted that according to Lloyd's statistics the total work now on hand in Great Britain is 20 percent greater than was the case a year ago, it is evident that the prospects for the coming year are very good.

Launch of the Arkansas.

The United States battleship Arkansas was successfully launched at the yards of the New York Shipbuilding Company, Camden, N. J., Saturday, Jan, 14
The Arkansas is 562 feet long over all, 554 feet long between perpendiculars, 93 feet $21 / 2$ inches breadth on load-waterline, with a mean draft of 28 feet 6 inches. The full-load displacement will be 27,243 tons; the normal displacement, with two-thirds supply of stores and fuel and full supply of ammunition, 26,000 tons, and the estimated displacement on trial, 26,000 tons. The ship is to be driven by Parsons turbines on a four-shaft arrangement, which it is estimated will

develop a total of 28,000 shaft horsepower, giving the vessel a speed of $201 / 2$ knots. A bunker capacity of 2,500 tons is provided and 400 tons of oil fuel will also be carried. The boilers are of the Babcock \& Wilcox watertube type.

The armament of the vessel will consist of twelve 12 -inch guns mounted in pairs in turrets on the center line of the vessel, and twenty-one 5 -inch rapid-lire guns for defense against torpedo-boat attack. There will also be four 3 -pounders, two 1 -pounder semi-automatic guns, two 3 -inch field pieces and two zo-caliber machine guns. Two 21 -inch submerged torpedo tubes complete the armament.

The construction of the Arkansas was authorized March 31, 1 og , and the contract with the New York Shiphuilding Company was signed Sept. 13, 1909. The keel was laid Jan. 25, 1910, and the ship will be completed May 25, 1912. The contract price of hull and machinery was $\$ 1.675,000$ (6963.000). She is being built under the supervision of Naval Constructor J. G. Tawresey.

$\$ 761.59$ SAVED WITH THREE OUNCES OF VANADIUM STEEL

ATWO years' test of Vanadium against ordinary steel in a large railroad shop shows an actual saving of $\$ 761.59$ on a single item-a flue cutter weighing three ounces. In one year 1049 carbon steel cutters were used to cut 145,444 flues,-in the next year 68 Vanadium steel cutters cut 152,578 flues. The average number of tubes cut with the carbon steel tool was 139, the average for the Vanadium steel, 2,244. The cost of the carbon steel cutter per hundred flues was 54 cents, compared with $1-6 / 10$ cents per 100 with the Vanadium steel tool.

THIS means that there has been a revolution in making steelwhat we call steel is a relic of the past compared to the new Vanadium Steel. In final cost Vanadium Steel is the cheapest high-duty metal known. In actual service it is the strongest, toughest, most clastic and longest lived steel that call be made.

In workability it melts, welds, rolls, forges, stamps and machines like ordinary steel. It is made in many types for many uses; you can buy it from any reputable steel maker; it costs less than ordinary steel, service considered.

Vanadium Steel means safety, economy, vitality, strength and service. Specify it, use it, save money by it and guarantee your product and your profits on it.

American Vanadium Company

Miners of Vanadium Ores
Largest Producers of Vanadium Alloys in the World.

MARINE ENGINEERS

 SHOULD SPECIFYTHESE METALS-

VICTOR VANADIUM

BRONZE CASTINGS
This Bronze composition is particularly adapted for Modern Marine Service, and is rendered tough, strong and uniform by the incorporation of Vanadium, which is considered the greatest of all scavenger alloys, imparting to the metal greater wearing qualities. This bronze is ten per cent lighter in actual weight than any other bronze casting of the same pattern.

These castings can be forged.
The structure is close and clean, capable of withstanding high pressure for valve service.

A cylinder 9-16 of an inch thick, three inches in diameter and fifteen inches long has been subjected to a pressure of nine thousand pounds.
TENSILE STRENGTH on 1" Section: 56000 to 65000 lbs . per square inch. ELASTIC LIMIT:

22000 to 34000 lbs. per square inch.
This metal is used in submarine vessels in Japan, Austria, Russia and every vessel of this type in the United States.

VICTOR VANADIUM NON-CORROSIVE SILVER METAL

This Metal is non-corrosive and is particularly useful for sea-going service.

It finishes to a silver color and takes a high polish whose lustre can be maintained quite readily by simply rubbing, adding greatly to its usefuluess and effect as ornamental hardware for marine use

It is an ideal metal for propellers, for it withstands salt water and all vegetable and mineral acids, nitric acid excepted. It is of great strength and toughness and should be used for valves and couplings for fire apparatus on account of its non-corrosive qualities, in place of nickeled castings, as nickel finally peels off, and this metal not being plated, cannot peel.

TENSILE STRENGTH:

 66000 lbs. per square inch.
ELASTIC LIMIT:

36000 lbs. per square inch.
This metal will be found indispensable to marine service when once used.

WRITE FOR CATALOG

VANADIUM METALS COMPANY

FRICK BUILDING
PITTSBURGH, PENNA.

PRACTICAL EXPERIENCES OF MARINE ENGINEERS.

Incidents, Relating to the Design, Care and Handling of Marine Engines, Boilers and Ausiliaries; Breakdowns at Sea and Repairs.

Alr-Pump Troubles.

One of the contractors of an English insurance company has stated that about one-third of all engine aecidents are caused by air pump fractures, and every engineer knows that air pumps, with their valves, seats, etc., give the most trouble. The valves are of eilher india rubber, fiber or brass. India rubber valves are incagable of withstanding high temperature water, so that they seldom last long; fiber valves are better, but the best are brass valves, especially if made of Kinghorn metal. With brass valves, the vacuum in the condenser falls away by leakage rather quickly after the stopping of the engine, With fiber valves this action is not so quick, and with rubber values there is litile leakage. If the valves are placed vertically, they must always be of india rubber (for instance, such is often applied for circulating pumps), as brass or fiber valves do not work well in this position.

The quality of fiber used for valves thust be very good indeed. Some are very untrustworlhy, as they swell when the

\#C. 1.
valve becomes wet. Such an occurrence happened on board the tug M. C. The fiber valves of the air pump, which was connected to a jet condenser, were flat and, as is tusually the case, there was not very much space around the valve. After some months' running, the vacuum became very poor, the pump was dismantled and it appeared that all valves had swelled, the bucket valre becoming 学 inch larger in diameter

and about $1 / 8$ inch thicker. The ring space around the valve had become very small and the liit was too slight. Therefore, the resistance of the pissing water had become too great for the guard to stand and this had broken in four pieces.

Another value guard was made (Fig. 1), not flat, but curved. A swaller thickness of fiber was taken and in addi-
tion the guard was secured to the piston by four studs, so that it could not bend or break. This fiber was of mutch better ģuality and when wet it bent with ease. After these repairs, the valves gave no further trouble and they have lasted for a reasonably long time.
It is not good practice to have foot valves of air pumps made of fiber. Brass valveb are better for this purpose, as sometimes these valver temain open a moment and then fall down; thus giving a disagreeable shock in the pump, which is heard from time to time. When such a foot valve is replaced by a brass one the shock is climinated.
It often happers that when the air pipe from the top of the hot well is led overboard and is boited at the ship's side

nc. 8.
to a non-returis valive, the feed pump does not work and the feed water is taken overboard with the air. The eause of this is that, when in the single acting pump the bucket is rising and the air lifts the non-return valve, the rush of air is such that a partial vacutun is formed in the pipe. The water in the hot well is sucked up into the waste pipe and with the falling stroke of the punp it is discharged overboard. If a sulall tube is placed in the waste pipe and led upwards, the air may go back and the feed pump will perform its duty again. In this small pipe a enck must be placed, and also in the pipe from the under side of the bot well. When the engine stops, these cocks must be shut so that the racuum cannot fall back.

The packing of air pumup pistons is often very inefficient. In soure types of pumps grooves are turned in the piston, but these water seals are searcely sufficient. In ordinary pumps, rope packing is much used, but the best packing is formed by small brass springs. These must lie against the cylinder with very little tension, so that they can never break; since if they should break they would do much harm in the pump.

In one rase known to the writer, where a triple expansion
engine was installed, it was impossible to get any vacuum in the condenser ; and it appeared that the air pump did not pump water, either. The valves were taken out but were found in good order: then it was thought that the puing base was burst, but this did not seem to be the case; finally one of the men suggested that perhaps no hole had been made in the packing between the condenser and the air pump flange. Therefore. the pump was taken off, but the packing was found in good order. It was now found, however, that in the pump base was cast a thin wall (Fig. 2), caused, presumably, by the shifting of the core when cast. The water and air could not flow towards the air pump, so that it was impossible to get any vacuum. This wall was taken away and then the pump worked satisfactorily.
For the design of pump gear, the pressure on the pistons is taken as 30 pounds per square inch, and with this pressure the stresses of the parts are taken rather low. It might happen, however, that this pressure would be taken too low, as the following will show:
In the tug W there was placed a compound cngine with a jet condenser of the ordinary type with the air pump placed behind the low-pressure column. The pump was driven from the low-pressure crosshcad by cast steel levers (Fig. 3). The bracket for the bearing was cast to the after column, When the tug was towing in very low water, the screw touched a large stone and three of the four blades were torn off. At this moment the engincer was on deck, and as the fireman did not know anything ahout the engine there were four or five minutes when the engine raced tremendously and the air pump made a terrible noise. When the engineer succeeded in stopping the engine, a sharp knock was heard, and the whole bracket fell down and was moved up and down by the final revolutions of the errgine. The pump crosshead was bent and also had to be renewed. The boat was towed to the engine works, where a new column was ordered, with the hracket made stronger.

To prevent accidents of this kind, some engine works make the bolts for the pump links very weak so that they will break before any other part. Sonse reserve bolts are then supplied and a few hours* work putting in a new bolt will repair the break.

D. K .

A Little Comparison.

A sreat difference exists as regards the procuring of "tickets," or licenses, for marine engineers in America and in England. In America, a man must be a citizen before he can even go before the Inspectors to pass for his license. We must show a reasonable period of time of his connection with engine work. An engineer must he licensed before he can have charge of a large plant, and it cannot be wondered at that an employer wants some security on his engines and boilers, as anyone withott a knowledge of machinery might apply for and succeed in getting a joh in connection with such. with disaster to everyhorly and everything.

In Great Britain, on the other hand, a man of any natinnality can apply for permission to "get his ticket." Three grades are in force there: second, first and extra chief's. The latter is only tried for by engineers to prove their superior knowledge, and is in no way bound to be got by the engineer to obtain the highest positions on any boat. The second engineer's certificate entitles him to tabe any position up to and below that of second engineer, while the first allows him to take complete charge over engines and boilers, as chief engineer. It often happens, of conrse, that the low grade certificate engineer holds the first-clase ticket, or license, and is only waiting his tarn for promotion.

A man may get permission to sit for his examination, on condition that he has served five years in a machine shop and twelve months at sea, or three years in a shop and three to four years at sca, as sea time counts only one-lalif that of shore time, until the candidatc has "put in five years," apprenticeship or its equivalent.

If he fulfills the conditions he must pass an examination in arithmetic, cngincering subjects, and drawing, and then if these are passed the has to satisfy the inspector that he can answer various questions put to him orally-a test which lasts from one-half to two honrs.

As there are no examinations for stationary engineers in England, of course they do not require a license for such a job, but a great preference is given to a marine engineer holding his certificate when a position is open over his dryland brother who is not so fortunate as to have "followed the sea."

Hank.

A Repair to a Broken Stide Spindle Gland.

When a junior goes to sea he is sometimes apt to be more trouble than good, and an instance of this sort occurred on board a vessel making a long voyage where a juntior, whose strength was in excess of his wisdom, broke a piece completely off a slide spindle gland, owing to hammering the gland up in order to drive the packing in , as he was repacking the gland.

Fig. 1 shows the shape of the fracture, and it will be seen that a segment of the flange was knocked completely off. In order to repair this an iron ring was made of slightly smaller

internal diameter than the outside diameter of the flange. This ring was heated tup to redness, and after the broken piece of the flange had heen put back into place the ring was slipped over and contracted on ly cooling. In order to make a thoroughly strong job of the repair a piece of 3 -inch plate was cut to the same size as the gland flange, and holes cut in it for the spindle and studs of the gland to pass through; $1 / 3$-inch holes were then drifled through the gland flange, and the plate was secured by 3 -inch tap bolts and nuts both to the gland flange and to the broken piece (Fig. 2). In this way the repair, which was at first regarded as temporary, was made strong enough to becomic a permanent job and the gland is still in service.

Thomas Bzach.

A Ship on Fire at Sea.

Probably one of the most trying experiences which any marine engineer could encounter is to have to devise some means of coping with fire on board his vessel. The means for fire fighting are, of necessity, found to be of an inadequate description on board the majority of eargo vessels unless the fire happens to be discovered at a very early stage, and much then depends upon the ingenuity of the men on board as to whether they will bring their vessel and cargo home to port in safety. Most owners of vessels do the best they can to provide means for subduing a fire, but in the nature of things the chances on board a vessel are very much in favor
of the firc. On one ship, which loaded cotton at Galfeston in the United States, a fire was discovered in one of the holds when the vessel was about a week out of port on its way to Liverpool. Very shortly after the fire was discovered the decks above the fire began to warp with the heat. As soon as the outhreak was discovered the engineers on the vessel tore down a few piges from the connections in the engine room, broke the joints in the deck steam pipey and cit tiree holes in the deck above the fire in the hold. The pupes from the engine room were then fitted to the deck steam pipes, and steam was turned on to the fire in this way. At the same time the ship was turned ronnd and steered for Halifax in Nova Seotia. The steaning of the hold in this way kept the fire down considerably atid made the combustion a slow one. But things got gradnally worse, and the firemen could not steam the ship, inasurch as extra feed often had to be put on. This was necessary owing to loss of water, as the steam to the hold, of course, gave back no fresh water to the boiler. The donkey boiler was set away, but it soon becante salted and after three days it was fount to be leaking all over. Moreover, the main bnilers were also starting to leak. In order to keep the density down, the boilers had to be blown down vefy frequently, and this involved extra feed over and above the loss occasioned by the tire.

After 12 days the vessel managed to reach Halifax, when it was possible to obtain steam from the shore. Even then, it took another 14 days in ariler to get tlie fire put out entirely, and after everything was over, the ship's decks, over the fire, were warped into a series of cormgations, just like a lot of small bills and hollows. Aiter the necessary repairs to the boilers, which were considerable, and when the burnt eargo liad been got rid of, the vessel startel again for Liverpool and got home safcly and the owocrs of the vessel gave the engineers a very handsome recoguition of their service in connection with their fight against the fire. Fireman.

High-Pressure Cylinder Side and Bottom Knocked Out.
The stcamship "A_-" was on a vyyage from London to Glangow, when the ahove accident bappened. She was a ship of $t, 600$ tons net register, with compound engines of 220 nominal horsepower and cylinders 40 inches and 74 inches in diameter, respectively, with a stroke of 36 inches. She was about half way on her voyage and just off the coast of South Wales, when the bottom and side of the lowpuessure cylinder were knocked out. The cylinder cover was broken and the piston was split into five pieces; the lowpressure piston rod was twisted and bent in a most extraor. dinary manner; the high-pressure piston rod was broken through one of the eross-head bolt holes; the value gear of both engines was bent and strained scrionsly, owing to the pieces of the broken cylinder getting among the valve gearing: and a lot more damage was done which could not be ascertained while we were at sea.

The engineers then started and disconnected the engine, and, after a lot of work, the high-pressure engine was started and the remaining 300 or 400 miles were made and the vessel reached port safely. Considering the defective state of the high-pressure rod, and that the whole of the waste steam was discharged into the engine room, rendering it almost inaccessible, some credit, I think is due to the chief engineer and his staff for their coolness and hard work in such an emergency.

Upon examination of the damaged machinery, after the vessel had reached port, it was found that the whole bottom had been knocked out of the low-pressure eylinder, a large piece of it, several square feet in area, had been driven ont among the machinery and valve gear, several pieces weigh-
ing from 40 to 90 pounds had been thrown to different parts of the engine room and between the high-pressure eceentric rods. The stuffing box gland was also broken and rendered useless, the after side of the cylinder, at the middle of its length, was also forced out, cansing a latke rent; the cylinder was cracked down throngh the valve casing face, showing daylight through the aperture.

The accident is eonsidered to have been dne to the priming of the bailers under steam, owing to their small diameter. They were double ended, with a steam drum placed horizontally between them and running through the uptake, this drum was filled with gulps of water without warning. which was earried over into the engines before any precautiun could be taken to slow the mdown; it was afterwards decided to fit a drain cock on the drum, which gave the ensincer a chance to clear out the water periodically.
F. J. S. N

Trouble with the Feed Pump.

There is nothing more harassing to an engineer in charge of a vessel than to find parts of his auxiliary machinery always going w rong, and in one vessel considerable trouble was caused throtighout a voyage owing to the erratic behavior of the feed pamps.
After making an examination of the lifts of the valves and doink everything possible to find out the canse of the tronble, the conclusion was arrived at that the source of trouble must be sonething wrong with the main check valve. This it was magined was possibly "jambed" or was "kaksink" For this reason the boilers were fed for the remainder of the voyage by drawing the water from the hot well hy means of the donkey pump and filling into the boilers by way of the donkey checks. There were two boilers on board this vessel, but in neither case was it possible to ket the feed properly adjusted. evell with the main check valves full open, the feed-water just overflow ing and rumning into the bilges.
liy usinn the donkey pump as already explained, the vessel was brought liome to port and there the hoilers were opened ont. On examination it was found that the internal pipes frtted within the boiler to carry the feed-water up inside had heen perforated throushous their lenktha with small holes. These holes lad, duing the woyaze, lecome filled np, and this was the canse of all the trouble. The engineer who discovered what was wrong got a cross-ent chisel and joined all the holes together, making fong slits in the pipes, and there was no further trouble from this source.

It will be found in marine work that internal pipes in thoilers. except those which fit to the seum-cueks, are nothing but a sotarce of trouble and are of very little wse. When they are attached to clieck valses they are apt to corrode and fall off, and when this happens the feed-water, which is cold in comparison with the water alseady in the boiler, is sometimes projected against the combustion chamber plates, and these are consequently so much weakened at the point where impinging takes place that they frequently give ont at this point. For this reason the matter is of more than sccondary value.
11. P Romfe

A Broken Winch Valve Spindle.

Owing to the constant wear and vomewhat rotigh treatment which ships' deck winches reccive, there is frequently a goosd deal of troulde through unexpected breakdowns, and it may he of interest to record a repair which was made on a winch value spindle of mild sted which was broken in service. It is not claimed that this is the most perfect repair that could have been made; as a matter of fact an unnecessary piece of work
was done, which wilt be poinmed out later. As one learns, however, just as much from mistakes as perfect work it is worth while drawing attention to the repair as it actually occurred.
The sketch shows a view of the winch valve spindle and the valve itself, illustrating exactly where the valve spindle was broken through. This was brought about eisher by the way the nut constantly shook upon the spindle or by the corrosion of the spindle itself at the portion within the brase nut, probably due to electrolytic action. The repair was made as follows: The parts were taken adrift and the holes in the ribs on the back of the valve were filed out large enotagh to allow a piece of tube to pass through. This tube was screwed inside over its entire length with a $\mathbf{4}$-inch thread, and the sube was next screwed upon the length of the spindle, the broken piece then being screwed into the tuhe so as to meet the long end. For some reason or other the hole in the mus was also filed out

valve wimch apinule

to allow the tube to pass through, and the nut was placed in position between the two ribs before the tube was threaded through the large holes in the ribs. There is no reaton why this should have heen done, as the mut was of no use after the repair was finished, and the engincer who did the work and who could not explain why he troubled with the nut was con siderably chaffed about the wasted time. At the breakdown occurred at night, however, when the ship was discharging her earego, there may be some excuse for a mistake of this kind.
In order to keep the tube and spindle in proper position with relation to the valve two cotier holes were cut right through the tube and spindle, as shown in the sketch. These cotter holes were made by drilling three $1 / 4$-inch hales close together and then chipping through the metal between them with a eross-cut chisel. The cotters, which were then driven in through the tube and spindle, bore close up against the ribs at the back of the valve, and thus held the valve rigidly in its proper position. This repair lasted throughout the whole voyage without giving any more tronhle, and due credit must therefore be given to the engineer who did the work.
S. 1 Brown.

Temporary Repair of a High-Pressure Stide Valve Spindlc.

In a vessel which was steaming between the Tyne and Genna, a breakdown occurred in connection with a high-pres. sure slide valve spindle, which, as it is fairly typical of the unexpected occurrences which the marine engineer meets at sea, may be of interest to other peadere.

For some considerable time it had been noticed that the threads on the spindle were somewhat worn, allowing too mneh play to take place hetween the valve and its nuts, hut it had been considered that this could go on for some little tume longer before overhant and repair. On the occasion of the accident, however, the threads on the spindle and those of the nuts were completcly stripped, and this left the valve independent of the spindle. While the latter would work un and down the value was fast against the face on the steam chest and the engine naturally stopped at once. As it was necessary to get the ship into port as quickly as prossible temporary means were adopted to remedy the defect. The slide valve spindle was taken out and four holes were drilled along the length of the spindle sife by side. and by cutting the mital away bet ween the loles and fiting ug, a hole was made for a cotter about 3 inch thick by 3 inches wide. This was driven in above the
nuts and held them in place, the eotter being secured by means of a $1 / 4$-inch split pin. The steaner was enabled to finish the round voyage with this repair, and on arrival home the threads on the spindle were cleaned up and new nuts were made. The cotter had, however, proved its efficiency so well that it was decided to keep it in place as an extra safeguard against any klacking baik or stripping on the nuts, and for this reason it is described here, at it may be of we to other men in charge of marine engines.

An ice-Making Experiment.

Much ice is used on a modern passenger transatlatic liner, and most of this is made on board. The iee-making process is often a source of worry, for the ice must be "clear" and not cloudy. The presence of air bubbles in the water as whe freezing process is going on causes the ice to turn out cloudy. This is taking it for granted that the water is as pure as ean be procured. The iee is made either in a pail by the cold-air system or by the "rocker" principle, which comprises a number of wedge-shaped cans filled with water and immersed in cold brine, and kept rocking slowly by a motor to expel the air.

In a case where the ice was mate by the latter method trouble was experienced with the ice coming out cloudy. The eans were all tested to make sure they were tight and were regalvanixed, but still with the same result. Something had to be done, for the ice was for talle use. The cans were usually filled with a r-inch rubher hose; but this was a sure way of making air bubbles, erpecially if the hose did tht reach the bottom of the can, so we devised the following to overcome this:

One of l.ewis's Patent Pet Valves, shown fally in the sketch. was bound on to a common broom haudle and the rubber hose fastened to it, as shown. The water used was first hoiled in

one of the cooking boilers and altowed to cool; it was then allowed to flow thringh to the pet cock, which was held down in the can, upright, lyy the broom bandle. The stem under the fiber valve protruded beyond the end of the body of the cock about $1 / 4$ inch, almost the same lift being allowed the valve, and the action of all depended on this stem, as the same had to be pushed against the button of the can to allow the water to enter the can, thereby ensuring that the outlet for same was as low as it was possible to get.

When all the cans were filled, twelve in number, the brine was allowed its flow and the motor stafted. When made the ice, though not exactly perfect, was a good improvement upon the batches previously made by the same rocker when filled direct from the hose, proving that the main trouble was that otherwise useful fluid-"air."
M. J. L.

Published Monthly at

17 Battery Place New York
By marine engineering, incorporated
H. L. ALDRICH, President and Treasurer and at
Christopher St., Finsbury Square, London, E. C.
E. J. P. BENN, Director and Publisher
howard m. Brown, Editor

Entered al New York Pont Ofice as accond-clam matier.
Copyright, 1911, by Marine Engibeering. Inc., New York, Infranational Manisiz Emormerima is registered in the United Staten Palent Office.
Copyright in Great Britain, entered al Stationera' Hall, London.

Notice to Advertisers.

Chaspes to be mads in coty, ef in orders for advertising, must bo in our hands not later than the isth of the month, to insure ihe carrying ourt of such instructions in she issue of the month followisg. If proof is to be sub

Progress in Marine Engineering and Naval

 Architecture.The year 1910 has been productive of no startling or nulooked-for developments in either marine engineering or naval architecture. Continual progress has been made, however, along lines which have been more or less firmly established by previous development. As we have predicted in previous issucs, no attempt has been made to build large merchant ships of extreme speeds, but the question of speed still remains an important one in certain types of naval vessels. The construction of a large number of turbine-driven destroyers and battleships which, on trial, have nearly all exceeded their designed speeds, in some cases by several knots, emphasizes the capacity of the steam turbine for generating large powers when forced to the limit. Greater perfection has been attained in the design of condensing apparatus in the last few months, and perhaps it is largely due to this reason that better results are continually being obtained with steam turbines, both as regarils economy and the development of high powers per ton of machinery weight. Since the guestion of speel has been largely confined to warship
construction, the use of steam turbines in merchant ships has not increased with any great rapidity. Only comparatively few merchant vessels have been completely equipped with steam turhines during the last year, and, in spite of the good results obtained in certain intermediate types by the combination of reciprocating engines and low-pressure turbines, this arrangement is adopted only in a few cases. The excellent results obtained during the year with the steamer Vespusian, which is fitted with Parsons turbines and spur reducing gear, whereby the water consumption of the vessel for all purposes was decreased to percent below the most economical results obtained with reciprocating engines, argue very strongly for the adoption of this mode of propulsion in cargo vessels of moderate speed. The results which will be available in a few months from the United States collier Neptune, which is being fitted with Westinghouse-Parsons turbines and the Melville-Macalpine reducing gear, will give additional data regarding the efficiency of this method of propulsion which, if expectations are met, will undoubtedly do much to advance the cause of the steam turbine. Aside from speed, there is one characteristic of merchant vessels which has developed remarkably during the year, and that is size. The construction and successful launching of the White Star Liner Olympic are but the beginning of an era of construction of vessels of immense tonnage, though of moderate speed. It is quite likely that orders for more vessels of this type will soon be forthcoming.

At the beginning of 1910 sweeping claims were made for the immediate development of oil and gas engines for marine purposes, but up to date developments in this direction must be sought largely within the confines of experimental laboratories and workshops. Much experimental work has been done to good purpose, however, and, from present indications, the coming year, or at least the immediate future, will witness a remarkable development in this direction. The activity of a number of British and Continental engine builders in the development of a practical twostroke, double-acting. reversible Diesel engine has resulted in orders being placed for a number of vessels to be propelled by such engines; the average power, however, is comparatively small. Extensive experiments have been made with single cyliuders developing large powers; but the results have, so far, not been made public, nor have any practical designs yet appeared involving these characteristics. Apparently less attention has been given to the development of suction gas plants than to the oil engine, but moderate-sized plants of this type are now under construction in America. One of 300 horvepower, the engine being of the fonr-cylinder, four-cycle, inclosed crank-case type, is already eompleted, and another. developing 500 horsepower on two shafts, will be completed in the spring. The increased activity which is manifest in
the development of the oil engine will undoubtedly have a good effect upon the development of the inter-nal-combustion engine using producer gas, and, as the results obtained with the earlier installations become better known and the difficulties and disadvantages are gradually overcome, the installation of these plants in comparatively large sizes will be a matter of course.

Internal-combustion engines for motor boats and small commercial vessels have reached a high state of efficiency, and the designs for small power boats themselves, particularly those for cruising purposes, have attained a high degree of perfection. This branch of marine engineering has developed in America to a greater extent than elsewhere, due to the great demand for boats of this type. The influence of longdistance ocean racing has been very beneficial, and, as a result, motor boats, varying in size from 40 feet to too feet over all, have been turned ont which combine exceptional qualities of seaworthiness and reliability. The engines, for the most part, are of the four-cycle, single-acting type, and, until some cheaper fuel than gasoline (petrol) is available, it is doubtful if the double-acting engine will be much in demand. The field of the small internal-combustion engine is not necessarily restricted to specially designed motor boats, but, as we have frequently pointed out, there is an adaptation which has attractive possibilities from a financial standpoint, and that is the use of internal-combustion engines operating on some cheap or moderate-price fuel for use as auxiliaries in large sailing vessels. The usefulness of sailing vessels ascargo-carriersincompetition with tramp steamers has gradually lessened in recent years, simply because the sailing vessel cannot be relied upon to maintain a schedule, whereas the power-driven boat, althongh more expensive to operate, can be depended upon to maintain a certain average speed. The use of anxiliary power in large sailing vessels would place them upon an equal footing with the tramp steamer, as far as the maintenance of an average speed is concerned, and would give thern a decided advantage, since the power required would be small and the engine would be needed during only part of the voyage. The snccessful use of oil engines in English fishing boats and trawlers is a developnient which at least points the way towards the re-establishment of the sailing ship in commercial navigation.

Improving the Economy of Reciprocating Engines.

Mr. Morison's paper on the "Economical Work ing of Reciprocating Marine Engines and Their Anxiliaries," which we print elsewhere in this issue, merits the careful attention of both sea-going and superintending eugineers. The author's recommendations relate to the proper vacum for reciprocating engines and the disposal of the exhaust from the auxiliaries so as to improve the economy of steam consumption. He states that there are hundreds of ves-
sels now operated in tropical waters where the best vacnum obtained is from 20 to 22 inches, and it is not considered worth while to attempt to obtain any better results, although if the engines antl condensing apparatus had been suitably designed to carry a vacuum of 27 inches in the tropics and the feed heating arrangernents had been adequate, a saving iu steam consumption as great as 10 percent might have resulted. In view of these facts, he considers that there are economic possibilities in reciprocating engines which have heen allowed to remain latent, and, while considerable attention has been given to means for obtaining higher vacua in the effort to improve the economy of steam turbines, the possibility of a similar gain in the case of reciprocating engines seems to have been overlooked. In the anthor's opinion, the design of the engine itself offers no hindrance to the use of a bigh vacuum if the proper cylinder proportions and adequate exhaust ports and passages are provided, and he quotes the results of tests to show that the power increases and the steam consumption per brake-horsepower decreases with approximate uniformity up to the highest vacuum that can reasonably be carried on a steamship. After pointing ont that the air-withdrawing capacity of an air pump may be regulated by varying the temperature of the pump, he describes a simple form of temperature regulator to accomplish this. With the assurance, therefore, that a high vacuum can be obtained even in tropical waters, and that the economy of triple and quadruple-expansion engines will be directly increased thereby, he turns to the disposal of the exhaust from the atuxiliaries, which constitutes about 15 to 20 percent of the total steam generated in the boilers, and shows low about 95 percent of the heat which it contains can be returned to the boilers by using it to heat the feed-water to the limit at which the ordinary ram feed pump will work. This arrangement of condensing and feed heating apparatus obviously involves important economic advantages, and it will well repay investigation by any engineer who is in the habit of working with a low vacumm in the condenser simply to obtain a high temperature of air pump discharge water and who then tlirows away heat by exhausting the auxiliaries into the condenser, because the feed-water is already as hot as can be handled by the feed pumps.

There are, however, other considerations involved in the problem which must not be overlooked. For instance, the amount of circulating water required in obtaining a high vacumm is vastly more than is necessary for a low vacuunn, and the power required to pump this extra water will be considerable. Thus, in making any changes to improve the economy in steam consumption of the main engines, any possible increase in the amount of steam required by the auxiliaries should be carefully investigated, to see that a positive increase results in the over-all efficiency of the plant.

Progress of Naval Veasels.

The Bureau of Construction and Repair, Navy Department, reports the following percentages of completion of vessels for the United States navy :

BATTLESAHI'S.

	Tons.	Knote.			Dec. 1.	1.
Florida	30,040	3014		Yard, New York		7
Utab	80,000	80		York Shipbuilding	82.a	. 3
Arkarsa	36,000	50%		York Shipbuilding	89.8	55.4
Wyoming	26,000	30\%	Wm.	Cramp ${ }^{2}$ Soas	68.2	48.6

TORPEDOBOAT DESTROYEKS.

Sterrett	745	296	Fore	River Shipbulling	.. 99.0	100.0
McCal	743	29%	New	York Shapbuilding	Co.. 98.2	90.1
Burrews	742	29%		York Sbipbuilding	Co.. 96.0	96.3
Warrington..	742	2935	Wm.	Cramp 5 So	91.2	02. 7
Mayrama	745	391/	Wm.	Cramp Son	90.3	91.3
Monaghan	742	2916	Newp	It News Shipbuild	Ca. 83.5	61.7
Trippe	745	20\%	Hath	Iron Works	81.8	87.6
Walle	768	205	Fore	Kiver Shyphaitding	73.3	77.6
Ammen	743	39\%	New	York Shipburiding	78.9	82.0
Patterson	765	$291 / 2$	Wm.	Cramp \& Soas	34.4	\$7. 0
SUBMARINE TOKřdo moats.						
Seal			Newp	't News Stiptuildi	Ca. 72.9	73.7
Carp......			Unio	Iron Wor	74.0	78.8
Marracuda .-			Unio	Iron Wo	75.0	78.2
Picker				Soran	68.0	71.0
Skate			The	Moran Co	68.0	70.9
Skipjack				Kıver Shpbuilding	e2.2	76.9
Sturgeon			Fore	River Sbipbuilding	64.3	71.8
Tuns			New	't Newn Shiphuildiag	Ca. 46.7	
Thrasher		-6.	Wm.	Cramp \& Soas.	23.0	36.0

ENGINEERING SPECIALTIES.

A Fogometer.

An instrument has been devised by W. J. Smith, Maritime Building, Seattle, Wash., for accurately deternsining a whip"s position (both as to the bearings of and the distance from a lighthouse, etc.) in foggy weather by the use of wireless telegraph and sound waves. The instrument depends for its operation upon the relative velocities of wireless and sound

waves, If a wireless station sends a "wireless" simultaneously with the regular sound signal used during fog, the time interval in seconds between the tick of the wireless instrument on board the ship and the moment when the sound signal reaches the ear, multiplied by $1: 23$ and the result divided by 6080 , will equal the distance of the ship from the lighthouse
where the signals were given, and the ship will be somewhere on the arc of a circle, at that distance from the shore station. Now, if the ship be run on her course for a certain distance by \log, and her position again determined by wireless and sound, she will again be somewhere on the arc of a circle at a distance from the shore station corresponding to the last observation, These observations furnish data for the three sides of a triangle, by means of which the exact position of the vessel can be determined. If the vessel and wireless station are equipped with submarine signalling apparatus, this can be used instead of the usual fog signal, using, of course, different constants in the calculation.
The Fogometer consists of three scales, one of which (A) is laid parallel to the course of the vessel, and which is graduated to show the distance traveled by the vessel between observations and two hinged scales, one of which (B) is mounted at one end of the fixed seale and the other upon a sliding block, so that it can be set to the distance traveled by the vessel. These two movable scales are graduated to correspond to the distances of the vessel from the shore station, as found by the two sets of observations. By placing this instrument on the chart, parallel to the ship's course, and properly adjusting the scales to the values found, the position of the vessel is shown at once.

Shore stations may be called upon to diapatch sound and wircless waves simultaneously, at intervals as desired, during fog, and by this means the navigator ean determine his position with considerable accuracy.

Wllliams Spark Piug Wrench.

J. H. Williams \& Company, Iso Hamilton avenue, Brooklyn, N. Y., have just placed on the market a $1 / 2$-inch spark plug wrench which involves a concentration of service, in that the tool has a "box" end adapted for use as a $1 / 2$-inch spark plug

wrench and ant "open" end suitable for tire lugs, 3 -inch United States standard cap screws, He-inch A. L. A. M. standard nut and cap serews and $9 / 16$-inch set screws. The tool is dropforged from steel, and has been designed for convenience and reliable service about automobiles, motor boats, internal-combustion engines, etc.

The Ingram Fuel Oll Burner.

Recent interest in fuel oil as a sonrce of power for marine and stationary plants has hrouglit into the market numerous devies of more or less merit for converting the crude oils and residuum used for this purpose into a highly combustible gas or vapor at the furnace. As is generally the case in the development of a new field in engincering, the natural tendency has been to the extremes in design. On one hand, there are a number of hurners that are very effective in bringing the oil to a highly combustible state, but they are so complicated with intricate and delicate parts as to render them impracticable for the severe usage to which they must necessarily be subjected; while, on the other hand, there are numberless so-ealled burners with clains to simplicity whose sole function is to inject the oil into the fnrmace regardless of its efficient combustion.

In Figs. 1 and 2 is shown the Ingram burner, which it is claimed combines both simplicity and efficiency. It will be noted that the number of parts has heen reduced to the minimum: all moving parts entirely eliminated, and that there are no restricted cil passages that are not readily accessible for eleaning. It is of the class of burners commonly known as the ontside-mixer type, and is exempt from the clogging, due to
carbonization and foreign substauces in the oil, so common to those of the inside-mixer type. On a recent trial trip of a vessel fitted with burners of the inside-mixer type one Ingram burner was installed for comparison." While raising steam to get under way the burner was adjusted and was not altered

U'nited States Engineer Department, coasting steamers, river steamers, etc. The Carlisle \& Finch Company, 234 East Clifton avenue, Cincinnati, Ohio, have long been connected with this particular industry, being among the first to recognize the value of the horizontal carbon are.

na. 1.
until the vessel returned to her dock, while all the other burners were constantly being relighted from the Ingram. This vessel is now installing a complete outfit of Ingram burners. They will atomize with either steam or air, and it is elaimed are highly efficient over a very wide range of pressures on

This company has given particular attention to developing a thoroughly practical line of searchlights that will require little attention, and that will always be ready and reliable. The type shown herewith is used extensively on Western river steamers, where the light is placed at the forward end of the

boat, and its motion eontrolled by the pilot in the pilot-lsouse. The lamp is provided with both horizontal motion and vertical motion, each of which is controlled by separate cables.

A Small 13rooke Motor.

J. W. Brooke \& Company, I.td., Lowestoft, have recently brought out a sinall 3 -horsepower two-stroke motor, running with magneto ignition, which is particularly suitable for use in small ship's dinghies and pleasure boats, where convenienee is of more importance that speed. This motor is designed for reliability, and extensive preparations have been made by the manufacturers for producing them at low cost. The power developed is 3 horsepower at 900 revolutions per minute. There are many gond features about the motor, chief of which is the skew-driven magneto with a single wire from the magneto machine to the sparking plug, and an automatic carburetor with only the throttle adjustment on it.

Svea Caloric Engine.

In our issue for August, 1905, we described briefly the Svea caloric engine, which is an internal-combustion engine operated by hot air. The air is heated from below, a volume of cool air being split up iuto thin sheets, and then passing over heated plates at a predetermined velocity absorbing the heat radiated from these plates. A 2 horsepower engine with cylinders 4.25 inches diameter and 4875 inches stroke has recently been tested with the following results: Pressure, 40 pounds; tem-

perature, 450 degrees F.; revolutions per minute, 200; indicated horsepower, 2-4; brake horsepower, 1.7 : fuel per brake horsepower, 4.9 pounds. Considering the fact that a steam engine of the same size would probably reguire from to to 15 pounds of fuel per horsepower-hour, the Svea engine shows remarkable economy. It is estimated that it a 100 -horsepower engine of this type, designed for a pressure of 250 pounds at a temperature of 700 degrees F., an economy of 1 pound of fuel per horsepower-hour or less would be obtained. This engine is controlled by the Svea Caloric Engine Company, t19 Nassau etreet, New York.

Rope Tests.

In order to deternine the amount of variation in the behavior of specimens of manila rope a large number of tests have been made recently by the Plymouth Cordage Company, of North Plymouth, Mass. Twenty-two samples of 3 -inch manila, each specimen the product of a different manufacturer, were compared as to weight per unit of length and average tensile strength. The resulss were plotted with the Plymouth Cordage specimen used as a standard, and the percentage variations either plus or minus of the different samples figured from this standard.
The extent of these variations is remarkable. the weiglsts varying from minus 0.6 percent to plus 22.6 percent, with an average deviation of plus 7.85 percent, while the variations in strength were even more striking, ranging from plus 2.5 percent to a minimum of minus $43-7$ percent. The average strength deviation from the Plymouth specimen was minus 14.6 percent. Not only is the extent of these deviations from a given standard surprising but also the faet that there seems to be no logical relation between the shape of the weight curve and that of the strength eurve. In many cases the latter rises when the former shows a depression and vice versa.
A very evident lesson which these results points out is that there is room for considerable work in the matter of standardizing the production of rope so that size and weight will give more indication of the amount of strength to be expected from a sample. How shall anyone be able to foretell the load that may safely he carried by a 3 -inch manila rope when the specimens tested in this series showed results varging all the way from 9,010 pounds for the maximum to 4.946 for a minimum, with the remaining samples scattered promiscuously over the area between? If rope is purchased with its strength based upon the minimum, which would naturally be a safe method, it is likely to have a maximum strength, in which case it could
well be of smaller size, while if the average value was taken it may possibly be considerably wcaker than has been figured upon, with a cousequent shorter life.

It certainly seems that the standardization of rope making should be made the object of rope makers everywhere, and the work of the Plymouth Cordage Company in this series of tests is an important step in the right direction.

A New Pels Splitting Shear.

Henry Pels \& Company, go West street, New York, exhibited at the recent Brussels Exposition a splitting shear which has added features of interest, among them being knives of extra length, a patented stripper with a very large bearing surface, and an adjustable gage and guiding pin. These aid materially in reducing the difficutties met with in dealing with

heavy plates of large dimensions, and greatly increase the speed of cutting.

The construction of the product of this eoncern is well known to the trade. The frame is built of one, very heavy, rolled, open-hearth steel plate, reaching in the largest maehines a thickness of 6 inches. The tangent and straight channels are milled out of the frame, and the fact that these channels are smooth and without fillets, it is claimed, makes the passing of the plates through the shear an easy proposition.

The tool is built in eight sizes, the smallest dealing with steel up to $3 / 6$ inch, and the largest taking care of plates $1 / 2$ inches in thickness. The illustration shows a machine of medium size, which is capable of cutting plates up to $1 / 4$ inch in thickness and of unlimited length and width. The knife is 20 inches long, and it is claimed will shear at a single stroke a $1 / 2$-inch plate 18 inches wide. The frame is $51 / 4$ inches thick, and is guaranteed to stand up under the severe strains of cutting at the highest capacity continually with ease. Only 6 horsepower is required to drive the machine, and it weighs approximately 6,000 pounds.
and is guaranteed to stand up under the severe strains of cutting at the highest capacity continually with ease. Only 6 horsepower is required to drive the machine, and it weighs approximately 6,000 pounds.

Beloit Lever Splitting Shears,

Slater, Marsden \& Whittemore Company, Beloit, Wis,, have on the market a line of splitting shears designed for cutting plates from $1 / 4$ inch to $1 / 2$ inch thick by hand. The shears are operated by a lever, but the lever works from the back of the machine, so that the operator is out of the way when cutting large sheets. The bodies are offset so that when splitting

large sheets the metal will pass through freely. The knives are adjustable and reversible, giving four cutting edges. They are also easily removed for sharpening. In the machines designed for cutting $1 / 4$-inch and $3 / 8$-inch plate the knives are $61 / 2$ inches long, and for cutting $1 / 1$-inch plate the knives are 7 inches long.

COMMUNICATION.

Simpson's Rule for Beam of a Vessel.

Edtor International Majaxe Enginetring:
Referting to the letter by " H " in your January issue, in which your correspondent directs attention to formula 14 on page 45 of "Simpson's Naval Constructor" (D. Van Nostrand Company), I beg leave to state that in the first edition of this book the large vincula embracing the two first terms was omitted in printing, but was corrected in the second edition, which gives the formula :

$$
B=\sqrt{ }\left[M-d\binom{5 \propto-2 d}{6 \propto}\right] \times \frac{d}{m}
$$

Had your correspondent traced the genesis of this formua by referring to Nos. 7 and 17 on the same page, and compared these with pp. 12-t5, he would readily bave noticed the omission referred to. The formula is a combination of Normand's approximate formula for the height of center of buoyancy, and the approximate formula for $B . M$. expressed so as to give the required breadth of waterline corresponding to a given metacentric height.
G. Stimpson.

New York.

TECHNICAL PUBLICATIONS.

The Mechanical World Electrical Pocketbook for 8 gin. Size, 4 by 6 inches. Pages, 270. Figures, 68 London, 1910: Emmott \& Company, Ltd., 20 Bedford street, W. C. Price, 6d. net.

This book is a companion volume to the "Mechanical World Pocket Diary and Year Book" which is reviewed in this issne. As has been the custom in previous years, the book has been thoroughly revised and brought up to date by the addition of new material. Among the important additions to the book this year are tables of current densities; permissible temperature rise; percentage losses in electrical machinery; units of illumination; current consumed by incandescent lamps; life of glow lamps; depreciation allowance; etc. Some of the sections which are briefly treated in this book are considered more fully in the Pocket Diary and Year Book and readers are referred to that volume for information on such subjects.

Nautical Technical Dictionary for the Navy. English, French, German and Italian. Volume 11.; H'art 11. Size, $61 / 4$ by $91 / 4$ inches. Pages, 1,115 . Pola, Italy, 1910: Mitteilungen aus dem Gebiete des Seewesens. Price, 20/to.
This is the second volume of a dictionary which gives in detail, in four languages, all technical expressions relating to nautical maritime science, and information connected therewith. It includes that part of the alphabet from L to Z . The dictionary is arranged in two ways; first, alphabetically with English and French words in sequence: and second, systematically, aecording to the similarity of the technical application of the words. The authors have used the greatest care to search out the correct technical meaning of every nautical and technical expression, so that the book may be valuable for reference to magistrates when trying maritime cases where seamen of all nations have to be dealt with. The value and usefulness of the book is apparent and its accuracy can be vouched for by the large number of distinguished collaborators who assisted in the preparation of the volume.

The Indicator Handbook. Part I. Fourth Edition. By C. N. Pickworth. Size, 5 by $71 / 4$ inches. Pages, 142 Figures, 93. New York, 1910: D. Van Nostrand Company, Price, \$t.50.
Little needs to be said regarding a book which has been before the pnblic for such a long time, and which has been so favorably received by practical engineers. The present edition, however, has been enlarged and extensive revisions have been made where necessary. Recent improvements in the manufacture of various types of indicators have necessitated changing that part of the book devoted to the description of different instruments. A new chapter has been added which is devoted exclusively to a consideration of the indicator for oil engines; also descriptions and illustrations of reducing gears for gas engines are included, while optical indicators, pressure indicators, etc., are also considered. This work has long been recognized as a very complete and practical treatise on the steam-engine indicator, and we are pleased to find that the additions are fully as comprehensive and accnrate as the original matter.

The Mechanical World Pocket Diary and Year Book for 1911. Size, 4 by 6 inches. Pages, 422 . Figures, 94 London, $1910:$ Emmott \& Company, Lid., 20 Bedford street, W. C. Price, 6 d . net.

This is the twenty-fourth year of publication of this pocket book and each year the contents are enlarged and brought up to date. Some thirty-two pages have been added to the present volume and, by careful revision and condensation of some of the more permanent contents, space has been afford-
ed for the iniroduction of a very large amount of new matter. Particular altention is directed by the publishers to an important chapter on the shapes, speeds and feeds of cutting Iools, with supplementary sectious dealing with milling cullers and twast drills. Additions hase been made to the section on wheel gearing and entirely new sections on standard screw threads, high-speed steel and its treatmest, annealing, hardening and tempering, and the constructive details of gas engines, have been added. There are also new tables and data on marine boilers, riveled joinis, etc., and a table of steam fittings, has been included, together with several additions to the tables of weights and measures. Taken all in all, this book provides a eonvenient and valuable reference lowk for marine engineers.

SELECTED MARINE PATENTS.

The publication in this column of a patent specification does not necessarily imply editorial commendation.

American patents compiled by Detbert H. Decker, Esq., registered patent attorncy, Loan \& Trust Building. Washington, D. C.

971,676 SEMI SIHMERGED SURMARINE GUNBOAT AND TORPEIO HOAT HORKY IEERTZBERG, OF GROOKLAN, AB. HOT A, 1OW, OF HOKSESH1HE AN1 MAUKICEJ, WOHI UF NEW YOKK, N. YRASSIDNORS TO ABBOT A. LOW, OF IIUASE.

Clawn 1--i submatine Nestl, havtng a cannigg tower projecting up ward therefrom, and a burkrt shaped hottom secured st the base of the
rmuning tewry within and walling off the interior of the tower from the

remainder of the interior of the vesset, said bucket-shajed bottom heing depuemplale to as to afford free access io the interior of the conming tower, Sin laime TION PROPELLING MECIINISM. WILI.IAM 971,0קS REACIION PROPELEING ME
SOI.OMON, OF CIEEENNE, WYOMING,
SOI.OMON, OF CIEYENNE, WYOMING, of reaction tubre, weparale ducte leading from naid reservoir each consected to one of ssid tubes, valvea in suid ducta having their peite dis. posed at angles to rach other, a common tem wherenai all of asid valves are mounted wherehy the ducts wil have hire reapertive valves oper and eloerd in succestion, aprinie motor, an air compremor actuated by the prime motor, and an operative consection het ween the prime mot
valve stem to totate sald stem as the ensine operates, Une elaim.
97s.0n4. GYROSCOPICALIV.CONTROLLFI TORPEBO.FIKIXG ATP.0RATGYROSCOPICALIV.CONTROLLFII TURPEDOFIKING AllyAk.
NAlaie. 1.-The combination with a torpedo carrying an explosive charke, of a Eyrowcope notunted in and totpedo, and mieana actuated by

said syrowape for firing satid eharge when the torpedo is deflected throush a predeterminod angle from its oinginal course. Foar elaims. CLEBRFIANI) VESSFLLLOMDING ALARM. JABES GEDEON, OF
 OF Cleveland, olio.
Cloven 1.-In a vesarl loading alarm, the combination of a mand pupe located whthe the hull of the verterl and conumunicatang with the water cultate of the huil, a vertkal tube theictn opern at the buttom, a windlans for aljusting asid tube with relation to the draft of the reomel, electrical termunals withan said tube, an arm pivetally connected to oine of kaid terminals, A float suspended from sand arm. and adapted to saiee the arm tuto contact whithe othre termunal whon the watet level reachen a

 CRUPERLANTS FOR TURPEDOES. MAX A.1.ASS, OF VIL.ANS, ALSTRIA-ILXGARY
driviag fuid, coerprisumg a roil throukh whick the tention of a gaseous anviactylud, coerprismig a roil throukh which subl diving floid paws, amace, an acrelylene grnerator mounted on the inner face of sating the toaprdo and means for lerding waid burner therefrom. Two chams.

British patents compiled by G. E. Redfern \& Company, charlered patent agents and engineers, 15 South street. Finsbury, E. C., and 21 Southampton buikling, W. C., London.
2E,346. PROPULSION OF SHIPS. THE BRITISH THOMSON. HOUSTON LUMPA:Y, LTD LONDON.
Hy thas invention the propeiler is driven in forward direction hy merams of an electrie motor supplited with current frobin generator driven being eficeted by a relatively low speed turbine conanected directly of

through gearing to the propeller shaft. By using a separate turhine solely for reversmg purposes the tarbine driven wenerator and motor are always kept in the proper phase relation, and powerful and effective agencies are always available for propeiling the ship In either direction.
2E,G12, HOU'FFKG FOR L.OADING STEAMEKS. W. H, HNUHANN, NEWCASTI,F, THN: TVE.
The objecte of thin invention are to prevent hreakage of the coal bring fed down the chute and to save tome and labor during trimaming. To thas end, the hopler it made in mectiona connected telewcopirally. The lowermost aection has connicted to it two chains, which pas thraugh eyes upon the intermediate sertions, the apper ends of the chains pasing around dramin rotatatily mounted in the mouth of the hopper. Means are provided far rotating the sbaft so as to wind in the chains and rarse progress of hunkering. progresi of hunkeeing.
ST,GN\% MAINTENANCE OF TITE EQUILIHRIUM OF VES, SEI.K, ETC. BY (;)ROSCOPIC ACTION. R. SCIERI, DRESDEN. Gr. RBIANY.

I'atent No, $21, \times 13.1900$, to thia Inventor, deacribea the application of means for accelerating the speed of precession of a gyromeppe fin order to dirounish the oscillifoon of the carriage, and in patent of addition, Na
$87,500-1909$, the allhtionat forces acting on the pyromcoge are made dependent In valur isn the speed of poecestion. In the prearnt invention

the servo-motor acts on the gyroscope frame through an elastie medium 12, under the intluence of which the point 6 in moved upward, and which excrim a moment on the dylok ope that, when the lever lengths 3 and the diotance apart of points is and \& The The latter, lourever, in in. with the distance apart of pamis 14 and k, The latter, burever, win. exerted hy ipring 12 Is varied so that the additional inotnent acting on the Eyromepe is controlled hy the servo-motor.
25.194. SUBMAKINE SOUN1) SIGNALING. J. GSRDNER, FI.FETWOOD.
By this invention the ship's sides are employed an daphragms to colIect virations for transmission to a receiver of menalans devier. In order to avond any othet than lateral vilarations the inicrophones are
minuntral on an inertia ring weighted at its frre aide, or it msy be cut

there. A resistance may also te includerd in the circuil to damp longi tuilinal vibrations. of devace at each side of the ship is connected hy bwich with a telephone curcuit, or, with a relay for visual sumaling *o

Fach main blade of the propelter is prowided aith one of a series of ausilary darecting blades, each series cornprisung one or more elements fixed on the bous en erhefum on the satne sode as the arting face of the main hlate, and tbeir phich is lexs than that of thr main Macie, decteasing Trom one directing limbe to the uther. With thas propeller a progrenave

Motor Boats

By Dr. W. F. DURAND

THIS is the only book which covers the subject of motor boats from a scientific and engineering point of view. It is written in such simple language that any man who knows anything about motor boats can understand every word of it.

It deals with the following subjects:
Oenefal Protlem of the Meter Boat
The Ialsranal Cembuttion Enelise. Ceneral Priaciptes The Intarnal Comportion Enalae. Appllcation to Marine Sorvice Carturetion and lonision The Design of Form
Practical Beat Construction
Laying Down and Assemeling Pow er and Sesed
Enduramee and Radius of Actlon
Trousles, and Wow to Locate Them
Recing Risles and Tims Allowance
APPENDIX
Use of Aleahol as Fuel lor Cas Englnes Kerseene Englaes at Developed Ue to Dote

210 Pages, $6 \times 81 / 2$ Inches. Price, $\$ 150$. 6/5

Iaternational Marine Englneering

Christopher St, Fiaskury Sq. Whitehall BIdg, 17 Bettery PL. LONDON, E. C.
NEW YORK CITY

PRECTIGAL MABIIIE ENEIIEEBIIG

MARINE ENGINEERS AND STUDENTS

 WITHAlda for Appliosats for Marine Englasers' Lionnees By PROR. W. F. DURAND
SECOND EDITION, PRICE $\$ 5.00$ ($21 /-$)
THIS BOOK is deroted exclusively to the practical side of Marine Engineering and is especially intended for operative engineers and students of the subject generally, and particulariy for those who are preparing for the examinations for Marine Engineers' licenses for any and all grades.
The work is divided into two main parts, of which the first treass of the subject of marise engineering proper, while the second consists of alds to the mathematical calculations which the marine engineer is commonly called on to make.

PART 1.-Covers the practical side of the sobject.
PART II,-Covers the general subject of ealculations for marine engineers, and furnishes assistance in mathematics to those who may requlre such aid.

The book is iilustrated with nearly four hundred dlagrams and cuts made specially for the purpose, and showing constructively the most approved pracife in the different branches of the subject. The text is In such plain, simple English that any man with an ordinary education can easily understand it.

FOR SALE BY

INTERNATIONAL MARINE ENGINEERING
17 Battery Place, New York, U. S. A.
Chrietosher Street
Finabury Sauare, K. C., London

TRADE PUBLICATIONS.

amprica
A handsomely printed and illustrated catalogue on ball bearings has been published by the Hess-Bright Manufacturing Company. Philadelphia, Pa. A free copy of this catalogue, $580-\mathrm{A}$, will be sent to any of our readers upon application to the company.

A 280-page catalogue will be sent free to any of our readers upon request by the William Powell Company, Cincinnati, Ohio. This catalogue sloould be in the hand of every marine engineer and ship owner. It lists valves of all kinds, lubricators of many styles and a large number of similar marine specialties.
A neat vest-pceket size diary for 1911 has just been published by the Westanghouse Electric \& Manufacturing Company, Pittsburg, Pa. Besides containing the ustal space for daily memorandums throughout the year there are a large number of useful tables on various subjects of interest to boiler makers, engineers and other professional and technical men. Among these are tables of the Melville-Macalpine reduction gear, analyses of heating value of American coals, statistics of power plant duty, and a great deal of information regarding electric lights. One of these diaries will be sent without cost to any of our readers on application.
"Automatic Controlling Valves" is the title of a catalogue published by the Ideal Antomatic Manufacturing Company, 125 Watts slreet, New lork. This catalogue should be in the hands of every engineer and ship owner, and a copy will be sent free to any of our readers on application. The Ideal automatic pump governor is an oil-controlled, piston-actuated. pressure-controlling valve for governing pumps workiug under a specified pressure pumping air, oil, salt or fresh water, ammonia. ctc., and is so sensitive in its operation that the slightest break in the pressure will immediately start opening the valve, thereby supplying steam to the pump. The ideal governor will prolong the life of the pump by it not doing unnecessary work, causing unnecessary wear and tear and useless waste of fuel, as would be the case if the pump was equipped with a relief saiety by-pass valve. For marine uses the Ideal governor is the only pump governor that has ever been approved by the National Board of Supervising Inspectors of Steam Vessels and by the United States navy, and may be used aboard ship on the salt water fire pumps, salt water santitary pumps, feed-water pumps, fresh water pumps, pumps for hydraulic purposes and ash pumps. For stationary or land uses the Ideal governor is adapted for all kinds of pumps, including elecator pumps, turbine step-bearing pumps, automatic fire sprinkler systems. ammonia compression engines, compressed air or gas machines, hydraulic apparatus, fire engines, hydraulic rams, or, in fact, any apparatus requiring an automatic pressure controller."
Boiler makers' tools are described in Catalogue No. 27. just issued by the J. Faessler Manufacturing Company, Moberly, Mo. This is an unusually handsomely-printed and illustrated booklet of 32 pages, and it will be sent free to every one of our readers upon request. Roller flue expanders, sectional beading expanders, flue cutters, patch-bolt countersinking tools, etc., of every description are description are described and illustrated in this pamphlet. The J. Faessler Manufacturing Company will ship stock tools, or make up a reasonable number of special tools for any responsible party subject to sixty days' free trial, with the distinct understanding that unless the tools prove satisfactory they may be returned at the manufacturer's expense. "Faessler boiler makers' tools first appeared thirty years ago. Ever since we have specialized on this one line. We have studied every phase of the steel question, utilized every advance in metallurgy and have equipped our shops for the most approved methods of machining and thermal treatment. Our complete facilities for producing the strongest, most durable and most efficient parts, enable us to make tools that stand the hardest knocks of all-year-around service. The Faessler tools are the recognized standard, and have justly earned their good reputation is well evidenced liy their use in United States government service. in leading American railway and contract boiler shops and in every civilized country on the globe. If you are already our customer, you appreciate the truth of these statements. If you are not, we hope you will investigate carefully the tools listed on the following pages, read our guarantee and trial offer on page 32 of our catalogue, and then let us figure on your requirements. We are always ready to advise prospective customers to their best interests, and we solicit inquiries on any matters pertaining to our product.

Among the great variety of hydraulic tools and machinery made by the Watson-Stillman Company, and described in its catalogue, 188 Fulton street, New York, is a forcing press made with 18 -inch by 24 -inch platens and for 60 or 100 tons pressure. The crane bracket and beam at the right permit the work to be picked up from the truck, swung onto either bracket shelf and shoved onto the platen with little exercise or loss of time. The shelves being removable, can be taken off for jobs where they would be in the way.

The 1912 catalogue of the Bantam Anti-Friction Company, Bantam, Coun., is upon our table. As usual Mr. W. S. Rogers, president, engineer and publicity director of the company, has stepped outside the beaten path of machinery catalogue builders and given us something new. The illustrations of the various types of roller and ball bearings are printed in colors, tbus giving the user a distinct idea of the quality of material going into the make-up of the bearing, besides adding to the beauty of the pages. The dinensions aud prices of the different kinds of bearings are concisely stated. Many new types and forms are shown, while the excellent half-tone on the first page shows the prosperous growth of the works of the company during the past five years. Every purchasing agent, as well as engivecring drawing room, should have a copy of it.

Tube Cleaners for steam boilers, condenser, heaters, etc., are the subject of Hulletin No. 32, published by the Roto Company, Hartford, Conn. "Economy, safety and durability of steam boilers depend on keeping the tubes clean and free from boiler scale. For best results there must be actual contact of the water with clean and polished metallic heating surface of the boiler tubes. Roto tube cleaners are the best, quickest and cheapest. They combine the most powerful, reliable and durahle motors with the most effective scale removing tools, suited to every condition and kind of boiler scale. We are specialists in this line. We make all kinds of tube cleaners, nothing but tube cleaners and the best tube cleaners made. Our entire factory is devoted to the manufacture and constant improvement of tube cleaning devices. We are independent of all trusts, and we control all the most important patents on tube cleavers. Roto appliances include air-driven, steam-driven (condensing) and water-driven tube cleaners for cleaning all types of boilers, condensers, heaters, evaporators, etc., with either straight or bent tubes. Roto cleaning heads, for heavy scale and light scale, are constructed to get full practical benefit from the great speed and power of Roto motors used to drive them. Economy of fuel (due to cleaner boilers) and large saving in cost of hoiler eleaning are reported by users of Roto tube cleaners. We get many repetition orders from large power companies for Roto eleaners same as last for use in their other power houses."
"Economical Fire Room Methoda" is the title of a pamphlet published by the B. F. Stustevant Company, Hyde Park, Mass. This is a reprint of an article published last year from Power and The Engineer. The results shown in the foregoing article have seldom, if ever, been equaled regularly in any boiler plant. And this fact naturally turns one's attention to the design and equipment, for although the intelligent and consciemious work on the part of the operatives coutributes in no small way to its success, with an mproperly designed or equipped plant, their work would be of small avail. In the first place, this plant was not designed or built after the hit-or-miss fashion. It is the result of the most careful and painstaking study on the part of the men who know-men who understand power plant engineering, men who received their education in the school of experience. 1 be designers had as their goal the construction of a power plant that would generate power at the lowest possible cost per horsepower-a boiler plant that would secure every posstble heat unit from the fuel and utilize it for generating steam. Every detail of design and construction was carefully considered from every point of view. Economizery were installed to further increase efficiency by utlizing the waste heat of the flue gases. It was necessary that these economizers be of just the proper proportions in regard to heating surface and storage capacity to reduce the gases and raise the water the maximum temperature, and the high transmission rate mentioned in the foregoing article was the result. So successful were these economizers in reduciug the temperature of the gases that ehimney draft was made impractical because of the enormous proportions of a slack necessary to create the proper draft at this low temperature. Mechanical draft was therefore determined upon in place of a chimney, and as experience with many similar installations had proven that the induced type of draft was most successful in connection with economizers, this type was installed."

Engineers' Taper, Wire \& Thickness Gage

This gage is empecially designed for the wte of marine engineers, ma chinints and others desiring a set of gages in compect form
The taper gage shows the thicknets in 64 hhs to $3-16 \mathrm{~h}$ s of an inch on one ade, and oo the reverse side is graduated as a rule thrie inches of the lenpth, rtading in 81hs and 161hs of an inch.
The wire gage, English Standard, shows on one side sizes mumbered from
10 sk, with two extra slons, one $1-16$, the oller if of an inch, snd on 19 1o s8, with two extra sloys, one 1-16, the olher 16 of an inch, and on The reverse side showa the decimal equivalenis expressed In thousandthe This gage has shes long, of the following thicknesucs: 008 lesves, approximately 4 $012, .015$ and $1-16 t h$ of an inch, all folded within the case, which is it inchet loog, convenient to handle or to earry in the pecket.

Price, each, 8359
THE L. S. STARRETT C0., Athol, Mass., U.S.A.
Londen Warehouses, 36 and 37 Upper Thamen BL, E, C.

The Powell "Trojan" Sight-up Feed Cylinder Lubricator

8

International Marine Engineering

MARCH, 1911.

THE MITSU-BISHI DOCKYARD AND ENGINE WORKS.

The Mitsu-Bishi Company, of Japan, under the presideney of Baron Hisaya Iwasaki and the vice-presideney of Baron Koyata Iwasaki, having its headquarters at Tokyo, owns two shipbuilding and engineering works, one at Nagasaki and the other at Kobe. The company is sole licensee for manufacturing Parsons' marine steam turbines and turbo-generators in Japan, China and Korea. The following brief description will afford a means of judging of the equipment and capacities of the two plants.
the nagasaki works.
The Mitsu-Bishi Dockyard and Engine Works is one of the oldest and largest shipbuilding and engincering establish-
from outside sonrces only the materials and those artieles which may be termed "proprietary" items, where inventions and patents are largely involved. The advantage in this case is that there is not only economy in production under one management, but there is less likelihood of the separate items being delayed in delivery, and therefore interfering with the consecutive progress of the building of the ships. Moreover, there is no better way for the Mitsu-Bishi Works to adopt than this system, for, although Japan is rapidly advancing. the supplementary industries for ship and engineering works are yet in their infancy, and therefore cannot be depended upon for the best work.

ments in Japan, if not in the East. It is not only one of the largest, but it is equipped with the most varied tools for the production, without subcontracting, of every type of ship, machinery and boilers for land and marine use, steel girders, steel buildings and electrical machinery. Its specialties are Parsons' marine steam turbines and turbo-generators, Stone's manganese bronze eastings and Morison's Contraflo condensers.

Many shipbuilding firms are content to construct the more important items of the ship, depending to the fullest extent upon outside establishments, where particular items of work are specified. The prineipal commendation for this practice is that there is less capital involved in the plant, consequently less loss incurred during the periods of depression which recur regularly.

The Mitsu-Bishi Works, on the other hand, like Barrow or Clydebank Works of Great Britain, is laid out with the object of doing the maximum of work upon any ship, purehasing

HASTONY OF THE WORES.
The work hav a wery interesting history of its own, it was founded by the "Shugun" Government in 1856. Duteh engi. neers were employed, and the necessary machines and gears for commencing the works were imported from Holland. A portion of jetty, where the giant crane now stands, was constructed then by means of an old-fashioned diving bell of Dutch make, which apparatus still remains in the works in memory of the founders. Work was then carried on only in a very sinall scale for repairing small steamers owned by the "Shogun." At the Restoration the works came under the control of the Public Works Department and were very mueh extended. In 1871 , a large dry dock at Tategami, now called No. I dock, was constructed, and the patent slip at Kosuge, then owned by a British merchant, was purchased, and from time to time the works were considerably developed. In 1883, a wooden steamer named Kosuge Marw, of 1,500 tons gross,
was buile as a forerunner of the shipbuilding industry in Japan.
In 1884 , on the abolition of the Department of Public Works, the establishment and the various subsidiary works connected with it were purchased by the Mitsu-Bishi Company, who started this branch of business with only 800 men, and three years later the first iron steamer, of about 206 tons gross, the Yugawo Maru, was built, followed by tliree steel steamers, Chikugugawa Maru, Kisogata Mars and Shinanogneva Maru, each about 700 tons gross, also a steel steamer, Suma Maru, of 1,592 tons gross, was built in 1895 , which was considered then as an epoch of the shiphuilding industry of the works. But the true development dates from the termination of the Chino-Japanese War. In 1896 a great stimulus was given to the growth of shipping and shipbuilding in Japan by the enactment of the Navigation Encouragement Law and the Shipbuilding Encouragement Law. About this time the Nippon Yusen Kaisha first organized its European line, and decided to build six steamers of 6,000 tons each. The eonstruction of one of these steamers was undertaken by the works, and it was finished in 1898 . This was the first large steamer built in Japan, but subsequently many large vessels were built, including turbine transpacific liners of 13,500 tons, destroyers, despatich boats, etc. On the other fiand the Mitsu-Bishi Company has kept the works from time to time supplied with the most improved appliances and gears. A number of staffs were despatched to the Enropean engincering centers, to learn up-to-date methods of construction and organization of enginecring enterprises, and a number of British experts were engaged as technical advisers and instructors. Immediate returns were considered as of secondary importance, the whole aim of the firm being to equip an establishment of which Japan might be proud both in workmanship and in business integrity, so that it has now grown to the position of being the most important works in the Far East. The accompanying tables afford some evidence of the work done during the last 12 years by this company.

TARLEE I,-ANNUAL PRODUCTION OF THF MTSU-BISHI CO. DURING TIE IAST TWELVE YEARS.

Year.	Na . of Vemels.	Ensines.	Gtow Tens	l. H, P.	Arerage No. ed Workmen per Day.
1898.	,	4	7,700	4,223	3,430
1899	12	12	4.007	3,189	3.558
1900	13	9	11.617	18,519	2.792
1901.	6	8	7.104	6,239	3.209
1902	\%	6	15,807	18,336	5.193
1938	8	8	13,078	11,461	5.258
1904	7	3	11.859	12,082	5.298
1905	9	7	12.973	12.531	6.745
1001	14	11	to,031	22,733	5.871
1907.	4	4	7.459	23,519	9,640
1908.	4	4	23,332	36417	0.011
1909.	6	4	29,595	53,359	5,703

TAHIE H. NUMEFR ANH GROSS TONVMOF OF VFSSELS HOCKED JURIVG IAST TUEIVF: VEURS.

Seup.	bat Inure.		Stip	
	Na. of Vessels.	Girus Tomnige,	Nis, uf Vruets.	Gifum Tonnsuc.
1808	44	28.000	19	3.539
11099	95	272.146	29	0,042
1900	103	\%60. 209	32	0,271
1901.....	111	2 ST 97	319	10.013
1962.....	76	177.41k	31	10,121
1003	47	113.441	20	5.295
1904. ...	65	155.279	24	6.71
19ns...	11	332.758	22	7.776
1906	97	342,834	24	8167
1908	9	243.408 .	17	3.988
1908.	39	135, en \%	17	3,672
1000...	57	148,108	13	1,657

GENEKAL AKRANGEMENT OH HE WOKKS
The establishment is situated on the ibuer harlour of Nagaaki and extends along almost the whole length of the west-
ern shore of the harbor, having a water frontage of about 8.000 feet, and covering an area of over 114 acres, with numerous workshops and dry dorks equipped with all the latest and most up-to-date machine tools and appliantes for shipbuilding, engineering, drydocking and electrical engineering work. There are poweriul hydranlic and electrical installations, as well as preumatic plants for the likhter class of work in riveling, ealking, chipping, etc.
The works may be said to be constituted of four principal sections, viz., shipbuilding yard, engine works, drydocks and slip.
The shipyard at Tategami, which is at the outer end of the harbor, has seven building berths, ranging from 240 feet to 700 feet long, and an annual output capacity of over 30.000 tons. The mold loft, scrive boards, plate and angle-bending shops, plater's machine shops, smith shop, galvanizing shop and machine shop are arranged in this yard The joinets', cabinct makers', polishing and woodworkers', upholstery depariment and others associated with shipbuilding are all laid out contiguous to the building yard and on a very extensive scale, and furnished with the latest and most improved equipment.
The engine works at Akunoura, which is at the inner side of the harbor, covers a large area and embraces crecting and fitting shops, the boiler shop, machine shop, turbine shop, electric shop, blacksmith shop, enppersmith shop, pattern and foundry shops, etc. Most of these are adequately fitted with electrically-driven overhead cranes of different capacities.

Between the shipyard and engine works there are threc dry docks, the largest of which can accommodate vessels up 10 714 feet on the keel, 84 feet beam and 34 feet 6 inches draft, making it one of the finest and largest graving docks in existence at the present day:

A patent slip, capable of lifting ships up to $\mathrm{s}, 000$ tons gross, is situated on the other side of the hatbor, opposite the shipyard.

administrative defartment.

The administrative department, or main office, is situated at Akunoura and on the main entrance to the engine works in three blocks of substantial brick building.

The basement of the frent block contains the mess soom for draftsmen, and boiler room for steam heaters. The first floor has the board room, private office of the general manager, and corresponding and secretarial office and the telephone room. The second floor is entirely occupied by the estimate engineer's office, involving purchase, estimate, counting and general statistical departments. On the floor above is situated the drawing office for admiralty work. It is 8 f fet by 31 fect, and has an accommodation for 25 shis draftsmen and 25 engine draftsmen. The hasement of the left wing contains the main time office, book and eashier department, the first floor has the main engine drawing office, which is 60 feet by 47 feet, with an aceommodation for soo draftemen, and the second floor has the ship drawing office, with accommodation for 42 Ilraftsmen. Each drawing office has a large fireproof safe at one end of the office, in which the drawings are all classified and stored. The floor alove includes a completely equipped photographic department, with six large sun-printing irames and one Hall's continuous electric enpier. The basement of the right wing contains the work's police department and engine worh's time office, white on the first floor there is a series of offices for admiratty overseers and other superimendents.
It may he mentioned here that there is a second ship drawing office at the shipyard, which is wo feet long by fo fevt liroad, containing the detail and decorative departments; in the former the smith work, eastings and all fittings are dealt with, while in the latter all decorative features of the ship

KOBE PLAXT. VIEW OF SEA Ftoxt FNOM NOETHEAST.
are worked out. These two departments are specially situated in the shipyard, so as to be contiguous to the ships under construction and to the joiner and cabinet maker's, upholstery and decorative painter's work shops. This office has an accommodation for 60 draftsmen and is equipped with a photographic room and a large fireproof safe. Therefore the ship drawing office has a staff of 127 draftsmen in all under the charge of the chief ship draftsman, who also has charge of the experimental tank.
The engine works manager has an office close by the main office, and in the same building there is an electrical engineer's drawing office, with an accommodation for 15 draftsmen.

The shipyard manager has an office in Tategami, with a time office in the vicinity. There are also a number of rooms for Lloyd's surveyors, gqvernment surveyors and shipowner's superintendents in the same building.

A system of telephonic communication is in use throughout the works, so that vast as is the establishment, its organization overcomes any of the disadvantages of distance. There is a regular method of storing the materials in readiness for the various sections.
the building berths and launching ground.
In describing the works it may be more interesting to review the departments and plants in the order of their use and importance in the building of the ship rather than to adopt an itinerary method. The works have seven building berths, as follows:

Feet.
No. 1. Berth for vessels up to 6 Ro
No, 2. Berth for vessels up to 700
No. 3. Berth for vessels up to $5 \% \mathrm{o}$
No. 4. Berth for vessels up to 4 6o

Fect.
No. 5. Berth for vessels up to 30
No. 6. Berth for vessels up to 300
No. 7. Berth for two vessels up to 240
Several of them have been constructed with a view of supporting the concentrated weight due to modern warships.
As regards the length, only a small quautity of drags and checks will be required for sending afloat the largest vessels, as there is plenty of harbor space at the end of the building berths. The berths are well equipped with powefrul jib cranes at frequent intervals, capable of lifting weights up to 3 tons on board during construction. There are several locomotive cranes throughout the yard, ranging from 5 to 3 tons. They are also used for stocking ship plates and angles, etc., from the lighters, and for subsequently lifting them from the racks and passing them to the tracks for conveyance to the nlater's sheds, ete. To facilitate the conveyance of materials there are in the yard over $21 / 2$ miles of rails.
shif flaters' and fitiers' department.
Dealing with the separate departments, one naturally begins with the mold loft, where the work of construction is begun in the ease of all ships. The length of the loft is 380 feet, and its width 70 feet, the roof being of light steel principals, with corrugated iron on the purlins, with ample daylight admitted by the glazed top and sides. The space below the loft is used partially as a scrive board, and partially as a plater's machine shop.
In the frame-bending shop, which is about 140 feet square, there are two angle furnaces, each 66 feet long, and one plate furnace 30 feet long, and two angle beveling machines, with about 4800 square feet of cast iron blocks for setting the frames as well as the scrive boards for laying them out.

The plater's machine shops, which cover an area of over 54.070 square feet, are equipped with 44 punching and shearing machines, ranging up to tools which shear $13 / 2$-inch plate and punch $11 / 2$-inch holes in the same thickness, while the gap is 36 inches, enabling plates 6 feet wide to be worked on. There is one hydraulic manhole punch capahle of working holes 28 inches by 20 inches. There is a large hydraulic flanging machine for setting plates for the keel and garboard strakes, as well as for stiffening flanges in bulkheads; it is capable of dealing with plates up to 24 feet and up to a thickness of 1 inch. There are three bending rollers dealing with plates up to 25 feet long. The planing machines number eight, and are all of considerable capacity. For straightening there is orie mangle, with solid steel rollers, taking plate 6 feet wide

The blacksmith shop, which is 262 feet long by 40 feet broad, contains 35 smith fires, the blast being supplied by three Root's blowers; there are 10 steam hammers ranging up to 20 hundredweight, and one 5 hundredweight steam striker, also three rivet-making machines, the largest of which is capable of turning out 3 tons per to hours.
The angle smith shop is 175 feet long and 40 feet broad, and contains 28 fires, with two centrifugal fans driven by electricity.
The galvanizing shop is adjacent to the blacksmith sbop. The building is tto feet long and 40 feet wide. There are five zinc baths, the largest being 22 feet by 2 feet 2 inches by 5 feet, one refining furnace and four water baths.
The machine shop is placed contigunts to the building

and 1 inch thick. There are also a plate scarphing machine, joggling machine, hydraulic bar cutting machine, etc. There are nine countersink drilling machines. Almost all of the tools in this shop are of British make. and the majority of them are worked from shafting driven by electric motors.

The beam-bending shed is 90 feet Fong by 35 feet broad, and in it there are one beam-bending andipunching machine, two beam-bending machines, one beam-bending and anglecutting machine, one angle and channel-cutting machine, two cold iron saws, etc., all operated by electricity.

The iron workers' shed is on the south side of the yard, and contiguous to the huilding berths; it is 85 feet long hy 65 feet wide, containing one angle-ciutting and plate and angle-planing machine, one countersink drilling machine, one platebending and straightening machine, two plate-straightening and flattening machines, two punching and shearing machines, etc.
berths. The shop is $\mathbf{t} 40$ feet long by 60 feet broad. There are 14 drilling machines of varied type, also the same number of lathes of varied type. Other machines include a boring and turning machine, shaping machine, slotting machine, milling surface planing machine, cold iron band sawing machine, Selber patent screwing machine, screw-cutting machine, bolt and nut-serewing machine, lag-screwing machine and emery grinding machine, etc. The machinery in this shop is driven by two electric motors, each of so brake-horsepower.

WOOD-WORKING DEPARTMENT.

As can readily be imagined, in an establishment which sends out first class passenger steamers the wood-working department is very extensive. The whole timber department occupies about 5 acres of ground, ahout one-third of wbicb is covered in with drying sheds. The timber for the joiner department is accommodated in sheds eovering 3,800 square
yards. The buildings for deck stowage cover 1,760 square yards.
The saw mill is situated at the extreme north end of the shipyard. The building is of light, wooden structure, measuring about 100 feet long by 70 feet broad. The log department is fitted with three vertical saw frames. In the reconversion and resawing of the wood, the principal machines used are two four-side planing machines, one circular saw endless band sawing machine, reciprocating cross-cut saw and dowel-making machine, etc. In the saw room there are two saw-sharpening machines and one band saw sharpening machine. The majority of the machinery in the mill is driven by electricity.
The joiners, cabinet makers and polishers are accommodated in a two-story building, situated at the side of No. I dock. It covers a working space of 80,450 square feet. The collection of wood-working tools is complete and representative of best British practice, including circular saw bench, three endless band saws, scroller fret saw, planing machine, power and hand-feed planing machine, three planing and jointing machines, scraping machine, eight molding machines of various- types, dowe-tailing machine, five sandpapering machines of different types, buffing machine, two tenonning machines, fise mortising machince, romuding machine, two wood-turning lathes, wall-drilling machine and emery grinding machinc, etc. The machincry is driven by fonr electric motors of 1,46 total brake-horsepower.

The carpenters' shops, which are on the other side of No. I dock, cover an area of 18,750 square feet, and contain planing, molding and drilling machincs, also an endless hand saw, all driven by electricity:

the graying potis and slit.

There are three grasing dowks and utie slip. No. I dock is the one nearest to the shipyard, then No. 3 and No. 2; they are all constructed of granite, and the slip is at Kosuge. It may be mentioned here that No. 1 dock was constructed by the former owner, bilt was lengthenel by the present proprietor in 1895 .

The following are the principal dimensions of docks:

The patent slip is capable of lifting vesscls up to 1,000 tons gross, the length of rail is 750 feet, with a width of 30 feet.

the engingraing mepartment.

We may now turn to the engineering department, which is arranged at the northern part of the works. The machine shops, which cover an area of ahont 23,150 square feet, contain 124 lathes, 3 turning and horing machincs, 5 screwing machines, 5 cutting-off machines, 1 nut-tapping
machine, I bolt-turning machine, I stud machine, 9 planing machines, 7 shaping machines, 6 slotting machines, 1 keyway cutter, 32 drilling machines, 3 centering machines, 1 cylinder boring machine, 3 boring machines, 2 oil groove cutting machines, 15 milling machines, I nut side-facing machine, 2 band sawing machine, I circular sawing machine, 16 grinding machines.

Of the above special mention should be made of one electricdriven quadruple-geared crankshaft turning lathe, having a height of centers of 54 inches, and a length of bed of 42 feet, admitting between centers 27 feet 3 inches; two treblegeared shafting lathes, each having a height of centers of 20 inches, and length of bed of 36 feet 6 inches, admitting between centers a length of 28 feet, these having a common center line, when combined together are capable of turning up to 68 feet 6 inches; one electric-driven vertical cylinder boring machine, capablc of boring cylinders up to roo inches in diameter, one electric-driven double-headed universal horizon-

tal drilling, boring, tapping, studding and milling machine commanding to feet vertically and 20 feet horizontally, with spindle $5 \frac{t}{2}$ inches in diameter, also one horizontal and vertical planing machine having a horizontal stroke of 21 feet, and a vertical stroke of 18 feet, driven by 25 brake-horsepower motor.

The machine sloop is equipped with one 20 -ton, one 15 -ton and three 5 -ton electric overhead traveling cranes.

The turbine shop, which is 243 feet by 102 feet, contains 4 lathes, I turning and boring mill, 2 plaring machines, 1 slotting machine, I turbine machinc. I turbine blade-cutting machine, 4 drilling machines, I turbine cylinder boring machine, I turbine blade-nicking machine, I turbine packing strip eutting machine, I special dove-tail milling machine, I special milling device, 5 turbine blade-tipping machines. Special features among the above machinery are one large electric-driven guadruple-geared double-bed lathe for turbine rotor turning, having a height of centers of 68 inches, which may be raised to 79 inches by using a lever, and a length of bed of 51 feet admitting hetween centers a length of 366 fect; one elec-tric-driven pit-planing machine capable of planing 36 feet in length, 14 feet 6 inches in width and 7 feet 6 inches in height. One electric-driven turbine cylinder boring machine, to bore up to 13 feet, and one electric-driven powerful slotting machine having a stroke of 48 inches.

The machinery in this shop is all driven by electricity. There are two 50 -ton and one fo-ton electric overhead traveling cranes.

ERECTING SHOP AND MACHINE SHOP.

The building is 67 feet it inches by 116 feet 2 inches, and is very lofty. There are three main bays, which are occupied respectively by the eleetric shop, erecting shop and fitting shop. The erecting shop has sufficient space to erect three twin sets of 8,000 indicated horsepower triple-expansion engines simultancously, and is equipped with one 30 -ton and one 20 -ton electric overhead traveling cranc. The fitting shop is equipped with one 10 -ton crane of the same type.

The water testing and "shrink-on" work shop, which is No

EXPIMIMFNAL TOWI*G TAMK AK MAGAPAKI.
feet by 130 fect, is equipped with a complete set of pumps and gear for water testing and slorinking-on work, and zo-ton electric overhead traveling erame.

BOILER SHOPS.

The boiler shops are situated in juxtaposition to the turbine shop, the buildings cover an area of 53.282 square feet of ground, and are divided into four sheds, one for machine work, one for boiler construction, one for hydraulic riveting and the other for flanging. There are several very powerful tools, motably one $\mathbf{1 2 5}$-ton hydraulic ribeter, with an 8 -foot Rap, served by a $\ddagger 0$-ton hydraulic cranc; one 150 -ton hydraulic flanging machine, with 4 -foot gap; one vertical plate-bending roller, to deal with a plate 11 feet 6 inches wide and 2 inches thick; one electrically-driven boiler shell drilling machine, which can take one double-ended boiler up 1016 feet in diameter and 18 feet in length, or two single-ended boilers, each of 12 feet 6 inches long. with a diameter of 16 feet; one twospindle boiler shell drilling machine, to deal with boilers up to 16 feet in diameter and 18 feet in length; one four-spindle boiler shell drilling machine, to deal with boilers up to 16 feet in dianteter and 23 feet 6 inches in length; one electri-cally-driven lever punching and shearing machine, with an angle eutter eapable of punching $1^{1} \frac{2}{2}$-inch holes throngh $1^{1 / 2}-$ inch plate, shears $t / 2$-inch plate and cuts angles 6 inches by 6 inches by I inch, with punch gap 36 inches and shear gap 33 inches, and a one-edge planiug machine capable of planing plates up to 30 feet horizontally. Besides the above special features of this shop are one large zo-ton portable hydraulic riveter, with 7 -foot gap and one oval and round hole cutting and marine boiler Hange and tlue turning machine, to take boiler end plates from 7 feet 6 inclies to 17 feet in diameter, and one portable electrically-driven' drilling and boring machine. As for conveyance, the shop is equipped with four 40 -ton and one 7 -ton electric overhead traveling crancs, two 5 -tin hydraulic wall eranes and elesen hand wall cranes, ranging from I to 5 -ton lifts.

The engine works smith shop, which is 375 feet by 60 feet. is a light steel structure, with twenty-three single hearths, five double hearths and seven forges, arranged in rows on either side of the building, and with nine steam hammers ranging from $1 \frac{1}{4}$ tons to 7 tous arranged in the center line. There are 5 -ton, 10 -ton and 20 -ton air furnaces. The shop is equipped with twelve cranes ranging $1!/ 2$ tons to 20 tons. There is also one steam-driven plate-shearing machine.

A temporary bailding. 144 feet long by 72 feet wide, is equipped with one hydraulic pipe-bending machiac, one upright drilling machine, one horizontal radial drilling and tapping machine, one flange rolling, straightening and cireular cutting machine, one punching maxhinc, one capstan lathe, one hack saw, one ait hammer, one plate-hending roll, one pipe-threading machlne and one shearing machine. There are twelve hearths, the blast being supplied by a Root's blower, with a 31 brakehorsepower electric motor, and capable of supplying $6 \not+0$ cubic feet of air per minute.

FOUNDKY.
The foundry is situated to the north of the machise shops. It consists of two main parts, the iron and steel foundry and the brass foundry. The iron and steel-foundry is 310 feet kng by 102 feet wide. The equipment includes a 2 -ton Sicmen's steel gas furnace, four cupolas, with a casting capacity of 50 tons, one anucaling furuace and three drying furnaces, each 20 fect long and 16 feet wide, and one sand inill. Two 15 -ton and one 30 -ton electric overbead traveling eranes and fourteen 3 -ton radial eranes are distributed eonveniently. There are six molding pits, the two largest being 25 feet by 30 feet by 7 feet and 20 feet by 20 feet by 12 feet, respectively.

The brass foundry is 100 feet long by 102 feet wide, containing two Stone's manganese air furnaces of 8 and 5 tons capacity, with a molding pit 12 feet ly 12 feet by 7 feet on

monting buck ho. e, at kong.
the iron and steel foundry side, so that the heavy overhead cranes in the iron and steel foundry may be utilized for this pit. There are six brass erucibles of fureed draft and four of natural draft, each of 200 pounds, and two drying ovens. There are eight radial crancs of 3 tons each distributed over the foundry. At the corner of the brass foundry there is a eore shori.

The foundries are entirely self contained, molding boxes and plates, core hars and eore irons, etc., are all made in the same place. Adjoining the foundrics there are the requisite stores for metal, sand, furnace coal, coke, etc.

The pattern shop, which is a brick building, 180 fect loug
by 70 feet wide, is equipped with one circular and one band saw, one planing machine and four wood lathes, all driven by electricity. The first floor is used for stowing the patterns, there is also at the back a spacious pattern store for stowing large old patterns.

On the jetty for shipping engines and boilers, cte., from the engine works, there is a 150 -ton Titan type giant crane, by Messrs. Applebys \& Company. It consists of a square tower, 136 feet $31 / 2$ inches in height and to feet square at the -base, earrying a large roller path on top, upon which a horizontal jib having a total length of 239 feet $93 / 4$ inches is supported. The long arm of the jib has a total radius of 156 feet 6 inches. The work is also provided with a 3 o-ton floating shearlegs.
is fitted with two 500-kilowatt turbo alternators, direct coupled to Parsons turbines; one 300 kilowatt direct-current generator, coupled to a Willams patent central valve engine; two 100-kilowatt direct-current dynamos, coupled to the same type of engines ; two 225 -kilowatt direct-current dynamos, coupled to a McIntosh vertical cross-compound engine, one $300-$ kilowatt direct-current dynamo, coupled to a three-phase induction motor; two 25 -kilowatt dynamos, coupled to one three-phase induetion motor and used for ship lighting, and a 100 -kilowatt booster or motor generator, which is usel for charging the secondary batteries, whose capacity is 3.000 ampere hours. Steam is supplied by seven Babcock \& Wileox boilers, which also serve as destructors, being used for dispos-

EXPERIMENTAL TANK.
The plant ineludes a splendidly equipped ship model experimental tank, designed by Mr. Archilald Denny, of Dumbarton, and which is practically a reproduction of the Clydebank tank, which was fully described in volume XIV of Intenanatoonal. Marine Engineening. The waterway extends for 430 feet, of which 380 feet is deep, varying from 12 feet 6 inches at the north end to 12 feet at the south end. The breadth is uniformly 20 feet. The tank carriage is electrically driven, the trolley wiring being on the Ward Leonard system. The tank carriage, with its apparatus and model cutting machine and other accessories for the tank work, was constructed and supplied by Messrs. Kelso \& Company, Glasgow.

POW滑 MLANT,

Electricity is used on an extensive scale, not only for the lighting of workshops, sheds, the interiors of ships under construetion, and of the yard generally, but ako for the driving of the machine tools. The eentral power house at Akunoura,
ing of the sawdust, shavings, etc., from the various woodworking shops and the rublish collected from the interiors of ships under construction.
The sub-station at Tategami shipyard is fitted with two 200-kilowatt rotary convertors and six 75 -kilowatt trans- formers, and esmerts from 3.450 volts alternating current to 250 volts direct current.
Are lamps are used principally for outside illumination and in the interior of the larger sheds and shops. Incandescent lamps are used in all the woodworking departments and offices and for all bench work. They are also adopted for the internal lighting of ships during construction. Adequate hydraulic and pueumatic power plants are installed.

The works are supplied with a modern apprentice school, hospital and elub house for the benefit of the workmen.

the koin plant.

The Kobe plant of the Mitst-Bishi Dockyard \& Engine Works was begun in August, 1905 , and after various prepara-
tions for reclaiming the land, constructing the breakwater, ete., had been done, No. t floating dork of 7,000 tons lifting capacity, bnilt at the company's Nagasaki works, was towed into the basin, but to meet the growing business an extension on a large scale soon became a matter of urgent necessity, and before the second amniversary the keel blocks for No. 2 floating dock of 12,000 tons lifting capacity were laid down, and also some permanent steel buildings for work shops were in the course of construction. The works have steadily grown, until at present they are fully equipped with the latest machine tools and appliances, mostly of English make, suitable for the consiruttion of a vessel of 10,000 tons.

The plant is situated on the western shore of the harbor of Kobe, and just northward of the Wada-Misaki lighthouse at the entrance of the port, and it has been laid out on a liberal scale, covering anl arca of about 82 acres in order to provide room for expansion. The sea frontage is more than 5,000 feet long, and a part of it is reserved for shipbuilding berths suitable for the simultaneous eonstruction of seven vessels of over 500 feet in length; and on the north of the building herths there is a basin having an area of about 13 acres, protected ly a breakwater of masonry work 1,000 feet long, leaving an opening for the entrance from the north, the opening being naturally sheltered by the shore of Hyogo, which lies at a distance of a little over half a mile.

Along the basin a masonry quay wall was constructed for the purpose of mooring vessels under repairs or when fitting out. A soo-ton steel tripod shearlegs has been lately erected on the foundation laid on the quay wall; and there are four strong mooring buoys outside the breakwater, forming a safe deep-water anchorage; and as the estahlishment ie connected with Wada branch line of the Imperial Government Railway the works occupies a unique position in the harbor in reference to communication with both land and sea.

The prineipal work shops, which are equipped with electric power and light, and are inter-contiected by railway tracks, which are also in connection with the government line, "include machine and crecting shops, shipyard machine shops, blacksmith, boiler, earpenter, pattern, enppersmith's, electrical machinery and bending shops, hrass and iron foundries, mold loft and sawmill.

There are two power honses, in one of which are two gencrators of 100 and 150 -kitowatt capacities each, driven by Farsons steam turbines, and in the other a $450-b r a k e$ horsepower Cockerill gas engine, driving one 300-kilowatt generator huilt in the works, the gas being supplied hy a Mond gas producer of 8oo-brake horsepower capacity. which will also supply gas to the furnace in the blacksmith ship.

Finally, in concluding this description, it will be interesting to British and American readers to know that both in the Nagasaki and Koobe works the xpecifcations and wording in drawings, pooks, charts, forms, orders, ete. in fact every bit of writing in the establishment is in English, besides a greater portion of the correspondence. Indeed it is rather curious to notice a workman carrying out the work to the letter with a drawing worded entirely in Fnglish, white he is unable to quate a simple intelligible sentence.

We are informed hy Messr. William Mills. Led., Atlas Works, Sunderland, of an inascuracy in the description of this firm's enkaging amal disengaging boat gear in nur artiele entitled "1.ife Saving at Sea," isstue of October, tpio. The article states "This apparatus enables the boat to he released before it is water borne." An important feature claimed by the manufacturers is that this gear cannot be disengaged until the boat is in the water and very nearly water borne.

Repairs to end plates and other parts of boilers where srooving or cracking cecurs can effectively be made by the oxy-acetylene process of welding.

THE ECONOMICAL. WORKING OF RECIPROCATING MARINE ENOINES AND THEIR AUXILIARIES. *

ay B. B. rublson.

APPE VDIX A.

The following are the particulars of some experiments conducted upon the steam engine in the Laboratory of the Glaskow and West of Scotland Technical College, with the object of ascertaining what effect an increase in vacuum has upon its steam consumption and horsepower.
The engine is a horizontal cross-compound, the high-press,ure and low-pressure cylinders being 12 inches and 21 inches dianseter respectively, with a stroke of 30 inches, and ir. the eave of these tests there was no receiver between the highpressure and low-pressure eylinders.
The atmission and exhanst valves are of the drop-piston type, and during the trials the admission pressures and the points of cut-off in both esfinders were as far as possible kept constant.
The revolutions of the engine were also maintained at a constant rate by altering the lirake resistance for the different conditions of vacuum. The low speed of revolution, so per minute, is accoumed for by the fact that the trials here presented were part of another series. Had the engine been run at its normal speed, 110 revolutions per minute, the steam consumption per horsepower per howr wonld have been less.
The cylinders are not in any way specially designed for working with a hish varmum, but are of ordinary design suitable for the moxlerate vacmum uswally expected in this type of compound engine.
It will be seen that as the vacuum increases lyoth the steam used per hour and the brake-horscponer increase. It is easy to sce why the horsepower should increave, but the effect of bactum upon steam consumption in rather more difficult to noderstand. With increased vactum there is a remarkable fall in the presture and consequently in the exhaust pressure in the high-pressure eylinder. Due to this fall of pressure there are three separate ways in which the steam peer strohe is increased. In the first place the weight of steam enclosed in the high-pressure clearance volume at compension is diminished, and so an extra quantity of fresh steam per stroke is required to make up for this diminution. The difference between the high-pressure steam chest and exhanst pressure is increased and consequently there is an moreased amount of valve leakage. Also the mean temperature of the cylinder walls is lowered and there is more finitial condensation With a triple or quadruple expansion enging the effect upon the high pressure exhanst pressure would be much less marked, and consequently there would be little increase in the steam used per stroke or per hour with inereased vacuum. It was determined from the experiments that by raising the vacuum from 20 inches to 28 inches the steans consumption decreased 22 ponnds to 20.3 pounds per hour per hrake-horsepower, a diminution of 1.7 pounds per brake-horsepower hour over a range of 8 inches of mercury.
This is equivalent to a decrease in the steam consumption of 7.8 persent over the ranke mentioned, or an increase in economy at the rate of practically I percent per inch increase of vacuum in the condenser from 20 inclies to 28 inches vacnum.
The temperature of the air pump discharge has been ignored, but it is obvious from the foregoing that in the case of a marine engine considerable econtomy may be gained even in a two-stage componnd engine by working with a high vacuum and heating the feed by means of the auxiliary ex-

[^10]haust steam which otherwise would go to the condenser direct, and the economy resulting from the application of this system to triple and quadruple engines would, of course, be much greater.

It should be noted that the above experiments relate only to the particular engine tested and the results would not compare with those obtainable from a marine engine specially designed for obtaining the highest economy from high vacuum. The low-pressure cylinder indicator diagrams taken from this engine are shown in Fig. 15.

APPENDIX B-THE EFFECT OF VACUUM UYON THE STEAM ECONOMY OF TRLPLE-EXPANSION HIGH-SPEFD ENGKNES*
The observations detailed in the following notes were made during the offrial steam consumption trials of a triple-expansion high-speed engine.

The primary ohject was to ascertain the extent to which the
fully measured by weighing the water discharged by the air pump, in accordance with the method recommended by the Institution of Civil Engineers' Committce on Steam Engine and Boiler Trials.

All the conditions were kept as constant as possible throughout, with the single exception of the degree of vacuum.

During each irial indicator diagrams were taken from all eylinders, in order that the mean pressures might be ascertained, as well as for purposes of eomparison.

Every eare was taken in connection with the weighbridge measurements, the apparatus being so located as to permit of one observer weighing the exhaust while kecping the tachometer and dynamometer steel-yard in fall view.

In these circumstances any variation in either the brake load or the revolutions per minute would at once be detected, so that the figures ohtained must correspend very cinsely to actual values.

L.P. LH.P $3!?$

economical performance of the ensine could be influenced by reducing the exhanat presnure.

The engine used for the purpose of the trials was one of eight similar sets intended for dynamo driving and designed to develop a normal fill load of 1,080 brake-horsepower when running at 250 revalutions per minnte. Forced lubrication was supplied for crank shaft and motion work hearings, the leading dimension of the engine being as follows:

$$
\begin{aligned}
& \text { Inches } \\
& \text { Diameter of high-pressure cylinder. } \$ 1 / 2 \\
& \text { Diameter of intermediate-pressure cylinder. } 2_{7}^{7} \\
& \text { Diameter of low pressure eylinder........ to } \\
& \text { Stroke of pistons. } 20
\end{aligned}
$$

Piston valves throughout.
During the period of the frials the engine was exhausting through a short fange into a surface condenter having motordriven circulating pump and steam-driven Edwatds air pump.
The consumption of stcan at the various vacua was care-
${ }^{-}$Communicated by Mr. R. K. Morcons, M. I. M. E. (Mcssrs. Belliss, Morcem \& Co,s Lad.)

All the readings and diagrams were taken with the engine developing the full load of 1,060 brake-horsepower.

Four steam ronsumption tests were made, and the results are given in the tabulated statement on page os) from which the relative inflnence of vacuum variation will readily be seen.

The indicator cards reproduced above are photographerl from the original diagrams (see Fig, 12).

Preparatory to making the first trial, the dynamometer was adjusted until the steel-yard "floated" at the correct load. The exhaust connections were then examined in order to suppress any possible source of air leakage, the vacuum at the engine being brought up to 279 inches. (Barometer, 30 inches.)

When the conditions were constant, the steam consumption was carefully measured, indicator diagrams being taken from all cylinders, and the various pressures and temperatures noted at regular intervals.

On the completion of this trial, the vacuum was reduced until the condenser pressure rose to 26.8 inehes vacuum, when a further steam consumption test was taken along with diagrams and other data. Additional tests were made at 258 inches and 21.5 inches vacuum

The comparative figures relating to these trials are given in the tabulated statement on page 99.

From this statement it will be seen that by raising the eondenser vacunm from 21.5 inches to 27.9 ituches, the steam consuntption was redited from 1415 pounds per hrake-horsepower per hour to 12.55 pounds, a saving of 1.60 pounds per brake-horsepower hour, or approximately 11.3 percent. The corresponeling increase it 1 acuum being 6.4 inches, the steam consumption of this engine per brake-horsepower would ap-

pear to imerease at the rate of, say, 1.77 percent, for each reduction of t inch in the condenser vacuun.

The tabulated statement is corrected for differences in degree of superheat.

Referring to the low-pressure cylinder indicator diagrams (see Fig. 12) and tabulated statement (page 99), it will be scen that the vacua given are those eorresponding with the condenser pressures obtaining at the time cards were taken. For an increase in condenser vacuum of 6.4 inches the low pressure cylinder power fell from $3-3$ to 312 indicated horsepower, a reduction of 31 indicated horsepower, or at the rate of, say; 485 indicated horsepower per 1 inch additional vacuun.

If the engine had no gowernor, the increased vacuum would be productive of (1) higher speed, (2) greater total steam eonsumption per hour, (3) augmented power output.

Ustally with expansion governing, the power developed by the low-pressure cylinder for a given fotal load would not increase for a reduction in the terminal pressure, because the earlier cut-off in the high-pressure cylinder would generally more than neutralise any such tendency.

In the case of this particular set, the shaft governor controls the engine both by throttling the steam and varying the cutoff, to accomplish which the slide valve has inclined ports, and may lie rotated automatically so as to vary the lap.

As the percentage ent-off in the high pressure cyliniler nay be directly read from a suitally divided indicator plate attached to the expansion gear, the cut-offs at high and low vacua were noted, the readings being given in the tabulated statement.

At the low vacumm (21.5 inches) the mean cut-off in the high-pressure cylinder was 4.4 , at high vacuum (27.9 inches) the cut-off was automatically reduced to .4. As the diminished eut-off wonld necessarily be accomplished by a closing of the throttle valve (both motions being taken from the one lever), the relative position of the cut-off gear affords interesting and conclusive proof as to the absolute effect of increased temperature range upon the steam consumption of this engine. Even if the weight of steam used had not been ascertained by careful measurement, the position of the cut-off gear and governor valve would have ronghly indicated the steam economy eonsequent upon the higher vactum.

This may be further verified by an inspection of the lowpressure cylinder indicator diagrams (see Fig. 12), from which it will be noted that the receiver pressures are very considerably higher at a vacuum of 21.5 inches than at 27.9 inches, an effect consequent upon the relative positions of throttle value and expansion gear at constant brake load and revolations per

minute. This furtiver explains why the low-pressure power docs not necessarily fall off with inereased back pressure.

In making the trials, outlined in the forcgoing, every care was exereised with a view to accurate determinations of the ceonomy in steam due to higher vacuum.
The brake used was a Froude water dynamoneter, and as the engine ran at full load throughout, the lrake conditions were such as to be constant in a degree quite exceptional in commercial engine testing.

Two Crosby indieators were employed, the cocks being serewed directly into the top and botkom ends of the eylinder. These instruments were carefully cleaned and oiled, all the diagrams being taken by the same observer. The drums were driven from stout piano wires kept in tension by a stiff spiral spring.
The vacuum was measured on a mercury eolumn which was ehecked against an absolute pressure barometer.

EPFECT OF VACUUM ON THE STEAM CONSUMPTION OF A 1.090 B. H. P. QUICK REVOLUTION BELLISS TRIPLE EXPANSION BNGINE.
These trinla were made at a steady load of 1,080 B. H. P. and at 250 revoluticns per mingte, the water being meanured at air pump disharie.

Test number.	t	2	3	4
Stenan presnure at engine's stop ralve (pounds per tquare inch gaze).	t88	186	198	188
Stean presuure at eaglae's stop valve (pounds per square lesch gage) al H. P. chest.	131	180	185	183
Indicsted homepower-H. P........	451	46	431	416
Indicated hormepowr-1. P.	306	859	309	30
Indicated homepower-I. P.	312	330	223	348
Indicated horsepower-Total	t.t29	t,184	1,123	1,142
Stean temperature, degrees Fahr	474	455	478	489
Superhent, detrees Falur..	${ }_{0}^{11} 4$	78	95	${ }^{00} 4$
L. P. initial prenare from diagrans (pounds exge)	05			38
Vacuym at engine, inches.	27.	26.8	25.8	218
Stenm consurmption, pounds per B. H. P hour, acival.....	127	18.2	1283	1416
Scearn coasumption, pounds per B. H. P hour, corrected to 100 degrees Fahr saperihtest \qquad	1255	18.68	1274	14 is

APPENDIX C.*

The following data, obtained from the T. S. S. Indrabarak, owned by Sir Thomas Royden, Bart., and built to our designs, may be of interest.

This vessel has just eompleted her first oulward passage to Australia fully loaded.

The ressel is of the three-shelter deck type of the following dimensions:

Length between perpendiculars. . 470 feet
Breadth extended 58 feet
Depth molded..................... 43 feet to shelter deck
and has been built by Messrs. Swan, Hunter \& Wigham Richardson, Ltd-, at Wallsend-on-Tyne, and engined by Messrs. Richardsons, Westgarth \& Co., at their Martlepool Engine Works. Her total displacement at a load draft of 28 feet $10 / / 4$ inches is 17,025 tons.

She is insulated for the carriage of cargoes of chilled and frozen meat, and is fitted with a compound duplex CO_{3} machine (the size of which appears later) capable of dealing with an insulated capacity of 292.380 cubic feet.
ller engines are of the twin-screw triple-expansion type, each having cylinders 22 inches, 37 inches, and 62 inches, with a stroke of 45 inches, and are capable of indicating 5,000 indicated horsepower at 95 revolutions per minute; there are four single-ended boilers fitted with forced draft having a total heating surface of 11,192 square feet and working at 200 pounds pressure per square inch.

The design of these engines is based on the principle that the most econontical and efficient results will be obtained by the adoption of such eylinders as will enable the engines to be run at their full-designed power without linking up and at a high piston speed; with the Contraflo system of high vacuum and temperature regulation in combination with eylinders provided with suitable proportions of steam and exhaust passages.

The installation of engme-room anxiliaries is unusually large; this comprises independent feed pumps, feed filter, feed heater, evaporator, distiller, dyuamo, sanitary pump, fresh water pump, two ecntrifugal pumps, two fan engines, ballast pump, refrigeration circulating pump, telemotor steam-steering gear, as well as the CO , machine. which has cylinders 16 inches and 29 inches diameter by 21 inches stroke, all of which are in daily use.
The propellers are of bronze, and oi the solid type.
On trials the vessel attained a speed of 14 knots on a sixhuurs' run at a draft of 18 feet mean aud a displacement of

[^11]10,209 tons. The indicated horsepower was 4,850 and gives an Admiralty coefficient of 272 , which is remarkably high for a vessel of this type.
In considering the result from the point of view of economical consumption for the speed obtained, it must be borne in mind that the model to which the ship was built has proved to be particularly good.

On the first outward passage the vessel attained a mean speed from London to Melbourne of 12.46 knots on an average draft of 26 feet 3 inches, or a displacement of 15,300 tons and an indicated horsepower of 4.600 at mean revolutions 85.2 , the Admiralty coefficient being 260 .
The best day's run was 325 nautical miles in twenty-three and a half hours or 13.8 knots, the Admiralty coefficient being $35 a$
The coal supplied was North country "Mickley" unscreened. giving about 11 percent ash, and the total consumption per twenty-four hours, including all auxiliaries, was 66.33 tons or abont 1.34 pounds per indicaled horsepower per hour of North country coal, equal to $I .23$ of best Welsh coal, a result which is, in our opinion, very remarkable, having regard to the large number of auxiliary engines taking steam from the main boilers, and which, if deducted, would bring the rate of consumption per indicated horsepower for the main engines only to an exceedingly low figure.

The most striking feature of the indicator cards is the high vacuum shown in the cylinder, the exhaust line being within about 2 inches of the condenser vacuam up to a condenser vacuum of at least 28 inches.
The low-pressure ports and exhaust passages were carefully proportioned to insure a low resistance by giving a elear and unrestricted passage for steam winhout exeessive clearance or pockets for its lodgment.
In conclusion, we would state that we attribute the economical running of the above engines to the following causes:
(1) High vacuum and ability to maintain it in high temperalure sea water.
(2) Utilising the exhaust steam from the auxiliaries to heat the feed water up to the maximum temperature at which it can be dealt with by the feed pumps.
(3) The provision of such a capacity of cylinders and boikers as will enable the boilers to provide ample steam at full power without being unduly pressed, and as will enable the engines to run at their full-designed power and mean pressure without being linked up as is common in marine practice.
(4) Comparatively high piston speed.

The above results were oblained, not under the artificial conditions of a trial, but under sea steaming condition, and during a first voyage, which makes them all the more worthy of notice.

appendtx b-quadruple expansion engines and migh vacuum.*

The advantagcous extension of temperature range being a leading characteristic of the quadruple engine, the lower limit of temperature is obviously a most important factor, especially when it is remembered that the upper limit of temperature remains constant at constant boiler pressure. Therefore, the question of vacuum arlses, since, other things being equal, it is upon the vacuum that the temperature range will depend.

Quadruple machinery designed to work normally at a high ratio of expansion will necessarily give a relatively small mean pressure, so that in such circumstances successful operation may be readily prejudiced by imperfect vacuum. If the quadruple be worked at the highest vacuum to which the engine will respond, then there ensues a low condenser temperalure. Such need not, however, produce a low temperature of feed,

[^12]| Dow | Vecuman | | Gnubating. Dequren Yibla | | Tymanumia 1 nourwe |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Sept. ${ }_{21}^{21}$.- | 21 | 110 | If | 142 | |
| $\cdots{ }^{21}+$ | 21 | 110 | 11 | 143 | 230 |
| - $22 \times$ | 27 | 110 | \% | 143 | 240 |
| | 278 | 111 | 74 | 14.3 143 163 | 240 |
| ${ }_{3} 23$. | 27 | 110 | 74 | 142 | 200 |
| -\% 24 | 27 | 110 | 71 | 141 | 240 |
| | 27 | 109 | 6 | 142 | 240 |
| | 27 | 110 | ${ }^{68}$ | 143 | 228 |
| is 25 | 27 | 110 | 6 | 142 | 238 |
| " ${ }^{28}$ | 27. | 109 | ${ }^{6 \%}$ | 141 | 278 |
| " 28. | ${ }_{7} 7$ | 109 | ${ }_{68}$ | 141 | 239 |
| $\cdots \frac{7}{7}$ | 27 | 108 | 63 | 111 | 235 |
| 10
 1 28 | 28, | ${ }_{108}^{109}$ | 68 | 114 | 2338 |
| * 28 | 27 | 108 | 63 | 142 | 220 |
| - 29 | 271 | 108 | 8 | 141 | 238 |
| " 39. | 274 | 107 | 6 | 140 140 | 238 |
| . 30 | 271 | t06 | 60 | 140 | 238 |

if the auxiliary exhausts are condensed by the air pump dis. charge water.

In order that the most economicat results may be obtainel from quadruple and other multiple expansion marine engines, provision ought to be made for the maintenance of the requisite vacuum throughout the voyage, partieularly at high expansion ratios In this connection engincers are apt to forget that, so far as temperature range is concerned, variatinn in beiler pressure is of much less consequence than variation in exhanst presaure. It in aneconomical to work
within the cylinders at1ually rearhed 203 degrese \mathfrak{F}, the higher limit of pressure being, say, 225 pounds absotute and the lower limit 2.16 pounds absolute. This is a very unusual result, particularly as the lower limit of temperature corresponds with the mean back pressure in the low-pressure cylinder, and not with the absolute condenser pressure, A low pressure cylinder diagram taken during these trials in reproxfuced herewith (see Fig. 13).
The dimensions of the Anglo-Patagonian are: Length beincen perpendiculars, 103 feet; molded breadth, 52 feet; molded depth. a) feet $11 / 2$ inches. The official loaded trials were taken with some R 550 tons of bunker coal and slores on buard, the resorl displacing about 12,120 tons. At this displacenent the mean speed was ro 35 knots.

It ought ferbaps to be added that the order of the results will be conditioned by the extent to which high condenser : acuun is maintained concurrently with high feed temperature.
LPW NDIX E——1kIPL.\& EXPANSIUN ENGINFS OF THE DJERISSA CLASS (la tunissienixe steam navtiation CO., t.td.).*
There are three ships in the Djerissa class-the Denissa, Camerara, and Boukadro, each of these vessels having a deadweight earrying capacity of about 6,200 tous on a displacement of ajpiroximately 8,800 tons.

The length between perpendiculars is 350 feet, the extreme breadth 50 ieet and the depth molded 25 feet $1 V_{2}$ inches. The engines are triple expansion 24 inches, 3 inches and 64 inches by 42 ituches stroke, with two builers, 1,3 feet 6 inches mean diameter try 11 feet 6 inches long. The pressure is 180 pounds ath the boilers work moder forced draft.

Mean Powar Thmodehout the Votace 1,090 I.H.P.

Date.	$\begin{aligned} & \text { Proger } \\ & \text { stefeni } \end{aligned}$	$\begin{aligned} & \text { Inches } \\ & \text { verefite. } \end{aligned}$	Temperatuer		Revala rivie per Mivele	Cuel			bietaner			sap.	Huraega of Athe pee bly
			Foed to	Stres.		Tons	Cols	Tincte	Prapnilier	Chimith			
1910.													
Oet. 15	175	$2{ }_{2}$	212	61	57	18	10	Welah	173	166	$8-9$	4	75
* 16 ...	178	27\%	210	61	56	17	0	*	219	158	$6 \cdot 54 *$	22	118
$\cdots 15 \cdots$	175	274	$211 \cdot 5$	92-3	57	17	0	3	2 c	194	$8 \cdot 0$	13	123
'* 18	175	273	211.3	63	57	17	10	New castle	223	225	9.3	nil	119
n 19 ***	175	271	2116	65	57	17	0	Welah	202	420	$9-2$	1	$1: 2$
\% 20 ...	175	274	211	$67 \cdot 3$	57	17	0	*	2×20	230	$9 \cdot 7$	nil	116
* 21 ...	175	274	211	696	57	15	10	*	186	182	$9 \cdot 1$	2	3

- 8trong wind and high sea, shipping water.

[^13]quadruple expansion engines at low vacuum: moreover, the means of condensation ought to be such that the exhaust pressure may be kept constant throughout tropical voyages. Generally, therefore, the maintenance of boiler pressure and of vacuum should be regarded as equally vital to successful practice in quadruple expansion engines.

It may be in point to refer to the quadruple engines of the Angkr-l'atugoniam, built to my designs and specification by the North-Eastern Marine Engincering Company, Ltd. These engines are 24 inches, $34 \frac{1 / 2}{}$ inclees, 49 inches, 71 inches by 48 inches stroke. The boiler pressure is 220 pounds per square inch. The condenser is of the Contrafo type, with temperature regulator, and the boiler feed pumps deliver the feed water through the tuhes of a surface feed beater into which all available auxiliaries exhaust. On the occasion of the official loaded trials-Aug. 17, 19to-the total temperature range

The engineers are instructed to maintain bigh condenier vacuum and heat the feed by means of drainage water and sapur from the various eylinder and receiver drains, evaporafor and feed heater coil draims, ete.

It is found that, notwithstanding the comparatiely high vacutu, the temperature of the hot-well water may be raised to the limit permitted by the feed pumps which are of the plain ram type driven from the main engines.

Service records from each of these steamers show that the sacuum within the low pressure cylinder is from 25 inches to 26 inehes, the condenser vacunm averaging from 27 inches to $271 / 2$ inches, when the steamers are on their regular Mediterranuean service in sea water temperaturey ip to 77 degrees.

[^14]
Man Power Tumothont tife Votaoe 1,085 1.H.P.

Dala	$\begin{aligned} & \text { Proware } \\ & \text { secem. } \end{aligned}$		Temperature			Neal			Dimance.		$\begin{aligned} & \text { Avetaye } \\ & \text { poinow } \end{aligned}$		
			Shad ter	NaS		Tens	Coma	Pemer	Propelies	Ofaerral.			
1010.					59	9	10	Welsh	123	123	$8 \cdot 18$	1	3
Sopt. 13	180	28	224	63	3	9	10						
- $14 . .$.	180	27	218	64	50	17	0	*	231	225	9.32	$2 \cdot 6$	117
- 15 ..	180	27	218	64	59	17	0	**	21	219	508	5	101
-16	180	27	222	66	5	17	0	*	230	214	8.91	7	96
- 17 ...	180	97	222	71	84	17	0	*	29	219	8.75	8.7	75
" 18.	180	27	218	71	30	17	0	"	227	219	8.24	$3 \cdot 5$	66
" 19.	180	27	215	75	50	17	0	"	28	204	8.59	10.	78
" $20 .$.	180	97	218	76	50	17	0	' ${ }^{\prime \prime}$	227	19\%	$8-21$	14	76
- 21 ..	180	27	266	72	63	17	0	"	29\%	214	9.2	57	80
- 22	180	27	220	76	39	17	0	*	227	203	8.55	105	79
. P.M....	180	27	220	76	橉	7	t5	*	103	38	8:38	9	38

The coal used was Welah Through of melium yaality. Iiood skeaming and slow barnang. About 70 per cent. senall masle a heary chaker which sticks to Clise fire laridgee sul as diffurale to remote. The manall caken, Aah and elinker, if jer cent.

The condensers (Contraflo type) have temperature regufators, and the hot-well water is passed through an air-discharging surface feed heater, so that in addition to being deseraled, the feed water enters the boilers at a temperature of from 215 to 2.40 degrees F.

The arrangements are carried out with a view to providmg the utmost simplicity, thereby minimizing the demand out the labor available.

Representative log abstracts are altached from which the general perfurmance of each steamer may be estimated. Variation in the feed temperature as betweets cither of the ships is due to there being means available whereby water from the bottom of the boilers may be circulated through the feed heater' coils instead of steam.
A sehedule of temseratures taken on the Camerata is also
altached, fogether with a recent low-pressure cylinder dia. grain from the same steamer (see Fig. 14).

The average power maintained by the three ships is about 1080 indicated horsepower, so that the engines are working at considerably less than the normal full load corresponding with the given dimensions. In these circumstances the system followed is to fully open all boiler and engine stop valves, runt. ming with maximum pressure in the high-pressure receiver and redaced eut-off.

The readings tahulated were, of course, taken during the respective watches and are subject to the margin of error which is normal to determinations made at sea.
It might be added that in these vessels the air and circulat ing pumps, as well as the boiler feed pumps, are all driven by levers from the low-pressure crosshead.

Meay Power Theotonodt Voyade 1,060 I.H.P.

Dese.	$\begin{aligned} & \text { Prower } \\ & \text { of } \end{aligned}$	Inmos Tempersturs.			Nevols. Sionta Mint	Coal			Dimates.			$\begin{aligned} & \text { supe } \\ & \text { peont. } \end{aligned}$	$\begin{aligned} & \text { Bubter } \\ & \text { Bixthet } \\ & \text { Der Dey. } \end{aligned}$
		veífo	Fead tol	Sees		Yanas	cmis	$\begin{aligned} & \text { Benrro } \\ & \text { Hem } \end{aligned}$	Propelier	Onmerves			
1810. Ang. 21 ...	170	271	212	60	38	3	10	New. castle	51	53	$5 \cdot 4$	nil.	20
- $22 .$.	180	27 \%	212	± 0	61	20	10	*	236	220	9.1	7	. 114
348	180	27%	204	63	58.	18	0	*	228	182	$7 \cdot 9$	15	116
$1{ }^{1} \quad 24 . .$.	180	2il	223	62	5 ¢	16	0	"	227	182	7.5	19	116
" 25 ...	InO	27)	224	65	38	17	10	"	226	201	83	11	107
" 36 ...	180	27\%	224	67	58	17	0	"	225	1:3	$7 \cdot 2$	23	110
* 27.	180	271	226	68	58	17	0	*	225	217	$0 \cdot 0$	3-5	106
" 28.	160	27.	2204	67	58.	17	0	\because	223	218	9.1	2.2	107
. 29.	180	27\%	236	74	58	17	0	"	223	214	80	3 8	107
:" 80 ...	160	- 271	138	77	$5 \times$	17	0	*	223	213	9.0	$4 \cdot 5$	110
* $31 .$.	180	27)	138	77	58	12	5	*	179	139	8.6	80	81

The coal need was Newreatle, qulck burning, with 80 to 85 per oent. anall. A good deal runs through the bars, which helpt in form the large perotntage of ash.

THE WORKS OF MESSRS, YARROW \& COMPANY, LIMITED, SCOTSTOUN, GLASGOW.

Whin a few gears ako Messrs. Yarrow \& Company, Lid., decided to move their works from the Thames at Poplar to Scotstoun on the Clyde, an opurertunity has offered to layont and construct one of the most up-to-date and leest-cepuipred shipyards of its size in the world. Numerous natural advantages influenced the choice of Scetstoun as the site for the new yard, such as its excellent railway facilities, its economic prossibilities as a labor market, its proximity to the iron and coal districts, the depth and width of the Clyde at this point, and the proximity of the Skelmorlie measared-mile trial
volis by static transformers, As the firm wished to use a considerable number of contimwes-current motors, which had been installed in their works at Puplar, an electric sub-station was installed at the plant, consisting of two motor generators, which can be run in parallel. Each machine is rated to give continuonsly 1,190 amperes at 210 volts. The alternating. current moturs are each 365 horecpower at 485 revolutions per minnte. Decided preference was alon expressed far direct current on the ground that inverted are lighting would give the best satisfaction for the general offices. It is expeeted that if additional power is required alternating-current motors will te installed as necessary. Electrically-driven pumps are provided to supply power to the various hydraulie touls. The

rear of THE raknow shiftamb os TEE Ctybl
conrse, which is now recomnired as the only reliable mule on the British coast over which to test vessels of exceptionally high speeds.

The general arrangement of the works is shown in the plan, Fig. 1. It comprises an area approximately 8.0 feet by jun feet, and inchudes engine and boiler shops, a blackumith shop, a pattern makets and joiners' shop, the platers' shed, a cov-ered-in fitting-ont dock with adjacent sheds for pipe fitters, ete., together with eight building slips and the necessary store rooms, offices, etc. Electric power is used throughout the works, it being supplied by the Clyde Valley Poser Company in the form of three-phase alternating current, twenty-five cycks per sccond at a high voltage, which is reduced to 4 m
pumps were furnished by the Leceds Engineering \& 11ydraulic Company, Lid, I.eeds, and the moturs by the British Westinghouse Electric \& Mantuacturing Company, L.td., Manchester
Turning to the plan of the worke, Fig. I, it is soen that the general offies are located in the eenter of the north side, with the boiler shop to the east and the machine shop to the west. Mr. Yarrow's office is, as it were, the cester of gravity of the whole yard, and consequently secures the minimum distance for him to go to see any member of his staff or for them to come to see him. The building berths and fitting ont basin are, of course, located at the water's edge, with the platers' shed immediately in front of the lamnehing ways.

Between the platers' shed and the boiler shop is a space which is served by an overhead 7 -ton crane of 85 feet span, by Messrs. Broadbent, of Huddersfield, traveling on a gantry, which is 330 feet long. This space is used for the construction of shallow draft steamers which are built by Messrs. Varrow in sections for export. The boats are erected on shore at this place previous to shipment.

The facilities for handling material have been most carefully worked out, so as to provide for a minimum amount of handling and transporting. All of the shops are thoroughly
equipped with overhead traveling cranes carefully designed for the loads which they have to lift, and the entire yard is served by a narrow-gage railway system, which is used largely for carrying material from the angle and plate racks to the platers' sheds and various machine tools. In the covered-in fitting-out basin material is handled by means of a so-ton traveling crane, supplied by Messrs. Applebys, Ltd., Glasgow and Leicester.
The two most important shops in the yard are the boiler and machine shops. The boiler shop is the largest, being 300

THE Macmixi sump.
feet long by 253 feet wide. It is divided into three bays, one $50 \% / 2$ feet wide, served by one 20 -ton and one 10 -ton crane at a height of 40 feet 6 inches above the floor level. The center or erecting bay is 65 feet $4 \frac{1}{4}$ inches wide, served by one go-ton and one 10-ton crane at the same level as in the north bay. The south bay is 36 feet 4 inches wide, and is served with one 5 -ton crane located 25 feet 6 inches above the floor level.
The machine shop is 210 feet long and 153 feet wide, and is also divided into three bays, one 37 feet 1 inch wide, served by a 5 -ton traveler; a middle bay, 65 feet $1^{1} / 4$ inches wide, with a 5 -ton crane at a height of 30 feet above the floor level; a go-ton crane at 41 feet 8 inches above the floor level, and a south bay, so feet $1 / 8$ inch wide, served by a 20 -ton and 5 -ton crane located 30 feet $63 / 8$ inches above the floor level.
The design of these shops, which was carried out by Sir

Yarrow \& Company are of medium size, such as torpedo boat destroyers, shallow draft river boats, fast launches, etc. The machise tools include plate punches, shears, plate bending rolls, joggling rolls, large emery grinders and drilling machines. These are all motor-driven. Among the somewhat unusual tools are a high-speed saw for cutting rolled sections cold, which was supplied by Joseph T. Ryerson \& Son, Chicago, and a Britton plate-stretching machine for pulling thin plates in order to take the buckles out. This work was formerly done ly hammering, which is usually a long and laborious process. Most of the plates are drilled by compressed air by means of ordinary pneumatic drills, suitable arrangements being made for carrying out this work economically and expeditiously.

The equipment of the boiler shop includes some special

The miting-otit bock.

William Arrol \& Company, Ltd., is an excellent exanule of modern engineering workshop construction. The building* are of the self-supporting steel frame type, with 9 -inch brickwork built into the frame work to form the outer walls. The roofs of the boiler and machine shops are of the cantilever type, supported by internal cross girders at the ridges, which in turn are rigidly secured to the gantry columns placed 30 fect apart, the whole being covered with $1 / 4$-inch glazing On account of the glazed roofs, light painted steel work and white-washed walls, the shops present an exceptionally pleasing appearance, and are far more comfortable for the workmen than the old type of dark, grimy building.
The platers' shed is 180 feet long by 90 feet wide and 18 feet 6 inches high. In it are located the furnaces and machine tools used in connection with the hull construction. No very large tools are installed, as most of the vessels built by Messrs.
tools for building the well-known type of Yarrow watertube boiler. Furnaces are provided, of suitable size, to heat the plates which form the steam and mud-drums of the boilers, as these are all bent hot. The tube plates of these boilers have to be thick in order to compensate for the amount of metal cut away in drilling, and the sides of the tube plates are reduced so as to correspond with the thickness of the wrapper plates. This work is done in a llugh Smith planing machine, which has a maximum stroke of 28 feet. This machine also planes the plate edges and reduces the tube plates to the required thickness in the way of butt straps, and it ean also plane the sides of the water-pocket tulbe plates and steam-drum tube plates. A special Buckton planing machine is also provided for planing tule plates for steam drums and water pookets after they are pressed to shape. The stroke of this machine is is feet, and it takes a width of 5 feet 6 inches and
a height of 6 feet. The steam drum tube plates are hored and turned in a special boring machine, supplied by Messrs. F. Berry \& Sons. A special vertical boring mill for machining steam drum ends and water-pocket ends was also supplied by the same firm. The holes in the tube plates are all drilled through jigs. There are four multiple-spindle drilling machines, supplied by Blessrs. Joshua Buckton \& Company, and an oval hole-cutting machine for manholes, furnished by Messrs. G. \& A. Harvey. The riveting plant consists of one 13 -foot gap machine and an 18 -foot gap machine of Messrs. Henry Berry \& Company's make. Pressures of 20, 40 and 60 tons on the rivet can be secured with both of these machines.
In the machine shop are many tools from English, American and Continental builders. These include Buckton planing maehines, Asquith radial drills and lathes by Lang. Harvey, Muir, Hulse and Archdale. There are lighter automatic machines by Messrs. Pratt \& Whitney. Prominent among the American machines are noted Niles Tool Company lathes, Pond radial drilling machines, Brown \& Sharpe milling machines, Sellars tool grinders and the Diamond Machine Company's emery grinders. Among the tools supplied by Continental firms are a surfacing lathe from the Oerlikon Company.
Mention has already been made of the eovered-in fitting-out basin, which is supplied with a so-ton traveler overhead. The total length of the runway is 323 feet and the crane is 56 feet above high-water mark. The roof for the basin is 275 feet long. of the cautilever type, completely glazed. The basin is dredged to a depth of abouit is feet at low water, so that the vessels will float at all stages of the tide. The depth of water in the river in front of the taunching ways is 23 feet at low water, and the width of the river is about 500 feet, so that there is ample room for launching purposes. On either side of the eovered-in basin are wharres covered by lean-to poofs, under which are located plumbers and pipe fitters' shops.
For the special class of work of which Messrs. Yarrow have neade a specialty the layout of the works is such that beyond a doubt it should secure for the firm the very lowest cost of production.

THE MARINE STEAM ENGINE INDICATOR-XIX.*

THE EXHAUST LINE,
In order that the piston may begin its return stroke without unnecessary resistanec, it is desirable that the pressure of the working steam be reduced to that of the eondenser, receiver, or exhaust pipe by the time the erank pin crosses the dead center. To accomplish this result it is necessary in most cases to open the exhaust before the dead center position is reached, the exact point depending on the rotative speed, ratio of expansion, type of valve gear and other conditions.
The line DE of Fig. 95' is the exhaust lime, and shows an ideal set of conditions for an engine turning at slow rotative speed. Diagram 1 of Fig. to4, is a elose approach to the exhaust line of Fig. 95. This diagram was taken from the high-pressure cylinder of a compound pumping engine, and shows nearly a maximum card area at the "toe" with a minimum back pressure at the beginning of the return stroke.
Diagram II shows an exhaust line from the high-pressure cylinder of a triple-expansion pumping engine. This is also ideal. The expansion line is carried almost to the counterpressure, and the exhaust opens at the proper time to realize minimum back pressure at the beginning of the stroke.
With engines turning at moderate rotative speeds engineers have found it expedient to close the exhaust before the end of

[^15]the stroke, in order that a steam eushion may form and thus bring the reciprocating parts gently to rest and do away with shock on the bearings and other connections at the time the motion of the piston reverses. While it is well to keep the card area as large as possible, with any given point of cut-off, it is useless to delay release or exhaust opening until the end of the stroke when compression is used to form a cushion and for the following reasons:

In studying indicator diagrams one is very apt to form the habit of thinking of the steam events on one side of the piston

only, as this is all that is necessary to consider in ordinary diagram analysis. But when we come to figure on actual piston loads and their effect on the connections and bearings the pressures on both sides of the piston must be kept in view.

A hittle thought will make clear the fact that the actual load on the piston at any point is the difference between the forwurd or steam pressure and the back or exhaust pressure. Thus in Fig. 105 -considering the down stroke only-the forward pressure at t is equal to the length of the ordinate a between the steam line of the top card and the exhaust line of the bottom card. At 2 it is equal to b; at 3 the forward and back pressures are equal, and the load on the piston is zero.
For every piston position to the right of ordinate 3 the back pressure exceeds the forward pressure, the effect being to resist the movement of the piston and bring the reciprocating parts to rest without shock. The magnitude of this opposing pressure is measured as described for the forward pressure. To make the diagram clearer the area representing the forward pressure is filled in with widely spaced hatching and the eounter-pressure area with fine hatching.
The reason for not delaying release until the end of the stroke will now be clear.
In the diagrain Fig. to5, if release had been so delayed the
expansion line would have continued to c_{3}, and the greater part of the counter pressure caused by compression would have disappeared.

Further, if the exhaust is opened before the end of the stroke it helps towards a good exhaust opening at the beginning and middle of the return stroke, as will be shown when we come to consider valve setting. If expansion is carried too far by reason of a very early cut-off a loop will be formed, as shown in Diagram II1, of Fig. 104. This is a bad condition. The loop ereates a coumer pressure in addition to that caused by compression, and what is worse it reduces the temperature of the cylinder below the average exhaust temperature." If the valve is late in opening-on a slide-valve engine-the exhaust is cramped and diagrams like IV., V. and V1. will result. Another condition which will cause a bad exhaust line is wet steam. Steam in a wet state is less easily expelled than when dry, and is one of the indirect causes of the great loss of efficiency due to the presence of water in suspension in the steam.

Abstract

*On notne voyagra it is necessary 10 run slowly for seyeral bours in order thas surh cases the engmeer who wishes 10 keep his coal consumptignt down will reduce the revotulions by an early cutoof in the bigh-protsure engine, wang the cul-off acrew in the rock oblafs arm. If this is not enougb, the rock shaft atiself is partially fotated with the feveraing engine, linking or "notching up" atf of the engines at once. If this procedure causco loop in the diagrams, the cut-ofis are too short. The links should be rup out just emough to avord the toops and the throtile used to regulate the revolutions.

(To be Continued.)

PLANT OF THE NEWPORT NEWS SHIPBUILDINQ AND DRY-DOCK COMPANY.

The plant of the Newport News Shipbuilding \& Dry-Dock Company, which is located at Newport News, Va., un Hampton Roads, has, by virtue of its location, many advantages which are not possessed by other large shipyards. The yard represents an investment of $\$ 15,000,000$ ($£ 3,080,000$), covers nearly one hundred and twenty acres, and has a water frontage of half a mile. The arrangement of the yard is the result of a most carefully perfected plan to have all the work on a whip from its design to its completion abwolutcly progressive. The material enters at one place, and, as it is handled, mover steadily forward to its final destination without, in any case, relracing its sleps.

The buildings, anost of which are brick structures, cover about twelve acres. The shops are so grouped as to permit the advancement of the work. They are connected by railroad tracks, so that material which is handled by the company's Incomotives may be expelitiously transferred from shop to

350.70N BEVOLVING CRAKE.
shop or from shop to shed, etc. A double track conmects the works with the main line of the Chesapeake \& Ohio Railroad. There are about seven miles of standard gage railroad track, covering various portions of the shipyard.

A battery of eight large marine Scotch boilers, working at a pressure of 120 pounds per square inch, supplies steam for power purposes. There is an electric plant with a capacity of abont 2,500 kilowats and four air compressors capable of compressing a total of 9,000 feet of free air per minute to a pressure of about 100 pound per kquare inch. There is also a hydraulic plant of large capacity for supplying power to the hydraulic tools. The enire shipyard, including shops, wharves and dry-docks, is lighted by electriciny.

There are two departmems in the yard-the hull department and the machinery department. These, in turn, are subdivided inlo smaller ones, each under the supervision of an experi-

LAECE PLATE-EENDING WOLLS
enced foreman. The departments are so arranged with relation to one another that the material may be transferred from one to the other by the shortest route. One group is formed by the ship shed, framing shed, etc.; another by the machine, boiler, blacksmith, copper and outfitting shops, and a third by the ioiner and pattern shops, lumber sheds and saw-
mill. The piers and drydocks also have the necessary shops and tools located adjacent to them to facilitate the carrying on of repair work.

In the framing shed there is a large manhole punching machine, capable of punching a hole 27 inches by 18 inches through plates nearly an inch thick. All work in and about the

framing shed is handled by electric cranes. In the ship shed. which is near the framing shed, there are 32 -foot bending rolls, guillotine shears, shear blade grinders, cold saws, countersinking machines, a 32 -foot planer, 16 -foot bending rolls and mumerous smaller tools. The second floor of the building is used as a mold loft.

Adjacent to the ship shed is the bending shed, containing furnaces where bars of iron 70 feet long can be heated for bending The building berths, on which new vessels are laid down, are located near these shops, the berths being served by cantilever crancs. There are five of these cantilever cranes, three of which handle material for two ships simultancously under construction on either side of its trestle. This company was the first in the world to utilize this type of crane for shipbuilding. With two exceptions, all of these crancs are operatel by electricity. There are six locomotive cranes which also handle and transport material.
The machinery department includes one of the largest and best-equipped machine shops in America. The building is 100 by 560 fect and contains planers $36,60,84$ and 120 inches in length; also an immense wall planer which requirex a 50 -horsepower motor for its operation. The heavy machine tools are located in the main part of the machine shop and in the gallerics are the brass working machines. All material is handled by electric traveling cranes, the largest having a capacity of 50 tons.

The rigging loft, boiler, hlacksmith, joiner, copper, ship carpenters and other shops are all fitted with modern up-to-

A COREA 3M THE MACHEME sMop.
date machinery. In the blacksmith shop there are steam hammers, ranging from 600 to 6,000 pounds. Forced draft is employed for the forge fires.
Two impertant anxiliaries in the yard are a 150 -ton elec-trically-operated revolving derrick and a set of shear legs of 100 tons capacity. The yard is well provided with dry docks, there being two about 593 and 537 fect extreme length, respectively, and one with an extreme length of 804 feet. The latter is bnilt of timber with a masonry entrance, the masonry being constructed on a concrete foundation that rests on piles and timber superstructure. In connection with it is a pump-
ing plant, comprising three main centrifugal pumps of 100,000 gallons capacity per minute cach, and two drainage pumps with a capacity of 12,000 gallons per minutc. The main pumps are driven by electric motors of 1,000 horsepower each at 500 volts. It requires about one hour and thirty minutes to pump out one of the smaller docks, and about two hours and fifteen minutes to empty the larger one.
On the water front there are seven large piers, one of which

JMg-TON SMEAB Lecs.
is yoo feet long: the fitting-out hasin is goo by 500 feet and has a depth of water of about 40 feet.

In addition to the shops in the yard, the company operates a large foundry for steel and iron castings and for brass work. The foundry is connected with the main works by the company's railroad, and is but a short distance from the main works. All the machinery in the foundry is operated by electric motors supplied from the main power house at the shipyard.

THE SHIPBUILDING AND ENGINEERING WORKS OF MESSRS. GIO, ANSALDO-ARMSTRONG \& COMPANY.

In 1853, when the Kingdom of Sardinia wav undergoing an economic transformation, the small compartment of Piedmont was brought into prominence by new railway facilities and immediately entered upon a new industrial cra. Mr. Carreur, then Prime Minister, saw the necessity of an adequate mechanical establishment which would be able to carry out the large projects then under way, and, utiliying a modest contract shop. established at Sanpierdarena, near Genoa, since t8y6, he formed the Gio. Ansaldo Company, entrusting the management to Mr. Ansaldo, who was at that time a prominent professor of mechanical engineering.

The shoprs of the new company were at the time the best equipped in Italy, ankl, as carly as 1854 , they supplied the first
two locomotives for the Piedmont railways. In comnection with locomotive building. Messrs. Ansaldo made a specialty of the construction of other materials for railway use, and also of marine engines and boilers and marine repairs. In

In $18 \% 3$ the concern passed into the hands of the Bombrini Bros., and a new impulse was given to the industry. In 1866, in order to provide more room for the engine works, it was fonnd necessary to Iransfer the yard to Sestri Ponente, which

BREDOCE AT NEWPOMT NRWS.
1×07 these works undertouk the eonstruction of the large engines for the Italian iron clad Palestro, and subsequently also the engines for the two ships Staffeta and Mariamtonio Colonng. The reputation of the firm for marine work was enhanced by turning out the stem and stern poot forgings of what were then the largest hattleships, the Duilio, the Dandolo,
is two niles from Sampierdarena. Again, in $\mathbf{1 8 8 6}$, it was found necessary not only to enlarge the shops but also to have new ones erected, and to establish a foundry for brass and special metal work at Coruigliano. Here also was established a steel foundry and a large slop for building special naval electrical machinery; At the same time there was

Walling wor micpalles at THT aNralpo vazb.

Italia and Secpanto. In 1870 the works were increased by the addition of a small shipyard where the royal naval vessel Staffeta, the lake steamer l'enbana (which is still in service) and the freight steamer San Gottardo, tugether with a large number of smaller ships, were built.
crected in the harlour of Gienoa, as an adjunct to the shipyard, a large shop, for the completion and equipment of vessels after their launch, and, finally; on account of a contract for refitting and repairing some vessels of the Turkish navy, the Messrs. Ansaldo established a shop, with an Italian staff of
workmen, in the Imperial shipyards at Constantinople. In rgo3 the business passed from the control of the former owners into the hands of Messre. Gio. Attyaldo-Armstrong \& Company; the late Commodore Ferdinando Maria Perrone was then general manager of the company, and it was largely due to his efforts that the Italian naval industry was broughe to its present state of imporance. At present the firm employs about 5,000 workmen.

TIE WOKKS AT SAMTJERDARENA.
The numerous shops which comprise these works oceupy at
used extensively. All of the large machine tools in the different departmenss are Itiven by individual electric motors, and the smaller tools are arranged in groups connected to clectrically-driven shafting. A puwer station is bocated within the works, but in the immerliate future power is to be supplied by a private company situated so miles from Sampierdarena Alternating current at 66,000 volts will be transmitted from this station to the works, where it will be transformed to a lower voltage to drive a motor generator designed to supply direct current at 220 volts.

Railway connections are proviled between the works and

FLAN of thE AXEALDO YARD.
present a covered area of about 12 acres and an open space of about 8 acres. They include a pattern shop, formdry (iron and hrass), large turning and machine shop, lathes, boring and milling machine shop, small tool shop, brass machine shop, hoiler shop, futting shup, emery wheel shop, locomotive erectang shop, large erecting shop, laboratory, hydraulic press and coppersmith shop, watertube boiler and sheet iron shop, and, finally, the blacksmith and steam hammer shop.

All of the shops are furnished with electric power at 220 volts. Elcetricity is also used for lighting, current being provided at 120 volts. Electric drills and pneumatic tools are
the sea, so that large botlers, cantiugs, forgings, etc., can be lifted and carriced directly to the harbor of Genoa, or to the shipyard at Sestri Ponente, or shipped directly on board the vessels by means of a 120 -ton floating pontoon.

The equipment of the works includes about a thousand machine tools of every destrintion, ranging from the heaviest steam hammers to the most delicate laboratory apparatus. Most of the company's machine work and easting is done as this plant, the principal production consisting of locomotives. boilers of all kinds and the propelling and auxiliary machinery for both naval and mercantile vessels. At present there is

under construction the propelting machinery for the battleships Giulio C'csare, I.conardo da Vinci and Contedi Covowr. Each of these plants cunsists of 24,000 shaft horsepower of Parsons turbines. There is also nearing completion turbines for the Quarto of 25,000 shaft horsepower, the 12,500 indicated horsepower reciprocating engines of a new twin-screw Turkish cruiser, the 1,150 indicated horsepower reciprocating. engines of the twin-screw tank steamer Eridano; the 1,850 indicated horespower reciprocating eugines of the twin-screw tug Titano, also reciprocating engines for twelve torpedo boats of 2.700 indicated horsepower each, one set of Parsons turbines for a 2.700 shaft horsepower torpedo boat. the machinery for which is to be arranged on three shafts, and one set of Bergmaun turbines for a 2,700 shaft horsepower torpedn boat, all of which are being built for the Italian Government. Further. there are two sets of reciprocating engines of 6,000 indicated horsepower for a Chinese destroyer. The firm also

has a contract for seventy-two locomotives, to be finished before June.
The frundry for steel castings at Coruigliano supplies all the requirements of the main works at Sampierdarena for the incomotives, turbines, marine engines, etc. Recently an addition has been made to this plant to accommodate another 25 -ton gas furnace installation. The electric shop at Coruigliano occupies a ground area of about $21 / 4$ acres and makes a specialty of electric gear for use on board ships, such as hoisting appliances, winches, wirdlasses, etc.

THE SHIPYARD Af SESTE! PONENTE

This yard occupies an area of alout 25 acres and has a water frontage of 1,650 feet. There are five building berths, capable of accommodating the laigest vessels which are buitt at the presen time. Three other wooden slips are used for the construction of medium-sized vessels. For smaller boats, such as torpedo boats, destroyers, etc., covered berths are provided. The eltire plant is thoroughly equipped with modern machine sools electrically operated. Alongside the building berths are located all of the shipbuilding toots, such as punches, shears, drills, countersinking machines, beam

IN THE FBTIMg sttor.

benders, plate-bending rolls, etc. The mold loft covers an area of about 15.000 square feet.
A notable example of the class of work turned one at this yard is the Garibaldi type of cruiser, which was duplicated five times by this company for foreign nations. One of these vessels was the Cristobal Colon, of Spanish-American War fame. As an indication of the speed with which work is turned out, the armored cruiser Kasnga was laid down March 14. 1902, and launched October 22 of the same year. Her sister-ship, the Nisshin, was also huilt in the same rapid time. When these two cruisers were sold to Japan they made the voyage from Genoa to Yokosuka, with an inexperienced crew, at a higher rate of speed than has ever been maintained by any other armored vessel in so long a voyage. Upon their arrival in Japan the boilers, engines and all parts of the ship were found to be in good condition, so that they immediately went into service in Admiral Togo's squadron.
There is now under construction in this yard the battleship Giulio Cesare, 24,500 tons, 24,000 shaft horsepower and 22.5 knots speed; one Turkish cruiser of 12,500 indicated horsepower; one tank steamer of t t,000 indicated horsepower ; one tug boat of 1,850 indicated horsepower; eight torpedo boats for the Italian Government and one Chinese destroyer of 6,000 indicated horsepower. For the construction of the battleship Giulio Cesare one set of electric cranes was installed on each side of the building berth.

THE FITTING-OL' SHOPS IN THE HARBNE OF GENOA.
This shop serves as a complement to the works at Sestri
shops occupy a total area of about two acres, four-fifths of which are covered in. It is completely equipped with modern tools for the special work which is required. A part of the equipment includes tug boats, floating pontoons and berths for lifting and shifting heavy weights, and also a powerful dredge for harbor excavation.

FORGES AND CHAUTIERS DE LA MEDITERRANÉE.

This yard was established in 1857 at La Seyne, near Toulon. It includes a shipbuilding yard at La Seyne and engine shops at Marseilles. There are also other slips and engine works at Havre, but they are less important. Both yards are equipped with facilities for building any type of vessel and large numbers of vessels for both mereantile and naval work have been constructed not only for French owners but also for foreign navies, including Brazil, Chili, Greece, Japan and Russia. Promisent among these may be mentioned the Cearewitch, of 12,932 tons, which, at the time of her construction, was a very noteworthy battleship, largely on account of the new features embodied in her design, which were a distinct advance over anything then in use in other navies. The principal feature was the anti-torpedo protection, which is similar to that which is to-day found in battleships of the Danton class, the German Dreadnoughts, and the new Argentine battleships huilding in America.

The main establishment of this company at La Seyne has a

Ponente; for although, if necessary, inerchant ships can be launched complete at the latter place, with their engines and boilers installed ready for service, nevertheless naval vessels, especially large cruisers and battleships, require a large amount of work after launching, such as the fitting of armor plates, turrets, guns and various auxiliaries. This shop has been installed for the purpose of doing such work. The
frontage of 3.900 feet on the Toulon roads. At the center of the yard is a fitting-out dock, 443 feet long and tts feet wide, with sufficient depth to accommodate the nsual type of vessel builh. The main offices are in a large building facing the fitting-out dock, where ample room has heen reserved for the drafting staff, which consists of about 150 men. There are seven building slips, two of which have an available length
of 657 feet. They are built of masonry, and material is hoisted on to the slips by poweriul pivoted electric cranes.

PLATE ANB ANGLE SHOPS.

This department includes a large plate shop, 443 feet long. with two parallel bays, each 99 feet wide. The shop is served by eight overhead traveling eranes which operate at a speed of 262 feet per minute. One bay is designed for laying out plates and the other for fitting-up purposes. Close by is the plate yard, which is served by a high-speed traveling erane, so that material is handled quicklv and cheaplv. Above the
area of 4,000 square feet, is situated at a distance from the other shops in order to minimize the danger from fire. The plant includes a carpenter shop, sawmill, joiner shop, model shop and lumber shed. The woodyard, which is 525 feet long. is served by an electrically-operated overhead crane. 85 feet wide, with a working speed of ata feet per minute.
In the sawmill are six band saws and the usual equipment of woodworking tools.
giv and armor shors.
This department includes the forge, fitting-out, electrical.

GHIF SHED, MORMANDY YARA.
plate shop is the mold loft, which is unusually large, being 443 feet long and 99 feet wide. The machines installed in this shop include, besides the punching and shearing machines, radial drills, planers, metal saws, etc.; five large planing machines, three hydraulic presses, a large manhole punch, all of which are electrically-driven and arranged so as to facilitate the progress of work tlirough the shop.

Near this shop is the angle iron shop and small blacksmith shop. The equipment includes three large angle iron furnaces
locksmith, coppersmith, tool and galvanzing shops. The totan area of this group is 8,900 square feet. The forge shop has a length of 290 feet and a width of 82 feet. It contains seven steam hammers, one of 4 tons, one of 2 tons, three of I ton and two $1 / 2$-ton machines. There are also two heating furnaces and seventy small forges.

The fitting-ont shop is divided into three bays, each 295 feet long. one 82 feet wide and the other two 40 feet wide. These are sersed by three electric overhead cranes, the largest

THE BOILIF sHov.
capable of taking bars 72 feet long. There are also four large hydraulic presses for bending heams and several metal saws, including one circular saw capable of cutting hevels.

CARPENTER SHOPS.
The woodworking department, which includes a covered
of which has a lifting capacity of 35 tons. The first bay is devoted to small machine work and gear work, and its equipment includes about ninety machine tools, such as turning lathes, boring, countersinking. tapping and planing machines, etc. The principal lathes have been especially designed for handling large pieces of machinery and are capable of dealing
with pieces 39 feet 4 inches long by 23 feet diameter. The other two bays are intended for the fitting out and erection of engines.

TCIRENE DEPARTMENT.
When it was decided that the battleships of the 1900 programme should be driven by Parsons turbines, this company obtained the rights for building this type of machinery, and a special shop was erected for doing the work. The shop is 303 feet long, 148 feet wide and is divided into two bays, each 74 feet wide, having an available height of 55 feet 2 inches. One bay is devoted entirely to the building of the principal parts of the turbines and rotors and is served by three overlead traveling cranes, one of 30 tons capacity and the other two of 10 tons each. The second bay is used for fitting up the turbines and is served by two overhead cranes. each of which has a capacity for lifting 60 tons. These cranes may be connected to deal with weigbts heavier than that.

After the turbjnes are ready for shipment they are loaded on a special car of 130 tons carrying capacity, on which they
sively, and special furnaces have been installed for dealing with these tools.

BOLLER SHOP.

The boiler shop has been so arranged as to meet the requirements demanded in the construction of modern marine cylindrical boilers. It is 394 feet long, 140 feet wide, divided into three bays. The center bay, 66 feet wide, is served by two overhead electrically-driven cranes, which have a clear runway from one end of the shop to the other. One of these cranes has a lifting power of 100 tons and the other 25 tons. The two wing bays are served by the same number of cranes, but these cranes have a lifting power of only 10 tons each. This shop has a eapacity of 2,000 tons of boilers per year. The machine tools include special equipment for the building of watcrtube boilers. There are four plate-bending rolls, eleven punches and shears, two beveling machines, two triple boiler shell drills, two radial drills, four hydraulic presses, two hydraulic riveting machines, one of 130 tons power, which is served by a hydraulic crane of 35 tons lifting power. There

SETP TOWEA CRANE. ATLAXTIC WORER
are carried to the fitting-out dock, where they are installed by a 150 -ton floating crane. The toois th the turbure shop inclade a horizontal lathe weighing 180 tons, driven by a 60 horsepower clectric motor, which is eapable of dealing with pieces 56 feet 2 inches long and 16 feet 5 inches diameter. There is also another horizontal lathe weighing 880 tons, which can handle pieces $\& 8$ feet long and 11 feet to inches diameter. It is driven by a Go-horsepower motor. Another horizontal lathe, weighing 120 tons, can handle work 46 feet by 6 feet 2 inches. The latter is driven by a 40 -horsepower motor. A vertical lathe, weighing 250 tons, is installed, which deals with work 22 feet 6 inches diameter and 26 feet 4 inches high. This machine is operated by a 60 -horsepower motor. and it may also be used as a boring machine. There is a vertical lathe driven by a 25 -horsepower motor for cylinders 13 feet to inches diameter and 5 feet 7 inches high. All of the above-named machines use bigh-speed steel tools exclu-

TUMBINE SHOP, ATLANTIC WUKKE.
are also two portable riveting machines, four steam hammers, etc.
This plant was the first one in France to install portable preumatic tools, and at present there are no less than 150 pneumatic drills, riveting, chipping and calking hammers, requiring in all 400 horsepower, in daily use. The equipment of the yard also includes four floating cranes of $15,45,80$ and tyo tons lifting power respectively. The material is handled throughout the yard by steam-traveling cranes operating on railroad tracks. Part of the power for the shops is supplied the company's own power stations by turbo generators and part ly an outside company.

The annual meeting of the Institute of Naval Architects will be held on Wednesday, April 5, and continue through the two following days in the hall of the Royal Society of Arts, John street, Adelphi, London, W. C.

St. Nazaire Shipbullding and Engineering Company, Ltd.
The yard has a frontage of 2,950 feet on the River Loire, and on the opposite side of the yard is the Penbouet Dock, so that the plant is exceptionally well situated for shipbuilding purposes. Railroad connection with the State and Orleans railway, together with the exceptional dock facilities, insures the cheapest and most expeditious means of receiving material and shipping finished work.

Tbere are five building slips at the Attantic yard, all of masonry construction, the largest of which is available for ships up to 700 feet in length, and the smallest for ships 394 feet in length. As the climate in this section is not very severe the building slips are not covered in, and ships are launched according to the cradle method. The slips are served on both sides by electrically-driven tower cranes of a noteworthy type. They are tos feet high, with an acting radius of from 47 feet 7 inches to 72 feet. They are capable of lifting 4 tons at 72 feet and 8 tons at 26 feet. The lifting apparatus is driven by a 30-borsepower motor, and the movement of the cranes along the rails is accomplished by a 15 -horsepower motor. The jib of the crane is actuated by a 5 -horsepower
saws, etc. The annealing furnaces are large enough to accommolate the largest pieces which can be reheated without deformation. Special openings are provided in the furnaces to enable the workmen to note the appearance of the metal while it is being heated. When the pieces become cherry red the fire is extinguished and the pieces are left in the furnace without admitting cold air until they are cooled to normal temperature.

THE MaCHiNeny department.
The engine department includes a forge shop, fitting-up shop, coppersmith shop and tool shop. The large forge shop is 197 feet long by $\not 8$ feet wide. In it are installed sixteen hammers, ranging from 500 pounds to 1,323 pounds. The coppersmith shop, including the galvanizing and pipe shop, is 263 feet long and 42 feet wide. A hydraulic press is used for bending pipes and a hydraulic accumulator is used for testing pipes and fittings. The fitting-out shop has an area of 85,000 square feet and is divided into four bays, served by six overbead cranes, which have a maximum lifting power of 50 tons. There are no less than t30 machine tools in this shop. the most important of which are the lathes, capable of dealing with work 52 feet 6 inches long and 13 feet 2 inches diam-

THE REECTING strop.
motor. The cranes have a speed along the rails of 23 feet per second and are capable of lifting a weight of 8 tons at a speed of 29 feet per minute. These cranes permit very easy, rapid and cheap handling of materials. The slips are provided witb electricity and compressed air and hydraulic plants to facilitate riveting, drilling, etc.

```
PlATE AND ANGLE SHOPS
```

These shops occupy an area of $\mathbf{t 5} 5.000$ square feet. The main shop is in front of the slips and is 578 feet long and t80 feet wide, divided into three bays, which are served by overhead traveling cranes. Hydraulic cranes serve the thirty principal machine tools, which have been arranged in such order as to avoid loss of time and confusion in handling materials. The shop contains three planing machines for plates to feet wide and t inch thick, hydraulic punching machines of 250 tons capacity, one garboard machine dealing with plates up to 1 inch thick and three rolling machines for $5 / 16$-inch material.
The angle iron shop contains the angle iron heating furnaces as well as the furnaces where material is annealed after having been worked into shape. These furnaces are capable of taking lars up to 82 feet long, and large floor space with special machinery for doing the bending is provided. There are three bar-bending machines besides the necessary metal
eter. The part of the shop reserved for huilding and erecting turlines has an available beight of 32 feet 6 inches; it is served by overhead traveling cranes, having lifting powers of so, 30, 25 and to tons each. When it is necessary to lift a complete turbine these cranes are connected and a load of too tons is easily handled. The turline part of the shop is the largest department. Among the modern tools installed there are a horizontal lathe, capable of handling work up to 2 feet 6 inches long; three horizontal boring machines dealing with 49 fect 3 inches; a vertical planing machine capable of handling work 23 feet long and zo feet high; a horizontal boring machine with two sets of tools, etc.
The part of this shop which is used for erecting purposes is 263 feet long, 66 feet wide and 49 feet 3 inches high. Here were erected the 30,000 -horsepower engines of La Provence. as well as the 37,000 -horsepower engines for the armored cruiser Eruest Renon. At the time of writing there are under construction the 40,000 -horsepower Parsons turbines for the France, and until recently the 22.500 -horsepower turbines for the battleships Diderot, Condorcet and Mirabion.

carfenter shops.

The carpenter and joiner shops are located at the opposite end of the yard, in order to remove as far as possible any liability of damage by fire. One louilding, azo feet long and
(o) feet wide, contains the carpenter shot, cabinet-making shop and the lumber store rowns. Among other tools are to lo found a band saw for sepuaring timber and lugs and a four-side planing machine. An owerhead crane is provided for handing material. In the joiner departmem there are thirtyone machine tools.

Bohlex Shop.

The boiler shop is located at the nonh ent of the yard and is practically new, as it was only a iew years ago that the shop was partially destroyed by fire. A : it slands to-day, the building is +27 feet long and 210 feet wide, divided into four hays, served by eight overliead electrically-driven cranes operating at a height of to feet alsove the gronnd level. These crates are capable of lifting weights from to to zo tons at a speed of t6 feet 5 inches per seconl. The principal machine tools include two rolling machines, one of which is vertical, eapable of draling with plates $15 /$ inches thick and 11 Ieet 6 inches wide. Five punching and shearing machines for drilling beiler shells; two qualrmple drilling machines for front ethl tulse plates, nine rotary drills, three hydraulic presses for flanging plates, threc hydraulic riveting machines, giving a maximum fressure on the dies of too tons: otte portable liydranlic press and two steam hammers. Besisles the necestary tools for building the ordinary type of Scotch maritre levilers there are the necessary special tools for building watertube and locomotive lnilers. The largent boilers made in this shop are those for the France, which are 2 I feet 4 inches long ant 17 feet 0 inches diameter, weighiug ton toms each.

EQLIPMENT DEPMTMENT

This diparment includes the sail and rigeng loft, lifeboal shops, etc. The mold loft is at the south end of the yard and is 280 feet long and 72 fect wile. The pattern shop has an area of 1,500 square feet.

Power is delivered to the different shops from a central power station, where are installed three sets of dynamos actuated by steant furbines and reciprocating engines aggregat ing 20,000 indicated horsepower. The entire sard is lighted by clecericity. The comprexsed air plant, which comains three air compressors, is situated just outside the gard. All lieasy pieces, hike turbines, turrets, berbers, ete., are loaded on special cats in the shops, and are then carried to the Penhowet dock quay, where they can be lifted off by a set of tower cranes There are three of these erancs, onc of which has a lifting power of from 150 to tho tons, one of so tons and one of so tons. The large tower erame, which is electrically-driven, is tos feet high above the level of the quay. It is capable of lifting a load of 150 tons at a speed of 3 feet 6 inches per minute, or a load of 60 tons at a speed 7 fect 7 inches per minute. The shear legs are 8_{Δ} feet high and deal with loads up to 80 tons, while the other crane has a capacily of 30 tons,
Close by the yard, as is shown in the plan of the works, are three drydocks, one of which is 427 feet by +2 feet 8 inches by 13 feet 4 inches. The second is 551 feet hy 50 feet by 24 feet. and the third is 7.38 feet long. 124 feet 10 inches wide and 30 feet draft. Thiese docks are a valuahle addition to the equipment, both on acconnt of their eapacity and their convenient location at the entrance to the yard, which insures that the maximum efficiency ean he obtained at the cheapest cost.

```
the Normandy fard.
```

In this yard are sux builling slipe, fogether with larke shops containing electrically-driven machinery. The yard is commected with the Western and Siate railways, and on the river front there are provided wharves where large pieces of machinery; etc., can be loaded or moloaded by aid of large shear leg5. Without going into the details of the equignent of this)ard, it is sufficient to note chat it is designed squecially for the buikling of hulls of cargo and passenger hoats up to 10,000 tons.

THE BRITISH BATTLE CRUISER LION.

The new British eruiser Lion is the most notable ship of war which has ever been built. She is no less than 700 feet long over all and 86 feet 6 inches in extreme beam, and her size may very well be compared with the Lusilgnio, which is 762 feet in length and 87 feet 8 inches in breadth. The displacement of the Lion at a mean draft of 27 feet 9 inches is 26.350 tons. She is of the all-bis gun type of high-speed turbine cruiser, and in design marks a bold departure from the Invincilles of 1008 which were considered to be the last word in fast craticers. The Lion will have a sea speed of 28 knots, which should be expal to a smooth-water speed of 30 knots . ller dimensions are given in the following table, in comparison with those of the Intincible:

	Lim.	Impvincila.
Length, B. P.	680 feel 0 inches	530 feet 0 inchee
Imagth aver all	200 feet 0 inches	563 feet 0 inchee
Brathi, exteener	B6 feet 6 inches	78 feet 0 liacbes
Draf, menn..	27 leet 9 inches	26 fret 6 inches
Displacemem.	26,350 ıens	t7,250 ient
1. H. P\%, donegher.	70,000	4t,000
Speed, devianmed.	28 knots	25 knots
Armor bell.	94 inclies	7 inches
Main battery..	$8-\mathrm{ta}$ - -inch duns	8-12-iach munt
Sexoadary hatiers.	24-4 im hi kuno	$16-4$-inch guns
Torpedo tuber..	5-21-inch	$5-13$ iern
Coul capmity...	3,500 tors	2,500 ions
Teral come	A1, 8 S0,000	30.000

The Lion will be propelled by four serews, actuated by Parsons turbines. The turbines are designed to give 70,000 horsepower, and are placed in two compartments, separated by a eenter line bulkbead, watertight from keel to protective deck. The machinery is so arranged that there is in each engine room one high-pressure and one low-pressure main ahead turbine, one cruising turbine, one high-pressure and one low-pressure astern turivie. The high-pressure ahead and the high-pressure astern turbines will drive the outer shafts, while the cruising and the low-pressure ahead and low-pressure astern turbines will drive the inner shafts. There are four propeller shafts, with one threc-bladed propeller on each, and the propellers are of manganese bronze, east solid. The two outer ones are placed about to ieet forward of the iwo inner propellers, and they are all arranged to turn outboard wheu the ship is going alhead. Stcam will he generated in forty-two watertube boilers, arranged in seven groups of six each. The fuel capacity is about 3.500 tons, and this uill give the ship a wide range of action. The engine rooms will be provided with the most up-to-date auxiliary machmery, meluding main circulating engines, main air pumps, evaporators, distillers and fire and hilge pumps. The propeller shafts pass through the hull and are exposed for a considerable length, each shaft being supported in very large cast steel struts of the " A " pattern, without any out bossing of the hull. The stern has a very long overhang for housing the two rudders, which are of the balanced type, and unsupporied outside the bull. This double ruclerer system of steering has proved a great success, and is beng adopted in all the latest Finglish battleships.

The Lion was set aftoat at Devompont Dockyard on Aug. 6, syo. The difference between the original "battle cruisers" and their succensor is almost increvible. The mounting of the main lattery is entirely novel. Futr guns are paired on the center line forward, the second Iwo firing over the first two; then come the single tripod mast and two funnels. The third pair of guns, also on the eenter line, is between the second and third funnels, and the last pair of guns is mounted aft in the usual way. There wilt be a short mast behind the third fuunel for signaling. The secondary battery will be mounted in the superstructure, and there will be a notable absence of bridges. The diagonal arrangemem of placing the t.3.5-inch turrets has been ahandoned in this ship.

 IT moLos mem alt tooctute.
 "Amervan"
 Ferro Vanadium "The Master Alloy"

Vanadium Steel made from the right kind of Ferro Vanadium and submitted to the right kind of heat treatment is the highest type of steel known to the metallurgical world. There is absolutely nothing beyond it for strength, toughness, durability, freedom from fatigue and crystallization, and general all round workability.

The most important factor in making good Vanadium Steel is the quality of the Ferro Vanadium by which the Vanadium is introduced.

The determination of the proper chemical composition of Ferro Vanadium is a vital matter, and requires expert knowledge. The manufacture of the right Ferro Vanadium requires good ores, infinite precaution, factory methods as precise and accurate as laboratory methods, and unceasing analysis-to make sure.

The American Vanadium Company commercialized Ferro Vanadium. It controls rich and extensive mines; has studied Vanadium from every standpoint and operates the largest and most complete factory in the world for the production of Vanadium Alloys.

We guarantee our Vanadium Alloys to be right, and you can insure the quality of your Vanadium Steel purchases only by insisting that your steel maker employ "Amervan"-the tried and proved and proper

Ferro Vanadium

Shiponents in any quantity to any rensoashle analyais or Vanadium content. Bookletis containing testr, direclivns, results, ete., free.

American Vanadium
318 Frick Building
Company
Pittsburgh, Penna

MARINE ENGINEERS

SHOULD SPECIFY THESE METALS-

VICTOR VANADIUM BRONZE CASTINGS

This Bronze composition is particularly adapted for Modern Marine Service, and is rendered tough, strong and uniform by the incorporation of Vanadium, which is considered the greatest of all scavenger alloys, imparting to the metal greater wearing qualities. This bronze is ten per cent lighter in actual weight than any other bronze casting of the same pattern.

These castings can be forged.
The structure is close and clean, capable of withstanding high pressure for valve service.

A cylinder .9-16 of an inch thick, three inches in diameter and fifteen inches long has been subjected to a pressure of nine thousand pounds.
TENSILE STRENGTH on 1^{\prime} Section:
56000 to 65000 lbs. per square inch. ELASTIC LIMIT:

22000 to 34000 lbs. per square inch.
This metal is used in submarine vessels in Japan, Austria, Russia and every vessel of this type in the United States.

VICTOR VANADIUM NON-CORROSIVE SILVER METAL

This Metal is non-corrosive and is particularly useful for sea-going service.

It finishes to a silver color and takes a high polish whose lustre can be maintained quite readily by simply rubbing, adding greatly to its usefulness and effect as ornamental hardware for marine use

It is an ideal metal for propellers, for it withstands salt water and all vegetable and mineral acids, nitric acid excepted. It is of great strength and toughness and should be used for valves and couplings fer fire apparatus on account of its non-corrosive qualities, in place of nickeled castings, as nickel finally peels off, and this metal not being plated, cannot peel.

TENSILE STRENGTH:

66000 lbs. per square inch.

ELASTIC LIMIT:

36000 lbs. per square inch.
This metal will be found indispensable to marine service when once used.

WRITE FOR CATALOG

VANADIUM METALS COMPANY

FRICK BUILDING PITTSBURGH, PENNA.

A TWIN-SCREW OII. BARGE.

The Harlan \& Hollingsworsh Corquation of Wilmington, Del., have designed and built for the Pure Oil Company of Philatelphia a twin-screw power lighter for coastwise and fanal service. The vessel is 100 feet over all, 93 feet on the waterline, 23 feet beant molled, 12 feet 6 inches depth molded, and is designed to carry 90.000 gallons of oil in bulk and, at same time, a deck load of from 250 to 350 barrels of oil on a draft of so feet.

The hnll is built entirely of steel, the only exception lowing the pilot husse and captain's room. She is divilled transversely by cight sted bilkheads. Four eompartments are intemberl foe lignid carg", and one of them is fitterl with hatches sn that any other carkt can be carricl: an expausion trmuk is fitted over the first three which carry tifuid carge only; a kongitulinal bulkhearl divides each hold and each has the necesnary manholes, ventilators, somuling hules, etc. The
strptying the fropelling. pumping, electric and hoisting engines. An independent frexh-water tank is located in the aft peak and contains 700 gallons. A force purnp it the kitchen draws from this tank and fills the auxiliary tanks for the kitchen sink, toilet room and hot-water heater. A deck hand fire pump and a lairbanks rotary gasolitue (petrol) driven deck fire pamp are installed, the latter feing driven by meaus of a sprocket-chain attachment from the hoisting alyite.

The kitehen is fitted with a range, sink, dressers, tuess table and an Ileal heater, supplying hot-hater heat to all quarters and the pilot honse throngh suitally-placed radiators.
Actal berths are fitted in all living quartets, with metal ha*kers for the crew, the officers having wond drawers and theoks, the floers being covered winh linoleun. The qoilet room has an aslestolith floxer and is provided with a slower. Ifras-framel sudelights are fitted to all romms in the deck fronse, pilot house and captain', room, having sliding kindows.

cargo hatches liave oil-tight cosers, wents and sounding holes. F'eak lnoyancy tanks are movided at cach end of the vessel, the pump room leing locatcil alaft the aftermost cargo tank, A 24 -inch cofferilain alaft the 1 ump room prevents any leakage of oil from holdx, pimps, or kasoline from tanks, finding its way into the engise romm, where the pumping, electric lighting and proqelling machinery is lecatecl.

The pumps are of the rotary type and are each driven diecetly by independent engines located in the engme romm. through shafting jassing through the cofferdam. The pump ronm is enteret from the deck hy a steel skylight booby hatch. having an iron ladder. Deck lights and vents are also fitted over pump room.
A steel deck house is located over the engine room, giving etutrance to the latter and also provisling accommodation for the engineer, crew, conk, toilet and kitchen. This house has a steel roof. Two down-cast vents, one pptake vent, a steel skylight, with emergency escape and deck lights, are provided for the engine room.

Two indefendently constructed tanks, each containing 1,000 gallons of gasoline (petrol), are located in the pump room for

The pilot house has the usual compass, clock, speaking tube and gong and jingle commnnication with the engine room, also a hand-steering wheel and drum, with rope leads and purchace blocks to the steering tiller. The rwhler is of east steel of the balanced type, the weight being carried at the main deck, while an extension stuck reaches to the tiller at the top of the deck house.

The vessel is equipped with a square-sterned metallic hifeboat, haviug hinging davits, stoxklese anchors and anchor crane, towing and mooring hitts, pump brake wibllass, fog bell, hose, life preservers, ring buoys, Mclaughlin fire pails, etc., as required by the United States Insjection Service. Flectricity is used for lighting the vessel, also for the running ant fowing lights: portahles are provided for the holds, etc. A heavy wool pole mast anul cargo lnom, with stays, shrouds, guys and cargo fall, with the necessary blocks, are provided. also jack and ensign staffs.

The propelling machinery consists of two K. H. and L. II. four estinder, fonecycle enginex, built by James Craig of New York. The cylinders are 9 itkhes bore by 10 inches stroke, and are capable of developing between 73 and 100
horsepower. The eylinders are separate and mounted on forged steel finished columns. Make-and-break ignition contained in detachable bronze plugs is provided with means for varying the timing of the ignition when engines are in operation. Nickel steel inlet and exhaust valves are contained in the cylinder heads, and all are mechanically operated. Forged
bitt metal, peened. loreel and accurately scraped to fit the crank shafts. All the cans, rollers, ete., for operating the inlet and exhaust valves and igniter mechanisms, are mate of the very best tool steel finished and hardened.

These engines are designed with a lower main exhaust port, eontrolled by a mechanically-operated valve device, permitting

ONE OF THE CRAIC ENGTMES
steel finished crank shafts and eonnecting rods, bronze rotary circulating water pumps, a bronze governor and hand-control speed device and carburetor, all suitahly arranged to properly control the engine speeds, are fitted. The cylinders, eylinder heads and exhaust pipes are properly water jacketed, carefully machined and fitted. These engines are fitted with a very superior and powerful friction reversion clutch and thrust-
the exit of the exhaust only, and the valve is closed on the suction stroke of the piston. By this means the heat conditions of the engines are properly attended to, as 90 percent of the heated and burned gases pass out through this lower exhaust port. This arrangement also has the advantage that no valves are openet agaiust any great pressure, and the regular exlanst valves in the eylinder heads are not envelored by any

bearing outfit. Each eylinder is fitted with an independent eylinder oiler and connections. There is a mechanical oiler and eopper tubing for oiling the pistons and wrist pins. There is also provided on the working side of the engines a suitable oiling manifold, valve devices and copper tubing for oiling the main bearings and erank pin boxes. All the main bearings and crank-pin boxes are babbitted with the best genuine bab-
great heat, also the wear and tear on the valve mechamism is greatly reduced, thereby insuring smoother operation and longer wear of the engines.
The eylinder heads are fitted to the eylinclers by means of a recessed joint and copper gaskets, and bolted down by six $7 / 4-$ inch-diameter steel studs and nuts. The circulating water passes from the cylinders to the cylinder heads by means of
copper tubing and special ontside eonntections, therely eliminating any possible water leakage to the eylinders.

The propeller shaft is of steel, bronze lined, and is supported at its outer bearing by a strut The propellers are of bronze. Air compressors are arranged and operated lyy the engine, with stitable air reservoir, whistle and pressure gage, all complete, the exliawi piping and muttler being carried up throngh an uptake vent abaft the captain's room.

The pemping machinery cuesists of two rotary pmoms of the lairlanks make, together capable of prmping so,000 gallous per hour against a head of 30 feet. The gasoline (perrol) engines, which drive these pumps, are separated from the fumis by a cofferdiam and are connected directly th the punips by a driving shaft. passing through the cofferdam. The engines are water-cooletl, and are grovided with she usnal starting devices, muflers, ete.

The boisting engine is also of the Fairlanks make, located on deck and protected by a permanent shich. This engine is fited with a single drun, having an overhauling tevice, and is capable of hoisting without the aid of a purchase a load of 500 pound- at a rope speed of iso feet per minute. This hosister, lyy theans of a sprocket-chain contection, cant operate a eentrifugal deek fire pump, and stre anchor windlass also.

The stems of the valves for the liguid fuel suction pipes are carried through she tops of the cofferdams and operated by a wheel. The general layout of the fiping is shown in the illustration.

This veseel was designed for a spued of about eight miles per hons, and went into service early in Jannary.

At the annual meeting of the National Marine Eitgineers' Reneficial Association, which was beld in the Planters' Hosel. St. Lomis, Mo., Jan. to to 20, the following oticert were elected for the coming year: Natronal president, William \mathbf{E}. Yates, New York; first national vice-president, Art Hyde, Cleveland. Ohio: second national viee-president, George II. Bowen, Port Iluron. Mich.; third national vice-presidem. Charles N. Vosburgh. New Orleans, La. national cecretary, Ceorge A. Girabl, Chicago, 111. ; natinoal treasurer, A. L. Jones, Detroit. Mich.

The convention adjournced on the evening of the 2 oth, to theet at Detron, Nich., January, 1912.

The Repair of a Worn Plate and a Leaky Jolnt.

Engineers wha are stationed away from home have frequently to encounter a goon many difficultics which would be rather outside the experience of those who live and work near our kreat mercantile marine centers. For one thing, the means and appliances of repair are not available at ont-of-the-way ports, materials are very limited, labur is oftentimes noskilled, and, in many cases, time eamoot be spared to accomplish more than a makeshift repair. Such a position calls for a considerahle anount of independent action and a quick eye to see the possibilities of a most unpromising situation. Such minor matters as, fur example, a knowledke of Krooboy's lingo and a working acquaintance of metbouls of persuasion adapted to the tutntored mind, are taken for granted

As au example of the difficulies which happen in menfequented ports may be mentioned the cave of a plate very hadly worn and a joint leaking on a ship's sitle milway between the load and light waterlinc. This occusred on a large stean lighter (t,000 tons), arse the cause of the trouble was dete to the contimesl rubling of the lighters against the craft, and also against other steaniers. The effect of this was that the rivet heads and the edges of the plate were worn down, eausing it to break away at the seam.

This happened when the ship was busy loasling As soon as the leakage was noticed the ship was linted until it was
cleared of the water and loading operations had, of course, to be suapended until the leak could be repaired. The opening of the seam extended for alout six feet, and it was also seen that the plate was very baslly worn locally. In order to effect a repair, a piece of plate about 8 feet long by 2 feet 6 inches wide was obrained and joggled slightly, or given a set along its lengthwise center line. Holes were then drilled in the ship's side where they could best be placed for rivets, and the plate was fieted, markell off and punched with a hand punch. The lvoles conld, of course, have been just as well drilled, as the tackle was available: but it seened to be a longer job. The plate was then boltel up onto an insertion joint laid along the outside of the ship. Aiter the cargo hat been lightemed mure lobles were drilled through both the plate and the ship's side, rivots were secured and a permanent repaur was made of the jols. Of conurse, licfore riveting, after the removal of cargo (at the end of the trip), the insertion joint was remosed because in order to make a permanent rcpair it was thecessary tocalk the plate at all its edges.

THE MECHANICAL HANDLING OF FREIOHT.*
 Er B. POWLER
 STHAM,HIP TFRMINILS.

Turning to steamship or water-borne freight terminals we find the satte conditions as at railway terminals of 100 great eost in handling goonls, and too little space for ahe present traffic without even cousidering the future. The congestion present at a basy pier and the long slelays experienced in delivering or receiving shipments are well known. The manager of a large teamiug company in New York fold me not long ago that a wate of two or three hours at the pier was mot unHsnal, and he had hown of instances where a team had waited an entire day and at the end came away without its load.

The excessive costs of handling freight form an important part of the total costs as in railway transportation. The lack of sufficient capacity for handling the merchandise, logether with the slowness of manual handling, made slower still by the congestion and conseguent rehandling, causes the delay.

Speed in loachong and unloading vesels is of the greatest importance, for, differing from railway traniportation, the vehicle for carrying fretght is one large tait, and all goods must wait until she lant box is boded. The motive power ako lies idle during this wat. The motive puwer in railway transportation is in small unts, all of which can practically be in use while ears are being loaded. The interest on the larke investment represented by a modern steamship, while idle in the dock a day or so, often is an imporiant factor in the profits of a erip. The steamship terminal differs from a railway serminal in that it is necewarily of less area, and a combinafion terminal as well. Over the same pier flooe is handled all classes of inbonnd, outhound and transfer freight at the same time.

In the use of machinery at docks this coumtry is far behind Fiarope. All large ports of Great Britain and of the Contment are well supplied with eranes of one sort of anotlier: some orditatry pillar eranes, other movable erames along tracks parallel with the pier. Snch apparatus, however, does wot constitute a true mechanical freight-handling equipment, nor does it perform the operations required of such an installation. Its horizontal transporting movement is rather limuted and does not reach inside the sheds. The tase of hand trucks at these ports is still practiced extensively.

It has leen the custom recently to attrihute the great efficiency of these ports and their lower oost of freight handling to the handling machinery there installed. The cranes prinet-
*From a pager "end before The Atrerican Sokiety of Stechanical Enkimeers, New York, January, 1918.
pally serve to honst or to lower karls into the ship's hold, which is doak in this country by the ship's lackle. Unless these goods are taken drect from railway cars or placed at once on cars or teams they must be taken away from or delivered to the cranes by hand trucks.

The difference in cost of unloading freight at San Francisco and at Hamburg is only alwout to cents per ton, taking the averase of all goods handled at Hamburg. San l'rancisco lias practically mo machinery and 1 lamburg an ample supuly of muderu cranes. Labor is moch cheaper at Ilamburg, but even this is not the main advantage. Sixiy-twe percent of all freight entering the port of Hamburg does not pass over the puer's at all. The vessels tie up at mevorings in the harbor and transfer thetr loas to so-called Rhine bots, placed alongside, boisting and lowering with the ship's tackle-the cheapest tossible way of transferring merchandise.

At the water ferminal the methols of laading are practically two in number: (a) Direct transference to vessel from other water eraft, railway ears or teame; (b) delivery of goods to pier and later transferenice to vessel. In this country the fecond method is generally weed, direct transference being practically only from lighters used in a transfer of freight from another terminal. The uswal operation, therefore, involves a large amount of handling, and much moving of small loads on trucks. Gombls received at the pier are transferred to hand trinks, taken to the scales or else measured, then moved to some prederernine location and removed from tncks to be asain loakletl and trucked to a point where the ship's hoist can reach the load, which is then lowered into the hold. With the substitution of transporting machines much greater loads can be moved from the vehicle delivering and at much greater speeds, taken over track scales and automatically weighed, moving on to the location desired or direct to the ship's hatch, and immediately lowered into the hold. The elimination of mannal labor in entire except it removing from cars or teams to the carrier, and if in the latter case the merchandise is loaded on tlat hoards placed on the bed of the wagons, even this handling can lie done away with.

The method of unloading may be either loy (a) direct transference to the vehicle which will move it from the pier or dock, or (b) direts discharge to the pier and later reloading to boat, railway car or team. In the case of coastwise traffic cither method may be allopted. On the other band eargoes from foreigu ports must be handled by the second methord becanse of the custom inspection. The advantages of employing transporting machines in unloacling is apparent when contrasted with methenls now in use.

The planning of overhead trackage for a water terminal is a simpler prohlem than devising one for a railway terminal. sinee while it must serve the entire area of the pier sheds as in a freight station it need extend outside only far enough to reach the holds of the vessel. Instead of the ontside trackage being designed to allow for delivery or reception of goods from a hundred or more points, the only parts necessary to be reached are the hatclies of the vrosel, few in number. The direct trackage for reaching the hatches must be movable in a line parallel with the pier, and so arranged that they may lie entered from any portion of a permanent track forming a loop or a series of interemnmanicating loops, one side of which is ontside of the shed.

Steamship freight is generally of latges bulk and greater weight than railroad L. C. 1. freight, and necesearily heavier trackage and more powerful transporting machines and hoists must be provided. The consignments, however, are monally larger in quantity and mnch less sorting and classification is necessary, conditions favorahle to the maximum elimination of hand lahor. Reharrfling by manual lahme could practically be done away with, and if a diect transference between vessels and other transporting vehicles were made possible, the
mechanical rehandling could be eliminated, since the transporting machine can hoist the load from the hold, carry it to the ear or team and deposit it thereon. If necessary to deposit load on shed floor it can later piek it up without further rehandlirg and trampurt it to car or team or to vessel and lower it into the hold. The present cost of loading and unloading could be greatly reduced, and the capacity of the terminal inereated by the handling of larger suit loads at gerater speeds. The capacity could lie further increased by a redesign of the terminal.

With a transporting machine stationed on the pier isself, doing the hoisting and lowering of loats, the variation of level due to tides could be igmored, since the cost of hoisting goods a few additional feet has no material effect on costs or time. L'pper storics could then be utilized to alvautage. As a role a second Hoor is tued only for warchouse purposes, with the result that all is confusion on the pier flowe, due to wagons both receiving and delivering goods. In many cases the pier foror is divided longitidinally into two portions by a pit down the center, in which are placed cars for loading or tunloaling. Communicaton between these two platforms is maintained through the ears, and, if there is more than one line of them, by "spotting" them or by movalile lridges.

It is supkested in the first place that no teams be allowed on the pier thoor. The loads could the received or delivered at the end of the pier by the transporting machine, and the 5 pace required for the teams could the utilized for other purposes. It is also suggesied that each pier shed be of two floors at least, the upper floor loeing better adapted for incoming merchandise, since the eustoms officials will then have the goods on a floor apart from everything. It is evitlently as easy to transfer goals to this floor from the ship or to deliver them agam to teams or cars as from the first floor. Cars to be loaded ean le placed on tracke on the pier belween the shed and the pier edge. The lower floor could then be reterved for outgoing freight. and tracks provided for cars to be nuloaded. If desired these cars conld be easily losaded through hatches in the floor of the secoud story. As the transponting machinery would operate on overhead tracks the cars inside or outside the shed would offer no obstruction.

It is claimed that the canse of the decline in water transportation is due to the limited facilities for recciving and deliver. ing the goods as well as the costly delays at the terminals. If the installation of machinery and the redesign of terminals cat obviate these objections will not both shipper and cafrier be the gainers?

In concluding. the writer realizes that the subject has been treated in a general manner only. The problem is a broad one, and convivts wot neercly in the installation of cerlain machinery, but in the study of the changes such an innovation will make in the entire operation of the transportation system as well as the effects on costs, rates and revenue. It is not simply the adaptation of an overhead, electrically-operated carrier system to the present arrangement of terminals, but rather a redesign of the terminals and a radical clange in methods of carrying on the terminal basiness.

In solving this proklem let there first be a realization of what changes mechanical freight handling might make possible, and then aluandoning all old ideas aud practices to take np the subject as an entirely new prohlem and work out the solttion unhampered hy tradition and prejulice. The subject deserves careful etuily and iusestigation. Every transportation company conld affori, considering the cconomies that will be effected, to extalilish a separate departoncut to work out this problem or to employ ontside expert services for the parpose The scope of such investigation anl application is not limited to the meehanical and electrical features involvel, lout requires the services of men alon familiar with all plases of the practical transportation problem.

Published Monthly at
17 Battery Place
New York
By marine engineering, incorporated
H. L. ALDRICH, President and Treasurer and al
Christopher St., Finsbury Square, London, E. C.
E. J. P. BENN, Director and Publisher
howard h. brown, Editor
AMEXICAN axFaEsEMTATIVES
GEORGE BLATE, Vice.Preaident
E. L. BUMNER, Secretary .

Hranch / Whiladelplia, Machinery Dept., The Rourve, S. W. Ansuas, OHices (floston, 643 Old South bunding. S. I. Carpenite. Circulation Manager, 1t. N. Dessmoae, 83 Fowler St, Floston, Mass.

Entered al New York Poat Office as second-clams matter. Copyright, 1011, by Marine Engineering. Inc., New York. Inteanational Mamme Ewowniang if registered in the United States Patent Office.
Copyright in Greal Britain, enlered al Stationers" Hall, London.

Notice to Advertisera.

Chonges to be made in copy, of in orders for advertiring. mast be in owr hands not later than the 1sth of the mowth. (al infure time carrying is co be submulfed. copy mwst be in owi hands mot later than the toth of the monsh.

Just as we were going to press with this isme of Internationil Marine Enganeering onr celitor, Mr. Rrown, slipped and fell, so injuring his head that he day meonscions in the hospital for several days. We, therefore, ask inclugence for any mistakes or oversights which may occur.

The Modern Shipyard.

There is an old and time-worn allage that "clothes make the man," which, though not entirely correct, as we know, has some fomulation in truth. The part that has fonulation in truth might well be aclapted to the moxlern shipyard by saying, "Egnipment makes the shipyard."
That this statement can loe questioned is evidenced by some okler yards with antiqnated equipment that have turned out, and still do turn ont, goond work economically, despite the equipment, the to the excellence of its management. On the other hame, it is undoubtedly true that other yards, with excellently arranged and morlern, up-to-date equipment, sunetimes fail to oltain the results expected. In ohler words, there are instances where equipment does not make the shipyard any more than clothes make the man: a shipyard may le a shipyard in spite of its eqpipment.

The truth of the adage is that, with equipment of
the proper sort, the shipyard has a good start toward the results desired, and with this as a start, combined with intelligent and efficient management, the success of the yard is assurecl. That is the ideal that all yards are striving for-that is, correct mechanical equipment, combined with intelligent and efficient management. That this ideal is lecing more nearly attained every day is patent to all of us. The older yards are learning that they cannot attempt to compete with the modernly equipped yard, even with the best of management, without investing in more modern and laborsaving equipment, and the newer and more up-to-date yards are also aware of the fact that their good equipment is only one step in the right direction and, comlined with this, they must have the most able management.
With recent demands of naval development and the growing size of merchant vessels, shipyards have reyuired the latest and most efficient machine tools that the manufacturer can proflice. The average lay mind -carcely realizes the size of the work that machine tools and other equipment are required to handle. In many instances the work is of such size that it is fomel easier to bring the tool to the work rather than the work to the thol. For work of this character some really remarkable toxils have been denigned, in some cases permitting large cattings to be accurately machined in many places at one setting, thereby reducing the problem of handling to a minimum.

Fhewhere in this issue will be formed descriptions and illustrations of several moklern and up-to-date shipyards of varions countries. The descriptions, though necessarily short, che to limitations of space. tend to slow how shipyards in all corners of the globe are securing eypuipment and efficiency for handling work that leaves little to be desired. The work of a shipyard is so much more liversified and of a greater magnituck than the ordiuary indnstrial establishment that it is probably impossible to equal them in the matter of standardizations and low costs. The organization and supervision of shipyard economies cannot be reduced to an exact science in repair work, lint it is interecting to note how various yards in different comntries are each by independent methods reducing the art of shipbuilding, whether it be a steam yacht, freighter, ocean liner or battleship, to as near an exact science as human ingemuity can make it.
The engine and loxiler rooms of a moslern ocean liner or battleship contain generating equipment that would dwarf any but our largest stationary plants; but this forms a smaller mechanical problem than the machincry by which these are made as well as the machinery ly which the vessel itself is made. The success of the moskern yard is, in no small measure, due to the marvelons development of machine tools, lwoth in this and other combtries, for all classes of work to be found in a hipyard.

THE CONTROL AND EQUIPMENT OF WATER TERMINALS.*

BT H. MCL. HABDIMO, COKSULTINE PNGIKEK

Waterways are supposed to be public highways, but with the terminals noter privite and corporate control they are nore like toll-roats with a har and a collector at each entfree letween the gates but restricted at the ingress and egress, (hanuels alone do not give transporiation. They are unly efficient when combined with adequate terminals, properly equipped with transshipping mathinery and storage facilities.

Terminals are as important as channels, In fact it may be said that terminals control the channels; hence the eontrol of the terminals means the control of the waterways. This fact should never lee forgoten and should therefore be of no little jnterest to all eivic communities, They should preserve for future public nse the few wharves and piers not yet beyond their control, and in addition shonld further develop the unimproved terminal frontage of harbors, and unused portirms of the siver bank near cities and towns. Wherever possible termitals should remain in the control of cither the city or State or else in a joint harbor commission eomposed of representatives of each.

It is to lee moted that variens harlurs in Vurope are umber the controt of harlor heards which are puldic or semi-public organizations and a mapority of the directors may be considered as osticials who are responsible to the State or publike authority. While there is a great variety of harlor management in foreign countries, yet it may be said that with a few exceptions they are under the control of a lmard selected wholly or in part by the government.

In the Unined States, the Fedcral Government has expended, and is still expending, enormous sums anmally in maintaining and improving channels, and it seems ax though the cifies and seetions of the State lenefitesl should provide and cynip the terminals which afford the only path for the mosement of freight to the waterways. Athough a large proportion of the water frontage has been diverted from public to private or corporation uses, yet the locations that remain can be male far more effecient ly the installation of proper freight handling wachincry, which machinery will not only transfer the freight between the vessel and the shore, but also carry it overhead to the himerland, where there can often be obtained ample ronns for the receiving of the freight from the shippers, and the storing of freiglt waiting for railway transportation of for the drays of the eonsignecs. The freight can move equally well in hoth directions, Back upon this rear land ean be erected warchouses and buildings of several stories and freight ean be carried by overhead conveying a distance of seseral thomand feet at less expense than it costs by manual laker to takic from the vessel and assort mpon the near-by piee thom.

It is well to comviler the whole significance of the aloove statement as to the performance of such machinery. It means that a vessel can le loseled or unluaded in one-half, or leses, of the time consumed at present : that as freight does wot have to be stored upon the pier, the days need wot come upon the pier or shed flour; that a mach sumaller pier will do the same amount nf work; that there will be an avoidance of cm gestion: that the expence of hatelling will be greatly reduced. To sum up, that upon a narsow wharf or pier with a naryow bulkhead it will be possible to mote than double the pier capacity and reduce the time of haunling to less than one-half. This will increase the efficiency of the picr more than four times.

A roadway at the head of the picr or even railway tracks,

- Many of the facta sluted in this article are taken from the Keport in Terminals by Iterberi Kises Smish, C'ommistioner of torporations of
even when along the river bank, will not prove any harrier to the transference of freight to or from buildings or space beyond the roadway or tracks, as all motements being overhead the freight can paw alove cars or street traffic without any interference and with the greatest cconomy. It costs but litule mure by properly designed conseying machinery to transfer freight fise humdred feet than it does filty, and but little mure also to deposit the freight in the second or third story of the warchouse than it does in the first. The buildings, however, should be so designed and constructed that the machinery ean be installed to the greatest advantage.

It has been the custom almost universally abroad for the eities or goverument to install shis machinery and to charge commerce sufficient for its maintenance. On account of this we see the important ports of Europe equipped with many hinds of machinery, thereloy greatly facilitating the Iransference of all hinds of freight. Machinery; such as a gantry cranc, will pick up all kinds of freight of every description, whatever may be the size, shape or weight. Such freight is boisted from the vessel, placed in the railuay cars upon the pier, or else swung upon the platform int front of the sheds.

It is interesting to note that there is not anything which enters into the cargo of the ship, which contains every thing which ministers to the necessities or laxuries of man, which eammot be handled by machinery. While the gantry or jib eranc is doing excellent work, its in-reach is limited and it cannot take the freight, a*sort, earry, deposit and tier it upon any square font of flour of the pier shed, warehouse, while simultaneonsly other earriers can be hoisting, conveying and following each other so elosely that there would lie no waiting or delay. The new installations of machinery do this, effecting a saving of at least seventy percent in labor.

In a paper recently read by Mr. John Llewellyn Ilolmes, before the Institation of Civil Engineers of London, he states that "In time, lowk companies will be expected to proside plants not for discharging and loading but for eonveying from and to the ship"s side as quickly as mossible." That is to way, the freight must be conveycd to and from any portion of any of the receiving shedy or warehouses, even though they be located at quite a distance from the ship's side,

The State or city which owns terminals shonid equip and own the machincry for this transferring freight. It greatly increases the efficiency of its property. The ship-owner or lessee cannot be expected to do this except where there is a long lease. Otherwise terminal eompanies with proqerly restricted authority should be found for this work.

In the report by Mr. F. W. Cowie, Chief Enginecr of the Harloor Commissioners, one of the higlest anthorities on terminals, it is stated that:
"At a recent engincering convention, one of the moot eminent enginecring anthorities made the statement that the weak point in the railway transportation systems of North America was their terminals and that the must impurtant weakness of the terminals was the lack of freight baudling appliances.
"When it is eonsidered that in the Aontreal harbor aheds the quantity of actual freiglt handled annually amounts 10 over two million tons, it is apparent that any material saving in the cost of handling freight wonld immediately show beneficial results to the port."

It is to be noted in this report, that Mr. Cowie has already installed freight handling machinery and has recommended the equipment of new piers with mechanical applianees. All important railways have at a part of their transporiation systems water terminals.

There are many precedents for city owning and controlling water front terminals. The port of New Orleans extend, nearly fifteen miles alnng the Mississippi River. The State of Loutisiana owns practically all the water front with the exception of 4.7 fo fect, owned by the Illinois Central Rail-
way Complany, and this is subject to expropriation by the State.
The wharves and sheds at Preso street were built by the New Orleans and North-Eastern Railway. These lave been expropriated by the State. The wharves and sheds of the Lomisville and Nashville near Fratu street have also been expropriated by the State, 10 be effected in 1915 .

The State also owns nearly six miles of public wharves, most of which are covered by steel sheds. The river front of New Orleans is administered by two State Boards. First: The Board of Commissioners of the New Orleans levee, which has a right to acguire land and butild levees.
Second: The Board of Commissioners of the Port of New Orleans, that prescribe rules for loading vessels and controls the commerce ohtained by the public wharves. The pablic Helt Railroad Company Commission, a municipal body, has control over the New Orleans public Belt Railroad.

The public wharves are built from the height of the levee outwards. By December $\mathbf{3 1} \mathrm{st}$, $\mathbf{1}$ (0). there were twenty-two publie wharves that had been shms constructed.

San Francisco has a water frontage of $4 \frac{1 / 4}{}$ miles for commercial purposes. The total length of the wharfage is over 12 mile exclusive of bulkheads. The sea-wall and the seawall lots are owned hy the State of California and are under the control of the State Board of Harbor Commissioners The entire consuruction, ownership and control of the piers from the hulkhead line outwards to the pier head lite are in the State through the Harlur Commissioners, who also control and operate the Belt Railroad.
A small proportion of the piers and docks of Sun Francisco is owned and operated by private inlividuals or corporations. The Harbor Commissiomers are directed to construct and maintain wharves and transshippung facilities and dredge docks as the wants of commerce shall require, and may enact reasonable regulations concerning the management of the property of the State. They fix the rate of dockage, wharfage, cranage of these wharves, ete., and collect the revenues therefrom.
So far as can be ascertained, only two piers along the water front are owned hy private partics.

In March, 1910, out of 176 tenancies granted by the Commission of San Francisco on wharves and portions of the seawalls, exclusive of ferry houses and slips, 167 were oll a thirty-day tenancy called assiguntents. These nonthly assignments give merely a preferential use of the assigned wharf space, which is open to others when the tenant is not nsing it. The above system practically results in open wharver along the active water front, available for use by any vesacl at rater fixed by the Commission.

The policy of New York City is to own the piers along the water front ard to retain them. The present policy is tot reduce the length of the leases. Baltimore his also commenest to construct piers and to afford facilities for the molestructive How of commerce,

No merchant narise can be effective, even though heavily sulsidized, unless the cities provite terminals properly equipped with the latest antl most monlern transshipping machinery, warehouse with reasunable charges, railway connectionts, and a proper harbor board to see that no unnecessary charges are imposed upon commerce.
If a vessel cannot quickly find a convenient berth for loading or discharging its cargo, the time tost and the expense of handling the freight greatly milify other atlvantages. The ports of Europe are open to vessels of all nations. They are fully eqnipperl with machinery and offer inducements to all to make use of their ports. Even in the same country there is commercial rivalry leetween its different cities. Bonds are issued for the construction and the equipping with suitable mechanism.

In most cities of the United States there exist paved streets along the water front for freight movements, but the freight cannot get to the water's edge except bp permission of private of corporate interests and upon such terms as they may dictate. If cities can purchase and acquire land for the streets, should not the termini of these streets, being also the terminals of the waterways, be common to all with proper charges equivalest to the taxes on land?

The following quotations liricfly sum up the situation:
"The commercial future of the city is dependent upon its port facilities.'
"Transportation efficiency is a terminal problem."
"He who can most economically and quickly reach the markets of the world can control the commerce of the world. A decrease in transportation expense not only facilitates commerce but creates commerce and manufacture."

ENGINEERING SPECIALTIES.

A New Drive for Flat Twist Drills.

The questions connected with using and driving twist drills, forged or twisted from flat bars of high-speed steel, are probahly receiving more attention from mechanics at the present time than any others connected with the use of tools. Although attempts to solve the prolilem of drive have been numerouscomplicated chucks have been designed to hold and drive the rough end of the flat bar of steel: the shank ends of the bars have been spirally iwisted and machined to form taper shanks fitting regular taper sockets: more or less cumbersome taper shanks have been soldered or riveted to the shank ends of the flat twist drills-none of these methods has seemed to settle the matter beyond the possibility of further question.
The Cleveland Twist Drill Company, of Cleveland, Ohio, has recently applied for patents on a new device for driving flat, taper shanks that are tapered both on the flat sides and round edges. These shanks are regularly furnished on this company's Paragon flat twist drills, and are driven by sleeves or sockets internally equipped with flat taper holes, accurately fitting the shanks and externally sapered to fit standard taper sockets or spindles. In the ease of large diameter flat twist drills having No. 6 shanks, this drive was found to have cer-

tain disadyantages, as it made necessary the use of cumbersome extonsion rerlucing sockets to allapt the large taper shanks to the drill press spindles, which seldom have a taper
hole larger than No. 6. To overcome this difficulty as well as to provide additional driving strength is the twofold object of the new device.
To this end both the No. 5 and No. 6 Paragon shanks have been redesigned the same length as regular taper shanks, the laper on the round edges being regular Morse taper as formerly. When, therefore, this modified shank is inserted directly in the spindle the upper end of the shank is received and driven by the driving slot in the spindle just as is the tang of an ordinary taper shank drill. This alone would constitute a strong and practical drive but for the lack of support the shank would have on its two flat sides at the lower end of the spindle. To provide against the resultant possibilities of vibration and wear between the shank and spindle, and to furnish a powerful additional drive at the lower end of the shank where its cross sectional area is greatest, a new and original type of socket, called the Paragon Collet, has been evolved.
As shown in the illustration the collet consists of two lugs projecting upward from a flattened dise through which is cut a rectangular hole to receive the Paragon shank. The lugs have rounded outside surfaces ground to standard taper and flat inner surfaces tapered to fit the flat taper shank. The groove is provided to receive the point of a drift key in case the collet should stick in the spindle. When the collet is on the shank the combination is practically an interchangeable taper shank with unusually long tang.
The additional drive is provided by means of an extension projecting (upward in the case of vertical drilling) from the circular base of the collet. This projection mortises into a slot cut across the end of the spindle conforming to the standard slots now being put in the spindles of heavy-duty drill presses by several well-known manufacturers. That this tongue-andgroove drive at the large end of the shank is very much stronger than any drive on the tang could possibly be is made evident by a single glance at the figure. The collets without this extension will fit any spindle or socket, and will be furnished to those whose spindles are not fitted with slots when this requirement is plainly specified, but they will, of course, not have the additional driving strength otherwise afforded.

Power Bender and Straightener.

This machine for loending pipe, xtructural iron, round and flat bars of various kinds and sizes has been developed after considerable experience with different types of mechanical ap-

pliances in thix field. It is capable not only of bending tut also of straightening material in a quick and decidedly efficient
manuer. listead of requiring a multiplicity of dies or formers, an ilt most machines, it is only necessary to have on this machine a set for the different diameters. These may be set in different locations and permit of bending an infinite variety of shapes as well as radii. It is belt driven, with a tight and hose pulley on the shaft. The ram is actuated by an eccentric shaft of small throw and moves with a fixed stroke. The shaft is powerfully back-geared, giving the ram a tremendous power. Sliting in this reciprocating ram is another which carries the former to be used, and this is moved in or out by a screw operated by the hand-wheel. This gives a very delicate means of adjustment in manipulating the work and bending to the exact requirement. Any number of pieces can be bent exactly alike by noting the last position of the hand-wheel. But little skill is required to operate this machine ; there is no eomplication and nothing to do but move the pipe along and turn the hand-wheel to suit the requirements. The formers or resistance studs on each edge of the bed slide in a "T" slot, and "T" slots are aloo made acruss the bed so that formers can be fastened therein and thus allow of many different arrangements. The machine is manufactured by H. B. Underwood \& Company, toz5 Hamilton strect, Philadelphia, Pa.

Lighting Steamship Piers.

Owing to the nature of the work on steanship piers and the quantity of labor frequently employed, good light is very Hecessary. Various illuminants have been tried, probably the most receut being the flaming are lamp, which is used on account of its great lurilliancy. An excellent example of such illumination is afforded at the new pier of the Fabre Steamship Company, foot of Thirty-first street, Brooklyn, N. Y. This is prohally the largest pier in New York Ilarbor,

t-476 feet long, $\$ 30$ feet wide and 35 feet high. Being only one story in height, it is lighted during the day by means of skylights, In the autumn and winter it lecomes necessary to make use of artificial light as early as four o'clock, and not infrequently during the day in cloudy weather. The system which has been in operation aloout three months consists of twenty-four flaming are lamps, twenty-two of which are hung inside the huilding and the other two outsivle. The lamps are in two parallel rows, eleven in sach row: are hung about 120 feet apart, and the distance between the rows is so feet. Current is taken from a 2,300 -solt, 3 -phase, 60 -cyele alternating-current transmission line. stepped down to 115
volts ly a transformer. The lighting is controlled by five control boxes, so wired that three of them control foner lights each and two of them six lights each, the lamps heing connected two in series. It was thonght at first that the elevated platiorm would throw such a heavy shadow as tu make the proposed plan of hanging the lamps quite impossible, lut the lamps, which hang about so feet from the platform, throw anch a penetrating light as to almost cutirely overcume all shablews. This lighting system was furnived hy the Western Fiketric Company, New Y'urk.

Quix I'neumatic Hose Coupling Stralner.

In the nse of preumatic tools considerable difficulty is cxperienced by loose pieces of foreign matter entering the delicate mechanism. To overcome the less of time and expense cansed by this, the "Quix" combination here-compling strainer

geas moat simatken.
was designed. It is a substantially made brass lowse coupling fitted with a renewable wire strainer. This strainer is deep and cup shaped, and lias ample area between its sides and the inner walls of the male end of the coupling, so that inl acenmulation of dirt will not reduce the air passage until the strainer is filled. These strainers are manufactured by Franklin Williams, ,sp Cortlandt strect, New York.

A New Exhaust Sllencer.

The accompanying illustration shows the "Hydrex" exhanst sileneer, as adapted to internal eombustion engines. It is claimed for this silencer that a clean, free exhaust is olvained

withut detrinent th, the free low of gases. The gaves are led out from the eglinelers grathally with increasing expansion and completely relieved of their heat by even admixture with cold water vapor until, when exhanstel ilirough an opening in the boat side above the water, practically all mise and oflor are removed. It is claimed that this device is adapmable to any size or type of motor, with either two or four cyele, ank can ine placed in any convenient pmention in the boat. This silencer is mannfacmed lyy the Hydrex Silent Tixhaust Works, 1.6 Liberty strect, New York.

SELECTED MARINE PATENTS.

The publication in this column of a patent specification does not necessarily imply editorid commendation.

American patents compiled by Delbert H. Decker, Esq., registered patent attorney, Loan \& Trnst Building, Washington, D. C.

 TURY:

Clain 1.-Two youes pivoled legelher, a driven slaft in ene yoke, a bevel erar on sand shafi, en idle star carricd by one of sain yokrs meih. Bng with the forst gear, a diving shaft pournaled is the other yoke, a

bevel gear on the drising shaft meshon wath the litle gear, a segment gear on the yole which carroes the driven mhaft, an imermediate tube attached to the ofloer yoke, an outer tutse, and a gear on the outer tube meshing with the segment gear. Sus claims,
 IIG1MTKINSIN, GF RGCIIESTEK, X. Y., ASStGNOK TO CHARLES い. CAMU, OF WOCHESTER. N. Y.
Clain 1.-In a propeller for basts, the eombination with the blades, of controlling mechamem therefor embodying a pivolally mounled re-

versing yoke arranged wholly in the rear of the blades and on the gropeller shafs. Twenly-five ciaims,
977.97n, UNOER WATFR EXHN'ST ANH MUFFLEK. JOHN O. SMITIT, UF CLEVELANH, OIIIO,

Claim e.-An under-waler exhaust filling comprising a ehamher to receive the exhawnt, eaid ehamber tlecreasing in septh as it progrewses to ward the irat of the filling, a plutality of tapered ports or openiaga

along the top of the eliamber at each side thereof, a plarslity of bafte plates within the chamber and amsociated with saud porta or openiags to deflect the exhaunt therelhringh, and a porl or opentig in the bottom of the chamber. Fuwt slaims.

SHIPYARD EQUIPMENT SUPPLEMENT

In the following pages may be found the latest information concerning some of the most useful and efficient tools used in shipyards

With the rapid development of the medern steamship the question of mechanical equipment for shipyards has become a paramount one. The main generating units of some modern ships have a horsepower far leyond any single units built for stationary service. The size of this machinery is, however. not as wonderful as the tool equipment necessary to handle this machinery efficiently and economically. From the structural work of the framing and the plating of the hull to the final installation of the enkines, builers and other mechanism that go to make up the propelling, onerating and controlling machinery of the modern veseel, is represented the firempet of the best and most powerful machine tools that husans ingentuity has devised.

 MACHINK.

The machitte and plate shop work is of such size and character as to prewent an entirely different problem from ordinary machine shop operations. In many cases the work is so heavy that it is found desirable to liring the tool to the work, and for this elass of work special tools have been devised that cave may be, at one setting and with a minimum handling cost. The inereasing size of engines, whether reciprocating or turhine type, calls for heavy special twols. In no other industrial establishment ean be found such large and diversified numbers of tomls, from the foundry to the machine shop. inelosling the smallemt of precivion towls to the largest-known tater of boring mills, lathes, flaners, ete., and tor the plate shop, with its numerous liending rolls, shears, punches,
hydraulic presses, etc., that must lee able to handle plates and shapes of the largest-known size. This brief statement clearly shows how clovely linked is the shipyard with the machine

tom dexigner and buifler, aill the following brief mentions give sume inka "f recently designed shipyard tools:

A useful horizontal loring, drilling and milling machine, lutilt by the Niles-lkement-Pond Company, New York and

Phalins a co., LTOC, POWEA HACE saw.

Iamdon, is shown at work on a low-pressure marine congine cylinder. All the facing, milling, loring, drilling and tapping operations on this cumber some casting are done at one setting.

The wide range of horizontal and vertical adjustment of this type of machine, together with the large number of variable spindle speeds and feels, makes it indixpensable for this elass of work.
lleavy plate-hending rolls were installed in the plate shops of the Newport News Shiphuilding \& Dry Doek Company by Niles-Bement-Pond Company, eapable of hending eold platen up to 32 feet wide and $11 / 2$ inches thick or their equivalent.

They have been used to bend heated nickle steel plate up to $21 / 2$ inches thick.

A plate-planing machine is a typical example of nete of the fundamental machine tools built for shipyards ly the Niles-Bement-Pond Company The heavy power splitting shears to be found in every plate shop cut the plate to the approximate width required, after which the plate planer is relied on to produce a square straight edge. The carriage is driven by a heavy screw, the direction of rotation of which is changed antomatically at the end of each stroke. The drive is lyy wide upen and crossed belts on pulleys of large and equal diameter. The tool slides on the earriage are arranged for two tools, which alternate in cutting the plate with the change in direction of the stroke.
A 125 -inch crank shaft lathe slesigned for turning the heaviest erank shafts is another Xiles-Bentent-Pond tool. It is 26 feet long between faceplate and tailstock center, the diameter of the journal being 1734 inches and that over the rings 27 inches. The maximum diameter which ean be swung

The Niles-Bement-Pund lyylraulic garlonard bending machine is capable of turniug out a very large variety of plate shop work entering into the construction of steel vessels, stuch as bending and forming keel plates, garboard streaks, sponsons, deck plates, etc. The machine is capable of exerting a fressure of 200 tons, with a water pressure of 1.500

 cuningTon machuna compaky.
pounds per square inch. Hot plates up to 3 inches thick and the length of the bending beam ean be handlet. The bending beam will carry one or more forming dies, with a length of 18 feet.

This company sends upen request a 20 -page finlly illustrated fokler of shipyard tools.

A machine that can cut ehannels and angles is made by the Covington Machine Company. Covington, Va. It is a combination tool. The feature of this shear lies in the combination of four tools in ose. It is prosided with a coping attach" ment at one end, a plate whear at the nther, and two angle shears in the eenter of the frame. These angle sheari operate at an angle if 45 degrees, thus securing a vertical and hori-

 the carriages. This machine is shown at work on the thrust bearing of a large shaft on editorial page. 10%.
zontal shearing action. Lach shear is eontroulleal by its own cluteh and the machine may lee operated by different groups of men, all working at the same time without interfering with
each other. The angle shears in the center have a capacity for cutting channels up to 15 inches by 94 inches, and 6 inches

loy 6 inches loy t inch, or 8 inches by 8 inches by $1 / 4$ inch angles. The plate shear has a capacity for material up to 1 inch in thickness. Channels of angles may be cut either square or at an angle for mitering.
Messrs. Scott Bros., Halifax, have placed another design of pratching and shearing machine on the market. It is a beambending machine or straightener, combined with punching; punching plates at the one side while bending or straightening $T, L, 11, U$ sections at the other end. The machine is capable of punching t-inch holes through t-inch plates, with gap 28 inches deep, and at the other side it bends or straightens sections op to 12 inches hy 12 inches. In addition
the punching side, besides doing ordinary punching, may be arranged for punching section iron with loose interchange-

able blocks, so that H iron, U or T 's may be punched through the webs or flanges.
An improved beam and angle-hending and straightening and angle-cutting machine is mate by Messss. Bertrams, Lid., Fdinhurgh. This machine is of the under-driven type, with the gearing beneath the floor. Beams up to 12 inches by 6 inches can be bent or straightened at one end of the machine, and angles up to 8 inches by 8 inches can be cut at the other end. The beam-bending slide carries two bending blocks or hammers, arranged at a suitable distance apart. by which the

beans are bent or straightened over a thirit hlock, which is acljustable by screw and hand wheel. The other end of slide is conneeted to a heasy east steel lever earrying angle-cutting blade, the stationary blades for angle cutting leing fitted into a suitalle recess in main casting. A tumbler disengaging gear is applied to the angle-cutting lever, so that angles may loc

easily set in exact position under the blade before being cut off.

A portable hydraulic angle or ship frame bending machine is manufactured by the Leeds Engineering \& Hydraulic Company, Ltd., Rodley. This machine is capable of exerting a total pressure of 19 tons and can be made to suit any working pressure. The section to be bent is placed on the floor plate, which is provided with a number of holes; the operator then pushes the maehine up to the section, the fixing bolt is dropped in the nearest hole, and the valve. which can be actuated by cither hand or foot, is opened to pressure and the ram advances to bend the section into the desired shape.
F. Pratt \& Company, Ltd., Halifax, manufacture an improved crank-geared shaper. The ram slites freely in its guile by means of a erank motion, which gives a quiek retnrn

stroke. Aljusting otrigs are prowidel for taking up all wear. The stroke and alan the puxition of the ram can loe alterell while the machine is running. A graduatell rule and indieator is fitted to show the length of the stroke at a glance. Shafts can be passed through the lunly of machine under the ram for kroosing and cutting kryways.

GGBNEN a CO ANGLT 日Aק FLAMES.

White's patent angle-bar planer is manufactured by Messrs. Scriven \& Company, Leeds. The machine is usel for planing of the round edges of angle bars to leave a square edge for calking. It is capable of dealing with any size of angle bars up to 12 inches ly 12 inches by 1 inch thick, planing hoth legs of the

F. FAATT a CO. IMPROIED CRANKNGAKED BAAFER
bar simultancously. The angle liar is fed through the machine by strong steel friction rollers and requires no setting, but can be planed just as received from the rolling mills. The grip-
stone. This type is arranged with the hammers adjustable as to their centers by means of right and left hand screws. The adjusiment for the various, depth of heams is made from the

ping pressure uf the feed rollers is ohtaineyl by a system of levers operated by stromge serew with large hand wheel and safety spring device. All the friction mollers are positively

drives by spur gears from onte main-driving shaft. Anglehar planers of the same general tlevigh, Int with capacity for angles up to to inches by 6 inches only, have been in use for many years in the British and primeipal foreign navy yards, also in many of the most important cosstrachors' yards.

A combined beam-beuding angle-cutting and vertical punching machine is built by Messrs. Craig \& Donald, Ltd., John-
hand whed at the end of the machine actuating the gear which lengthens or shortens the mowing ram which carsies the striking hanuster. This arrangement allows for the straightening of the smallest section of hars. For vertical punching a special steel die holder is arranged.
G. Wilkinson \& Sons, Keighley, have a new model vertical turning and loring mill made in two sizes, 2 feet 6 inches and

3 feet. The chief improvements claimed are the adjustable attomatic knock off for the turret head traverses, the pistondriven feeds, and the method of locking the turret head. There are three tools, all of which can be in operation at the same time.

A type of pnenmatic riveting machine which has found favor with engineers of the Enited States is mow beimg manufactured in this country by Messrs, James Bentic \& Sons, of Cardonald, Claagon. The machine, known as the llanna riveter, made by the Ilama Eingineering Company, Chicago, is claimed to be free from cortain well-known defects, notably the variation in pressure, and to approximate to the direct-acting hydraulic type in regard to certainty of operation. The design of the machine in this case enables the closing of the rivets
to be effected at constant pressure in spite of any slight variation in length, and a further advantage of the machine is that it reynires only fRo pounds to 100 pounds pressure, and that the

employment of an exhanst pipe is obviated. As compared with the hydraulic machine the consumption of power is stated to show an economy.

A high-speed central thrust girder rotary drilling machine is manufactured ley William Asquith, Levi., Halifax. Some of
the features of this drilling machine are that the spindle slide is so arranged that the thrust is central, entirely overcoming side-twisting strains, and the slide can be easily and quickly traversed along the arm and securely locked in any position.

Alfred Herbert, Leal., Coventry, manufacture a hexagon turret lathe especially designed for milizing to their limit

1. LAFG \& GON 3 CAPSTAN LITHE
modern cutting tools of high-specil steel on work made from steel, iron or bronze bars. Some of the new features of this turret lathe are the single-pulley head in place of the cone pulley-a so-called "roller steady" turner, which removes the metal much more rapidly than was previously possible, and a feed motion that allows of a quick change of feed.

Messrs. John Lang \& Sons, Johnstone, make a specialty of lathes, and have recently redesigned their entire line to meet the demands of high-speed steel. One of the special features of these lathes is a variable speed drive that has a gradual progression. With this form of drive the correct speed may be had for turning any diameter within the capacity of the lathe.

A four-spindle drilling, tapping and boring machine is manufactured by Webster \& Bennet, Lid., Covington. This machine is designed for boring two separate pieces of work at once, and for this reason the right-hand pair of heads is independent of the left-hand pair, and the machine is suitable for operating on four separate pieces of work.

Messrs. Perkins \& Company, Ltd., Leeds, are marketing self-acting, sliding, surfacing, and serew-cutting lathes, valve seat planing machines, slotting machines, shaping machines, disk grinders, etc. The shaping machine has an automatic variable feed motion, which is instantly reversible, and the toggling is kept horizontal by a sliding tenon.
A machine is manufactured by Messrs. Robert S. Allan \& Company, Gateshead-on-Tyne, for core boxes and patterns, as well as all kinds of earving at various angles, half-lapping, molding, raised and sunk pancling, etc. The machine consists of two parts mounted on a common bedplate, the fixed

pedestal carries the horizontal spindle and is bolted to the bedplate. The second part forms a work earrier and is so designed that it embodies universal movement.

The high-speed planer, manufactured by Bateman's Machine Tont Company, Lid., Leeds, has two special features-the sliding rack and the flywheel drive. The sliding rack effectually absorbs the shoek of reversal in buffer springs, which instantly gives laack to the table after the reversals stored momentum. The flywheel drive utilizes the stored energy of the heavy loose pulleys in securing exceptionally prompt reversals of the tahle.

Messrs Loudon Bros., Led., Clyde Fingineering Works, Johnstone, N. B., are builders of a high-speed planing machine
from which one or two speeds can be obtained by a belt drive and three or six speeds through a kear box.

Messrs. Davis \& Primrose, Etna Engine Works, Leith, are putting on the market a pateut-beveling machine. This machine draws the bar out of the furnace and does the beveling when the bar is at its best heat. It smooths down the rough edges of the rivet holes, so that the rivet head gets close up at the neck. The time occupied by the beveling is short, so that the bar when it has left the machine is sufficiently hot to be turned without reheating.
A self-contained high-speed planing machine is built by Messrs. C. Redman \& Sons, Hatifax. These planers have four cutting speeds, ranging from 30 to 60 feet per minute, the speed changes being made without difficulty when the machine is in operation. This has the advantage of allowing the operator to run the machine at, say, a speed of so feet per minute on cast iron where the frailty of the casting makes a light cut at quick speed better than a heavier cut at lower speed, and also for second cuts preparatory for a finishing cut. The speeds are changed from the floor by means of the pulley chain. The change can be easily and quickly made, the rate of return of the toggle remaining constant.
The Hanna Engineering Works, Chicago, Ill., have developed a pheumatic riveter, which operates through a combination togkle and lever action so arranged that the rapidly inereasing tonnage developed during the action of the former is maintained practically uniform by the lever action through a

considerable portion of the stroke. This machine goes through its toggling action during approximately the first 6 inches of piston stroke and carries the die through practically $3^{1 / 2}$ inches of its travel. At this point the machine has reached its rated pressure and the toggling action is automatically changed to the action which is maintained for the halance of the piston stroke, thereby maintaining the rated tonnage. These riveters are also manufactured by the Clyde Fingine Works, Glasgow.

Messrs. Ward, Hagkas \& Suith, Keighley, Yorks, manufactures double-ended punching and shearing machines driven hy douhle-purchase gearing shrouded to pitch line, pulleys of large diameter, the loose pulley being provided with improved lubricating arrangement, consisting of a hollow perforated bush which runs on the shaft and contains a month's supply of lubricant. In the 1 -inch machine the flywheel is supported by an outside standard.

The accompanying illustration shows one of the very latest types of fixed riveters for shipyard, locomotive boiler and similar work. and was made ly Messra. Henry Berry \& Company,

Led., of Leeds. The riveter has a gap of 17 feet 6 inches, and has three powers for closing rivets, viz., 33,66 and 99 tons, and is also fitted with the latest valve arrangement when desired, by means of which the pressure is held on the rivet

J. Hacai a Co. Impaoved band saw ime machink
for a time and cannot be taken off by the operator until it has been on for this period, thus insuring that eacll rivet gets the full power of the machine. The arms of the machine are of cast steel, and are held together by means of massive forged steel bolts with steel nuts. All the eylinders are gun-metal lined.
Messrs. Greenwood \& Batley, Ltd., Leeds, make a combined machine for drilling, turning, etc., propeller blades, suitable

The "Apollo" hexagon turret lathes are manufactured by Messrs. Pollock \& Macnab, Manchester. The head stock is of the single-pulley type, with gearing running in an oil bath, and

has sixteen direct-spindle speeds from the line shaft. The jaws are in four parts and the chuck itself can be opened or closed while the lathe is running. The attomatic feeds are actuated through an apron of the double-frame type, so that the feed wheels and shafts are supported in two bearings

for cutting off the riser or dead head, facing back of Alange, turning edge of flange either straight or at any angle up to 45 dearees.
and tut overhung. A special feature is that the worm drive for the apron has ball thrust, reducing the strain and wear on the feed wheels.

International Marine Engineering

APRIL, 1911.

THE NEW STEAMSHIP MADISON OF THE OLD DOMINION STEAMSHIP COMPANY'S FLEET.

On January 3r, the Newport News Shipbuilding \& Dry Dock Company delivered from its works at Newport News, Va, to the Old Dominion Steamship Company the new steamship Madison, which was built for the latter company's daily passenger and freight service between New York and Norfolk, Va. In dimensions and general design the Madison is a duplicate of the Jefferson, Hamitton and Princess Anne oi the same fleet, except that a few departures have been made where experience has indicated their advisability. The dimensions of the Madison are as follows:

Length over Length on wa Beam, molde

The vessel, like others in the coastwise service, is of the
deck are of wood, these consisting of two tiers of deck houses and a shade deck extending from the stern well forward. The man and spar decks are completely plated, the former being a ${ }_{17 / 2}^{2}$-pound flush plated deck without wood covering, and the latter a 10 -pound deck on which a wood deck is laid. The lower deck is laid with a calked wood deck except in the combustible storage space and over the fresh-water tank aft. The hurricane deck also has a calked deck forward of the over-all hatch, while aft of the latter there is a canvased deck. For the lower, main and spar decks the beams are of channel section, fitted generally on alternate frames. For the hurricane deck bulb angle beams are fitted on every frame in way of the calked deck, and wide-spaced angle beams with intermediate wood carlins are fitted in way of the canvased deck. Bulb angles are used for the transverse frames, and are spaced 24 inches centers throughout, extending from the center line to

*EW COASTWISE sTEAMSH1F MADASOM.
hurricane deck type, and in general appearance is similar to the other vessels of the line, except that the shape of the stern is of the bay steamer type and not of the conventional ocean steamship type. This shape of stern was adopted by the owners as being better suited to their particular needs in docking at the terminals. It gives more deck space on the main deck for handling lines, and it also has the advantage of allowing the steam steering engine to be connected directly to the rudder stock.
The vessel has a single bottom, three complete decks, and lower deck forward and aft of the machinery space. The entire hull is of steel, but the erections above the hurricane
she main and hurricane,decks alternately, except for a distance of 60 feet from the stem, where all frames extend to the hurricane deck. Reverse frames of angles are fitted across the top of the floors from bilge to bilge, and are doubled in the engine and boiler spaces. There is a flat plate keel, doubled throughout. The shell plating is fitted with raised and sunken strakes, with the heavy sheer strake located at the spar deck level, and the two strakes above of light scantlings. The vessel is subdivided by five watertight bulkheads.

The general arrangement of the Madison is well illustrated on the deck plans accompanying this article. From them it will be noted that there are passenger staterooms on the spar, hurri-
cane and shade decks, the total number of regular first class staterooms being seventy-six, each fitted with two berths. On the spar deck forward of the boiler casing further accommodations are provided for sixty-four first class passengers in thirty-one staterooms. These staterooms are fitted up exactly the same as the regular staterooms, but the bulkheads enclosing them are made in portable sections, as these rooms are only used during the season of heavy passenger traffic. At other times this entire structure is removed from the vessel and stowed on shore. This space then becomes available for freight, or it may be used for the transportation of deck passengers, 276 portable standee berths having been supplied for use therein; or it may be used for carrying horses, portable horse stalls having been provided. Forward of this space in a separate compartment accommodations are provided for sixty steerage passengers; the berths in this space are portable standee, so that when dexired they may be removed and the
after end leading up to the social hall on the burricane deck. Directly aft of the dining saloon there is a lounging space, wherein are located a piano, bookcase, library table, etc. Abreast of this lounge there is a single row of staterooms on each side, three of the rooms having their interiors and ceilings paneled with composite board. Aft of the lounge, staterooms are fitted in double rows, and at the extreme after end there are the principal toilets, a bathroom, and a mahogany companion leading directly to the open hurricane deck. All staterooms on the spar deck, and those on the lurricane deck aft of the engine casing, have their doors opening from alcoves; the remaining staterooms have doors opening out ons deck. An attractive feature in the upper saloon is a dome extending the full length of the saloon. The first class smoking room is located on the shade deck forward of the boiler casing. and forms a handsonic apartment. It has a buffet attaclied, direct access to a toilet room and the wireless room, and has an

HAls sTAIEWAY WTRAMSHIF HABISUS
-pace used for freight. Forward of the stecrage space in two separate compartments are provided permanent berths for second class passengers, there theing accommentations for twentyeven men and twenty-four women. A cabn for second class passengers is provided in a separate house on the hurricane sleck, with stairways to the sleeping quarters.

Throughout the regular first class quarters all public spaces, pastages, alcoves, etc., are finished in pancled mahogany, the latter wood being used exclusively for insitle hardwood finish. In laying out the joiner work, consideration was given to the location of electric fixtures, radiators, cte., so that these fittings form an integral part of the design, the panels being arranged to suit. Special panels are fitted overhead in all the principal public spaces and in the captain's room. From the deck plans it will be noted that the main dising saloon is located on the spar ileck, just aft of the engine casing, witle a stairway at its
inside stairway leading to a lobby on the hurricane deck. In the after end of the shade deck house there is lucated a dining room and also a smoking room for the use of colored passengers. In all the first cla-s quarters and officers rooms the exposed harduare is anti-corrosive, non-tarnishing white metal. The lavatories in all permanent rooms drain overluard. All first class toilets have mosaic tiled floors, Hard wood floor a are laid itt the smoking rooms, colored dining saloon, captain's room and officeri' niess room. The decking it the first class dining room is finished bright.

In the line of eargo-carrying facilities the Madison is equipped with all that the extensive experience of the Old Dominion Steamship Company has found to be suitable for their particular requirentents. As customary in the coastwise service, most of the freight is handled by trucks through eargo ports. Of the latter there are four on cach side between the main and
spar decks and two on each side between the spar and hirricane decks, the main deck ports fitted with sliding watertight doors and the spar deck ports with hinged doors. Freight is also bandled through aln "over-all" hatch in the hurricane deck forward by means of two derrick booms on the mast. In the main deck, which is the principal freight deck, there are six hatches, of which three are arranged in pairs and fitted with freight elevators, each of which is operated by a. vertical double 7 -inch by 7 -inch engine. For wee with the derrick booms there are located on the spar deck two dobule-cylinder reversible link-motion $81 / 4$-inch by to inch hoisting engines, the latter being also used in connectiont with a eargo crane at the hatch on the deck below. There are in all sevell cargo cranes at the different hatches on the main deck, for the operation of which there are three 615 -inch by 8 -inch double-cylinder winehes. On the lower deck aft of the engine room a special compartment, from which all wood is eliminated, is provided for the carriage of combustible stores. This compartment is fitted up with smothering pipes and sprays, as required by the

The propelling machinery consists of a triple-expansion engine and four Scotch boilers, fitted with heated forced draft. The main engine has cylinders $261 / 2$ inches, 44 inches and 74 inches diameter, respectively, and 54 inches stroke. All cylinders have separate liners, and are fitted with piston valves, of which there are two on the low-pressure and one each on the other cylinders. The valves are worked by Marshall gear, and the direct-acting type of steam reversing gear is fitted. The condenser forms part of the engine framing, and an Edwards air pump and two bilge pumps are worked from the lowpressure crosched. All other pumps are independent. A feed heater is fitted. The propeller is a solid four-bladed one of cast steel.
The four main boilers are located in a single compartment, with a fore and aft fire-room, and are connected to one stack. Each boiler is 14 feet 3 inches diameter by 12 feet 5 inehes long; has three 4 -inch corrugated furnaces with separate combustion chamhers, and is allowed a working steam pressure of 190 pounds. The total heating surface is 0.428 square feet.

HWE of THI salnonss

Linited States Steanbboal Inspection Rules. Another compartment for combustible stores is prowided on the spar deck aft.
In the line of hull machinery, aside from that already men. tioned, there is a steam windlass driven by a 9 -inch ly 10 -inch double-cylinder engine, the windlass located on the hurricane deck and the engine on the spar deck. A eapstan on the lhurricane deck is also driven from the windlass angine. On the spar deck aft there are alvo two capstans, driven by an R-inch by $\&$-inch double-cylinder enkine. For the steam steering gear there is a Williamson patent differential steam steering cugine. 7 inehes by 7 inches, direct connected to the rudder stock and operated from the pilot-house by a hydraulic telemotor, as well as from a steering stand on the shade deck aft. The electric plant, located on the spar deek abreast the engine room, consists of two 3o-kilowatt direct-conneeted generating sets. In the equipment may be noted eight 24 -foot lifehoats, stnckless anchors, an 18 -inch searchlight and a wireless telegraphy outfit. The "Rich" fire indicating and extinguishing system is also fitted.
and the grate surfice 242 wuare feet. For the foreed draft there are two 72 -inch Sturtevant lilowers with direct-conneeted $61 /$-inch and 11 -inch by 6 -inch eomporind engines. These howers are located in the boiker caving at the spar deck level. and discharge through air heating boxes, provided in the uptakes, to the different ash pits. Special air supply dnets are fitted for the blowers, and a suction is also provided from the cargo space, that providing an exhaust system of ventilation for the latter. Bhomshurg feed-water circulators are fitted to the main boilers.

A donkey boiler of the locomotive type, 7 feet diameter by 12 feet long, built for 150 pounds steam pressure, is located on the main deck level hetween the engine and boiler easings.

The hull and machinery of the Madison were built nnder special survey of the American Bureau of Shipping, with their highest classification for vessels in the coastwise service. The vessel is designed to maintain an average sea speed of $153 / 4$ knots in service.

TWIN-SCREW YACHT LIEN-CHINO.

A twin-screw yacht has recently been built to the order of Prince Tsai Tsun, head of the Chinesc Imperial Naval Board, by the Kianguan Dock \& Engineering Works at Shanghai, China. The order was placed on the eve of Prince Tsai Tsun's departure for Europe a year ago with the Naval Commission that visited Great Britain, France and Germany, returning via Siberia early this ycar.
The principal dimensions are as follows:

The yacht has a cut-water stem, elliptical stern, and is schooner rigged, with two pole masts. As she is a fast boat, her lines are very fine, and with her graceful shear she presents a very smart appearance. She has been built to meet the requirements of the Chinese Naval Board.
There are six watertight bulkheads, which, together with the bunker bulkheads, sulidivide the vessel into cight compartments. To insure rapid handling, the deadwood has lieen cut away, enabling the vessel to make the complete surning circle, both engines full speed aheall. in a diameter equal to less than twice her own length. Provivion is also made to receive six guns for saluting purposes. Bilge keels are fitted for about two-fifths of the length of the vessel amidships.

GENERAL ARKANGEMENT.

There are three decks-the lower, main and shasle decks. The shade deck forms a splendid promenade for passengers, exterding. as it does, all fore and aft, with little deek obstruction. The boats are of the navy pattern, winh exirat heavy davits to receive naval launches when required. The boats are fitted, permitting them to be chocked inlly inhoard, or along the extreme edge of the deck. There is also a searchlight platform fitted to the foremast. Amidships on the shade deck there is a comprosite deckhouse, which act only contains the entrance hall lcading to the main reception room, with a grand staircase to the main deck, but which accommodates the navigating officer. The roof of this deckhouse forms a spacious flying hridge, upon which have been placed a chart cahinet, brass stecring standard twin telegraphs ant standard compass; the brifge being used exclusively for navigating purposes. An observation deckhouse has been fitted aft on the shade deck over the imperial reception rooms, with a private staircase leading to the saloon. The floors of the cleckhuse on the shade deck are covered with interlocking rubber tikes of pale blue and white. The sides or walls of the deckhouse are paneled in polished mahogany, and the ceitings and beam moldings are in paneled pine, painted a dull white with edg. ing of gold.

Below on the main deck is a large steel deckhonse gisent over to the exclusive apartments for the Prince and consaming his liedruom, hathrom and lavatory. his private reception rnom and saloon, pantry, secretary's room, servants' quarters, cte. The rooms are all arranged adjoining, giving easy access. The elcrestory roof, with a dome skylight of beatiful design with stained glass, with the Prince's coat-of arms, kerves to aid the natural overthead light, besides baving a decorative cffect and affording ventilation to the whole deckhouse. The floor is covered with thick interlocking rubher of a pleasing shade of green, and to relieve the plain ground Chinese rugs of the rarest fabrics of very claborate design are installed. The walls of the Prince's apartments are finished in paneled Japanese dark colored oak, in bold designs, with carved capi-
tals of cherry blossoms. The ceiling is of paneled pine, inlaid with linerusta of a pale green color. The upholstery is of a rich, warm red silk, with window and door eurtains richly embroidered to match, the whole combination making a pleasing and artistic effect.

Forward and around the engine and boiler casing are of- . ficials', officers' and crew's galleys, also the officers' mess room and deck staterooms. The forward part of the 'tween decks, on the main deck, contains the entrance to the dinning saloon below; with ladies' and gentlemen's lavatories on the wings at the after end, with two double doors, giving access to the main reception room. The reception room extends from side to side of the vessel and has six bays, which permit of being converted into living rooms at thort notice if desired. The lounges, of the high-hacketl and wide type, are upholstered, as already deseribed. Gun and revolver rackn are arranged at sides of the staircase to the dining salonn. Arranged forward of the reception room is a ladies* boudoir, neatly arranged with carved writing tables and revolving chairs, lounges with handsome tables, with ancient carvings and comfortable casy chairs of fine rattan work and tupholstered in keeping with the other furniture. Inmestiately lev-

mEW steam facht bitht in chiska.
low shis, on the lower deck, is situated the guests' dining saloon, arranged with three large tables and landsome revolving chairs, capable of seating over thirty peogole. This saloon is neatly paneled and finished in white and gold, with the usual elahorate capitals and carverl cornice moldings. The feature of this saloon is the airy, light and neat appearance it presents, although situated on the lower deck. Abaft this saloon are two roomy four-berth calins for use of official deputics, finished in mail boat fashion: forward, the pantry is arrangerl and ifted with all moslern tuensils, and a trapway is arranged from the pantry communicating with the cold chamber.

On the lower deck afs are the caloins for office's and engiteeers, finished in pine and situated behind the engine room. with clowble staircases, thus insuring a current of air in the passages. The petty officers are berihed in teak berlsteads. and the sailors and firemens are bertherl, naval fashinn, in hammocks.
The fore-and-after peaks are arrauged for water ballast, and the fresh-water tanks are plaved in the hold and lower 'tween decks, having a capacity of 1,500 gallons. The sanitary tank is placed above on the shade deck over the casing.

The galleys are large and complete with all modern utensils. The sanitary fittings throughont the vescel are of the best make. Fach compartment or stateroom has an outlet and inIct ventilator placed at opposite ends, aud with over thirty
small portable ball socket fans distributed in the public rooms the foul air is exhausted.

machinery.

The machinery eonsists of two sets of vertieal triple expansion engines, 10 inches, $161 / 2$ inches and $261 / 2$ inches diameter, with a stroke of 88 inches, indicating about 900 horsepower. There are no.pumps on the main engines of any kind, all cylinders are separate castings supported on steel-turned columns. The condenser is common to both engines, and is of steel plate, with the usual composition tubes and tube plates.

Main feed pumps in duplicate are of Weirs' latest type, with float tank and feed heater, the air and circulating pumps are independent of special design constructed by the builders. Tank, bilge and sanitary service pmaps of the duplex type are fitted to suit the requirements.
The shafting is of Siemens-Martins' mild ingot steel, forged by the builders from ingots supplied by Messrs. Thos. Firth \& Sons, Sheffield.
Two cylindrical multitubular Scotch boilers are installed, designed for a working pressure of 180 pounds per square inch, with Howden's system of forced draft on the closed ashpit system. The eoal bunkers have a capacity of 130 tons.

The engine room telegraphs are of the Chadburn type and are fitted, in addition to the marine loud-type speaking tubes. with connections to various impwrtant stations.

The machinery for working the ship includes a combined steam and hand windlass made ly the builders, and a steering engine fitted in the wheelhonse below the flying bridge. being also made by the builders. There is a complete installation of electric light. The prower plant is capalite of gencrating and supplyug light equal to alonet 6,300 candic power, and for all signal lamps, fans, etc.
On trial the vessel made a mean speed of 13.597 knots with natural draft, and 14.26 knots with forced draft. During the trials the weather was unsettled, as a typhoon was in the vicinity and a strong wind wav blowing, which considerably retarded the speed.

ENOLISH SHALLOW-DRAFT AMAZON STEAMERS

Figs. 1 and 2 show the design of the steamer Paso de San L.oresso, and its deck equipment as it sailed from Snuthamp.
guay rivers. The resources of this country have been but feebly tapped hitherto, and it is the culmination of the general desire of influential Argentinas that the benefits should be reaped by their own country, which has seen the formation of the company Marina Mercante Argentina, for whom the vessels have been built.

It is stated that these five steamers have a very large carrying capacity on small draft, a load of not less than 730 tons
leing provided for on a draft of only 8 feet. The dimen-

DECK OF THE PASO DE GAN LOMENEO.
sions of the I'ase de San Lorcnso are 220 feet length by 33 feet breadih, with a displacement of about 1,200 tons. The machinery comprises two sets of inverted triple-expansion surface condensing Thornycroft type engines, steam being supplied by two marine type return tube boilers. It is said that a speed of 10 knots mean is suaranteed, but this was exceeded very considerably on the official trials. The first boat actually ran at $111 / 3$ knots as a mean of six runs on the Admiralty course at Stokes Bay, carrying the full load of 730 tons. The

AMASON BIVER STRAMER PAKN pF BAN LOEENEO.
ton recently. It is one of five vessels of somewhat unique feature, built for the Amazon trade.

These new South American shallow draft boasts are dessined to open up the interior of Argentina-particularly the rich fegion through which flow the Parana, Uruguay and Para-
hull is built throughout of Siemens-Martin steel, and several powerful winches are installed on each ship, to facilitate handling the cargo, which, being timber principally, has had to be provided for by specially large cargo hatches. An electric lighting plam has been provided, and it is stated that the other
arrangements are such that the boats are particularly adapted for working in the very hot climates to be met with in the northern portions of the rivers.

It is understood that the first few vessels have steamed out to Buenos Aires without incident, though an exceedingly rough passage was made by the Paso de Obligale from Southampton to St. Vincent. Nevertheless, the whole journey occupied thirty-four days, the coal consumed being 40 tons less than was anticipated, and working out at the very economical figure of 188 pounds per indicated horsepower. The subsequent vessels, with more favorable weather, have reduced the time for the journey by several days.

SOME RECENT MISHAPS TO VESS EL.S.

The steamer Northuestern, of the Naska Steamship Company's fleet, ran ashore in Falue Bay, San Juan Island, at $2: 40$ A. M., Dec. 2, while bound from Seattle for Cordova. She took the ground at full speed, bringing up finally with ther stem against the cliffs, twisting up her shell plating and breaking the stem bar. Her draft stranding was ig feet 5 inches aft and 14 feet forward. At high water she lay aground for 30 feet forward, from which point the water gradually deep. ened to 8 feet under her heel, which took the ground at low water. Forward she was full of water, in the forepeak and No. I hold; the after-hold and engine and boiler rooms were dry.

The steamer struck on a shore fringed with rocks, extending shoal for 50 feet seaward. The water deepened rapidly to 30 feet at the stern and to 40 fathoms a cable off. The fractured plating, floors, frames and stembar lay hooked over several houlders forward. The stembar was broken and bent to the 15 -foot mark, about twenty shell plates were ermmpled, a portion of the keel har gone, and several bold pillars and orlop deck beams bent. The after portion was apparently intact with the exception of the cross-section between the forehold and fire-tom, which was slightly weeping. The diver's report
the south it required quick and effective work to save her from being broken up.
Salvage operations were conducted under the supervision ${ }^{-}$of Capt. W. H. Logan, special agemt for the Salvage Association of London, and Capt. S. B. Gibbs, representing the San Francisco Board of Underwriters. The contract for the work was

WHAT MAFFENEO TO THE MONIHWEMIERA.

Iet to the British Columbia Salsage Company. The salvors determined to build a platform or cofferdam to cover the damaged stem completely, and to make it of sufficient strength to take the vessel to Seattle for repairs, a distance of approximately 70 miles. The construction of this enfferdam was carried on simuleaneously with the installation of three to-inch

FRINCESE MAY ETHORE SAE WAS SALVED
sluwed a rocky bottom extending so feet from the cliffs, outside of which was a shingle bottom, sloping away on a 5 or 6 percent grade from a point 50 feet aft of the stem. From the stem aft for 50 feet the entire bottom was badly fractured and the keel bar gone, but after this the shell plating, stern frame, propeller and rudder were found undamaged. As her position was exposed to the strong winter storms which prevail from
pumps in the forward hold, the discharge of cargo and the transfer of coal to the after end. By Dec. 8 all the cargo, about 350 tons, had been discharged on lighters, dry and in good condition. Part of the general plan was to lay out astern a 4 -ton anchor three points on the starboard quarter, with 120 fathoms of 5 -inch wire hawser. By the time the cargo was discharged the cofferdam was completed, and about 190 tons of
coal transferred from the side bunkers to the extreme after end of the 'tween decks.
This work was carried on only with extreme difficulty. Strong winds from the southeast set up a short swell, and in addition the ship's stern was rising and falling with the tide, causing her damaged stem to work up and down over the huge boulders, altering her shape and hindering the workmen at the bow.
The first effort to float the Northweestern, Dec. 8, was unsuceessful, and it was demonstrated that she bore too heavily on the rocks forward. This initial attempt to take her off was made by taking a heavy surain on the stern cables, with the tug W'illiam Joliffe towing and the Norihuestern's main engines steaming full speed astern.
The next plan adopted was to put the vessel down by the stern and to continue lightering her forward. No heavy weights were left ahoard, so 150 tons of gravel were ordered, while coal, estimated at 150 tons, was jettisoued from the forward bunkers. When this coal was out a second attempt to float was made at hijh tide Dec. 9 , but again it proved a fatlure, as she was still bearing too heavily on the rocks. Jettisoning of coal was continued and the gravel was taken aboard. After careful consideration it was decided to flood the afterhold, and this was done with about 200 tons. The salvors were aware that it perhaps meant suceess or failure to get the vessel off Dec. 10, as the tides were taking off rapidly and the spring tides wonld not take place for eight or ten days later. During the interim the Northwestern would be in constant danger of being battered to pieces in a storm.
For these reasons supreme efforts were exerted Dec. 10, and they proved successful. The lifesaving tug Snohomish had a hawser to the steamer's stern and the tug William Joliffe was alongside. A strain was taken on the Northzeestern's stern cables, and she drew clear of the rocks by the purchase exerted on her own anchors. The Joliffe held her one length astern until all moorings were clear, when she started under
at low tide, and at high tide the engine-room and dining saloon were completely filled with water. The stranding of the Princess May occurred while she was southbound from Skagway with eighty passengers and a crew of sixty-cight on board.

THE NLW PORT NEWS MISHAP.
No lives were lost and the vessel was successfully salved. A very interesting illustration of the result of a collision of a wooden vessel is shown herewith. From it one is led to consider whether or not the light superstructure of river and

THE STAANPING OF THE CHATRAM.
her oun steam for Seattle, convoyed by the tug. This passage was made at slow speed, as it was feared the great strain to which the cofferdam had been subjected might have severely tested its strength. However, the Northwestern arrived safely at Seattle, exactly nine days after stranding. She was surveyed in Heffernan drydock, where the accompanying photograph was taken.

Capt. Logan has also achieved another success in the salvage of the Canadian-Pacifie steamship Princess May, whieh went ashore on the north reef of Sentinel Island, Lynn Canal, on Aug. 5. Our photograph shows the difficult position in which this vessel was left by stranding. The photograph was taken
harbor boats could not advantageously be bettered by the use of metal in its construction. The light nature of the woodwork is very noticeable, and the old comparison of "kindling wood" is certainly apt in this case. The three-cornered piece of the hull plating was not punched out, as at first sight might be supposed, but was ripped and crumpled up, as a little study of the illustration will shou. The blow by the collision beginning at the forward end, the tearing of plating is indicative of considerable speed of the ramming vessel.
The steamship Chathom made an effort to cross over the end of the north jetty in the St. John's River, Florida, with the result shown in the accompanying illustration.

RANDOM NOTES ON A LAKE FREIGHTER.

Doubtless to many of my brother officers this brief article will seem like the proverbial bringing of eoals to Newcastle, for they have lived upon the shores of the Great Lakes and have witnessed, if not the birth at least the development of its colossal shipping trade, but the rest of us have never enjoyed this great privilege and our notions, gained through easual report, must be, as my own were until recently, vague in the extreme. Having within the last few weeks enjoyed an opportunity of regarding this fresh-water system at close quarters, it would not appear out of plaee to lay before my fellows of the Naval Institute the fruits of my inquiries as embodied in notes nsale on the occasion.

Remembering the saying of the profane old English statesman, that there were lies, hlank lies and statistics, I shall only remark that those who are in a position to know estimate the cargo tonnage which passed Detroit and the Sault Ste. Marie in the calendar year 1909 , at serenty-t wo millions, more than three times as much as went through the Sucz Canal, and more than twice as much as the total tonnage entered and eleared at the ports of Liverpool and London. Of this amonnt forty-two millinu tons were of iron ore brought from
of record that the W. E. Corcy was, on one occasion, but an hour and a half at Two Harbors from the time of entering until leaving again, having in the meanwhile taken in some $t 0,500$ tons, the exact loading time being thirty-nine minutes. This large cargo was taken out of her in four hours and a half. Such figures seen incredible until the appliances by which they are achieved are examined, when all becomes clear. The Corey made thirty-eight trips in one season and transported about four hundred thousand tons of ore.
In some ports a mammoth crane lifts an ore car from the railway tracks, swings it out over the vessel, capsizes it and thoots its so tons of ore down a hatch, lut usually the ore is held in large bins 30 feet and more ahove the wharf. From these it is run down in steel chutes about 4 feet wide, semicircular in section, which are invariably 12 feet hetween centers. a constructional detail that, whether wise or unhappy, must be followed in the spacing of the vessel hatches. However long or short the steamer may be and however wide her latches, as measured along her midship line, or however broad, measnred athwartships, they are exactly t2 (or 24) feet apart from eenter to center, except where deckhouses intervene to make that distance an exact multiple of twelve.

The discharging apparatus is based on the clam-shell dredge, which is lowered into the hold to grab its charge.

Lake Superior to ports on Lakes Michigan and Firic; and seventeen millions were of eoal sent north. The balance was lumped under the head of general merchandise, or, as the local expression runs, "package freight." Surely such a vast ntowement justifies a few words touching the build of the ships that do the bulk of the work and the methods by which they are operated.

In the first place, it must be remembered that the season is ordinarily only eight months long. By the middle of December navigation is closed, to open again about the middle of April. It follows, then, that the most must be made of the period available, hence fairly good speed betweell ports and the briefest possible delay while at rest are imserative. These conditions having been frankly recognized, dominate the whole scheme. Confining my remarks to the transit of ore. 1 may point out the necessity at the one end of having that material in readiness on the ship's arrival and so stored as to be loaded into the hold with the utmost dispatch, and, at the other, of discharging it in the least possible time. It is

[^16]then elevated, swung back over the dock and emptied into gondola cars, or into earriers that convey the ore athwart the dock and dump it upon piles where is aceunnulated the winter's supply for the ravenous furnaces of Pittshirg. Cleveland and South Chicago. The latest shape this device has assumed is shown in the accompanying photograpls. The long wertical member is kept vertical at all times by means of the mowable levers, which, with the fixed upright, form a parallelogram. This arms carries the luckets, and can lse saised or lowered at will. The bnckets, moreover, are susceptible of turning in a horizontal plane aloutt their vertical axis. Through these moventents the buckets can rake up the ore in a nearly fore-and-aft line, form a heap and then gather up their hage charge of 15 tons at a hoist. The operator is stationed inside the vertical member at its lower extremity so that he descends with the buckets into the very hold of the ship for each loarl. Fiverything is done by electricity and so complete is the control that the buckets seem to be almost human as they search the corners of the ship and scrape the scattered ore together before seizing it in
their capacious maws. Locally these machines are called IIuletts, after the inventor.
The vessels we are considering are simply floating, selfpropelled ore tanks and, as a natural sequence, the entire length is devoted to ore carrying except enough at the stern to contain the boilers, engines and a portion of the crew with their accommodations, and at the bow, more quarters, the wheel house, steam windlass, etc. When looked upon as an
during the late fall and early winter, for the lake gales come up suddenly and, at times, they are terrific in violence. The loss of certain freighters has been attributed to neglect of this particular precaution.

The engines are habitually triple expansion and the Scotch boiler is still the prevaiting type. All lake freighters have hut the single screw.

As a rule, the officers and crew are most comfortably

LOADING ORE boats at LaAE supeage docks
adaptation ts a specific purpose they are admirable. In their general appearance, the heautifat has been sacrificed to the useftul, as this picture of the J. Piorpunt Morgan will abundantly prove.

The upper deck is flush from furcastle aft, broken only hy the transverse hatches (in some cases thirty-six in number) fitterl, in the later vessels, with steel covers that are not re-
quartered. Hammokks are unknown, berths being provided for all.

It is only in length that these vessels can be increased. The draft is inexorably limited by the depth of water at the shallow places between Lake Eric and Lake Superior to about 10 feet and 6 inches. The beam might be somewhat greater than the present maximum of 60 feet, the widest that can

moved, but which, being telescopic, are simply pulled apart from the midship line by hook ropes taken to winches, the sections sliding over each other and occupying, when thus disposed, but little more room at the outboard end of the hatch than does one section alone. Stout tarpaulins and handy steel battens are always ready, as with us. During the summer they are seldom used, but be is a foolish captain who should fail to batten down securely, on leaving port
pass through the Weitzel (American) or the Canadian Lock at the Sault Ste. Marie,* were it not for the loading and unloading now based on a beam not exceeding 60 feet. To alter these would be so expensive an undertaking that we may believe the width of these ships as firmly fixed by man's own doing as is their draft by nature. These facts account for lengths which appear almost grotesque.
-The Poe (American) tock has gates 100 feet wide.

Inside, the schene of design is governed by the desire to make charging and discharging easy in the extreme. Thwartship bulkheads (except such as to divide the hold into separate watertight compartments) and stanchions are fast disappearing in favor of an arch eonstruetion which makes each hold an open box-like tank. The stresses on decks and keelsons, as the top and bottom members of the great fore-andaft girder, must give the naval architects of the lakes much concern. Not being an expert in these matters I can only suggest that possibly the requisite strength in these respects is secured, in part, by carrying the double bottom well up on each side, and by making the spar-deek plates exceedingly heavy. These vessels survise the short seas on the lakes, but it is questionable whether they could ride in safety the longer wases of an ocean gale.
I noticed no trimming of the cargo, which is left in the comparatively low lieaps formed ly the dumping process. Experience has doulmless proved trimming to be unnecessary. Fortunately the material is heavy and not easily dis-
usual complement. The steward is also the cook, and the food he prepares is the same for everybody, from the captain down. Excellent prog it is too-yet it is related that, on board one ship several ycars ago, before the introduction of "the open shop" and the defeat of the seamen's labor union, the firemen struck because the potatoes were not mashed. The passengers, in this case, happened to be a husky lot, who pitched in, shoveled coal and so brought the vessel into port.

Punishment is ly fines, as it sloould be.
The men ship for the month, or for the round trip, and are paid by checks signed by the captain. As we have too often found among our recruits in the navy, there seems to be a lack of respect for the obligations of the contract of enlistment on the part of these freighters' crews, who make no bones of enlisting in ports of the lower lakes for the purpose of securing a free passage to Duluth and Two Harhors. where they desert at pleasure and take trains for the wheat fields of the Northwest during the harvest season, when wagev

linlged, else might a shift, when rulling deeply, prove fasal. The Marquette ores, being mined wet and full of jagged limpes, are thus presumably more stable than the earthy material quarried in the Mesala region back of Duluth.
Most, if not all, of these freighters are provided with accommodations for a few passengers, since officials of the owning companies have occasionally to go in them on tours of inspection. During the summer months, a round trip from I alake Frie to Dulnth or Two Ilarbors is extremely enjoyable and is coveted by many, both men and wormen, who possess, or think they possess, some claim on the owner or shipper. Hence, freighters thongh they be, they seldom so, at this exason, without a full complement of guests The quarters range from the lare eomfort of a plainly furnished sleeping rumin and a scat at the table, where, often, all mess, except the firemen and cleckhands, to handsomely equipped private suites and a separate dining room.

The personnel af the Zrwith City, in which I was privileged to make the run to Marquette through the politeness of Mr. 11. Coully, the general manager of the Pittsburgh Steamship Company, eomprised a captain whose salary may have been about $\$ 2,200$ ($\mathbf{~} 4,0$) per annum, a first-mate at $\$ 1,30$ (627) per month; second-mate at $\$$ son (f19), fontr whelsunen and watchmen at $\$ 50$ ($\mathbf{~} 10$) : a steward at $\$ 90$ ($\mathbf{f t g}$), all assistant at $\$ 36(\$ 745$.$) ; a porter at \$ 30(66)$; a chief-engineer at $\$ 175$ ($/ 35$) ; one assistant at $\$ 125$ ($\$ 25$) ; one handy-man at $\$ 15$ ($[\mathrm{I}, 3$) ; two nilers and four firemen at $\$ 52.50$ ($\$ 10$ 10s.) ; six deck-hands at $\$ 31.50$ (666 s .). This, hy the way, is the
are exceptionally high. This remark applies particularly to the deck-hands, whose work is almost nil while underway (they stand no night watch), and who are only really lmwy when in port, attending to the lines for moving the ship from empty bins to full olics or performing oaher services eonnected with the operations of loading ankl unloading.
It may be observed, by the way, that the absence of tide frecs moving alongside the wharf from some of the inconveniences experienced in salt water and that frequent bitts on the dock stringer, together with steel lines, with permanent rye splices at the ends, worked from steam wincles on the spar deck, reduce this maneuver to its simplest termstossing the end ashore, throwing it over a hitt and heaving in. The winches are four in number, two just abaft the Texas deck and two jus forward of the after deck-house: two facing to port and two to starhmard.
The language of the sea has, suffered material munlifications in its translation from the ocean to the lakes. For ex. ample: "Aye, aye, sir" hae given way to "All right," "Fase your helm" to "Slowly." not to mention others equally significant.

Boatswains and their whistles are unknown. Men are called to meals by the "porter" or "assistant steward." who passes along the deck ringing a hand hell. This seems to be quite as effective as the cheery "pipe to dinner" of our service.
Some of the larger companies (the Pittsburgh Company reckons twenty-two barges and seventy-eight steamers in its
(feet) are gradually introducing customs similar to those on ocean-going craft, such as striking the half-hours on the ship's bell and restricting promotion to men and officers in their own employ. The Cleveland-Cliff Company forbids the latter to appear on shore while attached to a ship in port, except in its prescribed uniform. That an improved esprit de corps will he effected by such measures admits of no doulr.

The helpless barge, towed by a collier, is passing out of existence. While an coonemical method of conteying freight in bulk, as the practice on our Atlantic scalurard abundantly proves, the annoyances attending locking through the Soo and ketting alongside of dock, together with the risk of disaster in heavy storms when the freighter's power is barely sufficient for her own needs, have acted as discouragements. It camot say whether the employment of stout, seaworthy tugs has ever been the subject of practical trial. Doubtless this has been thoroughly studied, or these barges, some of which carry eight thousand tons of ore, would not now be in process of abandonment.
As may be imaginef, the storage of provisions and of potalite water gives litule concern, since the trips are but three or four days in length lextween terminals and the navigation is in iresh water.
The speed and all distances are measured in stature miles. Shmut eleren miles an hour empty and ten miles when full seem the average.
The engines rarely develop over two thousand horse, which in beavy gales, when the ship is light and largely the sfort of the winds, must cause some ureaviness. The latter inconvenience is nentralized by letting water into the double boftoms. The jet condenser is universal. Despite the poor sacnum it yields (say 22 so 24 inches), these vessels are very reonomieal in fuel. The Peter Whits, with $\mathbf{t , 5 6 0}$ horsepower. for example, gets one horsepower for 1.7 pounds of coal, and she burns but 270 ons during the round trip of six days, yet she carries 0,000 tons of ore. The J. E. Upson, of the same capacity, on the same coal expenditurc, develops 19.50 indicated horsepower, and tuakes 12 miles ant hour when light.
There are numerons instances of coal consumption of 1.6 per horsepower and even less.
An automatic feed replaces the water tender.
Electric lighting is the rule.
Naturally, external corrosion of the hull and fouling, the banes of our existence, are miknown. The interior of the vessel is either red Icalled, as with us, or is ceated with a special black mineral oil, which has proved both cheap and effective.
The steering engine is commonly placed under the wheel. It is, however, also found in the engine room-a better location, of course. 1 heard some complaint of the telemotor by which this engine is controlled from the pilot-house, and I gathered the impression that raplains, as a rule, prefer to lave the steering engine directly under their feet.

The handing of these long craft gave me a favorable impression of the skill of their captains. A tug was useel at Ashabula in getting elear of the dock and ont into the open lake, but neither the captain nor 1 thought this assistance necessary on that oceasion, however valnable when the wind is blowing fresh. At Marquette we ran alongside the wharf as easily as possible and tied op at once. I could have wishet more difficult conditions in order to ohserve better the captain's dexterity, although I have no doubt of his stecessfully meeting any requirements.

Of navigation, properly speakmg, there is no trace on the lakes, for land is in sight the greater part of the time, and eletermining the ship's position by astronomical methouls is quite unkrown. The nearest approach is in ascertaining the compass error by the sun's shadow, his true azimuth being taken from tables. On tite otlier hand, coasting and piloting
ohtain. In the former operation I did not notice the strict kepping of the run, as is customary with us, and the plotting of the ship's place on the chart, from time to time, by means of cross bearings, bow and beam learings and the like. Probably this precaution is thought unnecessary, so frequently do the captains pass over the same ground. That a risk is incurred by not following our decp-water practice I am disposed to belicte. The time is always recorded in the log when certain well-known headlands, etc., are abeam, together with the reading of the engine revolution courter dial. The log bowk is mont simply kept. It contains hut the barest story of the run. There are no divisions into watches, and several days' proceedings may appear on one pake. The columns are marked as follows, viz: Datc, time, place to place, distance off. time from last place, upper compass, lower compass, on the left-hand page; wind weather, revolutions last six hours, revolutions, place to place, rentarks, on the other. Temperature and barometer heights are abyent and the remarks column is mainly a blank
In piloting these capmains are at their best. So far as my ohservation went they are masters of this ant. Much has been done by the Lighthouse Board to make the passages over difficult points absolutely safe; lighthouses, beacons and buoys abound. In narrow places the channel is maiked by buoys on either hand, which are lighted at nigh. It is only a question of kecping between them. Indeed, once entered there seems to tre no more difficulty in getting through than of walking down Fifth Aveme. Then, too, under the River and Harbor Acts the government lias already spent some fifty millions of dollars (ten million ponmals) in removing obstacles, building locks at the Soo and in culting long straigh shannels miles long, sometimes through dry land, to replace the tortuous navigation previously encountered. Again, these artificial waterways are, not infreqnently, two in number, that vessels may not meet in marrow naters-a douile-tracked road, in to speak. In addition to the btorys, they are provided with range targets and lights, leading when in line directly down the axis of the chamel and furnishing incidentatly a rigidly exact metherd of finding the compass error on that particular heading. A convenient blauk lwiok suitally ruled is in use by these captains for entering the observed headings by the standard and stecrivg compasses at no less than sisteen such localities on the Detruit and the St. Clavis Rivers and twenty-orie on the St. Mary's Riser between Iakes 1 furon and Superior. There can be no excuse for ignorance of the local deviation. Verbal communication between the pilothouse and engine room is usually by telrphome. Siguals to the latter are most frequently by the ordinary enghe-room telegraph, now gradually replacing the small stean whistle once exclusively used. The latter is still retained for cases of breakdown in the telegraph

A stont trolley wire. carrying a boatswain's chair, is stretehed between the bridge and after deckhouse. Its value when the spar deck is swept by a heavy sea neets no explanation. This appliante is olligatory. Its need was made clear (in 1005) whell a certain steamer, the Mataafa, of the Pitthurgh Steamship Company's fiect, having run ashore in a vinlent storm, all her crew stationed aft were lost through inability to reach the bow, for there is no passage-way between the ends of the vessel below the unper deck
Speaking of weather, the late fall and early winter are apt to exact a heavy toll, especially on lake Superior, with its rock-bumd coast, lack of srat room and paueity of refuge harhors. In some seawons the wrecking of steamers and destruction of life are almost appalling. I am confident that some of this is needfess, that it might be avoided if captains realized the possibilitics which reside in gond ground tackle skilfully managed. While very deep, say two hundred fathoms in parts, Lake Superior has a clay botrom with a gradual
slope towards the shores. Kemembering what anchors did for our blockading fleet, were I caught in a menacing Lake Sisperior gale, I would shackle both chains to one anchor, and lower the latter down to extreme scope-about 180 fathoms. It wouid first act as a drag to keep the bow towards the sea, then it would toucls the bottom with inereased efficiency, finally it would eatch in this best of holding ground and eventually bring the ship up long before she struck the reefs. The captains with whom I discussed this matter thought well of the progosition (for the originality of which I disclaimed any eredit) and said they would adopt it on the first opportunity. One, Captain Murphy, of the Peter White, stated that he had tried it once, but a defective link parted and he was obliged to battle for safety with his engines alone."

Locking through the "Soo" is an ipteresting operation and gerformed with kreat despatch. Two locks are in use on the Americas side and one on the Canadian. There are no charges. A third and still larger lock is building by our army engineers. The difference in level between Huron and Superior makes a lock imperatively necessary. Doubtless the fact that the lakes' people are accustomed to this unavoidable process accounts for their general apprubation of locks at Panama, a feature in ottr trans-isthmian canal as unnecessary as it is deplorable.

The return to Lake Erie I made on board the J. E. Upsom, Captain J. G. Wood, through the politeness of Captain Wim. Morton, manager of the Wilson Transit Company of CleveJand. The steamer herself is among the larger of her kind, but not among the larkest, having thiry hatclies, while the maximum is thirty-six. She is, therefore, 72 feet shorter than the f. Picrpont Morgan. I found hes capain alert and competeut, as well as a thoughtful host, and her accommodations alnost luxurious.
Speaking in general terms, I should say that the lake captains are quite as skillful in their more restricted employment as our battleship captains are in theirs, which cubraces so much larger variety of incidents. Cireater pratse could not be given. from amons the number of these fiesh-water sailors excellent men can be drawn to help us out in time of war, for their intelligence is of a high order and they can quickly learn what is not, at present, of their experience.

Some surprise I felt in the absence of turbine engines in these freightert. Doubtless these may arrive some day provided the screws do not project so far from the midship line as to embarrass the operation of getting alongside the docks.
Nor has oil burning been attempted in spite of the proximity of the heavy oil field of Lima and of the advantage of eliminating the fireman, just now well in hand, but liable at any moment to prove, as of old, the source of infinite tronble.
The eharts in use, while accurate, presented one feature which is not free from danger. The conrses from place to place, as marked, appeared to me, in some instances, to shave the headlands or outlying reefs altogether too closely. In clear weather this is no drawluack, but in fong or thick weather a slight deviation from the correct magntic heading might run a vessel ashore. It may be argued that a captain ought to disregard the chart course under steh circtutnstances and give the next obstacle a wider berth than a mile and a half. Quite true; but a safer plan, according to my view, is to prescribe a course whicls will carry the vessel in good water at all times and yet leave a comfortable margin for error, for, being given on a government publication, it is naturally followed by the captain, who looks apon it as official.

It is hoped that my random notes may be found readable, if not profitahle, by my colleagues of the naval service. In these days of marvelous and rapid developnent one never knows when some little serap of apparently unrelated information may "come in mighty bandy."

STABILITY OF MERCHANT VESSELS.

It sometimes happens that a vessel which is tender at the completion of her loading in the piver is observed to become still more so when she reaches the open sea, although no weights have been moved on board. It is a little difficult for the non-technica! mind to grasp the statement that this rather mysterious leappening is the result of the vessel having in sea water, say, 5 or 6 inches less draft than in fresh, owing to the kreater density of the former. It is usual to consider that increase of irecboard will lead to increase of stability, and in general it does so, but on! y at considerable melinations from the upright position. In the neighborhood of the upright, if the vessel is of the usual merchaut type and approximately at load draft, and if there has been no accompanying fall in the center of gravity, the stability will be decreased.

The change in a vessel's condition, however, due to the pas. sase from fresh to salt water, cannot be great, and in most cases woukd probably be unnuticed. But during a voyage, and particularly towards its close, a vessel of small stability to begin with might evince unmistakable and even alarming symptoms of instability, although there might have been no change in the disposition of weights beyond that due to the consumption of the bunker coal, to which cause the new state of things mu*t therefore be ascribed.

The burning out of the bunkers might affect the stability adversely in two ways:

1st. By causing a rise in the position of the center of gravity.

2d. By causing a falt in the position of the transverse metacenter.

The first would happen if lower bunikers alone were consumed and no adequate trimning were done; and the second if the vessel were of normal merchant type, and, at the start of royage, were at full load draft. Thus such a vessel, although with considerably more freeboard at the start, might not only the in worse case as regards stability, but might even be in iminent danger of actually capsizing. It is probable that many loses at sca, otherwise nysterious, might be ascrithed to this canse. It seems to the writer that too much light cannot be shed on this subject, and, in particular, that shipmasters in conmand of vessels which have special features in regard to stal ility should have these carefnlly explained to them.

Most commanding officer are aware of the danger there may be in consuming only lower coal, and make arrangements by which upper bunkers are trimmed into the lower as these become deplesed; or if this cannot be done, use upper coal simultancously with lower. Not many, however, are probably aware of the effect of rednction in the draft in the ncighborhood of the load line, alt hough in certain cases this alone might be suffetient to produce instability:

It has occurred to the writer that if a simple formula could be evolved, based on the general dimensions of a vessel, giving approximately the ninimum height of the transverse metacenter and the corresponding draft, it should prove useful. This has Ird him to make the following investigation:

The general formula given in text books for the height of the transverse metacenter above the center of buoyancy is

$$
B M=\frac{l}{V}
$$

I being the moment of inertia of the plane of flotation about its middle line as axis, and V the volutne of displacement in enlicic feet.

For prismatic bodies the value of $B M$ is quickly arrived at, but in the case of those of ship shape, the finding of both I and V^{\prime} being somewhat laborious, this is not so. In the latter case the general expression for I is

$$
I=\frac{2}{3} \int y^{n} d x
$$

and for V

$$
V=2 \iint y d x d s
$$

a being any half ordinate of the load water plane, in the first instance, and of any plane in the second. Ship curves being irregular, integration is effected by means of Simpson's or Tchebycheff's Rales, and results are obtained by which accurate diagrams of metacenters may be drawn.

Besides the foregoing, most text books give approximate formule for determining the position of the metacenter, which, for our present purpose, it is convenient to recapitulate. In sucb expressions for the moment of inertia of the water plane

$$
l=L \times B^{\omega} \times C_{L_{0}}
$$

and for the volume of displacement

$$
V=L \times B \times h \times C_{k}
$$

$$
\frac{d^{8} y}{d h^{2}}=+\frac{B^{4}}{h^{2}} C_{2} \ldots \ldots \ldots \ldots \ldots
$$

Since (3) is positive, the value of h, which makes $\frac{d y}{d h}=0$, will, when substituted in (1), give a minimnm value of a

From (2) we get

$$
\begin{equation*}
h_{\mathrm{m}}=B \sqrt{\frac{C_{i}}{k}} \cdots \tag{4}
\end{equation*}
$$

and from (t) by substitution,

$$
y==\frac{B^{4} C_{3}}{B \sqrt{\frac{C_{1}}{k}}}+k B \sqrt{\frac{C_{1}}{k}}=2 B v \sqrt{k C_{*} \ldots .(s)}
$$

the suffix m being added to h and a to indicate that they refer

ric. 1.
L, B and h beng the length, breaith and draft of a vessel, and C_{1} and C_{7} coefficients depending on the immersed form. Using these approximations the expression for the height of metacenter above the center of buoyancy becomes

$$
B M=\frac{L \times B^{2} \times C_{1}}{L \times B \times h \times C_{3}}=\frac{B^{2}}{h} C_{3}
$$

If we call the height of metacenter aloove the base line y, and that of the center of buoyancy above the same line d,

$$
k r^{*} \quad y=B M+d
$$

Now, d may be expressed in terms of the draft h, say

$$
d=k h,
$$

k being constant for vessels of similar form. Thus we may write, substituting the value found for $B M$,

$$
\begin{equation*}
y=\frac{B^{v}}{h} C t+k h . \tag{1}
\end{equation*}
$$

Now differentiate the expression for z twice with regard to h. We have

$$
\begin{equation*}
\frac{d y}{d h}=-\frac{B^{2}}{h^{2}} c_{1}+k . \tag{2}
\end{equation*}
$$

\qquad
to a minmum height of metacenter. Thus we have arrived at two simple formule giving the information desired.
Let us apply the above to two typical eases, say, to a bozshaped vessel, which may be looked upon as the limit of the full-cargo vessel, and to a passenger steamer of fairly fine form. The ease of most vessels will lie between these. Taking the box vessel, we have $k=1 / 2$ and $C_{3}=1 / 12$, as may be readily verified, so that

$$
y=2 B \vee 1 / 2 \times 1 / 12=\frac{B}{\sqrt{6}}=408 B
$$

In this special ease it will be found, by substituting in (4), that

$$
h_{\mathrm{m}}=408 \mathrm{~B} ;
$$

that is, the metacenter is in the line of flotation. The explanation of this is found in the fact, as shown by (5), that when the height of the metacenter above the base is a minimum, it is just double that of the corresponding center of buoyancy, and that in a box-shaped vessel the center of broyancy is at half draft,
In applying the formulx to our second example, care must be taken in fixing the values of the coefficients, which, of course, must correspond to the draft at which the height of metacenter is a minimum. In the present case the block co-
efficient at load draft is .633 . and the coefficient required for the formulx are as follows:

$$
\begin{aligned}
c_{i} & =.048 \\
c_{1} & =. .570 \\
\therefore c_{1} & =\frac{.048}{.570}=.08+4 \\
k & =\frac{.568}{}
\end{aligned}
$$

Substituting in equation (4) and (5) we get

$$
h_{m}=B \sqrt{\frac{.0641}{.568}}=386 B
$$

and

$$
y_{\mathrm{m}}=2 B \sqrt{0 R_{44} \times \cdot 568}=44 B .
$$

Since h_{n} and y are linear functions of B, they may be readily plotted, and this las suggested the making of the diagram indicated by Fig. I. In this diagram valnes of $h \mathrm{~m}$ and $\mathrm{y}=$, corresponding to vescels of varying degrees of fimeness and of any breadth within the limits of the figure, may be read off.

vas 2.
In the construction of Fig. I results of actual cases have been employed, and for vessels of exactly sinnilar type the lines on the diagram are accurate. For versels of similar type, but other degrecs of fineness, a close approximation to the values of $h \mathrm{~m}$ and y_{m} may be found by interpolation.

Fig. 2 depiets the metacenter diagrams of the vessels employed in construeting Fig. i, the particulars of these vessels being as follows:

The general line for box-shaped vessels is shown in Fig. i, but only for comparison. The difference between a box-shape
and even the fullest vessel of normal type is so great as to make it unsafe to use its curve as a guide in predicting values for ship forms.

The diagram (Fig 1) is an interesting exercise in the geometry of the metacenter, but it has also a practical value. In designing, for instance, it should prove useful in arranging the permanent bunkers. By means of it, the center oi gravity having been approximated to, and assuming the draft with coal out to approach $h_{\text {m }}$, the ininimum value of metacentric height, or G M, might be obtained. If this should be 100 small or negative, it might be advisable to rearrange the bunkers. It may be pointed out, of course, that with coal out, water ballast could be run in; but it is inadvisable to do this with the ship in motion at sea; and if it could be obviated by another arrangement of bunkers, the design of the vessel would thereby be improved.

Fig. I should also be useful to shipmasters who know somethang of stability, and, in particular, how to make a heeling experiment. After loading and bunkering, the position of the center of gravity might lirst be found experimentally. Then the extent to which it would be modified with the coal out could be readily estmated, bunkers being as a rute of simple shape. If the position of the center of gravity thus found. taken in association with the mintmum height of M obtained from the diagrain, showed the vessel to be dangerously tender, it would be advisable to rearrange some of the cargo, unless it were possible to so plan the burning of the coal-e, R, by using upper bunkers first-as to prevent a dankerous rise in the position of G while the vessel was actually at sca. In port, of course, water ballast could be run in to take up the draft and bring down the center of gravity.
It is perhaps scarcely necessary to point out that such a diagram as Fig. t is only of importance in the case of vessels whose metacenter curves have generally the eharacteristics of those in Fig. 2. In some cases the lorws of metacenters is a horizonial line, or nearly so; in others-in vessels having immersed sections of peg-tup form, for instance-it is actually concave to the liase. For such special vessels a diagram like Fig. 1 obviously conld not be constructed. Most modern merclant steamers, however, have metacenter curves like the kind we have been dealing with, and it is to them the foregoing remarks are intended to apply.

FLOATING DRY DOCKS IN THE UNITED STATES. relative value of wood and steel. FOR THEIR CONSTRUCTION.
 ar wrlitax r. Dosmaliv. ${ }^{\circ}$

While the floating dry dock is not by any means new in the United States, and while it is generally admitted to be an American invention, the application of technical knowledge or the skill of the engineer has so recently been called upon for ite design and construction, that the writer feels almost lxand to offer some historic references.

The oldest available record is a copy of a patent to J. Adam\sin for floating dry docks. Wecentior 13, 1816. For a description of this and of subsequent types of wooden floating dry docks, which have bren developed in the United States, the author refers to a paper read liefore the Brooklyn Ensineers' Club under date of January 25, 1005 ; and for an excellent detaijed description of large floating dry docks huilt for the Cinited States Government prior to 1850 , parties interested are referred to "Naval Dry Docks of the United States," by Charles B. Stnatt, chief enkineer of the United States navy This is one of the most valuable works in exivtence, not only as regards floating dry docks hat hasin docks as well, giving such an excellent description of the construction and diff-

[^17]enlties overconte in the building of the first basin dry dock at the Bromklyn Navy lart as would bo appreciated by those who have had the later construction under their care.

For the most modern description and record, bringing the history of Hoating dry docks in this country up to the date of the completion of the steel floating dry duck Petury, reference can be had to the beok entited "Floating Dry Docks," ralited by Svent Amlersun, M. E., superintondent Floating Dry 1)eko Departunent, Maryland Steel Company. This work is a careful compilation of recent papers delivered before the , arious enginecring societice in this country,

Special reference should the made to very important papers by Civil Engineer A. C. Cuningham, 1., S. N., and Civil Engineer l.conard M. Cox. U. S. N., the latter paper dealing with naval dry dochs and being a imost complete presentations of mathematical and structural prablects. This paper will alsos be found in the Transactions of the American Snciety of Civil Engitters for 190%.

In tood the asthor was retained by a large dry-docking and ship-repair company to prepare plans for a fleating dry deck. The general requirensents were that the dock should ultimately have a lifting capacity of 30,000 tons and that approximately 12,000 tons lifting power was to be built at the beginning and added to later on,

White the aubor's exprerictee had previously dealt with woom at a structural material for floating dry docks, be was alson faniliar with steel for such structures, and owing to the fact that all docks of approximately this size had been built of steel attention was directed to that material, and a careful study made resulted in the selectiont and design of the Rennie tyge of dock, with steel ponsoons and wings, the pontoons lwing 4 feet deep, 28 feet long and 127 feet wide. The steel Wiugs were to be to feet high to give ample longitudinal rigidity. The sletails of this dock were very carefully worked out so that accurate weights were arrived at. They were 6,600 tous for the pontoons and $2,7 \times 0$ tous for the wings, or a total of 10,300 tons for the structure, which, on a basis of 20.000 tons lifting power, gives as a factor of structural weight relative to lifting power, of $5: 10$, which agrees fairly well with other large docks previously designed and butilt.

The fact that a working stress of 12,000 pounds per square meh was used throughout, and that the wings of the Rennie type of dock were made of exceptional depth to insure longitudinal rigidity, will account for a sonmewhat higher weight factor.

While this dork was not built, bids which wete received indicatel that the cost of the do*k completed would be approximately $\$ 57$ ($\{1,7,7$) per ton of lifting power. For a more complete deacription of this dock and the noyel method of pumping by compressed air which it was intended to use, those interested are referreal to a paper entitled "A New Method of Pomping Floating Dry Docks," read before the Brooklyn Fingineers' Club on May 9. 1007 . The reason for introducing the matter here is to effect a comparimon letween this structure and similar dochs with wooden petatomens.

In a pontoon dock of 7,000 tons lifting capacity, with stecl wings and wooden pontoons, the pontuons are 100 feet long. it feet deep and 32 feet wide. Exeh pemtoon has cleven frames or trusecs on 3 -foot centers. Top and bottom planking is 4 incles, the side planking 5 inches and the end planking 6 itehes: 6-inch by 8 -inch deck timbers are worked across the so-inch by so-inch iruss members on top and hottiom in such a way that it is possible to get in the $t^{2 / 6}$-inch double tie-rouls withent boring. and so arranged that they can be replaced at any time.

The material is merchantable grade of yellow pine lumber thromghout and the fatenings are all galvanized. There were requireal for each of these pastoms 135,000 lmard feet of lumber.

The steel wiug of this dock are 3 保 feet long by zo feet ligh, 12 feet wide at the lxitom, and 8 feet wide at the top The plating varies in thichness from one-ryuarter inch to onse half inch. The securing of the wings to the pontoons is arcomplished by means of a cast steel shoe sectured to the weck of the pontomn and connected by a link and taper wedge and wimilar shoe riveted to the side of the wing. On the outsule of the dock, attacliment to the pontucon is by a cast steel -trap through-lwited to the side of the puntwon. This device is of exceedingly simple constraction and has proved mast effective.
A pontoon has leen detached by knocking out the wedges itt less than ten mimutes. The remaituler of the dock is then pumpet] up, when the detached pentoons san be floated out and dry-docked on the remaining pontoons. The total weight of steel wurk in the wink is $\mathrm{t}, 100$ tons. Attention is called to the fact that all of this steel is normally abose the waterline, where it is accensble at all times for examination and repair.

Contact between the wings and fontoons is made by a raised parking piece, 12 ithles wive, surrounding the open top of the pontoons uncler the wings, it being understood that there is a lole in the botton of the wing to allow free passage of water from the pontoon to the wing when the pontoon is full. The joint between the pontorn and wing is made with three-uly canras packing, saturated with red lead. and the wing, at the point of contact, is reinfored with $1 / \mathrm{s}$ inch lyy 12 -inch steel plate to insure against possible corrosion, this being the only part of the wing, insivle or out, which is not accessible when the dock is in commission.

The method of pumping is by a centrifugal pump in cach end of each pontoon, all the pumps on one side being operated by a single electric motor throngh horizontal line shaft and vertical shaft to the pump. The delivery and entrance of water to the pontoon is throngh the pump, which has been foum to be a very effective method of control. A inore emmplete description of the construction and opersation of this dock can be found in Infervationat. Maring. Enginembligg under date of August, toce While this dock is shown and referred to here as a $7,000-10 n$ dock, with eleven pontoons and a leugth of 3 gik feet, it was actually built with ten pontoons ansl a lenkth of .335 feet in the wings, this being the greatest length which would leave room for handling vessels in atd out in its present Incation on the 'company's property. The additional promtoon is to be added and the wings extended when the plant is enlarged.

While woolen wings are not practical for the largest size of dochs, they are applicable to docks up to 10.000 tons, and where used there is a butkhead in the wings corresponding to each ponton and that the eonstruction of the wings may the interrupted at any point in order to extend the dock, it is only necessary to huild onte or more pontonns, float them in position and extend the wings over them, which can lee dome without interrupting the nae of the dock.
The machinery and pumping of this dock is similar to the one previously described.

GONPARIGON OF WOOD AND STEFL FOK FLASTISG DAY HMEKS ANH METHODS FOM THERK CARE ANO CMESERSATHON.
As previnusly stated, the buitding of timber floating Iry treks in the l'nited States is very old, and there are now in the in the Port of New York sixty-four tloating dry dock all of wool, ranging in tonnage from 400 to 12,000 tons, and in the Unitell States there are ainety-one flosating diry docks, three of steel ant one with steel wings. ranging from 200 fons to 18,000 thas, having a total tonnage of 228800 tons and an average tonnage of 2.500 tions.

The only stecl commercial foating dry sock is at the work of the fireat Lakes Shighbilding Co., Detroit, Mich The only
other stecl foating dry docks in use in the United States are the Algicrs dock opposite New Orleans, La., and the steel dock takell by the United States Goverument from Itavana during the Spanish War, now in Pensacola, Fla The Detroit dock and the Algiets dock are in fresh water, which makes their presersation much easier.

The Tietjen \& Lang 1)ry Dock Company, of Hoboken, has nine floating dry docks, all of timber construction, varying in lifting capacity from koo tons to 10,000 toms. Their first dock was buite in 1884, and is still in satisfactory operating condition. No deterioration whatever has taken place in the timber work below water, but extensive repairs from time to time have been made in the upper woodwork, which, of course, will deteriorate equal te, or somew hat more rapidly than, ordinary woodwork of buildings.

The John N. Kobins Company, Erie Basin, Brooklyn, N. Y. has two large floating dry docks other than the pontoon dock. with steel wing - previously referred to. One of these docks, knowa as the balance dock, was built by William H. Webb and finished in October, 1854 , and has been in comtinuous use ever since. The writer has recently had the opportunity of thoroughly exaniuing and overhanting this dock and changing over the pumping plant from stean to electric operation. A most thorough examination of the interior and weight-supporting timbers showed practically no deterioration, not a prartiele of decayed wood being found below the deck. Certain corrections were made, dne to faults in the original design, to oltain a more positive contsol of the dock in opera. tion, and since the overhauling the dock has lifted fully as heavy ships at at any time in its history. Much of the upper woodwork of this dock has been replaced, and much more will have to be replaced from time to time.

Attention should be called to the fact that, owing to the size of this structure, 330 fect long by 100 feet wide, it has never been possible to entirely remove it from the water.

The ofter large floating dry dock of the John N. Robins Company is of the Dodge-Burgess type of sectional dock, having tell sections with pontoons too feet by 30 feet. The general construction of this doack can be seen by referring to the work by Stuart, entitled "Naval Dry Docks in the United States," previously referred to, where there will be frand excellent descriptions with illustrations of similar docks built for the United States Government at Philadelphia and Portsmouth, N. II.

In protecting the wooden puntoons of floating dry docks aull, in fact, all under-water parts of floating dry docks, it has leen the tuiversal custom to first thoroughly grave them with brown tar poisoned with arsenic, then apply two layers of best sheathing felt, thoronglaly graving each layer in a similar way, and then over this to sheath the dock with s-inch creowed hemlock boards well secered with galvanized nails This has been found entirely satisfactory to protect these docks from teredo and worms, and the custome in Eastern waters has been to leave them in the water for seven years befure taking them out to replace any sheathing which may. have becone detached.
The largest floating dry dock on the Pacific Coast for many years was the Quartermaster's Dock in Puget Sound. This dock was built of timber in tiona, and while it has beet exposed in what is considered to be very bad water for teredo since its construction, it was in excellent condition when examined by the writes last winter, althongh on account of its dimensions it has never been remoned from the water.
At the time of the construction of the poutoon dock, with stecl wings, a very thorough investigation was made as to the preservation of the steel wings by painting This resulted in the use of a graphite paint of well-known manufacture. The cleaning and painting was done in the nost thorough manner by day's labor under skilled direction, and when it was eom-
pleted everyone expected the mont satisfactory results. The ontcome, however, was very disappointing. After two and a half years, the interior of the wings is now being coated with bitmmastic composition and the outside will be painted with red lead and oil. None of the pontoons in the meantime have been rembed from the water nor liave they required attention in any manner.
All the writer's expericnce with fluating dry docks and their construction and repair leads to the firm conclusion that for underwater work, such as pontoons for the Rennie type of dock, wood is a much superior material of construction to steel, that the oriyinal cost is mush less, the cost of maintenance less, and the life of the structure greater than steel. For the wings and upper work. experience iy equally conclusive for the use of stecl. White it apparemt that the cost of maintenance will be considerable, the structure will last much longer, and, with a sectional pontoon dock, where the wings are accessible at any time and any portion of the wings may be entirely replaced if necessary, it would seem that the structure as a whole will last indefinitely.
So far as the writer is able to juilge by a somewhat limited experience, the only reliable protection for interior steel work of tlonsing dry docks in salt water is the bitumastic compound above refersed 10 , but the first cost of this protection is very great, being in the neighlorhood of $\$ 6$ ($\mathrm{f}_{1,2}$) per ton of stecl for interior protection only. Any discussion which would Bring to bear additional information upon this particular subjecs would be very much appreciated, and it is to be hoped that the experience of the United States Goverminent with the floating dry dock Detvery at Manila will be of help.
A comparison of the materials used for wooden and steel pontoons shows that the weight of the steel per hundred tons of lifting power is 33 tons and the weight of wood per hundred tons of lifting power is 36 tons. It is evident that the difference in weight must be supplied by increaved dimensions of the wooden pontoons. Other than in this particular, wood appears to have the advantage in every way.
Wbile reference lias been made to a pontoon dock of 7,000 tons lifting capacity, there does not scem to be any engincering limit to the size to which the Rennie type of dock can be built with wooden pontoons. A carefully worked-ont pontoon for a 20.000 -ton dock shows dimensions of 130 feet by 44 feet by 15 feet, and it will be readily understond that this structure is well within the practical limits for timber work
Kegarding the cost of the different types of Alasting dry docks, it is, of course, not possible to make any definite statements, as they are much influeneed by the varying cost of material and the location where the dock is to be constrncted. For the relative cost of the different types of docks on the eastern coast of the l'nited States the following figures may Le taken as being approximately correct:

COST PER TON OF LIFTING POWER.

The comparative eost for the western coast of the United States will be quite different on account of the increased cost of steel and the mach lower cost of timber.

A Japanese Design of Surface Condenser.

At the last mecting of the Japanese Institution of Naval Architects, Captain-Constructor Y. Wadagakis gave a description of a surface condenser possessing some novel features, designed by humself, for an iustallation of two sets of 1,500 kilowatt gencrating urits fitted at the Saseby Imperial Dockyand The general design of the eondenser is shown in Fig. I. The exhaust inlet is at A. and the current of steam is directed
tangentially to the inner surface of the condenser shell, which is of a spiral cross section. This has the effect of separating by centrifugal action any water in the exhaust steam as it enters the condenser. Near the center of 11 . tubes, and parallel to the axis of the condenser, is a large split pipe B between the tube plates, containing a group of couling tubes. An annutar space is thus formed between the split tube and the condenser shell, of volute form, fitted with ordinary eundenser tubes, and open' at its narrow end; hence any steam at the end of one turn round the nest of the condensing tubes is caught up by the entering current of exhaust steam and again carried round. By suitable adjustment of partition phates, the flow of water through the tubes is made to follow the course that theory and practice assign to be the best. Through the bottont of the condenser, near the exhauststeam intet, a short lengih of pipe protrudes; this allows a certain quantity of water to accumulate and expose its suriace to the incoming exhaust steam, the surplus water being drained off through the pipe by a water-pump suction. The air-pump suction is connected with the large split pipe, into which the air flowing round is finally entrained. Captain Wadagaki claims that by his design all the energy due to velocity of the exhanst steam is profitably employed in maintaining brisk circulation of steam among the eondensing

tubes, and that this is effected without haffling plases or other obstructions, except such obstruction as the condensing tubes themselves must always furnish. Further, there is no shortcircuit, dead-corner, or stagnant recess to detract from the efficiency of the cooling surface. Any water in the exhaust steant at the inlet is at once withdrawn, while water resulting from condensation of the steam within the condenser is separated from the surface of the tuhes and promptly removed to the outside of the tube nest by virtue of its centrifugal force. This water ultimately flows to the bottom of the condenser along the inner surface of the shell, and comes again into direct contact with the entering exhaust, its final temperature being thus practically equal to it, whatever the quantity of circulating watcr supplicd. The eondenser, to a certain extent, therefore, becomes a feed-water heater. The work of the air-pump is further facilitated by the cooling of the air in the split pipe, where, by design of the water passages, the circulating water is the eoldest.

In the arrangement above described there are two separate pumps-one for the air, the other to draw off the water of condensation. If a single pump is preferred, the design may be modified, as shown in Fig. 2, where the exhaust steam entery at the top, while a common suction is provided at the bottom for the water gathered there, and for the air collected in the split pipe, the necessary separation being provided by the U-bend shown in the diagram. Approximate figures are given by Captain Wadagaki in his paper of tests made at Sascbo, to show the high efficiency obtained with this condenser there installed.-l'wlean.

MARINE DIESEL MOTORS.

A paper on the allove subject was read at the ammal meeting of the German Naval Architects by Dircktor Saiubertich, of Osterholz-Scharmbeck, near Bremen. According to The Engineer. Direktor Saiuberlich said that since the times of the old low-gressure engine the shipping world had never stood on' the threshold of such far-reaching developments as at the present time. In place of the steam engine, a further improvement of which appeared hardly possible, the Diesel motor was now being installed as a marine engine. For fluid fucl the Diesel motor was the most perfect internal combustion engine of the present day. In recent experiments the utilization of the fuel had reachod 33 to 35 percent, as eompared with 23 percent in the gas engine and 13 percent in the best steamengine plant with superheater. This was a result of the direct use of the fuel in the eylinder without previous transformation, and of its consequent eomplete combustion. The construction of the Diesel motor was said to require material and workmanship of a very high class. These, however, were now-a-days obtainable, and the difficultics on this head formerly experienced were overcome. Like the larger type of gas engine the larker Diesel notor had very much the general appearance of the marine steam enginc, on which it was more or less mudeled. Now that several shipyards had shown that they could linild the motors with the machinery already at their disposal, the prejudice against these engines would soon be overcome. Hitherto the mutors had generally been of the single-acting description working on the four-cycle system. More recently the two-cycle engine had come to the front. The endeavors to apply the new system to the propulsion of large vessels had led to the application of double-acting motors of the two-cycle as well as of the four-eycle type. Such installa tions were now actually being made and would shorily be at work. The problem before the dcsigner was to adapt the Diesel motor, that had worked satisfactorily on land, to the conditions on board a vessel, different in many respects and more difficult to meet, as these were. Moreover, the auxiliary machinery depended on the steam from the boilers, and a substitute for this had to be found. The advantages of the Iliesel motor for the driving of vessels were the following: A gain in available space due to the removal of the boiler installation accompanying a reduction of that required for the new fuel; an increase in carrying eapacity on account of the reduction in the weights of motive machincry and fuel; a possibility of using spaces formerly only partially available for the storing of the fucl; gains in time and wages due to casicr and more rapid bunkering. coupled with the climination of coal trimming; greater readiness for starting work; easicr work for the engineers; abolition of stoking; greater cheapness of fuel; eomparative coolness of he engine ronm: and kreater radius of action for the vessel. Disadvantages were: The difficulty of obtaining fnel in many ports and the absence of steam for the deck machinery and for heating purposes. Herr Saiuberlich gave particulars of the first two Diesel motor vessels-the Frerichs, built for purposes of the shipyard, and the fishing vessel Euversand, the engines for whieh, as well as the hulls, had been designed and btilt by Messes. J. Frerichs \& Company, of Osterbolz-Scharmbeck and Einswarden. The Frerichs was a single-screw vessel, built to the rules of the Germanischer Lloyd for the small coasting trade. She had been at work since the spring of this year in the towing service and in keeping up comnunication between the banks of the river. She had a reversihle four-cylinder Diesel motor of 200 horsepower maximum, making 360 revolutions per minute. The motive medium here used was gas-oil, one ton of which was stored in two tanks under the cabin. This amount, which might easily have been doubled, gave the vessel a radius of action of 240 nautical miles at a speed of 9.5
botots. The vensel had a funtel for earrying off the gates. There was ahundance of reon owing to the small space required for the mutive machinery. Reversing was effeeted by cornpressed air. A single movement of a lever in the decired direction of tmotion of the vessel moved the shaft so as to throw the machimery into gear in the manter required. This manipulation was sery teliable and contel be rapidly performed, if weecssary; within a fraction of a second. A special arrangement of the emmpressor ensurell the starting of the moter even if it stopped at a dead peint. Cooling water and bilge pumpe, which were driven fron the erank shaft of the motor, were fixed on the common bed plate. The hot exhant gates from the eylinder were conled with water in a doublewailed ellowe pipe. After being collected into a simgle pipe they were fed into a large conkenser, which deadened the moise, and then passel on to the funucl. The bilge pump was msed for cooling the exhanst. The empressel air required for some of the maneuvers was producel by the motor itself in a two-stage compressor which furmed the fifth cylincler of the installation. It was stored in six large compression wesselx in the engine ronm at the sitle of the vessel. The air in these wax used for startimg In the design of the motor the requirement had been made that there shonld be as few eylinalers and other working parts and as litte complications as persible. The alduption of the compresuar had enaltiet the six cylinders otherwise reguired to be reducel to fowr, the compressor eytinder being used on occasiun for startiug the motor when the four-cylinder arrangement did not suffice to avoid the dead-point pasition. Care hat in be taken to keep down expense, which in the construction of the Diesel mettor was still a very important consideration. The bell plate was of east irom and in one piece. The eylinder cover was the tomst important of the larger eastings in the motor, lecause all the monntings regnired were attached to it, and great care had to be taken to avoid unneceseary straims in it. The ordinary east iron nsed for stran-engine work had lieell found to be the best material for the cylinder covgrs. The reversing gear wax, in many respects, different from arrangements of the kind hitherto adepsel. A hurizontal shaft provilesl with two sets of came and movalle in its axial direction was fittel along the tops of the eyfinders. The cams acted on valse levers and were thrown in or out of gear hy the shifting of the shaft. The mechanical parts of the gearing were deale with ly the author in detail and illostrated by kettered sketehes, from which it appeared that the cams effectel the admission of fuel in einher end position of the shaft, while there was a nentral position half-way between these. The actuating lever, arrangel in the form of a band wheel, admitted compressed air to the one or other side of the piston of a cylinder. The piston acted on a cystem of swinging levers, which moved the shaít alowe mentioned. A glycerine brake at the lower end of the compressed air cylinder provided against stalden jerk or uncasy motion in reversing Arrangememts were made by the admission of smaller amounts of foct for driving the motor at "half power" and "slowly," respectively The air compressor, which, as alrealy memtioned, took the form of a fifth eylinder with at crank out the main shaft arranged at an angle of wo degrees with those of the motor, so as to have thrning power when the latter were at the dead-point positim, could, in the lateer case, be used for starsing by the gdmiskion of compressed air into it from the storage tanks. Each working eylinder was provided with a pump which supplied it with the exact quantity of fuel required. For driving these only two eccentrics were necessary, since each of them atthated a double piston, and the pumps were combined in stwh a way that the regulation of one-half of them was effected from the other half. The body of the pump was of wrought iron in eacle case. The regulation was effected by means of a simple governor; of it could be diane by hand, in which latter
case the governor was merely a safeguard akainst racing of the engine. It comection with diagrams which were shown the lecturer pointed out that in the case of quickly-running motors the combustion could not le so complete as in that of slouly-rumuing ones, and that the eombustion and expansion periods ran into one another. The fircichs hat lieen at work for a consideralile time with gooul results, and after careful investigations made with her the insurance conupanies had agreed to a premium at the ordinary rate. The full speed of to knots could be reduced to 3.8 knots, the revolutions per minute therety falling from zoo to 150 . The reluction could be effectell either by custing otu sume of the cylinders er by supplying smaller quatities of frel to all of them. Experiments with the reversing gear showed that the lever could le put over in less than a second. The 1 mee required for reversing the motor when rumning at full speed was 8 seconds; while the vessel herself began to go axtert after aloutt 27 seconds. The diameter of the turning circle of the vessel was about nue and a-half times her length.
The lecturer then directed attention to the Diesel motor fishing boat Eaversand, and said that the introxduction of the erome oil motor into the fishing indostry was an event of firstrate importance. He looked forward to the time when the Cierman fish market would be entirely supplienl by means of cheaply worked German motor fishing beats, instead of, as at present, having to draw its supplies largely from ahroad. To'rards the end of October this vessel had returned from a trial fishing ernise of five weeks, during which time she had not uted more than three tons of erude oil, in place of the 20 tons of coal which a steant vessel of the same size would have required. It was anticipated that this antount could be still further reduced The fishing wink her, which might easily have been driven from the motor, were, as a matter of preeantion for the first cruise, served by a small donkey boiler. The foel was stored in a fixed tank in the engine-roms, and the small space occupied by it wonld have beet useless for other purposes. The stowing of part of the fuel in the herring barrels now beeatne unnecessary. The use of crule nil at sea was found to be in every respect reliahle, and it was cousbilered as certain that the motor nould take the place of the steam engme in fishing vessels. The design was for the must part similar to that in the Frecrichs. The high-speed two-cylinder motur developed so to aceffective horseppower with 3.30 revolutions. Reversing was effected by means of a friction conpling and gear. This enalided the motor to be of extrensely simple decign, and to have relatively few cylinders, which, for the hard usage it wotld get in a fishing-boat, was of ereat importance
Herr Sauberlich gave sonve further particulars that were not eemtained in the printed pamphlet distributed. In the course of a comparison of designis for a vessel for shipyaral work with a Diecel wotor and with a steam engine, it appeareel that, with a given output of 100 horsepower. $t \mathrm{t} / \mathrm{s}$ feet of lengit of hull and one stoker could be saved by the adoption of the new notor. A herring boat of ify ions, with a steam ongine, was found to be eapable of doing only the same work as al vessel of the same hind of 1 fo tons with a Diesel motor. In a trawler, the substitution of a Diesel notor for a steam engine increased the lengih of the availalle hold hy 13 feet In a vessel of 5,400 tons for the Black Sea trade, 15,000 culice feet were addel to the hold spare by the adoption of a Dienel motor. Assunting the vessel to make four voyages a year, this was equivalent to a profit of $\$ 4,3 \mathrm{ko}$ ($£ 900$); the sasing in fael due to the lhiesel motor for these vopages was $\$ 2.6$ int
 facts, the atthor was uf opiniem that the appliealitity of the !)iesel mbtor to ships was very great.
In referense to the paper, Professor Flamm observed that the opinion of Herr Sainlarlich that the Diesel motor had a

Kriat future before is as a marine engine was shared by very many, but in answer to inquiries addressed to motor-making firms he had not yet succeeded in obtaining offers that showed to such advantage as the statements they had just heard. In the case of a fi-ling vessel it appeared that, as regards weight, the great advantage claimed was twet obtainable. A motor of $t 00$ horsepower had leen offered for $\$ 12,897$ ($£ 2650$). Only onte firm was willing tol take hack the motor in case it should not have fulfilled the requirements after a year's trial. The prices asked for the motor, then, were considerably higher than those ruling for steam engines. The working expenses wore less, it was truc, lat not to such a degree that it could be predicted therefrom that the lhesel motor would drive out the steam engine. He heliesed that the adherents of the nktor would further their cause nore if they gave figures that applied to results over a considerable length of thene, instead of experimental data: unpleasant disappointments would then be avituled.

A FLYINQ MOTOR BOAT.

Hy pank c. pzisims.

It is maintained that the flying motor Imat or combination aeroplane and high-speel water craft shown in the aceompanying illustration will revolutionize to a marked degree transportation over the water both for pleasure and business.
other angles are 90 tegrees. In from of the hull is set ant eight-cyluder acroplane motor, which operates the fropelling power. This outfit has no water propeller, but is propelled by a large Iwo-bladed air propeller measuring more than 6 feet from tip to tij. This wheel is turned at a terrifie speed by the eight-eylinder inotor installed.

In the phutograph in will be seen that alove the hull is arranged the single plane, measuring 26 feet and $61 / 2$ feet wide. The frane is covered with oil-soaked khaki. The shape is convex. Fxtending belind the hull is the tail, for all the world like the havile, of a bahy luggy, except that the arms are steel and the wooklen cross-piece is a foot wide. On this Hat board 5 feet 7 inches long. a foot wide and $1 / 2$ inch thick about to feet behind the hull, the craft rests upon when muler way, that is, when the |xoat attains sufficient speed forward, the plane lifts the hull out of the water entirely, leasiug it resting only on its tail feathers tuuching the surface.

It is said that, as the speed of the boat increases, the "Flying Fish" rises from the water entirely and leaps over the top of the water in lounds, with the tail feathers on the rear touching the water at intervals and steadying the thight,

It is maintained that the boat is mut expected to fly at any great distance or at any great height. The rush of air catches the plane and lifis it up 8 ar to feet at times. The tail piece, bowever, is always in the water, controlling her equilibrium perfectly. Fxtending from the stern of the hull is the rudder. The rudder is a regular aeroplane rulder, but smaller, four-

flying moton boar "rlyisis yish."

It is stated that this craft has been thoroughly tried out, and has shown remarkable epeed and stability, is called "The Flying Fish."

It is interesting to mote that A. A. Schantz. president of the Detroit and Cleveland Acrial Navigation Company, has arranged for six of these eupipments to be nsed in daily service between Detroit, Cleveland and Buffalo,
This eombination air and water craft is built along the lines of a giant hird. The construction is a combination of the monoplane and hydroplate, devigned to skim along she surface of the water, literally om its tail feathers, at a speed of from 65 to 70 miles per hour.

The first working momel was taken out on the Detroit River. and skimmed over the ice, warcely touching it, at an approximate speed of fo miles per hour. This ontfit was equipped with a less prowerful engine than the presemt eraft is equipped with, and it is expectell that this new monel will be of great interest throughotit the workl.
It may be stated that the hull of "The Flying Fish" is a water-tight, alnminum tank, 5 feet 7 inches wide. 7 feet 2 inches long and 2 feet deep. The bow end is curved, but all
saned, blacks being eoseredl with canvas. The cockpit is in the stern of the hall. into which the feet of the skipper extent as lie sits in the small caned back chain balanced on the stern rail. The levers for controlling the rudder and plane are all under one man's control, and complete the craft weighs 730 pounds.

It is believed that the possibilities of this invention are wonderful, both from a business and phasure standpoint, as "The Frying liwh" will fonat perfectly on the water and there iv less danger of tipping than in any other to at. for the plane will act as a firesenter. In this heat the passengers will have all the seltations of flying, but there will be sonnething more snhstantial than air fo fall on should anything go wrong.

It is held that, while the first model was a small one, a larger eraft has been desigued, as thoted in the picture, in whikh fomr or five passengers ean lo carried by the Detroit and Cleveland Serial Navigation Company for daily service hetween Deetroit. Cleveland and Puffalo. This company is very enthusiastie over the new device, and the inlea is to have five or six acroplanes or airships in operation in eonnection with lake boats.

IT MOLAS THEM ALL TOGETNER.

VANADIUM STEEL IS EFFICIENCY STEEL

The recognition of Vanadium as an alloy for prodincing the most efficient types of steel known, has been fully granted by metallurgists and manufacturers all over the world. Many steel makers have found Vanadium such a valuable alloy that they have estahlished totally new types of steel upon its qualities and given special trademarked names to such steels. Whatever the name may be,

Vanadium Cast Iron.

Vanadium Casi Iron.	
W. P. Taylor Co.	Bufislo, \mathbf{N}.
Manulacturers Fowindry	WI aterliarty, Comen
Copucalale Foundry and M.	
Row-Mechsa Feundry t'o	Chatergh, PA Tran
Du Bois Foundry Co.	Codr
Vanadium Cant Strel-Crucible.	
Siryer Sted Casting Co.	Miwaulre, Wi
Rinerside Sterl Custing C	Ne*ark,
Crucible Sterl Cnsting	andoume, Pa
Damasus Crucible Stel Castina Co.	New Brichtue. Pa
Mehsnon Sterl Casting Co.	t telatime Pris
Michigan Cruchile Sirr Cantiog Co. Wisst sted Cating Co	INrticot, Mich Cleviland, O .
Vanadium Cass Steel-Open Hearth.	
T'nion Steel Casting Co.	Pitrsburgh, Pa.
Meita Maxhine Co.	Pitsburah, Pa
Machiotomb-IIersphill ${ }^{\text {cos }}$	Pussburzh, Pa
Pens Steel Cosking and Marline Co.	Chester, Pa,
Amerricna Steed Foundriss (\%)	Chikago, ill
Pitsburgh Sted Foundrio	Pituburrh, Pa.
Proil \% Metchworlh	Bufila, N)
Vanaelium Malleable Iron.	
Sanalium Timal Steel.	
Bethlelwm Sterl Co.	Soeth Brthiel
Cruathe Steel Co. of Amorris.1	Pittuburkh,
Cononial Steel Co A	fotetmarch, P
Vanudiom.Alloyn Surel Co.	Natrukar, ins
Peica Bran Co.	Aewant,
Crclopo steel Ca	
IIalromb Sted Co.	Sytause, N

Write any of these companies for information on Vanadium Steel.

AMERICAN VANADIUM COMPANY

Miners of Vanadium Ores

Largest producers of Vanadium Alloys in the World Entire product sold by the Vanadium Sales Co. of America 318 Frick Building
PITTSBURGH, PENNA.

VANADIUM METALS COMPANY

FRICK BUILDING, PITTSBURGH, PA., U.S.A.
FOUNDRY, EAST BRAINTREE, MASS.

REMARKABLE ECONOMY OF AN OIL FLEL INSTALLATION.

Fivery engineer knows or lelieves that oil fnel is in many instances much more econonuical than coal, and the following slescrigtion will cover what is presumed to the a noteworthy example to ainl this general belief. Furthernure, it is thought that the method of application to the described is the first instance of the use of one of its kind; at any event, the writer has no knowledge of a similar oil fuel burning plant.

The revenue cutter Golden Gate, on which this successinl experiment has beett tried, is a vestel of the ordinary harlor thg type, and is engaged in boardiug duty in San Francico Itarlour. This is an intermittent duty, involving daily a number nf short trips around the harbor, a state of readiness to go at a moment's notice, and consequent lying at a wharf with steam up for the greater portion of the time. This thg is tio feet long, and up to six months ago was provided with a watertule boiler of the Ward type, and a triple-expansion engine capable of protucing 550 maximum indicated hursepower. The subject of oil fucl for the Golden Gate liad lowen freuncuily
ing oil, ineludnng the tank and its supports and all incidental expenses necessary to make the apparatus ready for use, was only $\$ 2.500$ ($£_{500}$). The adsantage of this installation may lie summarized as follows:
(t) Its non-interference with the coal-burning appliances: the regular coal lumkers not leing disturlied, and, in fact, to tons of coal are carrien in loage to trim the ship. In case the oil supply 'hould run out, coal coultl he imuediately burned, after removing the fire bricks off the grate hars and disconneeting the oil burners. If the vessel should go on a long voyage or be transferred to some port where fuel oil was not available there womld be nothing to interfere with coal lourning.
(2) The oil supply, small as it is, is snfficient for funt or five days" steaming under ardinary circumstances. The ait is furnished from a pipe line on the wharf, where the Golden Gate is moored, and the tank can le filled in ten minutes.
(3) Owing to the small amount of oil carried the danger from fire is minimizenl.
(4) The great ilecrease in cowt of installation: $\$ 2,500$ ($5 \mathbf{5 0 0}$) for complete apparatus, as againct $\$ 15,000$ ($\mathbf{S}_{3}, 000$) for the

MENEVIE CUTTEB WOLERN GAIL.

Iransforming the coal lunker, iuts oil lank was $\$ 15,000$ ($£ 3,000$), an amount deemed prohibitive itr view of the small *ums available for repairs, and to the further fact that the vessel when new in 1806 cost only $\$ 30000$ ($\mathbf{(1 0 , 0 0 0) \text {). As the }}$ ohl hoiler hat to lie renewel last year, a new lialicoek \& Wilcox watertule luiler was installed, and during its installation the following scheme uav thought out and pui into application :

A small cylindrical tank, with a eapacity of approximately twenty-three harrels of vil, was installesl in the fireromm, well np turler the deck beans (as shown in the accompanying plans), so as not to interfere with the withilawal of the boiler tulnes when necessary; Innmerliately unter the tank was int valled a No, 10, S. \& P, ail pump, with the necessary heater, coil, governor, relief, gage, tank, strainers, ete.

The boiler is equipped with grate bars, etc., somplete, the sante as it would be for burning coal. with the exception that fire lrieks are laid over the grate lars. The lmorners are spaced alwout 2 feet apart, project 12 inchev legonil the thour frante liners and are about 6 inchen aboue the level of the grates. slanting slightly downward. Tlie entire installation for burn-
cost of tanks alone, if the coal lunkers had heen transformed into oil tanks.
(5) The marked saving in fucl bills when conulared with coual, as will nuw be shown.

It will be seen from the above tabulation that during the period in question the vessel did nut steam as many miles muler oil fuel as she did muler coal, wor was she so long under lanked fires. A much lefter comparisum as to the relative cout of coal and oil as fuck can le sleducted from the performances of Niwember. P(xx), and Nosember, 19t0, which were as follows
人vily fur huxat
l'otat miles (Priued far da)
bsanked niris, hours
Fuet uled hot they, aninagr, ith
Fincl uwd ixe day while umierwa
Furd uwd juer day undir hankied irme

ais is to yot tont.
 Cons ier mile bil
Cime in nd on mile, petermi.
Wilen jor mile, par itnl
Linots getamed per then of cral at $\times 3$
Stice *oumbly jer lin of né at k.Siliven

Nincumber. 1909 (With Cual.)	Nownabet, toll (Winh USi.)
4	3
45	4.5
34	25.5
62415	4542
47\%6	1.315
3, (10)	975
1,120	2361
854	*
24.10	$\begin{aligned} & 8173 \\ & 69 \mathrm{tit} . \end{aligned}$
$\stackrel{2 x}{7 \pm}$	
$\begin{aligned} & 212 \\ & 345 \end{aligned}$	

From the forcgoing tabelation it is clear that the cost of the oil fuel is only slightly in excess of one-fourth the cost

4N THE GADDES GVF's tonlen kobss.
of coal under the formes condition, which, to say the least, is a remarhahle saving A further fednction in the cose of nperation of the machinery, due to the nee uf oil fuel, comes from the fact that the persomel has hevan reduced from four men to theres, by dispensing with the sersises of one coal passer. whow anneal wakes, subsistewe. elf., cost the government $\$ 674$ ($6: 4 \mathrm{t})$.

We the saving malicated by the rettens from the first quarter of the operation of the vil plant there will undoubsedly he an annual saving in fuel of $\$ 2,160$ ($\$ 432$) : this, with the reduction of $\$(54,4(1+1)$ for labor, will make an annual saving of $\$ 2, N_{24}$ (5_{567}). due almost entirely to the installation of apparatus, the first cost of which was only $\$ 2,500$ ($\{500$).
The following notes and excerpts from the report of the engineer officer in charge of the steam machinery may prove of interest in connection with the operation of this plant, viz.:

The new boikr is well adapted for the use of oil as fuel, because of the flame-latiting system, combined with the large volume of the combustion chamber. This allows the sprayed oil ample opportunity to effect a complete combustion and pansers the profucts of combustion to the stack at a low temperature. Under ordinary conditions there is no smoke. After the boilers had been in ourration for two months the quantity of dirt and sont removed would nut fill a two-tgart can. The heating surfaces were almost as clean as when new, while, with coal, they would have been congested with soot.
With oit the steam pressure can be kept stationary, while the machinery can respond to unusual or varying demands.
A great economy is effected through the careful we of the damper. The fire bricks act as an accumulatur of heat, and abrut zo gallons of oil will maimain steam at alont too pounds pressure for tweaty-four hours, thus holding steam casily at night.
From water at 56 degrees F., steam is raised in one hour with the mildle burner operated as slowly as possible and using an inapprecialle annount of oil.
The proper adjustment of the fire bricks over the grate hars is important. They are laid flat and lengthwise across the grates. The five rows hack are laitl close together, and three exira rows are addel for ordinary steaming. The retnainder are laid in the same manner, with a space of 3 to 4 inches betwen each new row. depersling on the amome of air respired. If tom much air is almitted. oil is wasted: and if too little, the lumers give out a dark flame and spuiter. The air supply must be balanced with the steam supply to get the best results.
The oil in the tank is about Ro degrees F. It is delivered to the lourners at alwutt 150 degrees F ., unuler a pressure of 40 to for poutuls, depesting on the work requirell.
The efficiency of the entire system is deymadent on the regularity of the oil supply. If through any cause the pamp is not uperated uniformly, wo amount of attention will avail at the burners.
The oil used is the California product known as "Richmond Fuel," and the following are its physical properties and chenical analysis:

TLTIMVTE ANALSSIS.			PHYStCAL I'ROPERTIES.	
Castove		K\% 7x\%	Sparioic gaviny	a 45
Hydramm		1075%	\|hatiminchi	191-1
Sulphur		75%	Firs mumal	28017
Natom		$3{ }^{\circ}$	Cancilic walat 8. T. U	18.548
Onyen		30\%		
Moistare	.	10%		

There are a lot of notes and tables which are of almost daily ute Hamlled by dirty hands these som become so soiled that they cannot lie read casily, if at all. It is bet a stight improcement to varnish them. The best thing is not to liandle them at all. This can easily be accomplished by placing them face up on the desk with a piece of plate or doukle thick glass on top. A small rim of wookl thould he nailed around the giass to keep it from sliding off. Where the licl of the desk is hinged the wooden horder should have a sirall lip to hold the glass fown upon it.

THE MARINE STEAM ENQINE INDICATOR-XX.*

THE COUNTER PRESSURE LINE

Under ideal conditions, and at the moment when the eranh pin is crossing the dead center, the pressure in the cylinder should be almost, if not quite, as low as that in the chamber into which the exhaust passage leads. If this comdition exist, and the port opening is ample, the piston will mect with very little resistance due to steam friction. In fact, the difference in pressure necessary to produce a flow from the cylinder to the exhanst pipe or receiver will be so small that it will be hardly measureable, and the connter pressure or lack pressure line ${ }^{* *}$ will be straikht and parallel to the atmon, hieric hine, as shown at l, Fig. 106.

If release is late and the valve opens slowly, but eventually

nG. 19 B.
gives a good port opening, the connter pressure line will reremble $I 3$, while, if the line is like $I I /$, it indicates a restricted passage at each end of the stroke. If release is early and the steam speed high near the nidde of the stroke, the counter pressure line will slope upward from the "toe," duc to excessive steam friction near the middle, and to cramping of the exlianst near the end of the stroke, when the exhaust port narrows for compression while the piston speed is yet relatively high. (See IV.)

The designed velocity for exhanst steam through ports and passages is commonty as low as 4 ,ono feet ger minute, and in land practice this rule is very generally ohserved. On shiphard, however, on account of lack of space and necessary weight limitation, it is practically impossible to provide passages sufficiently large for this low velocity. This is especially true in the design of intermediate and low-pressure cylinders of high-speed engines.
As an example taken from artual work, the following exhaust stean speeds should le carefully noted as representing good modern practice in two widely differing types of pro-

[^18]pelling machinery. The speeds xiven are in fect per minute, with the engines at maximum frower:

MERCITANT MARINE TYPE, VZETICAL TKIPLE, ONE LOW-PRESSLEE Crlindek.
Exhaust from high-pressure cylinder........4420
Exhaust from meditur-pressure cylinder..... 5375
Exhantst from low-pressurc cylinder.8.po
Exhaust pipe, Inw-pressure, valve chest to condenset
.4073

Exhaust from high-pressure cylinder. 5700 Exhaust from medium-pressure cylinder. 6000 Exhaust from low-pressure eylinder......... 8>80
Exhatust pipe, low-pressture. valve chest to endenser 7200
The higher steam speeds in the naval engine are due to the fact that miltary necessity requires some sacrifice of efficiency in the machinery, in order that sjace may be saved, and all

possible weight ued in armor and armament withoot increasing the total weight of the vessel. These facts are membund in order that the reader may uot be led to expect indieator diakrans from warite engines, which will compare favorably with those taken from land engines, which have been worked out without the same restrictions as to weight or space.

With regard to steam speets in general, it chould lee notect that the velocities are average velocities, and account shoukd be taken of the fact that steam ansl piston speeds increase from zero at the ends to a maximum near the middle of the stroke.

On diagrams taken from engines running at such speeds. that the steam velocities are excessivc, we ofich see counter pressure lines like V. This linc shows in a heautiful manner the banking up of the pressure near the middle of the stroke, duc to the necessarily rapid flow of the exhaust through the ports at that part of the stroke when the piston speed is highese.

In the case of cylinders exhansting into receivers from which other engines tahe steana, the emonter presure is affected by the position of the engine cranke relative to carls other, by the receiver capacity, and the order in which the various valve events occur. Refer to Fig. 107. When eut-off
eccurs in the low-pressure cylinder, the low-pressure piston is at a on the line of stroke $S S$, and approaching the bottom center. On this particular engine the length of the connecting rnd R is five times the radius of the crank $c L_{\text {k }}$. With this length as a radius and a center located on $S S$, produced, sweep in the arc a L_{2}, cutting the circle, representing the path of the crank pin, at L_{0}, this locating the low-pressure crank pin at the moment of cut-off in the low-pressure cylinder. Draw $\subset L_{10}$, the center line of the low-pressure crank web. Lay off 120 degrees in the direction of rotation and mark M_{3}. This is the position of the medium-pressure crank pin at the instant of low-pressure cut-off. With the length of the connecting rod as before sweep in the arc M, b. This locates the mediumpressure piston at b at the instant of cut-off in the low-pressure. Draw b d at right angles to $S S$, and produce it to cut the counter pressure line of the indicator diagram. It will be noticed that the counter pressure begins to increase at this point. This is because the escape of steam from receiver has been stopped by the closing of the low-pressure valve, while steam continues to flow into it from the medimm-pressure cylinder. In other words, the medium-pressure piston is compressing the steam in the Iow-pressure receiver. The counter pressure reaches a maximum at f. When thic low-pressure crank pin reaches L_{n}, the low-pressure engine commences to take steam for the up-strnke. The corresponding position for the medium pressure crank pin is M_{s}, with the medium prespiston on the line ρf. The counter pressure line hegins to fall after passing f, due to the steam flowing into the lowpressure cylinder, thut as the capacity of the cylinder is comparatively small and the piston speed low up to this point. the drop in the receiver pressure is not abrupt. At h the medium-pressure exhaust begins to "wire draw." though the nearly-elosed exhaust port and the influence of the receiver pressure on the cylinder pressure is at an end. Cempression begins at i At the time the diagram of Fig. 107 was taken, the engine was running at only one-third power : steam speeds were Inw, and wire-drawing, due to high steam speeds, does not complieate the diagram.

The diagram of Fig. 100^{*} shows the characteristic "hump" in the back pressure line in a very marked degree. In this instance the low-pressure valve was out of position owing in the wearing down of the gear. This caused a very late cutoff on the down stroke of the low-pressure, and the "hump" in the medium-presure counter pressure line is nearer the end of the medinm-pressure up-stroke than in Fig. 107. The lowpressure bottom admission does not hegin until about the time of compression in the medium-pressure, and, in consequence, the drop in the receiver pressure at this point does not appear on the card.

While the connter pressure in the low-pressure engine is not affected as that of the other engines hy a varying receiver pressure, it is, of enurse, influenced by the condenser pressure. and it may not be out of place here to say a few words relative to the best vacuum to carry.
The flow of steam increases with difference in pressure until the lower pressure drops to about 58 percent of the higher pressure. With a greater difference the rate of flow does not increase, even though a nearly perfect vacuum be maintained in the condenser. In consequence, a better vacuum than is usually earried does not always result in lowering the counter pressure line in the low-pressure eylinder, although it dnes increase the load on the air pump. It is, therefore. desirable to carry that vacuum, which, if decreased at all, will produce a rise in the low-pressure eounter pressure line and which, if increased, will result in no lowering of that line. This certain condenser pressure-which will be called the economiral vacuum for want of a hetter term-is different

[^19]for different engines and differs in the same engine when at different speeds. The economical vacuum should be determined for every installation when operating at the regular sea speed, and when once established should be maintained if it does not result in hot-well temperatures which are not permissible. The proper vacuum may be easily found by applying the indicator to the low-pressure cylinder and varying the vacuum until the correct point is found. In this way it will be possible to obtain minimum counter pressure in the main engines with the least possible load on the air and circulating pumps.
(To be continued.)

Passenger and Freight Steamshlp Suwannee.

The Mercliants \& Miners Transportation Company, of Baltimore, has just added a handsome passenger and freigit steamship to its fleet trading between Savannah and Baltimore. The vessel was built at the yards of the New York Shipbuilding

LAUWCHING OF A. A. BUWAMMEL.

Company. Camden, N. J., U. S. A., and is of the following dimensions:-

```
Length over all .......................... 331 feet
Length B. P............................ 318 feet
Beam molded.......................... . 46 feet
Depth molded to huricane deck......... 30 feet
```

The vessel is especially adapted for the coastwise trade and has been built to the rules of the American Bureau of Shipping, under special survey; the requirements of the Board of Supervising Inspectors of Steam Vessels for the equipment, etc., have also been fully complied with. The arrangement of accommodation is such as will give every comfort and convenience to the passengers, and provision is made for 150 first elass passengers, 20 deck paseengers, and crew and stewards' department, $56:$ a total complement of 226.
The cargo holds, ports and hatches are so arranged as to facilitate the handling of freight, and steam winches, cranes, etc., are fitted in comnection with the same.

The propelling machinery is located amidships and consists of a three-cylinder recigrocating engine and four siugle-ended Scotch boilers. A double buntom is arranged in way of the machinery space for the carriage of reserve feed water, and
all fore and aft for the purpose of trucking freight, and three large eargo purts are fitted on each side. A double bottom is fitted under the engite room, on the cellular principle with flones on every frame. The promenade and boat decks on top

5. S SWWANSFE MEIMG FITHED OVT,
the peaks are also fitted as tanks. For the drinking water and for sanitary service separate tanks are provided.

Hell Cunsthetomon.-The vessel has complete steel main
uf deck hotses are carried out to the side of the senuel and arsof light joiner construction.

Passengek Accomsomatiuns.- Accommendations for 150

deck all fore and aft, hower deck at ends forward and abaft of machinery spacex, and hurricane deck of wteel striugers, ties and beams with word decking all fore and aft. The vessel is sulmlivided by five stecl watertight bulklieads, all carried to the inain deck. The main 'Iween decks are clear of obstruction
 hurricane and prometade doch o, there bewg bs state rooms, four of these being arranged en strite, with viectial fittings anl adjoining bathromms, and four are extra large individual state roonts with toilet and shower bath to each. A spacious

alining saloon is fitted on the hurricane deck capable of seating 82 persons, and a large sucial hall and smoking room are fitted up on the promenade deek, stairways and lobbies forming entrances to the same. Donne skylights add to the decoratice effect in these spaces. The 20 second class passengers are berthed in two rount in the forecastle on the hurricane deck, the smaller of the two being reserved for ladies and providel with four berihs, with toikt adjoining.

The captain and ofticers are located in a deekhouse on the forward part of the buas deck, with pilot house at the forward entl.
The engineers are in deckhonses at the sides of the easings ont the promenade deck, and the galley, pantry and stewards* staff are located on the hurricane deck along*ide casings. The waiters, seamen and firemen are berthel in the forecastle on the hurricane deck. All noodern conveniences are fitted in the state rooms, public rooms, stewards' department, galley and pantry: Built-in ice, fruit and vegetable lockers are also provided.

Carean AmRangements,-The arrangements for rapid handling of the cargo are very complete. Large cargo hatches are provided to each hofl, and radial cranes are fitted on the main deck and forward on hurricane deck to handle the cargo from the holds to the 'tween derks, whence it is trucked ashore through large cargo ports provided for that purpose. Hoisting engines are fitted at each radial erane. The holds have been kept elear of obstructions and the pillars supporting the decks are widely spaced, with overhead girders. A steam windlass is fitted forward with capstan head fited on the forecastle for handling the vessel; the engine and wildeats for handling the anchor cable are below on the hurricane deck. A steam capstan is also fitted aft for handling the vessel. Eight steam eargo winches are fitted, one to each radial crane to the eargo hatches. A steam steering gear is fitted, with auviliary hand appliances, Life-saving apparatus is provided of ample capacity for the full conplement of 226 persons and consists of seven metallic lifelonats and two metallic cylinder life-rafts, also one working lioat for the use of the vessel; all Inats being handled by Wielin quadrant davits. The vessel is equipped with wireless telegraphy,

United States Naval Programme for 1911.

The naval appropriation bill recently passed ly Congress contains the following provisions as regards the building of unw vessels:

Two first-class battleships, to cost, exclusive of armor and" armament, not to exceed the sum of $\$ 6,000,000$ ($£ \mathbf{t}, 200,000$) each. The general characteristics of these vessels embody as heavy armor and as powerfill armament as any vessels of their class, combined with the greatest possible speed and radius of action.
Two fleet colliers of not less than $\mathbf{1 2 . 5 0 0}$ tons displacentent, inclusive of lunker coal: the cost not to exceed $\$ 1,000,000$ ($£ 200,000$) : and the speed to the 14 knots
Fight torpedo boat destroyers to cost not more than $\$ 825$ 000 ($£ 165,000$) each and to have the higheat practicable speed.

Four submarine boats, to cost an aggregate of not exceedling $\$ 2,000,000$ ($£ \$ 00,000$).

One submarine tender, the cost of which must not execed $\$ 500,000$ ($£ 100,000$).

One gunboat, to cost not to exceel $\$ 500,000$ ($£ 100,000$). which is exclusive of armor and armament.
(Ine river gunhmat, to cost not to exceed $\$ 225,000$ ($£ 45,0 n 0$). exchusive of armor and armament.
Two sea-going thgs, to cost not to exceed $\$ 215,000$ ($54.3 \mathbf{3}^{-}$ orno.)
 which comotitutes the appropriation for the entire naval establivhment for the year ending 1912.

PRACTICAL EXPERIENCES OF MARINE ENGINEERS.

Incidents Relating to the Design, Care and Handling of Marine Engines, Boilers and Auxiliaries; Breakdowns at Sea and Repairs.

The Repair of Broken Rudder Pintle Buits.

It is a very inadvisable thing to have the chains of the steering gear of a vessel too slack, and as a precaution against trouble of this nature it is advisable that springs should be fitted to then, If this is not done there is a considerable amount of danger of the rudder lashing from side to side, more particularly if the ship is light, and if it should happen to be in a heavy following sea. The result of this will probably be that the pintle bolts will be broken, owing to the sudden strain put upon then. In a case of this sort in the

Fig. 1

Fig. 2

Atantic two pintle bolts of the shape shown in Fig. i were broken and fell out, and as soon as this was noticed the ship had to be stopped. In order to effect a repair which would stand until the vessel reached port, a gangway davit was secured and sawn into two lengths by chipping and filing these up; bolts were made of the shape shown in Fig. 2. As there were no screw-cutting lathes on board ship, it was necessary to cut cotter holes through the top of the bolt, as shown in the figure, and, affer waiting tuntil the sea went down a bit, these bolts were put in and secured by means of cotters, as shown in Fig 3. The cotters had holes drilled in them, into which were placed split pins in order to keep the cotters from working ont again, and the repair answered perfectly unti] the vessel was brought hack imo port.

Huil.
Rubdez.

How a Spare Propeller and Shaft were Fitted af Sea.

We were on a voyage from Bombay to Dundee (Scotland) in lallast trim in the good ship D............ It was on this voyage that we lost our propeller, the loss of which was due to the tail end breaking off short just outside the stern tube.
The vessel being in the Indian Ocean and near some very inhospitable islands, noted for their man-eating propensities, and a strong current setting towards those islands, our captain and chief-engineer determined to attempt to fit the spare propeller and tail-end shaft which we had in the hold. This feat we managed to accomplish under very trying conditions, but in an entirely satisfactory manmer. In order to prevent the vessel from drifting and rolling, a sea anchor, consisting of a long derrick, having sails, weiglted with chains attached to it, was let ont, and, as a further preventative, one of the anchors, with 30 fathoms of chain cable, was lowered
anay. This lessened the lecway considerally, bnt owing to the boisterous, squally weather the vessel continued to roll easily during the whole of the tine the replacing of the propeller at tall-end shait was earried out.

While the captain and his officers were makiug freparations for lifting and slinging the propelles, the ehief-engineer and his staff were very busy down below disconnecting the shafting and chocking it up; they also rolled the internediate length to one side and made it iast there. Our next job was to cut a plate off the tunnel top; and, as it turned out, it was a very difficult job owing to its being an inside plate, and now all was made ready for removing the troken shaft. The propeller was then unshrpped in the hold and lowered away on to the floor of the hold, with, of course, the large end of the bore up. Having done this, we lifted the spare shait on end and tried it in the bore of the propeller boss. We lad previous to this taken every precaution to see that the taper and key were a good fit. All being now ready for fitting the propeller and slaft, orders were given to fill the fore peak, tanks, and fore hold; the water in the latier was ouly up to the outside level of the water. All this having been done, we now stasted to get the broken shaft in, and after about twelve hours' solid work we managed to land it in the hold. A wooden plug was fitted to the shaft hole on the outside; this kept nearly all the water out. Our next job was to get the new shaft into place; this job took us 24 hours' solid work. To finish, we had to make a Muntz metal cap to go cver and protect the threads on the nut end of the sliaft. Tlis Muntz metal cap was run out flush, with the guard ring jushing the wooden plug out at the same time.

Everything being now ready for fitting the propeller, the difficult and dangerons operation of lifting a mass of metal of some eight tons over the side of the vessel, and passing it under the sterin, had to be accomplished while the vessel was rolling in the trongh of the sca, which was a very heavy one at the time, and which also prohilited the use of either boats or rafts. As all the hatches were fitted with two derricks. both derricks were utilized for the lift, the two being lashed together at the top and fitted with preventative spans on each, about 6 feet in, both being lifited together. The goose neeks being 4 inches in diameter, and extra strong, it was not deemed necessary to add any firther support to thein. The masts did not go through the deck, but were secured to it by heavy gusset plates, and as the deck was supported by heavy through beams and longitudinals, no further support was added and did not prove necessary.
The purchases used were small mooring wire ropes, fastened to the derrick ends, and acting as top block, and so on, down to the winch barrel. We thought it better to try the gear when fitting the shaft, and this we did, and found it worked very satisfactorily. The propeller was now slung round the boss, the slings being well secured with small ehain lashingя, all terminating at the top, or key-way up side, so as to be easily undone when the propeller was fitted on to the shaft. In order to steady the derricks when making the lift, the four lifts, fonr tackles were used as guys, two on each side, these being shifted at one time, as required. At a favorable moment the lift was made. and, when clear of the hatch combings, the derricks were guyed over a little and then the propeller was safrly landed and secured on the starboard main deck. The derricks were then guyed further over, a
gin block was made fast to the center eyebolt under the eounter and another to the propeller, from which a wire rope tachle was led from the capstan aft, through the starboard fair lead, gin of propeller, then to gin under counter, and the end made fast to the propeller. A large wire roue was then led from the forward capstan over the port bow, right along the whole lengtl of the vessel's side, through the screw aperture and romed the saarboard quarter and made fast to the profefler boss. A similar wire rope was led from forward alung the starboard site and also made fast to the jropeller boss.

Every precantion having now been taken to prevent the propeller from swinging and staving in the ship's side, the propellier was lifted, and, at the first roll, it was allowed to slide over the ship's side into the nater by lowering away the derrick tacklec and starbward forward wire; at the same fime the after cappstan begat to heave on its takkle and the forward capstan on the forward gort wire. This mmediatcly brought the propeller well under the counter into a comparatively quiet pusition. Blocks and tackle having being hung from the eycbolt under the port counter were made fast to the propeller and secured. The lashings were then taken off the derricks, and, after unhooking the port derrick tackle, it was passed over the port coumter, through the screw aperture, and made fast to the propeller once more.

Another lift was then made and the propeller was brought into position, blucks being hung from the starboard cyebolt and tmade fast to the boss. The propeller was thus held up and forward by the derrick tackles, up and aft by the tackle to center eyebolt, up and against the body post by fore-and-ait wires, arid sideways by the tackles to the propeller liftuls eyebolts.

We encountered considerable trouble in entering the shaft and key into the propeller boss, owing to the inclination of the shaft, due to the tip of the vessel, and we only overcame this by taking off the weight now and again. We took the greatest care in handling the nut, it being securely lashed and made fast to the deck; the lashings were only removed when the nut had been screwed up three turns. To have lost the nut would to us have been just as great a disa-ter as losing the propeller. Aiter "Monday" had been used vigorously for some time, and the propeller set hard up, the set pin was driven home and the most difficult work completed. The shafting we soon afterwards coupled up, replaced the bearings, warmed the engines throtith and started them very slowly. The voyage was once more resumed, after the repairs had taken eight days and twenty hours.

When we consider the diffecult nature of the work so suecessfully accomplished and in so short a time, the lifting of a heavy mass of metal from the hold to the stern of a rolling ship, the fitting it on while at work on a plank 6 inches wide, one minute inmersed 5 fect in the water alive with all sorts of teprible fish, and the nexs minute 15 feet in the air, langing on to a beavy hammer or hey or nut, the loss of which meant so much to us and to the success of the whole undertaking, or when we cousider the great risk of a sudden storm com ing on when the loose propeler was hanging from the stern, the pluck, energy and ingenuity of the captain, the chicf-engineer and their reapective staffs, wial. I think, be appreciated by all in both professions.
F. J. S. N

Liverpuol.

A LEAKY CONDENSI:R.

The tubes of a condenser reģuire cleaning from time to time, and this is an operation that slonuld be gone about with some care. If the steam passes through the tubes they can be sponged out with a solution of soda. If the steam passes
around the tubes, the fresh-water side is lilled with a solution of soda in fresh water, and this may be boiled. After using soda in the condenser, the interior must be thoroughly washed ont to prevent the residual soapy matter entering the boiler. Periodical examinatsons should be made by taking off the manhole and hand-hole doors, for the purpose of cleaning ont the grease deposited in the space provided for the condensed steam, and to exarnine the zincs and tubes; zincs are fitted In the condenser to arrest the corrosion of the tubes, or of the metal of the condenser set up by galvanic action, and those immersed in the salt water have the shortest life and must be frequently renewed. Where the condenser is separate froms the engine frante, it is hest to have the tubes and condenser shell of the same or similar nuctal, but for the sake of economy the shell is gencrally made of cast iron, but sea water destroys this material in time, rendering it soft and spongy, so that in sume cases the metal can be cut with a knife. The zincs are secured as in boilers, in the form of plates, and they are also fitted in the form of rods. The methud in the latter case is to provide screwed brass plugs, into which the zinc rools are suldered. The phags are screwed into certain of the holes for the tube glands and are distributed over the surface of the tube plates. The plugs are provided with a square head for a spanner, and the rods project inwards atong the length of tubes; these rods must be freģuently renewed.

Before opening out the fresh-water side of a condenser it should be pumped out by whatever means is provided for that purpose, and this amount of fresh water is thus saved. It is also neecssary to observe the precaution of airing the condenser after it is opened out, because the action of the water and zume liberates hydrogen gas, and if a light is introduced for examination of the interior before the hydrogen gas has escaped an explosion may easily uccur.

In testing for leaks it is well to remember that the tubes of a condenser are liable to splis, and also that m spite of the zincs the material is frequently pitted by corrosion, and pin holes are formed. A very slight leak in the tubes of a condenser will, by accumulation, cause the water in the boilers to be rapidly salsed and show a denszy, therefore the examination of the tubes must be carefully conducted The metholl employed to examine the lubes depends on whether the salt water passes through or around them; if the salt water passes around the tubes, and the latter are vertical, the examination is casy. Take off the math-hole doors at the top and bottom, giving access to the steam and fresh-water spaces, and leave the salt-water space in communication with the sea. After a short interial introduce a light under the tubes, dry up the spaces, and look for drips froms the tubes; taste the drops of water as they fall, and notice whether it is fresh or brackish; it is necessary to heep the top tube plate dry to find the leaky tube; otherwise, if the top glands leask, the salt water may run down a sound tube, becanse it is lower than the others. If salt water is running down a tulne and the glands are tight it may be inferred that there is a leak in the tube. The practice in such a case is to drive a turned conical plug of soft white wood inte both ends of the tuhe; the tube is identified at the top plate by pasoink a bouk wire through from the bottom. It generally happens that corrosion attacks a groap of tuhes, and, in some cases, 10 percent of the tubes may be so piogged before an opportunity acurs of replacing them by sound ones. Whenever a number of tubes have been corroded, it will be best to withdraw the whole for a thorough examination, and to test them under pressure singly.
If the salt water passes through the tubes, shut the main inlet and outlet valves tightly and rig the outside plugs on the ship's side (if possible) over the inlet and outlet orifices, then drain the condenser of fresh water and shut off all gage glasses and vacuum gages. Blank flange the pipes communicating with the low-pressure cylinder and air pump, and
also, if necessar!, any drain pyess from the cyluders and from stean and exhaust pifics, which are led to the fresh-water side. Fill up the space arothed the tulies with salt water by a loose, inserted before the blank tlange is pht on the inlet for exhatst steam. A cock bust be introduced in this blatk flamge, leading by a copper pipe to a test pump, by means of which a pressulte nut exceeding zo pouthls per square inch is put on the condenser; the interior of the condenser being tuder pressure, the tube plates are carefully dried and the enals of the thles examined for salt-water leaks. The first proceeding shoulal be to screw up all the slack glands. There is sometimes difficulty in detecting a leaky tuhe. because the water pressure being applind outside the tube tends to close up openings; whereas under working conditions the salt water is drawn through from the inside by the ous side vacuum, and any rents or cracks are opened out In such a case all the whes may have to be withdrawn and subjectel indivilually to a water pressure applied inermally. The writer has experieneed such a necessity, the condenser being prosed to leak muler stam, thongh when cold and subjected to a water presstare no leaks couhl bee detected. It may aloo haypen that the leak orcurs not throngh the tulkes, hat under the bolt heads securing the stays hetween the tube plates. It is always ad. visable to withdraw the patking from the klands of a nomber of tubes, tu asecriain whether it is perished. If a jet of steam is diecharged on to the tulies from a drain pipe or through the ednction pipe, in may cause them to thafe, and the jet of steam itself may wear lobles in the tubes so that leaks are caused. To prevent such action, batfle-plates should be fitied to distribute the steam delivered and to take the momentum of the impact; the tulses should be a close fit in the intermediate diaphragen plates in order to prevent chafing. The internal surfaces of a condenser that are exposed to sea water sluould lee coated with a gond wash of Portland cement at each examination. If the usalal watte of fresh water is moticeably diminished in quantity, there is good reason to suspeet a satt-water leak to the boalers, and the density of the feed water should be immotiately taken. It is a gond plan in Aning this, to buil away three-fourtbs of the water drawn off from the but well locfore taking the density. in order to magtify the effect of a slight leak of salt water, which might othervise escapt detection by the salinometer or hydrometer. The latter is so graded that the density of sca water is 10 at aro degress Fahrenheit. It is also very \mathbf{n} aeful to remember in this commetion that mitrate of silser, if added to water constaibing evell a trace of salt, produces a clondy white precipitate. Shoufd the water drawn off from the hot well show a density as low as one-half by the hydronteter, or fombl it even taste slightly brackish, it is necersary to take steps to ascertain the canse of the satt-water leak. Such a leak resulting in a rise in density of the water is the boilers is generally oceasioned hy leaky condenser tubes, and this can only be ascertained by ofening up the condenser as presionsly indieated. There are, however, other causes, some of which may be found and remedied whilst under way.
(I) The sea stetion of one of the feed pumps (if they hase a sea connection) may not be properly closed.
(2) The air jnmp may be fittel with an antonatic springloaded discharge valve, delivering into the circulating water diecharge pipe onertoard: if this valve is leaky, or is prevented from closing, salt water will leak hack to the air pamp during a temporary stoppage of the main engine. This automatic value is fittest to relieve the air punnp of a glut of water on starting; also for the dischasge of the salt water admitted to the condenser. wlun the jet injection is in use. Jet injectors were formerly fitted to surface condensers for tise in the event of the circulating pump being diabled.
(3) If the evaporator prines when the vapor formed is lecing passed into the main condenser. the density of the water
in the hot well will rise, since the density in the evaporator is hight.
(4) The supplementary or extra sall-water feed coxk may Lre leaky.

One of the most inportam dutues of the cuguser of the watch is to pay close attention to the wacuum gage, recording the amount of vacuum in the main contenser. A reduced sacumm is a frsitiul source of loss of econony, and the cause should be investigated. The temperature of the feed water dehvered frott the avr punps shunk be from oo to 125 legrees $F_{\text {is }}$ depending on the temperature of the sea water, and the speed of the circulating pump, should be adjusted to produce this temperature, or the main injection set to ohtain this result, as the case may be. If the feed water is tow hot it is probable that there is not enough circulating water and the vacmun will suffer; if, on the other hand, the feed water is-cool and the vacuum is bad, the faule is probably with the air pump salves, of may be cansed by an air leak into the condenser: it is then advisable to ko round all drain values on the condenser. air primp and exhaust stean pipes, and see that they are not open to the atmosphere; also, if the main circulating engine exhausts both to the main and auxiliary condenser, see that buth exhaust valves are not open and inspect the station leading from the feed pamps to the condenser if so fitted.
Try the silent lilow-off valve and the soola cock, and make sure they are shut. An imperfect vactum may also be die to kaky glands on the low-pressure cylinder. which need repacking, or a split in the low-prescoure receiver pipr, which latter the writer experienced in a certain case. Examine the vacuum gage, which may be defective or partially shut off; there are gencrally more gages than one on which the vacuum may lie read. If they all show a low reading the vacuum is most probably defective.
It may be interesting to cite a case in which the writer had an experience with a leaky conclencer a good many years age. The steamer which he joined as second engineer had been laid up idle for some cigliteen months, previous to her being chartered for mail and pavenger service to the Fast Indies. It will naturally iseur to every engineer that there was a considerable amount of overhauting to be done to get her ready for sea. Among other things, the chief decided to cican ont the condenser. which was very dirty, and we proneveded in the usnal way and in the manner herein leffore described, closing all outces and inlets, and rumning the condenser nearly full of fresh water mixed with a strong solution of soda. A s_{4}-inch copper pite was cunteled up to the donkey boiler steam pipe and the condenser was thoroughly boiled out, then washed, and afterwards testell under a lowwater pressurc, to make sure all the tubes were tight, and, so far as could be seen, everything seemed in gend order and condition. It anght to lw bere stated that the circulationg water passed throngh the tubes, whith lad their conds packed with soft white woul ferrules. Acconlingly the condewser was choed up. and, the other repairs and overhauling lwing completed, the vessel put to sea on her sailing date. Wie had that leen many hours on the voyage lefore it was foumd that the boilers were gaining water. The feed water was immediately tested and found to be rather brackish, and some density was shown by the hydrometer. Ifter consultation with the captain, the chicf decided to stop the ship and take off the condenser dowrs, to acertain the extent of the trouble; this was soon done without much trosble, as the weather was fine anul the sca calm. The top man luole door was also removed and the condenser run up full of salt water with a hose, aud when this was accomplishel quite a mumber of small leaks at the ends of the tules were located and markel. After all the tubes had been carefnlly scrutimized the water has allowed to ron frum the comkenser atul all the kaky tuhes were referruled until all the sparc ferrules had been uedl; the rest
of the leshs were plagked It was not, however, without some uneasiness that the doors were rejointed, as, judging from the condition of the old ferrules, there was trouble ahead; they were more or less perished, and the boiling they got, after the condenser beiteg so long uused, pretty well finished them, althongh, as presiously intinuated, they appeared to be tight under test. The enkines were put ahead again at a reduced speed, a close watch being kept on the feed water and the boiler water gage klasses, which, to our reliei, did not show any increase itu the water level. This state of things continued for aboul two days, when we ran into a heavy southwest gale in crossing the liay of Biscay, accompanied by a mountainous sea, which caused heavy racing of the engines in spite of the efforts of the engineer standing at the throttle ralve to ease her.

The outcome of this could be easily foreseen, as the circulating pump was worked from the levers on the low-pressure engine; the unequal revolutions of the engive sending the water through the tubes sometimes with a heavy thud, and then easing op, started the tubes which had not been referruled; and, again, we saw the water very rapidly gaining in the boilers until we were forced to blow down to prevent priming. Soon the steam began to fall, the vacum way diminishing and the feed water was cold; there were no valves on the suction pifie of the feed pumps to enalle us to adjust the amount of feed, and we soon found the air pump discharging water overbinard that the feed pumps could not cope with, and add to this that the water in the bilges was steadily increasing until the wing flooring plates were up in the boiler room. It soon became necessary to blow ahout 12 incles ont of four 13 -font diameter builers every huar or so, and one of the engineers was detailed to do this partecular work alone, and it kept him busy.

Of course, we conld not altempt to effect any repair in such weather, even if we had had sufficient ferrules to do it with, as the steamer wruld have fallen off in the trough of the sea, and it was all that could be done to keep steam enough to maintain steerage way
Fortunately for us, some thirty-six hours after the weather moderated the captain shaped his course for the nearest port, which proved to be Vigo. Eventually we limped into the harbor and dropped anclor. When the condenser was again opened up, it was seen that but few ferrules remained of the original ones, and a few of the tubes were completely out of the tule plate at one end. It is necdless to say a thorough job was dune this time: the whole of the tubes getting new ferrules and some new tuhics replacing doubtiful old ones. Again the test under pressure was applied and proved satisfactory. Steam was raised. and the veswel resumed and completed her soyave without further mishap. Perhaps of all the anxious and uncomfortable times the writer has put in at sea, not the least exciting was this epionale of hatlling with a leaky condenser.

Seattle, Wash

The Twelfth International Congress of Navigation.

This congress will meet for about one week during t912, in Philadelphia, Pa . The programme is an interesting one, trips are to be made to varions places not only near the city, but as far a-field as Canada Visiting members are to be especially lonked after in these exenrsions. Brigadier-General C. W. Raymond, retired, 315 Fifth avenue, New York City, is chairman of the American section.

Broken Reversing Block.

On one of the regular voyages of the $S, S, E-$ from Philadelphia to New York, all went well until we were going into the dock in New York, when suddenly the revers-
ing block on the low-pressure engine broke, the engine was standing, and on the order being tung up on the telegraph "full speed astern," away went the block. It was in all probability caused by water accumulating on the top of the piston of the balance cylinder, owing to the packing ring not being tight. There was also very little clearance on the top.
F. J. S. N.

The Vacuum Question.

Hartlepool Engine Works, Hartlepool. Futtom, Inteknaytoxal Makine Exgineering:

1 am much obliged for your letter of the 18 h inst. and enclosed copy of 1 aternational Marine Enginefring, in which you give my paper, recently read before the Northeast Coast Institution of Eingineers and Shipbuilders (page 55, issue of February, 1911).
I note that you have also a leader on the same subject (rage 83). At the bottom of the second colnmn you reier to the question of extra eirculating water required in obtaining a high vacuum. Mr. Weir also took up this point in the discussion, and 1 have pleasure in enclosing a few pages of my reply, and from which you will see that the extra power required is very slight and practically negligible.

Yours faithfully,
Feb. 20, 191t. p. p. D. B. Moason.
EXTRACT FROM MR. D. H. Morlion's myity TO The pescugsion ON HIS PAPFR.
Mr. W. Weir credits me with leing aware that in order to maintain 28 inches varutur in a condenxer "yon must pump almost twice the circulating water" than is required for 25 inches, and gnes on to say that "he has taken the liberty of correcting the figmeres by adding to each the necessary expenditure for circulating water.

Let us analyse the $\$, 500$ indicated horsepower cargo boat proposition (Table 2, p. 55. February issue), in which the circulating pump is driven by the main engines, and ascertain what the cotrection desired by Mr. Weir amounts to

With an efficient condenser and sea water at 60 degrees $\mathrm{F}_{\text {, }}$, a eondenser vacnum of fully 28 inches can be obtained with an amount of circulating water equal to, say, forty times the feed, or about 1.400 gallons per minute.

Assuming an efficient condenser and a circulating pump of the reciprocating type working against so feet total head and driven by the main engines, the power required will be as follows:

$$
4400 \times 10 \times 10=425
$$

33000
and taking into acconnt the mechanical efficiency, this corresponds to, say, 6 indicated horsepower.

If the quandity of circulating water is one-half or twenty times the steam condensed, then the power required for drive ing the pump will be even less than one-balf. Therefore Mr Weir's "iwice as much" is at the most 4 horsepower out of 1,500 horsepower.

Dr. Weighton has proved that the gain in power in a triple engine by increasitg the condenser vacuum from 25 inches to $28^{1} / \frac{1}{4}$ inclics, proviled the engine is suitally designed, is as nutheh as 3 percent, therefore the gain in power in the 1,500 horsepower engine for the $3^{1 / 4}$ inches of vacuum is 75 horsepower, less + hotsepower for the pump, or 71 horsepower net sain.

In referring to this question. Dr. Weighton says: "The amount of increass d power absorbed in producing $28^{1 / 4}$ inches of vacoum, as compared with 25 inches, is 50 small in the case of properly desigued and proportioned engines in relation to the total power developed by the main engines that it will make scarcely any appreciable difference if it be neglected."

CAR FERRY-"ANN ARBOR NO. 5"

What will probably be the most crentful trip on the Great Lakes for the year t9t1 started on Sunday, Jan. 1, 191t, at 9:30 A. M., when the Car Ferry Ann Arbor No. 5 left the yards of the Toledo Shipbuilding Company at Toledo, Ohio, for Manistique, Michigan, arriving January 11, Igrt, at 10 P.M. and loading cars January 12, and leaving at 10 A. M. for Frankfort, Mich.
To reach her destination, the steamer passed through part of Lake Erie, the Detroit River, Lake St. Clair, St. Clair River, Lake Huron, the Straights of Mackinac and part of Lake Michigan. In the Detroit River, the St. Clair River and
complete. The keel was laid on September 3, t910; the vessel was launched on November $251,19 t 0$, and completed and accepted Decermber 31, 1910.
The general dimensions of the Ann Arbor No. 5 are as follows:

Length perpendicul	363 feet
length over all.	378 feet
Breadth moulded	56 feet
Depth moulded	21 feet
Height between car deck and shade deck	17 feet 4 inches
Height of funnels above top of casing	$3 t$ feet 6 inches

the Straits of Mackinac, ice from 18 inches to 24 inches thick was encountered and passed through without any difficulty.
Opposite Marine City, on the St. Clair River, the steamer was for sixteen hours batling with ice 24 inches thick, very heavily windrowed; in most eases the windrows being grounded. Meeting the worst diffeulties and conditions of the trip in the Straits of Mackinac, the steamer arrived at Manistipue, a distance of 440 miles, in ten days and thirtcell hours-under way during day-light hours only, thus establishing her reputation as ant ive-crusher and a winter boat, arriving at Manistique without a mishap and everything in good working order and ready to take on a load of cars.

This car ferry is the largest of its type in the world, having a capacity of 3042 -foot cars, and is built for rigid winter service, running between the ports of Frankfort, Mich., and Manitowoc, Wis.
The contract was awarded lyy the Aun Arbor Railroad Company, from the design and specification of Frank E. Kirby, to the Toledo Shiphuilding Company on July t, 1911, to be delivered at Toledo, Ohio, on January 1, 1911, furnished

Height fronim keel to top of fun-
nels 78 feet
Number of watertight tulklicads 7
Ciruss tonuage. 28R4
Net tonnage tght
The scantlings of the vessel are heavy for the service required, some of which are cnumerated below.

The stem, sternpost and rudder frame are of forged wrought ironn. Stem $4^{1 / 2}$ inches by $t 0$ inches, rebitted from the 6 -foot water line to the main deck; sternpost 6 inches by 10 inches, and rudder 10 inchex diameter stock, $55 / 2$ inches diameter pinle and extra strong frame.

The construction is of the Hansverse system, with 9 -inch by 218 pound bulb-angle framws, spaced, 2 feel, extending alternately from bilge to main teck and bilge to slade deek. frames lapped on plate floors at bilge. Floors jo inches deep at center of 20 -pmund plite on ebery frame of $3^{t / 2}$ by $3^{1 / 2}$-inch by tt.t-pound angle frames and reverse frames; reverse frames douhled in machittery vpace.

Car deek beants of 12 -inch by 30 -pound channels, with 3% inch by $31 / 2$-inch by t t.t-pound angles at top edge, spaced 4 feet, supported by three rows of heavy stanchions, brackets and ridge bars, car deck of 18 pound steel plate.

Keel plate 42 inches by 33.5 pounds, bottom plating 25.5 pounds, strakes shingled outside on the top edge and inside on the bottom, side plating ${ }^{31}$ pounds, shingled. Main deck sheer strake, 31 pounds, doubled for two-thirds the length amidships. All shell plating forward from the keel to the sheer-strake doubled from the stem aft for 80 feet.
The steamer is built without double bottom, but each compartment is commected by a separate section and filling pipe through a manifold to a 12 -inclt by 20 -inch by 16 -inch ballast pump, so that any compartment may be partially filled or emptied for trimming purposes,
There are four tracks on the ear deck, each rail set up on chairs of 8 -inch by $3 / 4$-inch iron, located on each beam. Anchor rails outside of each rack, riveted to deck, to set up ear jacks and holding chains. All the necessary car jacks, holding chains and gear were furnished as part of the equipment.

Bolleks.
Steam for the main propelling and auxiliary machinery is supplied by four single-ended cylindrical boilers, fitted with positive heated forced draft. The boilers are located in a single comparment, placed athwartships, with a fire room running fore and aft between them.
The boilers are t3 feet 6 inches diameter and 12 feet long, designed for a working pressure of 185 pounds. The total heating surface is $8.0 y 6$ square feet, and the total grate surface is $\mathbf{t 8 4}$ square feet. The furnaces are 50 inches in diameter, with grate 5 feet 6 inches long, two to each boiler. Each furnace leads to a separate cumbustion chamber. The boiler tubes are $21 / 2$ inches in diameter and there are 334 in each boiler.

PROPELLING MACHinery.
Propulsion is by means of two sectional propeller wheels, 12 feet 6 incles in diameter, with a cast iron hub and 4 cast steel blades to each. The propellers are each driven by a separate inverted, direct- acting, triple-expansion engine, having cylinders $2 t$-inch, 33 -inch and 52 -inch by 40 -inch stroke. Piston

together with a Westinghouse Air Compressor, piped to set up the air brakes on each string of cars.
The vessel is equipped with steam steering gear, electric light plant, steam windlass and capstan and steam gypsies.
A departure from the usmal on this type of vessel is a hinged gate, enclosing the spron end of the ship for a height of 5 feet 6 inches above the car deck. This gate is for protection from the heavy following seas, and is operated by a winch, located under the car deck and is raised up out of the way when loading and unloading.
The cabins, consisting of smoking room, saloon, dining saloon, 15 state rooms and crew's quarters, are located on the shade deck. These are in pine and tastily finished in white enamel, all furnished complete.
The machinery and boilers are all below the ear deck, with narrow casings extending up through to above the shade deck for stacks and light wells.

COAL BUNKERS.

Two coal bunkers of soo tons capacity each, one forward and one aft of the boilers, extend across the ship with hatcles between the rails of the tracks for fueling from hopper ears.
valves are fitted to the high and the intermediate-pressure cylinders and a double-purted slide valve to the low-pressure cylinder. The valves are actuated by the Stephenson double bar link motion, fitted with direct type of steam reversing gear. The pistons are cast steel. The piston rods, crossheads and connecting rods are forged steel. The crossheads have single slippers of brass. The engine framing consists of cast iron housings of box section, fitted on a cast iron bed plate made in one section. The erank shaft is of the builtup type. The thrust block is of the horse-shoe type. The air pump is uf the ordinary bucket type, with jet condenser, driven together with a cooler and a bilge pump from the high-pressure crosshead.

The Institute of Metals, of Great Britain, has appointed a committee to investigate the subject of corrosion, and the first subject which will be taken up is that of condenser tubes. Sir Gerard Muntz, the president of the Institute, is naturally much interested in the subject, and G. D. Bengough, of the metallurgical department of Liverpool University, is in charge of the sciemific work.

Published Monthly at
17 Battery Place
New York
By marine engineering, incorporated

H. L. ALDRICH, President and Treasurer and at
Christopher St., Finsbury Square, London, E. C.
E. J. P. BENN, Director and Publisher
howard h. brown, Editer

AMEAGCAN MERAGENTATAVES
GEORGE SLATE, Vice-Prenident
E. L SUMNER, Secretary

Branch \{ Philadelphia, Machinery 12ept., The Bourse, S. W. Awwesh

Circulation Manger, H. N. Dimsmans, 85 Fowler St, Boston, Mass
Entered st New York Post Office as second-class matter.
Copyright, 1011, by Mariae Enginecring, Inc., New York
Imramational Manme Emgnsmaje is registered in the United States Patent Ofice.
Copyright in Great Britain, eatered at Stationers' Hall, London.

Notice to Advertisers.

Changes to be made in copy, or in orders for adurrtusieg, nwat be in owr hands wot later than the 13th of the month, to swrisre the corrying owt of ruch inctructions is the sure of the moath followang. if prod is to be rive

The bar beiore which all things mechanical must be tried and stand or fall by is conmercialism. Opposition will avail but a short time if a money gain is shown. All history bears us out in this statement. Labor-saving machines or appliances can be translated as moneysaving machines, and come they will, and to stay, for that very reason of saving, for they prove it. There is, however, much misrepresentation of facts. So often eithusiasm results in the fatal blunder of mistaking a success for victory that the world has learned to be very cautious in accepting statements from those directly interested. It is refreshing and rare to obtain such data as are given in this issue on oil fuel as applied to the revenue cutter Golden Ciate, stationed on the Pacific Coast. The source of the information is such as to entirely preclude the possibility of error or sordid motives. That liquid fuel is being used in many places with great satisfaction is well known; but with the report referred to, in which it is so clearly shown how advantageons is its use, we look for a far more rapid advance in the future than in the past. There have been accidents reported with oil fuel, no donbt. but it dnes not need much brashing up of memory to
recall accidents and dangers where coal has been responsible. It is unreasonable to anticipate that oil will become the universal fucl on shipboard, particularly in those parts of the world where coal is inexpensive and oil high in price ; lut the Pacific Coast of the United States is an ideal place for the use of oil, as evidenced by the figures quoted in the case of the Golden Gate. In very few places have engineers had the experience in using oil that those on the Coast have had, and this experience must, in a measure, account for this remarkable showing. Furthermore, there are few, if any, ports as conveniently suited for oil-burning vessels as San Francisco, as oil is piped to the wharves, and all that is necessary to do to finel a vessel is to tie up to the wharf and connect up to the pipe line.

The fact that a number of eminent engineering establishments have taken up seriously building marine in-ternal-combustion engines leads to the belief that there is faith back of works in this form of marine drive, if not wisdom. There are now several continental ships being fitted with this type of engine. Of three typical installations, one is a set of four-stroke cycle motor. single-acting cylinders of about 450 indicated horsepower; the second with a pair of two-stroke cycle motors, single-acting twin screws, each engine of about 900 indicated horsepower; and the third, a pair of two-stroke cycle mutors, double-acting, of about the same power, and all of the Diesel type. It must also be remembered that in Germany there have already been built fishing boats equipped with these engines. On the larger vessels compressed air is used for reversing, while on the smaller boats a friction coupling and gear is employed. Of course, it is too soon to expect data as to the upkeep of large marine internalcombustion engines, but it will be the deciding point in their future use. It is probable that in the United states, where fuel is cheap and labor dear, repairs bear a larger relation to the fuel saving than in Europe, where these conditions are reversed. Or, in other words, what is saved in fnel may he offset by repairs. There are none, we think, to deny that the repairs of internal-combustion engines are far greater than those of steam engines, but just how much greater in large sizes of engines is unknown and is of grave importance. In discussing the subject of the upkeep of internalcombustion engines with those comected with their lmilding and care it has been advanced that the cost of upkeep is not less than four times, or more than sixteen times, that of a steam engine-a wide margin indeed. There is no question whatever but that the upkeep is more. That improvements are on their way and will surely come is beyond question; but can the fact be overlooked or made light of that steam acts with a push while gas acts with a blow? And which of the two systems will result in the greatest repairs is hardly a question.

Test of Twin Screw Tunnel Boat A. M. Scott.

The board of engineers, appointed under Act of Congress to investigate the best type, and to design and build the best type of towboat and larges for navigation and transportation on non-tidal rivers, convened at Charleston, W. Va., in March, to examine, test and report on the twin screw tunnel steamer A. M. Scolf, described in Inteksamonal Makine Engineering for Noventuer, 1910, ant desigued and built by the Charles Ward Enginecring Works. The board required the boat to take a tow of six loaded coal barges over a very tortuous course, where the channel is first on the left side, then abruptly across the river to the right side. making an " S " or reverse curve to enter the chamel and avoid the bar, thenee to a narrow artificial channel made by wing dams and side walls, about $1 / 3$ of a mile long, producing very swift water, difficuth to enter and ustually only accomplished by flanking until properly in line. Relow is a narrow channel sharply curved its entire lenkth, and very lonk, only navigable heretofore by continued flanking: thence through a shoal, hard to eiter, thronigh a lock to shoals, where the currents are troublesome, making 16 miles of hazardens navigation.

We are informed that the Srett tonk this tow over the entire course without ringing a single backing bell, except while waiting to enter the look The Srell returned later to Charleston, where she was very satisfactorily put through various mancuvers, loose, turning around by rudder power head-om in this narrow river, hacking straight up strean, steering to port backward and reversing to starboard without stopping her engines, then manipulating her in similar manner by the engines alone. This is believed to be the first time a boat has steered a tow of six loaded barges through such hazardous places. Six foaded barges is the standard tow for the largest towboats taking coal out of this river in 7.3 feet of water.

TECHNICAL PUBLICATIONS.

Motion Study. Frank B, Gillyreth. Size, $51 / 2$ by $7^{1 / 2}$ inches. Pages, wo. Fugures, th. New York, 1910: D. Van NosIrand Company. Priec, $\$ 2$.
We think most people will rather smile at the general idea of Mr. Galbreth, until they take tinte to read with care his book. Usually the excuse will be lack of time, the very thing that the book proposes to save, and we believe that its perusal will repay many-fold those who are wise enough to know that they have yet to learn how to save time.

Industrial Plants. Charles Day. Size, 5 by $7^{\prime \prime} / 2$ inches. Pages, a94. Illustrations, 4^{8} New York: The Engineering Magazine. Price, $\$ 3$.
If we were about to build, or owned, an industrial plant, we would certainly buy Mr. Day's brok. In looking about us we find most admirable door chechs that are a saving on our nerves, yet all over the country we also notice that a brick or the end of a string is loing futy on doors, and we icar that, figuratively speaking, this is the case far too often in industrial undertakings. The study of Mr. Day"s book should do much to correct this state of things.

Heat. J. Gordon Ogden. Th. 13. Size, 5 by 7 inches. Pages, 113. Illustrations, 46. Chicago: Popular Mechanics Company. Price. 25 cents.
We do not believe that anybody ean possibly invest twentyfive cents to better advantage, unlecs he is starving, than by buying this book. The scientific information is most interestingly imparted, making the subject as attractive as a story
and, while engineers are conversant with much of the text, all will enjoy and profit by reading it.

Applied Thermodynamics for Engincers. William D. Esmis, M. E. Size, $9^{1 / 4}$ by $61 / 3$ inches. Pages, 420. 1llustrations. 313. New York: D. Van Nostrand Company. Price, $\$ 4$.
As we are every lay bending our energies toward economy, this book of Mr. Ennis will repay those who are deciding on what prime mover is to be bought, or recommended. Mr. Ennis does not elaim originality, but certainly sets before the student with far more than usual clearness the very broad subject of applied thernodynamics.

COMMUNICATIONS.

A Very Interesting Inquiry.

Ebitor International Marine Enginfiring:

Being a reader of your valuable juumal, I take the liberty of asking you for a bit of information concerning a change which If propnose to make in the ballast of a strel hull.
It is $\mathbf{t 1 0}$ feet long. 35 fect beam and to feet deep; owing to the leads that are put on it, a lot of ballast is required.
The full is rapidly decayiug, athough very good as yet. I propose to remove the present ballast, concrete the interior entirely; in other words, to probluce concrete hall inside the steel one. I propose to thicken up the concrete where 1 need ballast. Do you think this idea is a practical one?

Montgomerey, Ala.
Sters.
Fibiter's Nome-It will be interesting to know if any of our readers have eser had any experience which will shed light on the above expressed idea.

Eutor Intranitional Marine Esgispemasg:
Will you please let me know whether the heating surface of boiler tubes is figured from the exterior or interior diameter, and will you also give solution of the following problem?
The volume in feet per second for a 48 -inch pipe 3,000 feet long with a bead of 3 feet. The total volume of water to come through this pipe in twenty-four hours is $16,000,000$ gallons.

Pipe.
The heating surfaces of boiler tubes are figured on their exterior when the lieat passes around them, and on their interior when the heat passes through them as in return-fue Lnoilers.

To find the quantity of water in gallons when the dianeter of pipe is known for a velociny of too feet per minute. Square the diameter in inches and multiply by 408 .

PERSONAL

Mk. Wal-tik A. Post, who has been general manager of the Newport News Shiphuilding \& Dry-Dock Company for the past twelve years or more, has been elected president of the company, to sueceed the late Mr. C. B. Oreutt. This is a very fitting recomsition of the splendid work Mr. Post has done in building up this great shipyard.
Mr. Robrig Waflace, of Cleveland. Ohio, one of the pioneer shipbuilders on the Great Lakes, died last month, aged 76. He was one of the purchasers of the Globe Iron Works in $1 \mathbb{N} 99$; later he expanded his shipbuilding interests, which afterwards became a conslituent part of the Americau Shipluailding Company.

Formal invitations have been issued in the name of Lord Brassey for the Institution of Naval Architects, 5 Adelphi Terrace, London, W. C., anuottuciug that the Jubilee meetings of the Institution have been provisionally fixed for Tuesday, July 4, 1911, and the following days, when it is proposed to hold an intertational congress in naval architecture and marine engineering. The invilation has been extended to distinguished naval architects, shipbuilders and marine engineers in all parts of the world.

SELECTED MARINE PATENTS.

The publication in this column of a patent specification does not necessarily imply ediorial commendation.
American patetts compiled by Delbert 11. Decker, Esq,, registered palent attorney, Loat \& Trust Building, Washington, D. C.

SNIVIEL, LIFESAVING ATTACHMENT POR SUBMARINES, SNIVELI S. PETERSON, OF SAN FRANCISCO, CAL

Clain 3.-The combination with a vessel adapted to be muboserged, of a compartment in the vessel, and having Ingrets and egresk door controlled openinga, an edgewise swinging closura for the exrest openiag,
mean independent of stid opening for admikting water into the commeani independent of sud openinga for adedaiting watef thto the compartment, apdindependent nesana controlled from
974.150, IIYDRAULIC DKEDGE WILIIAM F, HUNTER, OF ARCATA, CAL, ASSIGNOK OF ONEHALF TO THOMAS BAIR, OF ARCATA, CAL
(CJaim 9.-The conmbinatlon wigh a anction pipe laving a cage on Ita intet end. of a mosuthpicce for said pape having a portion partly covering the side of the cage to provide a side iotake opening, and a gate carried hy the mouthpiece for controlling said intake opelting. the mouthpiece
being rotatable and slidably mounted on the auction pipe. Elight clainas.
9TB, 部t. COALING DEVICE VAINO NNIEEKSON, OF KNAPP. TON, WASH.
Claim 1.-In means for tranaferring eoal from one vensel to anotber,

upon the cosler and adapted to incline upwardly and outwardly therefroan a texilike chute connected with the delivery end of the elevator and inclining ontwardly and downwardjy therefrom and connected with the vessel to be coaled, and a cable and pulley system between the two reastls and the band tule to antomatically raise and lower tac adjacent ends of the tube and chute to adapt them to the relat
the two vessels when riding the waves. Three elaims. 9Ts
BODA. METIFOD AND APPARATUS FOR WRECKING FALO, N. Y.
Clains 2.-An apparatun for wrecking hodiea sunk in water, comprieing - oupport, a drilling device mounted on said tupport, and electromapnets pivotally mounted on said support on opposite sides of the drilling device and adapted to attach themselvea to said body. Four elaitus.
S\%s.598, HATCH.FASTENEK. ALEXANDER HYND, OF CLEVELAND, OHIO.
Claim 1,-In a hatch oover and tarpanlin clamping device, a bracket, - pair of tadependently movable claraping members, sald hracket having a fulcrum anpport for oue of sald sembers and an inclioed face of ahutment for thin ollat, and meana one one of said clamping members and engagiag the other for forcing one of the same downward onto the hatch cover and the other in engapement with sald inclined face and henet latterly toward the comming. Two clainat.
97B.699. SIIIP OR VESSEL. CARL. JOHAN FREDRIK MAL COLM LILLIEHOOK OF STOCKIIOLM SWEDEN, ASSIGNOR BY MESNE ASSIGNMENTS, TO EMMA IDA BERTHOLDE CRAGGS, OF MIDDI.ESBROUGII, ENGLAND,
fongitudinal beams directly attached to the deck plating, and a plaralty

of cross beams dinposed under the inner edges of the longitadinal deek heams; the upper longitudinal beans of the vessel being in pieponderant number in relation to the erosin beams. Three claims.
975, 922. PROPELLER, GFORGGE R, MARTIN, OF MARIETTA, 01110.

Claim 1.-Tha combination with a hoat haviag a suitable morce of power, of triple propellers catried hy the stern of eatid boat and adapted to be operated by sand source of power, esch propeller eompriting a honaing adapted to be carried by the bottom of the boat, cam ribe cartied by sand housing, a sleeve journaled in the bottom of said boat, a revolahte shaft extending through asid shecve and adapled to be revolved by aid source of power in an opposite direction from said sleeva, propeller arms carried hy said shaft and said sleeve, and pins earried by Maid arms and adaped to engage said fille and rotate maid arms in a desuired direction. Four clalnes.
976,58\%, HIYDROPLANE MOTOK-HOAT, CHAKLES MELDAU. OF NFW YORK, N. Y.
Claim 2.-A motor-boat provided with a how keel increnaing gradually in depth. a vert-keel alwo increasing tradvally in depth, an intermediate

keel betacen the how and stern keeln, hydroplanes supported on said intermedjate keel, and lever-neechanism for lowering or raising the intermediate leel and hydroplanes on the same. Fight claims.
D77 63\%, AUTOMOH11.F TORPEDO, GRFGORY CALDWELL DAYISUN, OF QUINCY, MASS.
Clam 1.-An auternolite torpedo comprising a shell contsining a chamber or flask for the storage of aur or gan to develop the motive

power, and machinery for Ariving the torpedo, and an explosave charge within the shell at the very stern thereof, whereby the gawes resultang from the delonation are enabled to expand in the direction of the object attacked. Two claims,
977,81象PROPELL.EK, WILLLAM, R, MAXWELS,GKOVER C. MAXWE.I.LAND ELWARD BUCKMAN OF NEW YORK, N. Y. cloum 1.-A propeller compriaing a pair of blades having their circuan. ferences disposed in the form of spirala from their leading edyes to their following edgea the progiensiug face of ona biade atnd the tofreating face of the other merzing into a contivuous curve which ea. cada from the cleading to the following edyes, reapoctively, of and alades. Two elairas.
977.001. CUTTER FOR HYDRAULIC DREDGES. ARTHUR W. ROBINSON, OF MONTREAL QUEEEC, CANADA.

Claim 1.-In a cutter for hydraulic dredges, the tombination of a plurahty of contintious spiral blade arms, each having a hul section on

its innar end, and meana for connecting said lub sections into a contifuous huh, Eight claima.
978.090, SHIDMOHEL TESTING HERMANN WELIEN. KAMP, OF KIEL, GERMANY
Claim 1.-In tank teating sppliancea of the claracter detcribed, means adapted to engage the model tested for imparting an initial velocity
thereto, said meana having linaited duration of action a Weight, and perans in connection therewith for moving the model so as to maintain

Its Enitial velocity during the period of neasuretsent after the means for imparting instial velocity has ceased to act. Sis claims.
978.677, SCREW-PROPEL.LFR. D.AVID W.ITSON TAYLOR, OF TIE UNITED STATES NA
Chaim 9.-A propeller blade having in fte developed arction a suhstantially taraight face extending to a sharp leading edge, and a hack formed

by a comaound curre concave to the face in the Immediate vicinity of the leading edue and convex over the major portion of the hank, and riba, eombentric with the axis of rotation of the blade
leadige portion of the back of the blade. Fifteen claing.

פis, 860 . BAKGE RICHARD J, DONOVAN, OF AMBRIDGE, PA. platimg, hottom plating curved upwardly to form the ralce, head or famping block, a steel handing deck, and a sfecl water-tight hulkhesd. Two clatme.
9\%\%, 201 LIFE BOAT APPARATUS. AUGUST BRUX, OF CIItCAsin, tLt
Clain I.-In life-boat launching apparatus, the comhination with a boat and halds sing device which supporta the keel and the sides of the sevice which is movahly ratunted on said supporting device so as to engage one end of said body, and mean for moving said ejecting dewice so as to forke said boat lenethwise of said supportise device and eject the same therefrom, Twenty-one claims.
PIS,297. SUPMARINE BOAT EQUIPPED WITH SUBMERGINGPIANES. LAWRENCE Y, SPEAR, OF OUINCY, MASS. ASSIGNOR TO EI.FCTRIC BOAT CUMPANY, OF NEW YORK, N. Y. A CORPORATION OF NEW JERSEY.

Claim 1.-A submarine of submersihle boat having submerging planes, in combination with mechanism for supporting the planes againat the blown of waves on their under turfaces when they are out of water, asid mechanism compriaing a transweraely extending structure lying closely above the planes so that it will receive the thrust of blow directed against their under surfacts. Seven claims.
FER, B4E, UNIHRRWATER VEIIICIE SFITASTIAN ZIANI DE FERKANT, GF GKINILEFOKD HRIDGE, ENGLAND,

Claim 1,-In comhination in a sabmersible, a combustion motor carried

by the ame, a combattion chanaber sherefor, measin for Introducing inta for chamber combustilile and an excess of oxidizer, together with means onder eertais working eonditions.

983,467, GYROSCOHIC STEERING AP'BARATUS. JOIIN C. WALDKON OF BRUOKI.YN, N. Y. Clanm 2.-The combination in a gyromopie ateering apparatus of a

ring fulertumed in the said outer ring, a fly wheel jonrmaled in the tnaer ritng. I steering engine connected to the casing, a valve ehanber for the of the engine, an innei tubular valve in the outer valve, connections be. tween the asid outer gimbal ring and the said tnger tubular valve, and neens to turn and locate the outer valve in operative position.
064 133. FLOATING DOCK IIANS GIESE, OF HERLIN, GER. CNY.
 in which air is compressed hy the entering water, a chamber to which water is admitted for minking the dock, and means for forcing conspecsaed air into said last-mentioned chamber to expel the water there. from while water is being at the same time expelled from the firstmentioned chamber by the sir compressed therein.
981,922. ELECTROLYTIC SHIP-CLEANER, GEORGE W, FRA. ZIFR, OF IITTSHRG, PA, MARYE, FRAZIER, ODMINISTRA TRIX OF SAID GEOKGE W. FRAZIEK, DECEASED, ASSIGNOR TU PITTIURGII ELKCTROLYTIC MFG. CO., A CORPORATION OF PENSSYLVINIA.
Claim 1.-In a ship-clenner, the comhination with a source of electricity, of a body movable indevendently of the ship to he cleaned, an electrode connected with and adagted to be supporited in the water by the sand hody, and conductora leading from the bource of electricity to the, saither condacter arranted to be commected with the metal exterier, of a ship. NEA.2SE, IIULL, CONSTRUCTION, WILLIAM EDWARD MC Claim \&, A hull construction, inclading a longitudinal bearn, angle Irons secured agsmat the opposite sides of the beam and having their

out-tirned flasges rigistering with the upper edge of the beam, a platrality of curved ribs secured in longitudinal spaced relation againat the angle iron and extending apwardly therefrom, male beams carried across the syper enits of the ribs and extending inwardly from the same, arched garders transversely disposed acrass the upper ends of the Fiha and secpred at their opposite ends upon the angle beams, a wire body of conctete molded shont the moshing to engate the cibe and the girders,
9R3,917, TKOJULSION OF SHIPS, HENRY ALEXANDER MAVOR, OF GLASGOW, SCOTIA. thermo-mechnnical plant of a nupplementary sitternating current clectric plant capabie of being used either alone or in conjunction with the main titernating current driving equipment capable of belng ran at different opeeds.
964.15t. WRECKING ,IPPAK,ITE'S. FREDERICK OLIVER, OF CHARLOTTE, N. C
Cham 1,-Apparatus for releasing grounded vessels, inclading maniin arduance of the hull of them, meant for supporting the manifoids munication betwren the manifolits said manifolds and jet pipes bring arranged to form a substantially trlangslar depression in the water bed try the discharge fif jets of fuld therefrom, Acxible conneetions betwern the lower end of the jet pipes on each manifold, flexible consnections belwcen the iet pipes of the severaf manifolds, and forwardly and upwardly extending means for connecting the lower ends of the jet pipes to a supporting structure.
A\&n,156. MARINF COMPASS, HARRY HERTZAERG, OF NEW YORK. N Y ASSIGNOR TH ARDOT A, LOW, OF IIORSFSIIOF, N, M UTRICF I WOIIF. OF NFW YORK, N. Y ANT HARRV HFRTZIFRG, OF AROOKIVN, N. Y.. TKTSTEES
Claim 1,-A compase comprising a hox, a nom spillable liquald cup positiomed thercin. the side wall of sain cup heine curved in wardly upoa torlf and producing a mnith the diametrr of umeh is lew than that of sald eup, a staff stepped in the cusy smil externdine thrnush the smail neerle monntert no the staff. and a foat attached to the staff and ardapted to be immeraed in fiquid to be contained in the cup.

British patents compiled by G. E. Redfern \& Company, chartered patent agents and engineers, 15 South street, Finsbury, E. C., and at Southampton building, W. C., London.
LONDON. MARINE STEEKING GEAR. F. L MARTINEAU, LONUON.
This invention relaten to the eombination of a pamp whose postone

OErates the atroke-valymg rod through a wotm and gasdrant levera. The connequent travel of the ranss operates through feveris and jlinks to return the rod and retain the rams in their ne $\#$ position until the wheef is asain lurned. An emergency pump worked by hand is prowater ciscuits.
22, 320 . AUTOMATIC APPARATUS FOR LIGHTHOUSES, ETC, F, G, ATTWOOD, LONDON.

Ay this invention gas at conitant preasure (from a reservoir through a redneing valve) enters an impnise chamber fitted with a diaphragm whose movemente open and close through s syotem of lewers, the gat supply inlet and burtier outlet, alternately, to give internittent or flash lighta. The dlaphargm also operatet a ratchet and pawl mechanism for winding a clock which times the working of the lpparatus by furnand tinto gear at punrise and sunset, respectively. The variation in time in corrected for lyy a worm connected with the operatiog cam, and which is canted liy a star. wheel earried by the shafi to make one-seventh of a rotation each day. Ancther clock may rotate a lantern.
23.352. PROPFI.T.FRS. W. 14, DOBSON, GRAVESEND.

Relatra to paddle: which revolve completely within the water. By this invention only the blades project beyond the skin of the shlp, the drum which carries them havise tis axas at ripht angles and its water side funh axis, by toothed gearing. Water is allowed to form a fayep between the drum and its casing and any paspone throuth is pumped overhoard. The dow is entisely stoppori when the propelier is inoperative hy mespa of a flow is eqtisely atoplneil when the propelier is inoperative hy aneana of a
eonleal riny. which ean be moved axially to close the clearance space. it can he shown geometrically that the avrrage angle at which the te blades meet the water is sicaier than that of ecrew hlades, while their Absolute sured is less.
H. 1 脜 STARTENG AND REVERSING MAKINF INTERNAL COMBUSTION ENGINES. DR, P, PRAETORIUS, STETTIN, Gi: Dirall engines are hy this invention provided with "aheadm and "astern" lurbines, the motors of which are fevited to the crankahaft

and operated hy steam or compressed air. This method allown of Theneavering whips bavint thene engine with eteat safety and facilify, The radius of action of the turhincs in increased by frading the exhause the compremalon pump may exhaust air through a separate pipe with advantage.
28.734 ELECTRICAL PROPULSION OF SHIPS SIEMENS BRUS. DYNAMO WOKKS LTD. AND DR. KLOSS, LONDON.
A ship having four propellera is driven by means of asychronous in. duction motors and generators two of the motors being driven at normal ejeed by enenerators, the irequency of which is fifty-iwo timet the frequency of the ertierators whica drive the remaining motora at normal nornal frequencies cas be halved at conatant.anced by interchanging the monnectioni between generators and motors conwectoni between senerafor and motora.
IENKINSOP DOVER COURT GEAR FOK TURBINES. J. N. According to this myention gear
of steam from the center turbine to the outer to so controf the appply

is cut of from etther of the latter the other is recriving steam, thum enabling the center farbine and one outer turbine to go abead whife the other tarhine thay be either sopped or soing avtern. A hand wheer drives, through shaft and bevel wheels, a crose shaft erared to two side thafts, each having a female screw at its end nrarcat the Faive and oluared at ita other end to ensage and allide In the boss of the wheef that driven it. The female sesewi of the ahafts screw tinto the two male adjunting ncrewa of the valyen. By rotation of the wheel in elther direction one of the vaives is closed by the end of the corresponding haft hearing uyon the

16,160. SC"BMANINES. G. HNO, GENOA.
The invrntion provides a device for saving the lives of persoma who are imprisoncd on a submarine which cannot be made to acend in the vater. In escaping, a person paswe throtigh the namhole into tae casing b, then he eaterre the oustls cock b1 and Icts water through pipe he cioset after him. The then opens cock po and icis sater throueh pas will rise from the veasel to the surfact, whete it will Boat with the eap h uppermost. i in a window.
2月.9s3. MARINE TURBINF, INSTAIIIATION. AKTIEN. GESELISCIHAFT. BROWN, MOVER1 \& CIF, BAf)N, in whith the propeller thrust of one turbine is counteracted by balaneing devicen in

atther furbise. For maximim power chamber है is set in commontia. tion with ehamber t. whils for ilecoessed power the valve a is turned and the plper on and f ate councricd. Coficspondifg to the powet, one of the stagen of the tarbine c is tapped and stram allowed to dow into the chamber h, and campletely batanics any avial thrusi, even with the anallest leade The valves ale adjusted autouatically when eruising.
 S. M. FAVISON, CAMBRIfiF., U, S. A.

This invenrinen consasats in mercuring to the skin of a vesael an enrlosure in which in a whell fies from the walls of the enclosure, and be.

ween the walls of the shell and the walls of the enefnsure the air is withdrawn to form a vactum which pievents sound passing to the inner Chamber in which the receiving drvice is susprnded. Another feature in the intentifying of the sounds pasuige. hy insutating the trceiver from the thlp's noines, ete., so that only kuch vibrations as are received by the hull from withont are transmitted, this insulation also largely sboorbing vibrations cansed by the enginet, efc.

International Marine Engineering

MAY, 1911.

A $20-1 N C H$ HYDRAULIC DREDGE.

The dredge illustrated herewith was specially designed to meet the particular conditions of the New York barge canal and is based on the design of the 30 -inch hydraulic dredge, also built by the American Locomotive Company, New York, for the commissioners of Lincoln Park, Chicago. It was put in commission in September, and was in continuous service from that time until late in December, when winter necessitated the discontinuance of operations. In March, operations were again resumed. From Sept. 15 to Oct. 15, the total output, solid bank measurement, was 238,658 cubic yards.
cutter through a set of gears on the trunnion head. These gears are encased in a water-tight compartment, and oil pockets are provided, which keep the teeth of the gears constantly lubricated. A ball joint connects the suction pipe on the frame with the one in the hull. This ball is so located that it is totally immersed in water, thus preventing any possible chance of air leaking into the pipe.

The hull of the dredge is of wooden construction, with a heavy steel girder running fore and aft. It has a length of 137 feet. The width is 36 feet, and the depth is 10 feet z

20-1NCA bEEPGE BUILT BY ATLANTIC EqUIPMENI COMPANY.

During the first half of the month a great many obstacles, such as tree stumps and large boulders, were encountered, but the cutter and its machinery were proof against accident on this account. Most of the material excavated was a hard, blue clay, which had to be sliced off by the cutter blades before it could be drawn into the suction pipe. The cutter used is of the open type, with spiral chrome steel blades. Though complete data covering the whole period of operation are not at present available, a careful record kept for the fifteen days ending September 30 showed that the coal consumed was 1.85 pounds per indicated horsepower per hour, and the material was delivered at a point 1,200 feet from the dredge. One of the noteworthy and interesting features in the design of this dredge is the arrangenent for supporting the suction frame and cutter drive. The upper part of the suction frame is formed of a large steel casting or trunnion head, which rotates in bearings let into the sides of the well. The countershaft of the cutter engine is located on the axis of these side bearings. The engine drives the
inches. A main pump of centrifugal type, built eutirely of steel, is employed. The shell was made of extra thickness to compensate for wear, and liners were omitted to simplify its construction, their continual removal being more expensive than a new shell replaced at long intervals. The main pumping engine is of the marine vertical, triple-expansion type, and indicates 700 horsepower at 225 revolutions. A heavy cast iron bed plate furnishes the foundation for the main engine and pump. On this bed plate are also located the thrust bearings, which consist of five adjustable cast steel horse shoes, babbitt-lined. They are so designed that any of them can be dismantled for inspection while the dredge is in operation, which materially facilitates the up-keep. The pump has a 20 -inch discharge and a 20 -inch suction. Its runner is 72 inches in diameter, which at 225 revolutions gives the required peripheral speed for discharging through 1,500 feet of pipe. The surface condenser, having 1,700 square feet, receives the exhaust from the main and auxiliary engines. Boilers of the water-tube type, carrying t75 pounds of pressure per square inch, are employed. They
have a total heating suriace of 6,040 square feet, with a total grate surface of $t 35$ square feet. Water is furnished to the boilers by feed pumps of the Admiralty type. These are connected with the hot well, which receives the condensed steam from the main engine, winch and cutier engines. A heater installed between the feed pumps and the boilers receives the exhaust from the smaller auxiliary engines. Large, easy bends, instead of the customary elbows, are employed in all piping throughout the dredge of a size from 3 inches up. This gives the minimum amount of resistance to the flow of steam,

The winch engine is an γ by to inch double vertical engine. It has five drums for the operations of swinging the dredge and hoisting the ladder and spuds. A self-contained engine located in the hold of the boat drives the cutter. This engine has double cylinders 10×14 inches. Reducing valves are placed in the pipe line of both the cutter and winch engines, and the steam pressure reduced to accommodate these engines, which only require to0 pounds pressure per square inch.

New York State Barge Canal.

While it will be some tume before the Barge Canal will be completed, it will be convenient to have the data given below at hand to guide those who may in the future be interested in building vessels to navigate its waters. A general outline is given of the various routes, which are in the main now fixed, although some slight changes may be made on further con--illeration.

There seems to be an error in the State publication as to the

Canal to near Medina to a junction with the Niagara River at Tonawanda, thence by the Niagara River to Black Rock barbor to Buffalo, and on to Lake Erie.

Opening and Closing: While in construction the canal is to be opened not earlier than May 15, and be closed no later than Nov. 15.

A Useful ${ }_{\boldsymbol{A}}$ Broom Handle.

The life of the marine engineer is sometimes lightened by engineering experiences which are not included in the textbooks, and incidemtally a good deal of human nature is displayed in the course of such incidents. One of shese may be worth mentioning as a horrible example. An engineer's apprentice who was willing, but inexperienced, was sent to fit a sea-cock handle onto the sea-cock under the engine-room floor. As this was in a rather awkward position, the youngster was seized with a brilliant idea which was entirely original, and which nearly resulted in siaking the vessel. He thought that it would be a good plan to slack back the nuts of the seacock gland, take out the plug and fit the handle onto it in the vise. Inmediately, however, that he got the nuts off the pressure of water outside the vessel (which was loaded) forced the plug out of the cock and the inrush of water knocked the youngster down. He was so horrified at the result of lis ingenuity that he did not advise the engineer until some time afterwards. When, however, the trouble could no longer le concealed the problem of pluaging up the hole beeame an urgent matter. The actual plug was under water in

depth of water, as both $1 t$ and 12 feet are given, but the latter ligure is correct.

hakge canal.

The width at bottom to be 75 feet minimum,
The depth to be $t 2$ feet minimum; over sills, if feet.
Water cross section to be $1, t z 8$ square feet.
lucks: Length, 328 feet; width, 45 feet; depth, 12 feet.
All bridges, either fixed or lift, shall have a clear passageway of not less than $t 51 / 2$ feet at its highest ordinary water level.
moutks.

Eastern Division: From Troy up the Hudson River to Waterford, through People's 1sland by new canal and back to the Mohawk River to Little Falls to just east of Jacksonburg, to Herkimer to Rome, through Wood Creek to Oneida Lake.

Middle Division: Through Lake Oneida to Oncida River to Three River Point to Seneca River to Onondaga Lake outlet, continuing up the Seneca River to Jack's Reefs.
Western Division: Thence westerly up the Seneea River to the mouth of the Clyde River to the present canal, or a line selected by the State Enginecr, to Fairgort; thence following the old canal route to about four miles west of Pittsford, across country south of Rochester to the Genesee River near South Park, across the river to near Johnson and Seymour, then west of Rochester, joining the present canal one mile east of Soulh Greece, following thereafter the present Eric
the bilge, and could nut be found, and, after a few muments of agitated thought, the only thing that the engmeer could think of was to sit tiglty $\begin{aligned} & \text { on the sea-cock until the plug was located. }\end{aligned}$ It was found shortly afterwards after the bilge pumps had been set to work, and replaced in the hole.

Trouble, however, reasserted itself. It was difficult to see how to get the gland on over the plug, as immediately the pressure of the hand was taken off the plug it was forced out again in projectile fashion. By dint of further brain processes the engineer got the idea of using a broom shank. The end of the shank was placed on the head of the plug and pressed hard home, while the gland was placed over the other end. The length of shaft allowed the manipulation of the gland town onto the plug, and it was then easy to fit it in position.

The main lesson of this illustration is to show that, no unatter how smart an apprentice or unskilled laborer may be, it is inadvisable to give him the simplest job to do without exercising an adequate amount of supervision over him, as quite unexpectedly he may be seized with an inspiration of his own.

Broom.
Newcastle.
The Captain John Ericsson Memorial Society of Swedish Engineers l.as taken permanent quarters in the Engineering Societies Building, 2) West 30th street, New York City. The membership of this society comprises leading Swedish ellgineers in all parts of the United States,

Clay-Cutting Suction Dredger for New Zealand.

The pontoon suction dredger illustrated herewith has been constructed for the Auckland Harbor Board by Fleming \& Ferguson, Led., Paisley, for work in deepening the harbor and reclamation of land at that port. The vessel has been designed to dredge 5,000 tons per hour from a depth of 33 feet, and discharge this quantity through 3,000 feet of floating pipes over a retaining wall 17 feet high. The connections for the floating pipes can be taken from either side or one end of the vessel as required, sluice valves being fitted to suit the different connections. The pump is built up of mild steel plates, and lined on the wearing surface with special steel renewable wearing plates. The impeller is made of cast steel, with renewable Hades belted on. The pump throughout is of strong construction to withstand the heavy shocks encountered in operations of this cescription, and it is of the single-suction type now generally adopted in this class of work.

The engines for driving it are of the triple-expansion, vertical marine condensing type of 1.200 indicated horsepower. The cutter is driven by independent compound-condensing engines through gearing and shafting led along the top of the suction pipes. The suction pipe works through a center well in the vessel, and is raised and lowered by wire rope tackle eonnected to an independent engine placed helow deck. The gear for working the engine is led to a consenient position on the deck. A complete outfit of the auxiliaries usual in this class of vessel is fitted, and steam for all purposes is supplied by two large marine boilers, constructed to Board of Trade and Lioyd's requirements for a working pressure of 170 pounds per square inch. The hull is builh of Siemens-Martin mild steel plates and angles, and is riveted up to Lloyd's requirements.' Special strengthening girders and doubling plates are fitted alongside the suction pipe well, and at the sides of boiler casing, in order to compensate for the large deck hatches and to withstand the shocks and vibrations consequent on the dredging operations. The watertight bulkheads extend from the keel to the deck, and sub-livide the vessel into
officers and crew. These cabins are roofed with thick pine to resist the heating action of the sun, and have tastefully furnisbed living and messing accommodation. Mancuvring operations are controlled by means of three steam winches, two forward and one aft; and these, with their equipment of anchors and chains, make the handling of the vessel easy. The outfit of the anclor davits, hand pumps, steam suction piping for bilges, etc., together with holds, stores and workshop, all tend to make the vessel a bigh-grade plant for cutter dredging. This is the second vessel of this class built by Fleming \&

THE CLAT CUTTEA.
Ferguson, Ltd., for the Auckland Harbor Board, and the Board, being so well satisfied witb the first, decided to get a larger vessel of the same type.
New Zealand has recently been making great improvements in her harbors, and in carrying out the necessary deepening operations it has been essential to obtain a number of up-todate dredging machines, and Messrs. Fleming \& Ferguson, 1.td., have built and delivered the following: Twin-screw trailing suction hopper dredger Eileen Ward, built in 1910 for

six watertight compartments. A sliding watertight door, operated from the main deck, is fitted to the bulkhead between the engine-room and the stokehold. The coal bunkers and feed-water tanks are placed about 'midships, evenly divided athwartships, and by their positions have little effect on the trim of the vessel, although both coal and feed-water are being consumed while the vesvel is in operation. Both the engine space and the boiler space are covered with deck houses, large, airy and well lighted, easy of access, and arranged generally for stability and convenience. At the fore end of the ship there are two deck cabins for the use of the
the Westport Harbor Board. This dredger was specially designed with heavy cast steel gravel pumps, capable of dealing with boulders up to 12 inches in diameter. She was also designed for stationary dredging. Her hopper capacity is 1,000 tons, and she is capable of loading herself in twenty minutes. rate of dredging being 3,000 tons per hour. Twin-screw sternwell bucket hopper dredger Hapai, capable of raising 1,000 tons material per hour from a depth of 45 feet . Hopper capacity 900 tons. This dredger is fitted with east steel picks, to enable her to dredge rock and other hard material. Built in 1910 for the Auckland Harbor Board, New Zealand.

The twin-screw combined bucket and suction dredger Paritufu, having the mouthpiece fitted with a rotary cutter for dealing with hard material, was built in 19 to for the New Plymouth Harbor Board, New Zealand.

Clay-Cutting, Hydraulic Dredger for the River Nile.

A vessel, of, more properly, a clay-cutting hydraulic dredge, was shipped to Khartoum from the works of Messrs. Lobnitz \& Company, Ltd., of Renfrew, for the Egyptian government for service on the Upper Nile, not long since.
The dredge was designed hy Mr. A. W. Robinson, M. Inst. C. E., Montreal, Can. The actual building was under the direction of the Ekyptian Departmen of Public Works, whose adviser is Mr. C. E. Dupuis, and Mr. P. M. Tottenham, In-spector-General of Irrigation. The vessel was shipped out to Khartoum by sea and rail and there erected; being selfpropelling it was able to make the voyage up the river several hundred miles to the place where work is in progress. The dredger is of the hydraulic type: it is designed to make wide cuts in the bed of the river, and to deposit the spoil on the

**P VIEW OF LaENITZ DREBGE.
lanks throngh a floating pipe line having a suspended sbore discharge. The luull is of steel, approximately rectangular in plan and section, 162 feet long by 38 feet beam, The machinery is mounted on the main deck and in the hold, the two upper decks being divided into accommodation for the officers and crew. A heavy steel suction frame is mounted in front, upon the end of which is fitted a powerful rotary cutter, adapted for dealing with stiff clays and heavy soils as well as soffer material. The suction frame projects sufficiently in front to enable the vessel to cut its own flotation through solid ground when necessary.

Two steel spuds, or vertical anchors, are fixed in slides near the stern, each having a sharp point on the bottom, which holds in the ground and constitutes the anchorage for the vessel. The latter is caused to oscillate from one side to the other upon one or the other of these spuds as a pivot, by means of side lines carried out from the forward end and at-
lached to the shore. The cutter makes a lateral cut upon an arc of a circle, and has a clear $s w i n g$ from side to side of 150 feet; it can make a channel of this width by 25 feet in depth at one time. The main machinery consists of a centrifugal
and the coal bunkers are arranged amidships, so as not to alter the trim of the vessel with varying load of coal. The dredge is propelled by a stern paddle-wheel, driven by horizontal compound engines of the usual type. The underbody of the hull

viEw SHOWIMG DISCHABGE PIPE MNE
dredging pump driven by a triple-expansion engine of 700 horsepower, together with boilers, winches, auxiliaries, cutter-
is shaped or cut away forward and aft to facilitate propulsion, but it is designed more for stationary dredging work than for

ANOTAEM TYFE OH LOBNITE DHEDGE.
driving gear, etc., all of very complete and substantial description.

The hoilers are of the Babcock \& Wilcox watertube type,
navigation. Suitable stecring gear is arranged on the upper sleck forward, where are also placed the levers and signals for operating the vessel when dredgiag. The accommodation for
officers and crew is made especially roomy and comfortable. Separate decks are devoted to the native crew and the officers, each with accommodation for sleeping and dining in the open air, under double-shade decks and mosquito protection. The entire deck space of the three dredgers, and also the machinery space, are enclosed by mosquito netting of oxidized bronze, twelve meshes to the inch, in interchangeable steel frames, so arranged as to be readily removable.
The discharge pipe consists of a number of flexibly-connected floating sections and a terminal pontoon, from which the end of the pipe is suspended. The overhang of the suspended portion may be as much as 200 feet if required, so that the spoil may be put well back in marshy places. The flexible joints are of a new type, an all-metal, self-packing ball joint, avoiding the use of rubber or leather sleeves. The rotary cutter is of the Robinson improved type. and is of cast
engineers in the mercantile marine. According to these instructions, on and after Jan. 1, 1915 , a candidate for a secondclass engineers' certificate will be required, in addition to the present qualifications, to have served cightecu months at sea as engineer on regular watch on the nain engines or boilers of a foreign-going steamers of not less than 66 nominal horsepower, or twenty-seven months in a home trade steamer of not less than 66 horsepower. A candidate for a first-class certificate must, in addition to this,
(a) have served at sea for eighteen months with a secondclass certificate of competency or service on regular watch on the main engines or boilers of a foreign-going steamship of not less than 99 nominal horsepower as sentior engineer in charge of the whole watch, or
(b) for 27 months with a secoud-clase ccrrificate of comfetency or service as first ensincer of a home trade steamer

LONNIIE PEFDCE on the Lavarnteg way.
steel, with renewahle cuting edges. The hladen are made of vecial form, to etst heary clay with as little resistance as pos. sible, atul are self-clearing. The strength uf each lolate is sufficient to safely witlosland the sirain due to chcotulering insmovahle resistances when running at full specel. This type of cutter apparatus represents the latest development of hyulranlic dredging in heavy clay soils, and the strccess which has attended its use will have the effect of greatly extending the field of usefulness of this type of dredger, which had heretofore been thought useful only for sand or soft material. The strength and digging action of the entter blades are fully equal to those of the buckets of the ladder type of dredger: the machine can therefore do work in any material that is adapted for hydratulic transportation through pipes equal to that carried out elsewhere by ladder dredgers.

Board of Trade Examiners,

We are informed that the Board of Trade has issued new instructions to examiners and candidates for certificates as
oif not lese than (g) mominal horecpormer, or three years with a wecomerlas certiticate of computency of service as second enfineer of a similar vessel, or
(c) have served three years nite months with a second-class certificate of competency or service as third engineer of a home trade steamer of not less than on nominal horsepower, if during the entire period be las bren the senior engineer in charge of the whole of a watch on the main engines and boilers. or
(d) possess, or lie entitled to, a first-class certificate of service. There are also new instructions regarding the value, for certificate purposes, of time spent in technical and scientifie training at selools recognized by the Board of Trade for the training of marine engincers.

The Boller Accident on the Delaware.

So many wild statencuts have been made regarding the accident of some weeks ago to one of the boilers on board
the battleship Deloware that we publish the following abstract of the finding of the Court of Inquiry held by the Navy Department:

Three rear headers, Nos, 8, 9 and 10, were blown bodily out of the boiler (a Babcock \& Wilcox).

The headers were severely bowed, their tube faces bulged, and the metal showed signs of overheating. All the back headers of the outboard half of the boiler, 13 in number, were more or less bowed.

The 4 -inch tubes next the fire were all more or less bowed near the back ends, and showed signs of having been burned; and the majority of the 2 -inch tubes were more or less distorted, while a number showed signs of having been white hot.

The superheater tubes and manifolds showed a red color, and the 4 -inch tubes throung the first and second passes showed the blue color characteristic of overheating.

On two of the headers blown out were found scores and dents made by striking obstructions. The character of the
worked by an independent steam engine. The main engines are employed for either propelling or driving the dredging gear. There are two speeds of gearing, to enable the buckets to be worked at different speeds according to the nature of material being dredged. T'wo large multi-tubular hoilers supply steam to the various engines. The lifting and lowering of the bucket frame are controlled by an independent douhlecylinder engine, working the bnitder's latest improved type of hoisting gear. The accommodation for the officers and crew is fitted forward, and is commodious and handsomely finished. Electric light is fitted throughout.

Suction Hopper Dredge St. Lawrence.

Messrs. Willian Simmons \& Company, Led, Renfrew, have constructed a Simons patent cutter suction hopper dredger named the St. Laterence, to the order of the Director of Works of the Admiralty. The St, l-awercuce is of 2,000 tons hopper capacity.

rkeguson ban bazdar ineito mafu.
scores and dents, and the blue culor of the snetal in the scores, indicated that the menal was in a softened condition, due to heat, when they struck.

From a consideration of all the facts presented, the court concluded that the explosion was due to the lack of a suftcient quantity of water in the boiler, and that the watertender on watch at the lime was responsible for this condition.
The so-called explosion could not have been very serious, as the captain, who was on deck at the time, did not even know that an accident had occurred until it was reported to him . In other words, the explosion did not make sufficient noise to attract attention on the upper deck.

Bucket Dredger "Helto Maru."

Hcito Maru, built by Messrs. Ferguson Bros, of Port Glasgow, is of the bow-well eenter-bucket ladder type, and is capable of raising $t, 000$ tons per hour from a depth of 46 feet She is built to Lloyd's highest class. Side chuses are arranged for discharging the dredged material over either side into hopper barges, the Ifting and lowering of each chute being

Her arrangensens are as followx: An imfependent set of triple-expansion engines for driving the dredging pump, with a complete installation of auxiliary machinery, is fitted in a separate engine-room immediately in front of the hopper compariment. Steam for the propelling and pumping engines, and all machinery throughout the dredger. is supplied hy three marine type steel boilcrs. The dredging pump is of the most massive and powerful description to withstand the shocks which may be sustained when dredging in clay mixed with stones. The suction pipe is carried on a girder led through a well forward, and is of sufficient length to enable dredging to be done al a depth of 65 feet below waterline. The dreiger is designed for cutting its own flotation. The eutter at the mouth of the suction pipe is driven through a line of shafting. fitted on upper side of suction frame, and machinc-cut steel gearing actuated hy a set of powerful, independent com-ponnd-condensing engines. In addition to the usual winches for mooring from the deck at how and stern, a special winch is placed anidship, from which the moorings are led along the suction frame to fairleads at lower end.

The hopper is fitted with Simons patent arrangements,
whereby the contents of the hopper can be discharged either through the doors in the ordinary way or over side by the pmind for land reclamation. In addition to loading into its own hopper the vessel is arranged to discharge into barges moored alongside or through a pipe line. Two sets of tripleexpansion surface condensing engines are fitted aft for propelling the vessel at a speed of to knots per hour. The auxiliary machinery in the propelling engine room is of the most up-to-date character. The results obtained with the St. Lawrence at Portsmouth have been in every way satisfactory. It is stated that the St. Lawrence results, in stiff clay, are quite double those obtained by betcket dredgers.
At the present moment Messrs. William Simons \& Company, Lid., are constructing another Simons patent cutter suction hopper dredger to the order of the High Commissioner for the Union of South Africa. This dredger, which is practically of the same size and capacity as the St. Latercnce. will be employed in the improvement of the depths of the bay at Durban.

DREDGER "M. O. P. 210 C,"

The dredger M. O. P. ato C., constructed by William Simons \& Company, Lid., to the order of the Argentine government is of the trailing suction hopper type, and has accom-

William Simons \& Company, Ltd., is a very powerful twinscrew, $\mathrm{t}, 200$-ton hopper dredger, to the order of the Isthmian Canal Commission. This dredger, which will be employed in doing some of the very hardest cutting in the Canal Zone, is titted with two sets of dredging buckets-one set for clay and one for mud. This dredger will be capable of cutting its own flotation and dredging to a depth of so feet below the light waterline when the ladder makes an angle of 45 degrees with the vertical. The dredger is designed to discharge either direct into its own hoppers or into barges alongside. The dredging gear is arranged to give two different speeds of buckets per minute with a constant piston speed of engines, so that the full power of the engines is exerted whether the vessel is working on hard or soft ground.

Two steel cylindrical multi-tubular boilers will be fitted on board; either boiler is capable of supplying steam to the engines and all auxiliaries when at full work. The two sets of propelling engines, which are of the triple-expansion sur-face-condensing type, are of sufficient power to drive the vessel at a speed of to knots per hour. Powerful independent winches are fitted at bow and stern for mancuuving the dredger while dredging, and for raising and letting go anchors, etc. Hopper doors are controlled by hydraulic power. A

plished some remarkable dredging at Buenos Aires. This vessel, which is the largest and most powerful of her type yet constructed, is fitted with extremely powerful suction and self-discharging pumps. Four sets of triple-expansion sur-face-condensing engines are fitted, so that all four sets are available for either propelling or pumping as may be required. Steam is supplied from four cylindrical multi-tubular boilers and one cylindrical multi-tubular donkey boiler. constructed for a working pressure of 160 pounds. The auxiliaries in the engineroom include an independent main condenser, independent steam-driven air and eirculating pumps, feed, bilge and service pumps, feed heater, filter and evaporator and auxiliary condenser with independent air and circulating pumps.
The main centrifugal pumps are connected to the suction frame fitted in the central well at the stern. Water jets are arranged at the bottom of the suction pipe. The hopper doors are conrolled by powerful hydraulic gear, the power being supplied from two duplex sets of steam-pressure pumps. The hopper arrangements include Simons patent suction keelsons. which enable the load in the hopper to be discharged overboard for reclamation purposes. Steam hoist gear is provided for controlling the lower end of suction frame. The M. O. P. 210 C. is understood to have lifted and transported in $2 \mathrm{I}^{1 / 2}$ days fon,oon cubic meters of clay in the Punta del Indio at Buenos Aires. This represente almoet 40.0 m tons dredged and discharged per day.

Among the dredging vessels now under construction by
complete installation of electric light is provided for efficient lighting above and below deck. Also all the most up-to-date appliances in vessels of this kind are fitted up on board.

The powerful dredger the Pelican, constructed by William Simons \& Company, Lid., for the Rangoon Port Commis. sioners, is one of the largest suction dredgers in the world. She is of the twin-serew type, 208 feet in length, 36 feet beam. The dredger is fitted with a suction pipe for dredging from a depth of 3.3 feet, and can deliver 80.000 cuhic feet of sand and silt per hour throngh a pipe line 3.000 feet in length. Formerly cither rubher or leather jointing was employed for pipe lines of this character, hut owing to the heavy nature of the service. in the present instance use has been made of a ball and socket joint of cast steel, the design adopted being claimed to give maximum freedom of movement in every direction, while providing an absolutely watertight joint, special packing being employed for this parpose on the outer edge of the joint.

Gas Producer Experiments.-At the experiment station of the U'nited States Bureau of Mines, Pittsburg, Pa., several trial runs have heen made with an experimental gas producer. using coke as fuel, with which limestone has been mixed in varying proportions, the purpose being to finx the ash and form a liquid slag, thus avoiding clinker and ash troubles and consequent shutdowns. T.iquid elag has heen readily made. which runs freely from the producer. The high temperatures necessary are very efficient in the generation of gas.

A Hydraulic Pipe Line Dredge.

The dredge illustrated and described herein was recently eonstrueted by Ellicott Machine Company, of Baltimore, Md. for the Isthmian Canal Commission for work on the Isthmian Canal.

The dredge is of the custer type with a single sand pumping outfit. The pumping machinery consists of a centrifugal pump directly connected to a triple expansion engine. The material to be dredged is toosened or agitated by a revolving cutter. The feeding into cut is by means of wire rope haulage on each side of bow with pivoted stern and the adrance forwatd is accomplished by two spuds. The steam plant consists of four boilers of the Scotch type built to meet marine requirements for a pressure of 200 pounds per square inch.

General Dimensions.

> Length overall 150 ieet.
> Beam moulded so feet.
> Extreme depth of hull io feet 6 inches.

In service the dredge has demonstrated a capacity, under

end of which are located levers for operating all machinery except the main engine, throttle valves, etc., so that the operator has full control from this point. The living quarters are located aft of the pilot house and are commodious and comiortable. All door and window openings are provided with bronze screens and slatted sliding blinds. The staterooms of the captain and chief engineer are located immediately behind the pilot house, with bath room between. Aft of this is lucated the officers' mess room with staterooms for the various subordinate officers arranged on cither side. Next follows the galley with refrigerator room and two pantries opening into the galley. The crew's mess room is next aft of the galley and the crew's quarters are at the extreme end of the upper house, arrangements being made for separate cabins for the firemen and deck hands, each cabin being equipped with showers and lavatories.

Pemping Machineky.-The pumping machinety consists of a centrifugal pump of the side suction disc lined type constructed throughout of steel and especially designed to withstand strocks and abrasion due to the passage of stones, gravel and sand and with very large openings to admit of the passage of solid bodies without obstruction. The pump is directly connected with the main engine gitaft and the thrust is taken care of by a marine thrust bearing.
ordinary service conditions, in excess of 750 cubic yards per hour, place measurement. At present, it is operating through a pipe line 7,000 feet in length dredging coral sand and coral rock. The aggregate indicated horsepower of this machine under ordinary conditions of service is approximately 1,000 horsepower.
Huts, The hull is constructed throughout of steel and is divided into four water tight compartments by means of three transverse bulkheads and is strengthened by two iore and aft bulkheads running throughout the whole length of the dredge. The main engine and pump foundations and the foundations for certain parts of the auxiliary machinery are built of steel and so designed as to insure the greatest possible stability. Side lights are provided at frequent intervals on the sides of the hull to give light below the main deck in the day time. Marine coal scuttles and hatch openings are provided on the main deck.
Suprastaucture-The superstructure is of woad throughout. It consists of a house over the main deck covering all parts of the machinery. The living quarters are above the main house. These consist of a pilot house at the forward

Man Puaping Engine-The main pumping engine consists of a three-cylinder, triple-expansion vertical fore and aft condensing engine.
Agitating Machinery.-At the bow of the dredge is located a steel ladder or framework resting on heavy steel trunnions which are an integral part of the bull. The depth of cut is regulated by raising and lowering the outer end of this ladder, which is designed to dig to a depth somewhat in excess of 40 feet. The suction pipe is carried by the ladder and extends to the outer end, where it passes inside of a revolving cutter. The cutter is of the spiral type, constructed of steel, and is driven by a shaft through eut steel gearing.
Agitating Engine-The agitating engine is mounted directly on the ladder at its inboard end. It is a double condensing engine especially designed to bear constant shocks and jars incident to the work which it has to perform. The crank pins, guides, bearings, and in fact every feature of this engine, are especially designed to meet unusual conditions of service.
Hauting Macminery.-The hauling machinery consists of a double reversible condensing engine operating through cut
steel gearing a lay shaft which runs transversely across the deck. All drums are operated from this shaft by means of steel gearing with suitable clutches and brakes, one drum being used to raise and lower the ladder, two drums to operate the wire ropes by which the dredge is swung transversely back and forth aeross the eut and two drums are used in lifting the spuds which are located at the stern of the dredge. The transverse shaft carries gypsy heads on either end for breasting purposes and in addition a steam capstan at the stern.
the various connections are taken and with means to haul out the strainer and clean it without docking the boat. In addition to these auxiliaries, the following are located also in the engine-room: Salt water and fresh water pumps for plumbing and sanitary uses, jet pumps for circulating water to various bearings, filter box, heater, grease extractor and other marine fixtures such as gage-boards, wrench-racks, etc.
Pump Room. - The pump room is localed forward of the engine room and the main dredging pump is located therein.

Boulex Plant.-The boiler plant consists of four wet back Seotch marine boilers built under marine rules for a working pressure of 200 lbs . per square inch and are so proportioned that the dredge may be operated under ordinary conditions of service with three boilers, leaving one as a spare. Provisions are made with oil tanks and coal bunkers so that the dredge may be operated either with fuel oil or coal, the fireroom being of ample size and convenient arrangement.
separated from the engine room by a water tight bulkhead. This room contains, in addition to the main pump, a stone box of ample size and quick closing valve on the main suction pipe. The fire pump is also located in this room and in addition to operating the fire service is used in connection with the operation of an improved ash ejector.

Ice Plant.-The refrigerating machinery is located in the after end of the lower honse. It is provided with ice cans

VIEW showinc Mactivxey if tir meicott bexper

Engine-Room.-The engine-roon outfit is of the most modern type of marine construction. The condenser is of the surface condensing type with independent air and centrifugal circulating pump. Feed pumps are in duplicate, of outside plunger type. Special arrangements are made to prevent olstruction of sea connections by a central supply from which
for making ice, a scuttle-butt for drinking water and also cools the main refrigerator, which is located on the upper deck.

Eisctatc Plant.-An electric plant is provided by means of which the whole interine of the dredge is lighted and in addition a searchlight operated from the pilot-house and arc
lights at the bow and stern, the wire being principally in conduits. A convenient traveling crane is located on the main deck and is of suitable capacity to handle all parts of the main pump and any part of the engine room and pumping machinery. Since the construction of this dredge, two machines of equal capacity have been constructed by this firm, one of which is working in the harbor of Havana, Cuba, having been purchased by the Huston-Trumbo Dredging Company, of Havana, and the other being purchased by the United States Government for the harbor of Mobile, Ala.

A Self-Propelled Grab-C'rane Hopper Dredge.

The Owenaminaue, constructed by Messrs. Gcorge Brown * Company, of Greenock, is a very useful vessel for dredging rivers. She is of the grab-crane hopper type and is selfpropelling. The crane grabs work at a depth of 50 feet, and lifts at 30 feet depth 160 tons per hour. The hopper has a capacity of 420 tons, and the vessel when loaded can proceed to sea at a speed of $71 / 2$ knots per hour. The propelling machinery is a compound surface-condensing engine, and the boiler is the marine type, having ample capacity to work both cranes or main engines. The cranes were supplied by Messrs. Clarke, Chapman \& Company, Ltd., Gatcshead, the grabs being
dredging apparatus. She is further fitted with the following machinery for auxiliary service: One compound eagine of 150 indicated horsepower for working the fore and aft winches and the ladder-hoisting winch. A special steam engine for working the independent condenser which takes the exhaust steam of the main and auxiliary machinery. A steam engine working a centrifugal pump which supplies water to the chutes in order to facilitate the sliding of the dredging in the chutes, some kinds of clay being very sticky. A steam engine for driving the dynamo, by means of which the vessel is lighted electrically throughout. Steam for the above-named engines is supplied by two multi-tubular marine boilers, having each a heating surface of 980 square feet and working at a pressure of 120 pounds.
In view of the fact that this dredger will have to deal with soil of extraordinary toughness, the dredging apparatus has been very strongly designed. Instead of being formed by four legs ouly, as is usual, the main franing, carrying the upper tumbler with shaft and toothed wheels and the dredging ladder, consists of six heavy beams, of which thrce are at port and three at starboard side, the two aft beams of each side being, inoreover, mutually connected by means of strong girders In urder to give an idea of the dimensions, it may lie stated here that each of the large cast steel toothed wheels which drive

DREDGR ADELAIDE RUTLT BY SMULDERA

Pricstman single-chain typc, arranged to work through a specially designed ball-bearing swivel attached to a wire rope on crane instead of the usual chain. The hopper doors are of two thicknestes of wood, hinged to a main fore and aft girder, and are slipped by a simple trigger ar rangement on the side combings of the hopper, being closed indcpendently by a rope led to the windlass or after capstan. The vessel is classed 100 A-1 by Lloyds, and was built under their special survey.

Sea-Going Bucket Dredger Adelaide.

The powerful seagoing bucket Jredger Adelasde was built by "Wer i Gusto," A. F. Smulders, of Schiedam, Holland, for the South Australian government. The apparatus is specially intended to dredge very stiff clay. Her main dimensions are the following :

Length	161 feet.
Breadth	34 feet 6 inches.
Depth	13 feet.

This dredger, which has been built in conformity with Lloyd's rules. Class 100 A , and under special survey, is provided with a compound main engine of 500 indicated horsepower, which works either the screw, whilc navigating, or the
the upper tumbler has a diameter of not less than 16 feet. whereas the weight of the upper tumbler, tith its shaft and two beveled wheels, aggregates 21 tons. The power of the main engine is carried to the upper tumbler by means of a very substantial transmission of the fixed type, consisting of strong cast steel toothed wheels and a heavy, vertical shaft fitted inside the man framing. This transmission is provided with a friction brake, which disengages automatically the connection between the engine and the dredging apparatus as soon as the buckets, at any given moment, strike upon a submarine rock or any other object that offers too great a resistance to be safely dredged. This prevents the bucket chain or the transmission wheels irom being broken by some violent shock that might suddenly stop the bucket chain. Instead of being provided with separate steam engines, directly fed by the boilers, the fore and aft winches as well as the ladder hoisting winch are worked by a single steam engine, placed in the engine-room, by means of cast steel gear wheels driven lyy shafting extending over the whole length of the vessel, including the raised fore-deck.
This dredger, which has been christened Adeloide, after the name of the port she is intended for, is capable of excavating to a depth of 43 fect below waterline. The buckets have a
capacity of 2l cuhic feet, the front being made out of a steel plate of heavy section, provided with cutting lip, whereas the bottorn and back consist of a single piece of cast steel. The contract provided for a navigating speed of 7 knots per hour and an effective output of 500 cubic yards per hour when dredging stiff clay. During official trials she has steamed 8 knots, and has easily raised 630 cubic yards of hard clay in one hour, i. e., 130 cubic yards per hour in excess of the output contracted for. The Adelaide made the voyage to Australia under own steam in seventy-eight days, a trip of 11,000 miles. Taking into account that she had to call at several ports for coaling purposes and that she had to struggle with a violent monsoon in the Indian Ocean, this may. be considered a splendid performance for a bucket dredger.

Twin-Screw Bucket and Suction Dredger Hsin-Ho.

The "Werf Gusto" of Messrs. A. F. Smulders, Schiedam, Holland, have huilt a twin-screw combined suction and bucket dredger, the Hsin-Ho, for the Chinese government to use at Tientsin. This dredge is able to cut her own fiotation and to discharge the spoil into barkes alongside or through a floating pipe line of a diameter of 20 inches and a length of $t, 000$ feet, to a height of 9 feet above water level, when

21 cubic feet. An auxiliary engine works the dynamo which supplies electric light. The two main boilers are of the multitubular return-tube type, and have a heating surface of 5,380 square feet each and a working pressure of 120 pounds per square inch.
The Hsin-Ho is capable of performing the following dredging operations:

1. Dredging by means of the hucket chain and discharging directly into barges moored at either side. When working in this manner one of the main engines remains inactive.
2. Dredging heavy soil by means of the bucket chain and pressing it away through the floating pipe line, which is connected to the vessel's stem at water level. One of the main engines works the bucket chain and the water pump, while the second engine drives the force pump. Inside the main framing has been placed the spoil receiver, provided with a grating through which the spoil has to pass before reaching the force pump. Here the stones are removed by a set of rotating knives, whereas the big lumps of soil are cut up by a powerful jet of water supplied by a special high-pressure pump. The force of this water jet acts upon the spoil like a knife and forces it down through the bars of the grating.
3. Dredging as described above, but raising light instead of heavy soil. In this case the water punp and the sand pump may be coupled for working compound. The water pump,

dredging either by the suction apparatus or by the hucket chain. The main dimensions of the vessel are:

> Length between perpendiculars... 157 feet 6 inches.
> Breadth 36 feet 9 imches.
> Depth it feet 6 inches.

The dredging depth of the $H \sin -H 0$, when dredging hy suction or by means of the bucket chain with the ladder at 45 degrees, is 26 feet. Her theoretical output is 650 cubic yards per hour. With the bunkers filled with coal, water in tanks and boilers, the vessel being in full working order, her maximum draft is 6 feet 6 inches. The mean speed, when normally equipped, is 8 knots. The main engines are two in number. They are of the inverted type, compound, steam-jacketed, with surface condensers, and are designed to develop 320 in dicated horsepower each. When the engine driving the bucket chain runs at 140 revolutions a minute, the bucket chain has to attain a speed of fourteen buckets per minute. During trials, however, sixteen buckets per minute were easily carried over the upper tumbler. The capacity of the buckets is
acting as a sand pump, sucks up the spoil out of the receiver, and passes it on to the sand pump proper, which forces it away through the pipe line. One of the main engines then works the bucket chain and the suction pump, the second engine driving the force pump.
4. Sucking from the bottom, while navigating, by means of the starboard trailing suction pipe and discharging the spoil into barges moored at portside. A special high-pressure centrifugal pump is provided for working the nozzle-stirring arrangement fitted at the mouth of the suction pipe. When working in this way, one of the main engines drives the starboard screw and the suction pump, the other engine actuating the portside screw only.
5. Sucking from the bottom while at anchor and discharging into barges or through the pipe line. When pressing through the pipc line, the pumps may be coupled as described, each engine driving one pump.
The Hsin-Ho made the voyage to the Far East under her own steam.

Gold Dredging by Electricity.*

Dredging is the most recent of mining inethods employed for recovering values in auriferous ground located below the water level or in streams where the flow of water is too great to admit of success by other means. That it has attained an important place in the industry is evidenced by the fact that, although the first successful dredge in California only began operations about ten years ago, to-day more than one-quarter of the gold mined in that State is secured by the dredging process, and the bulk of this is obtained from grounds previously mined. The developnient of the gold dredge affords one of the most interesting clapters in the history of mining. It is the latest of a series of suceessive steps in the recovery of placer deposits, following the pan, the rocker, the long Tom, the sluice box, the ground sluice, drift mining, the monitor and the hydraulic elevator. All of these methods had their time and place, and some arc extensively employed to-day, but it remained for the dredge to solve the problem of mining in gronnds helow the water level and in rapidly flowing streams.
cessful, was always very expensive, owing to the scarcity of fuel and the excessive cost of handling it.
With the rapid development of hydro-electric plants throughout the West, and the insurance of a contiuuous, cconomic power supply transmitted through great distances, the mining companies soon turned their attention to the electric motor for operating dredges.
The most successful and practical standard dredge of to-day is the continuous-chain, close-connected bucket type, sarying in capacity from 3 to $131 / 2$ cubic feet. While the details may vary slightly, in general construction it is similar to the ordinary continuous chain-bucket dredge used for other work, except that it must be greatly strengthened in order to resist the excessive straius due to digging in rocky ground. The machinery consists of the digger or bucket line, revolving screens, sluice tables and boxes, stacker for carrying the tailings, high and low-pressure pumps, priming pumps, amalgamator, lines and spuds for guiding the dredge, and occasionally a sand pump.

Dtgars.-The digger consists of a steel ladder of massive construction, built to support the burcket line and resist the

GFNFEAL FLECTAIC OOLP DURDGE AT WOAK.

Rich deposits of auriferous earth lying below the water level in the valley of the Feather River in California led to the introduction of the machine and the establishing of this industry. The gravels had already been mined to the water level, and the wealth yiclded is still a legend of the days when "hundred dollars (20 pounds) a day diggings" were not uncommon. For half a century men had striven to find a means of reaching the lower stratum, but without avail, for the water drove them back. When the dredge finally came it followed closely and was, in large part, due to an attempt to mine with the aid of powerful pumps, which, although inadequate, were suggestive of a more highly satisfactory method. The development, however, has had its failures as well as its successes, for, be the machine ever so perfect, it must fail unless it works in ground that contains gold in sufficient quantities to be profitable and where conditions are favorable for the successful recovery of the metal. Ideal dredging ground is of limited depth with a soft bed rock, free from large boulders, and with values evenly distributed. Where these conditions are combined, dredging for gold may be a profitable industry.

The early type of dredge, which was considered massive and poweriul, is a striking contrast to the dredges of the present day. It was equipped with three and one-fourth cubie foot buckets, digging to a depth of 30 feet, and was driven by a so-horscpower stcam engine: and, although partially suc-

[^20]heavy strains while in operation, especially near bed rock. The bucket lips, bushings and rollers are made of manganese steel, which possesses the best wearing qualities and reduces the cost of maintenance to a minimum. The speed of the bucket line varies from 50 feet (with 18 to 25 buckets) to 75 feet (with 35 to 50 buckets) per minute, depending upon the condition of the ground. For the operation and control of the digger, a variable speed motor is used. This is located on the lower deck and belted to the driving pulley, which is generally situated in the rear of the pilot-house on the upper deck. The duty imposed upon this motor is severe, as it must operate under conditions calling for power varying from 75 percent overload down to 25 percent of its rated capacity. The motor recommended for this service is an alternating-current, in-duction-type machine, known as Form M, designed on Jiberal lines and equipped with a drum-type controller having foutteen running points, forward and reverse, with the necessary resistance for continuous operation on any notch of the controller from one-half to full speed. The maximum starting torque is required and obtained at about the fourth point of the controller, thus leaving three points on which to bring the motor up to half speed, at which time nearly full-rated torque is required. As a result of these conditions, the ordinary motor designed for intermittent service cannot be successfully spplied.

Winch.-To kcep the dredge in place and to move it about or hold it against the bank when digging, head lincs are used,
which are controlled from the forward end and operated by a six-drum winch driven by a variable speed motor. The winch motor, while of smaller capacity, is of the same staunch construction as the digger mosor, and is equipped with a suitable controller and resistance to permit its contmuous operation at from one-half to full speed. It has been found advisable to equip the motors for this service with solenoid brakes, by means of which the motor can be brought to a standstill almost instantly. It is then ready for the reverse operation without the usual reversing of the motor through the controller, which is not only bad practice but may result in a burnout, due to the heavy strain on the windings.

Pestrs. - The high and low-pressure pumps for supplying water to the screens and sluices are generally connected to the same motor. A constant-speed Form K monor of compact construction and large overload capacity, with a speed of about yoo revolutions per minute, is usually installed for this work, and is supplied with extended shaft at both ends, these ex. tensions being provided with tlange couplings for direct connection to the pumps. The saandard General Electric Form K
extreme end of the stacker, where it can be readily housed.
The power for operating these dredges is usually transmitted by the variuus electric companies to a sub-station near the base of operations, at three-phase, sixty cycles, the voltage varying from 2,000 to 6,000 volts. Current is carried to the dredge through an armored cable floated on pontoons, where it passes through the main line oil switch to the switchboard, and is distributed to the various motors.

New ${ }_{L}$ York Barge Canal and the Hydraulic Dredge.

Until recently the use of the hydraulic dredge has been confined within rather narrow bounds. During the construction of the New lork Barge Canal, however, a type of hydraulic dredge has been developed which has distinctly widened this field, and has made possible the utilization of this very desirable type of machine on work formerly belonging entirely to the dipper or elevator dredge. When the first of these dredges was btilt there were already a number of the older type in use on various parts of the canal. Some were

DUCKETS ON THE GENEBAL ELECTMIC DEEDGE
constant-speed motor is recommended for use throughout the dredge, except on the digger and winch.

Sand Pump.-To prevent the filling up of the basin in which the dredge floats, when digging in shallow water, it is somctimes found necessary to install a sand pump, which earrics the line tailings from the sluice boxes to the top of the rock pile by way of the stacker. This pump requires considerable power and is never used unless absolutely necessary.

Priming Pump.-This pump is used for priming the large puinps or for supplying water to the tables during the "clean up." and generally consists of a small, high-spced motor direct connected to a centrifugal pump.

Screzes.-Ether the shaking or revolving sereen may be used to separate the gravel from the clay and permit the fine particles containing the gold to pass through onto the gold tables and sluices below. For this service a constant-speed motor is recommended, which can be placed on the upper deck and belted down to the driving pulley of the screen.

Stackzh.-After screening, the large rocks are carried on a belt conveyor to the end of the stacker and deposited on the spoil in the rear of the dredge. For operating this conveyor, a constant-speed motor is installed at the
successful, but others had proved expensive experiments, largely due to the attempt to dig material which cannot be successfully handled by the ordinary type of hydraulic dredge. The Bucyrus Company, of South Milwaukee, Wis., decided therefore to profit by this and build a more substantial machine. The result was tliree dredges carrying 20 -inch suction and discharge pipes and equipped with heavier and more powerful machincry and greater boiler capacity than other dredges of the same type heretofore built. The material, it was found, shat these boats could handle surpassed the most sanguine hopes of the engineers. One of the dredges was started in light material, consisting for the most part of gravel and elay. After working for some time in this matcrial it struck unexpectedly a pocket of cemented gravel. In order to ceonomize on time and also to experiment with this heavier type of machinery it was decided to try the dredge out on this material. This they proceeded to do, with no apparent ill effects except a small decrease in the output and a litile more rapid wear of the cutter head. To overcome this a heavier cutter was substituted, made of a specially treated nickel chrome steel known as "YZ," developed by the Bucyrus Company in connection with placer dredges. This cutter is driven
by a 10 by 14 independent engine. The punp casiug and runner are particularly heavy, both being of " 12 " steel. The casing is unlined, with a shell of $2^{1 / 4}$ inches maximum thickness in the zone of the greatest wear. To add to the available wear the shell is increased in thickness by radial ribs. The unlined pump casing has lately grown in great favor among dredgers for several reasons. In the first place, a lined pump has a high first cost and up-keep, and, secondly, experience has proved that it is exceedingly troublesome and expensive to keep in proper repair. The unlined casing, on the other band, reguires little attention, and when made of high-grade steel has a sufficiently long life to make it more desirable. Indeed. the saving in repair time alone more than makes up for the possible shorter life. The pump is driven ly a vertical, tripleexpansion, non-reversible engine of the marime type, with eylinders 25, 22 and 30 inches in diameter and an 18 -inch stroke.

The boiler is 750 horsepower, designed for a steam pressure

Suction Dredger for the Argentine Government.

The Argentine goverument has received an addition to ber theet of dredgers, employed in the harbor works and the approaches thereto, in the new vessel M. O. P. 209 C. It is a powerful suction-hopper dredger, designed and built by the "Werf Conrad" Company, of Haarlem, Holland. The dredger has some iuteresting new features.

The dredger has a length of 84.5 meters, with a heam of 14 meters and a deptb of 6.66 (270 feet by $4+$ feet 6 inches by 22 feet), and ber loaded draft is 4.80 meters, or 16 feet. On this draft sbe curries lesides 300 tons of bunker coal, 2,t00 tons of dredged material, as fonnd on the bar known as "Punta de lutio," for which exposed position the drelger is specially constructed and appointed. There are four sets of triple compound-surface condensing engines of $\$ 00$ indicated borsepower each, two engines driving the serews and the two

of tgo pounds. F'ractically every part except certain engine fittings is of steel, east iron being eliminated wherever possible. A five-drum winch operates the spuds, the ladder and the swinging lines. This is driven by an independent $81 / 2$ by 8 engine. The discharge pipe in the stern is made with a special design of double swiveling joint, whicb takes care of the change in trim of the dredge and also allows for the wave motion. The pipe line consists of 32 -foot sections of steel pipe riveted together. This pipe line may vary in length, of course, with the distance of the disposal areas. It is floated on pontoons consisting of heavy watertight casks. The sections are joined by means of stronk rubber sleeves. The shore line consists of 16 -foot sections joinel ly telescoping. The full capacity of these dredges under the most favorable conditions has never been tested. The Clyde, however, has done $\mathbf{t , 2 3 0}$ cubic yards an hour in extra heavy material, and under more favorable conditions had made, with ease, 400,000 yards a month in two shifts of eight hours each. In five months last summer the dredge made $1,300,000$ cubic yards, despite the fact that during one month a very heavy streak of slate was encountered amounting to some 75,000 cubic yards, which required a whole month to clean up. This output was made working tbree eight-hour shifts.
other engines driving each a centrifugal dredging pump. As the four engines are so grouped as to he two by two in one line, they may be readily comected so as to drive each pump or each screw with the aggregate power of both engines. When drelging, however, each engine suns separately, the connecting only being used eitber when pumping asbore over a long distance of when steaming on a long voyage. The vessel's speed when loaded is to knots wben working at 1,700 borsepower. All four engines have one condenser in common, separate air and circulating pumps heing provided, the air loing left out at every trabsverae keelon between the slours. being a eentrifugal pimp made hy the buililers. The dredgmg pumps are built up from steel plates and angles, and bave a complete internal lining of special steet, which is to be renewed when worn. They have suction pipes of 28 inches diameter, cafried through the vessel's sides, one on the starhoard, one on the port side and then pointing forward so as to be driven against the material to be dredged by the forward motion of the vessel. The lower end of each pipe, which is nearly on the half length of the ship when lowered down, is towed by a strong steel hawser, set tight by special steam winches placed above the carko hold, which is covered over the greater part of its lengtb, the water being only allowed
to escape from the hold ovef a short lengtlt at the extreme fure-end. The hawsers pass over sheaves fixed as near the low as practicable at each side. There are two steam winches un the mantenvring deck for raising and lowering the suction pipes, and two hydraulic cranes take the after ends of the pipes to lift them above the deck level and to run them in-board. The catheads, from which the forward ends are suspended, turn up when the pipe is raised so far as to touch, so that this part of the pipes is also carried in-board. When pumping from the bottom the material is delivered into the hold by two pipes, which are of a square section, and without a bottom for w far av they rin over the hold. Thus all material is first deposited at the extreme after-end of the hold, where, as the water can ouly escape at the extreme fore-end, and the material only comes farther forward when the after part is filled up, by which arrangement a great saving in the practical output is achieved. The hold may be emptied by the usual bottom doors or by the pumps, there being a special suction arrangement on the builder's own patent to achieve this. It consists in laving the bottom doors of a hollow section formed by wo plates, the lower plates being continuons, the upper plates lring left ont at every transverse keelson between the doors. These transverse keelsons alos consist of two plates; in the

front plate a door is cut, which opens into the suction channel iormed by the bottom doors. Water is admitted if neces--ary by valves on the front bulkhead of the hold, thus insuring a strong current to force the stuff into the suction channel. The delivery in the case of drawing from the hold is directed overtoard or into a connection pipe to which the floating pipe line can be attached.

The olficial trials gave an average output of 6,000 meters t \$8,000 square feet) of dredged material per hour, this quant1ty fdling the hold completely in only fifteen minutes' working The emptying by the pumps takes still less time, or alupt twelve minates on an average. The bottom doors are wich mparately worked by a vertical hydraulic press, these presses leing operated from the bridge deck, which extends wer the full length of the hold. Ihere are also the hand wheels for working the smaller doors, giving access to the suction channels in the bottom, and the winches for working the suction pipes as well as the hydraulic cranes for the after part of these pipes, so that all the work is carried out on the same deck level. A flying bridge, with wheel-house and engine telegraphs, is supported on pillars above the working deck, and affords a free view all round necessary for the navigation of the ship. In the engine-room there are also fitted special high and low-pressure pumps for forcing water into the interior of the suction pipes to facilitate the clayish material in gliding withott too great a resistance. The suc-
lion pipes are fitted outside with hollow rings, to which the delivery pipes of these pressure pumps are attached, small nozzle;shaped plugs being screwed into the thick plates of the suction pipes into such positions as to create a spiral film of water inside the pipes. This arrangement, invented by Mr. Carlesimo, has proved to lee effective in dealing with the material found at Funta de ladio. The suspension of the after part of the suction pipes is arranged se as to give a little when the resistance against the pipes in the bottom beconces too great. Thus the bend at the ship's side is curved downwards, aml a tlexible connection of curved form used in licu of the ordinary straight length of flexible joint. The arms carrying the weight of the pipe are hung from the bend. and these links allow of sufficient play to lift the znouth of the pipe free from the bottom, by means of a cable pulling the forward strspension in a broken line instead of the straight line corresponding to the usual position.

As anxiliary machinery there is a complete installation for
buat's falls are attached aud tire whole arrangement is suspended from the fumel. When the boat is lifted from its chorks the arms are lowered down so far as to carry the boat clear from the suction pipes, after which the boat is lowered by its own gear.

A Combined Suction and Bucket Dredge.

The Wilton's Eingincering \& Slipuay Company, of Rotterdam. Holland, has built for Mr. C. H. Campbell, dredging contractor, of New Broad street, London, England, a dredge which has lieen named Subworker. It is of the following dimensions:

electric lighting of the ship, one ice-making plant, two bydranlic force pumps, one steam accumulator for same, steam stecring gear, windlass and winches near the masts for lifting weights of ty tons and to tons, respectively, at fore and main mast A complete repair shop is installed on a level with the upper platform in the engine-room, containing an electrically-driven lathe, shaping machine, punch and shear, trilling machine and smith's hearth. Electric fans are installed in the engine-room and erew spaces, as well as in cabins, and the sanitary arrangements of the vessel are very complete, there being four bath rooms with hot and coll showers and sitting baths completely fitted. The crew's quarters are in the bow unfler the main deck, the ship's officer, aft under the same deck, white there are a suite of engineers' cabins on the main deck at each side of enginerrom trunk easing, comprising cabins for chief engincer of the surveying department, seven assistant engineers mess room, bath room and closet. The equipment is completed by a fast steam launch, set overboard by the after derrick; further, there are two life-boats and one dinkhy. The life-boats are hung on stott arms of channel section, connected by a pipe running over the full length of the boat. To this pipe the

The vescel is built tinder Lloyd's and fitted with a triple. expansion steam engine of 100 indicaled hursepower. The transmission to the top tumbler is by means of heavy belts and cast steel spur wheels with dothle helical tceth. Ther sand-pmnsp is coupled directly to the crankshaft, and has *uction and discharge tubes of $2 t 1 / 2$ inches diameter. The maximmm drefging depth ly buckets or suction tube is 59 feet. The clustes are inclined to the stern in order to work with loug larges. The center chute is automatically worked by the ladder to get the right position for the different dredging depths. The large-loading arrangenent of the pump is made by stecl pipes, as shown on the print. The buckets contain 24 cubic feet, and are constructed of apecial steel, the weight of each lucket being 24 ewt., and each lucket being fitted with three mangarese steel digger teeth. The picture herewith shows the trials at Rotterdam, in which the dredger lifted 400 tons of material per hour.

This dredger is fitted out with a main and an auxiliary ladiler, permitting her to dredge at great depths with total guidance of the buckets and under a good angle of excavation.

U. S. Suction Dredge New Orleans.

In presenting particulars of the New Orleans, now under construction by the Fore River Shipbuilding Company of Wuincy, Mass., it is of interest to review briefly the comparative conditions under which dredges are operated in America and in other countries.

In the United Siates and Europe the development of slrelging appliances has progressed along somewhat divergent lites. In the former the temency has been to employ the entside contractor in the development of harbors and channels, while in Europe it is common to find such work in sontrol of local authorities created for the particular purpose. The private contractor naturally wishes to restrict the size and expeuse involved in his plant, while a powerful puhlic curpuration will build the largest pussible appliances, regardless of first cost, with a view to the greatest cconomy in operation-therefore, we may expect to tind in the L'nited States a great developmem of the sualler type of dredge, wach as the dipper, clamshell, and small suction-pipe line types, while in Europe we find the greatest advance in the building of the enormons bucket-ladder; hopper, suction and - Ther costly but poweriful and economical dredging appliances. What in the United States there is one exception. The War lepartment, wlich, throngh the Corps of Engineers, control, sll river and harbor developinents, is the largest owner and uperator of dretging plant in the world, and is necessarily i.solved in dredging projects of the greatest size and im-" prortance, from that of the Panama Canal downwards. One if the problems of great complexily is the keeping of the cotrances of the Mississippi River clear of the mud which comes down in endless volume. Jetties have been built at great expense with a view to creating a scouring action in the channel, but an enormous accretion of mul in shoals reonlts at the end of the jetrics and forms a bar obstructing the passage of large vessels. To cut this har and continue the course of the channel lietween the jenties, continual tiredging is essential. The conditions compel the use of the largest and noot powerful type of hopper dredge available and it becance necewary, therefore, for the Corps of Engineers to adopt some nosel tspe of dredge is order to handle

Breadth moulded	50 feet
Depth mouldedtithtir	26 feet
Length of hopper	93 feet 9 juclues
Capacity of hopper	3 3, ${ }^{\text {a }}$ cubic yards
Draft loaded	20 feet
Coal bunker capacity	300 tons
Speed loarled	toknots

The vessel has a straight stem and twin semi-elliptical sterus, between which the dredge arm is placed, and is rigged with the two pole masts. The ten lospper wells are located amidships with the boiler-roont immediately forward and the

engite-remut abait uf them, From the aiter engine-room balkhead aft, the ressel has a chanuel or well, dividing the hull and forming twin sternis. In this well is arranged the tredge suction arm, forming a huge girder about 67 feet long, incorporating the two g-inch diameter pressure water aul two 26 -inels tiameter sution piges. At the forward end of this well a massive cavt steel pillar block on each side supports a pair of heavy east steel trunuions. which in turf.

the etormous inasees of nute economically and efficieutly llence the order for the Vew Orleang.

This drcalge is of the following dimensions:
Length over all (not including dredge head) 315 fect
Length between perpendiculars . . . 100 feet
carry the girder arm. At the lower end of the girder is a huge pair of hinges by which the bucket head is attached so that it has a movernent of rotation about a horizontal axis at right angles to the direction of the girder to enable the cntting angle to be varied at will. This dredge head is inanipulated by durable steel wire rope falls running over
large sheaves carried un a nassive stern bridge built astride the well, the falls in turn being operated by a powerful deek wiuch, which enables the dredge head to be lewered to a dredging depth of 50 feet or to intermediate depths, or raised clear of the water. The liead, as already explained, is practically a muge enclosed rake, which in the case of the Nese Orleuns is some 18 fees wade by 3 fect fore and aft, serrated aloug the edge with sharp eutfing feeth tlirough the incisors of which is ejected high pressure water to aid in slisintegrating the spoil and make it of suitable consistency 10 be sucked through duplicate suction pipes into the pumps from which it is deposited in cither of the several hoppers.

Installed it the engine room are two specially designed 26 -inch centrifugal dreclgong pumps, having ehaubers lined with manganese steel and with removalule wearing pieces on the impellers of high grade east steel The main engirles comprise four sets, arranged in pairs tandem and butt on comonon bedplates, of triple expansion invertell marine type, having cylinders 12 inches, 19 inches and 32 inches, with a commen saroke of 24 inclies and capable of exersing a comlined horsepewer of 2.500 . The two after sets of these main engines are coupled direct to the propeller shafting and the two forward sets to the 2 -inch centrifugal tletge pumps By an ingenious arrangement of clutches the propelling ant pumping engiues can be compled together so that the full trower of all four engines can be exerted on the twin propellers when desired, while, when dredging, the after sets will be free to drive the propellers anl the forward sets will drive the dredging pumps. The pressure water or jet panps for disintegrating the material being drelged are three in number, of the vertical dupies pattern, capable of a combinted capacity of 300 etubic feet of water per minute. Stean is supplied by four Babock \& Wilcox watertube boilers, having a fotal beating surface of 12.664 syuare feet and grate surface of 317 square fect. The installation is caprable of flling the ten hopper bolds in less than 120 minntes, the combined capacity of which is 3.027 cubic yards, or approximately ,000 tons. The dredged material may then be iransported by the vessel to any convenient dumping gronnd at a speed of 10 knots per hour, when, by the manipulation of four hydraulic ratn mechanisms, the bopper dours, 20 in number and opening omwardly through the ship's bottom, may be operated eitter indisidually or simmitaneobsly for discharging material, an operation, therefure, secupying only a few minutes when all doors are open.

The hoppers have a mixing water pipe system by which sca connections can be openef to farmish mixing pressure water to thoroughly lossen the precipitated material. Another important feature is the arrangement of settling troughe, baffle plates and overflow sluices provided to allow any surplus waler which has been sucked in to escape overboard without earrying drediged material. Should it be desired to utilize the dredged material for reclamation work, a swivel deck discharging pige has been installed, to which the necesary lengths of shore piping may lee coupled, and tirough thie pipe the dredge can discharge her own cargo by stucking it from the hoppers and cjecting it to any location desired or, as a third alternative, into scows or other hoppers alongside.

The New Orleans furnishes comfortable and commodious quarters for its erew. The captain, inspector and first mate are berthed in a large deck botse, while the chief engineer and his assistants have been accommodated in the after derk house and adjoining the engine ronm. This after deck house is also arranged for stewards, cooks, etc., and provided with suital)ly furnished mess tomms for officers and pesty officers, together with toilets, wash places, etc. On the lower deck aft on each side of the well are mess rooms for seamen and firemen, cold storage moms and refrigerating machinery.

The monkey forecastle is divided off into quarters for seamen, firemen, oilers, storerooms, wash places, carpenters' workshop, etc., while nearby are located the quartermaster and boatswain. As the New Orleans will operate mostly in semi-tropical waters, the greatest attention has been paid 10 the sanitary and ventilation arrangements, and all living quarters and machinery places are well supplied with both artificial and mechanical ventilation.
The auxiliary machinery comprises a No, 9 Hyde Windlass Company's steam and hand windlass, three No. 3 Hyde Windlass Company's stean capstans, and twin sets of Williamson Bros.' spring quadrant type steam steering gear, operating the two rudders in unison and controlled by an improved trlemotor system operating from pilor howse forsard. Consider. ahle atiention has been paid to the special hoisting winch, furnished by the Lidgerwood Manufacturing Comgany, which has been designed so that when there is a pull of ten tons on each dredge arm fall, the winding speed will not lie less than 50 feet per minute. This winch is placed on top of the after house, on a steel frutndation butilt up from the main tleck, and arranged so that the winh man will bave a clear louk-out aft atd onerate the elugine, to lift or lower the dredge arm, by turning a vertical wheel either to purt or starloard as in a steering-nheel. The electric light plant consists of two rro-volt generators, each of 25 kilowatt capacity, driven hy Curtis steam turbines. The vessel is lighted thronghout by electricity and in addtion there is supplied a searchlight, of 35 amperes eapacity. A steam heating system is installed, with intividually operated radiators.

Self-Propelling Bucket-Suction Dredger Uruguay.

Dredger E'ruguay was onlered by the U'rugtayan government from the Koninklijke Nerlerlandsche Grofsmederij (Royal Dutch Forge Company), at I.eiden, Holland, and represents a type of dredger which ean he called an universal dredger. The material to be dredged can be raised either by a bucket chain or a suction pump, and delivered in barges alongside or through a floating pipe line direct on shore at a distance of $\mathrm{t}, \mathrm{0} 0 \mathrm{feet}$ against a height of 20 feet. The principal dimensions of the dredger are as follows:

	Feel.
Length over all	145
Breadth	26
Depth molded	9
Draft, maximum	5
Dredging depth	27

The draft was kept as light as possible to enable the diredger to pass over the varinus sandhanks in the river mouth, where slie is intended to work. The reesel in providef with two compound surface-eondensing engines: one engire. placed lengthwise, for driving the suction pump and the propeller. the second engine, placed athwartships, for working the hacket chain. The vessel is further provided with four doublecylinder steam winches for working the hoisting ropes for the lonket ladiler and stection pipe, the bow, sive and aft chains The dredger is lighted by electricity thronghont Steam for the above-mentioned engines is supplied by two marine bailers, having earh a heating surface of 753 square feet and a working pressure of 120 pounds per square inch

The bucket chain has a capacity of raising 300 tons of material per hour. The buckets are constructed of sterl plates and provided with hard steel cutting liands. The engine power is transmitted to the upper tumbler shaft by two belta. two pulleys and two sets of cast steel gearings. The sand pump is of equal capacity to the bucket chain, and is constructed of steel plates and angles, and fitted inside with removable hard steel weaving plates. The flyer is of S. M steel.

forged in one piece-the flyer shaft fitted with hard steel weaving bushes. The suction pipe is constructed of 36 -inch steel plate, and is mounted on a strung ladder placed in well. The delivery pipes are mounted on fluaters of cylindrical form, and constructed of steel plates and coupled by means of speeially designed couplings of armored teather. The dredger has been tested thoroughly, and the output of the bucket-chain as well as of the suction pump showed an excess of the requirements stipulated by the kovernment. The vessel made her voyage to Montevideo under her own steam.

The hull is steel fitted with four watertight bulkheads. The boilers are two in number, of the return tubular type, 8 feet 9 inches diameter by 13 feet 9 iuches long, each, and are fitted with superheaters. Sixty pounds of steam is carried. Her engine is a vertical condensing beam with a 40 -inch cylinder and a 9 -foot stroke. Feathering paddle wheels are provided, 20 feet in diameter, with 8 -foot buckets, which are of oak. She is fitted with a Hyde windlass, capstan and steam steering engine. The electric plant is a 20 -kilowatt General Electric outfit direct connected. Sixty tons of coal

Chesapeake Bay Steamer Three Rivers.

The Maryland Steel Company, of Sparrows Point, Md., has completed, for the Maryland, Delaware \& Virginia Railroad, the side wheel steamer Three Rivers, for night service on the Chesapeake Bay, to accommodate 350 pasrengers. The dimensions of this ressel are:
can be carried in the bunkers. The finish of the boat is very acceptable, the joiner work being painted white with gilt relief. The main stairs, however, are hard wood. Interlocking ribber tiles are fitted throughout, except in the kitchen and pantry, where asbestolith is used. In all the rooms steam heat is supplied, as is also running water. Every comfort has been provided for passengers.

3EW GAV LIMEE THEDE HVEMS.

Length on water line. 180 feet
Length over all................... 188 feet
Beam, molded.................. 36 feet
Beam, over guards............. 57 feet 6 inches
Depth, molded................... . . 10 feet 5 inches

The British navy estimates, as made in a preliminary announcement, call for an expenditure of $£_{44.392,500}$ ($\$ 221,-$ 962,500) for 1911. The programme includes five Drcadnoughts, three protected cruisers, one unarmored cruiser, twenty destroyers, six submarines and an increase in the personnel.

VANADIUM STEEL IS EFFICIENCY STEEL

A few years ago a spectacular nov-elty-to-day the spectacular necessity.

All efficiency experts use Vanadium Steel in gears, forgings and castings where the maximum strength and the greatest service are required.

You can buy Vanadium Steel from any reputable maker of merchant shapes, forgings, iron or steel castings, springs, gears or special parts. W herever ordinary steel fails, try Vanadium.

Investigate through our Enginering Department.

AMERICAN VANADIUM COMPANY
 Miners of Vanadium Ores
 Largest produce:s of Vanadium Alloys in the World Entire product sold by the Vanadium Sales Co. of America 318 Frick Building PITTSBURGH, PA.

VANADIUM BRONZE

TO FIT ALL CONDITIONS OF MARINE SERVICE, IS HEREWITH SHOWN. THE PHYSICAL PROPERTIES OF EACH TYPE SHOULD BE NOTED IN THE APPENDED TABLE.

TVPE 1. For general ran of castings, such as propellers, propeller struts, couplings, relief valves, shaft sleeves, thrust rings, gear pumps, hooks, gun mountings, stern bearings, etc., etc.
TV'PE 2. For marine fittings, condensers, gate valves, rocker arms, bilge pumps, biunacle stands, mast fittings, cleats, chocks, belaying pins. governors, search light stands, towing hooks, brackets, eccentrics, throttle valves, torpedo tubes, torpedo breeches, conning towers, periscopes, deck plates, etc., etc.
TVPE 3. For engiue housings, engine bedplates, air compressor bedplates, air compressor framings, hand wheels, gears, rudder bearings, stuffing boxes, windlass gears, windlass drums, bearing brasses, bushings, spiral gears, port lights, air pumps, reducing valves, etc., etc.
TVPE 4. For whistles, radiator valves, also for forging purposes.
TVIE 5. For plug cocks, steam traps, thermostats, ete.
TYPE 6. For forged pump rods, bolts, valve stems, hose couplings and all kinds of fittings to be riveted. This type is also produced for rolling and drawing.
TY1'F 7. For general hardware, quadrants, railings, name plates, indicators, hatches, grease cups, oil cups, gauges, stanchions, engine telegraphs, controller fittings, etc.
TYPE 8. For air compressor cylitders, oil pumps, iujectors, exhaust headers, exhaust valve bodies, elbows, tees, water jacketed bearings, gas mufflers, hydraulic valves, hydraulic valve fittings, steam valves, etc. It is a high pressure Steam Metal.
TVPE 9. A special netal used in ship leells, electric bells, electric gongs, fire bells and gongs, submarine signal bells, etc.
TV゙PF 10. For turbine buckets, superheated steam valves, steam nozzles, pump linings, trolley wheels, circulating purmus, safety valves, journals, glands, etc.

WHEN ORDFRING, PLEASE SPECIFY TYPE OF VANADIUM BRONZE YOU DESIRE:

VANADIUM METALS CO.
 FRICK BUILDING
 PITTSBURGH, PA.

FRENCH AUXILIARY MOTOR SHIPS.

av J. PELTAKM

The total amuutt authorized in France as bonuses to the shipbuilders and ship owners, according to the law of 1803 , amounted to $151,000,000$ francs ($\$ 6,040,000$) ($\$ 30,200,000$). The big "wind-jammers" built under this law profited most by it.
In 1912 sailing ships will receive their last subsidy. Many ship owners, not being able to carry on their business withoun a subsidy, are now trying to obtain a "special compensating law," while well-managed and old firms are attempting to hold their business through up-to-date methods of appliances. Messrs. Prentout-Leblond and T. Leroux, of Rouen, who are known all over the world for their enterprising spirit, among other shipowners decided last year to alter their four-masted petroleum bark into an auxiliary ship. In order to do this, the Quevilly underwent alterations for nearly one year in the Havre docks, changing her stern and putting in twin screws, expending abous $\$ 6,000$ ($\$ 30,000$), which included installing oil motors. This four-masted bark was buite in 1897 by Messrs. Laporte \&.Company of Grand Quevilly, near Rouen, and she proved herself in every way a seaworthy boat, making several remarkable passages hetween New York and llavre. She is steel-built, divided into ten watertight compartments, with two steel decks extending fore and aft, giving her great longitudinal strength. She is propelled by twin serews actuated by four-cylinder Diesel engines, built by the Maschinen Fabrik Augsburg-Nurnberg Akt.-Gesellschaft. Her trial trip was carried out on the 15 th and toth of January. last. Her displacement is about 3,000 tons and the best run she made on the measured mile was somewhat over 7 knots, her average speed being 6.1 knots. It is expected, however, that with 100 tons of fuel in her tank her radius of action will be 4.000 to 4.500 nautical miles. The owners of the Quevilly were so coufident of results that before any trial was made they ordered a five-masted auxiliary cargo boat from the Gironde Works \& Shipbuilding Company, Bordeaux. She is named France and will be the largest of her class, and will be put in the New Caledonian ore trade. Her dimensions are as follows:
at their works at l.e Creusot. Wiadlass, winches and capstans, respectively five and nine in number, will be used for handling the anchors, hawsers and cargo, and will be actuated by steam, a donkey boiler being fitted on board for generating steam. It is to be noted that all mainsails and the general working of the ship and its sail are to be handled by the use of the steam winches. She will be lighted throughout ly electreity, the generator being run by a small motor. She will also be heated throughout by steam. The accompanying

'YIf watsitip section of ruaxict
drawings give details as to the engines, arrangements and atconnumdations, etc.
If the hoped-for results are obtained, the Quevilly and the firance will become new types of long-distance, or over-sea veskels, and such ships ought to be the best an \mathcal{C} cheapest for such work. On shorter voyages it may be found that motor boats will prove more efficient than auxiliary-fited vessels, but on long voyages the auxiliary ship will undoubtedly prove more satisfactory. In 1902, owing to the large number of big sailing ships built in France, close attention and study were given to the type which promised best returns, and the auxiliary ships will undoubtedly prove themselves the more efficient, being able to make regular trips, independent of calms or eontrary withs. The many sailing ships built under the subsidy law of 1893 cost on an

Length over all, 1,31 meters (4,30 feet).
1.ength between perpindiculars, 119 meters (390 feet).

Mean breadth outside plate, 17.50 meters (57 feet 5 inches).
Mean draft astern, fully loaded, 7.20 meters (23 feet 6 inches).

Cubic capacity, $9,6,60$ cubic meters (352,000 cubic fect) .
Displacenient, futly loaded, to.7,30 tons.
Gross tonnage, 6,100 tons.
Net tonnage, 5,500 tons.
This vessel will be propelled hy twin serews, the motive power being two Diesel engines, two cycle, of the SchneiderCrels improved patent of goo horsepower each. The main engines, auxiliaries and fuel tanks are located aft in a watertight compartment. As the stern of the ship, on account of the eontracting lines, is of little une for cargo, the engine room will be situated aft, thus making more room for cargo. The motors are to be built by Messrs. Schneider \& Company
aserage 050,000 (ranc, ($£ 45,000$) $1 \$ 1,30,000$) and it is figured that the cost of an auxiliary motor would amount to $£ 2.000$ $1 \$ 10,000$) extra, and the ship owner could well afford to pay this additional sum, as it practically doubled his income.
In an article published in the French press about twelve years ago it was said that a so horsepower motor, or two 75 horsepower motors, weighed 70 tons approximately, and that these operated by liquill fucl would give satisfactory results, such fuel being easily obtained all over the world, and at a price even lower than in France. The revolutions considered best for the propeller were ahout 200 per minute. and they should be so located as to be completely submerged when the ship was in ballast, and it was suggested that the handling of the motors should be so arranged that it could be done from the deck. On a consumption of $1 / 8$ gallon per indicated horsepower hour, this ship would have a radius of action of about 1.000 miles, or 265 steaming hours. She would be able to navigate anywhere, and certainly such an equipped
lsoat would have every advantage possible in getting charters, as she would have to pay less insurance, no towing bills, less lucal pilotage, canal, lighthouse or harbor dues.
cially the Herzogin Sophie, Charlotte and R. C. Rickwers, the first-named being the training ship of the North German Lloyd. The Rickmers is a splendid vessel belonging to the

SHE VIEW of ENGINE of THE gUEviLEV.

We find in the Lloyds and the French Veritas only twentytlaree auxiliary ships of 300 tons net register, and of vessels of
well-known firm of Kickmers, Reismnhlen, Rhederei \& Schiffau Akt. Gesellschaft, and was built in their Bremerhaven

OIL motoas on the auxjliany ship quavilly.

1,000 tons register there are only four. The following information should be looked at with attention, noting espe-
yard. As the owners' rice mills turn out something like 200,000 tons of rice a year, it was profitable, of course, to
transport this product in their own vessels. The Rickmers made long voyages under steam and canvas, her average mean speed being equal to that of any cargo boat of similar size, and, being fitted with engines, whe was able to handle herself in all weather to advantage, and her running expenses were small. One of her first voyages from New York to Saigon lasted eighty-five days, and another from Hamburg to San Pedro ninety-seven days, and, in spite of the fact that she encountered very unfavorable weather in rounding Cape Horn, she made most satisfactory time, as the following log will show :
10,357 miles under sail in 6od. tzh. $=172$ miles per day. $=7.18$ knots per hour. $5.504{ }^{4}{ }^{4}$ steam in $37 \mathrm{~d} . \quad 4 \mathrm{~h} .=1,86$ miles per day. $=6.20 \mathrm{knots}$ per hour. 15.86 t miles in 97 days 17 hours $=156.6 \mathrm{t}$ miles per day or 6.8 knots per hour. The caln zones of the equator she

passed through under her own steam and rounded Cape Horn partly under canvas ami partly under stean.

During the season about sixty large "wind jammers" sailed from Europe to the Pacific ports, averaging 155 days for the passage, while the Rickmers gained 58 days over the sailing vessels. If we compare the voyage from Hanburg to San Pedro with the best trip made by the five-masted bark Preusen, the finest sailing ship under the German flag. from Cuxhaven to Valparaiso, some 5,000 miles shorter and which was covered in eighty-fonr days, it is fair to conelude that the Rickmers' passage, owing to her auxiliary engines, was most satisfactory, as she made an average of $14 t$ miles per day, or 6 knots per hour, and carried 32,000 tons of cargo. It is somewhat surprising that the Rickmers' company, after obtaining sugh excellent results, did not build an improved ship, and that they did not must be accounted for by the extremely low freight rates during the last few years, and also to the extraordinary tonnage under way in English yards, and the general depression in trade. The triple expansion engines fitted to the Rickmers will not be duplicated, as the auxiliary motor evidently will answer the purpose far more
cconomieally. If we take into account the weight and space required for coal per mile or knot run, we can casily see that the net cost is greater than with liquid fuel. and a motor does not require from twelve to twenty-four lhours to get up steant, and has many other advantages. This class of auxiliary lmat will be a vast assistance betwer'l countries and their colonies for secondary lines of coumerce, enabling them to have more frequent communication and at less cost. With the present prices quoted by shipbuilding yards, an auxiliary ship can be built cheaply; the motor can be installed economically, and these points must be alluring to enterprising ship owners. The firm of Messrs. Prentout-Leblond \& E. Leroux of Romen are to be complimented for their enterprise in

HTEAK OF MOTOE-EMATEPED SHIP.
equipping the Qurtilly and the Frauce, and these vessels will certainly be watched with the keenest interest hy the shipping houses every where.

I may say that a company has been formed at Paris under the name of the "Sociéte des Navires Mixtes," with a capital of 750,000 franes $(\$ 130,000)(\$ 30,000)$ to develop this interesting type of auxiliary vessel.

The Heraogin Sophic Charlotle was buile by the Rickmers Company in 1895. Her dimensions are as follows: Length, 276 feet 3 inches; breadth, 4,3 feet 2 inches; depth, 25 feet 5 inches. Her gross tomage is 2,581 , and net tonnage, 2,310 . She carries water ballast to the amount of $t, 150$ tons, and is built of steel, with two decks.

The R. C. Rickmers was built by the Rickmers firm in 1006. Her dimensions are: Length, 410 feet 5 inches; breadth, 5.3 feet 6 inches; depth, 30 feet 4 inches. The gross tonnage is 5.548 , and nel tonnage, 4.606 , and she carries water ballast of 2.700 tons. She is built of steel. Her engines (steam) are three-cylinder, $8^{7} \frac{1}{6}$ by $3011 / 16$ by $47^{-1 / 4}$ inches, with a stroke of $31 \mathrm{~V} / 2$ inches. This engine is to develop 1,000 horsepower and the bunker capacity is 630 tons.

The Taisu Mars was built by the Kawasaki Dock Yards in $1 g 04$ and was the training ship for the Japanese Navy. Her length is, 274 feet 4 inches; breadth, 42 feet 9 inches; depth, 24 feet 1 inch. She is built of steel, with four decks, and fitted with two triple-expansion steam engines, 13 by $2 t$ by 34 inches by 27 inches stroke. Stee has, of course, two propellers.
The Quevilly: This vessel was built by Leporte \& Company in 1897. Her length is 308 feet 5 inches; hreadth, 45 feet 8 inches; depth, 26 feet 8 inches. The gross tonnage is 3.271 ; net tonnage, 2,578 . She is built of steel, with two deeks and ten watertight compartments. Two motors are Diesel, of four cylinders each, and slevelop , wo horsepower each.

A 1,000 Horsepower Marine Oll Enginc.

er J. aespech wizeos.

There is far more activity on the Continent than is generally realized in commection with the construction of marine oil engines of the Diesel type for large ships, and already engines of $t, 500$ horsepower have passed the test bed stage. J'rominent among the tirms making strenuous efforts in this
a valve in the cylinder head, which opens at the end of each stroke, allowing the cylinder to be well cleansed of all residual exhaust gases. When the piston covers the exhaust port at the conmencement of the up stroke, this valve is closed. Pure air is then admitted and compressed to about 600 pounds per square inch, and the fuel is injected by the greater pressure at the top of the stroke. The same eyele of operations, of course, is then repeated continuously. It is of interest to note that it has been found necessary to water-cool the compressors as well as the cylinders and exhaust arrangements. To each cylinder there is a separate fuel pump, which can be lismotanted and cleaned withont stopping the engine, only the cylinder affeeted being put out of action. By having a separate fuel arrangement to each cylinder the fuel supply can be regulated independently if necessary. At any time the horsepower being given'by any cylinder can be ascertained by the indicator diagrams with which each cylinder is equipped. Regarding lubrication, the crank case is of the enclosed type, and so forms a reservoir for the oil. It is supplied to the bearings by force from a pump, and en route it is filtered. The filter is equipped with a by-pass systein, in order that it can be opened up and cleaned while the engine is rụnning. While on test the engine gave every satisfaction.

FETH-CVITMPIE, 1,000 HOASEPCIEER OHL EWGINR,
direction are Carel Fréres, of Ghent; Schneider et Cie., of Paris, and the Maschinenfabrik Augsburg, Nurnburg, the latter sompany havirg, by the way, a three-eylinder engine of 6,000 horsepower nearly completed; while Fried Knapp is said to have a marine oil engine building of well over 2,000 horsezower per eylinder. In view of these facts the illustration and following brief description of a four-cylinder engine of 1.000 horsepower, recently built by Messrs. Schneider \& Company, in cunjunction th Carel's, for a French cargo vessel that will trade on the Seine, should lie of great interest. The illustrationt is frum the Belgian paper Neplune.
The engine stands ahout 12 feet high, and is of the twostroke reversible type, starting and reversing, etc., being, of course, by compressed air. The compressor, of the three-stage variety, is situated at the forward end, in appearance greatly resembling a fifth cylinder, and is driven off the crankshaft. This eylinder is shown next the fly-wheel. As in the ease of other Diesel type engines, ignition is entirely by compression: that is to say, the fuel is sprayed in by air at a pressure of nearly t.000 pounds per square inch, causing instant combustion. As the piston on the down stroke uncovers the exhaust port in the usual manner, it also uncovers a separate inlet port, which admits air from a special compressor at ahout 6 pounds per square inch. This air is also controlled by

S. S. Honolulan's Voyage Around the Horn.

Steaming t,4000 miles on her maiden passage without being compelled to stop for repairs or overhauling is the enviable record made hy the new American-Hlawaiian liner Honolulan, Captain T. P. Coloord, which recently arrived in Seattle direct from Baltimore. During the run of 54 days, the only stop made was at Punta Arenas, where the vessel dropped anchor for ten homrs to cable and also to await a favorable tide to run through the Strait of Magellan. The '/lonolulon was built by the Maryland Steel Company, Sparrow Point, Md., and the vessel's deck engineer officers speak in the highest terms of the steanter's performance.
When leaving Aaltimore, the Honolulan carried 14,000 barrels of fuel oil, more than sufficient to steam over the long route. She arived on Puget Sound with 2,000 harrels remaining. establishing a name for herself as an economical vessel. The steamer Missourian, of the same fleet, two years ago sailed from the Atlantic to Puget Sound with enough fuel oil to last her the long distance, Int, aside from these two instances, there is no record of other vessels having done the same to Puget Sound. The fast steamers Yale and Harvard, which recently arrived on the Coast, from New York, burned
both oil and coal, but it was necessary for them to make frequent stops to replenish their bunkers.

During the Honolilan's passage, the only difficulty encountered was at infrequent intervals when water in the sil caused a little trouble. The engines were stopped but once, and that was at Punta Arenas. Had it not been wecessary

She is equipped with a wireless, 2-kilowatt, 60 -cycle plant. On the Pacific the longest distance at which direct communication was maintained was with the shore station at Los Angeles, 1,400 miles away. On the Atlantic, considerable static disturbance was encountered, but none in the Pacific. Probably the most remarkable feats in wireless achieved was that

SEERK EUN OF AEGENTINE DESTEOYRE.
to cable, the Honolulan could have steamed the entire distance without stopping. The vessel's quadruple expansion engines, 25 -inch, 36 -inch, 52 -inch and 76 -inch by 54 -inch, worked as if they had been in service for months. As a matter of fuel economy and for the purpose of not overworking the machinery, the Honolulan was run at reduced speed during the greater portion of her passage. Only two of the
dunc by the Honolulan when sle was a long distance off the Mexican coast in longitude no West. The Ward liner Merida, when in the Gulf of Mexico, was picked up at a distance of about 1,000 miles. The Merida took the Honolulan's message, transferred it to Cape Hatteras station, and, in turn, it was relayed to New York; the Honolulan thus reporting herself to her owners when thousands of miles away. The

three boilers were used during this time and, with two boilers at 62 revolutions, she averaged is knots. Under three boilers at an average of 70 revolutions the steamer ran between 12.5 and 13 knots. Three boilers were in service while she steamed through the Strait of Magellan, where the maximum power was desired, and also north of the equator in the Pacific.
remarkable feature of this feat was that between the two steamers, on the 1sthmus of Mexico, was a mountain 17,000 feet in height, which did not seem to interfore with the aerial waves.
Approaching Puget Sound, the Howolulan got splendid results with the submarine signal. She picked up the bell submarines on the Columbia River and Umatilla Reef lightships
at a distance of from nine to fourteen miles. This system is now installed on all of the American-Hawaiian liners on the Pacific Coast, and it is found of great valse in waters where foggy weather frequently prevails.

Argentine Destroyer Mendoza,

The Argentine destroyer Mendosa was launched a few weeks ago in a French shipyard in France. Considerable spee-

ulation seems to have been awakened concerning the shape of the stern of this destroyer, and this feature is clearly shown by the two illustrations which we give.
The builders expect to obtain a speed of 34 knot 5 , although the contract speed is but 32 knots.

The dimensions are as follows:

The boilers can be fired with either coal or liquid fuel. The air pressure in the boiler room is 5 inches water gage. The lines of the hull are most perfect and account in a large degree for the satisfactory speed. The armament consists of four 4 -inch quick-firing guns and four 20.86 -inch torpedo tubes.

Two Tugs for Philadelphia.

The two new tugs butt for the Department of Wharves, Ioocks and Ferries of the City of Philadelphia have been delivered by the builder, the Waters-Colver Company, West New Brighton, Staten Island.

These tugs were built complete, including the engines and machinery. They were delivered to Philadelphia the opening day of the inside route between Philadelphia and New York. The Kensington is the larger of the two tugs, being 65 tons, built of wood, 8 t feet long, 20 feet breadth and 9 feet depth. She is equipped with a compound fore and aft engine 12×2618 incheq, has one Scotch boiler 10 feet 6 inches by 10 feet. The Southugark is a 42 -ton tug constructed of wood, 66 feet long, 16 feet breadth and 7 feet depth of hold. She is equipped with a single engine 14×14 inches, with one marine leg type boiler 5 feet 6 inches by to feet. On the day of the trial trip, the Kensington developed a speed of $13-9$ miles per hour, much exceeding the contract regtairement of 10.5 miles.

High-Speed Ferryboat Kennedy.

This high-speed ressel was built and engined by the Willemette Iron and Steel Works, Portland, Ore., and the exacting demands of her contract were most eleverly met by the works. She is a vessel 190 feet long. 28 feet beam and 12 feet depth of hoid, designed for a daylight passenger boat, operating on a run 16 miles long, from Seattle to Bremerton. It was desired to have the maximum passenger accommodation on a limited displacement. The contract called for a speed of 20 miles per hour to be maintained for four consecutive hours. The vessel has a displacement of about 450 tons and has pas-

High tensile steel is used in the hull, and she is galvanized up to and a little above the waterline. Four White-Foster boilers and two Rateau turbines, delivering 18,000 horsepower at 650 revolutions per minute, make up the motive power.
senger aceommodation for 900 passengers. The nature of the service required of the Kennedy is such that the United States inspectors consider her in the class of a ferryboat and give her passenger license accordingly. In the caleulations for
powerng the Kennedy it was estimated that 2,000 horsepower would be required to maintain 20 miles per hour with a safe margin.

The space available for hoilers was about 13 feet by 30 feet, and the problem of installing satisfactory boilers in this space was a serious onc, particularly as foreed draft was not possible. The Ballin watertulie boiler secmed to fit the space cunditions. It was decteded to install two of these boilers of 4,000 square feet of heating surface each.

The engines for the Kemandy were designed for 2,000 indicated horsepower, the cylinders being as follaws: High-pressure, 18 ; intermediate-pressure, 27 ; luw-pressure, two, 34 : stroke, 24 inches; working pressure, 250 pounds.

On official trial trip, the Keancdy developed 2.300 horsepower at 203 revolutions per minute.

I:lectrically Controlled Raliway Drydock.

The Kensington Shipyard Company of Ihladelphia, which is the repair deparment of the Wim. Cramp \& Sons \& Engine Building Company, has just added to its equipment a new Crandall railway dryduck.

The project of zetting an additional drydock at the Kensington yard involved the question of which type would be most suitable for the class of work to be done, and for the limited space available for its installation. After considering the three prevailing types of drydocks, the railway drydock was decided upon, since it could be installed within the limited space in such a way that vessels, while being docked, would be inside of the adjacent piers, and also without encroaching toos far upon yard room.

The new drydock is a7o feet long, on keel-blicks; 290 feet long over the floor: 58 fect wide in the clear, and has a capacity of $\mathbf{2 , 5 0 0}$ tons displacement. The cradle travels on four tracks on the flat rail and roller method. The foundation 15

The chains are arrataged ont the endless systent, working over forocket wheels, driven ly a powerfal geared hoist. The nower is furnisherl by a 225 horsepower electric motor, using

2200 volts. capable of luanling largest foasts in twenty-five minntes. With one exception, this is , m far as we can learn, the largest electrically drisen railuay drytock in existencethat one exception lieing a foro-ton similar elryineck at Piracus. 'irece, designed by the same firm, and having a wo borse-

of piling, driven to bed rock, or to a hard-pan overlying the rock. The dock is cottstructed mainly of yellow pine timber, liraced and trussed in a very substantial mamer. The cradie is equiphed with a full set uf patent releasing bilge blocks. The lifting of the dock is accomplislied by four heavy chains of the Crandall special tyjee, equipped with a patent compensating slevice, which assures equal strains on all the chains.
power motor. The official test of the new drydock was made when the steamship. Antares, 279 feet lonk, was hauled up in twenty-one minutes. The entire work was designed and built by H. T. Crandall \& Son Company, Vast Boston, Mass. The chains were made by Messr: Bradlee \& Company, of Philadelphia, and the electric equipment by the Westinghouse Electric and Manufacturing Company.

PRACTICAL EXPERIENCES OF MARINE ENGINEERS.

Incidents Relating to the Design, Care and Handling of Marine Engines, Boilers and Auxiliariess Breakdowns at Sea and Repairs.

Broken Sanitary Suction Pipe.

On the ship I was on we had direct acting sanitary, as well as bilge, pumps, worked off the arm of the air pump levers. The puaps, two on each side, kept the sanitary tatik, wash deck, and fire connection pipes full at sea, whilst we had an independent duplex pump for the work in port. Each pump was supplied with the regular pet cocks to admit a little

air, as is trsual with all punps, but as plunger pumps worked off the air puup levers, are naturally dependent upon the speed of the enguic for their number of strokes per munute, an uneynal supply ot water is the result. Especially so is this the case when the engines are racing at all. The pet eocks set for normal sjeed, therefore, may hardly be enough for such times and a slight "hnock" is occasioned.

Three days out from New York one trip we ran into very heavy weather in the Atlantic, and the engunes were racing just as much as two Aspital governors would allow them, when the propeller was bared. There was a litsle knock in the put pump, but as the plunger was making uneven strokes, due to the raciag, and then drawing up, of the engines, the engineer at first twok little notice of it, but a few minutes afterwards a louder knock and a rapidly filling port bilge made the same inan investigate a little more fulty. The donkey pump was started on the bilge, as the water was gaining on the direct acting bilge puntps rapidly, and it was then found that water was pouring out of the suction pipes for the samitary pump. The suction valve on the slip's side was shut, stopping the rush of water, and it was found that the two pipes, one leading to each pump and joined to a branch at the ship's side valve, had broken off close to the flanges. In each case the dange of the broken pipe was left bolted on to the pump chamber. It was surmised that the pet cocks had become choked antl caused the damage; anyway, there was heavy vibration in the suction pipes, tending to draw thent apart. Ours was a passenger ship, and the independent sanitary pump was inadequate to keep the sanitary tank full at sea, niaintaining a proper salt water supply throughout the ship, so the repair had to be accomplished at
once. When completed, it remained as it was for two months, and until we arrived at the home port and had two new pipes fitted, the rubber makepiece we put in, as explainet below, taking up what vibration there was. The giper were 4 -inch eopper pipes with 3 finch flanges. The edge of the

broken pipes was filed straight, and the two flauges were filed out in the hole large entongh to allow the pipe to go through. The pipes were then fitted in the flanges, and beaded over, the flanges being heveled on the face side in the hole, and receswed the thickness of the pipe, as in the sketch, to alluw for this. The pipes were too thin to think of cutting a thread on thent, so we resorted to the preceding method of fixing the flange, which we squared up in the process of riveting and beading over. The pipes had broken off at the flange, and allowing for filing-up straight, and about Is for beading over, the distance to make up when connecting was about $t \frac{1}{4}$ inches. The distance piece was made of rublec, and this we accomplished by utilizing two of the spare rubber valves, used for the large independent donkey bilgejump, cut to size and punched for bolts. The valves were just over 1 incls in thickneas, so we had to use a piece of B-inch rubber jointing also, and when bolted up we put another stay on each pipe. As the pipes were for different pumps, two engineers were able to work on each, allowing the job to be done much quicker than otherwise. It made a gowel solid job when completed, and, considering all things, did nut take long to fix up.
H. W. H. K.

Welding and Calking at Sea.

A good many engineers at sea are sometimes at a loss to distinguish between iron and steel when they see it, and are therfore not sure whether it is possible to weld a broken article with the means at their disposal. It is therefore just as well in passing to meution for the guidance of young
engineers that cast iron is simply iron ore smelted and contains a very large amount of carbon; it cannot, therefore, be welded. It is possible, however, to burn iwo pieces together, but this cannot be done on an ordinary tramp steamer. Wrought iron is cast iron which has been puddled; by means of this process the bulk of the carbon in the cast iron is extracted, rendering the wrought iron capable of being forged or welded. Steel is pure iron with the addition of a smaller amount of carbon than is present in either of the two elasses mentioned and it can be cast, forged or welded with facility. Cast iron is distinguished by is brittle fracture and

gray color; wrought iron, by its fibrous fracture, and stcel, by its close grain. It is also lighter in color than east iron.

Welding is very seldom done in the engine-room at sea, and it usually turns out to be a failure, owing to some detail having been neglected. It is not, of course, to be expected that a heavy job such as a connecting rod or sintilar part can be welded at sea, but if care is taken it is quite possible to weld small parts of wrought irons or steel, such as firing tools used in the stoke hold. If this is done, considerable trouble may be avoided by repairing the rake and slices instead of using the spare ones and waiting until the ship arrives at home in order to send repairs ashore.

In order to weld or join together two pieces of iron or steel on board a vessel, they are heated to white heat, and sand is used as a flux before they are hammered together. For example, in order to weld, say, a rake shaft, the two ends which have to be joined together are heated (Fig. t),

Fig. 3
Wetiding pire moon tools.
and then they must be jumped up or thickened in diameter as shown in Fig. 2 in order to make sure of getting the rod down to its original size again after welding. The ends must then be scaried, as shown in Fig. 3, and then heated to white heat; any scale that may be on the heat should then be knocked off, and sand should be sprinkled over the surface. As quickly as possible the two scarves must be hammered together and everything must be done very quickly, otherwise a bad weld will be formed. This is worse than useless, as after using the rake for a little while it will give way again and half of it will be left in the fire.

Attention may be drawn to another point: nany engineers at sea have a very poor idea of calking the seams of a boiler, or what tools may be required. By calking is meant the closing up of the seam, either by riveting or upon the appearance of a leak. Such a leak is probably caused by excessive expansion, owing to the fact the water was not properly circu-
lated in the boiler when steam was being raised. In the calking the edges of the plate are first chipped or planed in order to present a good, clean working surface, and then the calking tool is used. The ordinary tool aboard ship is just a blunt chisel about $1 / 4$-inch thick at the mouth and it is used to burr up the inner edge of the plate. A good enginecr will, however, make for himself tools of different sizes and shapes in order to suit all kinds of work, such as calking round awkward corners and bends. If he attempts to use the ordinary tool for all classes of ealking he is owly damaging the plates to no purpose.

Stockholm.

A Weld Calker

Setting Propeller Blades on the Oreat Lakes.

On the freighters of the Great Lakes it is a common occurrence to break a propeller blade, and it is very handy to have a simple means to set the new blade to the required pitch. The simplest and handiest method I have used is a pitch board and straight edge. A common-sized wheel on the largest boats is 14 feet 6 inches diameter with 14 feet pitch. About 6 inches from the end of the blade is probably the best place to measure. One-twelfth of the circle makes a handy length pich board. The base length of the pitch besard should equal the chord of one-twelfth the circumference. To get it I use this method:

In the figure $R=$ radius and $r=$ chord.
Then $r=$

Then our pitch board would be proportioned like Fig. 2. c c are clamped to hold the pitch hoard to the blade, and B

is an angle bracket to keep it square with the blade. The straight edge should be made like the sketch, of 86 -inch by 3 -inch white pine, Fig. $3: f$ is a $1 / 4$-inch rod put through a hole drilled edgeways through the 51 raight edge; c is a center, 10 fit the center in the end of the shaft ; B is a bracket, to assist in holding the straight edge against the hub. Put the pitch board on the blade, and set the ends at 6 feet 9 inches radius with the straight edge, using the center in the shaft and the feeler rod. Then reverse the straight edge and hold the opposite edge against the hub, so that the feeler is at the edge of the pitch board. If the fecler touches the edge of the pitch hoard at each end the same, then the blade is correctly sel. If not, move the blate around on the hisb.

This method of using the straiglt etge secms to give better results than by sighting over the edge of a board to the straight edge laid across the hub,
E. S. S.

Cleveland.

RECENT LEGAL DECISIONS

Injury from Slipping on Newly Painted Steel Deck of Vessel.
A laborer in the employment of an engineering company, while engaged in carrying two iron grate bars from a dock to the deck of a steel freighter, sustained injurics for which he sued his employers. The grate bars were carried to the deck for convenience of loading upon another vessel alongside. Two ladders were provided by the company, which were placed against the hull of the boat and about 25 feet apart, which the plaintjff was required to use. The top deck of the boat was constructed of steel plates, which had been painted prior to the day of the accident. The plaintiff had made about sixteen trips up the first ladder with iron grate bars, two at a time. The bars were 5 feet in length and weighed about 60 pounds apiece. He was then induced by the foreman to carry the grate bars up the second ladder. On rearhing the top of that ladder it was necessary for hitu to step over a failing from 9 to 12 inches high. He was the first man to go on the sceond ladder, and as he stepped over the railing his foot slipped on the paint, and he was thrown to the deck, the two iron grate bars crushing his hand. He testified that the cause of his foot slipping on the deck was the fact of the paint not being set or dried, of which he was unaware and had not been warned.

The cireuit judge directed a verdict for the defendant, but this was reversed on appeal. It was held that it was a fair question for the jury whether the deck was slippery because of the fresh paint, and thereby rendered unsafe and dangerous. The plaintiff was entitled to a safe place to work. If the place had been rendered unsafe by reasont of its having been recently painted, and if the deck was covered with fresh paint so as to make it likely that plaintiff would fall or slip with his load, it was the duty of the defendant to warn him of the danger, especially where the appearances were deceiving.

Orso v. Great Lakes Enginecring Company, Michigan Swpreme Cuwrt.

Compensation for Designing and Superintending Construction of Yacht-Erroneous Admission of Evldence.

An action alleged as one cause of action that the plaintiff was employed to design and superintend the construction of a sleel steam yacht for defendant (except the interior joiner work and fittings), for which he was to be paid 5 percent of the cost of the vessel. Defendant admitted the employment, and the jury fixed the cost at $\$ 87,685$. Plaintiff contended that be was entitled to 5 pereent on the cost of the small boats, forming part of the yacht's outfit, irrespective of whether or not he actually superintended the purchase of these. Upon conflicting evidence, the Jury found in his favor, and that the cost was $\$ 5,900$.
For a second eause of action plaintiff alleged that the firm employed in connection with the construction of the interior joiner work and owner's quarters, owing to their inexperience in naval archifecture, encountered so many difficulties that they were forced to eall upon him for assistance, and that defesdant, the owner of the yacht, employed him to assist them, and that he did so. On conflicting evidence the jury also found in plaintiff's favor as to this employment, allowing him 3 pereent on the cost of the work, which they found to be $\$ 27.97099$.

In reversing the judgrnent for a new trial the court said that it would have affirmed the judgment lad it not been that a letter from defendant to plaintiff was received in evidence
which related to the deckhouse, and not in any way to the seend eause of action; and the judge of the trial court by error in his instructions to the jury referred to this letter as relating to this disputed matter.
Wells t. Baker, New York Appellate Division.

Performance of Contract of Sale of Anchors.

In an action for the price of twenty-five kedge aachors, amounting to $\$ 54$. The delivery of the goods was admitted, the defense being that the sale was not a completed transaction, but simply part of a contract under which the plaintiff undertook to deliver five lots of varying sizes, but had only delivered one lot. The defendant claimed that the confract was entire and indivisible. The plaintiff proved that he lad delivered all the goods contracted for, although he sued only for a part. It appeared that some of the anchors were returned to him by the defendant on the claim that its customer, the United States Naval Department, would not accept liem. There was no proof, however, that the articles so returned were not in accordance with the specifications, nor was there any proof that there was any agreement that the articles were to be delivered subject to the approval of the Naval Department. Whether the contract was entire or divisible, there was proof of its apparent performance by the plaintiff. It was, therefore, held to be an error to dismiss the plaintiff's complaint.
Friciman v: Marine Mannfacturing and Supply Company. Nreve Jork Affillate Division.

Steamship Held Litable for Injuries to Contractors' Workmen.

A tank steamer contracted for repairs to be made on certain of its tanks. Before the work was begun it attempted to clean the tanks with live steam. After this was done, the contractors' servants appeared and were informed that the pump in one of the tanks was ready to be disconnected. While they were engaged in this work, with the aid of an open light, oil ran out from some portions of the punte, resulting in an explosion of gas, by which one of the workmen was injured. He libeled the ship for damages and obtained a verdict.
It was held that, the ship having undertaken preparation for the work, the contractors were only responsibic for the method of doing it in the light furnished to them, and that the ship was negligent in permitting the contractor's servants to perform the work with open lights withott warning.
The J. M. Guffey, District Cowrt, E. D., New York.

Marine Engineer's Right to Have Fireman.

After part performance of an engineer's contract to operate a yacht, the engineer refused to continue unless he was furnished a fireman. This the owners refused to do. At this time there was no meeting of minds with reference to a rescission of the engineer's contract for the season. The owner procured a new engineer. The engineer left the boat without expressing any desire to continue the contract, merely intimating that he would stand on his rights. It was held, in a libel by him for wages, that, the original contract nut having included the scrvices of a fireman, unless subsequently agreed to, he was only eutitled to recover for services up to the time of his quitting work.

The Imogene, Distrist Cowrt, E. D., New York.

Published Monthly at
17 Battery Place New York
By MARINE ENGINEERING, INCORPORATED
H. L. ALDRICH, President and Treasurer ond at
Christopher St., Finsbury Square, London, E. C. E. J. P. BENN, Director and Publisher howard H , Brown, sattor

AMELCAM Lepassumtarivas
OROROR BLATR, Vlee Preeldent
E. L. SUMNER, Secretary

Circulation Managtr, H. N. Drismone, 88 Fovler St, Boston, Masa. Branch $\left\{1^{1}\right.$ hiladelphia, Machimery Dept., The Bourse, 11. K. Anwess. Offices \{Boston, 048 Oid South Building, S. 1. Campartio.

Entered al New York Pont Office as secondelasa matter.
Copyright, 1011, by Marine Eagineering. Inc., New York. Intanational Magime Einotwiniwa in registered is the United States rateat Ofice.
Copyright in Great Britata, entered at Stationers' Hall, London,

Notice to Advertisera.

Changer to be made in copy, or in orderz for advertisiono, maget be in onr hands not lister than the isith of the month, to peswre inc cerrving owt of swah indtructions in the uswe of the month following. if proof the montin.

The great spur which urges man on to wonderful engineering achievements is the time element. We look upon the face of the earth as given us by Nature, and find barriers which, while small cumpared to the rest of the world's surface, effectually stop economical traffic between localities. To illustrate, the Isthmuses of Suez and Panama are typical. Through one of these strips of land a waterway has been cut, and the second is progressing rapidly. In looking over the past there seems to be little new under the sun; yet records are not found of the ancients undertaking much submarine work, nor do we find records of dredging to any extent. It does not seem hard to find the reason for this, as, with shallow draft and small vessels, deep channels were not required, and the Mediterranean Sea was practically the great navigable water of the known world.

In this month's issue we give accounts of dredges of modern construction and design, which we feel will interest our readers. In considering the condition of dredges and dredge work, we find that in Europe almost invariably dredges belong to and are operated by govermments, in order to deepen harbors, keep them clean or open canals; while in the United States private enterprise owns most of the dredges, save in the

Canal zone, and these two conditions have a very marked effect on design. In the governmental ownership the question is to get the very best possible artiele, as it is not to be used for making money directly, but indirectly, by giving the citizens of the country better means of conmmunication with each other and their neighbors, thus inducing business. The result of this is that foreign dredges are of the highest efficiency and lasting qualities, and their first cost is not so closely considered as in the United States, where, on the other hand, the dredges, being private property, every consideration must be given to first cost, so that a fair monied return on the investment can be hoped for. Looking over the illustrations of dredges given in this issue, the solidity of the European makes becomes apparent, and yet we find that what might be termed the lighter-looking dredges of America are doing most satisfactory work. The part played by dredges in modern civilization is not appreciated by most of us. Just now the I'anama Canal holds central place in dredge work; but the Cape Cod Canal and others, especially the New York Barge Canal, are by no means small undertakings, and they are only made possible by the modern dredge. Again, a considerable amount of the gold which is taken from the earth is obtained through the means of dredges. As the first cost of a dredge is large, it is of the utmost inportance that the various parts be made substantial and lasting, for when a dredge shuts down it is like any other ma-chine-a money consumer instead of a money maker. Recent advance in the manufacture of steel has enabled dredge work to be carricd on with less interruption than a few years ago. If we can offer a criticism in dredge design, it is that the tendency to simply increase the cross-section or weight of a part that is broken or has given out could be advantageously changed by the study of a better form to resist strains and shocks rather than merely the brute-force ways of adding material.

We remarked on the internal-combustion engine in our April isstuc. Since then we have information that a battleship is being equipped with a prime mover of this type. The remarkable strides nade in the use of this prime mover in marine work are quite enough to make us pause and ponder. If a thousand horsepower is to be developed in one single cylinder-and we are credibly informed that this is so-then 1,500 horsepower will soon be a fact. Without data, it is somewhat of a guess as to what diameter of cylinder these engines would have; but probably it would be in the neighborhood of 70 inches, and certainly it is a bold engineering undertaking to produce this. We feel that one thing in connection with internal-combustion engines as fitted to vessels should be borne in mind, and that is, their great economic value would seem to lie in their being able to propel a ship at a set speed from port to port, and not in their maneaverirg powers.

Novel Salvage Operations.

For the first time in the history of salvage operations on the Pacific Coast, a floating, pontoon drydock, of handy size, has been successfully utilized to raise from an extreme depth a passenger and freight steamer. The method of using seows to raise a submerged object. taking advantage of the tides to raise the wreck, is no novelty, but in the present instance the practicability of a drydock operating independently of the tides has been thoroughly demonstrated. As the result of the success of this experiment, the steamer Kilsop, 195 gross tons, which sank in 240 feet of water in Seattle Harbor, following a collision, was raised.

Valued at $\$ 45,000$ ($£ 9,000$), the Kitsap was insured for So percent of her value and after the accident was considered a total loss, owing to the great depth of water. However, the officers of the Elliott Ray Dry Dock Company, Seattle, believed that their dock could bring the Kilsap up, and when they offered to make the attempt the insurance companies were willing. The salvors were to be paid to percent of the vessel's appraised value after she was safely hauled out in drydock.

Two thgs were chartered to attend the dock, which was towed from its site to the scene of the wreck, where the dock was made fast with two anchors at one end, allowing it to swing with the tide. A one-inch steel cable was buoyed at one end and the other was swept under the wreck hy the tug. This was no easy task, and it was not until the third day that the line eaught. It held fast under the bow and the dock gave a lift, raising the wreck hy the stem. Then a second cable of the same size was swept under the keel until it held fast some distance from the stern. A lift was taken by the dook with both cables, and the tugs towed dock and wieck inshore for alohist 150 feet. When the submerged hull fetched up against the sloping hank, onc of the cables parted. In its place a $13 / 6$-inch steel cable was swept under the wreck and made fast. On the next lift, the second cable carried away and it was replaced by a second $1 \$ 8$-inch steel line. No further breaks occurred with the heavier cables, each of which was about $t, 600$ feet in length.
With the wreek held securely by the two strong cables, the dock was snccessively filled and pumped ont. Fach lift hrought the wreck up about 19 feet. and while thus suspended from the dock. both dock and hull were towed into shoaler water, until the wreck brought up against the sloping bottom. When the weather was favorable, operations were continued night and day, from 6 to 12 men being employed. The longest tow accomplished at one time was 300 yards, and the entire distance the wreck was moned until it lay in fo feet of water, where a diver could examine it, was 600 yards. Under favorahle conditions, it was possitle to make five lifts in 12 hours.
When in fo feet of watcr, the wreck was first examined by a diver, who found the vessel lying on her bilge with a list to port. One cable was fast 30 feet from the bow, and the other 15 feet forward of the stern post. While the diver was making fast two other cables, the wreck was hrought up to within 28 feet of the surface. Over the ends of each eable was slipped a heavy iron ring which dropped to the wreck and held it fast When the four eables were fast and everything secured, the hull suspended from the doek was successfully towed across the hay, a distance of three miles, to be beached for temporary repairs.
With each lift the calles, which were bronght np over the wings and made fast on top of the dock, were drawn tant, the necessary tackle being on the dock. The bottom of the lay is eovered with three or four feet of mand and at a depth of 40 fathoms, with a square inch pressure of at least 90
prounds, it required immense power to move the steamer, expecially from her original position. However, the dock showed t10 indication of strain and was not leaking after performing this notable salvage feat. The Kilsap is a singlescrew, wooden vessel, built at Portland, Ore., with the following dimensions: Length, 127.5 feet; beam, 22 feet; depth, 7.5 fect: gross tonnage, 195, net, 123. The dock is 140 feet in length, with a beam of 34 feet 6 inches, a capacity of 600 tons and a lift of 19 feet. The pumps are operated by two t6-horsepower Union gasoline engines.
R. C. H .

Seattle.

Laws Concerning Wireless Telegraphy,

After July y, 191f, aft ships leaving American ports must be supplied with wireless telegraphy, provided they carry 50 passengers or more, unless the voyage is under two hundred miles. The requirements are that the apparatus will have to have a radius of at least one hundred miles, and the operator be able to send and receive at least twenty words per minute, five letters being counted as a word; and he must be conversant with the international regulations applying to wireless traffie and be able to write legibly. He must hold a certificate issued by the United States Government, eertifying to his alitily to adjust wireless apparatus, and be "skilled" in its use in the true meaning of the word. At the present time, the awkward condition exists that, while the Act of Congress appropriated money to carry out the examinations of operators, it is not available until the first of July. This will prohably result in vessels not being able to comply exaetly with the law, as it would be hardly possible to obtain certificates under the circumstances by that date, but, at least, all the apparalns can be installed.

How to Use a Pipe Wrench.

Every engineer knows that a pipe can be easily jammed by a pipe wrench, but if my instructions are carried out, one can be used on even thin pipes withont jamming them, says a correspondent in Potver.

Place the wrench on the pipe and get it to hite; then slack off on the nut until the frame A comes in contact with the handle B, at D (sec illustration), thus preventing the jaws from closing; the wrench then has power to turn, but nut to jam the pipe.

In Determining Owner's Llability for Injurles Chief Engineer of Yacht Held Fellow Servant of Oiler.

An oilcr on a stearn yacht was injured ly slipping on ant alleged defectively guarded platform. He admitted, in an action hy him against the owner for damages, that he voluntarily continted to work on the platform after he became aware that it was dangerons. Me stated, however, that the chief enginecs bad promised to fix it. It was held that the chief engineer on a vessel, like all the rest in the service of the owner, except perhaps the master, was a fellow servant of the niler, in the absence of direct ambority to represent the nwner, and that therefore the oiler could not recover.
Hollis v. Widencr, Pennsylvania Suprome Cowrt.

The Nicholson File Company, Providence, R. I., has just issuefl a catalogue regarding its product which deserves the most favorable commendation. We believe it to be the finest catalogue, not only in design and layout, but in printing, that

Mr. Axzl. Holm, who has been connected with American shipyards for some years, has accepted an offer to become assistant naval architect at the Copenhagen-Denmark Floating Dock \& Shipyard.

we have ever seen. The many files and other product of this company are illustrated in the most perfect manner, making it, we believe, a most valuable work of reference on the subject of files, rasps, etc. The Nicholson File Company 1 is to be congratulated upon its business foresight in issuing such a splendid catalogue.

The Jones Stoker as Applied to Dredges.
When the city of Chicago decided to increase the area of I.incolu Park by dredging and filling, the question of a proper dredge was a very serious nne, and, after the dredge was installed and working, the smoke from it became embarrass-

DLaN of stoEEE EqUiPRED motipss.

Naval Constructor Willasm J. Baxter, who has been transferred from the New York to the Boston navy yard, will leave a host of friends who will miss him greatly.
ing and the commission suffered from all the ills of excessive smoke, which was complained of loudly until the Jones Stoker was installed. We give a line drawing of this
stoker as fitted to the boilers in the dredge; also a half-tone showing the fire room. The Jones stoker is made by the Under-feed Stoker Company of America, Marquette Building. Chicago. Besides getting rid of the smoke, which was such an important matter, the economy in the use of the stoker was a surprise, and satisfactory to the commissioners. Before it was installed, coal was being paid for at the rate of $\$ 3.75$ a ton ($\mathbf{t 5 8}$.), and after the stoker was fitted, coal at $\$ 2.35$ (8 s .5 d .) was found to be equally good for steaming. The repairs for an entire seaton on this stoker were reported by the commission as considerably less than $\$ 5(\mathbf{£ I})$. This certainly may be considered excellent, and the smalt amount for up-keep is the best evidence of the construction, lasting qualities and practical working of this stoker.

Improved Kerosene Torch.

Oil as fuel for many purposes gains daily, and of all oil products kerosene is probably the most widely known and distributed. Taking advantage of this, as well as other points. the Hanck Manufacturing Company, 140 Livingston street. Brooklyn. N. Y., has placed on the market a kerosene torch.

אEW HAOCK KHRORFNE TORCR.
Certainly the use of kerosene appeals to many on account of no insurance restrictions, its safety and case with which it can be obtained, cheapness and safety. The uses to which this torch can be applied are almost endless, in general shop work. The torch is so constructed as to keep the tank cool, and only small pressure is required to operate it.

Stub Yoke and Rod Ends.
The Billings \& Spencer Company, Hartford, Conn., is putting on the market the new design in yoke and rod ends here shown. It is expected that this new pattern will prove

SHLINGS A SPEMCEE TOKE AND aco amps.
popular with the motor boat builders. This design permits of the greatest possible radius of action, maximum strength and minimum weight. The short stub end is rounded to facilitate electric welding. All are furnished either in blank, milled or assembled, and in various sizes, as listed in the pocket-size booklet issued by this company.

Allen Centrifugal Pumps.

To those who go down to the sea in ships, the great prerequisite for all appliances is reliability. Sailor men are accused of being slow in taking up new things, but it is not fair that this should be so. A false move, a poor selection, may mean the death of many, and great loss of money. It is this fecling of reliability which makes the appliances of W. H. Allen, Son \& Co., Ldd., Bedford, so popular. In this mechan-

ALLEN EXGINE AND PUMV.
ical production, the design gives the idea of solidity and lasting qualities. Their Conqueror centrifngal sand pumps, which we illustrate, are used for handling ernshed quartz, ete., where such products are mixed with water. Such work is, of course, very destruetive and wearing. It is only by the use of special materials, care in design, that lasting qualities of such pumps as these can be accomplished. Owing to the difficulty of working manganese steel, Messrs. Allen use instead

ALAKN CENTBIFCGAL PUMP.
a high grade of cast iron, which has all the necessary value of homogeneity. The section system of liners reduces the cost of up-keep on these pumps. What is best in material and design takes time to determine, and by a number of experiments and proper records the above company has carefully
worked out the difficult problems which are presented in the case of sand pumps. Their engines are sold singly or

LAME ELECABCALLE vaIVEX DWILL.
coupled with their pumps for the above uses or for ship use. They make these pumps from 4 -inch suction up to 18 -inch
drive in this drill simplifies the construction, so that while there is ample power to drive a r-inch drill and feed it to its work properly the weight is only $\mathbf{2 5}$ pounds to $\mathbf{1 5 0}$ pounds, depending on the current available. The feed is through a worm and wheel, pinion and rack, and a quick return is provided when wanted; the thrust is received on ball bearings, the column is made of steel tubing, and is $21 / 2$ inches diameter. As usually made the following is the range of work: Twentyeight inches from spindle to base, $81 / 4$ inches from center of spindle to column, travel of spindle is 5 inches, and the hole in same is No. 3 Morse taper. The extreme height of the drill is 40 inches. One convenient feature of this drill is that it can be fitted for two speeds, and to make the change only a button has to be pushed. The radial feature makes it most convenient. The range, as above given, can be altered to meet requirements.

Steel in Dredger Work.

Dredger makers and dredger users have cause to thank the steel maker for the increased efficiency of modern dredgers. It is a matter of no small difficulty to find the most suitable stecls for all the various parts of a complete machine. For instance, take the use of manganese steel. This ateel is exceptionally tough and resists abrasion to a high degree. Although so hard that it cannot be machined, it is, at the same time, so tough that it can be hent double while cold without showing signs of fracture. It has been found invaluable for dredger work, for pins and bushes, links, tumblers and bucket lips. We reproduce an illustration of some buckets made by Edgar Allen \& Company, Ltd., of Sheffield, which shows very clearly the method of attaching these lips-the steel for the lips being their Imperial manganese steel. Dredger parts made of manganese steel wear longer than when made of the best quality of ordinary hard steel, thus reducing the up-keep cost enormously.

EDGAB ALLEN STEEL BHEDCE FTTINGS.
suction, and they can low adapted for belt drive or electric drive as the necessities of the case temand.

Lamb Portable Electrically Driven Radial Drill.

The I-aubl Filectric Company, of 20 Ituron strect, Graucl Rapids, Mich. has perfected a convenient electric-driven radial drill, which we illustrate. The application of electric

The Reno Freight Carrier.

We illustrate the Reno freight carrier, a device which can be fitted in warchouses, on steamship piers and at railroad ternuinals, for the rapid handling of freight. It is mantufactured by the Reno Inclined Elesator Company, of 555 West Thirtythird street, New York, L.. S. A. The machine consists of an endless chain of special construction provided with pivoted
hooks, which are carried by small iron wheels, which roll upon the flanges of a pair of channel beams bolted together and spaced about 1 inch apart, thus forming a strong truss frame or carrying track capable of spans of considerable length. At each end the chain passes over a sprocket wheel, and these wheels can be driven by motors in either direction. The

mexo razight calliter.
method of loading is illustrated very clearly. Probably no machine on the market will perform more operations than this nic.

Howden Draft for Dredges.

While the question of turbines or cylinder engines is being considered with a view to economy, we are constantly seeing more and more cfforts directed towards heating the feed-water of boilers or the steam itself by superheating, and we strive to perfect our boilers in every possible direction by more perfect design and superior material, yet, when we come right down to what is the initial point, it is the consumption of fuel. A goor boiler can show very poor results if the coal is not properly consumed, and in order to do this we must have air, and this must not cost us so much that we waste a "pound to save a penny." To handle air is a study and not one which can be taken up in a few hours and thoroughly understood. Experience is an expensive teacher, but it is, as a rule, thorough. We go to a doctor when ill because he has made a study of our bodies, but in business we are not apt to be so wise. especially in engineering To know how to use air under our boilers we should go to those who have made a study of it, and Messrs. James Howden \& Company, Ltd., of Glasgow. prohably have had a more extended experience in this line than any other firm in the world. The constantly increasing demand for their product is good evidence that what they undertake is well done. Many of the dreiges referred to in this issue are fitted with the system of the above company.

Repairing of Dredger Buckets with "Thermit."

The "Thermit" welding process is of value in dredge work. A welding outfit consists of a supply of welding eompound, a suitable sized crucible, a mould built around the part to be welded, and suitable arrangements for drying the mould and preheating the joh. The "Thermit" process consists in fusing the broken parts by means of extremely hot molten mild steel. produced in the crucible from the welding compound. The compound is ignited by means of a special ignition powder which produces the necessary temperature to start the comhustion of the compound, and in about 30 to 45 seconds the reaction is complete, with the result that half of the weight of the compound is produced in the form of hishly superheated liquid mild steel, the remainder being slak.
A brief description of a repair to a large dredger bucket
will be interesting. The fracture-which extended for about 18 inches-was opened an inch, so as to allow the molten metal to more easily fuse the parts, and to form a connection between the metal band on each side. All scale, nust, etc., was removed; a wax pattern was formed each side of the fracture and coated with plumbago, the bucket was placed in a bed of moulding sand, and the facing sand rammed hard against the wax pattern. The holes for preheating and for the runner and risers were made off wooden patterns. A preheating torch was applied to the heating hole, and this melted out the wax, thus leaving a space for the liquid metals to flow into. The preheating was continued until the parts were red-hot. In the meantime the crucible was rigged up over the runner, charged with the welding compound. On removing the preheating torch the hole was securely filled with a dry sand plug. the compound ignited, and in about 45 seconds the crucihle was tapped, allowing the molten metal to flow into the mould. After cooling, the mould was removed, and the runner and risers cut off. The repair proved very satisfactory, and after twelve months' service the bucket, upon inspection, was found to be in exceedingly good condition. It is asserted that when repairs are made by the "Thermit" process the welded part is stronger than before the breakage oceurred. The process is equally suitable for repairs to stern frames. rudder posts, etc. Broken iron castings can be welded when dne allowance can be made for contraction stresses. The

A THEZMIT NEPASE JOB,
"Thermit" metal combines equally well with either cast, wrought iron or steel. It is manufactured by Thermit, Ltd., London, E.. C., and Goldschmidt Thermit Co., 90 West street, New York.

Mr. Louis L. Bernier, the well-known marine engineer, has been engaged by the Sanitary Water Still Company of Jamaica, L. I., and Washington, D. C., to take full charge of its marine department for the sale of evaporating plants and feed water heaters.

TECHNICAL PUBLICATIONS.

Ship Turbines. Dr. Bauer and O. Lasche. Size, 8 by 5 inches. Pages, 200. Illustrations, 104 Munich: R. Oldenbourg. Price, 8 marks in Munich.
No work on the subject of turbines which we can recall goes more minutely into this rery interesting subject, and gives clearer information. It might be said that with this work at hand the engineer could feel be was equipped to undertake turbine work in any of its details. The illustrations are so many that they almost explain the test to those who do not read German. The authors are to be congratulated.
Die Schiffsschraube und ihre Wirkung auf das Wasser. Oswald Flamm. Size, 11 by $7 \frac{10}{2}$ inches. Pages, 23 . I1Instrations, 116 . Mnnich: R. Oldenhourg. Price, io marks in Munich.
This work by Dr. Flamm is very remarkable. By means of photography the effects of various forms of propellers are
nost clearly shown under tnany varying conditions while actually propelling a boat. The subject is admirably treated, and the inforntation given added greatly to our knowledge of what goes on under water.
Record of American and Foreign Shipping. Size, 8 by $91 / 2$ inches. l'ages, 1,018 . Illustrations. Tables. New York, 1910. American Burcau of Shipping.

The volume for 1911 of the "Record of American and Foreign Shipping." American Lloyds, published by the Anterican Bureau of Shipping, 70 Beaver street, New York, is its 43 d volume.
The record contains full reports and particulars of vessels of all classes and nationalities training with the United States, Canada and southern countries. It also contains rules for the construction and classification of steel, iron and wooden vessels: rules for survey of machinery and boilers for vessels: provision for the installation of electric lighting and power apparatus on shipboard, and much other valuable information of special importance to underwriters and all firms or persons interested in shipping. These rules are recognized and accepted by the United States Government.

Resides the usual full information for the benefit of subscribers in the way of rales for eonstruction, with their accompanying illustrations and tables, all of the utmost practical and technical value, the work contains such features as list of addresses of prominent shiphuilders, dry docks, marine railways, marine machinery and boiler constructors of the United States; list of vessels whose names have been changed: also compound names indexed as per last name, names and addresses of owners of vessels classed in the record.

This record of shipping is the only book now published confaining reporte and particulars of all American vessels, and the reports in detail of repairs to wooden vessels still in existence should be of special value to underwriters.

The work has the approval and is endorsed by the important boards of underwriters in the United States, and is aceepted throughout the world by those interested in shipping as a standard register and classification of vessels.

Machine Shop Mechanies. By Fred. H. Colvin, A. S M. E, Size. 5 by 7 inches. Pages, $1 ; 2$, Illustratione, It6, McGraw-Hill Book Comprany, New York-London. Price, \$t.to (4/6).
Some people have a gift in imparting knowledge and putting things in a light which is clear, yet not dazzling. and Mr. Colvin in his "Machine Shop Mechanics" shows this enviable quality. He selects for illustrating his text every-day articles that the machine shop man sees and often wonders why such and such dimensions were used, and how the designers got at the sizes of various ports. And further, thinking machinists want to know what is "inside of things"; as, for instance, the hydraulie jack on page 116 . If we could only get people to read and remember something they read and apply the knowledge, our work in the world would be more satisfactory Most men, who are real men, do not mind hard work, hut chafe under hard work without results. Mr. Colvin's little hook will enalle a certain class, and a large one, to accomplish more and not waste their energy and other people's time, and we hope, therefore, the "Machine Shop Mechanics" will have a wide sale if the mechanic who has not had the adsantages of a fair education will read Mr. Colvin's little book, there will be fewer ficrpetual-motion machines marle in the world.
The Engineering Index Annual for 1910. Size, $6 \mathrm{t} / 2$ by $\mathrm{g}^{1 / 4}$ inches. Pages, 406 . New York, 14^{0} Nàssta street, The Engincering Magazinc. Price, $\$ 2.00$ (8/-).
The amount of time that can be saved by buying this hook and keeping it at hand cannot even be guessed at. Every engineer should have it. The brief descriptions of books on
all engineering subjects are admirable. A elear idea is given of the contents of cach, and the compilers have evidently used every effort to make the work complete, and seem to have been most successful. Very few can appreciate the enormous amount of labor and care which must be given to get out a work of this kind. A new feature is introduced in this issue, adding to its convenience, it is the assembling of all catch words under their classified arrangement in the front of the book. This will be greatly appreciated. It would seem to us that the Index should be in the hands of every trade school, or, in fact, any educational institution.

Elements of Machine Work. By Robert H. Smith. Size, 5 by 8 inches. Pages, tg2. Illustrations, 204. with tables. Price, $\$ 200(8 /-)$.
This work goes into the details of many operations which are seldom deseribed in text-books, and is up-to-date in modern appliances. Whether it is the author's idea to thoroughly instrnct or only suggest by this book, we are not sure, but we should think the fornter; as, for instance, there is a clear explanation of a power hack saw for cutting off stock, but it ncglects entirely the fact that very often the hack saw does not ent straight, but "runs," as it is termed. Certainly, this fact is well known to every user of this convenient tool, and not to call attention to it, and show how to correct it, is an oversight. Taking the lowik as a whole, there is a great deal of information iniparted, and it is well worth realing from the first to the last page.
Temperature Entropy Diagram. By Chas. W. Berry. Size, 5 hy $7^{1 / 3}$ inches Pages, 387 . Illustrations, 125. Ninmerous tables. John Wilcy \& Son, New York-I.ondon. Price. $\$ 2.50$ ($10 /$).
This book of Professor Berry's seems very timely, as just now the matter of efficiency in steam and its generating and use is being most elosely considered not only by those who are thorouphly familiar with the subject but by many who are hadly handicapped by the lack of knowledge which is so clearly supplied in this book. While Professor Berry asserts that the work is by no means exhaustive, and is for the student of thermodynamics, we must say that less could not be said on the suhhect and that more is hardly necessary. In other words, it is difficult to conceive that the consideration of energy surned into mechanical work and its relation to heat and change of volume could he treated more clearly, and the study of this hook will undoubtedly redound to the advantage of those who are groping in the dark for a light which is sn admirably supplied.
Principles of Machine Work. By Robert H. Smith. Size, 5 by 8 inches. Pages, 3R8, Illustrations, 425 . Tahles, numerous. Boston: Industrial Text-Book Company, Price, $\$ 300$ ($12 /-$).
The amount of work entailed in bringing out this book is difficult to estimate. It is original, not being a "hodge-podge" of catalogues, but most carefully prepared, and the illistrations are admirable, being clear and well-choeen to lay before the reader "eye-explanations," Examiples of work in the machine shop and how it is generally handled can be found for many cases, hut, of couric, it is not to be expected that in any such work every possible case can be shown and explained. Besides the ordinary run of work, many most convenient "dodges" are slown, such as how to tap large with a tap, how to get out a broken tap, etc. In some cases, the explanations, we think, are a little lacking, ac, for instance, on page 336 , how to locate the boles A and A^{+}is by no means clearly explained; it represents a double thread which finishes what is called "square"; that is, it does not run out, but finishes in the holes above referred to. The usual way to locate these is 10 gear the lathe, dog the work, and, with a threading tool, run a line for each thread and by this line
locate the finishing holes. We think that it is rather an oversight to practically neglect the milling machines in this book. It certainly deserves a place in machine work. In considering the book in general, we are not sure whether the goul machinist who knows the trade thoroughly well, or the inguiring youth, will be most interested, but we do feel that the machinist will be most edified, as from its pages it would be impossible to learn the machinist trade without the adjunct of the actual tools, and with personal instruction, but it is certain that no clearer explanations, in most cases, could be nade than found in this work of gencral machine shop work.

The Principles of Scientific Management. By F. W. Taylor, M. E., D. Se. Size, 6 hy 9 inches. Pages, 77. Harper \& Bros., New York-London. Price, $\$ 1.50(6 /)$.
The natural inclination of man is to take it easy, or, to take the idea of Mr. Taylor, he is lazy. To set out to correct this is certainly a vast undertaking. Mr. Taylor's method to overcome this inherent quality of mankind is to pay more for more work done. The "Principles of Scientific Manageinent" is based on the idea of noting with the utmost eare and minutencss the time of mperation or movement and to study the record so made, and by that study eliminate much, or rearrange the entire scheme. Mr. Taylor dees not shut his eyes to the difficulties which are to be encountered in trying to improve mankind, but he takes a most hopeful view, believing that the spur which will force men forward in the race to their satisfaction and those who employ them is money gained. We can hardly agree with Mr. Taylor in many of his views. In fact, we think that he often makes comparisons between extremely poor showing of existing conditions and the very best rearranged conditions. This obviously is unfair in considering the general subject. For instance, he notes lifting $7^{1 / 2}$ tons of pig iron was a day's work. This he angmented to $471 / 2$ tons in the same time. Now, if men were unloading or loading pig iron at the rate of only $71 / 2$ tons in ten hmurs, somebody was woefully ignorant, or else negligent, in allowing such condition to continue. Twenty tons a day of loading pig iron we have often seen. Mr. Taylor makes the point that one of the great troubles in the world is lack of knowiedge on the part of those who direct or, more properly speaking, who are at the head of large enterprises This is an unfortunate fact, hut it is hardly to be expected that anyhody short of the Almighty should have the infinite knowledige of thousands of men.

We do not see that Mr. Taylor has any right to the word "scientific management" as snmething new. To our own knowlenge in this and other countries, the close scrutiny of work with a view to produce greater economy has been the constant study of many. That we, today, even if we adopted in tnto with every condition ideal, Mr. Taylor's methods would not produce perfection, as perfection "Dwelleth Not Beneath the Stars." We think that it is rather a slur that is cast on many hy Mr. Taylor's appropriating the word "scientific": cettainly, record has been kept and deductions made, and this is scientific, long before Mr. Taylor's exposition came hefore the public. One thing Mr Taylor absolutely neglects in furnishing information is the statement of how much of the savings, as laid down hy him, costs on his side? How long did it take, and how many dollars were expended in finding out the savings? And this information would certainly be interesting. We admit at once that if a permanent saving of one cent per day can be made, that it has in he multiplied hy infinity to get at its final gross footing. But supposing Mr. Taylor tnok hold of a works for a year, witl the saving which he will effert, if the management is already good, offset the cost of the invertigation and rearrangement of the business? We feel again like resenting the general expression of Mr .

Taylor's book, that the past has been praetically all rule-ofthumb.
Scientific Management of Railways. By Louis D. Brandeis. Size, $61 / 2$ by $91 / 2$ iuches. Pagcs, 92 , New York-London: Enginecring Magazine. Price, $\$ 1.00$
Mr. Brandeis is a man who has made the statement that we call stove a million dollars a day in railway operation. We are not railroad mens and, therefore, on that point we are unalle to say nay to Mr. Brandeic, but we have a right to judge this statement by other statements which he makes in this book, or, at least, gives it as coming from him. If the statements about which we know are not correct, we are fair in assuming that the statement of the million dollar saving is a pure guess, excusable perhaps under the excitement of an after-dinner speech, but hardly permissible when written down in cold black and white. On page 15 , the following idea is expressed: Thirty-five steel castings are received. The work on them had been set at three hours each. The machinist took twenty-three hours to machine the first one and then protested loudly. The foreman called the matier to the attention of the superintendent, who said, "Anneal the castings." This was done, but no good resulted. The superintendent went to the general manager, we presume, who tells the "super" to make a special study of the eastings. This was done, and a twenty-hour time was set on each. The manager tells the "super" that it was his fattl, as he should not have allowed hard castings to come into the shop. The "super" protests and is told that he had better kill the purchasing agent, which he agrees to do. In the meantime, the manager writes to the vice-president, who made a complaint to the steel foundry, telling it not to send any more hard steel castinge, and so, according to the book, and we qnote from it, "this system resulted in making the vice-president remedy a difficulty that otherwise might have lasted indefinitely." We venture to remark that should the name of this vice-president become known he would have to take to the woods. He would be the most popular human being in the world, he could command any salary, as the users of steel castings will readily admit the supreme ability of a vice-president, or even a precident, who can, by writing to steel foundries, obtain alwayn satisfactory castings. There is an old, old saying that a "shoernaker does well to stick to his last." We understand that Mr. Rrandels is a lawyer. Just why the world is suddenly finoted with a mania for using the word "scientific" is hard to tenderatand. Find common-sense in law, in mechanics and elsewhere may not sound quite as well, hrit, under the guise of science. an immense amount is being perpetrated in the engineering world which is, as one of the New Yerk journale most admirahly terms it, "scientific poppyeock."

A Valuable Account of Fire Room Methods.

We are eonstantly Invited to consider economy in all our transactions. We must study to turn around once and make it count twice, and, if we work things right, we witl "save a millinn dollars a day" somehow ; but every once in a while somebndy comes to light who is not saying much, but just doing something. We have an example of this in Mr. F. R Inw's account of his trip to Tawrence. Mass., to mret Mr George H. Duncan, who is the American Woolen Company's ehief engineer, and inspect a hattery of hoilers planned by lim, and stoked by his patent "Hibernian Automatic Stokers," consisting of well-trained Irishmen, who fire at regular intervals and produce most satisfactory economical results, results which save money. It is well worth while to send to the B. F. Sturtevant Company, of Hyde Park, Mase, and get Mr. Low's account of his visit.

Capt. Will J. Ward, editor of the "Maritime Review," Cardiff, has favored us with a copy of his latest novel, "S. S. Cruack, or the Scheme that Failed," which has just been published at $5 /-$. It is a good yarn, written in Capt. Ward's usual humorous vein.

SELECTED MARINE PATENTS.

The publication in this column of a patent specification does not necessarily imply editorial commendation.
American patents compiled by Delbert H. Decker, Esq., registered patent attorncy, Loan \& Trust Building, Washington, D. C.

986, 999 CRANE OR DERRICK. ANDREAS P LUNDRN OF NEW YORK, N. Y ASSICNOR TO WEIIN DAVIT AND LANE
DE GROOT COMPANY, CONSOLIDATED, A COKIOKATION OF NEW YORK
Clains 6.-In a erane or derrick, a frame sdapted th rotate about a vertical sivat, a crane arm having a curved surface at itw lower end supported to swing vertically on satd frame; a base sapported by asid frame

on which said curved surface rolls, means for preventing said curved marface from slipping on asid basc, means for swinging the frame horizontally and neana for awinging the crane arm vertically.
980, 41 BOAT CONSTRUCTION EINAR I. M. SIVARD, OF BRUOKLYN, N, Y ASSIGNOR TG WELIN DAVIT AND LANE E WF GROOT COMPANY, CONSOLIDATED, A CORPORATION OF NEW YOKK.
Cfaim 2.-In boat construction, the combination with an ooter metallic platimg and transvense wooden ribs, of metallic atay-picces located of a plarality of placel along each rib and permanently accurisg the rib and

plating together, each stay piece comprising a metallic ofrip connected to the metal plasing at each side of the rib, spanning the same and also having in indepersdent cennection with the rib alone,
9A6, R61. SIIIP CONSTRUCTION, JOIIN KEID, OF NEW YOKK, N. Y.

Claim 1.-In ship construction, 3 hall or outer shell plating. a deek rlating, an inaer plating extending from said deck platiag to naid outer shell plating and forming at each side thereot topside ballat tanks

ramsverse framing terminating famediately kelow said ballant tanks, fongiturlasal giatera estending along the inside of the walla of kaid bailast tanks and means for itufening and supporting said longitudinst garders at intervals througbout the leggth of said baliast fanks.
986.895. SELF.UNLOADING BARGE. ANDERS FREDKIK WIKiNG, OF STOCKIIOL,M, SWEDEN.
Claian i.-A self-unloading barge, comprising a Aoating body, a liquid contamisg receptacle postioned below the deck thereof and at one side

of the floating body, a receptbcle located above the deck and at the other
swle of the foating body, and means for trangferfing liquid from sand firnt receptarle to said wecond receptscle.
SH6, SOS SFLFLEVELING COT, HUNK, COUCH. A. I WERTIEISR, LONDON, FNGI,ANH.
Ciams 1.-A bunk comprising a ent of timber frames, a glmbat frame, a dot suspended trom said simbal frame, said cot eomprising a body portion, a brichet sectered to ebeb corner of said body portina, a plorality of supporting bars, one of said supporiling hars pasaink through rach of mounted apon said bar to adjunt said epring.
02A.ร73. MFTHOI OF GENFRATING STEAM FOR SUBMARINE MOATS RAYMOND D'EGUEVILLEY-MONTJUSTIN. OF KIEI. Claio 1 -
Claing 1.-In the method berein described for propelling vensels of the *ubmorine type, which eonsists in usise a fired steam boilet to propel the vraw during aurface travel, bling s hot watter boiler to geartate wist the fired steam boiler to supply the neceasary steam generating wilt the fred steam boiler to supply the neceasary steam generating heated water remaining in the lont water boiler to the mods boiler as feed water, whereby to prolong the submeriged travel.

British patents compiled by G. E. Redfern \& Company, chartered patent agenis and engincers, 15 South street, FinsIury, F. C., and 21 Southampton Building, W. C, London.
27.057. RAT GUAKDS, R, F, GNOEFE, EONFON,

In a forior patent, No, 5,008 (ipo1), the inventor dewtibed a cone th he fitted upon the hawner and form s irmopet month device intended tin

That derice is suitable for use in pone difcetion only, but this invention refcra to a duplicated device of thin type. The truanpetimontbs face in opposite directions and nie connected by a central neek portion adapted to be clamped about the hawser.
18.378. SHIPS OR VESSELS, G. E, ELIA, FAKIS

Kclates to means for noutraliaing the effects of a mubnarine explosion. The outer plating is backed by a falling of cork or other elantic manterial of sbout the detssity of water, and within which is s framework of steel cablrs. The parking in backed hy heavy plating stayed by framing If an explonion raptures the plating th comptesses the material and deficts the cables, but does no fortber damser ; then the material expund

to its former space. If any in torn awsy it to of the sarse dentity as the Watri, and the balance of the ship is umaffected. In a modificstion two contaness in an elantic bas are broken hy the shock of an explonion so cablen outward to nearly the fine of the plating the bag to preas the cabies outward to nearly the fine of the plating, and thum balance the ship.

Sulzer Diesel Engines

Most economical Internal Combustion Engines, Burning cheap Liquid Fuel with high flash point.

Reversible Two 8troke Marine Engine (Engline itseir reveralbie)

SULZER BROS.

WINTERTHUR, switzerland.

The Celebrated

PORT ORFORD CEDAR LUMBER

is the finest wood in the world for Boat material.
Will not rot, split, warp nor check.

Write for prices and information to

C. A. SMITH LUMBER COMPANY
 BAY POINT, CALIFORNIA

TRADE PUBLICATIONS.

Ametelea

Riveters are described in Catalogue No. 3, issued by the Itamat Enguteermg ivorks, 2095 Elaton avenue, Cincagu. A ituly-inlusirated aescription is given of the Hanna type ul riveser, in which is coinbined in a sumple torm toggles, ievers and guide links to give the large opening of the tugge jout movement with its gradually increasing pressure unth the desired pressure is reached, inen a siniple tever movement througnout a considerable space miler approximaiely maximunn pressure. 1 hs space is saad to be sumcient, so that there weed be no uncerlasnly about the pressure appued the rivets, and the machine once adjusted ior a ceriain tengin ot rivet and thenness of plate, it is clamed that no turiner adjustment is tequired lor ordinary variation in lengths of rivets, size oi noke or thicknesses ot plates, thus producing hydraulic results whit a pneumatic riveter.

A Stocklat of Marine Engines and Boilers.- The Marine Iron Works, station A, Lnilago, 1it, desagners and butuess on triple-expansiun, tore-and-ant compuand, angn-pressure and atery padde-wheel macnuery, have issued a stock list, Irom waich the tollowuly setection ts made, to show tae targe nuinUer of engmes atu otber marme machumery thas company nas un naild ior immediate denvery: New work-Une parr if by oo stern paodie-wheel mariue engutes; one double cyinder, size 16 by 17 inches, open tront columan back marine engue; one $14-25$ by 17 fore-and-all compound marme engine, can ve ntted with eitner steam or band reverse; one $4^{-\delta}$ by 5 tore-and-alt compound tarine engate for 500 pounds steam pressure; Iwo triple cylmider $31 / 2$ by 4 engues for 500 pounds sieam pressure; two double 4 by 5 non-reverse engines wint governor (saigle actung); one rotune engine with 4 -ampere dyamo, combuned base; one 4 -cylunder 5 by 0 gas engine, 24 horsepower; two 2 -cylinder 5 by 5 gas engines, with reverse clutch, keutted-Onc 41/2-71/4-10/4 by σ op. col. irmi. triple-expansion engine; one $4 \frac{2}{2}-7 \frac{1}{4}-10 / 4$ by 6 op, 1 rt , sol. bk, triple-expanston engine; one o by \& piston valive heavy service tug engate; one horizontal Westriver type boiler, 42 unches diameter by is feet long, 150 pounds steam pressure, Unuled States test; one watertube boater, 6×8 teet, 200 pounds steam pressure; one single drum steam capstan, $41 / 2$ by 7 engine; vne generating sel, belt-driven, 50 -light dynamo engine, $41 / 2$ by 5 ; one 12 by 12 steam engine; one $5-10$ by 5 fore-and-ant compound marme engise; one 45 by $81 / 2$-foot steam launch, complete. All relitted machinery has been put through the factory and we can guarantec it in every way. We will be pleased to quote lowest prices on any or all of this work, also to send blue prints or photographs of same. W'rite us when needing either new or refitted machinery."
"American Vanadium Facts" is published by the American Vanadium Company, 318 Frick building, Yittsbarg, Ya. A recent issue telis just what vanadrum is. "Vanadtum is a chemical element, a srue metal, retined from vanaditerous ores found wadely dastributed throughout the earth. Its atomic weight is 51.27 ; specilic gravity, 5.5 ; melting point, above 2,000 degrees C. It was vaguely known as early as i8on, but its aciual discovery dates irom 1830 , when Selstrom found it in samples of remarkably fine and ductile Swedish iron. Doubtless the excellent qualities of Swedish irons and steels have always been due in a large measure to their vanadium content, as vanadum is present in nearly all the Swedish iron ores. Its influence in the mprovement of metals was not fully shown until late in the nineties, when by the deliberate addition of vanadium to various grades of iron and steel, remarkable results were obtained in the increment of tensile strengths without the usual accompaniment of increased fragility. This was a new fact in metaliurgy; for all other elements used to strengthen steel, carbon, manganese, nickel, chromium, etc., carry with their benefits the inevitable defects of hardness, britlleness and lack of elasticity. At the time of this discovery, vanadinm was a very rare metal, and was priced at fabulous values. It was used only for such parposes as tinting glass and porcelain, making anihne dyes and is certain purely academic applications. With the new century, however, came the discovery of large deposits of vanadium ores by the engineers of the American Vanadium Company, and, as a result, in less than ten years vanaditum has been conmmercialized; it is now manufaciured by the ton and has created a veritable revolution in the old ideas of the maximum physical properties of steel. On accomat of its very high melting point pure vanadium cannot be added to steel; but Ferro-vanadium. an alloy of one-third vanadinm and two-thirds iron, fuses al a much lower point than either iron or steel, and nay thus be dissolved and completely distribuled through the molten bath."

The "Atlantic" steam shovel is described in an illustrated Bulletm No. 105, published by the American Locomotive Company, 50 Church street, New Iork. Smee the introduction of the "Atlantic" shovel many improveanents have been made in the details of the design, but the basic principles upon which if was constructed have been unchanged. Une of the notable features of the "Atlantic" stean shovel is a hiberal use of cast steel, but the most important departure irom previous practice, and a distinctive teature of this make of shovel, is stated to be the use of a direct-wire rope hoist in place of the indirect chain boist used by other manufacturers,
"Imperial" duplex compressors are described in circulars published by the Ingersoll-Kand Company, 11 Broadway, New York. "There are three different elements going to make up the net economy of a compressor-the mechanical efficiency, the volumetric ethiciency and the compression efficiency. "Imperial' mechanical efficiency is as htgh as it can be made by means ot large bearings carefully finished, ample lubrication, rigid construction to maintain true alignment, and simplicity resulting from the minimum number of parts. 'Imperial' volumetric ethiciency is the result of the splendid 'ImperialCorliss' inlet valves and the 'Imperial Direct Lift' discharge valves, all requiring the minimum of clearance space and providing large admission and discharge areas. 'Imperial' compression etficiency is all that could be expected from fully jacketed air cylnders and (in compound types) an intercooler of large proportions and great cooling capacity. More important than all of these, however, is the facl that the 'Imperial' compressor maintains its high economy indefinitely. It doesn't merely promise well at the outset. It continues its lugh-duty performance indefinitely. Whether in the 'Imperial X' Meyer steam, or in the 'Imperial XB' power-driven type, you will get splendid returns per horsepower of energy applied and expended."

Marine packinga, fibrous, semi-metallic and metallic, adapted for every service, including steam, water, air, acids, gas and aumonia, are described it a handsomely illustrated and printed catalogue of 144 pages, published by the Crandall I'acking Company, Palmyra, N. Y. "Crandall packings are made from special materials under our own specifications and lubricated by our patented cold oil process. It has been shown by analysis that packing manufactured by this process passes through no chemical change whatever, and samples from which all particles of oil and plumbago had been removed by a chemical test were found to be in the same condition as goods which had never been subjected to lubrication. Thus the necessary elasticity and expansion are retained without the ensuing deterioration of materials, which cannot be prevented when any other process is used. Thoroughly tested to successfully withstand the highest pressures and temperatures. Positively will not melt, harden, blow out, score or gum the rods. Designed for hard work and guaranteed to give full value in efticiency and length of service. All styles made in ring form, cut accuratcly to size, always ready for immediate use, saving time and waste and insuring a perfect fit and ease of application. We carry at all our branches a complete line of stock styles for immediate shipment, and orders can be filled on day of receipt at factory if necessary."

The Jordan commutator truing device is described by the manufacturer, Jordan Bros, Inc., 74 Beekman street, New York, in a catalogue just issued. "It was in 1898 -thirteen years ago-that the Jordan commutator truing device was invented. Practical electricians and machinists then, as we are now, and had been for many years prior to the time mentioned. we had experienced in our work the manifold disadvantages of truing commutators in a lathe or with portable slide rest. A substitute there was none. As is perhaps usual in such cases. our dissatisfaction aroused, it continued to grow and grow, and we felt more keenly every day the really abolute need for some other methods of truing. We thought of, built and tried many makeshifts, but it was not until 1898 that we felt we had gotten something worth while, something worth patenting. We tried out this device thoroughly. Three long years we used it in our own work, and finding that it worked perfectly, or, at any rate, that it was very much better than the old style methods of ruing commutators, we decided to place it on the market. Today the Jordan commuator truing device is used the world over by electric lighting companies, in isolated stations, in electric railway plants, by electrical manufacturers-in fact, wherever electric motors and generators are used. And it is giving satisfactory results to every user. Elsewhere in this booklet we prove this statement by letters and extracts from purchasers. That's the real test-not what we say about our device but what its users say."

Engineers' Taper, Wire \& Thickness Gage

This gage is eapecially designed for the we of marine enginetra, mahinists and others desiring a oet of gagen in compact form
The taper gage show the thicknesa in 6tths to $\$ 16 t h s$ of an inch on one side, and on the reverse side is graduated as a fule three inches of ite bength, reading in sths and 16 ine of an inch.
The zire gage, English Standard, shows on one tide sires numbered from 151086 , with iwo extra slots, one 1.15 , the other 4 of an inch, and on he reverse side showi the decimal eguivalenia expresiod in thousandthe This gage has also 0 thicknems or feeler gage leaves, approximately Inches long. of the following thickneases:.002, $003, .004$, .006, $00 \mathrm{~m}_{1} .010$, 012. 015 and 1 -10th of an inch, all folded within the case, which is 63 Price, each, sase

Catalocue 18-L Pree.
THE L. S. STARRETT C0., Athol, Mass., U.S.A.
Lopdon Warehouse, 36 and 37 Upper Thames $8 t, E, C$.

The POWELL AUTOMATIC INJECTOR WILL feEd YOUR bOILER
Lifts water on three-foot length of pipe between tank and combining tube on 18 lbs . steam pressure. Will lift water through twent y-foot pipe on 60 lbs . steam pressure. Handles hot water up to 123 degrees.

The Powell Automatic Injector is arranged so as to produce the highest standard of efficiency, yet without any complicated parts. They are so made they can't be inverted or replaced wrong when taken apart for cleaning or repairs. Write for special circular.

POWELL'S STEAH SPECIALTIES ARE STAMBARB Aok Your Jobber-Mo Keevo

The 人Wm. Powell Co.核

CINCINNATI

Lubrication Troubles?

You can cure many or all of these with Dixon's Flake Graphite. Unlike oil, Dixon's Graphite will do no injury to boilers if it reaches them. Sample 75-C Free.

JOSEPH DIXON GRUCIBLE CO. JERSEY CITY, N. J.

The Kroeschell-Schwartz gyratino flame crucible furnaces are the subiject of a catalogue published by Kroesehell Bros. Conipany, 444 West Erie strect, Chicago, Ill. "We call special attention to the fact that our furnace melts from the bottom up. Impossible to burn metal; consequently less oxidation than by any other methord. Our burner prevents noise; it mixes the fuel and air thoroughly and stonizes perfectly with low pressure. All spilled metal drops-automatically through the slag hole. No ash mixture. We clain great fuel economy ; minimum amount of talor in operaturg: more beats per day than from any furnace on the market; increased life of crucibles."

W. D. FORBES, M.E.

50 Church Street
Room 573
Cable Addrese: Forbet
New York, U.S. A.

1. Information as to where best to buy or have work done.
2. Reports on mechanical industries, machine tools, etc.; their cost and output.
3. Bids tabulaterl and recommendations made. Estimates checkerd.
4. Foreign and domestic manufacturers represented.
5. Special machines designed or perfected.

Latest improved air tools are described in bulletios pubIssaed by the Independert Ýneuntatic 1001 Lompany, 1307 Michigan avertue, caicago. Among the tools illustrated in this bulietin are riveting and chupping hammers of various sizes, air drills, stay-wolt urivers, huse couplers, etc. Kegarding the "Ihor" No. yo hammer, the statemetit is made that it is guaranteed to drive rivets laster, leave a better nnished job and to cost at least 50 perient less tor repars than any other make. I has hammer will be sent on trial at the companys expense.
anr compressors are described in Publication L-87, issued by the National srake α Electric Lompany, Malwaukee, Wis. the compressor described tuerein comprises an electric motor and coulpressor buth mounted on the same base, thus forining a stigic, coupact and powertul unit of installathon. All workting parts are wen protected tront posstole anjury and yet are reauly accessiole ior inspection. 1tee compressor theroughy lubricated by the spiash system, which requires no attentuon turther than to occastonasily repiemash the vil. Als autonatue controlung device serves to matitain the air pressure within prederermined low and lugh limits. 1 his type of compressor is buit ith capacities ranging irotn go to 300 cutac teet ot aree ar per munte, and can be iurmshed with euther direct or aiternatheg-current motor.
L. W. Ferdinand a Company, 201 Suuth street, Bustot, tave sasued the fultuwing direchoms tof meitiay their marine bitue and paying the scaus of deck3: "Cut the give mitu small ptece' tilg th starred now and then. Whent the giue is att melted the ueat ts about $212 \mathrm{~s}_{\mathrm{c}}$, but rather too thick to run tucety, and It used in tats state air bubtics may arisc, theretore it reyures botung and stirrmig a tew minutes longer, and should we used at a neat of arom $2 j 0$ to 300 F .; it then becuance pericecty mulud, and should be used as quickly as pussible. Contmued Dulaty hardens abd mjures the glue, nence thamangs are sometumes Hecessary. Common observation will suou eabble the workman to see the proper heat at which the glue shoutd be used for the work in mand. the martue glue taterer buils over into the bire like pitch, although it will occasionally agute wate being metted it the Hame be allowed to touch it, and it will cothtinue to burn unth the glue would be destroyed; when this takes place cover the pot or cauldron over with a piece of sacking, or any arr-tught substance; this will umnediately extuguish the thame; but thas igniting wall never take place af proper care be taken. Application of mazine glue to Jecks: the flexublity of the glue is one of its most valuable qualities, as it allows the timbers to contract and expand, stall retaining its great adhesive power to the edges of the plank, When the planks become contracted by the lieat of the sun, a drait takes place on the glue, and the seam becomes expanded. When the planks are swollen by rans, and there is a pressure on the glue, the seam becomes contracted. As the temperature varies, these forms continue to assunie each other's shapes year after year (if the deck has been properly calked and payed) untal the deck becomes worn down to the oakum. It does not stick to the feet in hot weather. Fourteen poundi Jefferys extra quality marine yacht glue will run from 200 to 250 icet of seam $7 / 4$ inch deep by $1 / 4$ inch wide. If properly used and not overlieated it will last four to six years in a seam, and has been knowa to last ten to twelve years. When carefully applied to a dry deck it will never leave the sides of the seam."

TRADE PUBLICATIONS

OREAT BRITAIN
Centrifugal pumps are described in an illustrated bulletin published by W. IL. Allen, Son \& Company, Lid., Queens Enguecring Woriss, Bedford. "The development of a centrifugal pump for dealing satisfactorily with sand and stume pulp and cyamde sulution, and also for sand dredging purposes, has had onf attention for a number of years, and We lave now supplied many pumps for these duties to gold, diamond and other mines, where the duty required of a pump is tery onerous. After careful investigation on our part as well as our various representatises in the different mining centers, and basing our design on this extended experience which we bave ganed, we have arrived at a type of punp which gives great satisfaction, both as regards lengtit of life and efficiency in operation: For this class of pump the life of the liners is quite as important as the efficiency of the pump itself, so that these liners call for very careful attention. At the present moment we are shapping numbers of these pumps to mines in various parts of the world, and are in a position to guarantee their results,"
singaging and disengaging gears for buats, taunches, elc., are described me circuars pubished by Wilfuam Mnlls, Lid., Athas Works, Sunderland. 1 he advantages of the Mitls gear over all others are sand to be simplicity, manageabinsy, reiaability and satety. "Every satior can understang, impossibse to make a mistake, does not require a trained crew, it requires no preparation tor hookug or mnhooking, only one way to tuouk and only one way to unhook, causes no obstruction in any part of the boat, it is atways really for use, there are no loose parts to be lost or masplaced, wo satety pins to be iorgotten, no lanyard across the center of the boat to be tanpered with by passengers, thus removing all liability of puling anyone out of the boat aster disengagement, of of preventing the disengagenient; no rods along the botrom to be touied by ice, etc.; gear may le hited to stem or stern post, or any otner convenent pusition; boat cau be hoisted close to davit head; when gear is disengaged there is nothing to tout or eatch the gunwale; no lear of aceident to lingers when hooking on in rough scas; the bluck is hooked on, very little effort is reyuired, and engagement will be instantaneuus; it is pertectly under the control of the person in charge of the boat; certan simultancous disengagement; impossible to cause an accident through dropping the boat too tar from the water, as often happens to silp gears; boat cannot be disengaged until nearly water borne; boat can be disengaged with good towing stran on the ralls; boat can be disengaged when ship is steaming through the water in all kinds of weather, and has been tested with jeriect success up to so knots speed."

A four-spindle drilling, tapping and boring machine is described in a circular isstued by Webster \& Bennet, Lid., Atlas Works, Coventry. "I his machine is designed for bormg two separate preces ot work at once, and for this reason the right-hand pair of heads are independent of the lett pair. It is equally sustable tor operating on four scparate preces. The Iranie is deagned to oltain the rigidity necessary tor heavy boruig, trepanning or tapping. 10 secure this the members, columns, cross stade, etc., are of box or tube section. The heads are adjusted horizontally on the cross slide and quickly bound to it when in the desired position. I he cross sivie is clevated by power and secured to the columns at whatever leight the work in hand demands. The spindles are driven by internal spur gears and run in long steel sleeve bearings bushed with gunmetal. The down thrust is taken on adjustable iriction collars, The spindle ends are threaded on the uttside and bored taper inside. The speed changes are in geometrical progression. The drive of one pair of spindles is independent of the other, the cones, pulleys aud gearing being dulicated. The double gearing is put in or out ot action by levers. The feeds are automatic and driven by wide belts. The feed of one pair of spindles is independent of the other. Any or all of the spindles may be fed at once. Hand feeds are provided for facing and recessing. The feed trips operate at any desired point, and are adjusted independently on each head. The spindles, being balanced, are returned quickly by hand. The tapping motion on each head is controlled by hand lever. The table has planed tee grooves in its top and front faces. It slides between the eolumns by means of worm and twin rack gearing. The base plate is recessed at the front to accommodate long work which may be lowered into a pit and secured to the vertical face of the table; the table crank being then operated at the back. All gears are cut from solid blanks and enclosed where necessary. The equipment eomprises two countershafts with self-oiling bearings, chart and necessary spanners."

EASY MONEY FOR MARINE ENGINEERS

by writing up their experiences in making repairs to marine machinery.

Send the stories with pencil sketches to

INTERNATIONAL MARINE ENGINEERING

17 battery place, new york or
31 ChRISTOPHER ST., FINSBURY SQUARE, LONDON. E. C.
We pay at the of 85.00 or $\& 1$ per thoumand words, pablinhed.

International Marine Engineering

JUNE, 1911.

THE WHITE STAR STEAMSHIP OLYMPIC.*

Notes on Her Machinery.-The White Star liner Olympic was drydocked on Saturday, the tst of April, at Belfast. She was the first vessel to be berthed in the large new dock constructed by the Belfast harbor commissioners.
The Olympic had been moored at the adjoining deep-water wharf, and two powerful tugs took her towards the entrance; material assistance in the operation was given by two 30 -ton capstans. The difficult task of warping her in was accomplished by the 11 -ton capstans placed near the head of the dock. At 10.50 the bow of the vessel crossed the entrance line

Titanic. Meanwhile, we are now able, by the courtesy of the builders, to present fuller details of the machinery of the Olympic than were available at the time of the launch.

The reciprocating engines in the Olympic-swo sets, one driving each wing-shaft, as described in our December num-ber-are of the four-cylinder, triple-compound type. They are arranged to work at 215 pounds per square inch and to exhaust at a pressure of about 9 pounds absolute. These engines are of the four-crank type, balanced on the Yarrow, Schlick and Tweedy system, The high-pressure cylinder is

CABING OF THE OLVMPIC'S CHAYGE VALVE.
and $\mathbf{1 t . 3 9}$ (eight minutes before high water) the stern passed the same place. She is 92 feet 6 inches wide and the dock entrance 96 feet. so that the margin in width was very slight. At 12.25 the caisson gate was placed and half an hour later the dock was partly emptied, so as 10 allow the liner to rest on the keel blocks and permit the shores to be placed in position. At 2.30 the whole ressel could be seen.

She is expected to go on trials about May 28 and be handed over to the White Star on the 3tst of that month. The same day is fixed for the launching of her sister ship, the

[^21]54 inches in diameter, intermediate cylinder 84 inches, and each of the two low-pressure cylinders 97 inches in diameter, the stroke being 75 inches. Two slide valves, each with two ports in a common chest, are worked by two rods, through crosshead to single links, low-pressure cylinder, high-pressure cylinder, a single piston valve, two piston valves similarly arranged to the $t w$ in slide valves, intermediate-pressure cylinder, low-pressure cylinder, and, finally, at the aft end, two slide valves. The valves, as already noted, are operated by the Stephenson link motion. There is a loose coupling on the tail shaft, so that it can be withdrawn from the stern to facili-
tate repair. The propellers driven by the reciprocating engines have each a cast steel boss and three lironze blanles, the diameter being 23 feet 6 inches, and when developing 15.000 indicated horsepower for each engine the revolutions will be 75 per minute.

The exhaust-steam turbine, by which the central screw is driven, is of the Parsons type, taking exhaust steam at about 9 pounds absolute, and expanding down to it pund absolute. The condensing plant is designed to attain a vacuum of $2 \mathrm{kt} / 2$ inclies (with barometer at 30 inches), the temperature of circulating water being 55 degrees to 60 degrees F. The rotor is built up of steel forgings. It is 12 feet in diameter, and the blades range in length from 18 inches to $251 / 3$ inches, on the segmental principle, laced on wire through the blades and distance pieces, at the roots, and with binding soldered on the edge, as usual. The length of the rotor between the extreme edges of the first and last ring of blades is 13 feet 8 inches.
hold level. These bunkers are arranged on each side of the main bulkheads, and immediately in front of the furnaces. Each stoker takes his coal from the bunker door. In each of the five boiler rooms there are two See"s ash ejectors and four Railton and Campbell's ash hoists. A large duplex pump is in a *eparate compartment in each boiler room. This pump works the ash ejectors, circulates or feeds the boilers, and can be used for pumping the biges, bus in three of the boiler rooms there are indeperident ballast pumps. The pumps are directly connected to the bilge, as well as to the general bilge system. The air is supplied to the stokeholds ly "Sirocco" fans-two for each boiler room. The exhaust turbine, insiead of leing in the same engine room with two sets of piston engines is in a meparate compartment ahaft the main reciprocating engine room, and divided from it by a watertight hulkhead.

In the reciprocating engine room there are two sets-one

THEHKE EOTOM AND PHAFT.

The rotor has a weiglt of tyo tons, and the turbine complete weighs 410 tons.

There are twenty-nine boilers in the ship with 159 furnaces. All boilers are 15 feet 9 inches in diameter. Twenty-four are double ended, 20 feet long: five are single ended, it feet 9 inches long. At each end there are three furnaces, all of the Moriwon type, with an inside diametsr of 3 feet 9 inches. The working pressure is 215 pounds. Tlue lwilers are in six watertight compartments, five boiler, athwartship. The boiler compartment nearest the machinery space accommodates the single-edded boilers. so arranged as to the available for rimning the auxiliary machinery. Two boilers in each of two other compartments have separate stean lead to the auxiliary machinery, which ineludes the electric lighting insuallation. The electric output is 1,600 kilowatts. The other five rooms are fitted with the double-ended boilers. The uptake connections are widely spread. The upakes for twon rentre lmilerrooms exhaust into the second funnel from the forward ent: and the two after biler rooms exhaust into the third funnel. The fourth funnel is intended for ventilating purguses, and it also has the galleys chimney. All the funnels are elliptical in plan, the dimensions being 24 feet 6 inches by to feet, and the average height above the level of the furnace lars is 160 feet.

There is a main bunker "tween decks, immediately within the skin of the ship, and into this the coal is first shipped and then distributed into bunkers athwart the ship and at stoke-
drising the pwirt and the other the starlmard shaft; in the wings there are the main feed and hot well, bilge, sanitary, ballavt, and freth-water pumps, and a comtact and surface heater: while on the port side is the extensive refrigerating plant. In the exhaust-turline toum there is, immediately forward of the turbine. the manceuvring or change valves, which control the flow of steam either to the turline or to the con-denser-the latter for mancusring. This control is exercised from she main starting platform throtigh a Brown's hydraulic engine, placed between the two change valves on the lulkhead. There is a steam surainer, through which the steam passes on its way froun the piston cngines to the turbine in each wilg. There are two oil coolers and a punp for circulating the oil in them. Abaft the exhaust-turbine reom, and on each wivle of the shaft driven by the turbune, and within the wing shafts, there are four wets of electric light engines, cach of too kilowatts caracity. There are also on a gallery above the load water line in the exhaust-turbine roum two electric generating sets of 35 kilowauts capacity. Sicam pipes are led from three of the boiker rooms to these encrgency electric generaurs independently and above the watertight bulkheads, ard from this steam supply alon it is possible to work any of the pumys connected to the bilge throughout the whip. Between the boilers and the main steam stop-valive there is a steam separator. There are two main steam leads from the boiler room, each terminating at the stop-valve and separator, which are sitnated against the forward engine room bulkhead.

The exhaust pipes from the low-pressure cylinders connecting with the change valve are fitted with bellows joints, which consist of two flattened conical dises with special steel rings and with flanges to take the pipes. All the pipes in proximity to the condenser are fitted with these bellows joints.
The change valves for shuting off steam to the turbine and opening it to the condenser direct, for manceuving purposes, are of the piston type with a ring of special form. When the pistons of these valses are in their highest position, steam has a clear How to the strainer and thence to the turbine: when the piston is lowered the connection to the strainer is closed and that to the condenser is opened. The reduction pipe from the turbine to the condenser in fitted with a large sluice valve the closing slides in two pieces, worked together through worm-and-rack gear) actuated by an electric motor. Four sets of gun-metal circulating pumps, two for the port and two for the starboard condensers, with 20 -inch inlet pipes, are driven by compound engines. For each condenser there
trolled from the navigating bridge by telemotors and from the docking bridge, ati, by mechanical means. The electric lightirg engines, which indicate each about 580 horsepower, are of the Allan vertical three-crank compound, enclosed forced-lulrication type, running at 325 revolutions per minute. Each set has one high-pressure cylinder. 17 inches in diameter, ard two low-pressure eylinders, each 20 inches in diameter, with a 13 -inch stroke. They take steam at 185 -pound pressure per square inch. Each engine is direct-coupled to a compoundwound dynamo, with an cutput of too volts and 4.000 amperes, continuous current, so that their collective current capacity is 16,coo amperes. The dynamos are of the ten-pole type and are fitted with inter-poles. In addition to the four main gencrating sets there are two 30 -kilowatt engines and dynamos, placed in a recess off the turbine romn at the saloon deck level, well above the water line. Three sets will be supplied with steam from either of several boiler rooms and will be availahle for emergency purgoses.

OXE OF THK TVABME CASINGK
are two sets of Weir's air pumps, of the "Dual" type, both air and water barrels being 36 inches in diameter by $2 t$-inch stroke. The water from each condenser passes into a feed tank; thence it drains into a control tank, from which the hot-well pumps draw it, discharging it through the W'ir's surface heater to a Weir's contact heater, on the engine room bulkhead. The surface heater takes the exhaust from the electric engines for heating the feed, while the contact beater utilizes the exhaut from the other auxiliaries for the same purpose. The water from the contact heater gravitates to the main feed pumps.

The steering gear is fitted on the shelter deck. The diameter of the rudder stock is $23^{1 / 3}$ inches. The gear is of Harland \& Wolff's wheel-and-pinion type, working through a spring quadrant on the rulder head, with two independent engines having triple cylinders, one on each side. The quadrant is designed to mmimize the shocks receievd in a sea-way. The spur-and-bevel gear is of east steel. The gear is con-

Australian Liner "Aeneas."

To carry on the new service which the Oceas Steamship Company is inangurating between Great Britain and Australia a number of large and splendidly equipped passenger and freight steamships are being built in Belfast and elsewhere. The first of these, the Arncas, of 19.500 tons displacement, was launched August 23. t9to. She is a twin-screw ressel, 50) feet long over all, 60 feet molded breadth and to feet molded depth. She has five decks: the promenade, center castle, upper, main and lower decks, providing aceommodation for about three hundrel passengers in commodious and airy, two, three and four-lerth cabins. The cabins on the center castle deck are lighted and ventilated from the ship's side, being arranged on what is known as the "tandem system." All of the public rooms throughout the vessel are large and airy, and have been specially fitted up with a view to providing the greatest comiort for the passengers. The dining saloon is
on the second deck, It is tastefully decorated with oak dado and pancts in French grey. There is a central lighting well in the room, which rises through two decks and is surmounted by a handsome staitued glass skylight. The pants of the well being decorated with the enats-of-arms of the various provinces of the Anstralian Coummonwealth. A serics of handsome oak staircases lead from the dining room to the main entrante hall on the center castle dieck, which is decorated in oak dado with upper panels in white cnamel. Abaft the entrance hall is the musie room, exquisitely decorated in oak with French grey panels tastefully relieved by ormaments in the Arlams style. On the same deck, but further aft, is the smoking room, the decorations of which are in the Early English style, carried out

As much of the cargo which is carricd in the Australian trade is frozen meat, dairy produce and fruit, one entire hold and the after between deck have been thoroughly insulated and fitted up tor the carriage of this class of cargo. The sefrigerating plant is on the CO_{3} system, the cooling effect being transmitted to the holds by means of brine circulating pipes arranged in coils. Ancther intovation, which has only recently come into general use on large steamships operating on long voyages, is an up-to-date steam laundry. The cargo space of the vessel is divided by wateright bulkheads into six main holds, which, on account of the girder system of construction, are prattically free from obstruction, and thus capatile of receiving large and bulky freight, such as motor

in oak embellished with a series of artistically carved fricze panels illustrating scenes in the hunting field. The sestel is lighted throughout by electricity, arid efficient vertilation is provided throughons the living quarters by means of electrically driven fans installed in all the public pimms. In adequate stearn heating system, for use in Northern latitnies, is installed, as well as the most modern applianers for insuring the safety of the ship, such as wireless telegraph, submarine signaling apparatus, motern lifeboats and launchi:g apo paratus.
cars, boilers, locomotives and machinery of all kinds. The hatches to these holds have been constracted of large size t) mect the requircments of such cafgo, and each hatch is served by two or three steam winches, the largest of which are capable of dealing with weights up to 40 tons.

The propelling niachinery consists of two sets of triple expansion engines, constructed by Messrs. Workman, Clark \& Company, Lud. Stesm it supplied by thece double-ended Scoteh lwiters, working under an inproved system of forced draf?. The stokeholels are provided with both ash ejectors and
stean ash hoists. The engine room is large and is well lighted and ventilated to insure as efficient service as possible in tropical waters. There is the usual equipment of auxiliary machinery.

Twin-Screw Floating Crane.

The crane which we illustrate was buitt by the fiem of A . F. Smulders, Schiedam, Holland, for the Argentinc Government. The crane is for the harbor of Buenos dires. There were two of these cranes, the main dimensions of which are as follows:

			$\begin{aligned} & \text { Ton, } \\ & \text { Ine, } \end{aligned}$	$66 . T$ on. Ft. Ins,	
Lemsth betweet	perpendicutars	154	2%	131	
Hreailia between	perpendiculars.	5	9516	55	95/15
Depth amidsbips	measured at the	13	$11 / 2$	11	93/4
Clear life overhas...					
Swinging radius		\%	24		

The Go-ton crane is of the same construction as the roo-ton crane, with the sole difference that instead of a five-sheave block it has one with three sheaves, and that the jib is of a
for the lifting of 100 tons, which is done by means of a firesheave block, and one set for the lifting of 20 tons by means of a two-sheave block, both with two hoisting eables. The lowering of the weights is done by automatically-worked brakes and noiscless ratchets. The crane can be turned at will to the right or leit by a set of conical friction wheels. The engines of the fo-ton erane developed together 601 indicated horsepower, giving the vessel a speed of 16 kilometres (9.9 statute miles) an hour, whereas the contract prescribed 12 kilometres (7.4 statute miles) only in the case of both cranes.

Jubllee Meetings of the Institution of Naval Architects.

A preliminary programme of the International Congress in Naval Architecture and Marine Engineering, to be beld in connection with the jubilee mretings of the Institution of Naval Architects, London, to celebrate the fiftietb anniversary of its foundation, has been announced. It is as follows:
Monday, July 3.-Erening: Receprion at the Royal United Service Institution.

somewhat lighter construction. The steam anchor-winch, two stean-winches, with the necessary sheavea, are on deck for the purpose of working the vessels. Besides the space for boilers, engines and coal, the vessels are fitted with cabins for the chief engineer, captain, first and second engineers, with messroom, crew space for thirty men, galley, etc. Each ship has two boilers, each of t,og6 square feet surface, and working at \& pressure of 120 pounds, which provide the stearn for two compound engines with surface condensation, each working on a propeller. The diancter of the high-pressure cylinder is 15 inches and that of the low-pressure cylinuler 30 inches, the piston stroke being 20 inches. During the official trial the engines of the too-ton erane developed together about 550 in dicated horsepower, and gave the vessel a speed of nearly ts kilometers (9.3 statute miles) per bour.

The crane-winch is driven by a vertical compound engine, having cylinders 12 inches in diameter and 2356 inches, and a stroke of 14 inches. The exhaust steatn is delivered to a surface condenser in the engine room, Both the live steam and the exhaust steam are eonducted through the eenter of the sratue platform 1 y means of a cast enpper conduit, provided with the necessary glands to allow of the turning of the platform. The winch drives two sets of drums, one set

Tuesday, July 4-Morning, 11.30 A. M.: Opening of the International Congress by Iis Royal Highness the Duke of Connaught, K. G., in the Connaught Rooms, Great Queen street, near Kingsway. Afternoon: Official visit to the Coronation Exhibition, Shepherd's Bush. Evening: Reception given by the Right Hon. Jord Brastey, G. C. Br, past president of the Institution.
Wednesday, Thursday and Friday, July 5,6 and $7,-$ Mornings, is A. M. to I I. M. : Reading and discussion of papers in the halls of the Institution of Civil Engineers and the Instiuution of Mechanical Engineers. The programme will include papers contributed by leading English, American, Italian. Japanese, German, French and Swedish engineers.

Wednesilay, July 5-Afternoon: Visit to the Empire Pestival, to witness the Pageant of London, in the grounds of the Crystal Falace. Evening: Grand festival concert in the Queen's Hall,

Thursday, July $6-$ Afternon: Visit to the National Physical Lahoratory to inspeet the national experimental tank. Evenitg : Banquet to the delegates and representatives, at the Connaught Rooms, Great Qucen street, near Kingsway.
Friday, July $7 .-A$ ftermon: River trip down the Thames, to visit the docks and shipping of the port of Londoth.

THE COMINO BIO CUNARDER.

We lise in the age of big ships, and no onte can say that the limit is exen yet within sight. The competition among the Adtantic shipping lines to possess the largest and the fastest vessel afloat contintics. It is barely six months since Messrs. Harland \& Wolff launched for the White Star Lite the Otympic as "the largest ressel in the world." And so she was, but thete was no assuratice that even a vesvel of NB_{2} feet 6 inches length over all would spell finality in the arts of the shipbuilder.

Fre sle was three months in the water preparations were male to lay down in a British yard a vessel exceeding the dimensions of the Olymfic. Since the launch of the Lustonita and Maurchania persistent reports have been in circulation associating the Cunard Company with a design of larger size than either of these vessels. That design is now taking form in the yares of Mesarc, John Brown \& Co., Clydebank, Glasgow. It is, of course, not possible to obtain positive details of a vessel of which the keel plates are havdly laid, for the specifications are still subject to revisal, but there is no doubr that the new Cunarder will exceed by about 120 feet the length of the Mustetana and Lasifants. The Cumard Conspany, as a matter of fact, has planned a vessel $\$ 50$ feet in length between perpendiculars and \$8s feet over all. The Government in this case, as it did in the I.usifania and Mauretania, has no part. Messts, John Brown \& Co, Clydebank, the builders of the Lusifanid, and of a fleet of Cunarders before her. are the experts entrusted winh the uew work, which will approximately cost $\$ 2.000,000(\$ 10,000,000)$.

The interim specifications are for a vessel of $\$ 85$ feet over all, comparing with KN_{2} fice 6 inches in the Olympic. The Olympic is ga feet broad, but the Cunard liner will have a breadth of at least 95 feet 6 inches. The leugth of the Mouretania is 762 feet and the breadih si ieet. The new liner is not to emulate cither the Maurctania or the Lasitanios itu speed, but will surpasa the Olympic, which, of course, makes no claims to boing a fast ship. The speed of the Olympic is 21 knots, but the now Cunard vesel will be constructed for an average speed of 23 hnots on a draught of 34 feet. The contraet specd of $\mathbf{2 5}$ knots by the Mauretania and the Lwstania has been frequently waceded by bath these vessels. The new Cunard Liner will have turbines operating quadruple serews. She will have four fomnels and two pole masts Her coal capacity will be 6,300 tons, and her total displacement 50,000 tons. That is to say, she will displace 5 ,000 tons more than the Olympic. Her double buttom will be arranged to carry oil fucl if found advisable. There will, of course, be an ind stallation of wireless telegraphy. There will be Turkish and electric baths at the disposal of the pasengers, a jurinting establishment for the issue of a daily paper, and a swimming pond will vary from 50 isehe to $t 5$ inches. There will also be a theatre stage in the first-class loange. The aecommodation to be provided is: For first elass passengers, tiso; second class, 740 : third class, 2,400 , a total of 3.700, which compares with 2,500 in the Otympic and 2,200 in the Mauretania and the Lusitania.

The poswibility of a breakluwn of machinery on such a large steamer has been well consibered, and means are derised to enaure that in the event of such an accident taking place no disablement will result. A general rnle with the Admirality is for a double skin round the hull at the part euclosing the machinery. If a collision occurs and plates are fractured or should the vessel ground and damage plates the inrush of water finds its way between the skins and does not come in contact with the machinery at all. An alternative plan is to construct the main hwlklead in the engine foom in two distinct watertight compartments. The new Cunarder
will, we understand, have a double skin to the load line. Shipowners usually content themselves with indicating the dimensions and special features they devire and leave the details to the shiphoider. The Ctuard Company knew what it wanted before issuing the specifications as to the general arrangements. The desire in detail for the comfort of the passengers was that while the new liner will not outstrip the Mowretaria and Lusituria in speect, she will surpsss them in Juxurious equipment, in fitings, and in the keneral arrangements for the contrfort of passensers. The passenger accommodation may possibly be iucreased to bring it up to 4,000 , so that with her crew and a full eomplement the number on board will be about 5,0 o.0. She will then have accommodation for 1,Noo passengers more than the Mauretamia or I,usitunia and for 1.800 more than the Olympic. There will be suites of rooms, many single betths, and family suites, a passenger lifi, complete telephone system throughont the ship, a system of electric bells, etc., as well as what has been named above.

The figures named above were in the specification, but before placing the contract with Messrs. Jolin 13rown \& Co. the ultimate dinevsions of the vessel were left open. The company desires not a record-breaking vessel nor cares whether she exceeds in size the new Ilamburg-Amerikan liner Eiverofa, so lonk as she meets its wishes and suits its business. Something has been added to the length originally specified, but the uhimate figures elosely approximate what we have stated.

The Cunard Company has decided that the new steamer shall be named Aquitanio, the practice of the company being to name after provinces of the Roman Empire on or near the Mediteramean. This name is derived from Ayuitaine, a Roman prorinee in France.

Preparations are now being made at Clybletank for laying the keel of the new seseel. She will occupy the berth upon which the Lusitania was constructed. The Lusitania was built at an angle of 4^{n} degrees to the river. which angle will be execeded, in view of the increase of 140 feet in length. Athough many powerful versels have been built at the Clydebank yard, it was decided before laying the heel of the Lasitania to specially prepare the liesth on account of the intense forward pressure at the bow at the launch when the stern liecame water-horne. Piles were driven into the area subjected to this pressure, and bound on ton with crossties in order to distribute the strain. Among present plans is one to lay a special berth of ennerete. Messrs. Brown give $\$ 10,000$ to the Clyde Truy to be used for riser improvements for launching facilities at their gards. The river opposite is about 6 to feet in width, but the launching area includes the conflsence of the Clyde and Cart, into which the Lusitania was launched. It is capable of extension, and the scheme of the Clyde Trust provides for the widening and deepening of the river ophnsite Brown's establishment. Alout two yeart will elajse before the new Cunarder is completed for service. but she will the ready for launching next year.

35- Wile Steam Vacht Soverelgn.

What is guaranted to be the fastest steam yacht in the world was launched last month at the Morris Heights, New Vork City, yard of the Gas Frisine \& Power Company and Charles L. Seabury \& Co. This new speed wonder was built for M. C. D. Borden, of New York and Fall River, and is to make 35 miles an hour. She was christened by Mrs. B. H. Borden.

Mr. Borden, who is one of the oldest members of the New York Yacht Club, has owned many handsome steam yachts
whose records for speed have made them conspicuous, but nothing to compare with the Sovercign. This yacht was built from the design of Charles L. Seabury, and is 165 feet
with bronze bushing, and the stern post is a steel plate, flanged and fitted to the connter. The frame is of galvanized steel, the floor of steel plates, the garboard strake and bilge

35-MARE STEAS YACAT SONEMXIGN.
over all, 158 feet at the waterline, 4 feet 6 inches draft, and has a beam of 16 feet. She has twin screw. Thirty-five miles an hour is guaranteed by the buikiers, and, so far as we recall, has never been attempted in a vessel of this type. The new yacht will have four smokestacks, giving her the dis-
platiug of Tobin bronze. The sheer strake and side plating are of steel, as are the keelson, deck bearn, bulkhead and engire foundation.

The machimery will consist of two triple-expansion engines, and steam will be generated by two water-tube boilers. The

LAEXCNING STEAM TACITT NOTRARIGN.
tinctiveness in this respect that no other pleasure eraft in the United States possesses. In this and other ways her appearance will attract much attention.

The Sovereign has a bronze keel. The stern is of steel,

Soncreign will be fitted with steam steering gear and will be handled from the bridge at the after end of the forward deck-house. The yacht will be lighted throughout with electricity. She has excellent accommodations for her owner.

The Steamer Sankaty.

A new steamer has been adided to the fleet of the New Bedford, Martha's Vincyard \& Nantucket Steamboat Company in the Sankaty, buih by the Fore Kiver Shiphuildng Company, This vessel differs from the four others owned by this eompany, in being of the screw-propeller instead of she sidewheel type. Previous to the time of contracting for the Sankaty the shallow water at the Nantucket har had made it impossible to design a propeller boal with suthciem earrying capacity at the permissible draft. With the decpening of the ehamel, however, this condition was removed. The Sonkitly is designed under the classification of the Amerran Bureath of Shipping both for freight and passengers, and it is expected that the winter work in earrying the Nantucket mails will fall largely to her, the other steamers not being of sufficient power and suitable design to combat the worst storms.

The Sunkaty is of the sponsom-deck type, the overhang forming an integral part of the structural hull. The main deck and jomer deck are complete all fore and aft, and the hurricane deck extends from the stern to the pilut house, providing stowage for the boats and an ample walking space for passengers. Below the main deck a lower deck extends forward and aft of the machmery spaces to the ends of the vessel. The vessel is divided fore and aft ly transverse bulkheads into six wateright conmartments, insuring an unusual amount of safety in event of damage to the hull. The general dimensions follow:

Length over all 10 get.
Length on waterline 888 fect.
Brendith extreme, outside of guard. 38 fert 2 inches.
Breadth molded at waterline is feet 6 inches.
Depth molded 12 feet 6 inches.
1 Draft loaded extreme not to exceed. 9 feet 6 inches.
The interior arrangement provides commodious quarters for passengers and ant ample freight space, as well as berthing for the crew. The fore part of the main deck is a clear freight space. At the bow are the windlass, etc. The house starts about 53 feet from the stem and has two sliding doors in the forward bulkhead of ample widish for the passage of automo: biles and large freight. Rack of the bulkhead in the center a stairway leads up to the joiner deck. The boiler and engine house is amidshigs, with main stairway up to joiner deck aft of the engine enclosure and the stairway down to the diningroom. At the foot of main stairway is the entrance lobby and social halt, with purser's office on the starhoard and chicf engineer's stateroom on the port side. The joiner deck is given over entirely to the accommulation of passengers. Forward and aft of the house the deck is an ojen promenade with slatted wood seat arranged wherever possible. On the inside the house comprises a large and tastefully-decorated main saloon with a special parlor aft for ladies. For the convenience of prople desiring privacy there are located on cither side of the main saloon three well-appointed day fooms and a commodious stateroom.
The structure of the hull was especially designed for the rough winter service in which the vessel will be engaged. the parts being especially strengtliened where nevessary. The usual type of frame and reverse frame is used, the foors being carried straight across the top and fitted inercostally at the center line. In way of the spmonsons the frames are carried continuonsly aroumd the curve of the side to the fender cliannel. The reverse frames are carried straight up from the sides and are connected by a bracket in the frames and deck beams and by suitable riveting to a longitudinal strength girder running under the beams. Five channel web frames on each side with doubled deck leams furnish additional stiffness in way of the machinery spaces. The side keelsons ant

LOWRE DECK TLAN OF STEAMER SAMKATY.
stringer are of double angle, the first keelson having also an intercostal plate with angle elips to shell and floors. The foundations for the engine, boilers and auxiliaries are specially constructed on high floors and longitudinals or on built-up foundations. The flat plate keel is provided with an extra heavy steel rubbing piece to prevent injury in case of grounding on a bar, and an 18 -inch 1-beam with plate floor stringer and channel rider make up the vertical keel. The shell plating is arranged with "in-and-out" strakes carried continuously on the curve of the sponson and attached to the deck through a vertical channel, which also holds the fender. Above the main deck a steel bulwark runs all fore and aft.
The lower deck beams are of angle section or ahternate frames with steel stringer and tie plates. Main deek beams are channels on alternate frames, except under forward deck, where there are angles on every frame. The deck is plated complete over machinery spaces, seven complete bulkheads
bine set of 85 kilowatt capaciy, with switchboard complete. One hundred and fifty outlets are provided for, and independent circuits are run to the running lights and to the projector, a 13 -inch General Electric commercial type with pilot house control. The lighting arrangement in the principal passenger spaces gives a pleasing effect, being on a special system in use on other boats of this company. The lamps are attached to the cornice itself by a special fitting of neat design, the wiring being entirely concealed in the molding, which is grooved at the back for the purpose. The electric fittings throughout are in bronze finish.
The life-saving appliances are four 24 -foot metallic lifeboats, one 12 -foot and one 8 -foot metallic cylinder life-raft and 1,000 cork life preservers. In addition a wooden "pick-up" boat 86 feet long is installed. The boats are handled by the ordinary swivel-type davits. One $\mathbf{t . 0 0 0 - p o u n d ~ a n d ~ o n e ~}$ goo-pound Baldt stockless anchor are supplied, with a steel

STEAMES SAMKATY GOING IMTO COMMISSHON.
are fitted below main deck, five being watertight. Longitudinal coal bunker bulkheads extend the length of the boiler space on either side. The decks are supported throughout by pipe stanchions and I-beam girders.
The steering gear is of the Hyde combined steam and hand type, 6 inches by 6 inches, and interchangeable only at the engine. It is located in the engine room, being connected to the quadrant by a $1 / 4$-inch wire rope, and is driven by wire rope and besel gears from the pilot house. Aft on the main deck is located a Providence-type crank capstan. Four 36 -inch cleats with mooring parts are arranged on each side, two forward and two aft. The windlass forward on the main deck is of the Providence hand pump brake type, and is fitted with wildeats to take both t-inch and $1 / 4$-inch close link chain cable. The drainage system consists of galvanized iron bilge suction pipes drawing from each watertight compartment and leading through a manifold to the bilge pump in the engine room. The fire-main comprises a brass pipe running fore and aft under the main deek with risers terminating in hose gate valves on the main, joiner and hurricane decks. Two deck fire pumps are supplied.

The electric plant consists of a General Electric Curtis tur-
davit and tackle for handling. Also 30 fathoms of 1 -inch and 30 fathoms of $3 / 3$-inch close link chain. The Sankaty is amply steam heated throughout the living spaces, and the exposed steel surfaces have been covered with cork paint, ensuring the maximum amount of comfort to passengers during the winter months.

THE PGOPELLING MACHIXERY.

The propelling machinery, located amidships, consists of a vertical inverted, three-cylinder, triple-expansion engine, with cylinders $16,25,42$ inches diameter, having a stroke of 27 inches. The bed-plate of the main engine is of the usual box section form in one piece, having six cross girders. The sixmain bearinge, $81 / 2$ inches diameter and 9 inches long, with their caps, are cast iron lined with white metal. The cylinders are supported by seven columns, three cast iron at the back and four forged steel at the front. The box guides, bolted to the back columns, are hollow and fitted for water circulation. The crankshaft is forged steel throughout with webs shrunk to pins and journals. All wehs are $51 / 4$ inches by 16 inches. Crankpins are $81 / 2$ inches diameter, 10 inches long. The cylinders are arranged, beginning at the forward end of the
engine, high-pressure, intermediate-pressure and low-pressure. All cylinders are fitted with piston valses. The high and in-termediate-pressure cylinders each have one and the low pressure two values of this type. The valve diameters are 7 inches for the high and $t 3$ inches for the inermediate and lowpressure. All valves are fitted with balance cylinders for taking the weight of valves and gear. The high and intermedi-ate-pressure pistons are flat cast iron, the low-pressure is cast teel of conical form. All pistons are fitted with cast iron followers and Christie packing rings. The piston rods are 34/4 inches diameter, the low-pressure being fitted with a tail rod $2.3 x$ inches diameter. Piston rods and valve slems are packed with metallic packing. The crosshead shoes are cast iron fitted with composition gibs, faced with white metal. The crosshead pins are $41 / 2$ inches diameter and 5 inches long. The connecting rods are forged steel, 60 inches between centers, fitied with composition top end hrasses and cast steel bottom brasses, lined with white metal. The valve gear is of the
thrust bearing is of the usual horseshoe type, having seven adjustable cast iron horseshoes faced with white metal. The stern tuhe bearings are of composition lined with strips of lignum vite. The propeller is of the solid type, cast iron, 8 feet diameter, 10 feet 6 inches pitch, 29 square feet developed area.
The main air pump is of the Blake vertical single-acting beam type, with steam cylinders $7 / 2$ inches diameter, air cyltnders $t 6 \frac{1}{2}$ inches diameter, all with a common stroke of to inches. The main condenser has a cylindrical steel plate shell, with cast iron water chesis and cover. There are 1,34498 inch brass tubes 7 fect $1 / 4$ inch between tube sheets, giving a cooling surface of $\mathbf{t , 5 4 +}$ square fect. The tube ends are packed in the usual manner with cotton wicking, secured by brass glands screwed into rolled composition tube shects. Cooling water for the condenser is taken from a centrifugal pump furnished by the Morris Machine Company, having att 8 -inch suction and 8 -inch discharge. The pump, direet connected to

TNGINE OF ETEAMER SAMKATY
usual Stephenson double bar link type. A 6-inch double poppet throttle valve, worked by a hand lever, controls the supply of steam to the high-pressure chest. All receivers are copper pipes, installed with ample bends for expansion.

The reversing gear consists of a direct-acting steam cylinder, 8 inches diameter, 12 inches stroke, secured to the back of the intermediate-pressure cylinder. A forged steel reverse shaft, + inches diameter, carried in bearings at the hack of the engine, transinits motion from the reversing engine to the links. The eut-off of each valse may be adjusted separately by means of a sliding block, working in slotted reverse shaft arms. A hand-furning gear is fitted at the after end of the bed-plate. The thrust shaft is $8 \frac{1}{2}$ inches diameter with seven collars 15 inches diameter, $1 \$ / 4$ inches thick, forged solid with the shaft. The line shafting is $81 / 4$ tnches diameter, and the propeller shaft is 9 inches diameter. The propeller is secured to the tapered end of the shaft by a composition nut and steel feather. All shaft couplings are 17 inches diameter, 21/2 inches thick, connected by six forged steel taper bolts. The
a 6 by 6 vertical engine, has the following connections: 8 -inch suction from sea and 6 -inch bilge suction, with 8 -inch discharge through main condenser. The following additional pumps are fitted: One maiu feed, 6 inches by 4 inches by 6 inches vertical duplex, with suction from the feed and filter tank and fresh-water tanks and discharge to the boilers, through a grease extractor and a Reilly feed-water heater. There is one auxiliary feed, a duplicate of the main feed. One fire and bilge. $71 / 2$ inches $-4^{1 / 2}$ inches by to inches horizontal duplex, with suctions from the sea, engine-room bilge, bilge manifold and iresh-water tanks, and discharge to the fire main, ash ejector, condenser, salt-water sanitary system and overboard. One salt-water sanitary with suction from sea, and discharge to salt-water system and crosshead guides. One fresh-water sanitary with suction from the fresh-water tanks. There is also fitted one $t 1 / 2$-inch injector. Many of the valves are of Starr Brass Company's make.

The vessel is fitted with two double stacks having a total height of abont 4 feet above the grates,

The steam pressure is 225 pounds, furnished by tour Almy boilers. Each of these boilers has a grate area of 40.49 square feet, with 1,553 square feet of heating surface, and measurcs $933 / 32$ inches wide, $897 / 2$ inches long, $1121 / 2$ inches from bottom of ash-pan to top of hood, 24 inches from bottom of ashpan to top of grate, 30 inches from top of grate to crown of fre-box. Weight, without water, 23.000 pounds; weight, with water, 25,400 pounds. These boilers are what is known as Class E.
The ashes are handled by means of a 4 -inch ash ejector of the Fore River pattern. She has 1,000 Armstrong life preservers. At the time the design was made a series of model tank texts were conducted, and from these results it could be predicted that the contract speed could be maintained. She was first standardized by making twenty rums over a measured course, the speed varying from 8 to $161 / 2$ statute miles per hour. The steam pressure at the highest speed was easily maintained by the boilets. Following the standardization a four-hour run at sea was made and the contract speed of 15 statute miles per hour was readily exceeded. The owners of the Sonkaty have put into effect their belief that true economy,

Some data and dimensions of the hull, machinery and armament are given below:
Material .. Mild ateet Lenyth between jerguhduculara..................................... 289 fh . 4 ins
 He,tin on L. W. L.. 16 ft $03 / 2 \mathrm{ink}$
lean draft
4

Armament.-Five 3 -inch, 50 -caliber, semi-automatic guns; three 5 -meter by 45 eentimeter deck torpedo tubes; three 3 -inch guns, all of which are furnished by the Government.
Propelling Machinekr.-An interesting feature about the two destroyers in question is marked by the use of the Zoelly marine turbine for the propelling machinery, and the WhiteForster water-tube boiler for the steam generating plant. The Mayrant and Narrington are the first and only ships in the United States Navy having this type of machinery.

As will be noticed from the plan appended, the two turbines are placed side by side in alout the middle of the engine room, with sufficient room left outboard for each condenser.

MACMINEAY PLAK Of DEsteotias

especially in boiler practice, lies in ample reserve power. This had the advantage not only of economy in fuel consumption and long life to the boilers, but gives a margin of power for use in adverse conditions of ice and weather.

TORPEDO BOAT DESTROYERS WARRINGTON AND mayrant.

Among the ten destroyers authorized by Congress in May, 1908, are included the Wisrrington and Mayrant, of which the former has recently completed its contract trials.
-The contract for the above-mentioned vessels was auarded to the Wm. Cramp \& Sons' Ship and Eugine Building Company, of Philadelphia, in October, 1908 . The contract time was, respectively, twenty-three and twenty-four months, and the price for each was $\$(6,4,000(£ 132,800$), which is excluaive of equipment and certain other articles furnished by the Government.
7. Maneuveriny Valve.

5, Lears to Aboad Turbine, man, full speed.
9. Steam to Ahead Turbine, reduced speed,
10. Steam to Ahead Turbine, cruising speed.
13. Main Steam Croms Coonection.

This arrangement of the machinery allows for a comparatively large and unobstructed floor space, together with ready accessibilny of the auxiliaries.
The Zoelly turbine is essentially of the impulse type, but, when used for marine purposes, where steam speeds of necessity must be low, the pure impulse action is changed in the low-pressure zone to the combined impulse-reaction system as used in Parsons turbines. The turbines installed in the May* rant and Worrington consist, in the high-pressure zone, of twelve pressure stages, in each of which there are two velocity stages, or, in other words, two movable vane rows and one stationary row. All of these stages consist of turned steel dises fastened to the shaft, the separation of the stages being accomplished by circular diaphragms fitted tight in the casing and having a lahyrinth stiffening box, each surrounding the shaft. In the low-pressure zone, where the ranes are mounted on a drum, there are four stages, the first one of which is an impnlse stage-with eleven rows of buckets, while the three succeeding stages are impulse-reaction with varying number of rows of buckets or vanes.

The backing part of the turbine is simitar to the aheadgoing part, but with a considerably smaller number of stages.

Both ahead and backing turbines are assembled within the same casing, the exhausl from both being taken out in one common exhaust nozzle connecting to the condenser. There are three direct steam connections to each ahead-going turbine and one to the backing turbine. At each steam connection the casing forms a steam belt extending the length of the are occupied by the nozzles. The number of these nozzles vary from eighteen in the first stage, gradually increasing both in number and size unil the last stage has been reached. The movable vanes extend all around the discs, while the stationary row of each stage only contains a sufficient number of vanes to properly distribute the steam coming from the nozzles to the moving vanes. The nozzles at each separate steam inlet are proportioned as to size and number in such a way as to admit a steam quanlity needed to give the power corresponding to full speed, reduced speed and cruising speed of the ships.

There are no nozzle valves, all regulation of steam admission being performed by a throttle valve to each steam connection. When going ahead the turbines turn outboard, the starboard propelier being right-hand and the port propeller left-hand. As in all of the other destroyers of this class, the turbines, together with all the engine-room auxiliaries, are placed in one compartment aft of the boilers. The main steam line operating valves are connected with a steam manifold fastened to the front of columns with brackets between the forward engine-room bulkhead and the turbines. The operator thus faces the turbine while manipulating the valves. Each steam manifold conneets by pipe through a main stop valve on the bulkhead to a line of main steam pipes running on each side of the ship.

Auxiltartes.-There are two main twin, single-acting air pumps placed aft, one on each side of the center line of the ship, between the two shafts. Engine-driven circulating pumps are placed immediately forward of the condensers. The two main feed pumps are placed forward in the engine room.
The condensers are box shaped with semi-cylindrical top and bottom. The tubes are 5 fininch diameter by 15 feet 2 inches long between tube sheets, the total tube surface in each condenser being 5,002 square fect. The cooling water enters at the bottom and leaves at the top, while the exhaust steam circulates around the tubes in an opposite direction. A direct air pump suction pipe from the bottom of each condenser connects to each air pump, the two pump channelways being inter-connected by a cross-pipe fitted with a sluice valve.
There are also placed in the engine room evaporators and distiller, feed heater, two 5 -kilowat Curtis turbine-driven dynamo sets, Jubrication oil pumps, oil cooler with circulating pump, fire and bilge pump, feed tank and an auxiliary condenser. In each fire room are located two Terry turbinedriven, forced-draft blowers.

Boness.-Four White-Forster water-tube boilers are placed in two separate compartments with one fire room between each pair of boilers. They are made for burning oil only, and are designed for a working pressure of 250 -pound gage. They are not arranged with superheaters. The tube-heating surface in each boiler is 4.500 square feet. The circulation of the gases of combustion in the White-Forster boiler is similar to that of the Yarrow. The constructional feature which distingtishes this boiler from others is to he found in the curved tubes, which are set at such angle in the tube sheet that any one tube may be removed without disturbance to other tubes, through the manhole placed on the front head of the boiler drum. All boiler tubes are made of seamless, cold-drawn steel of 1 -inch outside diameter.

Arrangements of oil fuel tanks and oil-burning arrangement is, in general features, as well as in individual details. iden-
tical to arrangements described in various articles recently published in these columns.
There are three smokestacks, the top of which is about 33 feet over the oil burners.
The auxiliary boiler feed pumps are placed in each fire roum.

Phopenlers and Sinarting-The propellers are cast solid and are made of manganese bronze. They have each three blades machined to give a true pitch of 6 feet 2 inches. The diameter is 6 feet 8 inches, with a projected blade area of 20.4 t square feet.

The shafting is made of Class A steel forgings, 7 inches diameter and solid.

Taial. Data.-The standardization trial of the IFarrington was made on a course off Delaware Breakwater on Jan, II last. The official speed trials were performed Jan. 12. 15 and 16, when a four-hour full-speed trial, a 25 -knot trial of seven hours, and a 16 -knot trial of ten hours were run.
Four-Hota Full-Speed Trial-

Seven-Hotrs 25-Knot Speed Tahal-

Ten-Hour 16-Knot Steez Thtal.-

The foregcing articie, together with two others, having appeared at different time in these columns, finishes a series of articles in which have been described the general features of the propelling machinery and boilers, and in which have also been given the principal trial data of three destroyers of the same class and dimensions as regards hull, but all having machinery of different type. The destroyers thus described are the Preston, with Parsons turbines and Thornycroft boilers: the Perkins and Sterret, with Curtis turbines and Yarrow boilers, and the Margrant and Warrington, with Zoelly turbines and White-Forster boilers.

Interesting Propeller Experiments.

Prof. Oswald Flamm, of the Technical High School of Charlottenburg, has made some most interesting experiments with serew propellers with a view of finding out the effect on the water through which they passed. The series of illustrations we give from his book are novel and highly interesting and instructive. It is to be regretted that more means were not placed at the disposal of the professor so that he could earry out his work to his liking, bett this condition is a most

Fic. 1.
unfortunate one, that far too often exists under similar circumstances.

Professor Flamm calls attention to the lack of accurate knowledge concerning just what can be obtained from a propeller. He wishes to obtain the effect on the water in front of the propeller, at the propeller and in its wake. In order to do this he could not trust to human vision, or can human vision record what it sees. He, therefore, had recourse to photography, which can not only only see, but makes a thorough record of what is seen. He also called into use that most convenient form of power, elect ricity. Owing to limited apparatus and means he could not make all the records that he desired and he experienced considerable difficulty in recording the exact powers exerted. His experimental tank was

ric. 3.
10 meters long (393 feet), 8 meters wide (26 feet a inches), and 6 meters deep (19 feet 8 inches). The tank was of plateglass and he used filtered water. In order to obtain a view of the propellers glass sides and bottoms were necessary and, of course, clear water could only be employed. Into this water he threw the rays of a searchlight of some 24,000 candlepower. Above the tank he erected a track and mounted on it a truck, and from this apparatus extended down into the water an arm or strut which carried the propeller and its motor. These propellers were in various forms, but not freaks. They were such as were used in torpedo boats, tow-
boats, express boats, packets and yachts, and altogether were thirteen in number. Some of the special wheels were designed by Professor Flamim, The revolutions of the propellers were from 2,000 to 3,000 per minute. In taking the photographs the exposures were approximately onc-thousandth of a second each. In the trials the carriage was loaded with various weights, but Professor Flamm does not express himself as very well satisfied with the records he obtained as to the power required to move a given load at a given speed under the conditions,

ric. 2.
Examination of the photographs shows some interesting features. The illustration marked Fig. I clearly brings out the drawing down or suction of the water just above the screw. In the experiment when this photograph was taken the carriage was weighted with 20 kilograms (24 pounds) and the propeller was three-bladed, making 3,600 revolutions, and the advance of the carriage is noted as slow.

The illustration, Fig. 2, with a weight of 4 kilograms (88 pounds) and 2,500 revolutions of speed of 2.45 meters per second (96 feet) the suction loses the peak effect and shows

nia. 6.
a more elongated depression, keeping practically parallel with the surface of the water after leaving the point immediately above the blade of the propeller. There are no detailed descriptions or drawings of the carriage or transmission mechanism, but it is not at all difficult to conceive of many satisfactory plans which could be carried out under the circumstances. The carriage was fitted with a strut carrying a torpedo-shaped body at the stern, on which was fitted the screw. Of course, the strut was a thin fore-and-aft crosssection and faired with great care.

Illustration Fig. 3 has no data given as to the revolutions,
etc., but the spiraling effect in the water is splendidly shown, and here again the sucking down above the screw is brouglt out. With a four-bladed propeller the effect, as shown in Fig. 4 , is interesting. Here 1 kilogram (2.204 pounds) was the weight on the carriage. The screw turned 1,250 revolutions and a speed of 1.2 meters (4.72 feet) was obtained, and the curious "ropy" effect of the water is interesting to note.
The professor calls attention to the fact which we all have suffered from more or less, and that is, with the utmost care the propeller is almost always a trial and error problem. Certain conditions being given, a propeller wheel can be designed to do certain things, but there always seems to be a pleasant smile on the face of those who "chase the x 's" and produce the drawing of the wheel, when results approximately coincide with what was sought, and it is somewhat strange that so often the hoped-for result is exceeded. The smile broadens, but good engineering can only be obaained by exact data, and, while we are often assured by experts that wheels
and are located at its New York Navy Jard. The remaining 2 are the property of a private shipbuildiag company, and are at its yards in Erie Basin.
Of the 72 toating docks, 50 are "balance" or single pontoon docks; 20 are sectional., or of the multiple pontoon type, and 2 are "mud" or open end box docks, and all are private property.
Of the floating docks, the largest is that of the Morse Dry Dock \& Repair Company, having a claimed lifting capacity of 15.000 tons. It is of the sectional type, having five pontoons, each of which is provided with a duplicate pumping outfit operated electrically. It has a hull length of 408 feet and a deck length of $4-8$ feet, the difference being made up with an overhanging deck or outrigger at each end. Between wings, it has a top width of $t 20$ feet, and a deck width of 103 feet. The dock is entirely of wood and lies between two piers, which serve to hold it in position.

The second in size is a sectional dock at the yards of Tietjen \& Lang. Hoboken, N. J., which has a lifting capacity

can be, without quession, properly designed, there seems to be a great amount of docking done to replace propellers. In other words, we really consider that with the present knowledge we cannot call the design of a propeller an exact art. and it is to be hoped that further investigations of Profersor Flamm can lee made to put us in possesson of facts to correct this conditions.

DOCKING FACILITIES OF THE PORT OF NEW VORK."

For docking vessels at the Port of New York, there are provided, in all, 92 appliances. Of this total, 6 are graving or fixed location baviss, 72 are floating hulls or pontoons, and 14 are marine railways.

Of the 6 graving docks, 4 belong to the U'nited States
${ }^{*}$ Compiled by Firederıck 0, ttarris, Civil Engineer, K . \$. Sary, mevialed by C. F. Bonner.
of 9,000 tons. It is built entirely of woul, has five sections or penteons, which make up a hull length of so8 feet and a deck length of tis feet, including the outriggers. Between wings it has a top width of $\phi 8$ feet and a deck width of 08 feet. The dock is entirely of wood and lies between guide piers.
In the following order are the twelve firms having the larzest floating dock tonnage facilinies:

The two privately owned graving docks are at the ship yard of the J. N. Robbins Company, Beard street and Erie Rasin, Brooklyn. One of these bas a top length of 515 feet,
sill depth of 25 feel. Both docks are of the Simpson type, originally of wood throughout, though the smaller has been largely renewed with concrete. Both docks have the floor

a bottom lengit of 483 feet, a top and bottom entrance widih of 98 feet and 46 feet, respectively, and a N. H. W. sill depth of 21 feet; the other has a top atd bottom letigih, respectively, of 612 feet and 5,78 iect, a top entrawe widils of 85 feel, a botlon entrance width of of 45 feet, and a N. H. W.
lesel with the sill, and they conform generally to ihe usual types of graving docks.

Nll of these establislments have machine, forging and wood-working shops, atul ate eqtipped for repair business. Of the firms having stizall docks, several do largely a yarhil and
pleasure craft business; others cutfine their operations to barge and scow building and repairs, while in other cascs the ducks are an adjunct to the larger operations of machme, forge and boiler shop business.
Of the marine railwayn, the largest, which is now shut down, is that of the Shooter Island Shipbulding Company at Mariuers Harbor, S. 1, with a cradle length of 35_{5} feet, and a formage capacity of 4.500 . 1 his firm has a welf-equipped plant for general shighuideng and separ work, but is not now actually engaged in bustness.

He other ralways are much smaller and do building and repair work whthin the capaciny of their plants.

Anveng thuse firms having factlities for handiug large vessels, there is a generally acceptod schedule of dockage charges for vessels whose tonnage rates amount to fifty dollars or more per day. For vessels of smaller size, the charges are contmgent upon circunislances, and there seens no generally applied rate,

The following tariff applies generally to all large sessels, the rates being per gruss ton; cargo and remonabe ballant ieng charged for in sunte cases, white in others, the basis is the gress ton register as given in Lloyds. The first day, 8 ceats per ton; the second, third, fourth and fifth days, 7 cents per ton; all subsequent days, o cents per ton, but no charge shall be leas than $\$ 50$. Five of more continuous hours consthute one day. Onc hour and less than five bours constitute onc-lalif a day. Lay days on which no work can be done on account of loud weather are at half price. Sundays and holidays are free, unless work is performed, in which event full rates obtain. Docking time bogins when the vessel enters the mouth of the duck, and eontinues tunt it lias cleared the same. Vessels lying in dock for the account of the tlock company do so without charge.

The following regulations govern the use of the ducks of the United States Luternment by other than its own ships (See Art. $926,4,5,6,7$, of the regulations) :
"No work shall be done by the Guvernment force at a Nasy Yard or Station for private individnals or corpurations, exeept by authority of the Secretary of the Nasy, upun application spectifying the mature of the work to be done, and arcempanied by a certificate from the Commandant, that the neccesury labor und appliances cannot be prosured in the tic inity from pritute contractors. Where work is authorized at a Navy lard or Station for private parties, they shall deposit with the Paymaster of the Yard, a sum sutfictent to cover the estimated expenses to be incurred. The total cost shall be defrayed from such deposit. The special deposit for paymetit shall be made by check payable to the order of the Conmandant of the Yard or Station, and by him endorsed to the Paymavter of the Yard..........Any balance of the suecial deposit remaining in the hands of the Paymaster shall be returned by chech to the party making the deposn. The "charging" rates current in the vicisuty shall be used in fixang the cost of private work, which shall not be less than the acital expense to the Governuent. Touls, power, light, etc., ,hall be ineluded in the cost, ath the rates for suth appliances, etc., shall be those charged per hour in the vicminy, bus in no case less than the cost to the Government therefor. In docking private vessels at Navy I'ards or Stations, the usual rates per grons ton register fur docking and maintaining in dock current in the vicinity shall be charged, provided, however, that no such charge shall be leas than the actual cost."

The following is the schedule of charges for private individuals or corporations using the Government dry docks at the New York Navy Yard:

For docking vessels in Dry Iorks Nos 1 and 2, the charges will be:
(a) For steamers, 5 cents per gross ton for docking (incladed undocking).
For sailing vessels, 5 cents per net son for docking (included undorking).
(b) For steamers, 5 cents per gross ton per lay day.

For sailing vessels, 5 ceuts per net ton per lay day.
For docking vessels in Dry Dick No. 3, the charges will be:
(a) For steamers, 8 cents per gross ton for docking (including undexking).
For sailing vessels, 8 cents per net ton for docking (including undocking).
(b) For steamers, 8 cents per gross ton per lay day. For sailing vessels, 8 cents per net ton per lay day.

Lloyd's Register of Shipping for the quarter ending March m, 1911, states the world's tonnage butding, not includiux the United Kingdem, is 640.133 in 287 vessels. The gross tomage built in the tinited Kingdom amonnts to $1,3 \overline{7}, 4 \times 4$ in f No vessets, $31 \%, 000$ tons greater than reported in the previous twelve months. The war tonnage of the United Kingdom was
 past ten years. The conmercial tomatge of the United States is $98,80,3$ tons in 54 vessels. Germany leads all but England, with 17 vescels of 215,537 tuns, France following with 29 wes. sels of 123 . Cog itins.

The Chilean government has, either under construction or contract, extensive navy yards and hartor improvements at Takahuano, consisting of machine shops, a large new drydock and extensive breakwater aml harbor worke. When these improvements are completed the government will have a wellequipped naval station and one of the best hartwrs on the Pacific Ocean suuth of San Francives. There improvements will cost very close to $\$ 10,000$, roo kold, and it will require about three and one-half years 10 complete them. Xearly everything ahout the naval machine shops is English.

The article on page 148 of our April issuc, entitled "Sta bility of Merchant Vessels," shrough an oversight, did not have the author's name attached to it. This article was writen by Mr. George Nieol, In the article the syrubol "Z" is used in one or two instances in place of "Y."

The new Hamburg-American steamship, whose name bas been changed from Europa to Imperator, is to have forty-six watertabe boilers of the modified Thurnycroft type. The propelling power will be four l'arsons turbines modificd in several ways, such as including the go-ahead and the astern turbines in the same casing. The ship will have three funnels, two for boiler draft and one solely for ventilation. It is expected that this one fumel will make it possible to do away whth all ventilating cowls. By the use of watertube boilers it is expecterl to save at least $3(x)$ tons in the weight of the ship.

GRAIPHICAL SHIP CALCULATIONS

Ship calculations in mearly all cases are made by the aid of intekrating rules, such as Simpson's, Tcheliycheff's or Borda's, which can kive only an approximate resath. For all these rules are gained by substituting it eurse of mathematically expressible character for the original curve, as it is laid down in the drawing of the ship's forms. Much more correct results can be ascertained by graphical calculations, which, morcover, will very often effect a saving of simc, especially
with ships whose ends are cut away to a considerable extent, such as motor boats and yachts.
To show how to arrange such a graphical calculation, the displacement, centers of buoyancy and waterline, metacenter and moment to change trim of the boat below shall be calculated. The dimensions are as follows:

Feet.
1.ength over all:................................ . . . 44.6

Length of waterline....................................... $39-4$
Exireme breadth .. 85
Draft ... 3.28
On the horizontal base line B B (Fig. 3) the distances of the sections shown in the body plan are marked and vertical lines drawn througl these points. The areas of the sections are found by planimeter from the body plan, and set off on their respective lines in a convenient scale. Thus we get eurve 3. Fig. 3, the area of which represents the displacement of the boat. This is only caleulated up to waterline 4, and the area of the curve is 2868 square inches. As the scales are, horizontally, 1 inch $=8.33$ feet; vertically, 1 inch $=1367$ square feet, we must multiply the area of the curve by 8.33×13.67 to have the displacement in eubic feet, $2.868 \times 8.33 \times 13.69=$ $320.6,17$ enbic feet.
To obtain the longitudinal position of the center of buoyancy with respect to a suggested cross plane, the moment of the corve of displacement with respect to this plane is determined graphically in the following manner:

Take two of the vertical lines ($U U$ in Fig. 3) at equal distances from the fixed eross plane 6. From any point of the displacement eurve draw a borizontal tine (such as $P F$ and $Q F$) to meet $U U$; further draw the straight lines $O-F-P M$. $O \cdot F \cdot Q . M$. Thus every point, such as P and Q, of the displacement curve produces a point as $P M$ and $Q M$ on its vertical line, and the eurves 4 are found. The area under the part of eurve 4 to the left of cross plane 6 , multiplied by the distance between $U U$ and $V \quad V$, represents the moment of the part of the displacement curve ait of eross plane 6 , and the area of that part of curve 4 to the right of 6 , multiplied by the same distance, represents the moment of its fore part.

This method of drawnig moment curves was devised by Nehls, and can be proved by reierring to Fig. 2. The noment of the curved area $A O B$, with respeet to the V axis, shall be found. Take a strip. FGH I, of this area so narrow that the curved piece $H I$ may be taken as straight. The montent of that strip is the product of its area FGH I multiplied by the lever l, or ($K \mathrm{~L}$. beink the mean height of the strip) $F G \times$ $K L \times 1$. Draw the line $U U$ parallel to the Y axis and at a distance d from it, and elose the figure by drawing $K P$ and $O P M$. Now the following relation exists between K, M, $P U, l$ and $d, O M L$ and $O P U$ being similar triangles:

$$
\begin{aligned}
& L M: P U=l: d . \\
& L M \times d=P U \times l=K L \times l .
\end{aligned}
$$

Therefore, the moment of the strip may be written $F G \times$ $L . M \times d$, instead of $F G \times K L \times L F G \times L M$ is the element strip of a new area, the boundary of which is found by constracting a new point if to every point of the original curve, as it is done with K in Fig. 2. As the moment of every element strip of the original curve is given by the product of the corresponding element strip of the moment curve, multiplied by the common distance d, the sum of the moments of alt orisinal clement strips, being the moment of the whole original area, is represented by the area of the moment curve multiplied by the distance d.
In our ship calculation the moments abaft and before plazie 6 are counteracting. and therefore the difference hetween them is the nometnt of the total displacement curve. Of course, the center of buoyancy lies on the side of the wider moment area.

It is not necessary to work out the moment in fourth powers of a foot, for the montent itself is scarcely required. The planimeter readings of the moment areas are simply subtracted from each other, and the remainder is divided by the planimeter reading of the displacement enrve; the result, multiplied by the standard distance $O U$, is the distance of the center of luoyancy of the fixed cross section.

The pusition of the center of buoyancy below the load. waterline is found by using the curve of waterline areas 1 in the diagram, lig. 3. "The horizontal lines $W \mathrm{I}, W^{\prime}$ $L z_{2}$ etc., are spaced in a conventient scale, c. g., $1 ; 25$, and on them the respective areas of waterlines are set off. A eurve is passed thromgh the end poims, ealled the curve of watcrline areas. By integrating this curve up to the dif. ferent waterlines, the displacement below the respective waterlines is olnained. As the scales arc, horizontally, \mathbf{x} inch $=$ 136.7 :quare ieet; vertically, t inch $=2.08_{3}$ feet, the planimeter readings in square inclics must lie multiplied by 136.7×2.083 $=28_{4} .8$, to kel the displaceument in culsic feet. The figures from the diagram are tabulated below:

The respective displacements are set off on their correspond. ing waterlines, thus leading to the scale of displacenent (curve 2 in diagram, Fig. 3). The area of this eurve below any waterlinc, divided by the displacement up to that waterline, gives the distance of the respective cester of buoyanty below the waterline.

To prove that, suppose A.W.L. in Fig. 4 to be the curve of waterline areas and Sc. D. the scale of displacement obtained from A. W. L. An increase in draft $D_{,} D_{2}$ causes an increase in displacement represented by the area $D_{1} A_{1} A_{2} D_{2}$ in the wale of displacement this inerease is the difference between the displacements at drafts D_{1} and $D_{3}, i . e ., D_{7} B_{2}-D_{1} B_{1}=$ $B_{2} F_{2}$. Now, supposing $D_{1} D_{2}$ being small, the curses pieces .$A_{,} A_{1}$ and B, H_{2} may be taken as straight, and therefore the area $B_{1} B_{2} C_{2} C_{1}=B_{3} F \times E G, E G$ is the distanee of the displacement portion $D_{3} A_{1} A_{2} D_{2}$ or $B_{2} F$ from the waterline, or, in other words, its lever, with respect to the waterline. The area $B_{1} B_{a} C_{3} C_{1}$ therefore represents the moment of the displacentent portion $D_{1} A_{1} A_{3} D_{2}$, and as every portion of displacement is represented by a corresponding part of the area between the scale of displacement and the waterline, this whole area means the uoment of displacement with respect to the waterlime. It may be expressed in fourth powers of a foot. using the scales as above stated, horizontally, 1 incli $=224.28$ cubic feet; vertically, 1 inch $=2.083$ feet. As the planimeter gives 0.651 square inches, the moment of the displacement below 1. H. L. works ont at

$$
\begin{aligned}
& 0.651 \times 224.88 \times 2.083=304.18 \mathrm{fect}^{4} . \\
& \text { C. B. below L. } H^{\prime}, L .=\frac{304.18}{326}=\mathrm{n} .9 .34 \mathrm{fect}
\end{aligned}
$$

The result must be drawn in according to scale. The way shown in getting it has been chosen only to have a clear connection, and may be tukh abbreviated. It suffices to divide the area by the length of its upper limit line, without regard to scales, the displacement being represented by this length, which is found to be $t .455$ inches.

$$
\frac{0.651 \text { square inches }}{1.455 \text { incleses }}
$$

For, using the vertical seale in the diagrans, 0.4775 inches corresponds to 0.934 feet.

It remains to fix the longitudinal position of the C. B. by the numbers obtained from the diagram. The difference between the areas of the monnent curves is $0.10 \% 4$ square inches aft of section 6, and the area of the curve of displacemens lieing 2.868 square inches, the distance of the C. B. abaft section 6

$0.10 \mathrm{~K}_{4} \times 78.74$
works ont at $\frac{2 \text { gre }}{3}=3$ inches. For the unity dis-
waterlitte by the displacement. Let the curve $A K B$ in Fig. 2 represent the load-waterline, and regard a small part FGH I of it, which may be taken as a rectangular area of the width $F G$ and the height $K L$. The moment of inertia of such an $F G \times K L^{*}$
area, with respect to the X axis, is given by \qquad
3
Therefore, if we set off the third powers of the waterline's half breadths, and pass a curve through, one-third of the area between this curve and the X axis will give the moment of inertia of the half waterline, and two-thirds of it the moment of inertia of the whole waterline.

FiG. 4.
In the diagram, Fig 3, the waterline is drawa lelow the base lise $B B$ to avord confusion. The third powers of its ordinates are taken from tables and lead to the curve 8 , the area of

tance $O U$, by which the quotient of the areas is to be multiplied, is $7 \mathbb{R}, 74$ inches.

The height of the transverse metacenter above C. B. is got by dividing the transverse moment of inertia of the load-
which is 3.325 quare inclics. As the scales are, horizontally, t inch $=8.33$ feet; vertically, t inch $=4.85$ feet; the transverse moment of inerta of the load-water plane amounts to $3.325 \times 8.33 \times 41^{85} \times 2 / 3=8.8$ feet. The height of the
transverse metacenter above $C . B$. then is

$$
\frac{828}{327}=2.63 \mathrm{feet}
$$

It remains to determine the moment to change trim inch. For that the longitudinal moment of inertia of the load-water plane, with respect to the cross axis through its center, is required. From the waterline 5 moment curves are derived in the same way as the moment curves of the displacement curve were found, and the center of flotation determined by them Then, taking the moment chrves as new original curves, and applying on them the same construction, we find new curves (7 in the diagram), the areas of which, multiplied by the square of the distance $O U$, will give the longitudinal moment of inertia of the load-water plane with respect to the suggested axis (section 6). To get the monent of inertia, referring to the axis through the eenter of flotation, we must stbtract $A \times a^{3}$, where A means the area of the load-water plane and a the distance of its center from the suggested axis.

After having obtained the center of flotation, we could have determined the moment of inertia with respect to the center axis direet: but that wonld make more trouble than the way indicated above, which is also taken from Neh1's method.

Area of half load-water plane (No. 5) 1.6 square inches $=$ iti square feet.

Difference between planimeter readings of moment curves, 0.45 square inches.

Center of fotation aft of section 6,

$$
\frac{0.45}{1.6} \times 78.74=22.15 \text { inches. }
$$

Sum of areas of curves $7,3.15$ sutuare inehes.
Longitudinal monent of inertia referring to section 6 ,

$$
\begin{gathered}
3.15 \times 2 \times 6.36 z^{*} \times 69.3^{\circ}=18.580 \text { feet. } \\
A \times a^{3}=(\times 0 \text { feet. }
\end{gathered}
$$

Longitudinal moment of inertia, referring to axis through center of flotation, 17,8 go feet.

Moment to change trim in fresh water,

$$
1 \text { inch : } \frac{17,890}{12 \times 35 \times 39.4}=1.08 \text { foot tons. }
$$

To calculate the displacenent, centers, ele, for any other draft would simply be a repetition of the way shown for waterline 4. and therefore may be dispensed with. Some practical rules might yet be of value:

STEAK THAWLEK TOAM.

To prone its exactness, Fig z must be referret to once more. In developing the proof for the monent curves we found the equation

$$
L M \times d=\kappa I \times I
$$

Regarding the similar trianglev $O I . N$ and $O U Q$, we have

$$
\begin{gathered}
L N: U Q=I: d \\
L N \times d=U Q \times I=L M \times I=\frac{K L \times P}{d} \\
L N \times d=K L \times P
\end{gathered}
$$

Now the moment of inertia of the element strip F G $H I$, with respect to the γ axis, is given by $F G H t \times F=F G \times K$ $L \times F$, or, substituting $L N \times d^{6}$ for $K L \times P$.

$$
F G \| I \times P=F G \times I N \times d
$$

The moment of inertia of every element strip is represented by the product of the element strip of a new eurve multiplied by the square of the standard distance d, and therefore the moment of inertia of the whole original eurve is given by multiplying whole the area of the derived curve by d°.
From the diagram the following results are obtained:
t. Take the drawing paper sufficiently wide to avoid the planimeter running over the edpe.
2. To simplify multiplications, take the distance d a simple numher, but not too small, to avoid too wide areas for the moment and moment of inerlia curves.
3. Add and subtract adjoining areas with the aid of the planimeter. As the base line is sometimes rather long, it is best to use planimeters of long range.

American-Built Steam Trawlers.

No vessel reyuires to be more stannchly buitt or more carefully designed and fitted out than the fishing boat, for at the best the fishernan's life is a hard and dangerous one. Of late years, however, the introduction of power in these boats has bettered conditions greally. Among the most successful boats recently built, not only as regards efficiency and economy, but also as regards safety and comfort, are the steam trawlers

[^22]Spray, Ripple and Crest, built by the Fore River Shipbuilding Company, Quincy, Mass, These boats are extremely staunch and seaworthy, being fitted with triple expansion engines and Scotch boilers. They can carry sufficient coal to steam from fifteen to sixteen days. The crew consists of eighteen men and they are most comfortably housed and the officers' quarters are luxurious. Every appliance for the fishermen's art, or tracle, is supplied. An otter trawl is provided in each buat. The fish wells are able to carry alout 100,000 pounds. The illustration which we give shows the design of these boats.

The French Steam Trawler Catherine.

The hull is of mild steel, meeting the demands for the highest class of the French l'critas. She is divided iuto tive watertight compartneents, with cellular double bottom. Her entire accommodations have been studied with great eare in order to give the maximum anonint of comfort in the warm elimate. where she is used. There is a large forecassle, in which are the firemen's, boatswains' and fishing masters' rooms. Above these is fitted a powerfill steam windlass and all mooring appliances. The anchors are the latest stockless type. Below the decks are the native erew's quarters with aceommodations for sixteen men; also quarters for eight white sailors. These two rooms are completely separated int order to avoid trouble between races. Below this deck is the gencral storeroom and chain room, also the net room. The ventilation of this part
the navigator's bridge. The cabins are all pleasingly decorated and fitted with electric lights and ventilated.
The engine is a three-cylinder triple, making 170 revolutioms per minute and giving a speed on the trial trip of 14 knots. All the auxiliarics are of the very highest grade. Steam is supplied by a single-ended, cylindrical boiler of the marine type, fitted with two furnaces. The dimensions are as Sollows: Diameter, 13 feet 2 inches; length, 10 feet 6 inches: grate surface, 40 square feet: heating surface, $1,61_{3}$ square feet. The working pressure of the boiler is 180 pounds.
The boat is yawl rigged, and has a goked sail area, in case the engine is dismantled. Three life boats are fitted, which are installed by special davits of the French Navy type.

It is imeresting to know that the bay of Levrier is so full of fish that it is only necessary to use the trawlers' nets for half an hour at a time and the eatch is better than four hours' fishing on any part of the French coast. It is not unusual to have the net leave the bottom and come to the surface on account of the huge number of fish that are eanght. The catch is nsually salted for the European market. Some of it. lowever, is sent to Senegal, Moroceo and Sahara.

Fuel Oil Statistics.

Oil-burning tigures are remarkable, according to the daily press. On the Pacific Coast the Paeific Mail is equipping the Para, Pennsytunia and Astec with oil burners, and Mr. R.

FEKNCH TEAWLEB CATMEATNE
of the ship has been given special attention in order to insure fresh air as far as is possible, on account of elimatic conditions. The fish well is 32 feet long, to which can be added, if needed, 11 feet. The hatch is 9 fect 6 inclies.

A powerful steam winch of so tons capacity, with all the neeessary gear for handling the nets, is fitted, and is mout complete. Aft of the third water-tight bulkhead is the cross lomker in the boiter roon; ales longitnslinal bunkers with a normal capacity of 135 tons of coal. The fourth water-tight lulkhead is between the boiler and the engine rooms. Aft of the fifth water-tight bulkhead is the shaft tunnel and provision rooms: also the second engineer and mates' rooms.
A large deck hnuse has been provided, in which are the captain's rooms, the officers' dining ronm, the galley, which is able to provide for thirty men, and the boiler rooms and larder. Aft of the large engine room skylight is the chief engineer's room and the entrance to the cabins below. Above the captain's room is the chart room, in which is the stecring gear, and aft of which is the owner's cabin. Above these is
P. "chwerin, manager of the line, is quoted as stating that his engineers estinuated a saving of $\$ 160,000$ ($\mathbf{f}_{32,000 \text {) per annum. }}$ The use of oil saves time. Before its use forty-five days was an average voyage between New York and San Francisen. This was cut down to twenty-four days, which is about railroad freight time, but it is only fair to say that competition had something to do with this reduction in time. To make a comparison, the American-Hawaiian steamer Nelbraskan made the voyage from New York to San Diego, Cal., with coal in fifty-seven days five hours and forty-three minutes, burning 2.26 ig tens of poor coal and with a fire-room crew of fifteen men. Returning, she burned oil to the amonnt of 8.826 barrels, or ahout 1,260 tons of California oil, with but six men in the fire-room. On the outward passage, however, the Nebraskan made 13.28 O , while on the return trip she only made 12.7 (io, the oungoing voyage being made longer by the ealling at St. Lucia and Coronel for coal. By the use of oil 57 tons of cargo space was saved. The financial gain is reported by the press as $\$ 500$ (6100) per day. One chief en-
gineer, three assistants, three furnace men, three wipers, one deck engineer and six oilers were all that were required to handle she oil. The regular wateh, when under way, was one engineer, two oilers, one furnace man and one wiper. When coal was used five men were on watch in the fire-room, as against swo when oil was used.

It is also stated that an efficiency of from 70 to 80 percent of oil fuel in California is ohsained, as againss 60 to 65 for the coal. A pound of California crude petrolenm contains to,000 British thermal unis, while the average Pemsylvania coal contains 14,000 to 14.500 Britich thermal units A ponnd of this oil will evaporate twiee as much water as a pound of coal. The actual evaporation efficiency of a pound of oil will be in the ratio of 17 to so.

In Intennational. Makine Engineruing for April is a verification of the cconomy in using oil, in she description of the test of the Revenue cubter Golden Gate.

DESIGN AND CONSTRUCTION OF FREIGHT STEAMSHIPS FROM THE ARCGO TRANSFERRING STANDPOINT. H. MeL. Hamping.*

The importance of heing able to increase the efficicncy of transportation as steamship terminals is now being recognized by the highest executives.

FBEACHT HANDLING MACHINEEV.
There are two ways in which improvements are now being mate: First, in the installation of machinery in the place of manual labor, and scond, in the arrangement and construction of the pier shels. There ssill remains a third-namely, the design of freight steamships, so as to remove the present obstructions to quick and economical freight Iransference. There have recently been constructed in the United States veveral new steanships, exclusively for transporting ircight. Athongh these vessels are designed for freight carrying only, litsle or no improvemens has leen made in the location, number or size of hatches, and side purts, so as to facilitate the loating and discharging the ireight. Sume of the newest freight steamships are no easier to Inad and discharge than the passenger vessels.

The following are some of the special features which hinder the rapid and economical ireight Iransference:

The side ports are too narrow and not of sufficient heighe. There is a limited number of over-all hatchways, and these are generally too small. In some of the forward and aft

[^23]hatchways it is necessary to hoint from the deck level over the rail. The huilding of officers' quarters, kitchens, mess rooms and even store rooms, over the whole central portion of the vessel, greasly increases the difficulties of reaching the eargo between decks and renders necessary the blind hatches.

In the baudling of freight it should be remembered that machinery is now supplansing mamual labor, and will be exclusively employed as soon as the permonal equation is supplanted. The moss modern methods and the type of such mechanism should be taken iuto eonsideration when the design of new freighters is being prepared. The modern machines now heing installed at many ports are overhead traveling gantry cranes which, in discharging. lift directly or vertically from the hatches, With coastwise steamers the movencut of freight is not only from the hatches, but also through side ports, by manual labor. Considering the mere loading or discharging of the vessel, there would be far greater economy in hoisting the cargo through the hatches and placing it upon the side of the pier than in hand trucking it shrough the side ports, provided, that freight handling was considered in the designing of the ship. By the latest methods the freiglty can be taken from the holds to cars, to warelouses, or to any portion of remote sheds without rehandling.
Where the vessel is so carry passengers as well as freight it is necessary to more or less sacrifice freight un-

ANOTERE FHEIGAT HANDLKA.
loading facilities to she accommodation of the passengers, bus there may be a possibility of improvement even here. Where, however, only freight is to be iransported, one of the most important things to consider is not only the cconomical tranference of freighs between the vessel and the shore, but also rapid transference. In fact, by some steamship superintendents rapidity is considered of more importance than econorny. In some of the coastwise lines the charter value of a vessel is given as $\$ 400$ ($£ 80$) per day, and if such a vessel ean be loaded or muloarled in cuse day instead of two there is a saving of $\$+00$ ($£ 80$), and if there be a daily suctession of such steamers during the course of the year the saving would le very great.
The recently-built coastwise steamship is constructed with small side ports and comparatively small hatches, On account of the design of this type of freighter there must be a great number of lost labor honirs in conveying the freight to and fro between decks, the hold, and she hatchways, or the side ports. Generally: at each hatchway there are iwelve to fourteen men employed in placing the freight so that it
will eome withill reach of the ship's fall, or the hook of the overhead gantry cranc, or for removing it from the hatchway. There is no doubt but that with a steanship properly designed for the quick and economical transferenee of freight there conld lie effected a saving in manual labor of 5 cems ($21 / 2$ pence) per ton. On 2,000 tons this would be a saving, even when mechanical methods are employed. of $\$ 100$ ($£ 20$) for loading and $\$ t 00$ ($£_{20}$) for unloading, or $\$ 200$ ($£ \uparrow 0$), and, in addition, less time required for the transference, which may represelt a far more important economy. This saving in charter value should be to cents (s pence) per ton additional. At present one of the most difficult places in which to haulle freight is the lower hold. The freight is lowered into the hatchway and then it is dragged hy main force from the liatchway often 40 or so feet. In discharging, a chain is placed around the case, the book of the ship's fall is attachell to the chain and the package is drawn over the other freight until it reacles the hatchway, where it is elevated in the nsual manuer. It is necessary in trag this case or package ower an uneven surface, catching here and there a coner of a box and often breaking the casings anel cansing other dannage.
Among other olvacles to frectom in freight nuwements in the present type of steamships are the stanchioms which sapport the tlecks. In some of the newer wessels steel knees or ellows in the arch constrnetiotl are wed and stanchino are largely dispensed with, hut even in some of the latest vencels these stanchions are still retained. Provision should tie made for the stresees ond deeks and keelsums, as the thy and lowtom

aEFTEAT TRANSMASTEA.
members of the fure-and-aft girder. The steamships of the Arunswick Line were builh on these lines and have been in operation for five or six years and no structural weaknesses have been reported. The views herewith of an ore freighter unel upon the Great Lakes show the absence of deek obstructions. The upper deek is flush from forecastle, aft. The question is whether freight steamships cannot be constrnctel sonewhat like these vessels or be a combination of the two, There is no question but that with modern freight transferring machinery a buat like the lake steamships, from which has been taken a load of 12,000 tons in about five hours, if filled with a miscellaneous cargo, could be far more quickly minloaded than any of the types seen aloug the Adlantie coast. The lake vessel is filled with ore, hut it would be a long and difficnlt matter to unlond elen 12,000 tons of ore if the ocean 1ype of boat were used. There were carried $13,000,000$ tons of package freight in the lake boats last year.
If a freighter could be so constructed that boxes, barrels and packages of all kinds eould be hoisted vertically and swung over the side without the lateral or horizontal moving between decks it would be a great improvement over the present laborious methuds between decks and in the hold. In freight vessels as mueh of the deck as possible should be
composed of hatches. The quarters and aceommodations of the ship's crew should be forward and aft. The large lake freighter has a length of about 600 feel, with thirty-six or so hatehes, while the length of the eoastwise steamer is seldom more than 400 or 500 feet. It shonld be possible to design a vessel of sufficient strength and stability and to arrange that the freight eould be lifted vertically from the hold. White there seems to be a great diversity of opinion in regard to the possibility of building such a vessel, ansl making it of sufficient strengit, yet from the experience obtained fron the Brunswick steamships and the lake carriers it seems as though some engineer, ly properly proportioning and arrang. ing the steel structure, ean produre a hoat which shall, in the thear future, be the accepted type for freight transportation.

13avelanc dotk crank

The following data in reference to micellaneous cargo freight and to the expene incurred far lalar within the hold of the vessel will show that economy is prosible in freight handling, provided the design of the vessel is changed so as to give ready access to the cargo:

It will be seen what a large proportion of the labor costs
is consumed within the ship, even when mechanical methods are employed.

Not long since, I went over a new freight steamer with the stevedore and he was praising the new vessel, its solid eonstruction, its lines, and many other points of excellence, but I asked him if he thought it was convenient for loarding and discharging. He did not want to express an opinion, for, to use his own words, "I would be eonsidered a knocker, and ny opinion would not be considered of value by the engiweers." It developed in the short conversation that be regarded the boat as most inconvenient to load and discharge on account of the small and narrow hatches, the low headroom of the side ports, and the fact that the side deck ports could not be criened slowil to the deck, so that the load had to be hoisted up over the rail. These and many other facts were drawn from him, and further, that he considered this new boat far inferior to the older loats in regard to the ease with which freight conld be taken to or from the vessel, and he
freight handling standpoint, due provision being made for strength, stability and all other necessary conditions. It is not intended that any of these and other important features shall be sacrificed, but that they shall be retained, and, in addition, provision made for the loading and discharging of the vessel in not over half the time and at a greatly reduced expense. I fully realize that it is easier to take down from the shelf the dust-ladent plans and designs of the past and copy these rather than to start afresh with new calculations, but now the impelling force is the necessity for more improvement in freight transferelke. If the above is true in regard to the naval architect how much more is it true in regard to the shipbuilder, who must not only evolve new plans, but consign to the waste heap forms, patterns, and possibly even machine tools?

The nanager oi a larke steamslip company who was asked why he perpetuated these obstructions to freight movements, said, "We employ and leave these matters to the shipbuilders and naval architects, and suppose there are good reasons for not making any changes." It is hoped that a dixcussion will

HANDLING DAK ON THE GEKAT LAKKR

Aleplored the fact that more time would be consumed in luading and discharging.

From numerous conversitions with men who have charge of important terminal work, and from a careful study of the uperating condition of handling freight, it seems to me that if the naval architect or builder would spend a week by the side of the steved.ere and see the exact process of handling the freight, not merely for an hour each day, but from the time the gang starts in the morning until it leaves off at night, moniug carefnlly the difficulty in handling the different kinds of freight, such as lumber and structural steel, with a full knowledge of the unnecessarily lengtliened labor hours, there is no doubt but that more attention would be paid to this important subject of miscellancous freight transference. Comparison between some of the steamers built in the United States and those in Great Britain, especially those from Glasgow, shows that vessels ean be built with very much larger hatchways, even for ocean duty, by Ameriean designers. It now remains for some naval architeet to design a vessel which shall be the type for many years to come, and this vessel should be designed with reference to its use from the
be aroused and that the more progressive builders and architects will indicate how vessels can be eonstructed so as to help the transportation companics in this important matter of facilitating the terminal work. Herewith are some views of freight-liandling nashinery ardapted for taking the freight directly from the hold of the vessel and placing it upon the pier floor.

A new type of steamship has lately been constructed by Messrs. Osbourne, Graham \& Company, Sunderland, which is classed at IJoyd's $100-\mathrm{A}$, and is of the arch construction, with enormous hatchways. It is stated that by the redistribution of material that the longitudinal strength has been greally inereased and that the form and strueture do away entirely with the usual hold-pillaring. Clear arches are given without any obstructions. Longitudinally the form is also that of an arch, and with the transverse girder, there is greatly increased handling room. This seems a move in the right direction, as not only is freedom from obstructions thus obtained, but also a elcar, unrestricted vertical movement of freight, which is so essential where machinery takes the place of manual labor.

THE APPLICATIONS OF VANADIUM STEELS

Every day Vanadium Steel finds a new use. Every day ordinary steel exhibits its unfitness for the big urgent requirements of modern machine construction.

Vanadium revolutionized the physical properties of steel-made it possible to build a stronger locomotive without increasing its weight made it possible to get twice as much production out of a steel roll without increasing the cost of the roll.

Vanadium Steel is not only stronger and tougher than ordinary steel, but lives longer, resists the influences that age and destroy ordinary steel, works better, truer and more uniformly than plain steel and costs less for the service given.

One type of Vanadium Steel will not do everything-many types are made-a type for every possible purpose where good steel is necessary. Buy Vanadium Steel from stock or specify it in forgings. gears, castings, springs, wire, boiler tubes-or any part where ordinary steel fails.

Specify distinctly Vanadium Steel made from "Amervan' Ferro Vanadium; buy only from reputable makers, as the excellent qualities of Vanadium Steels have tempted unscrupulous dealers to use the name Vanadium for ordinary grades.

Write for "American Vanadium Facts" our monthly bulletin-limited to facts only.

AMERICAN VANADIUM COMPANY

MINERS OF VANADIUM ORES

Largest Manufacturers of Vanadium Alloys in the World
Entire product sold by the Vanadium Sales Co. of America
318 FRICK BUILDING,
PITTSBURGH, PENNA.

VANADIUM BRONZE

TO FIT ALL CONDITIONS OF MARINE SERVICE, IS HEREWITH SHOWN. THE PHYSICAL PROPERTIES OF EACH TYPE SHOULD BE NOTED IN THE APPENDED TABLE.

TYPE 1. For general run of castings, such as propellers, propeller struts, couplings, relief valves, shaft sleeves, thrust rings, gear pumps, hooks, gun mountings, stern bearings, etc., etc.
TYPE 2. For marine fittings, condensers, gate valves, rocker arms, bilge pumps, binnacle stands, mast fittings, cleats, chocks, belaying pins, governors, search light stands, towing hooks, brackets, eccentrics, throttle valves, torpedo tubes, torpedo breeches, conning towers, periscopes, deck plates, etc., etc.
TYPE 3. For engine housings, engine bedplates, air compressor bedplates, air compressor framings, hand wheels, gears, rudder bearings, stuffing boxes, windlass gears, windlass drums, bearing brasses, bushings, spiral gears, port lights, air pumps, reducing valves, etc., etc.
TVPE 4. For whistles, radiator valves, also for forging purposes.
TYPE 5. For plug cocks, steam traps, thermostats, etc.
TYPE 6. For forged pump rods, bolts, valce stems, hose couplings and all kinds of fittings to be riveted. This type is also produced for rolling and drawing.
TVPE 7. For general hardware, quadrants, railings, name plates, indicators, hatches, grease cups, oil cups, gauges, stanchions, engine telegraphs, controller fittings, etc.
TY'PE 8. For air compressor cylinders, oil punips, injectors, exhaust headers, exhaust valve bodies, elbows, tees, water jacketed bearings, gas mufflers, hydraulic valves, bydraulic valve fittings, steam valves, etc. It is a high pressure Steam Metal.
TYPE 9. A special metal used in ship bells, electric bells, electric gongs, fire bells and gongs, submarine signal bells, etc.
TYPE 10. For turbine buckets, superheated stean valves, steam nozzles, pump linings, trolley wheels, circulating pumps, safety valves, journals, glands, etc.

TESTS BY TENSION
 OF THE DIFFERENT TYPES OF VANADIUM BRONZE CASTINGS.

TYPE.	TENSHEF STRENGTH, sQtarnisiscy, LBS.	KL,ATIC LIMIT, squarl incti, LBS.	RLONGATION S TWO INCHES PERCENT.	REDUCTION OF AKEA. PERCEST.	$\begin{aligned} & \text { DIAMETER } \\ & \text { OF } \\ & \text { TEST PIECE. } \end{aligned}$
1	71,000	28,500	32.0	27.8	1 luch
2	4i5, 400	28,400	38.5	31.1	1 Inch
3	65.100	34,400	18.5	17.2	1 Inch
4	56,900	22,800	57.5	437	1 Inch
5	59,500	22,000	52.0	37.6	1 Inch
6	51,100	18,100	65.0	45.3	1 Inch
7	59,200	23,000	50.0	39.1	1 Inch
8	32,060	17,500	21.0	188	1 Inch
9	62,940	32,960	8.0	17.0	1 Inch
10	70,000	40,000	21.8	1 Inch

WHEN ORDERING, PLEASE SPECIFY TYPE OF VANADIUM BRONZE YOU DESIRE

VANADIUM METALS CO.

FRICK BUILDING
PIT'TSBURGH, PA.

DEVELOPMENTS IN WIRELESS TELEGRAPHY;*

The purpose of this article is to show briefly to what extent wireless telegraply has developed in nineteen years. Marconi transutited a distance of two miles in 1805 ; in 1806 he transmitted a distance of four miles. In 1897, using vertical wires 150 feet high, signals were successtully exclanged at a distance of about nine miles. A distance of thirty-four miles was reached, and in 18×9 on land and between two British men-of-war abont sixty miles apart at sea, also eighty-five miles, partly over sea and partly over land.

The apparalus was a $2 \overline{5}$ horsepower, the frequency of alternatiug current being so cyeles per sccond. From it signals

AKHANGEMESE OF WtiEEESA APPREATES.
were scht acruss the Atlantic and received on an acrial about 400 feet long, suspended irom a kite.

So that in less than eight years after wireless telegrapiby was shown to be practical a range of wave lenghts from 1.3 up to 5,500 meters had been used.

The method of construction shown in Fig. 3 was modified so as to ontit one of the oscillation transformers, and with this omission this methot of generating electric waves is still in use and is commonly called that of inductive coupling.

Prutessor Slaby subsequently produced, with Count Arco, what was known as the Slaby-Arco system, which used the nethed of direct connection or direct coupling shown in

[^24]Fig. \& This became the geueral method of coupling transmitters. Stone, bowever. sued the method of inductive coupling both for sentling and receiving.

The first jortable and convenicnt meaus of meauturing wave leupths produced by oscillating eifeuts were made by the Slaby-Arco Company in Germany about $190 z$.
The use of wave meters showed that, in general, cireuits tuned to resonance and connected to each other, as shown in Figs. 3 and 4 . gemerated and radiated waves of two lengths, one longer and one slorter than that which would bave been produced by cither circuit if oscillating free irom the influence of the other.

A difficulty confronted the designers; if they used the plain acrial and generated waves of but one length they were limited to small powers and short distances.

If they used direct or inductively-conteeted tuned circuits they probluced waves of two lengths, only one of which could be recieived, and part of the energy was consequently wasted.

So that. although the means were discovered of gemerating waves of any desired length and radiating any desired amoum of jower, difficultics arose in the use of the large powers which were found to be necessary to send long distance-two waves were generated where only one was desired. This difficulty was partially overcome by weakening the mutual imduction between circuits, so as to bring the two waves nearly into coincidence in lengih; but, in general, the existence of two wave lengths interfered with the sharp tuning which is necessary to prevent interference in receiving

In toof. M. Wien observed that while using a spark gap made of metal surfaces placed very close together his measuring instruments only indicated one wave in the radiating circtit-the acrial.

Jnvestigation of this phenomenon appeared to indicate that the gap, possibly on account of the cooling effect of the large surface and mass of material used, regained its di-electric strength to such an extent after two or three sparks had passed that the remaining energy was not sufficient to break the gap down again, so that the closed circuit made but two or three oscillations.

The manner in which the elosed eircuit transfers energy to the open circuit it appears that this form of spark gap. made up of a mumber of very short gaps betwees) metal plates. prevents the retransfer of energy from the open to the closed circuit after the closed cirenit has eompleted the first transfer and is momentarily stopped.

With the spark gap open, whatever vibrations are set ttp are not in tune with those in the open circtuit and they absorb littic energy from it.

We have two ways of generating electric waves of any desired length. namely, weakening the mutual induction between coupled circuits and by means of the quenched spark.

Aerials generating sloort wave lengths are more efficient radiators than those generating long ones; but short wave lengths suffer more absorption over land and sea than ling ones.

For over-land communication the greater radiation efficiency of the oscillations producing short wave lengths is counteracted at much shorter distances by the greater absorption of short waves. This absorption varies greatly with the character of the land surface-whether wet or dry, level or lilly or mountainous.

It was demonstraned that for short distances the attenuation due to distance varies directly as the distance and does not fall off according to the law of inverse squares.

The dislance which sigmals can be received from an aerial varics directly as its vertical height and directly as the amount of oscillating current in it: also directly as the height of the receiving aerial, so that the eficiency of two similar aerials
for wireless telegraph purposes varies as the square of their height.

Taking the lower limit of recesved current which will produce ambible signals as $1 / t 00.000$ of an ampere, experiments indicate that ith order to communicate soo miles, with masts 200 feet high, wing a 300 - Heter wate, we must liave an oscillation current in the aerial of 1 ampere; to ensure grod conmunieation we should have + amperes.

To ensure good aserage communication at 2.500 miles, with naasts 4,50 fect high, we would require, with a $6,000-m e t e r$ wave, a current of 30 amperes in the acrial to secure readable siknals, and abont 200 amperes to ensure good conmmication.

With parity of other conditions vertical wires an feet long are sutficient for communicating one mile; to feet, four miles ; 8o feet, sixteen miles.

This daw is not complete, as it failed to take into account the effects of absorytiou.

The recent Brant Rock experiments are the most extensive scries of observations on absorption, the results of which have been published.

It appears we have certain means oi generating electrie waves of any desired length. We cannot say that they are simple.

Sir William Crookes included in the term receivers, which he knew only as shor1 resomators with which waves were detected by observing the sparks passing between their terminals, apparatus which we now divide into thrce classes: Recciving circuits, detectors and means for making the action of the detectors audible or visible, such as telephones, ampliphones, Morse writers or recorders.

Marcoui in his experiments used as a receiver the apparatus shown in Fig. 5-two metal or tisfoil-covered glass plates connected by a tube containing metal filings.

In 1897 Marconi fixed the proper length of the plates of his receiving apparatus to make them resonate by using plates of tin foil pasted on glass and making a cut across the foil with a very sharp penknife, and bringing it close to the sempling apparatus shown in Fig. I in such a position that the strips of tin foil are parallel to the line joining the centers of the oscillating spheses, when sparks would jump acress the cut.

When the length of the strips were adjusted to approximate resonance the sparking occurred at the greatest distance from the oscillation producer; he brought it to the sending apparatus and made his adjustments there and then set it up eliewhere.

When he used long, vertical wires as senders the method of tuning the recciving set by means of the sending set in its inmediate vicinity was not practicable. In May, 1897 , with the sendiug apparatus comected to a vertical wire 150 feet high, the receiving apparatus was at first connected to a wire go feet high, about fo feet above sea level, and for two days attempts to communicate oser a distance of three and a half miles were unsucecssful. On the third day the receiving apparatus was carried down to the beach, at sca level. and connectel to the go feet of wire ly the additional 60 feet necessary to reach sea level, naking 150 feet in all. and communication was imaseliately cetablished.

The direct-connected sending apparatus shown in Fig. 4 came into use, direct-connected receiving apparatus was introwheed, the connections being as shown in Fig. 7, except that the arrangements for variable connections in both inductance and condenser, and which are used for tuning both the closed and the oren circnits, were not intruduced at this time, but were a later development.

Stone developed a method of sharp tuning by the introduction of an intermediate-tuned receiving circuit, introfleced letween the open circuit and the closed detector circuit.

Both the weeding-ont circuit, as proposed by Stonc, and the

Fessenden interference preventer are useful under certain conditions, but usually the inductively-connected tuned receiving circtit (Fig 8), without any intermediate circuit, is that in geweral use.
Receiving circuits are not in general more delicate except in the sense of being more selective.

For ordinary shp communication the reliable operating distance of coherers, with expenditure of 2 to 3 kilowatts in the sending apparatus, was from fifty to seventy-five miles.

Many other kinds of detectors were discovered, which could be used with a telephone, hut sone of them proved to be sufficiently reliable to be placed in general use until the electrolytic detector was developed by Fessenden in 1902.
The introduction of detectors, such as the electrolytic, tripled the working range of telegraph sets.
In 1905. Getteral Dunwoody, U. S. A. introduced carhorundum erystal detectors. Crystal detectors are now in gencral use.

Considering the requirement of darting the sheaf of rays in any required direction. This has not been satisfactorily accomplished except for very short distances.

Marconi generated iree electric waves in the focus of parabolie mirror and directed them towarils his receiver, which was placed in the focal line of the mirror, but the distances that he was able to cover by this method were so short that he soon discarded this for the vertical eartlied-wire transmitter, which generated earthed waves.

Surrounding this vertical wire with a reflector by which the waves could be directed was manifestly impracticable, and no serious efforts in this direction were made for a number of years.
Artom attempted to generate elliptically shaped waves by the introdaction of multiple aerials.
Guarini attenpled actual direction by means of refracting the waves. Marconi discovered that a transmitter, having a large postion of the acrial horizontal, recejved more strongly in the direction away from whieh the horizontal wire pointed and sent more strongly in the direction from which it received the best.

Horizontal acrials radiating from a common center, like spokes of a wheel, were set up on shore in such a way that each one could be connected at will to a common vertieal aerial. It was fornd pussible to determine the direction of the sending vessel from the station on shore by connecting the horizontal parts in succession to the vertical parts. The strmbest siguals were received when the vertical part was connected to that spoke of the wheel pointing away from the direction of the sending vessel.
The trans-Atlantic wireless stations have the horizontal portions of their acrials pointed directly away from each other. This method of directive sending and receiving is only applicable to shore stations. No satisfactory explanation oi the cause of the directive effect has yet been offered.

Stone, in the United States, based his attempts at directive recciving on the fact that two vertical wires in a plane at risht angles to the direction of the waves would have oscillatthg currents of the same phase and strength induce 1 in them, which could be made to neutralize each other and produce zero signals,

An unsuccessful attempt was made to determine the relative bearing of two ships from each other by this method.

The-importance of having a reliable means of determining the direction from which wirciess telegraph signals are coming cannot be overestimated. Being able to direct them is of equal impertance.

One operator can be ready to receive two wave lemgths at the same tinte, making the of two receiving sets, one connected to each ear; but this does not cover the case. The custom is to have the receiving circuits broadly tuned for listen-
ing in, and then adjust them as sharply as to be non-interfering.

Wireless telegraphy is indispensable to the efficient operation of navies, both in peace and war.

Electric Steering Gear.

In general, electric steering gear involves the principle of operating the auxiliary steering gear mechanism by an electric motor in place of the steam engine, which motor may obtain its power directly from dynamo romn feeders, and will operate in synchronism with the rudder; that is, the motor is started and stopped by means of a powerful automatic controller each time the rudder itself is started and stopped. The electric gear consists of a disc-brake, a main automatic controller with a resistance, a limit switch and follow-up drum master controller. The master controller consists of a small follow-1p controller installed in the stecring engine room, and operated by comections to the tiller ropes or telemotor in a similar manner to that employed in operating the valves of the steam engine. This follow-up drum control is also connected to the main driving shaft, and in this manner a follow-up motion is produced, which is in all respects similar to the control obtained by the steam engine equipment. The change from steam to electric, or electric to steam drive, can be accomplished by throw-over clutches or equivalent means.

The control equipment acts to automatically accelerate the motor and to provide a slow speed and bring the motor quickly to rest. In case of overload, the control equipmemt operates to limit the motor current and toryne to a predetermined safe value. A movement of the steering wheel on the bridge produces a corresponding movement of the control mechanism in the steering engine room, whieh through the control equipment starts the motor, and then by mechanical connections from the rudder to the control mechanism in the steering engine room, before mentioned, a follow-up is effected and the motor automatically stops at the desired angle. A reverse motion of the steering wheel will revolve the control equipment in an opposite direction, and starts the motor and rudder in the opposite direction.

In order to prevent the rudder from jamming a limit switch is provided, which will automatically shut down the motor at extreme angles of iravel. It is pussible, however, to oferate the equipment in the reverse direction afier the limit device has operated at one of the extreme positions.
The stecring engine and electric motor are provided with mechanical clutches on the main engine driving shaft, so that either the engine or the motor may be thrown into gear with the shaft as desired.
The connection between the tiller rope and telemotor and the follow-up dnum in the steering engine room and the connection between this drum and the engine shaft are so proportioned that the results when stecring with the electric gear will be similar to those obtained with the steam engine; that is, a given throw of the steering wheel will produce the same angular travel of the rudker with the electric gear as with the steam. Any movement of the steering wheel on the bridge corresponds to a certain number of degrees of the rudder in one direction, and turns the master controller a proportionate number of degrees, and is followed immediately by the starting of the motor and turning of the rudder in that direction; the motor-driving shaft operating while driving the radder to return the master controller toward the initial or center position. When the motor has reached the angular position, as indicated by the steering wheel, the motor-drixing shaft will have made the proper number of
revolutions to bring the master controller back to the initial position, at which point the control circuits in the master controller are broken and the motor is stopped.

The .reversal of the movement of the stecring whed reverses the rotation of the motor, and the rudder is turned in the opposine direction, which will revolve the master controller back towards ins off position, and the motor will eontimue to revolve until the rudder is in a position corresponding to the stecring wheel, at which point the master controller is in its off or stop position. The manufacturers of the steering gear described in this article are the Williamson Bros. Company, Philadelphia, Pa.

Shlp Ventilation.

The art of ventilation, which is now generally recognized as a most important branch of sanitary science, has probably received even more attention at the hands of the builders of large passenker vessels than has been the case with architects of modern buildings. Certain is it that shipbuilders have far greater difficulties to contend with. For instance, there is a larger number of persons on board in comparison to the space a vailable than on land, involving consequently a larger volume of air than is usually required in buildings. excepting, of course, theatres, etc., where, however, the occupation is only temporary. Further, this volume of air has to be distributed

VENTILATING FAKA ON gOAkD THR ohvmptc.
among innumerable cabins at such a low velocity as not to canse a drauglt-so easily noticeable in confined spaces. Provision mmst also be made for warming the air, as well for its removal when vitiated. And all this must be accomplished with the utmost regard to economy of space. Artificial ventilation is now rapidly superseding natural ventilation at sea, as ut has been doing for some time past on shore. The difficulty of obtaining with cowls alone an adequate and regular supply of fresh air below deck, and of controlling and distributing the air current produced by them, has led the modern shipbuilder to adopt mechanical ventilation, with its small and compact units of comparatively high volumetric capacity. No better example of np-to-date practice could be found than on the White Star liner Olympic, the largest vessel afloat. Messrs, Harland \& Wolff have equipped it with no fewer than seventy-five electrically-driven Sirocco fans, measuring from 20 inches to 30 inches in diameter. Some of these fans, which are connected to heaters, distribute the fresh warmed air throughout the ship, others are used for extraction purposes, while twelve large fans are employed for the ventilation of the stokeholds.

LAUNCH OF THE TITANTIC.*

The general arrankements for latunching the $+5,000$-ton White Star steamship Tifanic, which occurred on May at at the Harland \& Wolff shipyard at Belfast, were similar to those in the case of the sister ship Ofympic, which were described in the December, 1910, issue of International Marine Enginezung. The vessel was held on the ways by hydraulic triggers, only requiring to be released by the opening of a valve in order to let her glide into the water. Her launching time was sixty-two seconds, her speed t2 knots and her weight abont 25,000 tons.
The Tilanic is of the same design as the Olympic. The following are the leading dimensions:

Lengtb over all........................ $\quad 88.8 \mathrm{ft} .9$ ins.
Length between perpendiculars.... 850 ft .
Breadth, extreme.................... 92 ft. 6 ins,
Depth, molded, keel to top of beam, briage deck.

73 ft .6 ins
Total height from keel to navigating bridge
10.4 ft .

Gross tonnage (about)............. 45, 4, 400 tons.
Load draft \qquad 34 ft .6 ins.
Displacement (about) (io,000 tons.
Indicated horsepower of reciprocating engines 30,000
Shaft horsepower of turbine engines 16,000 Speed
$2 t$ knots.
The Tidonic is a triple-screw steamer having a combination of reciprocating engines with a low-pressure turbine. The reciprocating engines exhaust into the low-pressure turbine, which drives the central propeller. The reciprocating engines
watertight compartments, and owing to the width of the ship it has been possible to fit five boilers athwarthhip. The boiler compartment nearest the machinery space accommodates the single-ended boilers, and these are arranged for running the auxiliary machinery while the ship is in port, as well as for the general steam supply when the ship is at sea.

In each of the five large boiler rooms there are two See's ash ejectors, and in addition there are four of Railton \& Campbell's ash hoists for use when the vessels are in port. A large duplex pump of Harland \& Wolff's own make is fitted in a separate room in each boiler room, the advantage being that the working parts of the pumps are not injuriously affected by dust. The boilers are fitted with the Ross-Schofield patent marine boiler circulators. The exhaust turbine, instead of being in the same engine room with the two sets of piston engines, as in carlier ships, is accommodated in a separate compartment abaft the main reciprocating engine room, and divided from it by a watertight bulkhead. In the reciprocating engiue room there are two sets of main engines-one driving the port and the other the starboard shaft. In the wings there are the main feed and hot-well, bilge, sanitary, hallast and fresh-water pumps, and a contact and surface heater; while on the port side a space has been found for extensive refrigerating plant under the immediate observation of the engineers.

The two sets of reciprocating engines-one driving each wing shaft-are of the four-crank type, arranged to work at 215 pounds per square inch, and to exhaust at a pressure of alout 9 pounds absolute. These engines are on the balanced principle. The high-pressure cylinder is 54 inches in diameter, intermediate cylinder 8_{4} inches, and each of the two lowpressure cylinders 97 inches in diameter, the stroke being 75

which drive the wing propellers are sufficient for mameuvring in and out of port and going astern. There is no necessity for an astern turhine, which is requirel in steamers fitted with turbines only. There are twenty-nine boilers for the ship, having in all 199 furnaces. All of the boilers are 15 feet 9 inches in diameter; but twenty-four are double-ended, being 20 feet long, while five are single-ended, being tt feet 9 inches long. The shells of the latter are formed by one plate; the others have, as usual, three strakes. At each end there are three furnaces, all of the Morison type, with an inside diameter of 3 feet 9 inches. The working pressure is 215 pounds, and this under natural draft. The boilers are arranged in six

[^25]inches in all cases. The exhaust steam turbine, by which the central screw will be driven, is of the Parsons type, to take exhaust steam at about 9 pounds absolute and expand it down to t pound absolute. The condensing plant is designed to attain a vacuum of $281 / 2$ inches (with the barometer at 30 inches). the temperature of circulating water being 55 degrees to 60 degrees F. The rotor is built up of steet forgings, is 12 feet in diameter, and the blades range in length from t 8 inches to $251 / 2$ inches, built on the segmental principle, laced on wire through the blates and distance pieces at the roots, and with binding soldered on the edge as usual. The length of the rotor between the extreme edges of the first and last ring of blades is 13 feet 8 inches. There is, as has been
said, no astern turbine, as the center shaft is put out of action when the ship is being manceuvred. The bearings, thrnst and governor are of the ordinary type adopted in Parsons turbines. The turbine can be rotated by electric motor, and the usual lifting gear for the upper half of the casing and the rotor is also actusted by eiectric motor. The rotor weighs about 130 tons, and the turbine complete weighs 420 tons. The turbine shaft is $20 \frac{1}{2}$ inches in diameter, the tail shaft $22 \frac{1}{2}$ inches, each with a 10 -inch hole bored through it.

The propeller driven by the turline is built solid, of mankanese bronze with four blades, the diameter being 16 feet 6 inches. It is designed to run at 165 revolutions per minute when the power developed is 16,000 shaft-horsepower. As usual with turbine condensers, the inlet is of the full length of the condenser, and is well stayed vertically by division plates. In line with these there are in the condenser corresponding division plates, which secure an eyual distribution of steam over the whole of the condenser tube area. The pear shape concentrates the tube suriace at the point where the largest volume of steam is admitted where it is most needed.

There are four sets of gunntetal circulating pumps, two for the port and two for the starboard contensers, with 29 -inch inlet pipes and driven by compound engines of Harland \& Wolff's own make. For each condenser there are two sets of Weir's air pumps of the "dual" type, hoth air and waterlarrels being 36 inches in diameter by 21 inches stroke.

For kenerating electric current, both for light and power, four foo-kilowatt engines and dynamos are fitted in a separate watertight compartment aft of the turbine roon at tank-top level. The engines, which indicate each about 5% horsepower, are of the Allen vertical three-crank compound, enclosed forced lubrication type, rumning at 325 revolutions per minute. Each set has one high-pressure cylinder, 17 inches in diameter, and two low-pressure cylinders, each 20 inches in diameter, with a 13 -inch stroke. They take steam at 185 pounds pressure per square inch. The engines exhanst either into a surface heater or to the condenser. Fach engine is direct-coupled to a compound-wound, continuous-current dynamo, with an output of 100 volts and 4,000 amperes. Their collective eapacity is $\mathbf{t}, 000$ antperes. The dynamos are of the ten-pole type, and are fitted with inter-poles.

In addition to the four main generating sets there are two go-kilowatt engines and dynamos, placed in a recess off the turbine room at saloon-deck level. Threc sets can be supplied with steam from cither of several boiler rooms, and will be available for energency parposes. They are similar to the main sets, but the engines are of the two-crank type. The distribution of current is effected on the single-wire system, and is controlled and metered at a main ewitchboard placed on a gallery in the electric engine room, to which the main dynamo cables and fecders are connected. The latter pass up through purt and starboard cable urtenks to the various decks, radiating from thence to master switch and fuse boxes grouped at convenient points in the machinery spaces and accommodation, from whence run branches to the distribution fuse boxes scattered throughout the vessel controlling the famps and motors.

A complete system of electric lighting is provided, and electricity is also largely employed for heating as well as for motive power, including seventy-five motor-driven "Sirocco" fans, from $\$ 5$ inches to 20 inches in diameter, for ventilating all the passenger and crew spaces as well at the engine and boiler roons. All the fan motors are provided with automatic and hand-speed regulation,

The shell plating of the ship is remarkably heavy. It is mostly of plates 6 feet wide and of about 30 feet in length. The width tapers towards the ends. The laps are treble-
riveted, and the shell strakes in the way of the shelter and boat decks have been hydranlically riveted. Also the turn of the bitge, where bilge kecls 25 inches deep are fitted for 295 feet of the length of the vessel ansidships. There are fifteen transverse watertight bulkheads, extending from the double bottom to the upper deck at the forward end of the ship, and to the saloon deck at the after end far above the load waterline. The room in which the reciprocating engines are fitted is the largest of the watertight compartments, and is about 69 fert long; while the turbine rocm is 57 fect long. The boiler rooms are generally 57 feet long, with the exception of that nearest the reciprocating engine conpartment. The holds are so feet long. Any two compartments niay be flooded without in any way involving the safety of the slrip. The two decks forming the superstructure of the ship and the navigating bridge are built to ensure a high degrec of rigidity. At the sides they are supported on buit-up frames, in line with the hull fraines, but at wider intervals. The deck houses are specially stiffened by channel-section steel fitted in the framework, and where, as on the boat deck, the public rooms pierce the deck, heavy brackets are introduced to increase strength against racking streses when the ship is steaming through a heasy seaway: Expansion joints are made in the superstructure above the bridge deck at convenient points in the length-one formard and one aft. the whole structure being completely serered and the joints suitably covered.

The stern-frame was made by the Darlington Forge Company; and the total weight of the easting was about 190 tons, the stern frame being 70 tons, the side propeller brackets $73^{1 / 4}$ tons, and the forward boss-arms 45 tons. The center propeller, driven by the turbine, works in the usual stern-frame aperture, while the wing propellers are supported in brackets. The stern frame is of Siemens-Martin mild cast steel, of hollow of dish section, in two pieces, with large seraphs, one on the forward post and one on the after post, connected with best "Leowmoor" iron rivets, 2 inches in diameter, the total weight of rivets being over a ton. They were all turned and fitted and specially closed with rams. There are in all 59 rivets in the forward and 54 rivets in the after scraphs. In the stern frame there is the boss for the shaft driven by the turbine, the lower portion of this part of the stern frame having a large palm cast on its extreme forward end, to give a solid connection to the after boss-arms and main structure of the vessel.

The rudder also has tieen constructed by the Darlington Forge Company, Lid., and is of the nsual elliptical type, of solid cast steel, built in five sections, coupled together with bolts varying from $31 / 2$ inches to 2 inches in diameter. The top section of the rulder is of forged stec! from a special ingot of the same quality as naval gun jackets. On the completion of the forging an inspection hole was bored through the stock of the rudder in order to ensure that there were no flaws.

There are ten decks in the ship, nanted from the bottom upwards: Lower orlop, orlop, lower, middle, upper, saloon shelter, bridge, promenade and boat. The passenger deckspromenade, bridge, shelter, saloon. upper, middle and lowerare named alphabetically A, B, C, D, E, F, G. Two of the decks are above the molded structure of the ship. The lower orlop, orlop and lower decks do not extend for the complete length of the structure, being interrupted for the machinery accommolation. The bridge deck extends for a length of 550 fect amidships, the forccastle and poop on the same level being respectively 128 feet and to6 feet long. The promenade and boal decks are also over goo fcet long. The firss class passengers are accommodated on the five levels from the upper to the promenade decks. The second class passengers have theif accommodation on the middle, upper and saloon Jecks,
and the third class passengers on the lower decks, forward and aft, and on the middle, upper and saloon decks aft.
The steering gear is fitted on the shelter deck, and is very massive, the diameter of the rudder stock-231/2 inches-af. fording some idea of the dimensions. The gear is of Harland \& Wolff's wheel-and-pinion type, working through a spring quadrant on the rudder head, with two independent engines, having triple cylinders, one on each side. Either engine suffices for the working of the gear, the other being a stand-by. The gear is controlled from the navigating bridge by telemotors and from the docking bridge aft by mechanical means.
The navigating appliances include, in addition to two compasses on the captain's bridge and oue on the docking bridge aft, a standard compass on an isolated brass-work platform in the center of the ship, at a height of 12 feet above all iron work and 78 feet above the waterline. Adjacent to the bridge there are to be two electrically-driven sounding mehines, arranged with spars to enable soundings to be taken when the ship is going at a good speed.
The vessel is to be fitted with complete installation for receiving submarine signals. The lifeboats, which are 30 feet long, are mounted on special davits on the boat deck. The ship is designed for two masts, 205 feet above the average draft line, a height necessary to take the Marconi aerial wires, and to insare that these will be at least 50 feet above the top of the funnels and thus clear of the funnel gases. The masts are also for working the cargo by means of cargo spans, and in addition there is on the foremasts a derrick for lifting motor cars, which will be accommodated in one of the foreholds. There are three cargo hatches forward and three aft. All the hatches in the after part of the ship are served by electric cranes of the same make; two of these will be on the promenade deck; there being two small hatches to the hold below, so as to form a minimum of interference with the promenading space.
The first class passengers will be accommodated on the five levels from the upper to the promenade deeks, The second class passengers have their accommodation on the middle, upper and saloon decks, and the third class passengers on the lower deck, forward and aft, and on the middle, upper and saloon deeks aft. There are three elevators in the main companionway and one in the main second class companionway. For first elass passengers there are thirty suite rooms on the bridge deck and thirty-nine on the shelter deck. These are so arranged that they can be let in groups to form suites including bedrooms, with baths, etc., with communicating doors. On each of these two decks, close to the companionways on either side, adjacent rooms are fitted up as sitting or dining room. In all there are nearly 330 first class rooms, and $\mathbf{t 0 0}$ of these are single-berth rooms. There is accommodation for over 750 first class passengers.
For second class passengers the rooms are arranged as two or four-berth rooms, the total number of second class passengers being over 550 . For the third class passengers there is a large number of enclosed berths, there being \&\& two-berth rooms. The total number of third class passengers provided - for is over $\mathrm{t}, 10 \mathrm{om}$

The first class promenades on the three top decks in the ship will be exceptionally fine. The bridge deck promenade is entirely enclosed. It is a space over 400 fect long, 13 feet minimum width each side of the vessel, and with a solid side screen fitted with large, square lowering windows. The deck above this is the principal promenade deck, and is entirely devoted to first class passengers. It is more than 500 feet long, and will form a splendid promenade, the width in parts exceeding 30 feet. The topmost, or boat deck, is also devored to first class promenading, and is 200 feet long and the full width of the ship. The first class dining saloon is designed to accommodate 532 passengers, and ample smoke-room, res-
taurant, lounge and reading and writing room accommodation is also provided.

The second class dining saloon is situated on the saloon deck aft. It extends the full breadth of the vessel, with extra large opening pivoted sidelights arranged in pairs. The paneling of this room will be carried out in oak. The third elass dining accommodation is situated amidships on the middle deck, and consists of two salonts well lighted with sidelights and will be finished enamel white.

Deck View of Battleship Delaware.

As the battleship Delanare was leaving New York harbor Jume I to cross the Atlantic to take part in the great Corona-

DECK VIEW OF THE v. S. BATTLEEHIF DELAWABE
tion naval review at Spithead, our photographer, Edwin Levick, of New York, photographed the ship as she was about to pass under the Brooklyn Bridge. A reproduction of his photogragh is shown herewith.

FERRY STEAMER PUPUKE.

Steamer Pupuke has been built at Auckland, New Zealand, for the Tahapuna Tram \& Ferry Company, to run from the city across the harbor to O"Neil's Point, where the passengers connect with the same company's tram service to Lake Tahapuna, one of New Zealand's pleasure resorts.
In making this trip the vessel has to cross the prevailing winds, which at times are very severe, and also across a tide of about three knots. For this reason the vessel was designed with the deek projecting on each side beyond the hull proper and then planked up and calked outside the struts so as to form airtight eompartments, extending on both sides from the water line to the deck. By this means a very much larger passenger license was granted, the vessel took practically no more power to drive, and under bad weather conditions, when all the passengers accumulated on the lee side, the wings becoming sulmerged, moved over the center of buoyancy and increased the stability of the vessel. This
ficial in keeping off the spray in head-on weather. On the upper deek a matchlined bulwark is carried round fore and aft for the same reaton. The hull itself is built on the diagonal principle, which, we believe, is peculiar to New Zealand.

for vessels up to about tso feet in length, the reason being that the New Zealand kawri lumber is very suitable for this form of building. Believing this will interest wood shipbuilders, we will endeavor to deseribe the modus operandi, as follows:

After the keel hav been laid, the garboard strake is laid up

feature was very noticeable when on one oceasion the Pupuke took out about 500 passengers to witness some yacht races, when with passengers crowding to one side, both on upper and lower decks, the vessel only listed sufficiently to allow those behind to see over the people in front.
Another feature is the buikling up forward and aft of the superstructure to prevent the drafts usual on these vessels, eaused by the vessel's progress. It has also proved itself bene-
on each side, and edge bolted through from outside edge of one garboard to the other, the bolts passing through top of keel. Then assuming, as was the case in this ship, that the diagonal planking is to be two thicknesses of $3 / 3$-inch planking. the flours are cut from hard wond and placed in position, leaving false blocks of 13 -inch thickness between the floors and the keel, to be afterwards knocked out to allow the diagonals to pass through below the floors and over the keel.

Then having set up the temporary molds in position about 6 feet apart, the stringers are bent round the molds after being steamed and clamped up to the molds which, if of wood, are notched out to receive them, and the ends are secured to stem and stern posts.

The frame is then ready for the diagonals, which are 6 inches by $7 / 8$ inch, they are steamed and quickly slid in between the keel and floors, and men on each side with clamps bend the diagonal right up to the deck line on each side and seeure them to the stringers, the end of the diagonal on the port side rising at an angle of about 45 degrees from the keel and finishing at the deck line forward of amidships and the end on the starboard side rising aft of amidships, thereby forming a diagonal with the eenter line of the ship. This is contintted as far up and forward as possible to insert between keel and floors, but when reaching the deadwoods the diagonats are ent and securely rabetted.
After laying this first diagonal the outside is coated with Stockholm tar and then the second diagonal is put on in the same way, but at the opposite angle : another coat of Stockholm
inches stroke, with independent pumps and condensers and two boilers of the marine return tube type, with a working pressure of $t 30$ pounds per square inch. Two boiters were fitted with a view to lowering the center of gravity and to allow the shaft to run between rather than under the boilers. The independent pumps and condenser were fitted with a view to getting away from the wharf with full speed, and to save fresh water from the dynamo at night white lying at the wharf.
The pumps are the writer's own design and have given good results in several vessels, the air, circulation, feed and bilge pumps being all worked from one cross-shaped crosshead by one cylinder operating through a piston rod into the eenter of the cross, and valve motion and eccentric motion being secured by return connecting rods to two small fly-wheels.

The vessel is well equipped with electric light from a Brush dynamo coupled direct to a Reader engine. The side lights and masthead lights are all electrically operated from the pilot houses. The passenger ticense is 774 passengers. The hull was luaitt by Mr. George Niccol, shipbuilder, and the machinery by Messrs. George Fraser \& Co. The electric light-

B7EAME2 sioux.
tar, and on goes the fore and aft 5 kin of 3 inches by 9 inches at the top of side, and on turn of bilge and intervening planking, 9 inches by $21 / 2$ inches. The hull is then thoroughly fastened with bolts and nuts, long ones through the stringers and short ones between, but through the diagonals. The keelsons having been put in can be then bolted through each floor and skin of ship, and, when the nuts are tightened, the keelsons, floors, diagonals and keel are all hove up good and sound. Bulkheads are then put in and secured, and the molds lifted out and the vessel sheathed, in this case with $5 / 8$-inch Tobra (a New Zealand wood which resists the attack of worm), laid on felt. The result is a vessel that will stand a tremendous amount of wharf bumping and hard usage, and does not seem to be affected by being continually allowed to ground at the wharves.

The writer designed a vessel some years ago on this principle, and, up to this date, she is loaded three times a week with 200 tons of eement while resting on the bottom, and yet is absolutely watertight, as, of course, is necessary for the eement trade. There are vessels thirty years old still running in New Zealand waters which are buit on this method and are sound yet.
The Pupuke is propelled with a compound surface eondensing engine, having cylinders 13 inches and 26 inches by 18
ing system was installed by Messrs. Fenn, and the hull and machinery built under the supervision of Mr. L. B. Harris, A. I. N A, the company's engineer

Steamer Sloux.

The steamer Siow. was buitt by the Moran Company, of Seattle, for the Puget Sound Navigation Company for service on the Seattle-1rondale-Port Townsend route.

She is a single-screw, steel passenger steamer, $\mathbf{t} 50$ feet long, propelled by a four-cylinder, triple-expansion engine, with independent auxiliaries. Steam is supplied by two Seabury water-tule boilers with equipment for burning fuel oil. The vessel has a speed of $t 5$ knots, which is an unusual speed to be attained by a steamer of this size. The ressel is built entirely of steel. One of the novel features incorporated in the construction and arrangement of the hall and passenger accommodations is that the house on the upper deck is carried out to the sides of the ship with no space wasted in passageways on the outside of the house. The boat is fully equipped with dining saloon, smoking room, bar, etc., and is built in strict aceordance with the Unired States Steambeat Inspection laws for ocean-going service.

PRACTICAL EXPERIENCES OF MARINE ENGINEERS.

Incidents Relating to the Design, Care and Handling of Marine Engines, Boilers and Auxiliaries; Breakdowns at Sea and Repairs.

Concrete in an Oid Hull.

Referring to Mr. Stein's inquiry in the April number av to the advisability of substituting concrete for other ballast in his iron hull, we ean assure him from our own experience that there is absolutely no gueston as to its advisalifity. If well done, with the conctete earried well up in her bilges and bound to the hull by means of old bodts run through angleiron frames, the bottom plating ean wear out and yet have a good boat under one's fect.

The writer has concreted the bottoms of four of his own boats, and if I were building a new ship of either iron or wood, irrespective of size. would concrete her buttom, not as we formerly covered her bilges with from $1 / 2$ inch to 2 inches of eement to prevent eorrosion where it was impractical to get at the scale and pains, which was the sole reason for its being done, but to add longitudinal strength to hull and Iessen the liability of the bottom being pierced by rocks, sheuld she be stranded on rocky bottom. 1 doubt if our marine architects realive the vast increased strength and resisting power to abnormal strains a hull of reinforced concrete poseesses.

Permit me to cite some actual experiences in the use of this, to the writer's mind, highly valuable building material. Abont fifteen years ago I purchased an iron steamer whose bottom plating, origimally thin, hard, by continual crossing over sandy bats, lecome very thin and almost worn through. We could not afford to replace her bottom, so we experimented with reinforced eoncrete, placing it about to inches thick, carrying it well up above the turn of the bilges, kradually leswening its thiekness as we gat higher Tbrough the angle-iron frames we drilled $\frac{1 / 2}{}$-incls holes, into which round rods were rove, over all placing the ecnerete, and made as perfect a bond as possible. Our aim was, and we still consider it the best, to tie the concrete hottom to the upper part of the buill. We considered them as two separate units, the saccess of the operation depending largely mpon their being tied securely together. The job far exceeded our expectations. Afterwards when her bottom had become entirely worn through in places we comsidered the concreted part the very strongest part of the ship.
Here at Honolutu the writer bought a small schoomer. Intilt for and used for freighting. She had about 15 tons of scrap ison ballast in her binges, into which dirt had been collecting for years. We desired to eonvert her into a yacht, and to get rid of the odor from the bilges we removed the ballast and twok the bottom ceiling out up to and above the turn of the bilkes. Along the top of the frames we laid old railroal iron, ahout 12 inches apart, covering all with concrete about is inches thick on the botton, diminishing to f inches above the turn of the bilge. Our ohject was attained, in so much that we never again were annoyed by bad smells from the bilges. Two years later this boat went ashore on sharp lava rocks upon which the sea heat at times very heavily, and which mo ordi-narily-constructed hull could have remained intact for twentyfour hours without being crumpled and broken up as a tin ean would be hat she been built of iron, or if built of wood splintered into matchwoorl, but upon investigation it was found that her botton and sides as far as the reinforced concrete had extended were intact. The outside planking and frames were torn and splintered into bits by the pounding on these sharp rocks, which appeared to have no effect upon the eoncrete bottom. It was as if the outside planking and frame
was simply a form, which it was a fact, and that it did figure so far as the structural strength was concerned. the lower half of her hull having the appearance of an old-fashioned wooten ehorping dish, every other vestige of the boat having broken up and dissupeared, remained intact for months,

This expericace convinced the that in reinforced concrete we had a cheap, strong and durable material which could be used in construction of floating property to advantage to in larger extent than at present. I have two vessels new in commission with reinforced concreled bottoms. They can pound rocks until the seats sweep everything above the waterline, fet their bottoms will be all right. It is a well-known fact that when a ship is stranded it is not often that we fear damage to the upper part of the ship's hull, but the crumping up and piercing of her bottom. Some years ago the writer superintended the repairs of a steamer of 4,000 tons sapacity. Re* inforced eonerete wat in her in such shape that she is rumning to-day, and when the goes into the serap heap it will not be from weakness of her bottom.

We have had for a long time under consideration the construction of a vessel whose hull would be entirely of reinforced concrete. Stranding and the teredo would have no terrors for us then. The question of weights, thickness of material and best type of reinforcement are well worth the earnest attention of the marine architect and engineers. The ortlinary angle-iron without reverse bars but with longitudinal angle-irons riveted to the frames at elose intervals forming a skeleton, like an old-fashioned hoopskirt, is the idea I have in mind. For barges, scows, floating derricks, sectional drydocks and the like, particularly if located where there are no dockake facilities, there is mo question as to the advantage of using this material.

In Mr. Stein's case, where ballat is required, wleere the ship's bottom is corroded, there would be no mistake made in using reinforced concretc. We must use sourething for rein-forcement-old iron rods, bolts, bars, ete., the longer the better for this work. We have weed condemned railroad iron and found it well suited. A heavy mesh wire is very good. The prime feature is to see that it is well secured to the frame of the ship.

We will he interested to hear irom other readers as to their experienies with concrete in this line. Fked. C. M1unk

Honolula, T. H

A Burst Condenser,

The walls of a surface condenser are subjected to an external prensure, due A. the vacuum. The cast iron walls are stronger to an exierial presoure than to the internal prevsure when, as in mose eases, the stiffening ribs are cakt on the outside of a condenser. From without the condenser is subjected to a compression stress and from within to a tensile stress. The compressive strength of east iron is greater than its tensile stress. Therefore, the ribs on the outside of the eomienser make it stronger to an outside than to an inside pressure. The sane is true of the flat-valve chest cover. The stiffening ribs should never be placed on the outside for the above reasons, but this is ofien forgotten.

It is possible when the eylinder drains are led to the condenser that the pressure in it can become too high when the
engine is warmed up. When the air pump is of the common type, with foot buckets and top valves, there is no danger, as these valves will lift, so that the excessive pressure is relieved. But when an Edwards patent air pump is provided there are not foot and bucket valves, as the air-pump piston covers the ports in the lines, the vapor cannot escape and the pressure may become so high that the large flat surface condenser cannot stand it, and burst. It is, therefore, necessary to have safety valves on the condenser, or on the under side of

the air pump. In Figs. 1 and 2 such valves are shown. When the engine is started the water will lodge in the base of the pump and condenser. If the engine is started too quiekly then water cannot easily escape, unless the safety valves have been fitted. In Fig. 1, no water is wasted when the valve lifts, but ins action cannot be seen and it is not known if the valve performs its duty or not. In Fig. 2 some fresh water is lost, but the action of the valve can be seen and controlled. When these valves get to leaking, the latter arrangement of valve allows them to be easily repaired, and it is necessary to do this at once or the vacuum will drop. The valve in Fig. 1 will pass some water when leaking, but it will not affect the vacuum.

In starting the tug M. B. a sharp knock was heard, and it was impossible to get a good vacuum. On looking for the cause it was seen that water was running from the base of the condenser, showing that something must be cracked. On investigation it appeared that the engineer in charge did not understand the use of the valve, as in Fig. 2, and thought it a pity to lose fresh water, so he turned on the screw of the valve to prevent the waste and the trapped water cracked the condenser's bottom. A new condenser was too expensive for the owner: therefore, something else had to be considered and the following was resorted to: Along the length of the condenser some $11 / 3$-inch holes were drilled just under the bottom, on both sides. Wood pieces, Fig. 3 W, were placeet all around the bottom flange. Then the whole base was filled with Portland cement. In a few days the cement set and dried thoroughly, and the engine was started and the repair showed that the method was quite satisfactory, as the vacuum could be held, and the condenser never afterwards gave any trouble.
Rotterdam. K. D.

Experiment with Retaining Pins.

In contributing one's experience to magazines that are to be read and discussed by the "salt water fraternity" one has to rely on personal experiences. I submit some few remarks on a difficulty that we once in a while meet, which has to be made good quickly when one is on a lee shore or in shifty currents.

In the instance I refer to the engineer of the ship was a long-legged-yes, and a long-headed party. I was abour
twenty-fifth assistant engineer at the time, and in making my oiling rounds, soon after going on watch, I detected a slight thad or pound in the low-pressure crank pin, which had previously been running cool and smooth, and, on feeling it, I found it had warmed up considerably, and I also took a nick out of m forefinger in feeling it. Either the jamb nuts had been left loose or the bolis had not been driven up tight, which is usually the case. Anyway, the crank-pin nuts slackened away while we were running, causing the shims and heavy

Fig. 2
parting piece to flop up and down to the music of the thumping of the crank pin, which was making a rapidly-increasing noise. During the time it took me 10 think it over and to consider whether to stop and cinch up, the parting pieces, three in number, took advantage of my deliberation to shake loose from the bottom half brasses. As the retaining pins were not screwed in and had worked up into the shims and parting pieces, leaving nothing to hold them, they said "good-bye" and jumped out, striking a heavy, glancing blow on the condenser and landing in the crank-pit, all of which happened in a very few seconds, or parts of a second. Of course, the engine was immediately stopped, and I "ducked." After a survey was held and I got my hair to lie down again, I showed up with a big spanner and "butting-sack," and all there was to do was to take up on the pin just the way she was, hammer all up tight, leaving out the parting pieces altogether, and all this operation took about five minutes.
The remaining run to port was made in thirty to forty minutes. We arrived nearly on schedule time, where new shims and parsing pieces were put in ready for the return trip. The attached sketches give an idea of the shims, and Fig. I, and how the $\operatorname{pin} P$ worked out of the hole H, which is in the lower brace, as shown in Fig. 2. Now the moral of my story is: Have these retaining pins serewed in.
Winthrop, Mass.
H. A. L.

A boiler plant waste meter is an instrument which comprises a number of important improvements over older instruments for increasing boiler plant economy. This invention is deacribed as follows: Ordinarily $\mathrm{CO}_{\text {, recorders work }}$ by sampling bells and the measurement of the volume of a sample of gas before and after the abstraction of CO_{2}. The Uehling waste meter operates on a distinctly different principle: i. e., measurement by partial vacuum between the two apertures. Thus continuous charts are obtained on the recording gages, which can be placed at any distance from the machine proper (being connected to it simply by copper tubing) : and, furthermore, simple indicators can be used connected to the instrument in the same way. Again, as the principle of vacuum measurement is used in the C'ehling waste meter for measuring temperature as well as CO_{3}, all the information desired regarding waste gases going up the stack is obtained in the machine.

Published Monthly at
17 Battery Place
New York
by marine engineering, incorporated
H. L. ALDRICH, President and Treasurer

Assoc. Soc. N. A. and M. E. and at
Christopher St., Finsbury Square, London, E. C. E. J. P. BENN, Director and Publisher

Assoc. 1. N. A.
howard h. BROWN, Editor
Member Soc. S. A. and M. E.; Assoc. I. N. A.

> AMEATCAM AnPkeasmiatives
> OEOROE BLATE, Vles-Preaident
> E, L. BUMMER, Secretary

Circulation Manager, H. N. Dimsuong, as Fowler St, Boston, Mass. Branch office: Moston, 64 : hl S South lhulding. S. I. Caupentes.

Entered at New York Post Ofice as second-class martier.
Copyright, 1911, by Marine Engineering. Inc., New York
Imizamattomal Maztwi Ewazezajeg in registered in the United States Patent Office.
Copyright in Great Britain, entered at Stationers' Hall, Loodon,

Nolice to Advertisers.

Chonges to be made in repy, or in orders for odvertising. mant be in ow hands not leter than she igth of the nowth, to insure, the carrying ont of such instructiong in the isswe of the month follosing. If proof the mowth.

Electriclty for Marine Work.

We publish in this issue several articles which bring well down to date what has been accomplished during the past quarter of a century in the uses of electricity in the marine field, and they give a glimpse as to the great possibilities of the future of this wonderful power. Probably in no one field are the conveniences and advantages of electricity more evident than in the marine field. The dark holds aboard ship are easily made as light as day; stuffy quarters can be cooled and heated; darkness can be turned to light in an instant, and the whereabouts of the poor fellow who has fallen overboard located. A new language has sprung up, which, to the ears of an engineer of scarcely more than twenty-five years ago, would be senseless babble, and yet to-day we do not know any more as to what this wonderful force is than was known generations ago. Fortunately, however, we know how to generate the force, and how to properly harness it for its many uses. In our articles we show the many uses of electricity, not only for power, heating and lighting, but in its latest develop-ment-that of wireless telegraphy. Almost as important uses are shown in yards where vessels are built and repaired, and last, but by no means least, is
the possibility of using this wonderful force as a prime mover for vessels of large sizes. It will thus be seen that electricity not only greatly adds to the convenience of the shipbuilder and those who operate the ships, but especially to the convenience and comfort of passengers, and vessels equipped with wireless telegraph are put in instant communication with all corners of the globe. All of these wonderful developments of the past twenty-five years lead us to speculate as to what may be the marvelous developments of the next twenty-five years.

Economical Handling of Freight.

The several conmunications published in another column give marked evidence that the article in our June issue regarding the economical handling of freight touched upon an important point. The only way to bring about any improvement in this important part of marine work is for the designers and builder: of ships to work in harmony with those people who handle the freight at the shore end, and, judging by many private letters received, in addition to those published, there is a desire to bring about this conjunction of interests. The cconomical handling of freight seems to us, perhaps, the most important question from a financial point of view that is before the marine interests to-day, and we sincerely hope that those of our readers who have not already given this subject careful consideration will turn back to our June issue and note the points made by Mr. Harding and offer any further suggestions which may tend to bring about the much-needed improvements.

Use of Concrete on Board Ship.

In previous issues we have called attention several times to the uses of concrete in building vessels. In this issue we print a letter from Honolulu which tells of an unusual use of concrete in giving new life to old and wornout hulls. The great value of the letter lies in the fact that it does not deal with experiments, but with practical commercial results. It demonstrates that concrete is thoroughly reliable for repars, and that by its use practically new hulls can be made out of old ones. We all know that concrete has for years been used to some extent in ships' bottoms advantageously. Evidently success in using this material depends upon the proper use of metal binding. wire-mesh, bars, rods, etc. There are many old vessels, no doubt, which could be saved from the scrap pile by the julicious use of this material. It has in its favor cheapness, reliability and permanency; it can be applied at any place with tools that can be carried with ease and obtained in any port; no great skill is required in using it, and it improves with age, which cannot be said of other materials.

THE ECONOMICAL HANDLING OF FREIGHT.

The article published on page 237 of our June issue on the "Design and Construction of Freight Steamships from the Cargo Transferring Standpoint," has brought forth a great many communications from our readers. Unfortunately, most of them are not intended for publication. Following are a few which we bave been permitted to print. There are many important points still to be brought out in this discussion, and we shall hope in a future issue to publish further discussion:

Ediol lnternatbonal Makine Encinferisg:

The article by Mr. H. McL. Harding on the importance of arrangement for freight handling in the designing of cargo steamers is most interesting and absolutely true.
The truuble, so far as 1 see it, is that it is not to the shipbuilder's interest to spare sufticient time in developing a new construction, the results of which he must guarantee. If he builds something which has been proved successful in the past he escapes possible future trouble. U'sually our freight steamers, or, in fact, all our steamers, are luilt by the oldest eaptain and engineer of the line putting their heads together with some favored shipbailder, with the results mentioned by Mr. Harding. Of course, sometedy has got to pay for the work of developing a new design, and the natnral person to pay for this is the one who is going to most directly benetit; that is, the ship owner. Until he can see this, and is willing to spend the money to have such a desian prepared, I do not think we can expect much relief. Clanton H. Crane

Emion Intersathonal Marine. Enginefring:

The defects in design of freight steamships referred to by Mr. Ilarding in his articles in yonr June isste are mostly due to unknown conditions at the time the vessel was built, and, unfortunately, he compares vesacls designed for straight-lulk cargoes to be delivered always at one point with vessels designed for general freighting business where the materials to be loaded or unloaded are unknown either as to quantity, weight or destination.
Mr. Harding cites, as defeets in design, the buikding of offieers" quarters, kitchen, mess room and even store rooms over the whole ceniral portion of the vessel, thas greatly increasing the difficulty of reaching the cargo between decks. In this ease he condernns what may be classed as the almost universal type of modern fteight steamships ior general ocean service. Let us see how far this condemnation is justilied. For general service the type of cargo steamer with engines in the stern was long ago abandoned on account of the difficulty of trimming with cargoes of varied specific gravities. These conditions are not present in the special serviee required of freight vessels on the Great lakes. The placing of the engines in the center of the ship is now the almost universal practice for ocean carriers, except in the case of carrying oil in bulk, when the conditions become similar to those affecting the Great Lakes traffic. The bridge deck, then, became the natural type, and in ordinary freisht vessels the length of the bridge deek is little more than that of the space oceupied by the engines, boilers and coal bunkers. and in nowise interferes with the handling of freight through the hatches. The space under the bridge deck thus becomes the moxt suitable for accommodating the officers and crew.
Mr. Harding adrocates larger side cargo ports where side ports are tused, and with only the handling of the eargo to consider the larger they are the better they will answer their purpose. The classification socictics, however, are very particular, and properly so, in regard to side ports, admitting them only when full compensation has been provided for the material cut away. They are of great use in coasting steam-
ers, expecially those whose service includes passengers as well as freight. For general ifeighting business and only long-distance transportation, with facilities to handle freight of the most varied character, all handled by the appliances on the ship, I slo not see how much improvement could be made on the ships of the American Hawaiian Steamship Company. The horizontal moving of freight between decks is a difficult problem, and many devices have been tried to reduce the labor. General freight cannot be piled to any great height,. consegnuently the 'tween decks becomes a necessity, and whenever a vessel can be designed to carry bulk cargo that can be piled to any height, then the special ship, as we have on the Lakes, apprars. If to this is added a definite point of loading and discharging, where special machinery ean be installed on land, then the conditions are perfect for a design of ship that will offer the least ressistance to being filled or emptied of the material she is designed to carry; but where the character of the cargo is unknown, and the points where it is to be loaded or cischarged equally unknown, then the ship must be of a keneral type, the result of many compromises, not the best that cousd be designed for any fixed conditions, but the kind of ship that will meet all conditions fairly well in a geteral way, beside heing entirely independent of all special shore-cargo-bandling machiwery. The great buik of keneral ocean transpartation is effected on such ships.
Hatches are being made larger as the size of vessels inereases, and if the height between decks conld be made about. 10 feet electric travelers could be installed for horizontal: movement to the hatches, all of which has been a matter of much thought on the part of both owners amil builders. Steady progress is being made towards more economical handling of freight on sllip board. The sorting of freight as it comes. from the ship, especially those engaged in the coasting trade -and I am thinking just now of the Pacitic Coast, where freight is received up to the hour of sailing and from many consignees-involves much costly handling. Often a lot of packages, deliveref on the side of the dock in one lot from the eargo boorn, will have to be divided and trucked to four or five different locations on the whari. This is unavoidable. in a general coastwise freighting business.
I have wondered if two-storied sheds on the wharves, with the outgoing freight arranged on the lower or whari level and the incoming freight on the upper floor, would not be the better plan-both floors being served by a system of overhead travelers. If space were available at the land end of these sheds, trams and ears could be unloaded by arranging the system of travelers to extend over the railroad tracks and roackay, thus doing away with all hand-work and arranging outgoing freight so as to be readily reached by the ship's hoisting gear, and taking the incoming freight as it is landed on the upper floor, and either stowing it ready for delivery or carrying it direct to the teams or ears outside. Such an arrangement leaves the whole wharf space, both above and below, available for sorting and stowing freight. Such a scheme is already partly in use at many places, and given the necessary space and the proper design of wharf sheds, the cost of bandling freight and the time consumed can be materially reduced. The problem as applied to seneral freighting is a difficult one, and progress will be slow in the future as it has been in the past.

George W. Dickie.
San Francisco.

Eqtor International Marinf Engineering:

I have read with considerable interest what Mr. Harding has to say on the handling of freight. The article criticises somewhat severely the present method of handling freight in coastwise cargo steamers. As fast as terminal facilities are brought up to date there is no question but that the shipbuilder will be able to adapt the ship to the improved eondi-
tions, but as lung as side ports are placed in new and improved vessels, absolutely regardless of the structural reguirements of the ship and merely to suif some old wharf, it is hardly possible for the shipbuilder to do very much.

In connection with side ports taking the cargo from holds and 'tween decks, instead of the same going directly up through the ship and being transferred horizontally by overhead hoisting arrangements, as soon as such hoisting arrangements are in general use, trunk hatchways through passenger accommodation can always be arranged for. I would eall attention to the fact that bulk carriers in the coastwise trade are all being buitt to suit modern handling facilities, such as coal and ore carriers. The writer of your article quotes Lake steamers as having clear decks amidshops with no obstruction. These Lake steamers to which he refers are mostly in the bulk-carrying business, with machinery aft. This location for machinery is not advisable in general freight steamers, because questions of trim will come in, and if the vessel carries passengers may be serious enough to cause considerable digcomfort. It should also be borne in mind that the Lake vessels can be very long, relative to their depth, owing to the smaller stresses set up by the motion of the water in the Great Lakes, as compared with that of the ocean.

Mr. Harding remarks that crews' quarters should be at the ends of the vessel, and clear decks amidships to avoid blind hatches. There is no reason why, in freight steamers, with machinery amidships, the crew's quarters should not all be in a double-story house on the weather deck. They will thas be in the most comfortable part of the slip, and at the same time get the benefit of all the air and light that can be obtained. As regards hatches, there is no reason why the whole upper deck along the center line should not be open hatchway, with just enough space between for winches and masts. large hatcles are coming more and more to the front in every desigut that is potten out. When comparing the costs between manual and machine-handled freights, as is done by the writer in this article, some figures should be included showing the additional first eost of the machinery when making the comparison with manal labor.

In general, Mr. Hardtug's article prewents a very interesting resumé of cargo-handling questions, but it should be borne in mind that the shiphuilder cannot go aliead of the terminal facilities.

Naval Architect.
Philadelphia.

Epitur International Marine Enginffring:

The nunterous articles that have been written by Mr. llarding and others on the mechanical handing of freight at terminals will undoubtedly result in some improvements, as these writers have put forth some very good ideas that must camse those in the busiticss of handling freight to give some consideration and renewed activity.

Your article, and most others on this subject, have dealt mostly with generalities, and have neglected the small details involved which add so much to the cost. Vesacls engaged in the transportation of ore and eoal on which stech remarkably low cost for transferring has been achieved receive their cargo by gravity and discharge it in uniform units by the use of grab buckets, and this material is discharged into a vehicie casily and quickly placed to reccive it and easily and quickly removed. A vessel arriving at a pier with a miscellaneots cargo of, say, 2.000 tons cannot diacharge its cargo by means of a srab-betcket, but almost every individual article must lave a sling placed around is to receive the hoist hook. It is the placing of this sling around the packages that requires such a large force of men in the hold of a vestel and which brings $u p$ the cost of removal. The package is hoisted osto the pier at practically the same cost as a grab-bucket transfers its load. The 2,000 tons of eargo removed will necessitate
the use of about 1,000 trucks to take it away from the pier on which it is unloaded, as the trucks will not average more than two tons each, whereas a coal or ore car will carry 50 tons. If these $t, 000$ trucks conld be placed on the pier as easily and quickly as the coal or ore car can be placed to receive its freight, the vessel could place its cargo into the truck almost as cheaply as the grab-bucket places its load in the coal ear. It is not possible, however, to accomplish this desirable condition, and therefore of necessity a considerable annount of the freight must be stored in piles on the piers, which means that after being deposited by the ship's machinery it must be moved to some other point on the pier where there is room to store it. This feature adds another heavy cost to the problem of delivery.

No doubt considerable saving could be accomplished by enlarged hatches on freight steamers, but to accomplish what Mr. Harding points out would require that the liatches be very much larger than the enormous hatches on Lake steamers. On the latter type of vessel the material is of a character that it will flow by gravity to a point where the grab-bueket can reach it. In the present state of the art of shipbuilding it is necessary to wre some of the area of the deck, particularly amidships, in which to place the material necessary to give a vessel sufficient longitudinal and transverse strength to pass through heavy seas, and whatever area is allowed for this purpose will of necessity require some of the freight to be dragged in the hold, as Mr. Harding points out. This feature, while objectionable, adds very little to the cost of hoisting

The serious problems to overcome are: First, to provide some method by which packages can be picked up by hoisting wachinery in an economica! way without injury to the packakes, and, second, avoid storage and transference on the pier. Anyone who investikates this subject thoronghly will find that these two features, together with the classification involved, amount in cost to abous Ro percent of the cost of delivering or receiving freight from the steamer's hold. These features, yet involved, would seem to be the ones to attack.
F. L. Du Basgete

Jervey City.

Epiter International Mabine Enginefring:

The artiele by Mr. Harding in your June issue brings up a subject of great economical importance. It is selfeevident that in remove a ton of freight vertically less power is required than to more it horirontally; that is, under conditions which are to be found aboard ship in its loading and unloading. It is conceivable that this might not be true in all cases, but in plain, everyday practice the statement stands.

Int his description of a vessel especially designed with this idea of vertical hoist in view, the cost of removing cargo was cut from about 39 cents to 21 eents per ton. This is cettainly a very satisfactory showink; but a further saving will be shoun after the appliances and conditions are better understood. Marine men wisely look first to safety in ships. Valuable lives and cargnes are to be transported safely. While conservalism is commendable in the naval architect, has he not somewhat lagged behind in recognizing the great advance made during the last few years in the quality of material used in slips and the gain which is to be found in better forms in which the material can be secured? We certainly now have material which is of far greater strength than that ohtained thirty years ago, and this is to be found in almost inhinite variety of forms and weights, yet there is a elinging to designs which conld be most advantageously ehanged, merely because they seem to lave becoine recognized as satisfactory and are not changed from lack of boldness.

We must not, however, lay all this conservatism to the engineer or naval architect, or to those who handle ships. The constructors are seriously londicapped by classification
societies as well as by the marine insurance companies. It is quite natural that those who write insurance base their rates on past experiences, and are not likely to be blamed for a desire to stick to that which they know of rather than to fly to that they know not of. A vessel ts built with a view to obtaining fair returns on the money invested, and an increase of insurance is a serious matter. Yet the saving which apparently can be effected by more carefully considering freight handling, both as to its actual cost and a lessening of breakage, it seems, would place the shipping people in a position where, at worst, they could pay more for insurance if the increased facilitics in handling freight brought into question the strength of the ship. When one looks at the very small proportion of hatch space it becomes apparent that the vertical lift, which we must admit costs less than the horizontal push and pull, is only applicable to a very small percentage of the cargo space. To obtain a vertical lift for the entire cargo is, of course, impossible. In one vessel, built expressly for cconomical handling of freight, only 68 square feet of hatchway was provided, which was about $t / 2$ percent only of the entire cargo floor space of a single deck. Now there is no douth but what a vessel could be designed with a very much greater hatch space than $11 / 4$ percent. In fact, the very vessel referred to could by slight alterations be made to have 25 percent instead of $11 / 3$ of the cargo hatches.

The Lake steamers are constantly reierred to as examples of the advantage of large hatches; but, of course, the cargoes of these vessels is stable, and never miscellancous, and there is no fair comparison between a Lake ore-carrying freighter and an ocean-going freight-carrying steamer. Vessels have been built for ore-carrying across the Atlantic that have very larke hatcls proportions, and they have proved satisbactory except in one case, where the load was injudiciously distributed, and, of course, it is utterly beyond the naval architect's power to build a vessel which, if improperly loaded, will not, to a eertain extent, be damaged. Where the composite vessel is to be considered, that is, freight and passenger, the inevitable engineering compronise has to be met. But it will not be many years before the freight and passenger traffic at sea will be as clearly divided as are the same tratfics on shore.

It is difficult to get an expression from those actually employed in loading and unloading vessels, as what they say woutd be looked upon as a criticism of their superiors. The boat men say that the subject belongs to the naval architect and shiphuilder, and architect and shipbuilder in turn seem inclined to believe that to take the line of least resistance is best and to provide simply what is asked for rather than sugkest something new. Rut it does strike one as absurd in a day when labor has become so expensise that we continue to place the cargo in a vessel practically as it has always been done in the past. The danger to the stevedore is an item, and it is not an imaginary one. Maiming or killing men must result in finaucial loss, and by a system of a direct hoist the danger of men being maimed would be eonsiderably dimin. ished and a corresponding decrease in expense follow.

It would scem that the shipping world has been content to push, haul and pull with main strength and awkwardness the cargoes of the ships, and that it is pretty nearly time that a change be made.
W. D. Fonbes.

New London.

Fintor International Marine Enginebring:

Mr. Harding says "by the latest methods the freight can be taken from the holds to cars, to warehouses, or to any portion of remote sheds without rehandling." A complete description of the "latest methods" would be exceedingly interesting and instructive. The writer does not know of any nodern installation where this flexibility can be attained without rehandling, in any such capacities as are required in dis.
charging or in loading an ocean steamship. In fact, it is my belief, after a comprehensive study of existing conditions, that the successful handling of miscellaneous package freight demands that it shall be rehandled on account of sorting. classifying and properly collecting and distributing the packages, unless all of it goes dircetly from ship to railroad cars, or vice versa. The port of Hamburg, Germany, has a large and modern equipment for unloading steamships, consisting of batteries of revolving cranes, which hoist the freight from the hold and deposit it on the dock or on cars-all freight deposited on the dock must of necessity be rehandied.
It would not be difficult to design a perfectly flexible system for loading, unloading, conveying and distributing freight in almost any manner desired without rehandling for a very small or limited capacity, employing only a few units, but for such capacities as would be required for handling ocean freight the arrangenent becomes so complicated and the number of units 50 great that interference and confusion is the result. While I do not advocate the rehandling of freight as a general proposition, I do believe in rehandling it as a necessary evil in order to attain the desired results. Rehandling of freigh when done in connection with a mechanical system does not spell the additional expense and congestion involved in rehandling in connection with the mamual labor method. We must learn to distinguish between rehandling in conjusction with mechanical conveying and rehandling in connection with manual labor.
For the loading and discharging of ocean vessels we can do no better than follow the general scheme of handling coal and ore on the Gireat L-akes. The same principles can be applied in the same way with she necestary detailed modifications to suit the material handled.
For loading vessels the ore is brought to the dock from all directions in railroad cars and dumped into a storage bin alongside the vessel. The railroad ears may be considered as units of a conveying system, each coming from a different place, but all of them finally assembling on the dock and transferring their loads, not directly to the ship, but to the dock. The reason for this is that the eatire cargo can be assembled on the dock ready to be loaded into the vessel in the shortest possible time. The ore is now rehandied; that is, other means are employed for putting it into the vessel. Truc, this consists only in opening the gates of the bins by machinery and allowing the ore to run into the vessel by gravity. However, the cars could have been dumped directly into the vessel, and it is often done this way, both in the case of coal and ore, but the process requires much more time, hence rehandling is resorted to without material increased cost for loading the vessel rapidly and cfficiently.
Package freight should be handied in much the same manner. It should be brought to the piers in railroad ears and drays, aud unluaded within range of the vessel-loading machinery if conditions permit, otherwise it may be unloaded by mechanical conveyors, which will bring it as well as freiglit from various parts of the pier shed, or warehouses within range of the veasel-loading machinery to which it will be transferred (rehandled) and put into the vessel at the maximum rate of speed. In order that the vessel-loading and unloading machinery should work at maximum speed and efficiency, its duty sloutd be limited to transferring freight between vessel and pier, or cars or conveyors on pier which would collect or distribute the freight to distant points.
For the mechanical handling of freight there will not be ree quired any new types of machines-it is rather a matter of applying well-known and well-tried devices to the handling of freight, and designing an entirely new and suitable type of steam-hip pier to accommonlate such machitery, and also improving the design and coustraction of steamships to make their bolds more accessible.
M. B. Wintermin,

Progress of Naval Vessels.

The Bureau of Construction and Repair, Navy Department, reports the following percentages of completion of vessels for the United States navy:

B.tTTLEStIIPS.					
	T"งя.	Kinets.		May	,
Flarida	29,010	207	Navy Yard, New York.		4
Tth	20,000	204	New York shiphuilding (co.	98.0	98. 3
Arkan*as	28,000	2013	New York Shipbuilding Co.	64.7	B6. 2
Wyoming	94,000	20\%	Wm. Crapt ${ }^{\text {a }}$ Sons	61-3	4.56
T+xas	27,000	21	Newp'1 Xews Smphenlding Co	93	13.5
New York	27,290	21	Navy Yard, New Y'or	a, 1	0.4
TORPEDO-BOAT DESTROYERS.					
Mayrant	i42.	291/	Wre. Cramp \& Sons	96.3	0.4
Munnghan ..	749'	2915	Newp's News Shipbuilding	93.3	06, 1
	74	293	Fore River Shophailding Co	9.8	9s. 5
Ammen	742	29V7	New Yorle Shiphuilding Co.	pe 2	300,0
Patterson	(t)	295	Wim. Cramp \& Sona....	is.a	82.3
Fanning	742	295	Newp't, News Shupbailding Co.	1s.a	21.3
farvie	742	2915	New York Shiptuilding Co	8.8	11.4
llenley	742		Fore Riwer Sluphuilding Co.	10,0	10.9
treale	142	2914	Wm. Cramp \& Sons	11.8	29.7
farrel1	742	295	Bath lron Works	19.6	31.2
Jenkim*	742	291/3	tath Iron Work	17.8	36.9
St'BMt.IRINE TORPEDG BOATS.					
Seat		..	Scwp's Newa Shiphuilding Ca.	A. $\%$	87.1
Carp		.	Unton Jran Wirr	87. 7	49.7
flarracuda	I'nion Iron Work	87.9	89.3
Pisker		*	The Moran C	at. 2	h6. 4
Shate			The Xtoram Co	8.	84.3
Skipjack			Fute Rever Shiphaildime Co,	N5.x	91.1
Sturgeon			Fire River Shytumitink (n..-		¢9.5
Tuma,		\because	Newp't Newn Shyphutdmk Co	73.1	74
Thrather ...			Wm. Cramp \& Sons	$8 \times$.	41.3
Srawolf		\because	Emen tron Whin	${ }^{23} 8$	31.
Garfioh			The Moran Co.		2%
Tarbot		'*	Lake T. II. ${ }^{\text {c }}$	11.5	16.

ENGINEERING SPECIALTIES.

Diesel Engines for Auxiliary Purposes.
The atuxiliary most frequently used on board ship is that which renerates clectric current, and for this use the Diesel engine is most applicable. In ships where oil is used as fuel the same class of oil can be used for Diesel engines.

The Diesel Engive Company, L.td., 179 Queen Victoria street, London, E. C., has brought ont a high-speed multicylinder type of engine from 5 horsepower up. Every care has heen taken to reduce weight yet maintain solidity, and

the balancing is such as to reduce vibration to a mininum. The arrangement for the supply of lubricating oil and cooling water is based on years of experience. The oil injected in the cylinder is ignited without the aid of any special apparatus. The compression of the air drawn into the cylinder is
carried so far that the temperature reached thereby is sufficient to ignite and burn the spray of oil, and it is especially to be remarked that the pressure during the cycle does not exceed the compression pressure, whether the engine be working on the two or four-stroke principle. Great care has been taken in the selection of suitable material for the construction of the engines. The crank-shaft, of Siemens-Martins steel, is bedded in the bearings, lined winh white metal, and to these the cylinders are rigidly secured by means of steel columns. The liners are made of close-grain cast iron, and the valves, which are all placed in the cylinder cover, are also cast iron, seated in removable seatings. A sensitive governor compols the fuel supply to the engine, and admits to the cylinder only the quantity which is required at the very moment.

Electric Motors for Shipyard Tools.

Messrs. T. W. Broadbent, Ltel., of Victoria Electrical Works, Huddersfield, are makers of complete electrical equipments suitable for shipyards and other work of a like nature. They have placed on the market a line of three-phase generators, delivering from 6 kilowatts at 750 revolutions per

minute up to 250 kilowatts at 375 revolutions per minute. They are of the rotaing field type, with laminated magnet cores and poles and cast iron central yoke. The stators are borne on planed scatings on the bedplate. The stator is of the slotted type, with partly open slots, and the winding is very effectively ventilated. Each machine is excited from a small continuous-current machine, which is carried on an extension of the bedplate. They are built for a power factor of 85 percent, the rise of pressure, with fixed position of the field regulator, from full load 10 no load not exceeding 18 percent, and she rise of pressure on a lighting load only being 4 or 5 percent. The fly-wheel effect of the heavy rotors of the dynamos being driven at a high speed is very effective in keeping both voltage and frequency constant.

All moturs are wotud with wire and insulating materials shat are unaffected by heat, therefore standing very large overloads. The rotor bars are electrically connected to the short-circuining rings, and mechanically expanded after being driven into the holes in the short-circuiting rings, obviating the use of solder. All ratings of motors are conservative and are guaranteed to give larger overloads than usual.

Davidson Eilectrically Operated Triplex Pump.

The M. T. Davidson Company, of 154 Nassau street, New York, L. S. A., is making an electric-driven pump for ship use. It is of the riplex direct-drive type and has been supplied to some of the later naval ships of the United States. These pumps are used principally for fresh-water service, maintaining the required pressure automatically by the usual method of electric control. Our illustration shows a very compact pump, the position of the motor being such as to occupy space, practically; within the outside dimensions of the pump itself. It is thus self-contained, requiring too expensive
foundation. Three single-acting plungers of bronze or stecl, working through deep stuffing-boxes, give ample bearing surface and prevent leaking. The crank-shaft, as well as the connecting rods, are of steel, the main bearings being bab-

bitted and the rod ends fitted with half brasses. The gears are cast iron, accurately cut, and are usually provided with cases. The driving pinion on the motor shaft can be made of rawhide for quiet operation if desired.

Shipyard Winches and Capstans.

Messrs. Royce, Ltd, Trafford Park, Manchester, build a motor-driven winch which is a very compact design, the barrel, gear, motor, and control gear being all contained on a single cast iron bedplate. The barrel is arranged to run free on the shaft and is connected thereto by means of a clutch controlled by a hand lever. It is provided with a band brake, operated by a foot lever, so that it may be disconnected from the rest of the gear and loads lowered rapidly on the brake.

One end of the barrel shaft is provided with a warping Jrum. The motor, totally enclosed, is bolted direet to the baseplate and drives the barrel through a train of machine-cut spur gearing, the pinions being of mild steel, and where possible forged solid with the shaft. The brake drum is fitted to the motor spindle, the brake being of the band type, applied by a weighted lever and released by a double solenoid, so that the brake automatically applies itself when the circuit is broken and is released when the motor is started. In order to prevent the too sudden application of this brake a dashpot is fitted to the brake lever.

A special feature of the winch is the patent "slipper wheel" device in the train of gearing, consisting of a spur rim clamped between the two side plates by means of spring. washers and arranged to slip in the event of the load on the barrel exceeding the normal, thus protecting the gearing and motor. Another important feature is that the bearings are self-aligning. The controller is of the tramway type, bolted direct to the baseplate and complete with separate resistances.

Direct-Driven Electric Light Sets.

An engineer would enjoy the study of the Messrs. Clark \& Chapman, L.td., engines, as shown on the illustration which we give. Here is found a most compact plant, which can be set almost anywhere on board a ship, and this company produces not only the open type, but inclosed type, which is preferable

under certain conditions. It is always a question whether we want everything in the engine line where we can see it and get at it, or whether it is best to have it entirely inclosed. The inclosed engines of this company take but a moment to strip them of their covering, and then it is to be remembered that the eare which has been given the design and the excellent workmanship used, and material selected, reduce to a minjmum the necessity of more than an occasional touch on the bearings and constant and proper lubrication.

While the turbine engines are very popular for electric drive, we notice that the reciprocating engine of this type holds its own, especially where vessels have to go long distances and opportunities for repair of the steam turbines would, of necessity, be limited.

12 K. W. Speedway Gasolene Lighting Set.

This set is built by the Gas Engine \& Power Company and Charles L. Seabury \& Company; New York, for service aboard large yachts requiring considerable electrical power for winches, sail hoists, searchlights, etc. It is light and occupies small space, which is an advantage not only for marine work but in many stationary installations. The motor is four-cylinder, four-eycle, 6 -inch bore by 6 -inch stroke, being exactly the same as a regular Speedway marine motor of the same size. A few distinguishing points about the motor are as follows: Valves all operated by a single cam shaft, inlet being over the exhaust in a single-sided cylinder. The inlet is operated by a push rod and rocking lever. Valves are all solid steel, the inlets working in cast iron cages which are arranged for easy removal. All cams, rollers and pins sub-
ject to excessive wear are case-hardened. Pistons are fitted with five spring rings and made light to eliminate vibration. Connecting rods are drop-forged steel. The upper ends are fitted with phosphor bronze bushings. The lower ends are the regular marine type, with bronze babbitted boxes. Cyl-

inders are ground standard and pistons are ground slightly taper, small at the top to allow for expansion. Ignition is the jump spark type, with current supplied by a high tension Bosch magneto. The motor is fitted with a nine-feed-forced feed oiler, a water-jacketed exhaust manifold, and Pickering govertuor driven from the cam shaft. This governor acts upon the throttle of an $15 / 4$-inch Kingston carburetor, regulating to within $21 / 2$ percent between full load and no load.

Coupled direct to the motor is a Diehl ito-volt generator, wound for 600 revolutions per minute. The weight of this set is 2.400 pounds, and it occupies a floor space of 6 feet 6 inches by 2 feet 2 inches. The total height is 3 feet 8 inches.

An Engine Indicator.

What the engines are doing after a signal has been set from the bridge is made instantly known by the McNab indicator. This little appliance is being made by the McNab British Indicator Company, Queens Insurance Building, Liverpool, also in Bridgeport, Conn. It has the great advantage of being very simple, consequently reliable, and far from expensive either to buy or install. All there is to it is a small air pump attached to the reciprocating part of an engine, or by an eccentric if a turbine is used. The air pump is led up to an indicator in the pilot house, or anywhere on the bridge or alongside by $3 / 4$-inch piping. The following is an explanation of how this valuable instrument works:

The engineer on receiving the signal to go ahead first throws his valve gear in the ahead position, and as the small indicator cock is attached to the valve gear he automatically opens the port on the indicator cock. The engineer then opens the stop valve, which starts the main propelling engine. This starts the agitator, which is connected to the engine, and works in unison. At every revolution of the propelling engine the agitator forces the air along the single air pipe through the cock, and then along the pipe corresponding to the direction of the flow. The displacement of air enters under the small piston. In the indicator glass tuhe, which drives it to the top of the tuhe at each revolution of the engine, indicating every rise and fall of the engine piston ahead or astern and registering every revolution. The ahead and astern indicators operate the sante, only the direction of air is antomatically altered from one to the other as the engine is reversed.

Oerlikon Eiectro-Hydraulic Portable Riveter.

This production of Maschinenfabrik Oerlikon, Switzerland, is credited with driving one thousand $3 / 4$-inch rivets in ten hours with three men, one at the machine and two bringing up and handling material. The apparatus can be employed either in shops or one outside construction work. It can be slung into any conceivable position on the crane hook, and it makes the work very easy to accomplish. No compressed air or hydraulic pipes are required, nor any pumping installations. The Oerlikon riveter, it can be seen, is independent of locality. It can be used wherever a flexible cable may be connected by means of an ordinary plunger switch to

an electric supply circuit. It is, therefore, adaptable for any standard or special jobs in factories or on outside work.

The riveter, combining prime mover and plunger in one apparatus, is tested at the works and carefully adjusted, and is therefore ready for use immediately on delivery, either in shops or on outside work-an additional advantage to commend it to users.

Sienens Brothers Searchilights.

A searchlight is an article which must be absolutely reliable or it is valueless. Messrs. Siemens Brothers Dynamo Works, Lid., London, make one which has this prerequisite. In the

construction of the nirrors used in them the very best material is employed, and the workmen who are producing the lamps are thoroughly skilled in all operations from end
to end. The company supplies all styles and types of searchlights, and their business has reached its present proportion by the closest study of what is required and the ability to produce what is wanted in a thoroughly workmanlike manner. No detail has been overlooked, from the automatic feed mechanism to the ventilation of the lamp and insulation of the wires. The company is supplying the British Admiralty and War Office as well as foreign governments with their scarchlights.

A New Nautical Instrument.

A tide indicator, put on the market by Messrs. Heath \& Company, Ltd., of Crayford, London, is something marine men will appreciate in the highest degree, as by its use, almost at a glance, the water level above low water is shown without any calculations whatever. The instrument is made

in two styles, one of which we illustrate. As a proof of the reliability of the tide indicator, we might mention the fact that one has just undergone a practical test, extending over several weeks, on one of the steamships of the Trinity House, London, with very favorable results.

Ventilating Fans.

There is a growiug appreciation of the advantages of good ventilation, so that there is an increasing demand for simple and inexpensive devices for the ventilation of staterooms, cabins, ticket offices, lavatories, toilets, kitchens and dining

rooms aboard ship. This demand is met by the Sirocco electric utility blowers, manufactured by the American Blower Company, Detroit, Mich.

These little blowers can be used as "buzzers," simply stirring up the air, adding to the comfort of the occupants of a
room by keeping it in motion, or they can be so installed as to bring in fresh air from outside; or, on the other hand, to exhaust the foul air from the apartments. These small sets are valuable also in shipyard equipment for a variety of uses, such as cooling and ventilating small offices, engine rooms, boilers during repairs, and overioaded motors.

Because of the high mechanical efficiency of the Siroceo turbine type wheel, the electric current consumption is so small as to be almost insignificant. The smallest of these blowers uses less than half the current consumed by an ordinary electric lamp.

The Ross-Schofield Marine Boller Circulator.

Many attempts have been made to promote circulation of water in marine boilers. The Ross-Schofield Circulator, manufactured by the Ross-Schofield Company, 39 Cortlandt street, New York, is the latest device to be put on the market for this purpose. Our illustration shows the furnace and combustion chamber of a Scoteb marine boiler equipped with this system, in the installation of whicb no part of the boiler is drilled or otherwise damaged.

It consists of a steel plate, supported on the short stays,

completely enclosing the water space back of the combustion chambers, except at the $t 0 p$ and between the furnaces at the bottom; steel plates, supported by the tubes, placed in front of the combustion chambers and on each side of each furnace or bank of tubes; a back hood and a front hood. Two spaces are thus provided, which operate in parallel, their superintposed curved hoods promoting longitudinal and elliptical circulation of the water by utilizing the natural force of the steam bubbles. These bubbles, passing up through the guiding compartments and issuing from the curved hoods, throws the ascending streams of water in a horizontal direction, climinating the vertical mechanical projection of water particies, and promoting a flow which continuously draws the water from the lower and colder part of the boiler up between the guiding plates, thence propelling it longitudinally toward the front, rapidly establishing constant and effective circulation, which is maintained. The mammoth Titanic, among other transAtlantic ships, is equipped with this circulator. One company alone bas ordered fourteen equipments.

Watson-Stillman Hydraulic Press.
The Watson-Stillman Company, New York, has added to its line another hydraulic press which is specially adapted to forcing bearings, but is also a handy tool for general machine shop use. The weight shown on the left counterbalances

the ram, which can be handied independently of the pump by means of a rack, pinion and lever arrangement. A hole through the platen permits work to he projected or forced through. The eapacity of the press reaches it maximum of 30 tons under a hydraulic pressure of 6,250 pounds per square inch, which may be produced by using either a hand or beltdriven pump attached to the pipe the cut shows. The length of stroke of the ram is $t 8$ inches, and its diameter is $31 / 2$ inches. An $t 8$-inch stroke suffices for most press fitting. So long a stroke is often desirable because it increases adaptability of the press.

Steam Turbine Outfits for Electric Generation.

The turbine dynamos which Messrs, Greenwood \& Batley, Ltd., Leeds, are supplying ships, yachts, etc., employ the De Laval system of turbine, which they own for England, for their drive. A late catalogue, just received, shows some very interesting and neat electric lighting sets, which will appeal to marine men on account of the small space they take up, their general appearance, and, above all, their reliability. This eompany does not build De Laval turbines above 600 brake-horscpower, but is prepared to furnish any output below the powers named, down to even as small power as 3 brake-horscpower.

Thernycroft Motor-Driven Power and Electric Light Plants.

John I. Thornyeroft \& Company, Ldd., London, are offering a complete line of centrifugal pumps and electric plants which are run by internal combustion engines. The lighting outfits have an electrical output of from $3-5$ kilowatts up to 45.5 kilowatts, and their pumping outfits have a discharge of from tto gallons per minute to $t 800$ gallons per minute.

We illustrate an electric lighting set which, in the 3.5 kilowatt size, would measure 64 inches long, $401 / 4$ inches wide and
stand 20 inches high. while for the larger sizes named the measurements would be $t .46$ inches long by 43 inches wide by 72 inches high. The combination of pump and generator, which is turned out by this firm, is one which should attract the attention of naval architects on account of its compactness, as this feature will make it most valuable not only for small vessels but for ships of all sires. The John I. Thorny-

croft \& Company are noted for their eare of detail, and in such plants as we have referred to every precaution has been taken to eliminate things that are trappy, and most reliable outfits are the result.

Freight Handled Mechanically.

The accompanying view shows a Jeffrey portable conveyor which has been installed for the Vacuum Oil Company for delivering outgoing and receiving incoming light freight at the Sydney, Australia dock. This machine constitutes an unique freight-handling plant, electrically driven, with $11 / 2-$ horsepower motor, capable of handling $t, 000$ cases or light packages per hour. The length of the boom is approximately 24 feet, and it is so arranged that it can be raised or lowered as may be necessary on account of the tide. The portable truck carrying the boom travels on a track extending the

entire length of the dock, allowing the machine to be placed at the most convenient point for unloading, or loading, as the case may be. This boom is equipped with a continuousmoving Jeffrey conseyor belt. It is upon this belt that the outgoing freight is delivered; the cargo placed on the belt by human labor descends to the barge, from where it is again handled and piled. The view shows the boom lowered, and gives a clear idea of the method of unloading. The boxes
travel along on the belt and are delivered automatically to the waiting drays. This method has minimized labor, and is claimed to have reduced the cost of handling at least 50 percent. This machine was furnished by the Gibson, Battle Company, Sydney, Australia, agents for the Jeffrey Manufacturing Company, Columbus, Ohio,

Searchlights.

The Carlisle \& Finch Company, Cincinnati, Ohio, besides making most admirable searchlights for marine use, can supply them for many other purposes, where a long-continued run is necessary, such as guarding wharves, furnishing light for loading or unloading, vessels. Our illustration shows a 32-inch deck projector, but the company makes these up to a diameter of 38 inches and in endless variety of types, applic-

able to all styles and descriptions of vessels, and even for small launches. Carbon-fitting mechanism is very sensitive and the carbon carriers are supported on two parallel brass rods, and are moved towards each other by means of a right and left screw. This screw is actuated by a shunt magnet, and the length of the arc is maintained absolutely uniform, no matter in what position the mechanism is placed. No other projector possesses such an accurate and reliable method of feeding the carbons together as they are consumed.

All parts of the mechanism are below the metal shield, and the slender carbon holders are the only parts which are in the line of the light.

E. M. I. Cabin Fans.

Messrs. Hogan \& Wardrop, of London, are making cabin fans which are designed with special care in order to take up as little headroom as possithe, as this, of course, is of prime importance in ship work. The feature of these fans is the ease with which they can be attached and detached by simply turning the thumb nut. In many English ships the cabin fans are hired to the passengers for the trip and are not furnished,
as is common on some lines. This point of detachability, therefore, is most advantageous. By means of the same thumb nut the angle of the fan can be changed so as to deliver air in any direction, and the volume of the air delivered can be evenly regulated, so there is no need of having either a storm or a dead calm, and this feature will be most highly appreciated by all who travel in warm climates.

Electric Drive for Shipyard Tools.

The patent electric drive for machines, as made by Messrs. Vickers, Ltd., Sheffield, claims many advantages, the chief heing that the motor itself reverses and is directly geared to the driving screw or rack wheel of the machine. Other advantages can be stated as follows:
Absence of all trouble due to the use of belts; perfect control over the cutting speeds; increased output is obtained owing to the control of cuts; dispensing with a good deal of the mechanical gear which would otherwise be necessary.

The system is applicable for driving all classes of reciprocating tools, including every type of planer and large slotting and shaping machines. Messrs. Vickers, Ltd., have converted plate edge planers cutting both ways up to 60 feet per minute and table planers of all sizes from 3 feet 6 inches to 12 feet wide. We illustrate a plate edger fitted with the drive.

Brush Electric Lighting Set.

The Brush Electric Lighting Set is manufactured by the Charles A. Strelinger Company, Detroit, Mich. It consists of the Brush balanced zwo-cylinder, internal-combustion type of engine, direct connected to generator. The outfit is very compact and complete, including switchboard and all necessary instruments and ignition apparatus. Either gasoline (petrol) or kerosene may be used as fuel.
The regulation obtained is believed to be decidedly better than that of the average steam engine. The current may be used not only for lighting but for heating, cooking, pumping. ventilating and many other purposes, A plant of this kind is especially desirable to have as a reserve on vessels where wireless apparatus is used. Its compactness permits installation almost anywhere on an upper deck to be utilized in case of mishaps to the regular power plant.
The accompanying picture shows the launch Calcite, of Seattle. This is equipped with a Brush Electric Lighting Set, which not only furnishes electric light but the current for
searchlights, four electric heaters and electric cooking apparatus. This launch is of heavy construction; is used for towing barges, sailing vessels, etc.; picking up logs, protecting

booms; also for transportation and pleasure purposes. The outfit is said to be giving excellent satisfaction, operating in the ntost quiet manner, being run by the regular ship's crew, none of whom is familiar with gas engines.

Lighting Set.

Lighting sets consisting of rertical self-oiling engines direct connected to standard makes of electric generators are placed on the market by the American Blower Company of Detroit, Mich. The enclosed frame of the engine protects it from dust and dirt, and as the enclosing panels are easily removed by simply turning a milled hand nut, the working parts are as readily accessible as in an open frame engine. These sets weigh inside of one pound for every $3^{1 / 2}$ watts output, which is as light as any engine can be made and still have ample strength for long and continuous service as is demanded aboard ship.

The engines used in connection with these lighting sets

differ fron all others in the system of litbrication employed. Every frictional surface is running on oil, there being no possible contact between metals, with the effect of almost eliminating wear. They will run for months on the initial supply of oil and without adjustments. The oiling is done by the engine itself. At the base is located a small pump. which even at the slowest speed delivers to each moving part a copious stream of clean oil. The oil flows by gravity to the
running parts, and in returning to the base of the engine is filtered and cooled before being repumped. No oil is wasted, and this system insures a saving of four-fifths of the usual cost of lubrication.

Combination Indicating and Recording Pyrometers.

Engineers are quickly learning that the pyrometer has become a necessity in the heat treatment of steel. The thermoelectric pyrometer is the one which is most generally in use. It depends for its operation upon the phenomenon that if two dissimilar metals or alloys are joined and their junctions are at different temperatures an electric current is produced, flowing through the metals. Thus the electromotive force is a function of the difference of temperature between the hot and the "cold end" of the couple. It is, thercfore, necessary that the couple should be nade of sufficient length to carry the cold end beyond the influence of the radiation of heat from the furnace and the conduction along the thermo-couple and its protecting tubes.
In practice where the thermo-couple is extended a novel feature is that of separating the thermo-couple into two parts, one of which is called the fire end and the other the extension piece, these parts being joined together as near as practicable to the point where the thermo-couple passes

through the wall of the furnace itt which the temperature is to be measured. The advantages of this separable junction are obvious, as it makes it possible to renew the fire end at a minimum of cost, and it also pernits carrying the cold end to a point where the atmospheric temperature will remain practically uniform.

When very accurate readings are required an automatic compensator may be placed at the cold end. This compensator consists of a glass bulb with a short stem similar to an ordinary mercury thermoneter. Two platinum wires are fused into same near its tip. These are connected withitt the flattened bore by a loop of platinum wire, thus completing the circuit. It will be seen that the resistance is tncreased or decreased as the mercury falls or rises, When the temperature falls at the cold end, the resistance in the compensator being increased, it prevents an increase in the electromotive force of the couple, and vice versa.

The illustration show's a combination of an indicating and fecording thermo-electric pyrometer. It consists of a single fire end and extension piece connected to the indicating and recording instrunents by suitable lengths of flexible duplex leads The fire end or thermo-couple is applied in the furnace at the point where the temperature is to be measured and the indicating instrument is placed at a point where the operator may easily view it: while the recorder can be placed in the
superintendent's office several hundred fect away. These combinations are being used extensively, as they fill two requirements: First, they instruct and guide the furnace operator regarding the temperature at which he is ruming ; and, secondly, they furnish the superintendent with a continuous record of those same temperatures and a check on the faithfulness of the operator in properly controlling them. These pyrometers are also made in portable form with special couples for taking temperatures of furnaces, flues, molten metal, etc, The above instruments and a complete line of recording instruments for temperature, pressure and electricity are made by The Bristol Company, of Waterbury, Comn.

PERSONAL

A. L. Hopkins, who has been assistant manager of the Newpart News Shiphuilding \& Dry Dock Company, Newport News, Va., has been made manager by the promotion of Mr. Walter A. Post from manager to president.

Capt. C. O. Tilton, for many years comected with the Atlantic Transport Line, has been made commander of the auxiliary naval vessel Vestal.

The delegates appointed to represent the Society of Naval Architects and Marine Engineers to attend the Jubilee of the Institution of Xaval Architects, London, are as follows: Kear Admiral H. I. Cone, U. S. N.: Rear Admiral R. M. Wats, U. S. N.: J. R. Andrews, Charles Ward, Commander M. E., Reed, U. S, N.; Prof. William Hovkaard, E, P. Batcs, M. S. Chace, Prof. C. H. Peabody and H. L. Afdrich.

TECHNICAL PUBLICATIONS.

Engineering Descriptive Geometry. By F. M. Bartlett, Commander, U. S. N, and Theotore W. Johnson. A. B. M. E. Professor of Mechanical Drawing. United States Naval Academy, Size, 6 by 9 inches Pages, 159 . Ilustrations. 137. Únited States Naval Acadeny. Price, \$1.50.
This work of Commander Bartlett and Professor Johnson scems to us to be ideal in its simplicity and elearness. It is so difficult for most minds to think in more than two planes, and probably the student is more emharrassed by tryizig to understand descriptive keometry than by any other branch of mathenatics.

The few errors in the first edition bave been corrected and some of the drawings have been modified. We have tried to urite something which would give an idea of the true value of this book, but we find we cannot do better than copy from the preface of this work, and we complintent most heartily the authors. It says:
The aim of this work is to make Deserigtive Geometry an integral part of a course in Mechanical or Engineering Drawing.
The older books on Descripsive Geometry are geometrical rather than descriptize. Their authors were interested in the subject as a branch of mathematics, not as a branch of drawing.

Technical schools should aim to produce engineers rather than mathematicians, and the strbject is here presented with the ielea that it may fit uaturally in a general course in Mechanical Drawing. It should follow that portion of Mechanical Drawing called Line Drating, whose aim is to teach the handling of the drawing instruments, and should precede courses specializing in the various branches of Drawing. such as Mechanical, Structura), Architectural and Topographical Drawing, or the "Laying Off" of ship lines.

The various branches of drawing used in the different industries may be regarded as dialects oi a common language.

A drawing is but a written page, conveying by the use of lines a mass of information about the geometrical shapes of objects impossible to describe in words without tedium and ambiguity. In a broad sense, all these branches come under the gencral term Descriptive Geometry. It is more usual, however, to speak of them as branches of Engincering Drawing, and that term may well the used as the broad label.

The term Descriptive Geometry will be restricted, therefore, to the common geometrical basis or ground work on which the varions industrial branches rest. This ground work of mathenatical laws is unchangins and permanent.

The branches of Engineering Drawing have each their own abbrcriations and special methods adapting them to their own particular fields, and these conventional methods change from time to time, kecping pace with changing industria! methods.

Descriptive Geometry, though unchanged in its principles, has recently undergone a complete change in point of view. In clanging its purpose from a muthematical one to a $d c$ siripture onc, from being a tratning for the geometrical powers of a mathematician to being a foundation on which to build up a knowledge of some branch of Enginecring Draw* ing, the number and position of the planes of projection commonly used are aftered. The object is now placed behind the planes of projection instead of in front of them, a change often spoiken of as a change from the "Ist quadrant" to the "3d quadrant," or from the French to the American method. We make this change, regarding the 3 d quadrant method as the only natural method for Amcrican engineers. All the primeiples of Descriptive Geometry are as true for one methud as for the other, and the industrial branches, as Mechanical Drawing. Structnral Drawing, etc., as practiced in this country, all demand this method.

In addition, the older geometrics made practically no use of a third plane of projection, and we take in this hook the further step of regarding the use of three planes of projection as the rulc, not the exception. To meet the common practice in industrial branches, we use as our most prominent method of treatment, or tool, the use of an 2uxiliary plane of projection, a device which is almost the draftsinat's pet method, and which in books is very little noticed.

As the work is intended for students who are but just taking up Reometry of three dimensions, in order to inculcate by degrees a power of visualizing in space, we begin the subject, not with the mathematical point in space but with a solid tangible object shown hy a perspective drawing No exact construction is based ou the perspective drawings which are freely theed to make a realistic appearance. As soon as the student has grasped the idea of what orthographic projection is, knowledge of how to make the projection is taught by the eonstructive process, beginning with the point and passing through the line to the plane. To make the subject as tangible as possible, the finite straight line and the finite portion of a plane take precedence over the infinite line and plane. These latter require hikher powers of space imagination, and are therefore postponed until the stulent bas had time to acquire such powers from the more naurally understood branches of the subject
F. W, B.
T. W. J.

The Care, Operation and Management of the Parsons Marine Steam Turbine. By W. C. Nixon, Frisign U. S. N. Sizc. 6 by $9^{1} / 2$ inches. Pages, 216 . Illustrations, 20. United States Naval Academy, School of Marine Enginecring. Annapolis, Md., 191I. Price, $\$ 150$,
Anuther book on steam turbines would scem to most of those who have been interested in this subject a work of supercrogation, but we will say that Mr.W. E. Nixon has given to his brother engincers the most interesting and instructive book that has yet been brought out on turbines. There is nothing in is mathematical, it is true, but the mathematics of
the steam turbine have been pretty fully discussed. But from beginning to end it shows how thoroughly well versed is the author in handling turbines and what a gift he bas in imparting his knowledge. The work treats only of Parsons turbines as fitted in the ships of the United States navy. It not only tells what the turbine should do but what it actually does that it should not, and, above all, how and what to do to correct the trouble if anything goes wrong. No clearer and more concise descriptions seem to us possible. The author is a member of the School of Engineering at Annapolis, and it certainly bodes well for this school that such a valuable production should emanate from it. We might add that this school of engineering is not for the cadets but for graduated officers after service both at sea and on land.

A Textbook on Steam and Steam Engines. By Andrew Jamieson, M. Inst. C. E. Size, 6 by 8 inches. Pages, 828 . Numerons illustrations and tables. L.ondon, Charles Griffin \& Company, Lid. New York, 1910: D. Van Nostrand \& Company: Price, \$3.50.
The test of a work such as has been produced by Mr. Jamieson is found by daily turning to it for information. Such a test we have made and not found it wanting. In many ways the book warrants commendation. It is clear in its statements; admirahle in its arrangement, each subject being kept by itself, and one does not have 10 turn hack and furth in order to assemble the full information wanted. The examination papers and information concerning them is most interesting and valuable to applieants who are going up for examination before various boards. The work is up to the practice of 10 -day, and the history of steam is given most fully. Recognizing the value of the eyes in assisting to grasp explanations, illusirations have lueen used in profusion. We recall no book which has impressed us more, and we could say with truth that it is almost a library in itself of applied mechanics.

SELECTED MARINE PATENTS.

The publication in this colamn of a patent specification does not necessarily imply editorial comwendation.
American patents compiled by Delbert H. Decker, Esq. registered patent attorney, Loan \& Trust Buildiug, Washington, D. C.

British patents compiled by G. E. Redfern \& Company, chartered patent agents and engineers, 15 South street, Finsbury, E. C., and $2 t$ Southampton Building. W. C., London.

19,173 OTTER BOARDS FOR TR.AWI. NETS. C. W. HROMP. TON, GRIMNRY.
The otter board of this invention travels nearly in the direction of It lengt, the spreading actom for the nel being ohtained by means of angred tury whose openinu the sefal drag on ithe sea floor, is thus obviated.
18.535 FLOATING POCKS AND ME SNS FOR RASING OR SMIVNG SUNKF, SHIPS, ETC. P. VON KI.ITZING, KIEL TIERMANY, EXGINEER-IN.CHIEF.
ends in wah wise that their tistance themer are eommeeted at their

[^26]of the plate wo thal asliestos parking or the like can be eompressed in the aruoves by the screms. Ashes are fed into the hopper through

elonable opening and fall spon the Hap eloted to cover the plate. On opening the latter the dap drops and allows water to enter as usual.
990,596, SE, NXCHOR. J. A. ROSVOLD, DEC'D. J. B. JACOBSEN. AMM., NOME. NL. SKS.
In combsintina, a, wave breaker adapted to float upon the surface of the water, a plarality of sea anchors connected in seeies, the first of he senes being attached to bave wave breaker, and the lavi of the

989.832 . BUCKET. JABEES I. RUTLER, OF ALLIANCE, OHIO, In a deviee of the eharaeter dencribed, the combination of a pair of ping deviee shdably mounted upon the otppport and nsoociated with the

pivotat connectiun of the hneket members for ransing and lowering waid pivgial connection, and means carried near the upper end of sand support for engagisis the tapper en
41.545. STEERING: MECHANtラM, FREDERICK RUCISS, OF JERSE: CITY. N. J,
A steering mechanson provided witb a pont, a alveel mounted on the post, and including a hub and ppokes, the spolver heing bent at their inner ends and having lheir outer ethls arranged in the same morizuntal plane as the rim of the wheel. a spuder includina a hub ama pairs of
diverging aras that straddle opposite spolues of the wheel, the arms at drerging arms that straddle opposite spoles of the wheel, the arms at their inner ends, being beveled to cotrespomal of of the somkes with the outct ends of the arms from the inclined parts of the spokes lying in the same horizuntal plane as the wheel, anit cushoswing means having engagement with kad arms and with the spohes that said arms straddle.
M1,780. CONCRETE FLO.ITING HODY. A HOLS. CAMDEN. N. J.

If foating body baving a sleltion frame formed with projecting eyes,

[^27]
International Marine Engineering

AUGUST, 1911.

THE BAK HARBOR STEAMER MOOSEHEAD.

Abstract

The Mooschead was built for the Maine Central Railroad Company by the Bath Iron Works at Bath. Me. She was designed by the Bath Jron Works for the particular passenger service of the Maine Central Railroad Company between Ms. Desert Ferry and Bar Harbor, and other points in Frenchman's Bay, in connection with the railway service. This scrvice is very similar to that maintained by the Central Railroad of New Jersey between New York City and Atlantic Highlands; by the Chesapeake \& Ohin between Sewport News and Norfolk, and by the New Vork, Portsmouth \& Norfolk Railroad from Cape Charles to Norfolk. The Moosehcad is in-

The hull is of steel up to the saloon deck, steel bulkheads and sides forming the structure between main and saloon decks, instead of using wooden studding and sheathing, as is usually the case in vessels of this type. The engine and boiler easings are entirely of steel from the main deck to the top of dome, and the saloon deck is steel plated over the boiler room, in order to obtain air-tightness when the vessel is worked under forced draft. The joiner work on the saloon deck is reinforced by steel ehannel beams closely stayed, thus insuring an extremely rigid support for this joiner work in the decks, cabins, etc. Ample fire protection has also been had in

tended to carry passengers, baggage, mail and horses, with little freight, and that of the highesi class. She is a iwinscrew steamer of the following dimensions:

Length over all	194 feet 11 inches.
Length load waterline.	185 feet to inches.
Beam over guards.	36 feet 8 inches.
Beam molded.	30 feet 6 inches.
Depth molded.	14 feet 6 incher.
Draft forward on trial	10 feet $1 / 2 \mathrm{inch}$.
Draft aft on trial.	to feet $81 / 3$ inches,
Mean	10 feet $41 / 2$ inches.
Displacement on trial	664 tons,
Area immersed 'midship section.,	234 spuare feet.
Block coefficient	fotho
Prism coefficient	532

The Mooschead is one of the finest finished vesselt of her type in the country, as well as one of the fastest; 19 miles an hous being the contract speed and 19.75 being maintained on her four-hour contract frial. She has been very carefully designed throughout, and is classed A-t for seventeen years with the American Bureau of Shipping. She is licensed to carry \&oo passengers.

In order to obtain the necessary horsepower and the most suitable form of hull, to carry ous the programme laid down by the railrosd company; her model was towed at the naval experimental tank at the Waxhington navy yard.
mind by the contractors. The bat is of the flaring sponson shape, the main frames running up to the guards.
There are five watertight bulkheads as follows: Fore peak. between forward hold and boiler room, between engine room and after hold, after trimming tank and transom frame bulkhead. A non-watertight bulkhead of steel has also been fitted between the engine and boiler rooms. Both boilers are installed in one fire room.

Aft of the engine room on the lower deck are staterooms for the porter, steward, cooks, assistant engineer and oilers. Forward of the boiler room on the lower deck are staterooms for the stewardess, crew's mess room, crew's quarters and firemen's quarters and enclosure for steam steering gear. In the extreme low are the chain lockers and trinming tank.

The main deck is enclosed to the side of the vessel from the bow aft to the after end of the engine room, aft of which is a passage around the stern outside of the house. In this house are locatel the entrance hall. dining room, ladies' room and ladies" toilet room. From the entrance hall is a large stairway: leading to the main cabin and saloon deck above. Passages run forward from the entrance hall on each side to the laggage space abreast the engine and boiler casings and forward of them. The galley; men's toilet and wash rooms and the chief engineer's stateroom are located just forward of the entrance hall on the passages. Forward of the boiler casing is the mail romil and a wide stairease to the salonn deck, entrances to new's room and rrew's quarters, crew's
watercloset and lamp room. Wide gangways are cur in the sides of the house forward. On the saloon deck is a house containing a large cabin, at the forward end of which are two ample staterooms, each having a toilet room attached. A comfortable smoking-room is located at the extreme forward end of this house under the pilothouse. The purser's office is built in the main saloon, forward of the boiler casing.

As the Moosehcod is for day service the saloon cabin is lighted by large plate-glass windows all around, forming a splendid observation room. There is also a very large deck space inside of this house and covered by the gallery deck, which deck extends from the pilothouse to the stem. Permanent scats are fitted around the rail and outside of house on the saloon deck. On the boat deck are the pilothouse, captain's, mate's, quartermaster's and purser's roonts. The boats are stowed on this deck.

Since the vessel is intended for a high class of service, par-

The wintlass is of the Hyde hand type, and a combined hand and steam steerer, made by the Hyde Windlass Company: is installed.

The plumling throughout is of the highest class, The galley is equipped in many respects similar to the kitchen of a dining car, the service being conducted by the dining-car service of the railroad.

The interior communication system is installed by Cory; and consists of mechanical bell pulls, telegraphs, speaking tubes, fire alarms anl apparatus to operate both the regular ship whistle and the locomotive whistle, the latter being for entering small harbors on her routc, in a fog. on account of the peculiar echo it gives.

The propelling machinery consists of two vertical, fourcylinder, triple-expansion engines, each with one high-pressure cylinder $\mathbf{t} 6$ inches diameter, one intermediate-pressure cylinder 26 inches in diameter, and two low-pressure eylinders 30

MAIM ExCEMES OF THE MOOBEHEAD, EAECTED IN TAE SHOF OF THE BATH 1 WON WOHKA.
ticular attention has leeen paid to the joiner work, which in the ladier room, lining foom, entrance hall, smoking-room and saloon is of solid mahogany with mahogany carlins overhead in the dome, the spaces between the carlins being fitted with composite board in panel effect, painted in light green. The stairways at each end of the saloon leading to the main deek are also finished in solid mahogany.

Interlocking rubber tiling, in excellent taste, is laid in the smoke-room, pilothouse, lavatories, dining room and laslies. cabin. The main saloon and staterooms are carpeted in dark green and furnished with rattan sofas and chairs specially designed and built for this vessel.

The electric fixtures throughotst are of bromze, fmished in verde antique. The electric plant consiats of two generating sets, each turbine-driven, one of 25 kilowatts and one of 7 kilowatts, focated in the engine room. A large scarchlight is installed on the pilothonse.
ittches in diameter, all with a conmon stroke of 24 inches. The cylinders are monnted on turned steel columns suitably liraced, the crossheats working upon har guides. All cylinders have pistun valves, both the valves and the liners being ground. Stean reversing gear is installed. Steam is supplied by two Scotch boilers working at 170 pounds firessure and located in a closed fire room equipped with blower and engine. Each boiler is 14 feet 4 iwches in diameter and 12 fect 7 inches long. equipped with tliree Morinon furnaces $4+$ inches inside diameter. There is also an upright donkey boiler installed in the fire-room. Onc smoke pipe is fitted. The grate area of each boiler is 71.5 square fect. and the heating surface of each hoiler is 2.722 square feet. The twin propellers are out-turniug, and are solid bronze. Each has three blades, and is 8 feet 6 itches in diameter, 10 feet pitch. Pitch ratio, $1.1 ; 6$; projected area, 26.30 .8 spmare inches; disc area, 817 t .3 square inches; disc ratio, . 321.

In accordance with the terms of the contract the Wooschead was standardized over the Boothbay mile with the following results:
STANIIRDDZATION TRIAL S. S. MOOSEHEAD, BOOTHRAI MILE

$\begin{aligned} & \text { No } \\ & \text { Run. } \end{aligned}$	LnirmeTkip.	Kivetumos.			1. H. P.			Sperd	Silip.
		Port.	Sturh'd	Mran.	$\mathrm{P}^{3} \mathrm{~F}$	Started	Trent.		
t	v	113 3	1134	114.85		176	${ }^{350}$	1246	11
2	5	105 ?	199	$1{ }^{192} 85$	150	141	230	11 25	13
2	N	1093	1336	122 ss	9\%	${ }^{2 \times 3}$	381	138	7
4	5	1503	183	${ }^{152} 515$	352	478	${ }^{3} 60$	1596	760
5	$\stackrel{1}{4}$	1562			447	344 649	${ }_{1251}^{1931}$	1695 17	
6	5	$\lim _{178} 3$	1709	${ }_{182}^{192} 08$	${ }_{117}^{605}$	649	1254	17.05 18.88	${ }^{11} 66$
$\frac{7}{8}$	5	1838	1504	188 ${ }^{18}$	487	009	1794	18 85	115
3	V	1946	1934	198	1131	1127	2255	19.5	131
$t 0$	5	t967	1990	10725	114.7	1124	2257	1934	316

TWO NEW REVENUE CUTTERS.

At the last sesoion of congress an appropriation of $\$ 250,000$ (551.400) each for two new revente eutters was made. Plans have heen prepared and specifications drawn for what is considered will be two of the finest ever constructed for this service. The ships will be duplicates in every particular, primarily to reduce the eost of construction, and, secondarily, in order to produce uniformity in the vescels of the first class.

The work of aswisting sessels in distress and in searching for and destroying derelicts has prown to stwh an extent that these duties were given paramount consideration in deciding on the general type of vessel to he constructed. To that end there has been evoived a design of vessel which will give greal seaworthiness, large steaming radius and, in general,

Immediately after the slandardization trial a four-hour run at full specel was maintained with the following results: FOUR-HOUR TRIAL. \&. S. MtoOSEHEAb.

The Mooschead was to be delivered uader her contract on May 15 , and was finished abead of time. She has been at the railroad company's wharves at Rockland, Ne. being outfited for service into which she entered on June 26.

Daring the fixcal year entud June $30,1,527$ vessels of 302 ,391 spose 10 ms were built in the United States and otticially numbered by the Bureau of Savigation, compared with 1,502 vessels of 37,025 gross tons for the fiscal year ended June 30 , 1910. The decrease is due to a falling off of 65,000 tons in shiphuilding on the Great Lakes, anticipated in Secretary Nagel's report last year. The year's comstruction comprised 1,123 steam and mutor vessels of 246,540 tony. 83 sail ressele of 11,398 tons, and 315 unrigged harges and canal boats of 44.453 tons.
to provide all usual applances for the assistance of vessels in distress.

The principal dimensions of the new vessels will be:

Lettgith over all.	200 feet.
Length between perpendiculars	180 iect.
Breadth of beam, molded.	3.4 ieet.
Displacement at mean luad dra	1.324 tons.
Draft, aft.	13 feet 6 in.

Each will have a flush deck, fore and aff, and be schooner rigged with two pole masts. The slem will be slightly ramshaped and the stern will be of the overhanging, elliptical type. There are two complete decks, the berth and spar flecks, and outside of the nachinery space at each end of the ship a partial berth deck. A donble lintom extends muler the fireroom, which will be utilized for boiler feed water. The only houses on the spar deck will be the pilot house and a small structure around the mammast for ant entrance to the cabin. The livins quarters for the captain and the wardroom officers will all he on the main deck, aft; the warrant and petty officers will have staterooms forward on the same deck, white the crew will be berthed in galvanized iron pipe berths, instead of in bammocks, as is usual.

The new cutters will carry six boath, incloding an up-to-date surf-boat, all of which will stow between the two masts, thus leaving a clear quarter deck where towing lines may swing withoul obstruction. A large pair of towing bitts and a steam winch will be fitted just aft of the mainmast, as in the
work of the revenue cutters it is frequently foumd advisable to tow derelicts or disabled vessels into port.

A large magazinc, aft, abreast of the shaft alley on the starboard side, will provide safe stowage space for the ammunition to be used in the main battery of four 6-pounder rapid-fire guns and for the gun-cotton mines to be used for derelict destroying.

The new vessels will have a very complete electric installation. consisting of one ro-kilowatt main getterating set for purposes
denser will be of the ordinary cast type, forming a part of and built in with the back columns of the engine.
A feature of the design is what is presmmed to be the first auxiliary conklenser ever designed to work in eonjunetion with the main condenser circulating apparatus. From the design it will be seen that the auxiliary condenser is of the same seneral section as the main condenser and forms a part of the lousing of the bigh-pressure cylinder. In port, when the auxiliaries only are in use, the main circulating pump will

of lighting, and one 8 -kilowatt turbo-generator for the wireless telegraphy and emergency set. There will he one 24 -inch and one 18 -inch scarchlight, an Ardois sugnaling apparatus and a 2 -kilowatt wireless telegraph set of the latest type.

The propelling machinery will consist of two straight-tube watertube boilers, each coutaining about on syuare feet of grate and $\mathbf{3 , 1 5 0}$ square feet of heating surface, which will furnish steam at 200 pounds pressure for the main propelling engine. This will be of the vertical, direct acting. inverted, triple-expansion type, having cylinders 20 inches, $321 / 2$ inches and 54 inches in dianteter, respectively, with a common stroke of 36 inches. All main valves will be of the piston type and it will be touted that their design is such as will reduce the volumetric clearance to a minimum. The surface con-
circulate water through the auxiliazy condenser by means of pipes connecting the water chests of the main and auxiliary condensers, This avords the installation of two carculating pumps with the necessary complication of sea valves, pipe conmections, ete. The main feed pump will be utilized as an auxiliary air pump and will discharge directly into the feed tark.
There will be a feed water licater, a wrecking pump, ash ejector and, in general, all the accessories necessary for the requirements of a revenue cutter.

It is estimated that the main engine will produce 2.000 indicated horsepower, at the extreme, which shonld give the ressel a meximum speed of about 15 knots.
The very large bunker eapacity for this size of vesse) (300

tons) will give them a cruising radius at economical speed of not less than 5,000 nautical miles, a much desired factor for long cruises in search of derelicts. The vessels will each carry about 16,000 gallons of fresh water.

Congress, as in the case of naval vessels recently authorized, required that these sessels should be built in accordance with the provisions of the 8 -hour law. Proposals were solicited for ships of this design, lut owing to the restrictions of the 8 -hour law shipbuilders refued to bid. L'pon moditied plans for smaller vessels, embodying most of the essential features, the Newport News Shipbuilding Company has finally been awarded the contraet for their eonstruction at a cost of $\$ 24,000$ ($\mathbf{5} \mathbf{5 0 , 0 0 0}$) each.

MISUNDERSTANDINQS CONCERNINQ BABBITT METAL.
 iv A. A. Gateravig.

The manufacture and sale of Babbitts has long been a prolific field for the impostor. He has invariably taken advantage of the prevalent ignorance of the purchaser and has done incalculable damage to the reputable manufacturer. The business, in fact, years ago came to such a point that firms who valued their reputation hesitated before entering this field of competition.

There is perhaps at the present time no term in the mechanical world so ambiguous and so misused as the term "Genuine Babbitt." It is popularly believed that "Genuine Babbitt" is the composition originally compounded and invented by Isaac Babbitt, to whom we are indebted for the invention of making soft metal linings for bearings. In United States patent N'o. 1,252 , July 17,1839 , granted to him, a suitable composition is mentioned consisting of fifty parts tin, five parts antimony and one part copper. Nuw, what his patent specifically covers, and what he claims in the same, is simply the method of application of a soft lining in bearings. The formula given was for the purpose of making his specifications eomplete for patent office requirements. The value of his invention in his own mind related to the construction of bearings rather than to the production of an anti-frictional metal.
Later, Mr. Babbitt gave the question of the eomposition of his alloy some thought, and he realized that the hardest alloy eonsistent with other requirements was the best for him to use. The formula for his favorite composition, which, some years later, he sold to a Mr. Phillips, an American manufacturer, was quite different from that first mentioned in his patent, in that it contained ten parts tin, one part antimony and one part copper. At the outset, Mr, Babbitt himself had no exact composition he used for his linings; wherefore the term "(ienuine Babbitt" cannot be uved in the sense that it is Babbitt's original composition; and, further, it is impractical and eannot be used as a definite specification.

Still greater uncertainty is brought out by chemical analysis of the different metals sold under the trade name of "Genuine Hablitt." If the term ever meant anything at all it wad simply this: that the preponderant constituent was tin and that its two other constituents were were antinony and copper.

Until recent years the term generally implied that the composition was free from lead. This, however, is no longer the ease, becanse the low cost of antimonial-lead as a byproduct for the last fifteen years, and the constant inereace in the price of tin, have weighed so heavily upon the manafacturers of "Genuine Balabitt," that to-day the term no longer excludes lead from its composition.

It is, therefore, apparent that this term has outlived its usciulness, and it has been suggested that it he given decent
burial in recognition of the respect in which the term was onee held. Engineers and machine builders realize that there is no such thing as one universal bearing composition that ean be considered as the best and most serviceable alloy for all requirements, Bearing metals should be specified with the same degree of care and precision as any other metal used in the eonstruction of modern machines.

Manufacturers offer alloys of widely different composition, and it is impossible to rely upon fanciful labels and brands, An illustration of this is found in the fact that many makers offer "Genuine Babbitt" of several brands and of as many different eompusitions. The greatest difference is probably in the matter of price, so that the buyer who desires a "Genuine Balshitt" may choose various grades, prices and eompositions ; still, they are all classed as "genuine."

Ethically, this is ridiculous, but practically it is not necessarily harmful. While apparently there should be only one "gennine," there is no reason to believe that Isaac Babbitt's formula of fifty years ago, if taken as a definitely exact composition, shoukl apply to the completely altered bearing eonditions of to-day.

There is certainly a great question as to the adaptability of any one formula to the wide range of conditions which must be provided for in these days, so that there is justification for the intelligent manufacturer in departing from any established formula; such action is due to an increased knowledge

of the metals and metallurgical processes and the necessity for economical construction.

Is a matter of fact, nearly all leearing metal requirements could be met with Babbitt's formula of ten parts tin, one part antimony and one part copper. The real merit of a bearing metal lies in its giving satisfactory service at a minimum first
cost. There are, on the other hand, many service conditions where 87 percent lead and 13 percent antimony will answer just as well, and it is a sheer waste of high-priced material to use the former when the latter will do. This illustrates
ments. The metal shotald be hard enough so that it will not How or be distorted under service conditions, and at the same time it should not be so hard as to be brittle in case the bearing should be subjected to pounding or unusual strains.

forcibly the extremes of Babbitt compositions. There are also a greater number of intermediate conditions where a very considerable loss is oceasioned either by the use of a composition more expensive than is necessary or one that does not have the necessary mechanical qualities to meet the require-

The efficiency of the alloy, therefore, depends upon the quality of wearing surface that can be produced and maintained under service. A properly selected metal carefully applied, both as to design and workmanship, produces a bearing which with proper lubrication has no metallic contact while running. That
is, the journal and its bearings are separated from each other Jy a film of oil which mantained in operation; as soon as the movement of the journal is stopped the film of oil is gradually squeezed out and the metallic surfaces are brought into contact. Therefore, in selecting the metals for a bearing they should be sufficiently dissimilar, so that when starting the ruachine there will be no danger of scoring the shaft antil the oil firm shall have been restored.

The heating of bearings is the principal catse of annoyatce, and in cases where the motal pumishment is so severe that heating cannot be avoided a metal of high melting point should be selected.

Manufacturing methods hase a very important bearing on the serviceability of different alloys. The chemical analysis

Overlicating should be carcfully avoided, and a good rule for general practice is to heal the molten Babbitt to a point where it chars a pine stick, at which temperature it casts perfectly. In cold weather the housing and mandrel should be warmed. However, it is not desirable to have the housing as hot as the molten Babbitt, since the slow cooling made necessary thereby would produce excessively large erystals and an undesirable molecular construction.

The analysis of service conditions is the first ituportant step in the seicetion of the most economical Babbitt for any requirement. The variable conditions of applying a bearing, as well as the care, method and nature of lubrication, all have a distinet effect on the final results. A bearing properly fitted. having the journal periectly true and polished and the surface

of a Babbitt, giving the constituents and their relative proportions, is, of course, of sonse value in determining the quality of Babbitt under consideration; but more iotportant still are certain fundamental, chemical and metallurgical laws according to which the constituents should be united, and if these laws have not been observed a very infertor product will be the result. It is not the purpose hete to give a metallurgical treatise but to suggest ideas that should be observerl in the handling and applyimg of lining metals.

In general, these metals should be metted in an ison vessel, and kept covered as much as possible in order to prevent ex. cessive oxidation. They should be heated considerably ahove their melting point betore using. but must not be kept in a molten state at a ligh temperature longer than necessary.
accurately scraped, wall work under far more severe conditions than conld the imposed upon the same bearing if fitted carelessly or inaecurately; the same is true for poor lubrication. It is, therefore, impossible to lay down a defunte set of rules for the exact maximum performance of the different alloys.

The final selection of the bearing metal, the design and construction of the bearing, should be left to one who has had experience, but a few general considerations of the subject should soot fall amiss.
Where the service conditions are severe owing to great pressure, a metal having considerable compressive strength is necessary, rerarilless of what the speed may be, and this condition would require a relatively high percentage of tin. Where there is high speed and the pressnre light or moderate,
a metal having a fairly high percentage of lead may be tued. In the same manner, with intermediate conditions between pressure and speed, correspondingly intermediate compositions can be selected.

The surroundings of a bearing should also he taken into consideration if they are at all unusual. If a bearing is placed in a position where it is subjected to a gritty dust, a higher grade or a harder metal should be used than what would he required for the same service conditions where dust is not encountered. This is owing to the fact that a soft metal is liatic to have imbedded upon its wearing surface the grit surrounding it, a difficulty which with a harder Babbite is not so likely to occur.

Where a bearing is subjected to outside heat a better quality of metal should be chosen than would be necessary for the same bearing under cooler conditions. This is self-evident, in that all bearings, no matter how well fitted or perfectly adjusted and lubricated they may be, are, under full service conditions, warmer than the surrounding air, and the total work of friction, whether great or small, appears in the bearing in the form of heat. The beat given off by a bearing is a direct measure of the amonnt of the total working friction in that hearing.

The question of care and attention that a bearing receives should also be taken into consideration. A bearing that is子ubricated at long intervals or with a poner grade of lubricant requires a higher grade of metal than that which would be required under more favorable conditions.
There is nothing very differult in making Babbitt suitable to any kind of service. It is only necessary that the work be done by an experienced metallurgist. Right here is where we see the importance and value of dcaling with a maker whose experience and reputation are above question, and who produces alloys of high quality and sells them honestly at fair prices.

NEW COLLIERS AND TUQS FOR U. S. NAVY.

On June 20 last bids were opened at the Xavy Deparmment, Washington, for four naval colliers and two thgs. In the numher of colliers were included the two for which bids were received in November last, but which could not then be considered, owing to either an excess over the limit in the appropriation or to irregularitics in the submission of the bids. The law governing the construction of these two colliers must conform with the provisions of an act entitled "An act relating to the limitation of the heters of daily service of laborers and thechanies employed upon the public works of the United States and of the District of Columbia," approved Aug. 1 . $1 \mathrm{~K}_{\mathrm{yz}}$, which means in defined words an cight-htour workday.

The two colliers authorized by act of Congress, approved March 4, 1911, as well as the tugs above mentioned, are not tuhject to the act above cited, its prowisions baving been eliminated. The Maryland Steel Company, of Sparrons Point, Md., submitted the lowest bid for the construction of the colliers Nos, 11 and 12 (not subject to the eight-hour workday), their bid beilks $\$ 961,000$ ($£ 197,000$) for each.
The Newport News Shipbuildink \& Dry Dock Company, Newport News, Va., submitied bids for the construction of all four of the colliers, Nos. 9 and to (subject to the eight-hour law) at $\$ 975,000(£ 200,000)$ each, and Nos. 11 and $t, 2$ at $\$ 9050^{-}$ 000 ($£ 20,4,000$) each. The ships heing practically alike, the difference between the two bids would approximately represent the difference in cost of construction to this company under the cight-hour law as compared witl standard practice.
The New York Sliphuilding Company, Camden, X. J., submitsed the lowest bid for the construction of the two seasoing tugs at $\$ 194,000$ ($\mathbf{4 0 , 0 0 0}$),

cothrias nos. 11 AND 12.

Their chief characteristics are contained in the following: They are single-deck vessels, about 530 feet long. 65 feet beam and 27 iect 6 inches mean draft. Speed, 14 knots at load dratt. All the ship's scantlings and arrangements of bulkheads, etc., will meet the general requarements of the Anterican Bureau of Shipping.

In full-load condition the vessels must have a continnous sea speed of 44 knots when earrying 12,500 tons of eoal, inclusive of bunker, with an additional 250 tons eovering other items.

They have a double bottom extending under the carkocarrying spaces, as well as under the engine and boiler rooms, while the forward and after-peak compartments will he arranged as trimming tanks. Arrangements for carrying fuel oil in bulk will also he provided for.

The vessels will be fitted wilh complete coal-eargo handling appliances, consisting of necestary masts, derricks, elevated rails, reversible winches, eac., arranged in such a manner as to deliver coal at rate of about 100 tons per hour from each main cargo hateh, makind a total delivery of ahout 1,200 tons per hour. All necessary pumps, piping and connections will also be provided for handling oil eargo.

Fach vessel will have an electric plant, electrically-driven ventilation fans, alf sutitable appliances for interior communications, such as engine and steering telcgraphs, voice tubes and telephones.

An efficient ptmping and drainage system will be installed for filling and emptying ballas! and trimming tanks, together with a fresh and salt-water system for use in galleys and quarters. A steam heating system will be installed. Accommodations, with staterooms, will he provided for commander, executive and ravigating officer, senior engineer officer, three watch officers, doctor, paymaster, two warrant machinists, lessides crew's accommodations.

The propulsive machinery will consist of twin-serew. tripleexpansion engines of the merchamt marine type, and of adequate size for the speed stipulated. The boilers will be of the cylindrical type, with separate combustion chamber for each furnace. A donkey boiler will be fitted for use in port. All necessary auxiliaries will be installed, including evaporators, feed heaters, refrigerating plant, steam reversing engine, steam turning engines and ash hoists.

seacoing tegs.

The general features for each of the fings are:

L.ength hetweett perpendiculars.....	175 fect.
Length over all..................... . .	183 feet.
Breadth, molded	34 feet.
Breadth, extreme over guards.....	35 feet 6 inche
Draft, trial condition, aft..........	4.4 feet.
Draft, trial condition, forward.....	15 feet.
Displacement	1,roo tons.
Total bunker capacity about	435 tons.
Continuous sea speed	44 knots.

The vessels will be built to have the highest rating provided for by the rules and inspection of one of the registration socictics. The ships to be fitted with all modern appliances, swch as stean capstan and windlass, a reversible steam winch for each of the two eargo booms, steam steering engine, reirigerator and evaporator plant, electric plant and wireless telegraph apparatus, cte.

The propelling machinezy for each will consist of a merchant marine triple-txpatsion engine and two cylindrical boilers. with all necessary auxilaries.

THE POWERING OF MERCHANT SHIPS AND DESIGN OF THEIR FORMS.
 sy retez doto.

To those who are familiar with the assembling graphically of prosressive trial results in Almiralty eonstant forms. the task of rendering the curves obtamed amenable to law must secm one with much inherent difficulty. The Admiralty constant, or displacement coefficient, as it may be better termed, is familiar to all, being the value

$$
K=\frac{D^{3 / 2} V^{\prime 2}}{H}
$$

where D is displacement in tons, F speed in knots and H indicated horsepower. As is well known, this coefficient is not a constant, properly speaking: and it may be well at the outset to remind oursclves of the assumptions underlying it. These
is allowed for, a curve is obtained starting high in value and decreasing until very high relative speeds are reached, where, in tropedo craft, for example (at $\frac{V}{V L}$ about 1.6), the line has an approximately lesel trend.

To elear the way towards some reconcilation of the greatly varying values found, it will be of help to consider the factors affecting it in ships of the same displacement. These may be taken: (1) Speed; (3) fullness or block cocfficient ; (3) proportions; (4) propulsise efficiency; (5) to some degrec, owing to the lester frictimal resistanee per unit of surface with inereased dimension, leng:h, and (6) form, by which is meant the nature of the horizontal and transverse sections.

Though needing earcful treatnent in view of all these intuencing factors, this coefficient method bas maintained its

are: (a) That the resistance varies as the square (and consequently the work done af the cube) of the speed; (b) that the proportion betwein "uscful" work, or work not wasted in overcoming machitery and propeller frictions, etc., and gross work of the engines, is always a constant fraction; (c) that resistance at any particular speed is proportional to wetted surface, or two-thirds powser of the displacement, to which wetted anriace is itself approximately propostional. If these were absolute laws then a certain unvarying displacement coefficient would be got at any speed of a given ship, and values varying only as the (displacement $)^{2 / 3}$ of different vessels would be the rule. The skin or frictional part of resistance varying as the 8.83 power of the spreed, the foregoing would very nearly hold if all resistance were frictional between ships of no kreat difference in length; but the introduction of the wave-making phenomena alters this index considerably. Its value gets higher with speed until at very high velocities, where it again decreases. This gives the curve of displacement coefficients a typical form as plotted on a base of speedlength ratio $\left(\frac{V}{V L}\right)$ When the effect of yreater relative wapte of work at low speeds, due to lower engine enticiency.
position as a handy and texible means of estmating power in all shipbusilding countries except France, where a similar hut lew eatisfactory cocfficient, involving the area of the fullest ransverse section instead of the two-thirds power of the displacement, has been long in use. The writer is convineed that the displacement eocfficient can be used in a more general way than is current, although it is no doubt being superseded by the more scientific methods of the model baxin. As the naval architects and engineers enjoying the use of such an establishment form a very small number in the profession, the prevent paper, it is hoperl, may be of help to the great majority deharred from such a luxury.

An attenpt has been made by the analysis of the coefficients obtained in the trials of a large number of merchant vessels to eliminate the effects of the factors enumerated above. As the ships eonsidered are of different builders' designs, the forms should cover most of the practical variations from the normal: so that the effect of number (6) is, so to sprak, automatically averaked in the procest adopted. A computation of the effect of (5) assuusing a standard lenkth of foo feet, and taking an average proportionate frictional resistance to total resistance (on which the effect directly depends), gives the following corrections:

By careful methods the propulsive efficiencies have been estimated for the different ships, usirg D. W. Taylor's and R. E. Froude's model serew exficriments for propeller efficiencies. This disposed of number (4) in a fairly satisfactory mamter, though its effect is very large. The propulsive etticiency, or ratio between the effective of "tow-rope" hotsepower, and that indicated by the engines, is therefore a measure of the proportion of engine power not used up in the frictional and other losses at machinery and screws, and varies from about 45 to 60 . Indicated horsepower absorbed in driving a given ship at a particular speed is inversely proportional to this figure, and it therefore follows that the displacement coefficient varies directly with it. It is plainly seen how great an effect may be procuuced on displacement coefficients of the same form wihh different propalsive efficieneies. In the case of number (3) the proportions considered breadth
 draft
proportion hetween 50 and 30 . Most merchant ship beam
practice lies in this region, and not much effect due to change of these values was traceable in the coefficients tried.

By plotting the trial coefficients corrected for (5) in tro feet standard waterline length, and for (4) to .50 propulsive efficiency, on a base of block coefficients and ordinates of speed length ratio, curves were obtained showing the effects of fullmess and specd on displacement coefficients. Hence in a more or less satisfactory way the effects of (6), (3), (4), and for the porportions concerned (3), are eliminated, leaving the influences of (2) and (1) shown on the diagram. A guide to its formation was found in the published tank results of D . W. Taylor, H. Sadler and others, by the reduction of the results of the forms experimented onto displacement coefficients of ships 400 feet long with 50 propulsive efficiency, some addition to the resistances being made for bilge keels, bossings, etc. It must be borne in mind that only forms falling within the range of proportions mentioned are represented by the diagram; so that slallow river craft, for example, are excluded. However, a great proportion of the mercantile marinc, including most ocean-roing any a large part of coastal and inland-water ships, are suited by the curves.

A progressive :rial, when put down in displacement coefficient furm, shows often a maximum value at speeds higher than that indicated by the diagram. This seems to lee due to the lower propulsive efficiencies, through greater proportionate frictional waste at engines, at speeds lower than the maximum designed speed.
In serting down the coefficients at the full speeds attained in each ship it was found that they clustered along a line which has been marked average practice on the diagram. This gives what practice has sanctioned as the appropriate fullnesses for particular speed-length ratios. By taking suitable proportions (from similar vessels) a uieful rongh approximation to displacement may be got, where the known particulars are kength and speed, or limiting draft and speed. The figures of size and displacement obtained will serve as a guide in the estimation of the weights of hull, machinery, fuel and deadweight carried; which total, of corurse, will equat displacement. .The top line of the diagram represents the limits of economical
propulsion, above which comparatively inordinate expenditure of power'would be incurred, and the breadth of the diagram bas been limited to the range of maximum (rial speeds found in practice, though, as before remarked, these cluster more or less about the average practice line.
In estimating a likely displacement coefficient for a new design the writer has found the values in the following table useful. The multipliers given include the effects of length and propulsive efficiency for the classes tabulated; but it is sugrested that prosessors of data should find suitable fixures for themselves;

Typu.		Screws.	Mathinety	Sirend, himats.	Hinck Co efticirni.	Multiplie
Gnotiert.	200 to 00	Sinale	Kecineokating	121015	S91 to 6.5	. 82 to
Frriahters	700 20 380	Single.	Keciproxaling	8 to 12	6510 \$5	102
	7 70 2o 4001	Singte Twํ.	Kecuprocating.	-to 15	CS to 85	109
	400 to 6 mm	$\begin{aligned} & \text { Siagle } \\ & \text { Tuin. } \end{aligned}$	Keciprucatip	10 to 17	65 to. R5 1	112
Fitur Pasterger	250 to uny	Twin.	Keciprocatip	16 to 23	43 to 601	107 to
	250 上10 400	$\begin{gathered} \text { Twin } \\ \text { of } \\ \text { Triple } \end{gathered}$	Turtiac.	20 to 23	45 to. 851	1.00 to 1
Intrimedinte l.ther: wif Mail Stuabert	$\begin{gathered} \begin{array}{c} 400 \\ \text { tavi } \\ \text { upward } \end{array} \end{gathered}$	Trin.	Reciprocating	(4 to 20	00 to. 701	106101
		Triekt	$\begin{gathered} \text { Turtine } \\ \text { nr } \\ \text { Cutabiaution. } \end{gathered}$	10 10 20	60 ta 65	100 to
Fant Liners.	$\begin{gathered} 300 \\ \text { fivi } \\ \text { uyward. } \end{gathered}$	Twin.	Recigrocatioz	201023	55 to. 021	103601
		Tripuc Quad.	Tarbine.	20 to 20	5510.62 t	100 to 1

As an illustration of the application of this table to the curves the case of a turbine-driven Atlantic finer, gto feet long, $251 / 2$ knots speed, block enefficient a, may be taken. $\frac{V}{\sqrt{L}}$ here is 925 , and reference to the diagram gives 245 as the uncorrected coefficient for this fullness and relative speed. From the table it will be seen that this has to be muttiplied by 1.05 (as the length of the ship is so great), and the value 257 is given. With a displacement of 37,000 tons the power necessary for the speed is

$$
\frac{37,000^{7 / 4} \times 25,5^{\prime}}{257}=71,500
$$

This ship is the Maurctonit, and the above figure is a fairly close approximation to her shaft horsepower at the speed.
Perhaps the best way in which the diagram can be made useful is to estimate from exemplar or type ships. Trial data of veseels as near as posibly similar to the new vessel's size, method of propulsion, sveed and fullness, may yer differ somewhat in the last two particulars; and here the value of the F
diagram will be esident. The - values and the block co$\checkmark L$
efficients of the type ships and of the ship proposed (waterline lengths being used) are calculated and spotted on the curces, and the amounti, to be added to or subtracted from the displacement coetficients of the type ships, are seen. A tigure, which is corrected for differences of speed and fullness, and averaging the propulsive etficiencies of the exemplar ships used, is then obtained. It remains to be observed that no trials of ships in adverse weather conditions, with foul bottoms or with emerged propellers, have been used in forming the diagram.

Hionk Poreficiarol.	Denagned Spyyd. \sqrt{E}	Length of Paralld Middir-Bofly + Lungth of Ship.	Curse of Crmo Serion Aras.	Forebody Waterline.	Nature of Forwand Find Tranoverse Sectine.
$\begin{gathered} 46 \\ 50 \\ 0.7 \end{gathered}$	$\begin{gathered} 30 \\ 10 \\ 10 \end{gathered}$	Minimum resintance with 38, sfy gryater with 32 Mialmum resistance with ${ }^{60} 31$. 3% greater witb 44	Round at mok.	Round "Is other woed easy bursacts at mach nolow ratber then full (Prof. Sadiler.)	Round $V^{\prime} d$ rather than C"d.
$\begin{gathered} .73 \\ t 0 \\ 40 \end{gathered}$	$\begin{aligned} & 163 \\ & 10 \\ & \text { ks } \end{aligned}$	Minimum revistance with $28,3 f \%$ grenter with 40 Minimum resialance with ${ }^{\text {to }} 10 ; 3 \%$ greatrz with, 18 About 6.10 of $p . m$. 3 in formody.	Hollow forwand red "with 1 givet att of dimemions aned doplar cmens a fong raindle-body forward with a fine bow bol tayre grachal diminption afi." Sudite.)	Hidlow formand end. Rounder aft. Hollownem of astertive fierward coofined to ahoort 15 管 ship's length from bow.	
$\begin{gathered} .48 \\ 68 \\ 53 \end{gathered}$	$\begin{gathered} .83 \\ 10 \\ 1.10 \end{gathered}$	Minimum reslatance with 10.36 greater with 18 diminushing to 0 at 6 Hock coribicent, below whitb p. in b. serms uadrivisable.	Slishtly hotiow forward.	Sliehtly ballow forward ead.	$L^{\prime \prime}{ }^{\text {d }}$.
$\begin{aligned} & 33 \\ & \text { to } \\ & \text { 48 } \end{aligned}$	110 10 105	Nop. m, b.	Hollow forward and aft	Straiwht, enfechaly above $12 \sqrt{V}$	γ^{\prime} d.

THE DESNEN OF FORM.
As the experimental researches of the Froudes, Taylor, Sadler and ouhers on ships" models (see Intimsarionat, Marinf. Enginferince, 1903, p. 286; 1909, p. 319) have showh differences in resistance due to varying amount of parallel middle body, varying position of fullest section, and different nature of waterimes, ete., even in vessels of the same proportions and fullness, it can be seen that the writer's statement that only average forms are represented in the diagran is a reasonable one. It may here be of interest to sum up the main results of the experimenting of these authorities, and in doing so the dicta of K E. Froude (Transactions Institute of Xaval Architects, 190.4) will be of great assistance in enabling us to concentrate on the major variables concerned. He says: "So long as no unfarr features are introduced, such as may cause scrious eddy-making, we may almost say that the resistatice of a form is determined solely by (a) the curse of cross-section areas, together with (b) the exireme beam."

- The "flect of clange of beand on diaplacement encficient is nol neces. sarily wo gieat as on restolance. for, with given lenkth, block cocticyent, sarily mogeat as on restolance. For, with gren lenkth, Block cocticacnt,
and dratt properion. displacement in greater with greater heam; beam
so that (disp!acement) $2 / 8$ in the denominator of the expression in. creases and offsets to some extent the increase of indirated borsepower small difference found by the writer between the cociticuents of ghap with $\frac{\text { beam }}{\text { keneth proportions so diverse as . } 105 \text { and } .140 \text {, so long as block }}$ coethient and speed-length value are the mame.
and (r) the surface waterline of the foreloody; and if these are athered to the lines may be varied in almost any reasonable way without materially increasing or decreasing the resistance at any speed."

It was long a widespread belief that fineness of midship section is iavorabie to speed. This is implicitly controverted by the forcgoing statement, which has been corrohorated lately in the Washengton model basin. Naval Construetor Taylor says: ${ }^{4} \mathrm{Among}$ the very large mumber of model experiments we have made, we have had no resulis mindicating any material influence of shape of midship section then resistance," and that "the naval architect may vatry widely midship section fullness withont materia! beneficial or prejmlicial effect upon speed.*

It may be taken that (a) ineludes the parallel middle-hody features, and obviously (6) determines the natme of the forehody Iransverse sections, a round waterline ($f, c_{\text {.. }}$ one convex ounwards), meaning generally $V^{\prime \prime} d$ sections, and a hollow waterline tending 10 give "clubbed" or L'd shapes. Some experiments of D. W: Taylor give the bett proportions of paratlel middle-body to length of ship for certain fullnesses; those of Professor Sadler on inll forms give the effect of altering the
waterline shapes, and, consequently, the transverse sections; and R. E. Froude's researches on hollow versus straight lines are now famous. The following table presents the main features of good forms; and it may be admitted that better restlts than indicated by the displacement coctficient diagram could probalily be got in ships conformistg to the requirements is Tahle II.

It is not suggested that theie iew parniculars sufficientify define a good form for the purpose of design; but they will serve as a guide for betterment in working from previous designs, if carefully made use of. The characteristics of the various fulinesses shade into each other, but the divisions indicate approximately where one quality ends and the other begins.

Hitherto the accepted opinion has been against any hollow mess in waterlines, but model hasin experament has proved their merit in certain eanes. Mr. MaeEntec has found, from the stream-line theory, that "hollow waterlines cause less wave-making disturbance than stratght or convex waterlines, and that as the hollowness and fineness of waterlines are increased, the wave-making disturbance decreases to a minimum, after which, if the lines are made atill finer and hollower, the wave-making disturbance again increases," Model experiments have verified the substantial accuracy of this theoretical result with moderate fullnesses and relative speeds; but with kreat fullness or great relative speed round or straights waterlines seem betier. As the investigation of Mr. MacEntee was limited to average fullnest and speed, and also to too dimensional ireatment, the discrepancy is not serious.

The run of the stern of ship forms should, of course, be designed with a view to a good flow of water to the serew or screws; bet otherwise from the slandpoint of resistance alone, variation of sectional shapes in the forehorly is senerally of greater influence than changes of the afterbody form.

A Reverslble 300 Horsepower 4 -Cyilnder Oil Engine.

The problem of designing reversible internal-combustion motors suitable for the propulsion of ships has been solved saisfactorily by Messrs. Friect. Krupp, Ledd. Germaniawerf. In fact, the 300 brake-horsepowet Diesel motor exhibited by that firm as the recent International Motor Show at Berlin is reversible and capable of regulation within wide limits. The dimensions of this enkine are as follows:

Cylinder diameter	133 inehes.
Stroke	13 inches.
Maximum speel	$430 \mathrm{r} . \mathrm{p} . \mathrm{m}$.

The motor is a single-acting four-cycle engine, the air drawn in during the first downward stroke of the piston being compressed during its upward stroke. At the upper dead point the fuel is introduced into the working cylinder by means of compressed air at 133 pounds pressure per square inch. During the first portion of the subsequent working stroke the work is performed.
Any kind of raw or distilled product of petroleum can be used as fuel; besides crude oil, naphtha, paraffin oil, gas oil, coal tar oil and oil gas tar have been lately employed in this engine.
The fuel consumption is one-third of a pint per indicated horsepower per hour, with fuel of 10,000 effective ealories, The fuel is led from a tank to the fuel pumps, each of which supplies one of the fonr motor cylinders. The compressed air required for introducing the fuel is obtained by means of an
oil system, the eylinders leeing oiled by special pumps. The used oil is collected in the base-plate, and after being cleansed is used over again.

The cylinders and cylinder covers, as well as the exhaust conduits, are water-cooled.
A similar engine was fitted last year in the 25 -ton tug Rapido of Messrs. Slomann \& Company, of Hamburg. This vessel, built at the Lurssen shipyardx, is propelled by a rever sible six-cylinder motor designed on the system described.
The motor gives the tug a speed of $10^{1 / 2}$ knots at 400 revolutions per minute; the pull of the boat is 2,640 to 2,860 pounds at $61 / 2$ knots. The fuel consumption is only one-third of a pint per horsepower-hour, which compares favorably with that of the best stationary plants.
As demonstrated by the trial runs, made in the presence of a number of interested parties of the military and mercantile

air pump, and is stored at a pressure of $\mathbf{t} 33$ pounds per square inch.

The control is effeeted by means of eam discs, levers, etc. The admission, outlet and fuel valves are actuated by common controlling shaft, whereas a shaft located on the opposite side of the cylinder merely controls the outlet valves.

The motor is started by means of compressed air stored at a pressure of 410 to 515 pounds in two cylindrical steel vessels, the capacity of which has been calculated with a view to allowing the motor to be started sixteen times. The controlling levers are shifted into their starting position previous to starting the motor, and after reaching the speed reqnired for ignition are brought back into working position.

An emergency regulator allows the motor to be stopped, in tise event of a shaft fracture, by shutting off the fuel supply as soon as the maximum speed is exceeded.

The working cylinders are made of high-class bronze, and are designed with double walls, water-cooled; they are provided with cast iron liners. The base plate and engine frames are made of bronze castings. The main bearings are watercooled. The driving gear is readily reached after removing special covers in the frame, which are kept closed during operation. The crank-shaft, connecting rod, pistons, etc., are made of high-grade special steel supplied by Messrs. Krupp.

The moving parts are lubricated by means of a compressed
navies, the reversing of the motor is as quickly done as with a steam engine. In regard to economy, these motors, which can be readily constructed for any outputs (up to several thousands of horsepower), and are far superior to any steam engine plant, especially where there are frequent fluctuations in load, snch as on board tugs, ferrics, etc. In fact, the heat losses, unavoidable with steam during intervals of idieness, are done away with, and the motor is ready for operation at a moment's notice without being warmed up. A further advantage is due to the cheapness of the fnel, its less weight and bulk, and the corresponding increase in capacity which increases the radius of action of warships, while the simplicity in operation is such that no skilled labor is required. A further good feature which is of special importance in connection with passenger steamers and warships is the absence of any smoke and soot, the exhaust being entirely smokeless at normal speeds. Again, the crew of the vessel is not inconvenienced by heat radiation, the motors being cooled with water, which will be especially appreciated in hot zones.

Those countries which possess abundant sources of petroleum are likely to soon arlopt this novel type of motor for the propulsion of their vessels.

The first $\mathbf{2 . 4 6 0 \text { -ton }}$ cruiser for the modern navy of China 'was launched at Barrow-in-Furness in July.

BALTIMORE FIREBOAT DELUGE.

The fireboat Deluge has been completed by the Skinner Shipluilding \& Dry Dock Company, of Baltimore, for the Fire Department of that city from designs of Mr. W. I. Babcock, engineer and naval architect, 17 State street, New York. The hull is of steel throughout, t20 feet over all, $10 y$ feet 6 inches between perpendiculars, 28 feet molded beam and 15 feet molded depth, with five bulkheads, three of which are watertight. There is a single deek from end to end, with lower decks forward and aft of machinery space only, all of which
hose turret to make a platform for working a large monitor nozzle. A life raft is stowed on top of the deck-house. The steering engine in the pilot house is of the Queen City hydraulic type.

There are no living accommodations on the boat, the quarters for the crew being in the fire house on the pier.

In the engine room are placed two pumping sets with a guaranteed capacity of 4.500 gallons each at 150 pounds pressure. Each set consists of a General Electric Curtis steam turbine and a Worthington centrifugal punip, all on one bedplate and one horizontal shaft. Fach turline has its own sur-

are of steel complete without wood covering. The between decks forward is used for a hose roonn, with racks capable of holding 2,000 feet of hose, with a hatch through the deck forward of the pilot house fitted with rollers all around for passing the bose on deck. The hold under the hose room and the after peak form fresh-water tanks for make-up feed. The lower deck aft contains only the electric lighting set and lockers for the crew. There is a steel deck-house over the boiler room and coal bunker, the forward end of which is fitted up as a nozzle room with stairway to the steel pilot house above. The after end of this deck-house is extended over the central
face condenser, circulating pump and wet and dry vacuum pumps, and all pumps are cross connected, so that either or both condensers may be used with either set of pumps. The main fire pumps are so arranged that they may be worked in series, delivering then 4.500 gallons per minute at 300 pounds pressure. The discharge pipes from the pumps are connected together and lead to a turret immediately over them, to another turret placed at the bow, with a branch to a monitor at the top of the pilot house, and to a monitor at the top of a steel lattice tower on the after deck, which is about 35 feet above the water line.

The engine room also contains the propelling engine, which is of the vertical, inverted double-cylinder, non-condensing type, with two cranks and having cylinders 20 inches diameter by 20 inches stroke, and is of very substantial construction. This engine drives a single four-bladed propeller 8 feet diameter, which is of cast stcel.

Steam is supplied by two Scotch boilers, 12 feet 6 inches in diameter by it feet 6 inches long, allowing 170 pounds pressure, placed abreast of each other next forward of the engine

ONE OF THE THEEFINCM MONITONS ON TEE DELUGE
room, with fire room on forward side and coal bunker next to fire room. Each boiler contains two Morrison furnaces $4 \$$ inches in diameter, fitted with separate combustion chambers. The tubes are $23 / 4$ inches diameter. The boilers are fitted with a system of heated forced draft, the blower being placed in a recess in the bulkhead at the forward side of the fire room, and is of the Sturtevant type. The vertical feed pumps are of the Blake type and the feed water heater a Reilly.

The center turret is fitted with twelve 3 -inch connections for hose and the bow turret has two 3 -ineh and six $31 / 2$-inch eonnections. There are four monitors, as shown by the plans, one over each turret, one on top of pilot house and one on the tower aft. These monitors were furnished by Andrew J. Morse \& Son, of Boston. The electric light plant has a 10

WO\#\# TEMATK
kilowatt General Electric standard marine set, with about eighty lamps distributed about the vessel, and an $\mathbf{8} 8$-inch searchlight on top of the pilot house. The engine room skylight and companionway are of steel complete, with a large number of circular lights, which, as well as the pilot house windows, are of wire-glass,

The pump test took place at the fire boat station in Baltimore harbor, when four 3 -inch streams were thrown through the monitors continuously for six hours. The average water
pumped during that time was 10,624 gallons per minute at a pressure of 245.5 pounds. The picture was taken during this test. On the trial trip, with $t 70$ pounds of steam, and the wheel making over ${ }^{5} 50$ revolutions, the engine developed 1,100 horsepower and a speed of 15 miles an hour was reached. Everything was so satisfactory that the Board of Fire Commissioners formally accepted the boat at the conclusion of the trial trip, and she went on her station and in regular service the same night.

AN OIL MOTOR FIREBOAT.

A little while ago the council of the London Fire Brigade, England, instituted a competition in order to find out the best design of fire float for use under the very special conditions of service which obtains on the River Thames. The enormous amount of wharfage and of factory buildings, repositories, etc., which congregate on the banks of that river rendered the provision of an efficient river fire service a most important matter, and every endeavor was used in order to utilize as far as possible the most modern fire-fighting mechanism. The result has now become known, and the well-known English firm of hoat builders, Messrs, J. I. Thornycroft, Led., have now completed and handed over to the London Fire Brigade a motor fire float known as the Gamma, which is shown in our illustration.
The vessel, which is only 66 feet 6 inches long by it feet 6 inches broad, was constructed under the supervision of the chief officer of the London Fire Brigade, who worked out the design of the pumping arrangement. The design of the boat provides for motor propulsion and for driving two Gwynne high-pressure centrifugal pumps by the main propelling engine. Fach pump has a capacity of 600 gallons per minute at 120 pounds pressure per square inch. Among the special conditions which the design attained was that of draft, which was not to exceed 3 feet 9 inches, and maximum height of any part, which was not to be above 7 feet from the waterline. The guaranteed speed with the two Thornycroft 85 brakehorsepower kerosene (paraffin) motors, driving twin screws, was to knots with fuel tanks full and an outfit amounting to 3 tons on board. As a matter of fact, carrying an excess load of 3 tons the boat averaged on trial to knots for four continuous hours, with a draft of 1 inch less than the maximum allowed.
The general arrangement of the vessel comprises a raised deck over the crew space and motor room, giving a elear headroom of about 6 feet 6 inches. The crew space has been made accessible from the after deck by a sliding companion, and accommodation has been provided for three men, with seat berths, table, cooking range, etc. A watercloset has also been provided. Reserve fuel tanks are arranged under the after deck in such a manner that the service tank can be filled by means of a semi-rotary pump. A hose room has been prosided under the fore deck, fitted with the necessary racks, etc. This space. as well as the motor room, is heated by hot-water radiators operated from a boiler in the hose room. A storeroom has been arranged forward of the hose room for lamp stowage and for sundry fittings, Steering is effected by means of a hand-gear pedestal, with a brass-mounted teak wheel placed on the forward deck, and leads of wire rope are led to the quadrant aft.
Electric lighting has been provided throughout the vessel and to the navigating lamps. The machinery consists of twin sets of kerosene (paraffin) engines, each giving 80 brakehorsepower at 700 revolutions per minute, and Gwynne's high-
pressure centrifugal pumps. Each engine is connected through a standard reversing gear to a dog elutch, which can connect the main engines either to the propellers or to the pumpdriving shaft. The propelling engines have four cylinders, 8 inches bore by 8 inches stroke. They are fitted with a vaporizer of the U -tube pattern, which is arranged to be heated by the exhaust gases. A spirit carburetor is also fitted, so that the engine may be run on gasoline (petrol) with maximum efficiency: The engine is started up on compressed air, which is let into the cylinders on the firing stroke. Gasoline (petrol) is used as a fuel for the first few minutes until the exhaust is sufficiently heated to vaporize the kerosene (paraffin). This takes from five to ten minutes. Should there be no gasoline
partment on deek. There is a monitor or radial delivery, which can be turned in either direction. and also two valve boxes forward, on each of which are four 3 -inch slnice valves for hose connections. Two combined electric lighting and air compressing sets are fitted, each of which consists of a $71 / 2$ brake-horsepower kerosene (paraffin) engine driving a Siemens dynamo and arranged for driving a Brotherhood rotary compressor through a friction clutch. These are used for promping up the four bottles in which air is stored at 120 pounds pressure for starting up the main engines, blowing the whistle, etc. Each air comprestor set is capable of pumping the air bottles up to tzo pounds in fifteen minutes.

The trials were of a severe character. The speed trial con-

(petrol) available, the vaporizer can be warmed by a blow lamp. The lubrication is forced, oil being sucked by a small pump from the bottom of the crank case and pumped to the eugine pearings through an oil cooler, through which some of the circulating water is by-passed. Ignition is by high tension and also by accumlator and "Lodge" igniter. The reversing gear is of the epicyclic type, the whole going round as one solid drum when in the ahead condition, and the outer drum leing held by a brake when in the astern position, which causes the shaft to revolve in the opposite direction. Between the propeller shaft and reversing gear there is a dog clutch, by means of which the engines may be put in connection either with the propeller shaft or with a steel toothed wheel, which is in gear with a compressed paper wheel in the pumpdriving shaft. The ratio of gearing is slightly over two to one. The pump-driving shaft is carried alongside the engine on bearings supported by the engine bearers, and drive the pumps through Voith flexible couplings.
The pumps are sitsated at the forward end of the engine room. These are of the movable high-pressure, four-stage centrifugal type. They run at ahout $t, 450$ revolutions per minute, the discharge and suction being 6 inches in diameter. There is a suction box built into the thip on each side, and these are connected by an 8 -inch stection pipe, running across the ship, on which are two 6 -inch branches to each pump. By this means both pumps can draw through either suction box while the other is being cleaned. A bilge suction box is fitted to the 8 -inch suction pipe, with branches to each com-
sisted of four hours* full speed trial, followed by maneuscring and turning trials, during which a measured half mile was run with the engines running at 350 revolutions per minute, which demonstrates the flexibility of these engines. For the pumping test each pump had to run for a period of ten hours during the tirst two hours, of which the output was to be too gallons per minute at t:20 pounds pressure, and for the remaining eight husts goo gallons per mimute at $t 20$ pounds pressure. Each electric light engine had to be run for four hours continuonsly. All these trials were carried ont to the satisfaction of Lieusenant Sladen, the chief officer, and Messrs. Wells \& Kemp, the consulling engineers of the London Fire Brigade. The advent of the mosor boat fire-fighting vervice in Great Britain is therefore an accomplished fact, and in view of the competitive nature of the trials the superiority of the motor-propelled float over its steam rival seems assured.

The Italian steamship Soperget went ashore on Molasses Reef off Mobile, Ala., in April. The owner of the steam tug Leroy asserts that he made a counract with the captain of the Soperga to pull her off the reef. This apparently he could not do, and the assistance of other tugmen was asked. After trying in vain to get her off the wrecking vessel Rnosevelf came along and claims to have floated the vessel. The several owners who joined in the efforts to get the vessel off the reef have libeled her, as no satisfactory arrangement for salvage could be reached.

CARGO HANDLING at smaller PIERS AND TERMINALS.

gy h. m'L, hatisa. ${ }^{*}$
The installation as illustrated is not ior the larger terminals or where speed of transference is the most important consideration. For such freight movements the arrangenent of the overhead tracks would be considerably modified with a larger number of conveyor hoists.

The purpose is to indicate that a plant could be installed of low first cost and of economical maintenarye.
Each installation should be treated by itself from the engineering and operating standpoints.
It might be advisable to have the shed reach to the edige of the pier, or that there be traveling bridge eranes with loops (a modified gantry crane) between the shed and the side of the pier, the loop extending over the ship's hatches.

As stated, the following deseription applies only to the
bridges which support the usual hoisting and swinging mechanism of the harbor gontry crane.
In addition to these outside cross tracks there are between the girders of the crane two straight tracks with extension ends, by which the freight can be taken from one side of the pier directly across in a straight line to the other side and deposited within the shed or upon lighters. When not in use they are drawn within the loop. These straight tracks are chiefly furnished when lighters are to be served.
By means of these movable or adjustable cross tracks every foot of floor space can be served by the overhead conveying machinery without rehandling and at the lowest first cost for installation.
The conveying and hoisting machinery, as shown. is arranged in trains, one transfer conveyor drawing after it three or more trailers with hoists. These are designated as transfer hoists. Each transfer hoist is arranged to raise from the draft, which has been taken from the hold in this casc by the ship's

smalier terminals and is not for universal adaptation. This indicates only one method, but shows that the hoisting or lifting without hand labor is of the greatest importance in securing eronony.
The overhead fixed track, as shown in the illustration, consists of an I-beam, upon which is a T-rail of light weight, supported about 5 feet from the sides of the building and arranged at the ends of the building in the form of a loop. Upon side-fixed tracks, corresponding to the usual crane tracks, which are parallel to each other, is operated a traveling shop crane of somewhat greater width between its girders than usual. This crane supports and has attached upon each side of itself a track, which track is so arranged with switches at each end as to afford a smooth passage anywhere between the crane cross trarks and the side-fixed tracks. These cross tracks are supported outside the crane girders, except at the end they join to form a loop and are attached beneath the crane.
In some cases, where there is litlle headroom, or in open yards, the movable cross tracks can be supported upon whole or half-arch traveling gantry erances similar to the traveling

[^28]winch, only those packages in that draft which have the same cross mark. Many managers prefer to use the ship's winches. If there should be four cross marks each transfer hoist would pick up packages having the sante cross marks, and each of these four consignments would be conveyed and deposited anywhere opon the thoor as may be desiguated by the cross marks, With four transfer hoists there could be four flatboards, slings, hooks or nets, one to receive each consignment, and all under the control of one transfer man.
This transfer man lowers and unhooks the load as soon as he arrives at the first cross mark pile, even though it be the third transfer hoist in his train, yet this can be lowered first, if dexired. Ore controller is used with the four switches, one switch for each hoist. All four hoists can be raised or lowered at the same time.
By means of the loop track supported by the crane, the transfer conveyor can pass out over the desired location upon the floor and immediately return upon the other side of the loop to the starting point, using the one transfer crane. The two transfer cranes would give a greater rapidity of unit movements than one. The courses which may be taken by the transfer conveyor trains are indicated by the arrows. The
number of transfer trains ean be increased and operated without any interference with one another and without any change in the installations.

The tayout, as shown in the illustration, is not intended to nave the utmost flexibility and the full continuous rapidity of unit moventents as when a more expensive layout is planned, but is for smaller terminals where the intense speed of the greater terminals is not so important as an installation of low tirst cost and small expense of operation.

At the larger terminals it may be said that rapidity of transference with maximum speed of howstan is of the first inuportance.

The capacity of one train with four transfer hoists is almout 8 tons. The working possibility of the train depends not so much upon the convejor and hoists capacity of the transfers as it does upon the size and weight of the consignments. In Providence, the average weight of each rail-borne consignment is about 1,000 pounds. Fach train for railaborue freight would, thererore, average + tons per trip For water-borne freight the tonnage per train per trip would be more, due to the greater weight of individual consignments. Each hoist has a eapacity of $1 \mathrm{1} / 2$ to 2 tons. Two hoists combined will rave 4 tons.
By this installation of a plant for smaller terminals there can be effected a saving of at least 18 cents (gd.) per ton in manual labor, including tiering. If, therefore, 300 tons are handled daily it would make a net saving of $\$ 54$ (f to $16 s$.) per day in manual labor, or $\$ 16,200$ ($\mathbf{\$ 3 , 2 4 0) \text { . On account of }}$ the greater speed of loading and discharging the vessel, due to mechanical methods, there would be a greater saving due to this rapidity of movements than as above given as the manual labor saving, depending upon the equivalent of the charter value of the vessel. There would be a greater proportionat saving where a larger tomnage is transferred.

By means of a system of simple rollers, which can lie placel in position by two men, the freiglat can be moved easity by gravity from hetween decks to the hatches more economically and much more rapidly than has been the usual custom. Two or even more ships' winehes should be simultanenusly operated at each hatchway. From the diagram it will be noticed that every square foot of floor space can be served, including tiering; that there will be no mantal labor of rehandling, and that there will be a good degrec of continuous rapidity. Should the freight be discharged or loaded at the side ports, the transfer hoists would take it from or deliver to platforms just outside these side ports.

By a more expensive instatlation the cargo can be taken directly from the ship's hatches in the transfer hoists, which are equivalent to a traveling ship's winch, to any consignment pile or lizhter without using the ordinary ship"s winch and without any intermediate steps.

The advantages of the gaptry crane, which is so extensively installed at many ports over the ship's winch, is not so much the economy in moving the freight from the ship's hold as is its longer inreach from the ship's side.

A standard gantry crane will serve a semi-circular area with a maximum radius of about 45 feet.

The cost of swinging the freight over the ship's side is not the great expense. It is rather the assorting, distribution and transferfing by manual labor from the ship's side to the consignment piles (marks and cross marks) within the shed and ticring or to the lighters, which work would be accomplished by the transfer hoists in one train, nnder the control and direction of one man.

It is the purpose of the attached diagram to indicate how greater economy and rapidity can be attained at smaller terminals by the use of mechanical methods at a low cost of installation.

TWO NEW CHESAPEAKE BAY BOATS.

The City of Daltimore and the City of Norfolk, recenly completed by the Maryland Steel Company for the Cliesapeake Steamship Company, are among the finest examples of the luxury to which the traveling public is becoming aceustomed and demanding. The designs for these vessels were made by the Maryland Steel Company under direction of Mr. Key Compton, president of the Clresapeake Line, and embody the resnlts of his long experience in the managing and that of the luitders in designogg and constructing various types of vessels. The gencral dimensions are as follows:

l.ength over all.	310 feet.
Length between perpendiculars.....	ast feet.
Beam molded	46 feet 6 inches.
Beam over guards................	fo feet.
Depth molded	18 feet.
Draft loaded	13 feet 3 inches.

The hull is consiructed of mild, open-hearth steel, elassed special survey, American Bureau of Shipping, on the usual frame and reverse fratne system, with flat plate keel, bilge kecls, continuous center keelson and a lower and main deck. The mian deck is of steel over the engine and boiler space. Guards are supported by plate knees with slatting on edge. The stem, stern-post and rudder are of best hammered scrap iron. There are seven bulkheads, five of which are watertight.
The accommodations for passengers are most claborate. There are 120 staleroons, having two metal berths each, ten bedrooms with brass beds and showers, six bedrooms with brass beds and private bath communicating, and eight bedrooms which have a communicating room with double berths In addition there is a president's room with private bath, a lounge, smoking room or lobby, barber's shop, purser's oftice and wircless room. The dining saloon is located on the galley deck forward, with pantry and galley immediately aft of same on port side. The general finish is old ivory throughout the saloons; the lubby is finislied in selected mahogany, as well as all main starways. Onamental metal balustrades are fitted on all stairwass and around the wells. The lounge is finished in old ivory. Opening off the lohby is a commodious bar. All staterooms are fitted with independent heat and running water. The baths and showers are fitted for hot and cold, salt and fresh water. All toilet fixtures are of the very best obtainable. Baths and showers are tiled. Over the well in after saloon is fitued a large skylikht with ornamental ceiling, and over main stairs are larke ornamental glass domes. The floor of the lobby and dining saloon and treads of all stairs are covered with interlocking rubber tuling. The saloons are carpeted, and all staterooms except those with showers are carpeted. The bedrooms with showers are fitted with hardwood floor and ruga.

All outside staterooms and bedrooms are fitted with intercommunicating telephones and the inside rooms with return call bells. Telephones are also fitted in the president's room, purker's office, bar, wircless and dining rooms, and in the captain's room, chicf engineer's room and engine room. The captain has commodious quarters, consisting of office, bedroom and private bath immediately aft of the pilothouse. The first and second officers are immediately $a \mathrm{ft}$ of this. A privale stairway leads from this deck to the gallery deck. The pilothouse is large and roonny and has mechanieal telegraphs, engine indicator and running light indicator installed. The ehief engineer flas a large room on the port side of the main deck just aft of the lobby.

The vessels are fitted with steam windlass, steam steering engines and sleam elevator engines. In addition to the steam stecring gear an auxiliary hand gear is fitted aft on the saloon

deck. The life-saving equipment and tire-fighting apparatus are in excess of the U'nited States Steamboat Inspection Rules. There are four elevators for freight service extending from the main deck to the lower hold. The vessels are well lighted throughout by means of bracket fixtures and standards on newel posts of all principal stairways. Current is derived from turbine-driven generators.

Each vessel is propelled by a four-cylinder triple-expansion engines, the cylinders are $24-40-47-47$ inches diameter by 42 incbes stroke. The boilers are of the single-end Scotch type, 15 feet 6 inches diameter by 10 feet 10 inches long, with three furnaces 44 incbes diameter. There are two feed pumps of the simplex vertical piston type, $12-7 \frac{1}{3}$ inches diameter by 4 inches stroke, and one fire pump 12-7 inches diameter by 12 inches stroke, duplex vertical, and one sanitary pump for supplying water to the deck as well as water service to the engines of the horizontal duplex type $6-51 / 4$ inches diameter by 6 inches stroke, and one fresh-water pump supplying water to the fresh-water head tank for deck service of the horizontal duplex type, $51 / 4-4 \frac{1}{4}$ inches diameter by 5 inches stroke. There is one circulating pump, 12-inch suction and discharge, driven by a 9 -inch by 9 -inch engine. There is one injector for feeding the main boiler, $21 / 2$ inches diameter double tube, and one donkey injector for feeding the donkey boiler and washing down, $11 / 4$ inches diameter. There is one feed-water heater of the Griscom Spencer multi-coil type, using exbaust steam from the auxiliary machinery. There are two turbine generators of 30 kilowatts capacity each, of the Terry type, and one generator of 4 kilowatts capacity for port use with reciprocating engine. An open filter box of about 425 gallons capacity and an ash ejector of the hydro-pncumatic type, 6 inches diameter. Attached to the main engine is an Edwards air pump, 22 inches diameter by 14 inches stroke. There are also two bilge pumps attached to the main engine. 4 inches by 14 inches stroke. There is a refrigerating machine forward of the Branswick type, cooling 5,400 cubic feet room space, and is used for refrigerating perishable cargo and also for domestic use.

The Bureau of Navigation reports 175 sail and steam vessels of 27,225 gross tons were built in the United States and officially numbered during the montb of June. Of this tonnage, 61 percent was built on the Atlantic and Gulf coasts and 29 percent on the Great Lakes. The largest vessels were the Quincy A. Shaw, of 6,336 gross tons, built at Lorain, Ohio, and the Hiltom, of 3.102 gross tons, built at Newport News. Va.

BIG BRITISH KEROSENE-ENGINED CRAFT. By J. mendell wilson.

A NEW MOTOR OIL CARKER.

Very few motor commercial boats were more successful on trials than the tank vessel, Royal Standard, recently built to the order of the Britisb Petroleum Company by Mesars. John 1. Thornycroft \& Company, Lid., of London and Southampton. Destined for service on the lower Thames in connection with the owners riverside storage tanks, she is constructed of $1 / 4$-inch steel plating, and is a fine looking craft for a tank boat. Her fully loaded draft is 4 feet 9 inches. She is 100 feet long between perpendiculars, witb a 17 -foot molded beam, and has a molded depth of 6 feet 3 inches. As she is intended for river and estuary work only, her design was developed to provide a perfectly flat bottom, with modified V sections forward and wall sides, but with a sharp angle on the bilge.

Her installation is a six-cylinder Thornycroft motor of the four-cycle type, 6 -inch bore by 8 -inch stroke, developing 70 horsepower at 750 revolutions per minute on kerosene (paraffin) fuel. But the machinery is of special interest, as a solid propeller is driven through a reverse gear and a two-toone reduction gear, the latter being by Reynolds' silent chain. Furthermore, the whole transmission system. together with the reversing mechanism. is enclosed in a water-cooled casing ; an excellent practice, which is very ravely found in internalcombustion engine craft. The engine is on the same center line as, and directly overhead of, the propeller, and the cylinders are all east in pairs, with all the valves directly operated by a cam-shaft driven by gearing off the crankshaft. Hand starting gear is fitted, and the engine can be started up by one man: but to prevent over-exertion a shaft is carried fore and aft along the cylinders to which a second handle can be fitted in a few seconds. Lubrication is on the pump-gravity system, which the engine builders have found most efficient for marine work. A pump sucking from the crankcase sump delivers to a main pipe running alongside the cylinders, and to each cylinder two small branches are carried, feeding the oil into small cups, thence through piping to main and big-end bearings This allows a chokage to be instantly detected and the obstruction cleared with wire.

Great care bas been taken with the cooling water circulation. A rotary pump delivers the water direct to the exhaust box jacket, thence to the cylinders, through the gear and transmission casing jacket, round the silencer, and finally
overboard. Regarding the fuel, kerosene (paraffin) is used for general running, with gasoline (petrol) for starting, and under normal conditions the consumption is about 5 gallous per hour. The fuel tanks have a capacity of too gallons, carried in two main tanks, which gives a crnising radius of nearly 350 nautical miles. As gasoline (petrol) is used for starting, great precautions for safety have been made. This fuel is containcd in a 25 -gallon tank on the forward bulkhead of the engine room, and is filled from deck through a funnel, fitted with a ganze strainer, screwed directly into the tank. The kerosene (paraffin) supply is also gravity feed, and there is a
entire satisfaction of every one concerned, and is a type of vessel that could well be built in lapger numbers.

A BOVAL MAAL MOTON SHIP.
Probably the largevt kerovene (paraffin) engined passenger vessel in the world is the Rogal Mail motur ship Lochintar, belonging to the 1havid Macllrayne mail and passenger fleet running the Western Highlands of Scolland. There are, of coursc. bigger passenger vessels fitted with Diesel engines, lunt the foregoing statement applies to craft equipped with keromene (paratfin) motors Altogether there are three motor

13-gallon tank close by the gasolise tank, and which is fed from the main lanks by a hand-worked semi-rotary pump.

With regard to the general accommodation arrangements of Royal Standard there is a roomy forecastle, with seats, locker space, store, etc., aft of which is a cofferdam bulkheaded off, which with a second cofferdam aft and the engine room, provides sufficient buoyancy 10 render the vessel unsinkable. Next to the forward cofferdam are three oil tanks having a total capacity of 150 tons of oil cargo. Each tank has a pierced baffle or splash bulkhead running fore and aft; and over each tank is an expansion chamber about 5 feet square,

ETE-CYLINBEA THORNVCBORT ENGINE NOR THE EOVAL STAMBARD.
*tanding about $t 2$ inches above the deek. Aft of the tanks is the second cofferdam, then comes the engine room, and right aft is a large store. A short pole mast is stepped forward, and over the engine room there is a large cowl ventilator, forward of which is a sheltered steering wheel. During the trials a speed of very nearly $71 / 2$ knots was obtained with 100 tons of oil aboard, and with the engine running under the normal revolutions. Needless to say she passed the trials to the
ships in the MacBrayne fleet, the other two, Comet and Scout being slightly smaller. They are by no means new craft, as the service has fieen runuing regularly, but unobstrusively, for nearly four years.
Iochintar, the latest addition, is a triple-screw steel ship, buift at llarling in the early part of 1908. She is 142 feet 2 inches long over all, by 24 feet 1 inch beam, with 7 feet 5 unches depth, and her tonnage is 178 gross.

She is fitted with three six-cylinder Gardner kerosene (paraffin) engines, each developing slightly over 100 horsepower on the brake; that is to say, a total of about 350 indisated horsepower. Solid propellers are driven through a reverse gear coupled to each engine, and the power installed gives her a speed of 12 knots. Two auxiliary motors are fitted, one of 15 horsepower, driving a dynamo for supplying current to the electrical deck gear and for lighting the vessel; while the other, of $71 / 2$ horsepower, is required for the compressor, compressed air being used for starting the main engines. A small funnel is fitted aft, to which the exhausts are carried. The passenger accommodation is excellent, there leing an upper promenade deck extending the length of the ship, except about 15 feet forward, and there is an excellent slining saloon, also a lounge. In addition to royal mail and passengers she carrics a large amount of eargo, and ofien live stock. Since she was put into commission she has been running very successfully between Oban, Tobermory and Salen, maintaining a very regular and efficient service. The same may be said of her sisters, Comet and Scowt, which are in service in neighboring districts.

An order by the Postmaster-General of the United States was issued on July 2t, relating to the establishment of an ocean mail service by 16 -knot steamers between leading Atlantic and Pacific ports in the United States and the ports of Colon and Panama. It is provided that the service shall begin in the fall of 19 t. No that by aid of the Panama Canal a fast weekly tervice will be furnished from Atlantic to Pacific ports.

SOME FURTHER NOTES ON CAVITATION.*

```
By & W. mam*amy.
```

On the oceasion of our last International Congress in 1897 | read a paper os "The Formation of Cavities in Water by Screw Propellers at High Speeds." + This was a re-statement of the theory of cavitation which had been brought before the Institution of Civil Engineers by Sir John Thornyeroft and myself two years previously. In order to prevent the formation of these cavitues we proposed to limit the thrust per square inch of projected surface to about $111 / 4$ pounds per square inch in the case of propellers having approximately the same shape of blade and pitch ratio, and the sante depth of immersion as thwe of the destroyer Daring. It was explained that somewhat higher pressures than this could be allowed for screws of finer pitch ratio, or having decper immersion, or for screns in which the shape of the blade departed from the ellipse, being made broad at the tips. At the time this limit of $\mathrm{tt}^{1 / 2}$ pounds pressure per unit of surface was suggested the use of turhines for marine propulsion was not contemplated,

me. 1.
and it has been found, as might have been expected, that the uniform turning moment obtained with a turbine enables a higher thrust to be used.

In the case of a direct-driven propeller, where it is necessary to submit to some sacrifice of screw efficiency. in order that the turbine may run at a sufficiently high rate of revolntions for economical working, a thrust of about 13 pounds is accepted, and found to give a good compromise, although I believe that incipient cavitation is then present, causing an increase of slip, because the revolutions usually exceed by 2 or 3 percent the number which would be estimated from the tables based on model experiments.

It will be noticed that in addition to this more uniform turning moment all the conditions suggested in the paper referred to as likely to permit of the use of a higher thrust than $11 / 4$ pounds, are present in the turbine propeller as now made. For example, the tips of the blades usually have much greater immersion than in the serews driven by piston engines, because of their small diameter; also the pitch ratio is very fine: and, lastly, the area is thrown as much as possible out towards the tips of the hlades. I also pointed out some years ago \ddagger that the thrust of propellers driven by four-cycle ex-

[^29]plosion engines should not exceed 8 to 9 pounds per square inch, because, unless a large number of cylinders are employed the very irregular turning ntoment of these engines canses cavitation to occur at lower thrusts that in the case of dowble-acting steam engines. I refer to this because some criticism has lately heen expressed concerning the accepted theory of cavitation, on the ground that it had been proved that sonse propellers would stand a higher thrust than $151 / 4$ pounds without cavitating, and that some eavitated at a much lower thrust. It is at mistake to suppose that it'/4 pounds was intended to apply to all cases.
It has been suggested that the peripheral velocity of the propeller is a better criterion of the approach of eavitating romditions than thrust per unit area. I will give my reasons for mot concurring with this view. The peripheral velocity at which cavitation commences is not by any nicans constant, but varies both with pitch ratio and "abscissa" value or slip ratio to a much greater extent than does thrust per square inch.
In Table 1, are shown the cavitating speeds of threc-bladed, tmrbine-driven propellers, having a dereloped area of 0.74 dise

718. '2.
area, assuming a limiting thrust of 13 pounds per square inch of projected area.

In Table 11. I give the peripheral velocities of the same screws at these cavitating speeds, and it will be seen that they vary from 4,800 to 17,280 feet per minute.

I have drawn a thick line round those figures in the table which lie within the limits of usual turbine practice; that is, 1 include pitch ratios lying between 0.8 and 1.0 and "abscissa" values lying between 9 and 13 . Within these circumscribed limits the peripheral velocities only vary from 10,550 to 15,000 feet, and this probahly explains why an impression has been formed that peripheral velocity is a safe guide in the design of turbine screws, an average value of about 12,000 feet being recommended. This corresponds with an "abscissa value" of 11 and a pitch ratio of from 0.9 to 1.0 , which are about the conditions usually aimed at, and so far it would be correct to design for this tip speed. provided the developed area of the blade was about that given in the table. But if the blades are made wider than this, if, say, they luave a projected area of 0.75 dise area instead of a developed area of 0.74 disc area, which latter is the area ratio used in Tables 1. and II., then the peripheral velocities may he considerahly increased.

In Table III. I have worked out the preipheral velocities for this projected surface ratio within the same limits of "abscissa
value" and pitch ratio. They range from 12, too to 15,900 feet per minute.
The peripheral velocity of the wing screws of the destroyer Tartar, which had this projected area ratio of 0.75 was 14.850 feet per minute. Very much lower velocities than these would have to be employed for propellers driven by geared turbines at lower revolutions, because, as will be seen from Table II., the permissible tip velocity decreases rapidly with increase of pitch ratio. On the other hand, a thrust of 13 to 14 pounds would be equally suitable for direct-driven or geared propellers.

Commander C. W. Dyson, U. S. N., in a very interesting series of papers containing a large amount of valuable information on the trials of United States warships which he has contributed to the proceedings of the American Society of Naval Engineers, states that thrusts as high as 16 pounds per square inch of projected surface have in certain cases been recorded in turbine propellers giving a fair amount of efficiency. This is so much higher a thrust than I have ever known to be put through a screw with good results that I think it possible Commander Dyson may have a different way of calculating the thrust. In any case, it is not exactly measurable, and depends on the estimate which is made of the value of the propulsive coefficient and of the thrust deduction. He also states that the thrust per unit of projected area does not appear to be so important as the thrust per unit of disc area in affecting efficiency. I think the explanation of the improvement in efficiency which he finds accompanying a reduced pressure per unit of dise area is that turbine propellers are nearly always made of too small a diameter for good efficiency in order to get high revolutions for the turbines, and the effieiency of the propeller would almost always be improved by increasing the diameter and reducing the revolutions, but at the expense of the combined efficiency of screw and turbine.

TABLE 1.

Pitch	Namtical Miles pet Mour.					
0.8	42.7	36.1	80.7	281	22.7	117
0.9	436	35.8	31.1	26.7	23.1	202
10	44.5	87.3	380	27.3	23.5	20.7
11	45	88.2	32.6	27.8	24.1	21.1
12	46.2	389	332	283	34.8	21.
$t 3$	46.8	* ${ }^{\text {a }}$	33.7	28.7	24.8	21.7
1.4	47.4	40.0	342	क. 0	252	220
1.5	48.9	405	4.5	29.4	253	22.2
1.5	485	40.	35.0	297	25.8	22.4
1.7	690	41.3	35.3	30 0	26.0	呺5
18	493	41.6	35.8	302	26.8	22.7
1.9	40.	419	357	303	253	278
2.0	49.	421	358	301	28.4	23.0
2.1	50.1	12.2	360	307	25.6	33.1
2.2	502	422	362	308	24.7	23.3
23	50.3	423	363	31.0	269	23.4
21	305	127	345	31.2	240	235
23	50.8	128	38.6	31.	78.0	238
	7	3	11	13	15	17

Mr. D. W: Taylor, ${ }^{t}$ in the book he has just published on "Speed and Power of Ships," contends that the accepted theory of cavitation is inadequate, and that tip velocity and shape of blade section are the prime factors involved. There is no doubt that beth have a very important influence on cavitation, and especially the latter. Mr. Taylor is so compelent an experimenter and to high an authority on all matters connected with propulsion, that one would hesitate to question any opinion he may express on any subject coming withitt the scope of tank inquiry, but it is well known that propellers cannot be made to cavitate in a tank under ordinary conditions,

[^30]TAMLE 11
 Sceews, Asucmeru 13 foundes Theugt pa socake locti, and

1) kveloro Aaka $=074$ Dpa Ahta

Table Its.
Tir Valoctitas in Fert wh Minetr at Cavitaymo Spyds of Thart Bladed

Pitch Ratio.			
	13,900	14.400	13,000
08 0	14,550	18,400	12,280
1.0	12,960	12.650	11,800
	9	13	13

and very special means have to be raken to get the phenomenon to exihilist itself with model screwt.

Mr. Parsons was able to observe it in a special tank with heated water having a vacuum over the surface, and it will be remembered thal he confirnied generally the resulus I had obtained by calculation. Mr. Taylor has not followed this method, but has made experiments with a special form of blade which cavitates freely in cold water, and with the pressure of the atmospliere upon the surface, but the instruntent he used could hardly be called a propeller, because it is far ounside the limits of all existing practice. The pitch ratio is as fine as 0.3 , and the blades are unusually narrow and thick Now, even at 0.6 pitch ratio the efficiency of a propeller has dropped from a maximum of 0.74 to 0.58 , and no propeller has ever been made, so far as I know, with so low a pitch ratio as 0.3 , because under such conditions it is simply churning the water. This model cavitates so vigorously that the thrust becomes negalive ahove a moderate number of revolutions, and if used as a propeller it would only need to be driven fast enough 10 actually reverse the direction of the motion of the vessel.

Cavitics first begin to appear at as low a tip speed as 3.00t feet per minute, and the thrust becomes negative at a tip speed of between 5,000 and 6,000 feet. With this special "cavitator" Mr. Taylor has been able to measure the pressure af different parts of the face and back of the blade by means of a very ingentions arrangement of pressure gages, and he has found that there is a reduction of pressure at the leading edge of the driving face of his blade, and lie expresses the opinion that cavitation is only injurious when it occurs at the driving face.
It seems to me that this conclusion has been arrived at somewhat hastily, and requires much further proof before it can lie accepled. I think the reduction of pressure which was observed on the driving face was due to the alnormally fine pitch ratio in conjunction with a thick and narrow blade, and I do
not think it is possible for cavities to form on the driving face with ordinary pitch angles and blades of normal section.
Tbe photographs taken by Mr. Parsons of his propeller when cavitating, under conditions properly representing those found in practice, show most clearly that the cavities are at the back of the blade. (See Fig. 2.)
I thoroughly agree with Mr. Taylor that it is of the utmost importance that the blades should be very thin at tbe leading edge, and it may even be advantageous to make the edge thinner than will stand the water pressure unsupported, and
found it a very satisfactory method of fixing the blade area, and have seen no reason to doubt tbe soundness of the theory on which it is based.

I am glad to learn that Mr. Parsons is making a special tank of a much larger size than that with which he made his previots experiments, but arranged to work under the same conditions of hot water relieved of the atmospheric pressure, in which he will try models of actual propellers, and I think judgment should be reserved until the results be obtains are made known.

(Photograph by the Nirw York Shipbwilding Company.)

to steffen it with circumferential ribs as he recommends, but I do not think he has made out a case in favor of taking tip velocity as a criterion in preference to pressure, because he bas himself shown that cavitation will under special circumstances begin at as low a velocity as 3,000 feet, and 1 have shown that in the case of the Tartar the tip velocity was as high as 14,850 feet witb good results.

It will be observed that Mr. Taylor's cure for cavitation is the same as my own, namely, very wide blades, although he arrives at it by a different line of reasoning. He thinks that "face cavilation begins to spread slowly with increase of tip speed, so that the wider the blade the greater the area of the face whose thrust is not nullified by cavitation,"

As already stated, 1 doubt the existence of face cavitation on a properly designed propeller, althoush it can evidently exist on an instrument specially designed to cavitate, and I still think that the great waste of power admittedly caused by cavitation is due to cavities at the back of the blade, and that these affect the efficiency, because at least half, and usually the major portion, of the thrust is due to the suction of the blade back, and this is lost as soon as the water breaks away from the back. Sir John Thornycroft has suggested to me that efficiency is also probably affected by the fact that when cavitating the propeller is working in a medium of less density, because the air bubbles extracted from the water forward of the screw form part of the stream passing through the screw's dise, as clearly shown by the spirals in the photographs (see Figs. I and 2), and thereby reduce its density.

It may be objected that I bring forward no fresh proof that thrust is a safe guide, and that the tip velocities I have given in the tables are based on the assumption of a fixed limit of pressure. This is quite true, and perhaps further experiment only ean settle the question. I must, however, say I have

Trials of the Utah.

The U'nited States battleship Utah completed her official trial trips over the Rockland, Me, course on June 26. She is fitted with Parsons turbines, driving four shafts, and is a sister ship of the Florida, now building at the New York navy yard. Both of these ships are equipped with Baboock \& Wilcox watertube boilers, fitted for burning both coal and oil. The Utah is about 98.5 percent finished, and is expected to go into commission in August.
On her maximum trial run she developed a speed of 21.63 knots, while the average speed during this run was 21.28 knots, when the turbines were running at 329.17 revolutions per minute. The contract speed for this ship is 20.75 knots, whicb was made on an average of 315 revolutions. The engines developed 28,477 horsepower at maximum speel. The standardization trials covered about twenty runs at average speeds of 10.55 , $12.01,16.8,19.05$ and 21.28 knots per hour. The trials were satisfactory and of great credit to the builders of the vessel, the New York Shipbuilding Company, Camden, N. J.

From the returna compiled by Lloyd's Register of Shipping, it appears that, excluding warships, there were 496 vessels of $1,476,394$ tons gross under construction in the United Kingdom at the close of the quarter ended June 30, 1911. The tonnage now tunder construction is about 102,000 tons more than that which was in hand at the end of last quarter, and exceeds by 358,000 tons the tonnage bailding in June, 1910. The figures are the highest reported in the Society's Quarterly Returns, being 62,000 tons more than the previous record total, which was reached in September, 190t. The figures for June. 1909. have been practically doubled in the last two years.

VANADIUM STEEL THE WORLD'S STANDARD

Ninety-six Vanadium Steel Castings are being made by the Wheeling Mold \& Foundry Company for yokes or hinges for the lock gates of the Panama Canal.

One of these hinges is shown above, after the destruction test at the Ambridge Plant of the American Bridge Company. It required a force of $3,350,000$ pounds to pull it apart at its smallest section. Test pieces from the same heat gave tensile strength 84,000 pounds and elastic limit 49,000 pounds per square inch. The test was entirely satisfactory to the United States Covernment.

Standard "Amervan" Ferro Vanadium was added in the ladle in the making of this steel.
Foundrymen who vanadize their steel and iron by either of our standard Vanadium alloys, "Amervan" or "Masvan," get the physical qualities of forgings in their castings.

Cut out and mail this coupon for full information on the manufacture and heat treatment of Vanadium iron and steel. The process is simple-the results are making a new era in Metallurgy.

AMERICAN VANADIUM COMPANY

MINERS OF VANADIUM ORES

LARGEST PRODUCERS OE VANADIUM ALI.OYS IN THE WORLD

318 FRICK BUILDING

PITTSBURGH, PENNSYLVANIA

AMERICAN vANADIUM COMPANY, Pittsburgh, Penua.
Please send me full information on the manufacture and heat treatment of Vanadium iron and steel. We are especially interested in:

[^31]AdDress

VANADIUM BRONZE

TO FIT ALL CONDITIONS OF MARINE SERVICE, IS HEREWITH SHOWN. THE PHYSICAL PROPERTIES OF EACH TYPE SHOULD BE NOTED IN THE APPENDED TABLE.

TIPE 1. For general run of castings, such as propellers, propeller struts, couplings, relief valves, shaft sleeves, thrust rings, gear pumps, hooks, gun mountings, stern bearings, etc., etc.
TYPE 2. For marine fittings, condensers, gate valves, rocker arms, bilge pumps, binnacle stands, mast fittings, cleats, chocks, belaying pins, governors, search light stands, towing hooks, brackets, eccentrics, throttle valves, torpedo tubes, torpedo breeches, conning towers, periscopes, deck plates, etc., etc.
TV1'E 3. For engine housings, engine bedplates, air compressor bedplates, air compressor framings, hand wheels, gears, rudder bearings, stuffing boxes, windlass gears, windlass drums, bearing brasses, bushings, spiral gears, port lights, air pumps, reducing valves, etc., etc.
TVPE 4. For whistles, radiator valves, also for forging purposes.
TYPE 5. For plug cocks, steam traps, thermostats, etc.
TYPE 6. For forged pump rods, bolts, valve stems, hose couplings and all kinds of fittings to be riveted. This type is also produced for rolling and drawing.
TYPE 7. For general hardware, quadrants, railings, name plates, indicators, hatches, grease cups, oil cups, gauges, stanchions, engine telegraphs, controller fittings, etc.
TYPE 8. For air compressor cylinders, oil pumps, injectors, exhaust headers, exhaust valve bodies, elbows, tees, water jacketed bearings. gas mufflers, hydraulic valves, hydraulic valve fittings, steam valves, etc. It is a high pressure Steam Metal.
TVPE 9. A special metal used in ship bells, electric bells, electric gongs, fire bells and gongs, submarine signal bells, etc.
TYPE 10. For turbine buckets, superheated steam valves, steam nozzles, pump linings, trolley wheels, circulating pumps, safety valves, journals, glands, etc.

OF THE	TESTS BY TENSION DIFFERENT TYPES OF VANADIUM BRONZE CASTINGS.				
TyPE.	$\begin{gathered} \text { TENSILE STKENGTH, } \\ \text { SQUARE } 1 \mathrm{NCH}, \\ \text { LBS. } \end{gathered}$	$\begin{gathered} \text { ELASTIC LIMIT, } \\ \text { SQtARE 1NCH, } \\ \text { LBS. } \end{gathered}$	$\begin{aligned} & \text { ELONGATION } \\ & \text { IN TWO INCHES } \\ & \text { PERCENT. } \end{aligned}$	EEDUCTION OF AHEA, PERCENT,	
1 $\frac{1}{3}$ 4 4 6 7 8 8 10			32.0 38.5 18.5 57 57.5 6.0 50.0 21.0 s.0. 21.8	27.8 37.1 31.1 17.7 37.6 35.6 39.1 38.8 17.8 8.0	

WHEN ORDERING, PLEASE SPECIFY TYPE OF VANADIUM BRONZE YOU DESIRE

VANADIUM METALS CO.
 FRICK BUILDING
 PITTSBURGH, PA.

OUR PRESENT KNOWLEDGE OF THE VIBRATIO N PHENOMENA OF STEAMERS.*
 By anosth DE, O, BCALICK,

In view of the apparent impossibility of dealing scientifically with the vibrations which made ther appearance with more or less intensity in every steamer, these were, up to about the beginning of the eighties of last century, regarded as an unavoidable evil. With the gradual increase in the engine power and speeds of steamers, however, the cases in which the vibrations assumed an exceptionally violent form became more and more frequent, and greater attention began therefure to be given to this phenomenom. Twent-seseven years ago, at the spring meeting of the Institution of Naval Architects (1884), I had the honor of reading a paper "On the Vibration of Steam Vessels," and I believe this was the very first publication of an attempt to give a scientific explanation of vibration phenomena. The contents of this paper mainly consisted in the proof, then given for the forst time, that vibrathons were in no way eaused by weakness of the hull of the vessel, but that they were chiefly produced by the inertia forces of the reciprocating parts of the machinery when these occurred at periods corresponding with those of the bending oscillations of the hull in the vertical plane. In this paper, therefore, the principles underlying the action of the inertia forces and the phenomenon of resonance were investigated.
In 1892 Mr . Yarrow conecived the happy idea of letting the engine of a torpedo boat run with the propeller shaft uncoupled, so that only the inertia forses exeried by the reciprocating parts of the machinery came into play. It became clearly evident that the vibrations which appeared had their origin in the synchronism of the inertia forces with the bending oscillations of the longitudinal axis of the vessel in ber vertical middle-line plane. Further investigations led me to study the dissimilar beharior of the various types of engine met with in practice, and of the influence exercised by the position of an engine in a vessel, according as only vertically acting inertia forces, or tilting couples, or both of these together, came into play. Amongst other things the remarkable fact was established that the ordinary triple-expansion engine, in spite of the considerable exertion of vertical inertia forces and tilting couples which characterized it, was, under certain corcumstances and whell it was placed in a particular position in the vessel, harmless as regards the setting up of vibrations. I succeeded further in constructing a simple formula which made it possible to determine the number of the vibrationoscillations beforehand, and thus to avoid the eritical number of revolutions in the first design of the engine.

As soon as it was recognized that means for the avoidance of the vibrations must be provided, not by the shipbuilder, but by the marine engineer, the efforts of the latter became directed to the destruction as far as possible of the action of the inertia forces, and the result of these was the invention of the balanced four-crank engines, which were proposed by me in t894, and very speedily attained general adoption under the title of the "Yarrow, Schlick and Tweedy System." With the creation of the balanced reciprocating engine the first act in the solution of the vibration problem was in a manner brought to a conclusion. The extremely violent vibrations which are to be attributed to the action of the inertia forces of the reciprocating parts of the machinery ean, with the exception of a small residue, always be avoided by correct balancing. After this short historical review I should like to proceed to show with what phenomena we have to reckon in vertieal reciprocating engines. To this point 1 shall give very brief expression, as I am no doubt right in assuming that the mere im-

[^32]portant of the matters entering into the discussion are well knowil.

If a single-screw steamer be equipped with an unbalanced vertical engine, there will in most eases arise (with a particular number of revolutions) vibrations, which consist in a bending of the longitudual axis of the vessel in a vertical plane, in the course of which two nodes are formed. Thehe twonorle vibrations are termed "vertical vibrations of the first order," and are said to be of single frequency. The latter expression is intended to convey the fact that the hull of the vessel makes a number of oscillations per minute exactly corresponding with the number of revolutions of the engine. If the revolutions per minute advance beyond the critical number the vibrations disappear, only to appear again in a violent form at a number which is generally less than twice as great. Three nodes now appear, This is called the "vertical vibration of the second order," The frequency, however, remains single, since the numbers of vibrations and revolutions coincide with each other here also. In very rapidly-running engines, indeed, vibrations of the third order with four nodes may also, in exceptional case5, be observed. So far as I am aware, the presence of vibrations of a still higher order has not been established with certainty.

Fingines which develop only vertical mass forces, such as vertical engines with single cranks, provided they be placed exactly at node poins and the critical number of revoluthons be not considerably exceeded, so that no vibrations of a still higlaer order with more nodes situated at other points are set up, can never produce vertical vibrations. On the other hand, when engines of a description that produce tilting couples but no vertical forces are placed at a node point. they cause violent vibrations, provided they reach the critical number of revolutions belonging to the order of vibration in question. This is, for instance, the case with engines having three cranks set at t:20 degrees with each other and having all moving parts of the same weight. Ordinary triple-expansion engines with three cranks set at angles of 120 degrees with each other and fonr-crank engines with cranks set at 90 degrees with each other, which produce vertical inertia forces as well as tilting couples and generally make the vessel vibrate very violently, can, strange to say, under certain circumstances remain quite passive.

The conditions under which this takes place are as follows: At the two extreme positions of the oscillating longitudinal axis of the vessel, tangents may be assumed to be drawn from the positions of the engines, which then intersect at a point a short distance behind the node belonging to the order of vibration in question. When the product of the weight of the vertically mass multiplied by the distance of the corresponding piston axis from the point of intersection of the tangents mentioned is the same for each eylinder, no vibrations will oceur.

In the ease of twin-screw vessels with pairs of exactly simitar independent engines, interferenee phenomena will, as may readily be understood, be set up as a consequence of the vertical forces produced by them. If the reciprocating pistons of analogous cyliuders be movel simaltancously in the same sense, the incrtia forces thereby produced supplement each other, and very violent vertical vibrations ensue. Since, however, the two engines do not move with exactly equal speeds of revolution, the erank of the one will, after a little while, have forged ahead of that of the other by $t 80$ degrees, and the two sets of inertia forces produced will then work simultancously in opposite directions and thus counteract each other, so that the vertical vibrations will, for a short time, disappear. Since, however, the two engines are placed at a certain distance apart in the athwartship direction, the vertical inertia forces now acting in opposite directions form a couple
which give the section of the hull in way of the engines a lateral oscillation similar to that of the rolling motion of the vessel. These oscillations are communicated to the whole vessel in the form of torsional vibrations, and are of the single order of frequency of the number of revolutions per minute of the engine. When unbalanced engines are fitted in twinscrew vessels, periodically alternating vertical and torsional vibrations appear, and the period corresponds with the time in which one engine outstrips the other by a complete revolution. When correctly balanced engines are fitted, there is, of course, no further cause for the vertical and torsional vibrations of single frequency here illustrated. True, we shall see further on that both kinds of vibrations of higher frequency may notwithstanding be observed in a mild degree. and that weak vertical vibrations of single frequency also occur here and there.
As already mentioned, the vibration problem was in 1894 regarded as solved by the balanced reciprocating engine, and, indeed, as a matter of fact, vibrations of single frequency never oceur in vessels equipped with these engines in anything like the degree formerly experienced. After the main evil was removed, however, it was found that weak tremors, which had formerly been masked by violent vibrations and thus escaped notice, were still present. The demands in regard to the quiet behavior of a steamer had become considerably greater, and I was now confronted with the question as to what might be the cause of these residuary vibrations, and how they could be removed.
In regard to the nature of these residuary vibrations, the following observations may be made. In most eascs vertical vibrations (bendings of the longitudinal axis in the vertical plane) of frequency still showed themselves, though to a considerably less violent degree, and in twin-screw steamers they also occurred in periods. The appearance thus presented was that of the engine being still incompletely balanced. In addition, vibrations showed themselves, which, though of small amplitude, were still unpleasantly felt, because their frequency was very great-generally threefold and fourfold.
It cost me much time and trouble before I could determine the cause of these phenomena with certainty, and I owe large debts of gratitude to the Stettiner Maschinenban ActienGesellschaft Vulcan, the Hamburg-Amerika Linie, and the Norddeutscher Lloyd for the ready willingness with which they allowed me to pursue these investigations, and for the obliging manner in which they lent assistance. In the first instance, the experiment was repeatedly made of allowing the engines of the large Atlantic liners of the companies named to run at their critical numbers of revolutions with their propellers uncoupled, and under these conditions not even the least suspicion of the vibrations otherwise experienced was felt. This proved conclusively that the residuary vibrations were not caused by defective balancing. The causes, then, had to be sought elsewhere. It would be going too far were I to describe here the exact manner in which 1 set about my experiments. I first sought, by the help of the pallograph, designed by myself, to determine in which positions of the cranks the maximum amplitude occurred which again should enable a conclusion to be come to as to the position in which the impulse reached its maximum, since the latter must always be a quarter of an oscillation in front of the maximum ascillation amplitude. It very soon appeared that the vertical vibrations could not by any means be brought into fixed relation with a particular adjustment of the cranks. In the

[^33]individual vessels the maximum amplitude occurred in connection with different positions of the cranks, and even in one and the same steamer the conditions changed as time went on. On the other hand, it became clearly aparent that the instant at which the ends of the vessel passed through the middle point of their upward swing, and therefore also the instant of maximum impulse, always coincided with that at which a particular blade of each propeller (the experiments were conducted almost exclusively with twin-screw vessels) assumed an almost exactly horizontal position, i. c., when both were moving simultaneously downwards from the uppermost position.

DIAGBAMS BHOWING ACTIOM OF FROPELEES CAUSING TIBEATIOX.

The assumption is here made that the propellers turn outwards, as it is generally expressed. When, ou tbe other hand the blades in question stood at different angles, ; c., when one of them pointed horizontally inwards, while the other pointed horizontally outwards-a case which occurs when one engine has forged ahead of the other by 180 degrees-the vertical vibrations of single frequency disappeared, or at any rate reached their minimum. While, then, one engine was advancing to a point a full revolution in front of the other, the vibrations diminished from a maximum to a minimum and then rose again to a maximum. The explanation of this phenomenon is that one blade of each of the two propellers meets with a greater tangential resistance than the others, and the cause of it is to be found in the very slight excess of pitch of the blade in question. The difference in the pitch is so small that it can rarely be detected by the help of the ordinary appliances ("pitchomeler").
To understand this clearly we must picture to ourselves that the acceleration of the water by the propeller is already in
some degree imparted to it before the particles reach the leading edge of the blade. The angle at which the propeller blade cuts the threads of water flowing towards it (slip-angle) mutst therefore be a very small one-probably about 3 degrees. When the pitch angles of the different blades are not exactly the same, the one that has a very slightly greater pitch than the others has a considerably greater tangential resistance, while another one with smaller piteh may turn in the water almost without resistanec, or, so to say, without load. While the blade with the greatest resistance moves, in the course of a revolution, from the upper position dewnwards, it imparts to the propeller shaft an upward pressure and endeavors to draw the after part of the sessel tupwards, thus producing vertical sibratious of a period epual to that of the time of revolution of the engine; that is to say, vibrations of single irequency which are generally of the first order, and thus have two nodes. The occurrence of vertical vibrations of single frequency may thus, in vessels with balanced engines, be quite naturally explained.

Now, just as a difference in the pitch of the propeller blade may suffice to produce vibrations of single frequency in steamers with balanced enkines, so also can a like difference destroy the vibratious of single frequency set up by the action of the inertia forces of an unbalanced engine when these two causes of vibration always act in senses contrary to each other and are approximately equal in their action. As I have already explained in detail in my paper of 1884 . "On the Vibration of Steam Vessels," this may sometimes be easily attained by turning the propeller in coupling up the shafting in such a way as to make a different ankle with the eranks.

The striking vibration phenotnena which were observed on the onceasion of the experimental trials with different angular positions of the cranks in 11. M S. Terrible, find their simple explanation in slight differences in the pitch of the propeller hates. That differences in the pitches of the individual blades may to a ligh degree be detrimental has long been known; but trifling ones of this kind, the very existence of which could scarcely be demonstrated, were not thonght to have so much influence. But the result of these investigations also has the further effect that it clearly shows what great differences there are in the tangential pressures exerted by individual propeller blades, and, at the same time, in the stressing of the latter. The blade fractures which so frequently occur may thus find an explanation of the simplest kind. It is evident, also, from these considerations, how necessary it is, in all cases in which it is desired to avoid even the smallest vilorations of single frequency, and to oltain a specially good efficieney from the propeller, that the blates be machined, so that exact equality of these as regards both form and pitch is attained. When propeller blades are exactly adjusled the vibrations of single frequency disappear, provided always that the engines are correctly balanced; and since, by the help of the pallograph. cvery blade can be picked out which prow duces a tangential pressure differing from that of the rest, vibrations of single frequency ean also le avoided in every case.

An attempt has also been made to connect the cause of vibrations of single frequency with inequalities in the turning moments. Theoretical inveitigations, however, have shown that the vibration-producing impulses of this kind do not suffice to produce the effects observed, and exact observations have shown this to be correct.

In all twin-screw steaners, again, an analysis of the diagrams drawn by the pallograph gives periodically-occurring vertical vibrations of fourfold or threefold frequency, according as the propeller has four hlades or three. In steamers which were originally fitted with three-bladed propellers, and showed vertical vibrations of threefold frequetty, these latter
kate place to vibrations of fourfold frequency as soon as the three-bladed propellers were replaced by four-bladed ones.

The explanation of this phenomenon is as follows. The relalive motion of the water flowing along the after body of the vessels does not take place exactly in the horizontal direction; but, on account of the large stern wave, it follows a sternwards rising curve, as shown in Fig. f. In consequence of this each propeller blade meets with greater resistance when it has moved down from ahove thll it is about borizontal ; that is to say, wlien it has reached the position denoted by A and d_{1}, in Fig. 2, than when it is in the position opposed to this, Now, when the two four-bladed propellers simultancously assume a prosition in which one of each of their blades points horizontally outwards, as show'n in Fig. 2, an upward pressure is given to each propeller shaft. These two forces combine in endeavoring to raise the after body. Their magnitude diminishes considerably, however, when the two propellers have turned 45 degrees further round, and thus reached a position such as that shown in Fig 3. This process is repeated four times for every revolution of the engine (or three trnes in the ease of threc-bladed propellers), and aecordingly prodnces vertical vilorations of fourfols (or threefold) frequency.

When, in the cases of four-bladed propelters, one of the two enginen has out-trimped the other by an angle of 45 degrees, it follows that while one blade of the one propeller is pointing horizontally outwards, and thus as-umes the position of greatest resistance, two outer blades of the other propeller form augles of 45 degrees with it, as shown in Fig. 4 . The two inclined blades will then together exert a sumewhat smaller upward pressure on the shaft than that of the horizontal blade of the other propeller. When both propellers have twrned through a further angle of 45 degrees, the analogous forces again come into action, with the difference, however, that the two propellers have exchanged positions, In this mauser there are producesl during a siugle revolution eight upward impulses, which act on the after body of the vessel and accordingly prodace vibrations of eightiold frequency, these being. it is irse, senerally of very small amplitude and searcely discernible.

The upwarl impulse acts on the starboard and port sides alternately, as illistrated in Figs. 4 and 5, and, as may casily be seen, sets up at the same time torsional vibrations of fourfold frequeticy (threefold in case of three-bladed propellers). When, after a while, the one engine outstrips the other by 45 degrees more, the vertical vibrations of eightfold frequency disappear and wive place to others of fontfold frequency; at the same time, howeser, the torsional vibrations also disappear, and so on till, with another advauce, trade by the one enkine, of 45 degrees more, the game begins airesh. In this way the periodical inereases and diminutions of the vibration phenomena may be explained. The results obtamed during my long sears of investigation have so often been confirmed by experience that not the slightest doubt can now be entertained as to thes reliahility.
In order to facilitate a general review of the subject, I shall once more briefly recapttulate the phenomena which oceur in a modern twin-screw steamer equipped with correctly balaued engiues. A steamer of this class generally shows periodically recurring vertical vibrations of single frequency arising from the defective pitch of one blade of each propelier. When the propellers are machined these vibrations disappear. Further plienomena take the form of vertical sibrations of frequencies, the number of which is in each case equal to that of the blades of one of the propellers, periodically alternating with other vibrations the frequencies of which are twice as great. Simultancously with these lastmentioned sertical vitirations torsional vibrations occur of
frequencies equal in number to the blades of the propellers., Every tuin-screw steatner shows torsional vibrations per minute cxactly cqual in nwmber to the product of the recolsutions maltiplied by the number of the blades of one of the propellers.
If a single-screw steamer equipped with a correctly balaneed engine be considered, vertical vibrations of single frequency will first make their appearance, when, by reason of defective pitch, one of the propeller blades show's greater tangential pressure than the others. A further characterstic is that of vertical vibrations of a frequency which corresponds with the number of the blades of the propeller, and in addition torsional vibrations, usually of considerable severity, oceur, the frequency of which is likewise equal to the number of the blacies. All these differem vibrations, huwever, show no periodic iacrease and diminution stich as are fommet to exist in the twin-screw steamers; their intensity remains constant.

The torsional vibrations of the single-screw steamers, however, are due to a different eause from that which operates in twin-screw steanters. In the case of the former. each propeller blade experiences the greatest resistance when it is in its uper vertical position or sonswhat beyond this in the direction of rotation. The difference in the tangential pressure which the blade has to exert during a revolution is, in this case, considerably greater than in the case of the propeller of a twin-screw steamer. Since, however, the natsees of the moving parts of the machinery, as in the case of a Hy-wheel, seck to preserve a uniform sjeetl of rotation. an inerease of torsional steess will, each time that a blade passes the screw frame at the upper vertieal position, be imparted to the shafting and thence to the engine seating, and will endeavor to incline the section of the vessel at the position occupied by the machinery in a sense opposed to that of the revolation of the propeller In this mamer an impulse is given which tends to produce torsional vibration.

In accordance with the foregoing, the torsiomal vibrations of single-serew vessels take their rise at the part of the vessel occupied hy the engine and not at the after bearing of the propeller shaft, as in the case of the $t w i n$-screw steamers. This also explains the circumstance that torsional vibrations generally necur with ennsiderable intensity in the fore body, while in twin-screw steamers they diminish gradually towards the fore body.

With the balancing of recipracating engines, which catne into fashion about the year T 894. everything that was possible was done for the removal of vibration, and the severe vertical vibrations formerly observed in mhhalaneed ertgines werc. in fact, eliminated.
The periodical torsional vibrations of threcfold or fourfold frequency oceurrimg in the manner descritwed above were still very unpleasautly frlt, expecially in swift passenger steamers. Although in the twin-serew steamers, which are primejpally dealt with here, they had their origin entirely in the propeller, and made their way into the fore body of the vessel, so that they made themselves felt very unpleasantly, expecially in the saloon. Endeavors have, of comrse, been made to get rid of this evil, but these have been attended with only a comparatively small degree of success: for the only means at our disposal for the removal of these torsional vibrations consists in the prevention of resonance, or, in other words, in the avoidance of the critical number of impulses. The simplest means of attainitg this end is the alteration of the number of the propeller blades, provided that, in view of other considerations, this appears permissible.
When a twin-screw steamer fitted with three-hladed propellers shows very severe torsional vihrations, the evil may in nearly every case be almost entirely removed when the propellers are replaced by others with four blades. On the other
hand, I have observed that in the eave of a very large steamer the vibrations almost entirely disappeared when, in deference to a proposal of mine, the four-bladed propellers were replaced by three-bladed ones. A measure of this kind, however, is sontetimes attended by unpleasant secondary phenomena. For the altered frequency of impulse attained with an altered number of blades not infrequently coineides with the eritical number of impulses for vertical vibrations of higher order. It then becomes possible to struost avoid the torsional vilorations, but their place is taken by vertical vibrations which are of threefold and fourfold frequency according to the number of blades borne by the propeller. These latter vibrations are, it is true, generally less unpleasant than the forsional ones.

In such a case, and when it is desired to avoid the expense of replacing the existing propellers by new ones with other numbers of blades, there is still another way which, it is true, only brings partial success, as a rule. It consists in the alteration of one of the propellers, assumed to be fitted with adjustable blades, by a modification of its pitch as compared with that of the other, so that at the normal speed of the vessel the one engine has the greater number of revolutions per minute by about 5 to 7 percent. The period within which the torsional vibrations advance to a maxinum and return to a minitnum again is by this means consiberahly shortened, and the sibpattons never then attain the intensity experienced in tbe case in which the two engines work with almost exactly equal sumbers of revolutions. This is explatned by the circnmstance that, under such conditions, the iutensity of the impulse increases with great rapidity and reaches tit maxinum before the oncillating masses can be accelerated to such a degree that even an approximate approach can be mate to the amplitude of oscillation which wonld be attaned if the impulses had leen continued with equal intensity for a considerable period of time.

The same principle umberlies the endeavor to reduce the torsional vilurations of twin-serew vespels by giving four blades to the one propeller and three to the other. In some instances this method has been attended with appreciable success. It will probably be unnecessary to add that, in conneefion with the metheds last deseribed for dimini-limg the vibration, the speed of the vessel is always to some extent unfavorably affected.

With the introdnction of the steam turbine the vibration phenomena entered into a new phave. Since, in the case of the turbine, cvery periodic action of the inertia forces in a dircetion at right angles to the longitudinal axis of the vessel hecomes ingossible, and since. further, the turbing snoment is completely uniform, all the disturbances which set up vibrations in the unbalanced reciprowating engine ate entirely avoided. It was accordingly at first asserted, even by professional men. as an immense adsantage of steam turbines. that they could not impart any vibration to vesscls so engined. This view, fo which frequent expression was at one time given, proved how little the vibration phenomesa were understoes! at that time. The vibrations dwe to the propeller must, in thrbine steamers, oceur in a manner analogous to that in which they show themselves ins steamers equipped with balanced reciprocating engines; but, by reawon of the relatively very bigh speed of revolution of the propellers in these vessels, the frequency of their vihration fuer unit of time must be considerably higher

For instance, if a three-bladed turbine propeller makes 200 revolutions per minute, and there are only two propeller shafis, (60 (or 1,200) vertical vibrations per minute will be set up, and these figures will increase to 800 (or t.600) when the propellers are of the four-bladed description. The number of revolutions of 200, however, muat be rekarded at
almost the lower limit, and it is met uith only in large steamers. In most cases from 400 to 500 revolutions per minute have to be reckoned with, and in such case frequencies of vibration up to about 1,500 to 3,000 per minute, or twenty. five to fifty oscillations per second, oceur.

The amplitude of these vibrations, which are eaused by the propeller alone, is, under like conditions, generally smaller in rurbine steamers than in steamers with reciprocating engines, sunce in the former the work imparted during one revolution, and consequently also the vibration-producing impnise is less in inverse proportion to the relative nutubers of the revolutions. The extremely high frequency of the vibrations of turbine steamers, lowever, ispolves great ineonvertience to the passengers and crew and is a drawback for these vessels.

It is, on the other hand, a favorable factor that the unpleasant torsional vibrations do not extend over the whole length of the vessel, as they often do in steamers equipped with reciprocating engines. This phenontenon may be explained as follows: In theory the specd of transmission of the torsional oscillations of the longitudinal axis of a vessel is, for steamers of like types, the same. Now, when the frequency of the oscillation per unit of time is comparatively low, as, for instance, in vessels equipped with reciprocating engines, a few large waves will make their appearance in the longitudanal axis; that is to say, only a few nodes for the torsional vibrations will show themselves. If, on the other hand, the frequency be very high, as in the turbine steamers, a large number of small waves and a good many nodes will be formed. Now, since the assumption may fairly be made that, on account of damping action, the vitrations will ceace after a certain number of oscillations, or, in other words, that, after reaching to a distance from their origin corresponding with a certain multiple of thear wave-length, they will cease to be perceptible, the point at which the vibrations will no longer be unpleasantly felt will, in turbine vessels, be considerably nearer the after end of the hull than in steamers with reciprocating engines.

The use of torsion indicators to determine the horsepower developed by steam turlinet has supplied a means for obraining interesting information in regard to the fluctuations in the resistance to which the propeller blades are subject during a revolution. It may, for instauce, be assumed that one of the onter propellers of a turbine steamer with threc or four shafts is arranged as shown in Figs. 6 and 7, and that it has three blades. If the tortion angle of the shafting be measured at the instant at which the propeller is in the position illustrated in Fig. 6, i. C., in which the tip of a blade is nearest to the skin of the vessel, a higher value is obtamed than in the case in which the torsion angle is measured in the position shown in Fig. 7. This is explained by the circumstance that the tip of the blade lying nearest to the skin takes hold of the layer of water drawn along by the wetted surface in conserptence of the forward motion of the vessel, and that the particles of water at this point move forward at a considerable speed. At this instant the blade in question meets with considerably preater resistance, and a greater twisting of the shaft must accordingly take place at the instast when the propeller assumes the position illustrated in Fig. $7, i, c$., when the tips of two blades are further removed from the skin of the vessel.

This increasell resistance of a single blade acting unsymmetrically prodnces, somewhat in the manner already deseribed, a one-sided pressure on the after bearing, which, together with the pressure exerted by the propeller on the shaft at the other side of the steamer, produces torsional vibrations. These vibrations occur with special vehemence because the distance apart of the two shafts, and therefore also the arm of the conple thus prosliced, is considerably greater than, for instance, in the case of twin-screw steamers.

Fiurther, when it is realized that, in consequence of the large stern wave, the water flows to the propeller, not exactly in horizontal lines, but in a curve which rises somewhat in the sternward direction, it will be further evident that the direction of rotation is not a negligible matter in contributing to vibration. If a rotary motion in the outward direction be assumed, as indicated by the arrow in Fig 6, the blade A will, for the reason alluded to above, experience in the first place an especially high degree of resistance in the position shown. and will in consequence exert a downward pressure. But in this position the blade B also meets with a greater tangential resistance, because it bears against the particles of water of the stern wave which are here curving upwards, and accordingly produces an upward axial pressure. The pressures prodnced radially to the shafts by the blades A and B, respectively, thus in part neutralize each other. If, on the other hand, the direction of rotation of the propeller be reversed. i. A, the latter turn inwards, it will readily be seen that neufralizing of the radial pressures of the kind referred to does not take place, and the arrangement will in consequence be attended by vibrations of somewhat greater severity.
In turbine steamers there is an additional circumstance which tends to increase vibration. This is the inclination which usually has to be given to the propeller shaft, because, by reason of the large diameter of the turbine casings, their inhward ends usually lie considerably higher than in a vessel with reciprocating engines. As a result of this, the direction of motion of the water flowing sowards the propellers makes a still greater angle with the axis of the latter than with which it already approaches them in the rising course of the sternwave, and strong vibrations are set up in the manner already explaised.

From what has been said, it will no doubt be clear that, for the removal or diminution of the vibrations in turbine steaners, in reality only one method remains, viz, ; that of the prevention of resonance, or, in other words, of the avoidance of the critical number of revolutions for the vertical as well as for the torsional vibrations. A reliable prediction of these critical numbers of revolutions, such as that which my formula enabled me to make in steamers with reciprocating engines, has up to the present, unfortinately, not become possible. In particular the detcrmination in advance of the critical number for the torsional vibrations still presents great difficulties. I have, indeed, busied myself for some time with this problem, but 1 att not yet sure whether 1 shall suceed in finding a practical solution of it.

In siew of the high frequencies which occur in turbine steamers, one great difficulty lies in the circumstance that the critical freyuency numbers for the successive orders of vibration lic comparatively near each other. It may, accordingly. very easily hapuen-in the case, for instance, in which the torsional vibrations are avoided by an alteration of the numleers of revolutions-that vertical sibrations nake their appearance, and tive tir.ad

In the foresoing I have avoided all theoretisal mathematical investigations, sime they are of little or no value in actual practice and do not provide us with any serviceable means for the removal of the vibrations, What 1 have said here can only be regarded as a short abstract of the most important questions which have to be dealt with in connection with the vibration phenomena. Were a treatment of the whole question to be attempted it would prolably occupy ten times as much space as the present paper.

Every one who is a member of the Society of Naval Architects and Marine Engineers will regret the ill health of the secretary atd treasurer. Captain Baxter, and feel that his loss is a personal one.

THE RATIONAL APPLICATION OF TURBINES TO THE PROPULSION OF WARSHIPS.*

During the last ten years we have assisted at a considerable development of turbine engines in all navics. The success of these enkines has been assured, because they are the only ones which enable tas to solve the problem of speed, since the demand for high speed in every class of vessel increases daily. They lave, however, other qualities which add considerably to the value of ships fitted with these engines. These qualities are principally endurance, the elimination of hull vibrations, economy of fuel at high speeds, and the fact that the engines are always ready and require no overhauling.
Great importance must have been attached to these qualities to justify the adoption of these engines, as they have the grave fault of showing a low efficiency at ordinary speeds, which reduces by one-half one of the principal factors of the naval value of ships, viz.: the radius of action.

This reduction in radius of action dors not have the same importance for all naval powers. To Great Britain, whose wise poliey has givell her in all the seas of the world bases of supply not far distant from one another, endurance and constant readiness for action are qualities undoubtedly preferable to all others; consequently the British Admiralty adopted turbines as som as they were available, and they can, even now, continue to use them without other inconvenience than the extension of the fuel supply and the improvement of the means of utilizing the same.
Other nations are not in the same position as regards turbines. They would have to provide in times of war the important convoys of supply, which, however well organized they may be, would form but an uncertain means of assistance, and would reduce the offensive nasal war strength of the fieet by the number of the fighting units necessary for their protection. For these nations, therefore, the adoption of turbines has, far more than for Great Britain, meant increased expenditure, and they also have to suffer inconveniences of a strategical nature, which the greatest financial sacrifices can only reduce.
It is not surprising to find that some countrics openly regret having followed the example of Great Britain, and that one of the most powerful of these is about to replace turbines by reciprocating engines for her new battleships. One may well hesitate to adopt such a radical course as to forego the advantages of turbines. Makers of turbines are, therefore, endeavoring to make these engines more economical at low speeds. The solution of the problem has been sought by making the propeller shafts revolve independently, so as to keep the turbines at a constant speed of rotation, thus securing a good efficiency; the transmitting gears are in such cases designed with toothed wheels or electric motors.
Even admitting that by the introduction of these means of transmission there will not be a considerable loss of efficiency, their employment will always entail a certain complieation and weakness, and the machinery so designed will lose two qualities that are most highly appreciated, wiz.: strength and simplicity.
In the present paper it is proposed to leave out of consideration these methods of transmission and to keep to the study of what may be done with steam engines only, turbines and piston engines. By suitably combining them. it appears possible to improve greatly upon the actual consumption of steam, especially at reduced speeds. Turbines are now as well understood as reeiprocating engines. We know that from the point of view of efficiency their advantages are limited by

[^34]certain conditions. The piston engine has, in fact, an excellent effeciency when the steaus has a pressure of 15 to 30 pounds per square inch, but it becomes bad if the expansion is carried too far.
To utilize the expansion up to a pressure approaching those obtained in the condensers we must have cylinders of large dimensions, the attainment of which is iupossible, and in which, moreover, friction losses and condensation would abworb the theoretical gain obtained by the increase of expansion. Turbines, on the contrary, have their best efficiency at low pressures, and are able to utilize the expansion beyond the condenser pressures; while they give rise to great losses at high pressures due to the friction of the revolving parts in the steam space, also to leakages through the cicarances between the moving and stationary parts. Marine turbines are firther restricted to low velocities, instead of being able to utilize those which are best for a good efficiency. It is obvious, therefore, that if we can have an arrangement of eombined engines, arranged in scries, in which the reciprocating engines utilize the energy of the steam only up to the limit of expansion suitable for a good efficiency, leaving to the turbine the duty of utilizing the expansion down to condenser pressures, we shall then have an engine much superior, whatever be the speed of the ship, to one consisting exclusively of turbines or reciprocating engines.
Ever since 1900 we liad foreseen the necessity of a combination of the two kirds of engines. At the meeting of this institution of 1904^{*} we deseribed the arrangement installed, according to our ideas, by Messrs. Yarrow \& Company on board a small torpedo boat. In this arrangement the reciprocating engines and the turbines were independent; by working the reciprocating engines only we could obtain very economical results at low speeds. But we must take account of the qualities as well as the faults of each engine; we have managed to gain some advantages, although we cannot eliminate all the faults.
In $1 g 06$ we fitted the French destroyer Voltigcur with an improved arrangement of engines. The puwer is distributed on three shafts (eenter shaft reciprocating engine, with turbines on wing shafts). The engines are so designed that when going at full power the distribution is equal on these shaft. U'p to a speed of 20 knots the reciprocating engines exhaust into the turbines, but above this speed the engines become independent. We would, therefore, have realized a perfect engine up to a speed of 20 knots if the reciprocating engines and the turbines had been designed solely with the view to obtaining better results by working by stages; but, instead of this, they were designed more particularly with the object of obtaining the maximum efficiency at full power.
However this may be, the Voltigeur has undeniably demonstrated the superiority of the system; because below 20 knots the consumptions are slightly above those obtained in destroyers of the same elass fitted with reciprocating engines. Ahove 20 knots , notwithstanding the presence of the reciprocating engines (which under such conditions are not advantageous), the consumptions remain less than those of all other destroyers even with turbines only. This is due to the superior efficiency obrained with multi-cellular turbines. See Figs. 1 and 4, showing the arrangement of machinery of the Voltigcur, and the comparative curves of consumption of the Voltigewr, Chassesp (with reaction turbines) and Caraltinier (with reciprocating etigines). In the author's opinion the best arrangement is the following:

COMBINED ENGINES FOR RattLeshirs and CRUISERS.
The propulsive power is distributed on four shafts, each pair (port and starboard) being worked by an absolutely inde-

[^35]pendent set of engines. In each set a reciprocating engine drives the wing shaft and exhausts into a turbine which drives the inner shaft.

The reciprocating engines and the turbines are designed to develop a power equally distributed on the four shafts when running at maximum speed. At cruising speeds the reciprocating engines develop much more power than the turbines.
of the maximum power from 15 percent to 20 percent, which corresponds to an increase of speed from 5 percent to 7 percent of the maximum speed, say. 1 to 1.5 knots for battleships intended for 20 knots.
(2) Cruising Speed.-At this speed the consumption will probably be less than that of ships with reciprocating engines only, and it will not reach one-half of that with turbines. By

The reciprocating engines should naturally be able to run ahead and astern without engaging the turbines. This design includes an exhaust direct to the condenser; this exhaust opens at the moment when the normal exhaust to the turbines closes by means of two connected valves. These valves are operated automatically when starting, thus avoiding any error or loss of time. It appears unnecessary to introduce astern turbines

 ING TO TME DIMTIBUTIOS OF ELLEMEADS AND WEIGHTS
on the center shafts, but this could be arranged without much difficulty.

With such an arrangement the following advantages are obtained:
(1) Maximum Spced.-For the same weight of machinery relatively to the propelling engines, there will be an increase
comparison with the latter the radius of action will be doubled. or, if prefered, it may reduce the fuel supply in the sarne proportion.
(3) Mancurcring. - When maneuvering in port it will be found that the arrangement of wing shafts driven by the reciprocating engines is a more favorable one than that of vessels with two or three propellers driven by reciprocating engines only. When maneuvering in squadrons, stations will be as easily kept as by other ships, because the regulation of speed can be adjusted by the operation of the stop valve on the reciprocating engines.

ARRANGEMENTS OF TU'KBINES FOR SCOUTS AND DESTHONERS.
It will be readily understood that, although the distribution of the propelling machinery on four shafts does mot present any inconvenience in large ships it is diffictult to achieve in the scout and destroyer classes.

If it is intended to apply the combined system in these small vessels it will be necessary to adopt an arrangement with three shafts similar to that of the Voltigcwr, in which, at certain speeds, the reciprocating engine on the center shaft will exhaust iuto the wing turbines; but, in order to relain sufficient maneuvering qualities, it will be necessary to put astern turbines on the wing shafts and a direct exhaust from the reciprocating engine to the condenser, so as to make this engine independent for maneuvering in harbor.

This arrangement may perhaps be thought complicated To simplify it we may adopt the arrangement recently installed on the White Star Line ressels: two reciprocating engones driving the wing shafts and both exhausting into the same turbine, placed on the center shaft, and, when maneuvering, direct to the condenser. But the almost universal opinion is that it is wise to give up entirely the use of reciprocating engines for scouts and dextroyers. These ships must be capable of developing at full power a considerable speed; they must therefore always be ready to pass from an ordinary cruising speed (14 to 16 knots) to very high speeds. On the other hand, the number of men composing the crew is limited through lack of accommodation, and it is necessary, without greatly reducing their offensive value, to limit to the strictest minimum the numbers of the engine and boiler roum personnel.

The various conditions involve the use of engines and boilers of great flexibility and strength, and requiring the least manual effort; under these circumstances turbines and liquid fuel are essential. The difficulty is to have a good

efficiency at ordinary cruising speeds, In order to overcome this the cruising turbine, which utilizes the expansion of the steam between the receiver pressure and the corresponding pressure at the exhaust into the high-pressure turbine, has been designed for the required speed. But the power developed by this cruising turbine being very small, it is not possible to make it work a propeller shaft by itself, it is, therefore, always placed on a shaft already driven by one of the main turbines. The result has been that the speed of rotation of this cruising turbine, which should be high in order to obtain a good efficiency, has been reduced by the speed of rotation
of the main turbine, an obviously low speed, since it is proportional to that of the ship, and also because the cruising turbine does not come in except at moderate speeds of the ship. The efficiency, therefore, is always poor.

On the new l'rench dextroyers there are only two propelling shafts, each shaft being driven by an independent turbine, as has been the practice since $I 808$, when the torpelo beat No. 243 was used for experiments on the adoption of turbines for small ships. The results of these experiments were communicated by the author to this institution in 1904.

The old eruising turbines, high-pressure and low-pressure, have been fitted in the same casing, end to end, thus obtaining all the advantage of great simplicity; but it is evident that the "cruising" part of these larke turbines cantot give better results than the crussing turbines of engines arranged in separate groups.

To avoid these inconveniences, and the use of toothed-wheel gears or electric motors, we have proposed the following arrangement, in whicls the high-pressure turbine maintains constantly at low vessel speeds a relatively high velocity of rotation and, in consequence, a higher efficiency:

NRRANGEMENT OF TTGHINES,

The ship is propelled by three screws; each shaft is driven by a turbine; only the two wing turbines being arranged for going astern (sce sketch, Fig. 2). The center turbine C is fitted with a steam inlet at the forward end G and with a by-pass H. The exhanst of the turbine C is connected with pipes l, I to the inlets L, L^{\prime} forward of the turbines A and B. and also by pipes K, K^{*} to some points $N, N^{\prime \prime}$ farther aft in

the parts of the distributors of these turbines; these have, further, an inlet of live steam forward through the pipes O, O '. All these piper are fitted with valves.
When cruising at 15 knots, for example, the valves M, M^{\prime}, P and P^{\prime} beink >hut, the turbine C receives stean through G, and exhausts into the forward end of the turbine A and B, which receives no other steam If the speed has to be increased we open the by-pass H; the connections of the turbine C with A and B remaining the same. For higher speeds, steam will be admitted tbrough O or O^{\prime} into one of the turbines A or B, or both, if necessary; but to avoid having compression at the exhaust of the turbine \mathcal{C}, the exhaust is let out forward at $N, N^{\prime \prime}$ in the turbines A and B; when the valve M opens it must at the same time elose the valve J. In these conditions the live steam, after having worked in the first wheels of the turbines A and B, mixes with the steam exhausting from C, and the whule works in the last wheels:*

Thanks to this arrangement the turbine C always works at great speed, bat the power developed on the three shafts will not be equally distributed, as at low speeds the center shaft develops relatively more power than at high speeds. If, for example, the power prodnced at a moderate speed on the shait F is 44 pereent of the whole, and on each wing shaft D and E 28 percent, the proportion at high speed may beceme to percent on F and 42 percent on each shaft D and E. The variations of slip correspond to these variations of power

At low speeds, nearly all the power being on the center shaft, the slip of its propeller is great, say from 25 percent to 30 percent, while the slip of the wing propellers is stuall. The conditions will remain similar so long as the live steam is adinitted to the center turbine only. When live steam is admited into the wing turbines the work produced by the center turbine increases very little, the increase of power being almost entirely due to the wing propellers. Their stip increases at the same time as that of the center screw decreases, and the speed of rotation of the latter rises far less quickly than that of the wing serews. The best results have thus been obtained, namely, that at ortinary eruisink speed a eenter turbine dues duty as a cruising thrbine having a very high speed of rotation.

While cruising it is tot necessary to have both condensers working. The exhaust of the turbines A and B can be advantageously connected by means of the pipe T, which is of ample section to maintain an esen pressure between the two condensers. In this way, during a tong run at low speed, we call economize the motive power necessary to work one of the sets of pumps.
The arrangement which has just been described is not more complicated than that which consists in putting two independent turtines on two shafts only, It has the advantake of being lighter and of entailing less steam eonsumption at cruising speeds. At high speeds it has the same advantages as the well-known systems of equally distributed power on three shafts, in which the center shaft is driven by a high-pressure turbine, and the wing shafts by low-pressure turbines, which do not receive any other steam than the exhaust of the bighpressure.
The mancurering qualities of the ship are increased principally for borbor work, where a rreat advantage is gained by the aetion of the center propeller on the rudder; in fact, it is only necessary to steam ahead with the center propeller, while the others are mancuvering ahead or astern, and to join the exhanst of the turbiac C with any point of the pipe T. This extension of maneuvering qualities is all the more important, as, with the inerease in length of destroyers, it becomes more and more difficult for them to enter and moor in a harbor without the aid of tugs.

[^36]
Necesstty for Careyul Design of Propellas.

In the above description we have purposely left out the question of propetlers, which requires particular attention. It will not be inappropriate to conclude this paper by an aecount of the method of calculation for propellers in those two partieular eases. We shall confine ourselves to describing the difficulties.

For the arrangement of tarbines only it is not sufficient to make a design suitable for one speed only. If, for example, we are only requiring to have the best efficiency at high speed. where the three shafts have about the same number of revoJutions, the same design for the three propellers may be adopted. At low speeds, on the other hand, the center turbine develops a power relatively greater than the others, and its propeller revolves faster than the wing ones; in order, therefore, to obtain a suitable efficiency for eraising speed, the eenter propeller, generally smaller than the others, must be very carefully designed
In the ease of the combination arrangement, with reciprocating engines and turbines, the former develop at low speeds relatively high in comparison to those developed by the turbines; this difference deereases in proportion to the increase of speed, and almost disappears at the maxintum speed. The slip of the propellers of the reciprocating engines decreases when that of the furbines inereases. In desigming propellers these peculiarities must be taken into account, and also the difficulty of associating for the same work propellers whose pitches are very different.

The curves in Fig. 3 show the data obtained during the official trials of the Voltigenr, and they indicate the importance of the variation of slip. The slip of the propeller of the reciprocating engine increases up to a speed of zo knots; because mp to this speed nearly all the power is supplied by this engine, and also because of the intluence of the stern wave, which on the measured mile where the trials were made became defined in the neightiorhood of 24 knots.
Above so knots the turbines come into opperationt, and the slip of the propeller of the reciprocating enkine decreases until it reaches a very small value at the maximum speed. Just the contrary happens with the slip of the wing propellers, which is zeto at the start, and increases rapidly until it reaches 26 percent and 28 percent. Notwithstanding this relatively high value for the slip of the wing propellers at the maximum speed, the efficiency of the machinery remains good, as is shown by the excellent results obtained at the trials.

The l'oltigrur has really obtained a speed of 31.4 knots, in stead of 28 knots required by the contract specification.
Let us also point out the remarkable difference in the increase of slip of the wing propellers, although they are similar and symmettical. This difference certainly arises in great part from the fact that the powers developed ly the two wing turbines are not equal; also, because owing to the presence of the center screw, the stream lines of the water as it reaches the wink propeliers are not symmetrical.

The trial of the Melville-McAlpin, Westinghouse reducing gear on the new naval collier buile at Sparrows Point, Md, we understand, has heen most satisfactory, and should this gear prove a suecess, which it is fair to suppose it will, the matter of providing large powers by means of internal-combustion engines will be greatly simplified and greater economy effected.
The naval eollier liepiume has another feature which is well worthy of notice, and that is that the control of the turbines is in the hands of the offieer of the bridge. We do not mean by this that the engine room force is done away with or it is reduced, but if the conditions are such that it is required to aet quickly on the bridge as regards starting, stopping or reversing the turbine, it can be done, and, to our mind, this is a most advantageous feature and a commendable one.

PRACTICAL EXPERIENCES OF MARINE ENGINEERS.

Incidents Relating to the Design, Care and Handling of Marine Engines, Boilers and Auxiliaries; Breakdowns at Sea and Repairs.

Plotting Condenser Tubes.

When laying out condenser and water tubes this simple method for finding the hight of the equilateral triangle can be advantageously followed:

$$
\begin{aligned}
a & =\text { pitch of tubes } \times \sin 60 \text { degrees } \\
& =866024 P \\
& =\operatorname{say} .866 P
\end{aligned}
$$

which can be laid off on the slide rule very easily. In connection with this it may be proper to give the following table of standards, which accord very elosely with general practice:

- Commercial. †Commercial standard.

Tubes usually project $1 / 8$ inch beyond the edge of the tube sheet. When circulating water has practically no pressure a

Layout or cosmanske tuaka.
No. 20 gage tube can be used. When under 150 -pound pressure No. 18 gage should be used, and when over $t 50$ pounds pressure a No, 16 gage tube should be used. In estimating tube areas it is customary to consider the total length of the tube and to neglect intermediate space on the tube sheets. To correctly design condensers the calculation should be based on the amount of heat to be taken care of, temperature range and work in rate of transmission througlt cooling surface. But a very successful empirical rule is:
pounds of steam to be condensed
10
For high-vacuum condensers this rule does not hold. The ordinary commercial cast iron condenser for small work usually sells for approximately $\$ 1$ (4 shillings) per square foot of cooling surface.

> San Francisco. E. N. Percy.

Steam and Exhaust Pipe Work on Board Ship.

In marine engineering more than perhaps any other branch of application of steam, the importance of proper arrangements of pipe work and an adequate regard for strength of construction is distinctly felt. In the first place, should any defect occur while a vessel is at sea there is not only less ofportunity for careful repair than in shore practice owing to the fact that engineering facilities are so limited, hut any breakdown involves a very serious risk of further damage
owing to the total or partial stoppage of the vessel, possibly in circumstances of extreme peril. Added to this, however, is the fact that the extreme economy of space which is necessary on board ship brings in its train two evils, one being that in many cases dangerous expedients are resorted to in order to crowd the pipe work into the narrow limits assigned to it, and the second is that, should any portion of the pipe work carrying steam at high-pressure fail, the risk to human life in such confined situations is a very serious matter. When, in addition to this, it is remembered that the constant pitching and rolling of the vessel puts a series of strains upon the pige work connecting the various portions of its machinery which tends towards the breaking of joints or the fracture of the material of the pipe work, it is a very remarkable thing, which speaks highly for the care which is usually shown in construction, that so few serious accidents occur through the failure of pipe work in ressels while they are at sea. As, however, the price of safety is eternal vigilance, it may be useful to detail one or two breakdowns of steam and exhaust-pipe work which have occurred on ship board, together with their causes so far as can be ascertained, and the means that were adopted in order to effect either a temporary or permanent cure. The value of such an investigation will be that not only will sea-going engineers lave sonte indication as to the parts of their pipe work which must be subjected to eareful observation and may lave one or two hints which may be new to them as regards the treatment of effects, but also the designer of marine plant ruay possibly benefit by a statement of the practical defects which have fallen to the lot of those who go down to the sea in ships.
One of the most common causes of trouble in steam-pipe work, and one whicls may lead to disaster of the most serious magnitude, is the splitting of the fipe to a greater or less. extent along its length. This may be due either to an inherent defect in the pipe itself, or to its improper use while the ves. sel is in commission. As an instance of the first-mentioned cause may he taken a breakdown which occurred on a copper deck steam pipe. This pipe was very thin and the split was interesting from the fact that it did not occur upon a brazed pipe, as it was solid drawn. Owing. however, to the fact that upon one side of the tube it was rather too thin for safety. and also because the steam was suddenly turned on, thus giving full pressure to the pipe with a species of shock, the tuhe split at a bend, as shown in the sketch, Fig. t. The action of the steam was intensified by the fact that steam had previously conderised in the pipe, and the water so formed had rushed along with the fresh steam, giving a water-hammer blow at the bend. The tube was too thin to allow of the usual clamp and joint to be placed upon it, so that it was repaired by first tapping the edges of the split together, as shown in the second illustration and then soldering upon it a Muntz neetal patch of the shape shown in Fig. 3. This repair was then strengthened by winding a length of thin copter wire along the whole length of the patch and a little distance beyond on either side, the turns being placed close together, and finally the whole wire-bound arrangement was run up with solder as shown in Fig. 4. This method of repairing a split pipe is found to give a thoroughly satisfactory and permanent job if it is properly done, as it will not split again at that part under any ordinary circumstances.

The illustration of the second point, which was mentioned -that of palpably improper use-was a split which oceurred on a winch steam fipe, owing to the fact that the pipes were left full of water in cold weather owing to an onnission to open the drains when work was finished the previous night, and the winches run off. Next morning, when the steam was turned on somewhat too suddenly, the pipe split longitudinally over a distance of about eight inches. The repair was made by making three sets of semi-cireular pieces of iron to the outside radius of the steant pipe, each set consisting of two similar pieces provided with end lugs. These were provided with holt holes, and a piece of asbestos eloth, 10 incbes long and wide enough to pass entirely round the steam piping, was covered with manganesite paste and placed over the split. In order to cover this eloth, two fieces of $1 / t 6$-inch sheet iron, 10 inches long. were bent to a semti-circle, so that when butted

together over the asbestos they formed a complete shield. The clamys were placed over these and bolted together, forming a very tight and sound repair. In order to prevent any further occurrence of such trouble special eare was taken to see that the winches were always run off and the drains left open when work was finished.

It nuay be as well here to interject a word of advice to young engineers. The above jaragraphs wili show the danger of steam pipes, particularly on deck, bursting owing to frost and to sudden admission of hot steam. If in cold weather an engineer makes a practice of running off the steam out of the pipes, winches and auxiliary machinery while the ship is in port, it will save many a cold morning's work in putting on elips, blank flanges and other repair aceessories. Is soon as work on deck is finished for the night all the winches and small machinery should be set running slowly and all drain eocks on both steam and exhanst pipes should be opened. The boiler stop valves should then be shut and the winches will go until the stean has run out of the pipes. The intermediate or deck stop valves should then he shut down, but care should be taken not to screw these down too tightly upon their seats,
as there might be trouble in opening them on the following morning if a hard frost supervened. The winches and auxiliary plant stop valves should, however, be left open just as at the cotuclusion of work, in order that any condensed water can get ont of the pipes throngh the drains.

Another very fruitful canse of trouble in steam-pipe work is, as mentioned previously, tibration, due to racking on the shir; and this often nanifests itself in the "necking" of the pipe work; that is to say, the formation of a fracture all round the circumference of the pipe close up to one of its flanges. This is probably due to the fact that at such points the free vibration of the length of pipe imparted to it by whock to the boat is checked by a rigid resistance due to the increased diameter of the pipe work at the stiffening flange. Two cases of necking may, with advantage, be described, together with the meass adopted to overcome the trouble. The first occurred on a ship which was running light and which met heavy seas, cansing the engines to race. In this way the whole slip vibrated and the vibration caused the main discharge pies to split right rund its circumference close to the flange connecting the discharge pige to the condenser, as shown in Fig. 5. The engines were, of course, stopped at once, and the pipe was sprung up a little by means of a block and taekle. When the joint betweeis the flange and the condenser top had been broken, the broken piece of pipe remaining in the flatuge was takell out and a recess was cut in the bottom of the llange to a depth equal to the thickness of the pipe itself, and for a radial distance of about $1 / 2$ inch, as shown in Fig. 6, outside the inner bore of the flange. The ragked edges were then filed off the pipe, and the flange was put on 10 the pipe with the recess downward and flaced in such a position that the pipe stood through the flange for sbout half an inch. This protruding piece of pipe was next heated by means of a brazing lamp and tapped over gently with a hammer until it was fush into the recess. In order to make up the difference of a length between the pipe as it originally was, and that which it had after repair, three pieces of $5 / 2$-inch plate, which was the only material available, were cut to the same size as the llange and drilled with holes have ing the same fusition as the holes in the flanges. The old studs were then drawn out and new studs were made of a sufficient length to so through the three pieces of plate and the flange. The whole arrangement was then assembled, as shown in Fig. 7, a joining of rubher insertion being placed between the flanges and all the plates. When this had been done the engines were started and the voyage was continued withont any further mishap, the vibration being taken off the discharge pipe by means of securing it with blocks and tackle. At the conclusion of the voyage the repair had answered so well that nothing further was done to it exeept to fit hangers to the pipe in place of the block and tackle.

The other example of a necked pipe occurred on the main steam pipe of a coasting steamer. The canse of this was again vibration, dite to the fact that the boiler and engine did not appear to be sufficiently stayed and the shif was running light. In this case the pipe was only broken half round its circumference close up to its flange and the means taken to make the repair were practically the same as those described above. The flange being cut off and eleaned ont in order to allow the pipe to come through, this was then beaded over for a distance of about half an inch. It was not in this case, however, necessary to cut an annular recess in the flange, as a white metal ring was cast, aboust t/4 inches thick, and having an outside diameter stefficiently sinall to fit inside the bolt circle. The inside diameter was made slightly smaller with the bore of the pipe. The face of this distance piece was then filed $u p$ and thin insertion joints were put on each side of the ring. and therefore between the valve and the flange of the pipe as
shown in Fig. 8. The whole arrangement was then drawn up tight with long bolts in the usual way, and this repair was sufficient 10 carry the boat home to port. It was rightly considered that the siping arrangement at this section was too rigid, inasmuch as the original pipe was practically straight. In order to give further freedom to the arrangement and to ohviate any undue strain on the pipe work, due either to expansion and contraction, or to the shifting of the engine or boiter, a large expansion bend of the usual U-form was substituted and stays were also fitted to the engine in order to make it more rigid.

A very instructive breakdown upon a main discharge pipe may be recorded, inasmuch as it illustrates the danger of endeavoring to cut down the original cost of pipe work on board a vessel. In this instance. the main discharge pipe, which was made of copper, had a branch added to it for the furpose of accommodating the bilge pump discharge pipe, which was also made of copper. The object of this arrangement was probably in order to save the cost of a few yards of fairly small diameter copper piping and a ship side discharge valve, inasmuch as there was quite sufticient room for the bilge pump to have a discharge of its own; and, as a matter of fact, in the repairs following upon the occurrence to be described the bilge pump was given a separate discharge to the shif side. As a result of this first arrangement the main discharge pipe gave out while the ship was at sea along the portion marked "rotted area" in the sketch, Fig. 9. Inasmuch as the bilge pump sent all the oil, grease and other impurities through the main discharge, the acids contained in these substances
cement being run into the space between them, the lower end of the sacking being, of course, lashed close to the pipe to prevent the cement from ruaning out. The cement was thus worked round the pipe to a thickness of about 2 inches all round, and when this was set there seemed a possibility that an efficient repair had been effected. In order to make certain, however, rope was wound over the top of the previous work and the weight of the whole construction was suspended by means of a strong canvas sling and ropes from the roof of the engine room. When the cement was properly set the engines were started and the voyage was completed without any further mishap. The repair could only be considered a temporary one, inasmuch as when the pipe was stripped of its cement sheath it collapsed completely.

There is no doubt that a considerable amount of useful information of a practical character can be written concerning the behavior of pipe work at sea if space permitted, but the above examples are sufficient at the present time to show not only the very various causes of trouble to which such pipe work is subjected, but also to the ingenuity which is sometimes necessary in order to bring the vessel home to port under adverse conditions. From both these points of view, however, it is hored that these notes are not without value.

Repairing a Broken Shaft.

I don't know what broke our intermediate length of shaft on the Clara Belle; but it broke, and we were towed into a West Indian port. I wanted to get a new shaft quickly, but there was little chance, I thought, but I found a length, which

COUPLIEG FOR WEFABING A momex simart.
attacked the copper of the pipe along the portion where they impinged most frecly, and this trouble was not detected unti] the pipe entirely gave way. The engines, of course, had to be stopped, and upon examining the pipe it was found that nothing could be done to repair the pipe in the usual way by clamping Muntz metal sheets round it and interposing joining material, as the joint was far too weak. As a matter of fact, it was feared that it would collapse altogether. As, however, it was necessary to get the shif home again a temporary repair was effected in the following manner: First of all, long canvas bandages were made and sewn together so as to form a continuous band. This was then dipped into boiling Stockholm tar, and the bandage, while hot and sticky, was wound round the pipe not only over the rotten portion but over some little distance above and below it. The idea underlying this procedure was that the tar by setting hard upon the copper would tend to keep any loose parts together and in their place. The next step taken was to obtain some strong grain sacks, which were cut open and sewn round the pipe in such a manner as to form a loose envelope. This allowed sufficient space between the tarred lengths of canvas on the ripes and the covering envelope of sacking to allow of soft Portland
had been taken from some old steamer, which was an inch larger ours. The flanges were large, so we could drill new bolt holes all right. The worst was it was too long by 2 feet, but I had to do something, so I made the coupling shown in my sketch. Now what I want to know is, if my coupling is not as strong as my I-inch shaft? I argue that, as the area of 11 inches is 95,033 square inches, I am as strong with the area of 10 by 6 inches, or 60 inches square, or really a little bit more, and 1 am backed up on each side with about $8.1 / 2$ inches of coupling, which coupling is bolted fast to its mate, and the three bolts hold each half up solid. Now how can this break down?

I may say that when I got home they didn't take out the shaft and this is our third year. Some fellows think I should have brought the halves of the couplings together and not left the opening $A A$, and and I would have been stronger, but that would have cost a lot more.

Now, Mr. Editor, put it up to your readers, who know all about figuring strains (and then go and find out what some other chaps have done to make sure) and see what they have to say.
New York.
Coupling.

Published Monthly at

17 Battery Place
New York By MARINE ENGINEERING, incorporated H. L. ALDRICH, President and Treasurer
Asboc, Soc. N. A. and M. E. and at
Christopher St., Finsbury Square, London, E. C. E. J. P. BENN, Director and Publisher Asoc. I. N. A. HOWARD H. BROWN, Editor
Member Soc. N. A. and M. E.; Assoc. I. N. A.

E. L. SUMNER, Secretary

Circulation Manager, H. N. Diamsong, ss Fowler SL, Boatom, Mans. Branch Office: Boston, e4s Old South Rullding, S, I. Cazrewte.

Entered at New York Pont Ofice as second-class matter.
Copyright, 1911, by Marise Engineering. Inc., New York tntrenational Mazims Ewginmaing is regiatered in the United Statep Patent Office.
Copyright in Great Britain, entered at Stationers' Hall, London.

Notice to Advertisers

Changet to be made in cepl, of in ordere for advortising. mast be in owr hands not later than the isth of the thowth, to iscure the carroing
 the enomith

Matters of Interest from the Jubilee Meeting of the Institution of Naval Architects.
The name of Schlick, Barnaby or Rateau on a paper is quite sufficient to assure that matters of importance will be most interestingly set before the engineer, and we give in this issue three papers by the above-named gentlemen as read at the Jubilee meeting of the Institution of Naval Architects, held in the early part of July in London.
Dr. Schlick's paper on the "Ihenomena of Xibration of Steamers" finishes with the following: "I have avoided all theoretical mathematical investigations, since they are of little or no value in actual practice.

* * Were a treatment of the whole question to be attempted it would occupy ten times as much space as the present paper." We all should have been delighted if Dr. Schlick had given us ten times as much as he has, and certainly in his rather brief paper he has brought forward, in a most lucid manner, the causes for vibration in ships. We are surprised, indeed, to have him write as he docs on mathematical investigations, as above all men he is qualified to speak on this subject with authority, and we are inclined to think that
he belittles his own magnificent ability in this direction. Certainly practical resules have followed his past mathematical efforts.

Mr. IV. S. Barnaby, who is a member of the Couneil of the Institute, gave a paper on "Some Further Notes on Cavitation," in which he limits the thrust per square ineh of projected surface of the propeller to about $11 / 4$ pounds to prevent cavitation, that is under certain conditions, and he combats the idea that periphery velocity of a propeller is a better eriterion than the thrust per unit area, and he considers that further experiment only ean settle the question whether the thrust is not a safer guide than the tip velocity. Such experiments, he says, are being made under special eonditions to settle the question. Mr. Barnaby draws attention to the advantages of the more uniform turning moment of turlines and that the irregular turning moment of fourcylinder engines brings the figures $111 / 4$ down to 8 or 9 pounds per square ineh. Here is a thought for those interested in internal-combustion engines.
Monsieur Ratean suggests certain arrangements of turbines in combination with reciprocating engines. He draws attention to the fact that the navies of the world conld not all have their ships engined in like manner, as conditions demand, in some cases, a far greater radius of action than in others. We can hardly agree with Monsieur Rateau when he asserts that the turbines "are always ready and require no overhauling." He does not evidently like the new system which introduces mechanism between the prime mover and the propeller shaft, whether it be a geared or an electric reduction. He proposes to put the reciprocating engines on the wing shafts with the idea that in maneuvering they are more advantageous. This would simplify the turbines by not demanding any reverse rotor. He points out the advantages of the steam turbine under cortain conditions and the advantage of the reciprocating engines under others, and decides that thcir combination is the one which should be used, with the exception of the sconts and the destroyers. In speaking of reduction gear, Sir C. A. Parsons considered the floating cralle not a good thing, stating that all that was needed was end play in the pinions.
In the discussion of turbines for warships, Admiral H. I. Cone, U. S. N., in his usual direct way, wanted to know whether the expediency of a combination of reciprocating engine and turbine warranted the introduction of the extra difficulties? Mr. A. E. Scaton, in speaking of the turbines, admired the tenaeity of purpose of turbine builders. If it had not been for this, he asserted that it might have been laughed out of existence, as have other appliances, but he was very much in favor of the turbine because he thought it was the best means of fighting the internal-combustion engine.

Other papers presented at the meeting we hope to give later.

LEGAL DECISIONS REGARDING MARINE WORK.

Lien for Repairs in Foreign Port.

Althongh a charter party contains a provision that repairs shall be made at the expense of the clarterers, a repairer who makes repairs on a vessel in a foreign port under a contract with the chartercrs, but confirmed by the master and with the knowledge of the managing owner of the ressel, is entitled to a lien if the provision was not known to him and he was not notified of it.-The O. H. Vessels, Circuit Conrt of Appcals, Third Circuit.

Collision Between Steamships.

Cross suits for collision were brought by the owners of the steamships durelio and Umatills. The collision occurred in the daytime in the bay about 2,000 fect from the San Francisco piers. The Umatilla had backed from her pier to go out, and when $t, 000$ feet off gave a passing signal of two whistles to the Aurelia, which was in sight inward bound for Oakland. The Aurclia answered the signal, but the Umatilla continned to back for two or three minutes at full speed without giving any signal of the fact. The Aurelia did not materially change her course until the vessels were too close together to avoid collision. Both vessels were held to be in fault, the Umatilla for failing to give the proper signal to show that her engine was going full speed astern, and the Awrelia for failing to keep a proper looknut, which would have enabled her to avoid a collision, notwithstanding the Umatilla's fault.-The Aurelia, District Cowrt, U. S. California.

Passing of Title of Vessels to Oovernment as Con-structed-Government Contracts Comstrued.
A corporation entered into a contract with the United States ior a sea-going suction dredge, a revenue cutter and a cruiser. Certain creditors filed a bill in the Virginia Chancery Court asserting liens under the supply lien law of the State, averring the insolvency of the contracting corporation and asking for a receiver, which was made. He took possession. On final appeal to the Supreme Court of Appeals of Virginia it held the supply liens superior to any claim of the government. In the case of the dredge two of the five judges dissented, holding that the title to the dredge had passed to the United States.
The case came before the Supreme Court of the United States on writ of error, and the judgment was reversed as to the dredge and affirmed as to the revenue cutter and the cruiser. Section 211 of the specification for the dredge provided that the parts of the vessel paid for under the system of partial payments should become the property of the United States. Section 212 provided for insurance against fire and marine risks at the contractor's cost to the amount of each partial payment.
The government contended that the vessel was to become the property of the United States as fast as it was paid for. This view the court upheld. The fact that a government inspector had the powcr to reject or approve the materials did not of itself work the transfer of the title of a vessel. But if the contract express the intention that the builder shall sell and the purchaser shall buy the ship before its completion, and this purpose is expressed in the contract, it is binding, and the title passes. A contention that Section 212 did not show an intention to protect the title transferred to the government, bat that the insurance was required for the government's security

It was held that this provision was not inconsistent with

Section 218. Nor was it found inconsistent that bond was taken for the performance of the contract. A provision that the contractor was to be responsible for and pay all liabilities for labor and material incurred in the prosecution of the work was not inconsistent with the passing of the title in parts as mid for.
The question then was the right of a Shate lien law to fasten apon the property of the United States. It was held that the property of the United States could not be seized or encumbered under State lien laws. The dredge, as fast as constructed, became one of the instrumentalities of the government, and could not be seized under State laws to answer the claim of a private person.

In the case of the revenue cutter there was no such stipulation as to passing of the title on partial payments. The Secretary of the Treasury was authorized to make partial payments, and a lien was recerved on account of such payments by a joint resolution of Congress of May 5, 1894, which law was to apply to fulure contracts for vessels for the Treasnry Department. The government contended that this resolution made a statutary lien by authority of the United States. But the Supreme Court did not agree to that contemtion. A bond was given by the contractor for the proper construction of the vessel, which provided that the contractor should promptly tnake payments to other persons supplying labor and materials. The court held that this requirement was a distinet recognition on the part of the government that the contractor might become indebted to other persons who might become emtitled to liens apon the property.
The case of the cruiser was held to be controlled by the same principles as that of the revenue cutter. In that contract there was no provision for taking title to the vessel; it was stipulated that, on certain conditions, the title should vest in the United States as collateral security, and a clause of the contract provided for the release of tiens before partial payments should be required. The court held that this contract also was made in recoguition of the rights of those who should furnish work or materials for the vessel to secure their claims by liens which it was made the duty of the contractor to proside for in order to protect the title of the United States. -United States $\%$. Amsonia Brass \& Copper Company et al., L'vited States Supreme Court.

Salvage-Question of Danger Through Breaking of $\overline{2}$ Intermediate Valve,

In an action on behalf of three Hamber tugs for alleged salvage services to a steamship, it appeared that the vessel was driven up more to the northward than her course should have been, and she missed the Spurn light. On the question as to whether the steanship was ever in any danger the evidence showed that when the engines were stopped, and before the vessel anchored, the engineer ascertained that the main engine valve was broken. He sent up information to the bridge, and subsequently went op himself. The chief engineer was a very capable engineer and a good and reliable witness, and aceording to his evidence the ship was never in any danger at all by reason of what had happened to the valve. He said he could work the engines by means of the main boiler valve without difficulty, and that it made a difference of not more than half a minute between moving the engines by means of the main boiler valve and moving them by the main engine valve. He said there was never any hitch and never more than a quarter to half a minute's interval between receiving and eveeuting an order. That information was before the captain. It was held that the steamship had not been in any danger, and judgment was given for the defendants. -The Calys, 27 Times L. R. 166.

COMMUNICATION.

More Remarks on Cargo Loading.

Eutoh Intementionat. Marane Engineraing:
In reading Intlrvational Marise Einginffring for June, all interested in the subject of loading and unloading vessels must be set thinking, and the subject is one of vital importance, but it is mot one on which data are readily obtained.
I am assured that in England the cost of a 40 -foot vertical lift. coupled with a swing of 100 degrees and lowering, costs a little under 2 cents a ton of 2,250 pounds, which is about a penng. This cost covers the power and the man to handle the boiler and hoist, but does not include any handling on the shyp or on the dock. It is, so to speak, the mechanical power cost. It is difficult to get even a moderately correct idea of the cost of moving a ton from its position in the holk to the hatchway, as obstructions intervene at times, and at sery best the working conditions are disadvantageous. We should say that a so foot move horizontally would be about the maximum in an ordinary freight ship, and that two men could move a ton 40 ieet in tes minutes with the usual ship appliances. If this lime is raken as reasonably correct, the cost would be about 12 cents, or 6 pence, or about six times as much as the vertical hoist, which bears out Mr. Forbes' assertion of the economy of the vertical lift, as referred to in the artiele by him.
Handling freight is a good deal like many other operations, as, for instance, work in a machure shop, the time getting ready to do something often outruns that occupied in actual work, so in getting the cargues ont of vessels there is an anreasonable loss in moving cargo into a position to hoist.
Mr. Crane gets at an "obstruction" in referring to old captains and favored shipbuilders, but I do not quite agree with him as to some one having to pay for the new design. It is, of course, true that a sct of blue prints costs a lot less than a set of drawings and tracings, but Mr. Crane, as a recognized desiguer, could, I feel sure, suggest to many of his clients clianges the cost of which would be only on the designing side, and stch cost would be made up by the advantages gained. Here is an oppoptunity where such a rood helmsman as Mr. Crane coult stecr his elients on a bettee eourse.
When Mr. Harding advocates larger side ports 1 think be is considering in general a less satisfactory solution than larger or more hatches. He clearly shows how this question of modified design in freight steamers is not being acted upon, even with the knowledge of what such modifications would result in in a money-saving way. He makes a most practical and very wise suggestion that naval architects should spend. not a few hours on board a ship or in the freight house, but a week, from morning to evening, and then he think something would be done, and there is no doubt of this, that something would be done by the naval architect if he had to continue to work under the present conditions of loading and unloading vessels and unloading the freight on the docks. In Mr. Du Bosque's remarks he lirings forward a most important point ; that of being ahle to pick up the packages or sling them without injury. Here is one of the small details to which he calls attention, and they are of the ntmont importance. No one knows this better than a man who has had Mr. Du Bosque's training and experience. The detail is, in fact, the all-important point. The best and most convenient hoisting apparatus in the world, even if it were run most economically, would he ahoolutely valueless if in its use the goods were injured.
Mr. Dickey draws attention to the classification companies' rigid eemands as regards side ports, and even if they were provided we come up again against the horizontal movement or
the vertual hoist quextion. If Mr. Dickey got a free hand I think his two-story shed ilea would be worked ont into something good. The suggestion of the "Naval Architect" as to crew's quarters is excellent, but the most important statement he makes is that there is no reasun why the whole upper deck along the central line should not be open latclies. If this is so, and knowing who the "Architect" is I have no doubt of it, it is evident that something can be done at comparatively small cost, in better design.

Mr. Waterman calls attention to the diversity of cargocs. Of course, this connts much in the way of costs, as a certain arnount of sorting has to be done at both ends of the route; but he points out that nothing new or novel is needed in the way of conveyors and outher devices for handling freight, as there are now on the market some most reliable and practical devices to be had for the paying, and here seems to be just the point on which matters stick; that is to say, on the paying. I call attention to the lack of tact shown by some who have articles for sale, which, if installed, would be advantageous, and which customers are ready to put in, but they have been frightened off by the salesmatt who is unacquainted with the shipping business. In the case I have in mind the salesman wanted to have both the docks and the vessels handed over to him for a matter of two or three weeks, which, of course, could not be considered; therefore nothing was done.

Now we are crying out against high prices and howling stilt louder for our dividends, and shipping people are not having the easiest time in the world to make the dividends so much desired.

In xome cases I have known that a certain class of freikht, principally frut, formerly shipped by water, is now going "allrait," because of rough bandling in stowing aboard ship doing so much damage that the value of the freight dropped to an extent that it paid to consider a more expensive means of transportation. Now in such cases is it not possible to have crates, specially designed, to be swung onto the ship in bulk? Truc, these crates would cost money, thut if the design was properly eonsidered I think, even with the disadvantage that probably most of the crates would be relurned emptied, the system could be employed advantageously, as the sorting of articles at one end of the route for a customer would probably be done only once, or various shipments to a single consignee could be sorted and, so to speak, bulk erated.

Let us hope that this very interesting subject will be responded to by many of the readers of Intranamomal Mabine Exghefring, whose experience certainly has been such as to place them in possession of factx, and a full discussion should result in a better understanding of the subject and lead to betler methots.

Onlooker.

PERSONAL

Mk. L. D. Alusley was appointed on June 20 chief engineer of the Merropolitan Steanschip Company, with headquarters at Boston, Mass Mr. Moskey's well-deserved promotion will be a matter of pleasure to his friends, as he has been at various times chief enkineer of the finest passenger steamships on the North Atlantic coast, including the fast turbine steamers Horsard and Yale.

The Westinghouse low-pressure turbine, wherein the steam pressutes are exactly balanced, thus obviating the use of dunmy rings. is a modification in turbine design which certainly makes toward simplicity and economy.

TECHNICAL PUBLICATIONS.

Steam Turbines. By Joseph Wickham Koe, M. E. Size, 62 by $91 / 2$ inches. 耳ages, 137. Illustrations, 77. Numerous tables. New York-London: McGraw-Hill Book Company. Price, \$2.
Professor Roe offers this work on steam turbines to the student, whether at a school of engineering or in the engine room. It is concise, but the information given can be supplemented, as the Professor has adopted the excellent method of giving references, which are generally available. At the end of each ehapter details of construction of various makes of turbines are shown. It is, of course, supposed that the student is somewhat versed in mathematics, but if he is not, he will not regret buying the work, an there is much explained therein which requires no mathematics whatever.

Gas Engines. By W. J. Marshall and Capt. H. R. Sankey, R. E Size, 6 by $81 / 2$ inches. Pages, 278. Illustrations, t27. Price, $\$ 2.00$.
We hardly believed it possible that there was room for another book on gas engines, but after reading the results of the labor of Messrs. Marshall and Sankey we feel that a very valuable addition has been made to the literature concerning what is at times a very provoking prime mover, and to those who study this work many of the provoking actions of a gas engine will become things of the past. "Mysterious aetion" is only a very easy name for pure ignorance, and there seems to be a determined resentment to thoroughly understand gas engines, and one would believe they take more satisiaction in guessing at what is the trouble than understanding its cause. The illustrations in the book are most admirably clear, and we recommend it with confidence to all who have anything to to with internal-combustion notors.
nower. By Charles E. Lucke, Ph. D. Size, $51 / 2$ by 8 inches.
Pages, 304. Illustrations, 223. New York, 1911: Lemcke \& Buechner. Price, \$2.00.
Professor Lucke's book is an admirable one for every student to read at the very outset of his engineering studies. In a most pleasing manner the reader is carried from the past into the present concerning prime movers, and the way is paved for more minute and exact study of the various power prodiciers. If the student could understand everything which is written by the Proiessor he would have lost his right to the name and have become an engineer, but where the work seems especially valuable in our eyes is in the admirable way in which it awakens in the reader a desire for further knowledge, and certainly such a sentiment is the desire of every instructor, and we are glad to know that such a book is obtainable, and we advise even those who are not engineers, but interested m the subject, to read it, as they will be thoroughly well repaid.
Directory of Shipowners, Shipbuilders and Marine Engineers, 1911. 813 pages. The Directory Publishing Conspany, lid., 15 Farringdon avenue, London, England. Frice, 103.
This valuable directory has gained much in its ninth pas. sage through the press, and the new edition, which has been thoroughly revised and brought up to date, has gained some twenty pages. The utility of the book is beyond question to all who are astociated with shiphuilding and shipping. as it enables instant reference to the vessels of the sarious owners and also to the fersonnel of the marine world.

In a large number of cases in the current edition the following particulars relating to boats have been added: Cubic capacity of holds and bunkers, loaded draft on summer freethoard and year when built. It is the intention of the publishers to insert these additional particulars against all boats
in iuture. A list of marine engineers and naval architects, with their telegraphic addresses and teleptone numbers, has also been included.

The Naval Annual, 191 . Edited by T. A. Brassey, A. N. N. A. Size, 6 by 9% inches. Pages, 472 . Numerous illustrations, London, W. C., 19tt. J. Griffin \& Company.
The Natal Antwal, tgt1, edited by Lord Brasscy, G. C. B, pives information which shows the progress of the world's traties during the past year and much detail of construction, but, of course, in navy affairs exact details are always difficult to obtain, and often quite impossible for obvious reasons. The German navy scems particularly careful in this direction. In our opinion, we do not believe that this secretiveness amounts to very much. No military man works on the idea that his enemy is anything but worthy of his steel, and suppression of details are only momentary.

The labor of those who lent their aid to Lord Brassey has been most admirably performied, and due acknowledgement is given Mr. John L.eyland and Commander C. M. Robinson, R. N., who had 10 work at excessively high-pressure in reviewing the progress of the navies and estimating their comparative strength, owing to the regrettable accident to the author, which affeeted his eyes. Mr. Alexander Richardson writes with his usual interest on engineering mattert, and Sir Cyprian Bridge, G. C. B., gives the naval view on the London Declaration. Mr. J. R. Thursfield answered the remarks, and Mr. James R. Corbett on the tactics of Trafalgar, while C. M. Robinson, R. N., writes on the evolution of the battleship since the Dreadnowght type has conie to the fore. It is, of course, difficult, in fact, almost impossible. to give this book its due, as to cut ont any of the text is to decrease its value, and yet it is quite impossible to give it in er tensio.

We must admit it is not clear to us why a battle fought to6 years ago, under conditions which could not re-occur, should be commented upon in this naval year book, as it certainly is the "last" utterance on modern navies. Interesting. indeed, are Mr. Thursfield's explanation of Lord Nelson's Trafalgar tactics, but this does not explain the introduction of the matter in Lord Brassey's book.

No one is more conservative than the seafaring man, and he should be, but it does seem to us most eurious how some useless things are clung to by navy men. This is instanced by the continued use of the designation "B. L" in connection with the description of guns. No other type could be found in any English modern hattleship, therefore why cling to its tse either in print or on the breech of the kun, which, of course, would speak for itself?

The points which Lord Brassey's book seem to bring most to the fore are: 1. The assistance which the navies of the colony will render England. 2. The use of internal combustion and steam turbines as motive power. 3. The question of submarine. 4. One-calibre gun ships. 5. Gains in accuracy of fire.

The assistance of colonial navies and their value seem to be points accepted, and there can be no doubt but that the establishment of works for bnilding vessels for these navies in Australia, Canada or other colonies would be most satisfactory for the people and of the very greatest military advantage, and the various colonies seem to be quite willing to furnish funds to carry on the work.

The Declaration of London scems to have been considered advantagcous, provided it is shown that foreign governments will stand by its ratification and not pay as little attention to of as was given to the Berlin Treaty.
The question of accuracy of fire is, of course, a determining factor in large guns and long range. In fact, if no hits are puade there is no use of any site of gun, and this has been most thoroughly undervtood and appreciated, and gunnery has
been advanced most satisfactorily. Lord Brassey says: "It is not the number of ships nor the number of guas they carry that will win battles, but the number of effective hits the gumier will make when the target is firing back." No one who has been under fire will take any exception to his Lordship's assertion. The firing back has a most decided influence. Lord Brassey gives high praise to Sir Percy Scott, viceadmiral, and Rear Admirals Frank T. Hamilton and Richard A. Peirse, inspectors of target practice, for the satisfactory results which, under their guidance, have been brought about. The range in firing in ten years has increased from $11 / 2$ miles' range to 5 miles, with a great gain in the number of hits at the last-named distance.

In the navigation of the air most nations have given the subject consideration, either with a view of having some acrial vessels of their own or preparing themselves to repel any attack from same. A very large dirigible was completed in England in 1911, it being 512 feet long. It is of the nonrigid type. Just what is the belief of naval men as to the true military value of airships in naval affairs is certainly not clearly brought out by the author.
Submarines and submergibles are a type of design which have to be counted upon in future naval warfare, and, of course, the usual controversy on this subject will go on. The general idea seems to be that very great advance has been made in this class of vessel, and that they will be increased in numbers. Certaialy the submarine is no longer considered the idea of a crank, as many can well remember was the case. It seems to be not merely a good "scarecrow" but a practical weapon of offense. Many acts of extreme heroic sacrifices have been brought to notice of those who have manned this type of vessel, actions which bring the tears to one's eyes, and even if the life of many have gone out it has not been in vain. But even in spite of these most regrettable occurrences there seems to be no lack of men to volunteer for service in what must be classed as a risky vocation. Safety derices of various kinds are being tried, some proving successful, and there is no doubt as the years go on the serious accidents of the past will not be repeated.
The motive power of naval vessels is a question which has to be settled from the standpoint of military demands. The internal-combustion engine is under trial. and its advocates have great hopes, and so far it must be admitted great strides have been made in perfecting it, and yet there are many who say that it is not a prime mover to be considered for a vessel of war, and the extensive experiments carried on by quite a number of builders are pronounced by Mr. Richardson "wholly negative."
The steam turbine stays to the fore and various makes are now being tried out, and the usual brisk controversy as to respective merits in a merry war of words is going on concerning them. Which type will be found most effective when all things are considered for navy work is a question which time must answer, but that great improvements may be looked for is beyond doubt. Yet there is a decided tendency not to look upon the reciprocating engine as quite as dead as many have supposed to be. Geared turbines are now being tried, and before the next Annual is printed we should certainly know something absolutely as to the final cost of installing. keeping up and running turbines with reducing gear.
Oil burning is a success beyond any question, but there seems to be a little nervousness as to a possible serious advance in the cost of oil fuel, and that its wide distribution from the various ports of the world will not be rapidly increased.
There seems to be a strong set towards larger guns of a single caliber for ships. The question can be settled finally only after actual warfare, and even then there would be the
unconvinced. The gun must be coupled with accuracy of fire, and no one questions the result of an engagement if a large percemage of hits can be made by the large guns. But this accuracy of fire can only be made possible by an increased precision in the range finder, and evidently there is great room for improvement in this instrument, and it seems to us that ou its further refiwement and perfecting rests the settlement of greater range and heavier weapons.
The torpedo does not come in for as prominent a place in weapons of attack as it did years ago. It seems now to be more a weapon of last resort for defense, as is the use of the ram. Still there has been a great increase in the range of torpedoes and a great increase in the accuracy of fire, and, of course, these facts will have a reviving effect on this weapon, and we are inclined to think that its very presence makes towards nervousness, and that most sailors would feel more at ease in an engagement if they knew that there was absoJutely no possibility of a torpedo attack.

ENGINEERING SPECIALTIES.

Separators in Connection with Live and Exhaust Steam.

The old idea of prevention instead of cure works out very well in mechanics, and it is a wonder why a steam separator is not just as much a part of all steam systems as is the pipe itself. To prevent the many ill effects of uncontrolled steam is worth white
The Cochrane separator made by the Harrison Safety Boiler Works, Philadelphia, Pa., has been long enough before the public to thoroughly prove its value as a preventor of trouble in steam plants. People seem to forget, or at least fail to recognize, that by use of the separator smaller steam pipes may be used with the corresponding advantage of less first cost and

less radiation, which is not a momentarily expenditure, but the source of constant and unnecessary waste, and, further, by its use a less cost of upkeep is to be met, as the water hammer is greatly reduced, and when it does occur it is far less destructive.
This article can be used with the reciprocating engine advantageously, and even more so on steam turbine plants. There is a pretty general idea that a steam turbine is absoJutely free from all possible troubles, that there is no trapping of water or knocking off cylinder heads or anything of that kind, and that it can be run with steam of any kind. Steam mixed with oil or water is extremely disadvantageons to steam turbines, and on this account the use of a separator is of great importance.

Ship Furniture \ln Steel.

The Art Metal Construction Company, Reneo, 26 Holborn Viaduct, London, E. C., is making a specialty of metal furniture and fittings for use on board ship, eliminating wood entirely. Our illustration gives an idea of the neat appear-
ance of this product. There is no question as to the added safety in case of fire, both in naval and merchant ships. The weight, which one would suppose would be excessive, is not greater than the ordinary construction. There is no swelling and sticking of doors or press drawers, or the annoying

creaking of wooden partitions in heavy weather. The doors are built hollow and filled with asbestos, thus adding to their fire-resisting value.

Automatic Piston Packing.

The H. W. Johns-Manville Company, New York, has secured control of the American rights to the well-known English packing ealled Sea Rings. The general style of this packing is shown in the accompanying illustration. It consists of a wedge of laminated asbestos, flax or duck turned over upon itself. The rings are believed to be entirely auto-
chinery, etc. They are recommended highly where superheated steam is used.

A New Front End Soot Blower for Marine Boilers.

The "Diamond" Power Specialty Company, of Detroit, Mich., are again in the front with a brand new type of soot blower which is especially designed for marine boilers. The general construction of this blower. as will be noted from the illustration, is such as to have the blower attached to the smoke-box door in such a way that when the door is opened the entire blower mechanism is withdrawn, thus leaving the boiler end entirely free for repairs, inspection, elc. Another important feature is the fact that the blower can be operated from the onsside. This is done by means of the handle which controls the oscillating motion of the arms. These arms are filted with jets in sufficient quantity to thoroughly cover each tube end, and in the swinging motion the outside tubes, which are most frequently neglected, are specially favored. Attention is also called to the fact that the cross-arms permit of cleaning both the air tubes and fire tubes at the same time. Where it is desired to install this blower on boilers already in use, and where it is not deemed advisable to have special hinges furnished, the pipe line connection is slightly changed whereby it crosses below the door instead of above. This makes a union necessary which may be broken when the door is to be opened.

Considerable interest is shown in the question of loading and unloading ships and providing facilities at terminals for this work, and the question is one which has had closer attention on the lakes than on the sea coast, for the reason that

matic, and to give satisfaction under all sorts of couclitions. They exert no pressure on the rod exeept when there is a tendency of leakage past them, and the pressure exerted is never more than what is required to suppress leakage. The rings are designed to withstand temperatures up to at least 600 degrees \mathbf{F}., and work on horizontal as well as vertical rods. Although intended especially for marine engines, these rings can also be used on pumps, air compressors, hydraulic ma-
bulk cargoes are general there, consequently are far easier to handle, hut coast conditions demand different treatment. There is certainly a very large volume of business awaiting handling-apparatus huilders, and we are surprised that several applianees, which are alseady on the market, are not more specdily adopted, as they long ago have passed the experimental stage, and their installation is not exceedingly expensive.

SELECTED MARINE PATENTS.

The publication in this column of a patent specification docs not necessarily imply editorial commendation.

American palents compiled by Delbert H. Decker, Esq., registered patent antorney, Loan \& Trust Building, Washington, D. C

906,006. APPARATUS FOR ELEVATING. TRANSPORTING AND DISCMARGING MATERIAI NIKOLISE JOHNSON, OF MILWAUKEE, WIS., ADMINISTRATIX OF OLE JOIINSON. DECEASED.
Clatm 2-An apparatus for elevating, trapoporting and discharging material, comprision a track, a carnage provided with a material holding recepracle adapted to travel on anad track, a cahle connected to said earriage and extending in the direction of the line of travel of saisd rarfiage, another earriage mounted on said track and provided with a material bohbing receptacle, and a cahle connected to sasd last

mentioned carriage and extending in the direction of the line of travel of said carriage. both eablet exiending sobtantially parailel With telation to each otbet for a certan distanee and each eable aloo extending in the direction of the line of travel of said carrazes beyond the earriage other than the one to which it is connected. Forty-two claims.
SAY, OF VARGARIIANDLING APPARATUS ONOFRE LINDSAY OF VALPARAISO CRILE.
Claime A. A carkohandling apparatus, comptiting ableway havink one end fixed and the other end movably supported, a counter-

poise releasably conneted to the said other end, and an codless haul rope engasing the connterpoise and the asid fiacd cad. Eighteen claimas. 924.407. PROCFSS FOR L'TILIZING STEAN ESGINES FOR
THE PROPULSION OF SCRYARINES THE PROPULSION OF SCRMARINES (iEORGE FRANCOIS JAUAFRT, OF PAR1S, FRANCE, ASSIGNOR TU HLECTRECBOAT COMPANY. A CORPOKATION OF NEW JERSEY.
Clow 1. The method of sapplying motive power for the propulsists in gencrating vessels witbout disclosing froir trosition, which conmoxture of dilated oxymen and hydrucartion vapor in such proportion

as 10 give substantially complete combustion ptilizing a portion of the products of combustion st the diluent of the oxygen, and disposion of
the remsinder of the products of combustion by condenastion of the wstel vapor and absurption of the earbon dioxid. Two claims

British parenss compiled by G. E. Redfern \& Company, chartered patent agenls and engineers, 15 South street, Finsbury, E. C., and 2 Southampton Building. W. C., London.
I.TAS DISCHINGING ELEVATOR. J. C. TRAINOR, DUNEDIN. NEW ZF.ALAND.
Hy this inventurn the elevator is atranged to pass through the varrous holds and has a casing composed, on ins apper side, of sidable dools. The hatebra are free for any cargo not litted by the elevator. An ordinary backet ladder ia used having the bottom tumbler fixed, but the upper part slides out teleacoplically and is also hinged so as to project

over the balwarke. The elevator is intended for "colliers" or other shipg that carry suitable cargo. It workn freely under any cargo, and by moving away any of the removable covera any told may be emptied in any order desired. In ordioary elevators it is usual to lower the material to the botion, so that all Lo lifted the Whole height, but here the material is lifted from the top only of each bold, so that mucli less power is needed in consequence.
 LTD. AND G. E. ELIA. LONDON.
According to this inweotion the minea are arranged in a row, each being joined by a cable with an adjacent mine and provided with, meana wherefy, when a vessel strikes the table joining two of the mines, each tmine 18 separated from its ooter adjacent mine, so that only the two minea are dasplaced. When a vensel strikes the calle between iwo of the mines the cable is pulled and one of the stankers is retracted hy means of the ropes; the tention on which then increasez until a pin formatd by its spring and fires the eap of each charge of the projectiles.

These projectiles are then forced through the dincs, cutting the cable and ropes at the outer side of each mine, and admitting water to fota tion chamber, The casing, containing the detonator and the fring gear of each mitie being mounted on the cable by means of a pulley. now drops until a tanion, which joint the rope to the cable, theets the palley oprasids into pasace: separates this chamber from the anchor br operating a detaching device and finally, by coming into contact with the busb in the passage, causes a striker to be relracted watil the tension shears a pin connecting the stem with the head, whereupon the istier fires the detonator, which in tura igniten the butsting charge contaned in the flotation ehamber.
6. 235 FIINTABLE VENTILATOR FOR SIIP'S SIDE PORTS, H. HAKPEK, HEL,FAST,
just helow the center and near one end, a linged piece which ran be opened nut for securing the plate to the sades of the porthole or window. so that it may prejer veritically from the ship'e sulf arid at right angles with it a sufficient datance to catch the wind. At onc end of this plate there are projectsons to prevent it from being forced out of the porthole. When the wind is ahead it strikes apon this phate, passes into and around the cabin and ont on the othet alde of the plate, thus rnaming a continuous current of pare air under these adverse conditions.

ZASTROW REYOLYIMG MULTICOIL PATEMT EVAPORATOR

Latest type. No foaming. Highest effieiency. Most accessible for cleaning and repairs. Water level can vary from bottom to top manifold, and requires just ordinary attention.
C. W. zastrow, Petentes

S. W. 2ASTRON $1404-1410$ THAMES \&T.
BabTIMONE, MO.

The Celebrated

PORT ORFORD

CEDAR LUMBER
is the finest wood in the world for Boat material.
Will not rot, split, warp nor check.
Write for prices and information to

C. A. SMITH LUMBER COMPANY BAY POINT, CALIFORNIA

trade publications.
 AMERICA

Packings are described in a handsomely illustrated catalogue published by the Meclianical Rubloer Company; Cleveland, Oho. The latest publecation of this company consists of section "D" of their loose-leaf catalognc, and the advanlages of having a eatalogue in this form are stated to be facihty of enlargement and timely correction, because the rapud increase of uses of forms, stocks and sizes of articles in all departments which make a complete line of mechanical rubber goods are such that permanently bound books cannot be anthoritative for more than a very short time. The Mechanical Rubber Company makes packings for every conceisable purpose, and copies of their pullications, which will be sent free to any of our readers who will mention International. Makine Enginelaing, should be in the hands of every engineer.

Tobin bronze is described in a catalogue published by the Ansonia lirass \& Copper Company, (9) John street, New Tork, Among the various uses for which this bronze is sand to be especialty suited in the marine field are pump piston rods, yacht shafting, rolled plates for rudders, condenser tube sheets, seamless tubing for condensers, deek bolts and ship fastenings, pump linings, bolts, nuts, screws, rivets, cte. ${ }^{\text {mot Tobin bronze }}$ is a conbination of enpere with other metak When rolled hot it is remarkable for its high elastic limit, tensile strength. hardness and uniform texture. Its tensile and transverse strength is the same as ordinary mild steel, and it is adapted for a variety of purposes where a strong, non-corrosive metal is required. When used in the form of rolled plates, holts and rivels in contact with salt water, it has given most favorable results. When finished it has a bright golden color."

Centrifugal pumps are the subject of eatalogues just iscucd by the Goulds Manufacturing Company. Seneca Falls, N. Y. "Guided by niany years" experience in all branches of centrifugal pump work, we lave combined in the Goulds new reliable, single-stage centrifugal pumps all the details which must be employed to produce thoroughly high-class machines. The punps are so designed that the total head pumped against and the quantity of fluid handled can be varied considerably without affecting the mechanical efficiency. The standard single-stage, single-side suction, horizontal shaft centrifugal pump, known as Fig. 3.000, is arranged for belt drive by means of pulley. In many cases preference is given to direct-connected units, and therefore it is possible to arrange these pumps for direct connection to electric motors, steam engines, steam or hydraulic turbincs. Direct-connceted units are provided with rigid or flecrbic couplings as conditions demand."
Marine engineering specialties are described in an illustrated catalogue issurd by the Jerguson Gage \& Valve Company, 88 Broad strcet, Boston, Mass. Among the leading specialties made by this company is a reflex water gage for use on marine, locomotive and stationary boilers, separators, tanks, etc. "The water appears black and the steam space white, This effect is obtained by grooving the glass. The retiex gage assures quick and acctrate reading of the water level, as the water always appears black, and white indicates immediately the absence of water; this fealure is a guard against bonler explosions. They are safe at the bighest pressures and are protection to workmen, as the glass does not Hy when diabled, rendering protecting devices, stach a wire netting, etc., supertluous. They also save loss of time and annoyance replacing broken tube glasses, Repairs can be made without desturbing the connections, anl they can be easily applied to any boiler without change of fittings. Look at an ordinary glass tube kage when fall of water, and when enapty, and you will find that one cannot tell if it is empty or full, rendering serious mistakes possible. The reflex gage will always appear black when full of water, and white when empts; no mistake possible. The reflex gage involves a simple and fundamental principle of the law of optics, namely, the total reffection of light when passing from a luwly of greater refractise into one of less refractive power. When grooves are cut at the proper angles into the surface of the glass all light from the vacant urace back of the glass will be climinated. At the same time the passage of light through that portion of the grooves covered by the water of other liquid in the gage is permitted. Thes a sharp, clear line will mark the height of water above which the air or steam space has a loright, silvery appearance, while the water takes, the color of the background in the chamber, and as black is selected for contrast, the presence of water in the gage is always indrated by black and the steam or air space white."

Stockless anchors are described in a catalogue issued by the Baldt Anchor Company, Chester, Pa. These anchors are made of the finest quality of open-liearth steel, and are extensively used in the United States navy for vessels of all types.
Pop valves and steam gagea are described in illustrated catalogues published by the Ashton Valve Company, Boston, Mass. These valves and gages are guaranteed to be of the finest quality and to give unequaled and perfect satisfaction. "They have been the acknowledged standard for thirty-five years."
Lap-welded steel pipe is the subject of a bulletin published by the American Spiral Pipe Works, Postoffice Box 485 . Chicago, III. The manufacturer claims that, due to its method of welding and annealing, its pipe has remarkable strength, and is especially suited for gas, vacuum and higb-pressure bydraulic work where absolute tightness is essential.

A pneumatic flue welder and swedger is described in a catalogue published by the Draper Manufacturing Company, Port Huron, Mich. This double-cylinder welder is said to be especially adapted for railroad work. "A 2 -inch flue can be welded and swedged in about five seconds with one heat and with a perfect weld, smooth and even, and leaving the flue an even thickness."
Valves of many kinds, unions, flanges and packings are among the great variety of marine specialties published in catalugues issued by Crane Company, Chicago, III, Circular No. 74 deals in part with the merits of cast steel as compared with forged stecl flanges, and the statement is made that there is no question that either cast steel or forged steel flanges have abundant merit and are equally satisfactory for all purposes for which they are regularly used. Crane Company has made tests to determine the physical properties of each, and the results are given in this catalogue.
"The Plant and Its Products" is the title of a handsomely illustrated pamphict of 48 pages, published by Pawling \& Harnisclifeger Company, Milwaukee, Wis. The pamphlet states that this company's plant is probably the most modern and complete in the world for the building of traveling electric cranes. It was erected in 1905, and with its storage yards, railroad sidings, etc., occupies a tract of 20 acres. The main factory buildiug is 414 by $3^{\text {to }}$ feet, and all of the buildings, with the exception of a pattern storage, are of steel with brick walls and saw-tooth roofs.

Catalogue 26, published by the Standard Tool Company, Cleveland, Ohio, describes among other tools two reamers that the manufacturer recommends for heavy boiler work. "They are splendid tools for use in pneumatic holders, and are furnished with taper shanks and squared shanks, carbon and high-speed steel. The points are tapered to facilitate entering the work, and the flutes are wide enough and deep enough to have plenty of cbip room. Send in a trial order for some of these reamers. Like 'All Shield Brand' tools they are guaran-teed-you can't lose."
" 3,000 degrees of heat caunot fuse this firebrick cement" is the statement made in a catalogue by the H. W. JohnsManville Company, roo William street, New York, regarding J-M ligh-temperature cement No. 30, which is used as a binding material in firebrick structures, and is said to absolutely prevent their collapse when subjected to excessive heat. This cement is especially recommended for setting up firebricks; for setting up and fixing side walls and bridge walls of boilers, furnaces. etc. The company claims that it saves at least 50 percent in maintenance cost, and that it is far superior to fireclay and similar materials.

A process for treating iron and steel to prevent rust is described in a booklet published by the Eastern Rust Proofing Company, 224 Third street, Long Island City, N. Y. "As the subject of the prevention of rust is of great importance to all manufacturers, dealers in and users of iron and steel, and as we know we have the best and cheapest process for its prevention, we respectfully hereby ask that you carefully peruse the facts set forth in this pamphlet, and thereafter give our process such investigation as you may desire in order to verify the statements we make therein. This you may do by personally visiting our offices, where we have numerous samples of our work on exhibition, the larger portion of which were treated over two years ago, some of which have been (during such period) constantly in the open air subject to the action of the clements and the salt sea air; by coming to our furnaces and seeing a demonstration, or by sending us samples of your product for us to treat in order that you may make your own tests; either one or all three as you may desire."

BE PROUD OF YOUR WORK

Abstract

When it's finished, it must fit, if you've proved your measurements with Starrett Tools.

Starreat Tools are made accurate-they last a lifetime and are still accurate.

When you buy them, you buy a faith in yourself and the accuracy of your work which lets you do more work and better work.

Callpers and Dividers
 Clamps, Drill slocks

Gages-Wire, Thlikess, Screw Pitch-all sorts
lack Saws and Frames
Jack Serews, Mlerometers
Pliers. All sorts al Elales and Steel Tapes
Speed Itedicators, Sqaares
Look through your kit-Don't you need some toal to make your work better? Send for Catalog 101,-274 pages, full of illustrations and useful information. Send to-day, we will tell you your nearest dealer.

The L. S. STARRETT C0.
ATHOL, MASS., U. S. A.
New York, 180 Chambers St. Chicago, 17 No. Jefferson St. London Warehouse, 36 and 37 Upper Thames SL. E. C.

If you are a dealer and stock Iron and Brass Steam Engineering Fittings you want to know

 about the Powell line. Here is a specialty. The POWELL
UNIIN DISC
VALVE

Made on the same lines is the Powell WHITE STAR Valve but with a componition fibte diac.

Notice the ground joint coanection betweea bonnet and body secused by the heragonal ution aut. Notce that the threads that take the snios nut are outwhe the aeck. You don't need red lead or othen cementing to make them tight.

There in a demand for valves of the clase which in growing every day. Write for our catalog and atk for our dealer's proposithot - the cout in a porage mamp lor your letter and you cannot lose.

The Wm. Powell Co.

 CINCINNATI

International Marine Engineering

SEPTEMBER, 1911.

SIDE-WHEEL FERRYBOAT SAN PEDRO.

The San Pedro is a steel double-ended side-wheel ierryboat owned by the Atchison, Topeka \& Santa Fe Railway Company, built by the Union Iron Works Company in San Francisco, Cal., under the supervision of Robert Forsyth, consulting engineer, 1020 Merchants' Exchange, San Francisco. The contract for the vessel was let April 27, 1910; she was launched Feb, 1, 19t1, and went into commission May 15, 19t1. The San Pedro connects the Atchison, Topeka \& Santa Fe Railway system at its terminal, "Point Richmond," with the ferry depot at foot of Market street, San Francisco, a distance of about 7 miles, and is fitted up for the conveyance of pas-
capstan is on each end of the vessel on this deck outside of the deck house.

The upper deck is reached by two corner stairways at each end of the deck house. Entrance to the saloon is through two large sliding doors. The saluon is enclosed for g6 feet in length, the middle portion is enclosed out to the side. The floor is covered with magnesite composition of a terra-cotta color matching with the mahogany of the seat, and is well filleted at outer edges, giving a very sanitary floor. The toilet room for ladies is on this deck. Seats outside are provided for about too pavengers at each end; a longitudinal bulkhead,

sengers, bagkage, mail and express matrer. The dimensions of the boat are as follows:

The vessel is divided into compartments by seven bulkheads, as follows: Two peak tanks to carry fresh water, two holds, one compartment with fuel oil tanks in hold and restaurant with kitchen 'tween decks, one compartment with fuel oil tank in hold and crew's living quarters in 'iween decks, one compartment for engines and one compartment for boilers.

The main deck has through passage for teams and seats for 168 passengers. It has entrances to holds, reataurant and living quarters of the crew, which are below the main deck; also steel enclosures to the machinery and boiler spaces. Men's toilet rooms are located on each side of the vessel, with crew's wash room, lamp room, inates' store rooms, room for steward and a bar room. Steam steering engines are on this deck directly under each pilot house; a combined hand and steam
well glazed, gives the required protection to passengers who prefer the open air.

The amidship part of the saloon has a dome of 98 feet by $3 t$ feet, rising vertically at sides about 28 feet, where it is fitted with art glass. The roof is formed by pleasing double curves, giving an airy, roomy and pleasing appearance to the whole. The finish of the saloon is white with a little carving touched with gold, mahogany polished seats and window sashes, and the floor, toning well with mahogany, gives a very attractive appearance.

On each end of the hurricane deck is placed a pilot house, 12 feet by 12 fect, fitted with steam and hand-steering gear, telegraphs, electric call bells and speaking tubes to the enginefoom, electric call alarms to crew's quarters and main deck, electric communication between each pilot house, and speaking tubes to the main deck, whistle pulls, searchlight controller, engine revolution tell-tale, and a switchboard specially arranged to cut off any lights that may interfere with the vision of the navigator.
Immediately adjoining the pilot house are the officers' rooms.

The machinery of the San Pedro is as follows:

All steam pipes, feed pipes and sea conncetions are of coppcr. Auxiliary exhaust, bilge, fire main and fuel oil pipes are of galvanized iron.

The main engines are fitted with poppett valves operated throngh the ustual Stevenson reversing links, the admission valves having the cut-off trip operated by a third cecentric, while the variable adjustunent of the cut-off point is convenicutly controlled by levers on the working platform. The whole arrangernent is very satisfactory and suitable for ferry service where prompt reversals are necessary. Oil fuel tanks have a total capacity of to.000 gallons.

The San P'edro is a highly satisiactory ferry, very complete, very pleasing to travel upon, and makes quite an antractive addition to the alreally great equipuent of the Santa Fe Railway system.

Mr. Henry M. Seeley has been appointed steanbroat inspector for the port of New York.

Curtis Marine Steam Turbines for the Italian Scout Cruisers Nino Bixio and Marsala.

The Fore River Shipbuilding Company, at Quincy, Mass,has just shipped from its works to the Officine Meccaniche. Naples, lialy, three of six Curtis turbines for the Italian cruisers Nino Bixio and Marsala. The turbines were loaded at Quincy on the lighter Commissioner of the Merritt \& Chapman fleel and taken to New York, where they were shipped on the steamer Perugia, sailing July 22 for Naples.

Fiach of the sesseli for which this machinery was built has three turbines, each driving a single sercw, one on the center line of the ship and two at the sides, as in ordinary twin-screw arrangement. The turbines at 450 revolutions will develop 8,000 horsepower each, and 22,300 horsepower will give the vessels a speed of 28 knons.
The turbines are technically called 80 -inch 16 -stage turbines; that is, the mean diameter of the rotating drum is 80 inclies, and the steam is expanded sixteen times from boiker to condenser. The turlines arc exiremely simple in consiruction, no part being in motion except the one main revolving shaft, with its wheels and buckels inside the casing. On the shaft are a series of wheels and a drum carrying at the periphery rows of liuckets on which the steam impinges as it passes through from hoiler to the condenser. Between each row of revolving linckets are stationary guide buckets, rigidly fixed to the inlerior of the casing for the purpose of guiding and giving the proper direction to the steam before it impinges on the revolving blades. There is also a series of nozzles disposed between the various stages, with openings so designed as to control the velocity and pressures of the steam in its flow from stage to stage, in such manner that the entire energy of the seam is gradually utilized and absorhed in turning effort as it passes through the turbine from end to end.
For reversing there are wheels with several rows of buckets and nozzles, formed exactly as those just described but with the angle of buckels in the opposite direction. all within the same casing. These whels are located at the exhaust end of the turbine, and therefore when going ahead simply revolve idly in vacmm. When backing, steam is shut off from the
head end and turned into the astern end, passing through these reverse buckets, reversing the motion, the turbine shaft turning in the opposite direction and the ahead whecls and drum revolving idly in vacuum.
The thrust of the propeller is taken directly by steam pressure on the end of the drum itself, thus practically eliminating friction. There is a thrust bearing formed direetly on the end of the turbine casing to take up the inequalities of thrust, the entire design resulting it one complete self-contained structure.

Each turbine when completed was connected to the test boiler and condenser, run and tested in the shop beiore shipment. The turbines were fitted complete with valves, piping and fitting for operating, and for drainage and Iubrication, etc The total weight of each turbine was 100,000 pounds, the outside dimensions being 21 feet 6 inches long and 9 feet 4 inches in width.

STEAMERS SOUTHPORT AND WESTPORT.

The Eastern Steamship Company's new boats, Southport and Westport, were built by William MrKie, of East Roston, Mass. Both of these vessels are to be used on the Boothbay division for freight and passenger traffic.

The general view of this vessel shows a ship-shape-looking product. The general dimensions are:
Length between perpendiculars.....
t 34 feet 5 inches.
Length over all...................... 138 feet.
Molded beam at waterline........... 20 feet 6 inches.
Beam outside of guards............... 29 feet.

Depth amidships top of floor to top of deck beam.

9 feet.
Draft forward, loaded............. \ddagger feet 6 inches.
Draft aft. loaded. 8 feet.
Timber construction
The engines were built at the Atlantic Works, East Boston, and are triple-expanston, with eylinders $101 / 2$ inches, $171 / 2$ inches and 28 inches, with a stroke of 18 inches. They run at 200 revolutions per minute. A glance at the illustration will show the design. Each engine is fitted with piston valves on the high-pressure also on the intermediate and low-pressure cylinders. Stevenson link motion is used, also steam reversing gear. Taylor watertube boilers furnish steam at iso pounds Each boiler has a grate surface of 58 square feet and a heating surface of 2,150 square feet. The pumps and condensers are

ONE OF THE MAIN ENGINES FOM THE DOLTHROET AND WESTPOWT.
all independent. The circulating pump is of the centrifugal type. The boiler feed pump is controlled by means of a float in the filter box. The air pump is of the single-cylinder double-acting type. This has the advantage of light weight and occupying small space.

On her trial trip the Southport made an average of $11 / 2$ miles over the contract speed of 14 miles per hour. We understand

that the Westpurt dad equally as well, showing the excellence of the design.

Special attention is called to the overhang, as shown in the thwartship section. The sponsons were built out $\&$ feet with special construction. This method of building the sponsons and strengthening them is tunusual, and is one of the important features of these boats.
The combination hand and steam steering engines were buitt by Williamson Bron, of Thiladelphia, and the capstan-windlasses were furnished by the Hyde Windlass Company, Bath, Me.
The boats are lighted by electicity, the electric outfits being supplied by the Sturtevant Company; Hyde Park, Mass.

RECAPITULATION OF REPORTS OF TRIAI.S WITH ANTI-ROLLING TANK'S AT SEA.*

With the increased size of the transatlantic steamers one would be led to surmise that the question of sea sicknesb would not be as serions a subject as is days gone by. Yet anyone who has ever been afficted with that always ludicrous but frightfolly tuncomfortable sensation will admut that anything which could prevent it woutd be received most gratefully by the traveling public.

The efforts that have been made to use an anti-rolling device date back a considerable tume. The old Inticrible in the early do's was experiniented with, and, if we remember right, several later attenpts were made to the the idea oi emploging free water to prevent the rolling of a ship, 1.ately Hert Frahan has given accounts of experiments masle wlich seemed to prove very satisfactory. Diagrams taken show a decieled gain in the stability of a ship's deck with the anti-rolling tanks as applied to the steamship Ypirunga, Undoubterlly such experiments if they prove successful, as they evidently have, would point towards a more stable platiorm for guns, and conscquently the navy would be greatly interestel in this set of experiments; and the transatlantic liners seen to have taken up the subject with the hope of elecreasing the uncomfortable sensation of sea sickness.

Many conditions must enter into the application of these tanks. "Practically the midship postion (we are q̧uoting from Herr Frahm's paper) will he always preferred, becanse it is the broadest part of the vessel, and besides the yawnig of the ship, i. e., lateral sheering under the impetus of cross seas, is less evident here. These shecring motions may possibly diminish the efficiency of the tank by accelerating the movement of the water obtained in cross conneetion; but this is only likely to happen in a stiff vessel with a high period of frequency, which conseqnently requires the eross communication to be rather wide. On normal vessels, i. $C_{\text {., not too stiff, }}$ the tank may be well placed fore and aft. Instead of only one large tank two or more amaller ones may be employed, placed in different parts of the ship. As to the beight above the waterline, no general rule can be established. The bent efticiency will be obtained by placing the cross connection above the center of gravity. In this case the hydrodynamical action of the water in the connection will inerease the statieal action of the side tanks. On the other hand, it would be quite possible to place the connections below the eenter if the tank can be cularged accordingly. This increase in wize will be small in ships with slow periods, but more important in a stiff vessel with comparatively short periods."

It seerus that this question of anti-rolling tanks is being taken up with great interest by British builders. and that several vessels are nader construction so fitted. The report is that in one cave, in the Bay of Biscay, the steamship Gieneral

[^37]was rolling if degrees on either side whent the tanks were out of action. Then the following experiments were made: (a) The smaller forc and att tank, which was fitted forward, was put in action, with the result that the liceling angles were at once reduced to from 7 to 8 degrees, or practically a reductwan of so precent. When the after tank, which was a large one, was put in action, the rolling was reduced to 3 degrees in either direction. This certainly shows a nost decided gain,

It is asserted in this same article that by calculation it is quite possible to build passenger ships, with the usual high superstructure, up to 1,30 feet beam, with a draft of 34 to 36 feet, which with the aid of the anti-rolling device will be perfectly steady; the necessary water sequired being only I. 3 percent to t.t percent of the displacement. This, it is claimed, will decrease the traverse stress in the hulls, and improve the stecring and maneuvering qualities of the ship, and prevent loss in speed in unfavorable seas.

It is further stated, and this we consider a very great point, that this system of anti-rolling tanks can be fitted without great additional cost into existing ships, which undoubtedly would add to their sea-going qualities. Further improvements are also binted at, which, of course, would be welcome, and for men-of-war they would be particularly advantageous, a5 they would dispense with the eross connection. In this arrangentent the wink tanks, though specially shaped, and the dimensioned holes in the shell plating have direct communication with the sea. With this form of tank, which in model experiments has given good results, further information will be given, and it is nuderatood that the system will be tried on a large sale very shortly.

In the article from the Enginecr refersed to, Profesor Biles asserts that the credit for the the of these tanks belongs to Sir Thilip Watts, although since his time great progress hav been made, and it was he who first fitted them, we understand, to the lufiexitle.

It is interesting to note that Sir William White says that the reasons why the system was given up after the trials with the EVimburgh and Colossus were twofold: "First, the noise and shock on the under side of the dech upon which was the living space, and. secondly, that these ships dhd not roll heavily under averake conditions."

It is rather interesting to note that failures of the past are being made succeses of the present in a number of cases, and bere cernainly is one which illustrates the fact most clearly.

Oil Engines and Thermal Efficiency,

While it would be about as erroneous to recommend an engine on its thermal efficiency alone as to entirely disrespard it, the fact that the engines with the highest thermal efficiency to-day are in the great minority seems at first thought a peculiar state of affairs. But a careful analysis of all the advantages and disadvantages of each type would show that the general practice is justified.

Credited with a thermal efficiency sarying from $3 *$ to 42 percent, the Wiesel congine is in this respect ahead of any other internal-conibustion nutor or gas engise, turbine or reciprocating engine, but its comparatively hyh cost and maintenance, together with the eare necessary for its operation, have stood in the way of its general adoption. Though less efficient, the other typea of engines have fourisked because they have been produced at a reasonable figure and bave comparatively low maintenance charges.

In their desire to produce a successful commercial oil enkine, manufacturers bave kenerally not sufficiently considered the most important factor in obtaining the bigh Diesel efficiency, i. $e_{\text {. }}$ compression. As a result the average oil engine is a low-compression engine.

With the low cost of kerosene (paraffin) and the distillate oils, together with the increasing cost of gasoline (petrol) of poor quality, the possibilities of an improved design of oil engine are many.
It is understood that an oil engine approximating the fuel coonomy of the Diesel has recently been produced. It is claimed that it incurs a comparatively small up-keep expense. and the selling price per horsepower installed is reasonable, This engine uses a compression somewhat higher than usual, atomizing the fuel mechanically without an air compressor. The results of any tests on these oil eugines will certainly prove of decided interest.

GAS ENGINES; THEIR DESIGN AND APPLICATION.

or L, x. tracy

The design of a gas engine is determined partly by the conditions under which it is to operate, partly by limits of facil. ities of manufacture and very much by the ideas of the local market as to what a gas engine should be like, regardless of correct design. In connection with this it is quite frequent tlat one finds a local market demanding an open type engine, another with ant enclosed crank case. The first may demand solid head engines and the second separate head engines. One market may demand multiple cylinders cast in one piece and the other single eylinders, there being no overwhelming advantages, so far as the writer can see, in favor of any one of these designs but many arguments both for and against same.

Of the technical conditions determining the engine design the more important are amount of fuel to be used, purpose for which the engite is intended, space available, limits of Weight, importance of economy, importance of wearing qualities and limits of cost.

FUELS.

Fuels may be summed up generally in two classes: liquids and gases; solid fuels not being as yet directly available for internal combustion engines. Among the liquid fuels might be mentioned erude petroleum and its various products, alcohol and ether. Among the gaseous fuels, or fuels which may be conserted into gas, may the mentioned coal, coke, oil residuals and heavy hydrocarbons. In fact any organic substance whatever may be converted into combustible gases by proper treatment, with the allowance and acknowledgtient of the fact that this department of engineering is as yet not fully developed.

The first two conditions overtop and determine all the others; the other, in fact, being dependent on fuel and the purpose to which the engine is destined. At this stage of very rapid progress made in the gas engine world, the principal fuels are the various well-known products of crule oil, although sas producers for solid fuels are becoming more and more a recognized factor of the industry.

Oil-The two greatest classes into which oils divide themselves, so far as the gas engine man is interested, are asphaltum base and paraffin base. The words paraffin base and asphaltum base refer to the hydrocarbon series of which the oil is compused. In paraffin base oils there is less residual and heavy hydrocarbon than in the asplialtum base oil. The arphalturn base oil contains very largely all heavy hydroearbons of the lower series in which there is a very large proportion of carbon as compared to the hydrogen (i. c., bituuten, pitch, tar, etc.). These compounds, after being heated and after having dissuciated the lower constituents, seem very readily, when exposed to severe heat, to change their chemical form, so that a lighter hydrocarbon is given off and pure carbon or even a heavier hydrocarbon remains. This is what happens in all attempts to use crude oil directly in the cylinders of internal combustion engines. That type of engine which seems to have got the nearest to solving this problem has admitted water to the engine cylinders in one form or
another, the real result being to break the water up into these compound gases, thus providing nore hydrogen for the heavy hydrocarbon; both being in a nascent condition, under the itnfluence of the extreme temperatures they combine and form a lighter and more volatile hydrocarlson, or the hydrogen combines with the free carbon deposit from the heavy hydrocarbon, both forming a lighter hydrocarbon subject to the action of oxygen in the watal manner. However, even this type of engine is only partially successful, inasmuch as it can only make use of certain kinds of crude oil, it being impossible to use any crude pil having foreign material, or even any great amounts of heavy hydrocarbon in suspension, because, in the first place the foreign material makes clinker particles which score the cylinder; second, the heavy hydrocarbons are more or less in suspension and, as solid or higlily viscous masses, cannot be sufficiently separated or subdivided by any known method to effect complete combustion, the result being heasy deposits in the cylinders; furthermore, if these same hydrocarbons be suhjected to heat in any considerable degree before entering the engine cylinders, it will only result in heavy deposits of carbon or hydricarbon.

Crude petroleum as it comes from the well is a very complicated substance, and the first physieal feature to be taken care of is the sediment which settles from the petroleum. This is ustually taken care of at the well and need never be looked out for by the consumer. All the various products of petroicuin, benzine, gasoline (petrol) and naptha have a flash point below 73 degrees F ., meaning that they have to be heated to more than this temperature to ohtain ignition from a match, electric spark or other source. Next come the illuminating oils, such as kerosene (paraffin), white rose and other effervescents, having a flash point of approximately 1 so degrees and more than 73 degrees. The next product is gaseous oil or fuel oil, usually used for gas making and also for internal combustion eugines. These oik have a flash point of 190 degrees.
Gasolene (petrol), as classified by the Staudard Oil Company, has a specific gravity of 76 . It is the most common fuel used for small internal combustion engines. It carburets usually at ordinary temperatures, is volatile, yet not so much so as to make it uncontrollable; while its heat value is less than that of the heavier hydrocarbons if is more cleanly and more highly standardized. On account of its volatility it is more dangerons than the heavier hydrocarbons, and every precaution should be taken when handling it.
Alcohol has many of the carbureting characteristics of kerosene (paraffin) and its distillates, and when used under proper conditions with heated air or heated carburetors it is a useftul and cleanly fuel and much safer than gasoline (petrol).
The use of any liquid fitel in vaporizing carburetors of hydrocarbon engines, either by injection or carburetion, is limited; first, because only comparatively highly-priced fuels can be used, and second, because the tendency to pre-ignite with the heat of compression prevents the use of such economy as might restult from having a high compression. It should be explained at this point that the hydrocarbons and their vapors in themselves do not have a tendency to preignite more easily than the principal gases from producers or other sources, but with liquids or vapors it is not possible to furnish readily and continually a mixture weak enough to be perfectly safe unter conditions of high compression, whereas with weak proslucer kases and gas where the calorific value is not too high it is easily possible to maintain a weak economic mixture capable of standing high compression without preignition; in fact, with weak producer gas and proper design it would not be possible to have a dangerous pre-ignition. With carbureted vapors, or the spray of liquidated hydrocarbous, it is possible to pack into a cylinder of an engine so great an anwunt of fuel that the heat senerated from an explosion can he quite dangerous if the compreswion is too high.

On the other hand, with a gaseous fuel, the volume occupied is so great that it becomes a real problem to get sufficient fuel into the cylinder to maintain an equal amount of power; as a matter of fact, a given size engine operating at a definite speed witl give about 20 percent less power than with the vapor or spray of liquid hydrocarbon. Furthermore, the gaseous fuels prove somew hat slower than the vapors, requiring a longer stroke, less piston speed and an additional time.
Hence, from the above facts, it is a simple deduction that for large economical power we must look to the gas and not to the liguid hydrocartion engite. It is probable that this engine will be of a little slower speed and some what heavier than the engines in use to-day, but, at the same time, it is hardly likely that it will resemble the ponderous engines used in Germany and in some parts of America,

Gases.-In general, so far as the gas engineer is concerned, gares will divide themselves tnto two classes, weak gases and strong gases. Ansong the strong gases are the natural gases, as fine illuminating gases, acetylene, water gas and gases especially made by retort methods. In general, these are either hydrocarbon gases or carbon in composition with some element other than oxygen. These gases may run 500 British thermal units per cubic foot; some run slower. Weak gases include producer gas, blast furnace gas by process of coke ovens, waste products of gas works, metallurgical furnaces and other less common sources. These gases run from 100 to 125 British thermal units per cubic foot and are more or less diluted with inert gases or non-heat producing gases. All of the strong gases, when considered as fuel for large engines, are expensive and imptactical either because, as in the case of nauural gas, they are confined to a locality or because the processes for making are cunbersome, or because 50 much of the heat value is driven away in by-products in the form of coke, tar, ete., thus climinating them from further consideration as fuels for gas engines on a large scalc. Of the strong and weak gases it has been practically proved that the weaker gases are both thermally and commercially more efficient than the strong gases. It is understond that this efficiency includes the thermal and commercial efficiency of the plant manufacturing them. Of the weaker gases blast furnace, coke-oven byproducts are confined to particular localities and are valuable fuels when they can be procured and can be used successfully in any producer gas engine, with slight ehanges; hence we will consider all gas engines in their relation to the gas producer exclusively and local hydrocarbon engines in their relation to gasolene (petrol), kerosene (paraffin), and the distillates only.

general and comparative features of design.

For a description of each of the many gas engines in common use and for a history of the industry, the writer refers to Grover, Donkin, Clerk, Methot and others.

Of the various eycles in use the most predominating one is the four-eycle, four-stroke engine taking in a charge of fuel and air mixed, vaporized by the engine, but exploding same within the cylinder after combustion and ignition. Ranking next in popularity is probably the injeetion type, which, from the nature of its cycle, is confined to liquid fuels, these being sprayed directly into the eylinder by various methods. Special types of this eylinder include the Diesel, which compresses to 800 pounds or more, igniting its charge by the heat of compression, the jet of oil being cut off by the kovernor at various points in proportion to the load carricd. Other injection engines ignite with hot tube or incandescent globe or flame.

The two-cycle engine is made in many forms, the aim being to obtain an explosiont at every revolution. As all injection engines other than the Diesel are confued to the lighter distillates, they cannot be seriously considered in connection with large powers of the future because of the prohithitive cost of distillate in any form.

Two-cycle engines, as at present constructed, are incfficient mechanicatly because of wide ports, piston rings that are not tight and faulty lubrication. They are uneconomical because of fuel leakage and mixture of fuel with the out-going air. The present aecepted type of engine of any cycle for ordinary purposes is of the vertical or horizontal design, with trunk piston, internal piston pin and single-acting cylinder. There may be one or more cylinders governed by much the same conditions as in the steam engines, the best practice calling invariably for the four-cyele, four-stroke type: a little more advanced type of cugine equally sucecssful in every way is found with a double-acting cylinder exploding on both ends. This type may now be found doing good service in all parts of the engineering world. For power purposes these cylinders are usually arranged tandem throughout; two, three or four in a row connected up by the very heaviest construction, the details of which will be considered later.
The lighter vertical, high-speed type of the double-acting engine is also built. Both of these types resemble steam engines very much, inasmuch as they are double-acting. having cross-head with all moving parts in full view, there being no external leakage of gas, smoke or odors, and the external moving parts are lubricated in a clean manner without the usual lcakage of oil or soot from above. It is quite probable that the gas engine of the near future wilt follow mechanically along the design long ago found most practical through steam-engine practice, the double-acting engine giving twice the power for practically the same weight of material, and the cost and fuel consumption being less than for two engines of the single-acting type and being more economical because the cylinder walls are hotter at the ends of the expansion stroke.

There is no doubt but that new cycles are not only possible, but probably will soon be recognized. In connection with this reference should be made to the able paper, Evolution of Internal Combustion Engines, by Prof. Reeve, published in the Transactions of the A. S. M. E.4 in December, 190\%. In this paper are ably shown the thermal dynamic possibilities of several possible cycles, including the outside compression type of engine, in which the fuel may be burned either within the cylinder of the engine or between the compressor and the engine. In this valuable paper are given further the proper sizes of compressors and engines for various specified conditions which are quoted in Table I.

Prof. Reeve notes in connection with his various calculations that for an outside compression cycle with combustion between the two cylinders under the normal conditions of operation about four-tenths of the gross power developed would be necessary to operate the compressor. It is doubtful whether much less than this amount of power is consumed by the horizontal four-cycle engine when all things are taken into consideration. Assuming that the engine was supposed to develop from ifio to 200 horsepower, and that the compressor's resistance was ahout 67 horsepower, the table shows the various net horsepower delivered for the various powers developed. This valuable paper gives much more information in relation to the ratios between compression and explosion for the varions cycles and the probable losses for various prospective cycles.

Matue's Rowte.	Canhesualy Kisisincic.	to Smart.
Horsepower.	Horsepower.	Horerpewer and Percent of Ratiof
200 161 69 690 tod 67 23 0	$\begin{aligned} & 67 \\ & 67 \\ & 67 \\ & 67 \\ & 67 \\ & 67 \\ & 67 \end{aligned}$	$\begin{array}{r} 133 \\ 100 \\ 64 \\ 33 \\ 0 \\ -44 \\ -4 \end{array}$

It is not the purpose to make any protound study of thernodynamies; still, it is advisable to point out in a practical way the limitations of the various cycles. In the first place, all known objects, conditions, states and elements have two factors through which we study them; the first being their quantify, amount or mass; the second being their state, teusion or pressure. Thus in a solid object we have mass and density. With electricity, which is a condition, we have amperage, measuring the amount or mass of that condition, and voltage, measuring its tension and pressure.

Heat being also a condition instead of a substance, we measure its tension or temperature in degrees, and the mass or amount in British thermal units or other suitable unit. Temperature is a familiar term, but the amount or mass of heat is something to which particular attention must be paid; for instance, despite the tremendous temperatures of the gases during and after explosion in a gas engine cylinder, they will collapse, as noted by Prof. Reeve, when introduced into a second cylinder for the purpose of compounding. In fact, it is almost impossible to remove these gases from any chamber into which they are exploded by any practical means because of their immediate collapse, and yet steam, at a much lower temperature, may be led into two, three, four and five cylinders successively, doing its work there and retain energy.

Simple calculations, based upon the well-known properties of steam on the one hand and upon the amount and calorific value of the fuel in the gas engine on the other hand, will show that with the cylinder first filled with gas and secondly filled with steam for the space of one stroke, the usual amount of heat escaping from the gas into the water jacket, the steam will have more heat value than the body of gas. The reason for this is that the heat of the steam has breadth or mass; while the heat of the gas has only height or temperature. It is a common thought for the non-scientific engineer that the latent heat of water to steam is lost, an idea which is entirely erroneous, as this heat, while not expressed in temperature, is expressed as mass or entropy measured in British thermal units, and gives the steam the power to expand without collapsing. Hence we can easily deduct that it is impossible to invent any cycle in which combustion or expansion do not take place in the same chamber, unless some means are adopted whereby the temperature of the gases may be reduced and their heat mass expanded in the same proportion. The advantages will be, first, less loss becanse there would be less difference in temperature between the gases and the walls confining them; second, it would in all probability be possible to reduce the gas to such a temperature that it would not be neeessary to cool the walls of the expanding cylinder; third, as the heat mass of the gas body is increased it would be possible to lead it through two or more cylinders for expansion or even through a gas turbine.

A practical ohjection in connection with new cycles, or the outside compression type of engine, is the enormous compressor required.

With the gas engine, as with all other machinery, the most valuable feature of its existence is practical development, the theory always being far in advance of the actual commercial development; an engine of any cycle or design being a really valuable machine only when it has eliminated the usual troubles of an experimental engine. This being of primary importance, we come to the secondary considerations of economy and technically correct design.

After settling upon the horsepower of an engine the next decision must be the bore and stroke. These bear various proportions to each other and to the horsepower depending upon the piston speed, revolutions per minute, type of engine, compression, wearing qualities, pressure generated and temperature. The piston speed varies widely and may be taken in general as follows:
Feet per Minute.
Automobile engines. 600 to $\mathrm{L}, 000$
ligh-speed motor boat and light two-
cycie engines 600 to 800
Heavy marine engines of the latestpractice for tughoat and heavy work,less than 100 horsepower........... 400 to 600
Marine engines of the heaviest type,100 to 1,000 horsepower............. 300 to500
Commercial horizontal stationary en-gines 400 to 700Stationary horizontal engines of themost solid and conservative type ofseveral hundred horsepower or more,three, four and five stroke.
\qquad .. 600 to 900

Piston speed considered separately from reciprocation is purely a matter of lubrication, atid with proper cooling. improved lubrication apparatus, ete., these values may be greatly exceeded, but they represent present practice.
The relation of power and stroke to each other is dependent upon revolutions per minute, combustion and fuel used.
Liquid hydrocarbons and the strong gases being quicker burning and more easily ignited require shorter stroke, less combustion and more revolutions. The weak gases being slower burning and less easily ignited require longer stroke, greater combustion and a less number of revolutions. Thus, in regard to bore and stroke the engines may be divided into two classes, the quick-running hydrocarbon engines and the slow-running gas engines. Of the various engines we have the following table, showing ratios of bore to stroke:
table 2.

Stric of Emajar.	Bare.	Suoke.
Automobile.	$\frac{1}{1}$ 1	$\frac{1}{\frac{1}{2}} \text { tor } 10$

Having approximated the piston speed and the ratio between bore and stroke, and having decided upon the type of engine, its wearitg qualities, whether it is to be high or low speed, and so forth, the horsepower and compression must be settled upon simultaneously. For purposes of design, the strain which the maximum compression generates usually is taken at three and one-half times the maximum compression pressure.
Itt the design of gas engines and the distribution of metal it is very necessary to take into account the temperatures to which the parts will be subjected and explosions to be expected. With short cylinder, high-speed engines of comparatively small power, the cooling effect is so great that, with a fair amount of jacketing, no trouble need be looked for ; but, with long cylinders, large diameters and the consequent high temperatures, it is easy to forecast that the cylinder body will become heated enough to fracture the surrounding outer jacket unless it is left free to expand.

HORSEPOWER

There are several methods of arriving at the horsepower of a gas engine, but, in any case, it is much more difficult than with a steam engine. Naturally the old steam engine formula, PLAN
33,000 horsepower, applies in the case of the gas en-

33,000

gine, provided a person carefully remembers that N is equal to the number of explosion strokes only. However, it is almost impossible to obtain a correct indicator card from the gas engine, partly because of the violence of the explosions

TABLE 3.

damaging the indicator, causing simuous lines, and partly because the revolutions of the average conmercial gasoline ettgine are iaster than possible for the average indicator to take care of. It is not possible to forecast the mean pressure of a gas engine except by empirical formulx, it not being possible to compile any theoretical formula, for the reason that a slight change in the water circulated or a difference of the conductivity of the oils in the different engines, or many other uncontrollable factors, would operate to change the tension of these very sessitive gases, whereas high temperature and small enrropy render them liable to great variation, there being no practical formula that could possibly cover these variations. Never has there been an empirical formula whose constants could be relied upon except after long experience by a particular engineer with a particular class of engine.

One theoretical method which is more correct than many of the more complicated ones is to calculate the heat value of the fuel used and to multiply by the empirical conslant representing the thermal efficiency from that particular class of engine as nearly as possible under the conditions under which it is expected to oper'ate.
The writer has found the most satisfactory method of all to be that of cubic feet displacement per horsepower per minute. This is a fairly constant factor for given compres. sion and given fuels. It seems to vary, so far as any practical amount is concerned, with compression alone. From a large number of practical tests with all kinds of engines, partly from theory and partly tabulated from the experiments of others, the results given in Table 3 were gained.
It will be noted from this table and from the results of the tests that commercial hydrocarbon engines average 3 cubic feet displacement per hour, and that this displacement varies approximately in an inverse ratio to the compression. This could be expresaed in the form of a formula as follows:

$$
\frac{\text { Area } \times \text { stroke }}{t ; 28 \times C}
$$

C being the constant which varies above and below 3 cubic feet. On engines of high compression it will go as low as $2 \frac{1}{2}$ cubic feet and on engines of low compression it will go $103 \frac{1 / 2}{2}$ and 4 cubic fect, or even more.
(To be continsted.)

Coal Handing Gear on the U.S. Collier Neptune.

The Maryland Sted Company, which built the collier Nepiwnc, adopted the Marine transfer manufactured by the Lidgerwood Manufacturing Company, 06 Liberty street, New York, because it presented an opportunity to employ an econonical form of btructure on board the ship, both in weight and in cost of fabrication, Square booms of steel are used instead of round ones, and a structural steet mast or tower is used in place of the usual round steel mast. Instead of tying these structural steel towers or masts there is employed a stiff member of inverted U-section. This menber forms a trackway runuing lengthwise of the ship, and it also forms a support over each hatch for the overhead block of the transfer. A carriage running on this girder enables one to pick up coal from any of the hatehes and deliver it to any other hatch or to the bunkers of the collier.

The Lidgerwood Company designed a new type of winch and control for operating the clam-shell bucket in its vertical and horirontal motions. With this type of control one winch hoists the bucket vertically and the other swings it horizontally in either direction. The two winches are independent of each
other, and can be worked separately or in union, each two winches being controlled by one operator. Only three levers are involved in the operation of the two winches-a hand and a foot lever for the bucket winch and a simple hand lever for the swinging winch. This control is extremely simple. Lifting a lever on the bucket winch eauses the bucket to be raised, lowering the lever lowers the bucket, and putting the lever in mid-position stops the bucket. The swinging wineh is operated in the same manner. Lifting the lever swings the bucket outboard, lowering the lever swings the bucket inboard. When this lever is placed in mid-position a steam brake is automatically set which will hold the swinging block or carriage so as to prevent movement of the bucket in either direction due

Testing Corrosion Resistance In Tubes and Fittings.

That the anti-corrosion value of brass and bronze tubes and fittings ean be accurately determined by laboratory tests is shown in a paper read before the American Brass Founders' Association by William Vaughan, of Arthur D. Little. Inc., chemists and engineers, of Boston.

Corrosion may be defined as the effects produced upon a metal by the combined action of air and water, with or without the stimulus provided by the various impurities in the water or in the atmosphere. These corrosive effects are explained on the basis of: (1) Chemical action alone; (2) electro-chemical aetion, which may be caused by stray elec-

to its load. Each winch has two drums. In the bucket winch the closing rope is attached to one drum and the holding rope on the other. In the swinging winch one drum operates the in-haul, the other the out-haul. The frietion drums have patented metallic frictions with air-cooling passages of the Spencer Diller type. These frictions are not affeeted in any way by heat or weather, and their lifting power remains practically constant.

Owing to the limited space aboard ship and the amount of power it requires to operate the clam-shell bucket smoothly and rapidly it becomes necessary to use high steam pressure Because high steam pressure is employed, namely, 150 to 175 pounds per square inch, piston valves are used. With the employment of these valves excellent balance is obtained. The friction of the valve is small, and the troubles which are experienced with eccentric rods on ordinary high-pressure winches are believed to be eliminated, as is also excessive wear, which makes the piston valve desirable aboard a ship when only a few men are available for repairs or adjustment. The gears on all of the winehes are of steel. The pinions are of bronze, and both have machine-cut teeth. This makes a practically noiseless running winch.

During the preliminary trials round trips were made as rapidly as two per minute from the bottom of the hatch, while 100 to 110 trips per hour will deliver the required guaranteed capacity.
trical eurrents from an ontside source or by galvanic action, due either to included impurities or to the varying proportion of the different elements constituting the alloy. The main difference between two actions is in intensity. Effects that take months under the first can be accomplished in six or eight hours by the second. Accelerating the chemical action by an electric eurrent gives, therefore, a comparatively simple method of determining the relative resistance to corrosion of the various metals.
On May 15, tgog, nine different kinds of tubes were installed in a surface condenser by the writer, Iwenty-five of each kind being inserted in vertical rows and designated alphabetically by punch marks at the top of the row. The remaining tubes in the condenser, some $3-400$, were of "admiralty metal" (untinned), having the following composition:

$$
\begin{aligned}
& \text { Tin } \\
& 1
\end{aligned}
$$

In all cases the failure took place by severe pitting and grooves running lengthwise of the tubes. In many cases small holes penetrated throngh the entire thickness of the tube. A large part of the failures was with tinned tubes, due probably to the electrolytic action set up between the metal and the tin wherever defects occurred in the tin coating. The pure

copper tubes were particularly susceptible to corrosion, while the copper zine tubes were much more resiotant. The $60 / 40$ and the $60 / 33$ tubes showed practically no difference. The so-called "admiralty metal" appeared to resist corrosion better than the other brases, and this, too, was indicated in the experiments, as the addition of a small amount of tin tended in most cases to diminish the rate of corrosion. A large amount of experineental work still remains to be done on alloys, but it is to be hoped that investigations will be carried ont to such an extent that in the not distant future the employment of alloys which are rapidly destroyed by corrosion will be due to carelessness or willful intention and not to lack of proper information.

WORK ON THE WRECKED BATTLESHIP MAINE.

The battlexhip Maine, which has lain in Havana harbor for the past thirteen years, is now attracting a great deal of interest since the actual work of dewatering the cofferdam has begun. We show two very interesting views of the condition which has been revealed lately of the vessel. The work on the construction of the cofferdam was started last fall by the Board of Engineers, headed by Col. W. M. Black. The cofferdam consisted of twenty steel cylinders, each 50 feet in diameter, formed of the Lackawanna interlocking steel sheet piling. These steel cylinders were placed tangent to one another with ares of piling connecting them on the outer face, To insure the stability of the cofferdam 20,000 tons of stone was deposited against the inuer wall. The piling was driven by steam hammers of the Arnott type, built by the Union Iron Works, of Hoboken, N. J. The eftect of the explosion, as shown by the illustrations, is far greater than was generally anticipated, and the barnacles on the bow of the Maine tell the story of what semi-tropical waters do to the submerged part of a ship.

General Bixby reported his opinion of the explosion as follows:
"The destruction of the Moine was eaused by the explotion of three magazines. A portion of the deck over the magazines was blown upward and laid barkwards. No explosion from the outside could have caused this rrabll. What the primary cause of the explomion $\$$ as will never be
learned.

For removing the water within the cofferdam two large centrifugal pumps, electric driven, with double suctions, were used. They were especially built for the work by the Jeanesville Iron Works Company, Hazelton, Pa. The larger of the two pumps has 14 inches snetion and 12 inches discharge; the smaller has 10 inches suction and 8 inches discharge, the discharge being, respectively, 4,000 and 1,800 gallons per minute against a head of 65 feet maximum and 5 feet minimum. The main castings of the pumps are of a special grade of cast iron; the impellers are of special bronze and the shaft is stecl, bronze covered. The motors are 100 horsepower General Electric suake, running 1,200 revolutions per minute, three-phase, 60 -cycle, 220 volts, with a compensator for the large pump and a 50 -horsepower motor for the smaller pump. Each pump is connected to its motor by a flexible coupling of pin and rubber buffer type. The pumps are mounted within the inclosure, and the current is obtained from a power-house on shore. The double suction construction gives a perfect rotative balance, thus climinating all diffeulties encountered from end thrust. The castings and bushings are split horizontally, thus permitting inspection to be made without break. ing any pipe joints or deranging alinement of the plant. Two ring-oiling bearings with split renewable bushings are used, one on each side of the pumps, entirely separated from the casting by deep stuffing-boxes, making it impossible for grit or dirt to work into the bearings. The impellers are the inclosed type, chipped and filed to a finish, and fitted with re-

THE WEECKE EATTLESHIF MAINK.
(Photograph by Undersmod \& U'ndertiond. Nirte York).
newable bronze wearing rings, which when worn can be easily removed. The engineering work taken as a whole has been very successful. The method of doing the work is unique, but it reflects great credit upon those who have had it in eharge.

Referring to International. Mahine Engineerisg, March, 190R, and May, tgo8, our readers will find complete drawings and description of the second-class battleship Maine, together with an account of the explosion and the report of the naval court of inquiry regarding this disaster.

THE SOVEREIGN'S MACHINERY.

The remarkahle showing of the yacht Sovereign,* built for Mr. M. C. D. Borden by the Gas Engine \& Power Company and Chas. L. Seabury \& Company, Con., Morris Heights, New York, has attracted much attention to this craft. The fact that this, the fastest gacht in the world, as far as we know, with an actual speed of 35 miles an hour, is fitted with reciprocating engines, calls attention to the following specifications:
Engines-Two Scabury four-cylinder, triple-expansion steam engines, $13 \frac{1}{2}$ inches diameter high-pressure, $20 / 4$ inehes diamcter intermedate-pressure, and two low-pressure cylinders, each $261 / 3$ inches diameter, having a eommon stroke of $13^{1 / 2}$ inches. Each engine develops 2.500 horsepower at 500 revolutions per minute, with 350 pounds steam pressure.

Cylinders-Are of fime grain cast iron, east with stanchion lugs and valve chest at the side.

Valve Chests-Are fitted with cast iron liners for piston valves. High-pressure and intermediate-pressure eylinders are each provided with one piston valve, and each low-pressure eylinder with two piston values.

Cylinder Heads-Of east steel ribbed and provided with bosses for relief salves.
Valse Gear-Consists of a side shaft running in bearings on the bedplate. This shaft is provided with cranks for each valve, and is drisen from the crankshaft by means of three steel gears.
Reverse Gear-Of the regular Seabury type with bronze spiral sleeve operated by a hand lever.

Pistons-To be of forged steel dished, except the highpressure, which is cast iron. Steel pistons to be provided with solid east iron rings,
Piston Rods-Of special high-grade steel, tapered at the piston end and threaded to screw into the crosshead with lock nut.

Crosshead-Of solid forged nickel steel, babbitted for the wrist-pin bearing.

Crosshead Guide-Of cast iron, water-jaeketed, with bronze backing gibs,

Framing-Consists of ten steel stanehions, well braced with diagonal fore and aft and athwartship braces. To the stanchions are holted two steel guide rails to which are bolted the main guides.

Bedplate-Of east steel seetions bolted to steel angle-bars. Main bearings are babbitt lined and provided with cast steel cape secured with special steel studs.
Crankshaft-Of nickel-steel, finished all over, in two sections, with flange coupling for connecting line shaft.

[^38]

Thrust Bearing-Of the horseshoe type, with roller bearings interposed between collars forged on shaft and cast steel horseshoes.
Connecting Rods-Of the regular marine type, of nickelsteel I-section with forked upper end and hollow steel wrist pin foreed into eye. The lower end is a T-head, with manganese bronze babbitted boxes bolted on with special steel bolts.
Lubrication-By means of a MeCord forced-feed lubricator of thirty feeds with leads to all important bearings.
Lagging-Cylinders to be well lagged with magnesia and Russia iron top. Heads to be filled with magnesia and covered with a brass plate.
Throtile Valve-Of the balanced lever type, to permit quick closing. To be constructed of cast steel.

Steel Steam Pipe-5 $1 / 2$-inch 1. D. with separator and expansion joint in the line, both of steel.
Condensers-Of special type for securing economical working with small surface: $1 / 2$-inch tubes except in way of incoming exhaust, these tubes being $\frac{1}{8}$ inch. Condenser constructed of Muntz metal and copper, 9 feet long, 3 feet in diameter, one for each engine.
Boilers-Two Seabury watertube boilers, 15 feet long, 10 feet wide. 9 feet 6 inches high, containing 3.950 square feet heating surface each and to square feet grate surface. Boilers constructed in the main of 34 -inch O. D. tuling, except the three rows next to the fire, which are 1 -inch O. D. Heater constructed of special drawn cast steel tubing. Boiler is double-ended, dry pipes take steam from two domes on each boiler. Designed to carry 350 pounds of steam, with an air pressure of 3 to 4 inches of water.
Pumps-Two Blake feed pumps for each boiler, $71 / 2$ inches by 5 inches by 8 inches, duplex, one in engine room and one in fire-room. Pump in engine room draws from the hot well, and is automatically governed by float valve. Pump in fireroom for emergency and make-up feed. Auxiliary air pump, Blake featherweight, 4 inches by 8 inches by 6 inches, simplex.

THE JOMA SBABPLEB AFIEE WMIVEING ON THE GALLOUP 16LAND GMOALS,

Cooling Pictures for Summer Use.

The steamer John Sharpless went aground on the Galloup Island shoal in Lake Ontario Dec. 9. 1910, and remained all winter. The accompanying illustration shows the vessel as she appeared in the first week in April, when she was floated by the wrecking firm of Baker \& Reed, Port Huron, Mich. When the steamer went aground she had on board 70,000 bushels of corn, shipped from Chicago and destined for Okdensburg. $\therefore \mathrm{Y}$.

The Canada did nol go ashore, but the accompanying picture show that there was not much need for mechanical refrigeration on board when she entered Boston harhor one cold winter day some time ago.

TME STKAMBAIP CANABA in WiNTEI DAKSK

THE SUBMARINE VESSEL

ay x, DJETEX
No fundamental changes have taken place in the modern submarine boat within recent years. The trend towards a type Iging midway between the first serious productions of the older desiguers of subnarines and the extreme submersible exemplified by the French Narzal beeones more and more pronounced. A general review of the submatine and submersible question and a simple analysis of the general conditions of the problem may here be of interest.

At an early period in the history of the submarine boat, remote as its first beginnings are, the experience was gained that a state of suspension of a body under water is possible . only in theory, and that practieally every excess of weipht, however small, suffices to make it sink and every inconsiderable excess of buogancy to make it rise. This is due to the uniform specific density of the water within the range of depth which practically comes in question for the movements of a vessel below the surface. Very different from this is the case of an aerostat, which aiways remains at a eertain definite height in the air, depending, apart from accidental influences, entirely upon its weight and upon the gas with which it is filled. For the specific density and with it the buoyaney of the air becomes less with every increase of height, it being considerably compressed in the lower strata by its own weight. If W be the weight and V the volume of a balloon, $\gamma *$ the specific gravity of its gas filling, and γ_{1} that of the air at the intended height of suspension, then, approximately,

$$
V \times \gamma=W+V \times \gamma_{v} ;\left(\gamma=V\left(\gamma-\gamma_{*}\right), \text { and } \gamma-\gamma_{*}=\frac{W}{V}\right.
$$

1i, as in Fig. 1 , the specific density $\boldsymbol{\gamma}$, of the air be now set off as a function of the height H above mean sea level (Curve a) and the specific density $\gamma *$ of the gas filling, which, with

increase of height, is subjected to the same alierations as those of the air, be set back from Curve a (Curve b), it becomes possible (${ }^{\prime}$, being assumed constant) for every condition of loading to determine the approximate altitude H^{\prime} by the caleulation of the value of ($\gamma,-\gamma=$), due to the weight and the finding of the corresponding point in the $\left(\gamma_{1}-\gamma_{0}\right)$ Curve b. Water, however, is practically incompressible; that is to say, its specific gravity γ does not alter with increase of the depth H (Curve ε). Consequently, since γ is itself constam, the volume I^{\prime} cannot, in the submarine boat, be taken as constant
for a different height of suspension with varying weight W as in the ease of the balloon. Similarly it is not possible to find a value of γ corresponding with a particular condition of loading W^{\prime} from the equation $V \times \gamma=W$ (values of V and W^{\prime} corresponding with those for the balloon being assumed to exist). From this it will be clear that the existenee of a state of suspension for a boat under water, while theoretieally possible in itself, does not depiend on the depth of immersion H.

The hydrostatic pressure $D=\boldsymbol{\gamma} \times H$, which inereases gradually with the depth, and which, similarly to the aerostatic pressure, is prodsced by the weight of the columns of water above the particles at the level H, takes the form of the

nia. 2.
inclined straight line d withont influencing the γ (curve c) in any way. This pressure renders impossible the use of the ordinary ship form for submarine vessels. The salient feature of a submarine boat must accordingly be a completely closed-im, boiler-like hull, and a circular form of section for this is found to be the one best able to resist the external pressure of the water. The first serviceable vessels of the older pure submarine type, therefore, in many respects, resembled the ordinary fish-torpedo, the invention and practical development of which did much to help them forward. The form of the longitudinal section of the torpedo has been adopted by many designers also, while others have altered the profile of the hull proper by the addition of more or less symmetrical exerescences. The midship sections of these older submarine boats-or, more correctly, their largest transverse sections-were arranged in many caves at the half-lengths of the vessels, and in otheriat points further forward. In general these arrangements depended on considerations of strength, resistance and stability.
Now since, as already stated, it was practically impossible to profluce a state of suspension at any depth below the surface, it hecame necessary for the safety of boat and crew that diving be done with a small rescrve of buoyancy, which may be called the permanent surplus, which then had to be forcibly overcome by special mechanical means. To effect this, applances of all kinds have been tried. Of these, only that of horizontal diving rudders has survived; for the fitting of special screw propellers for diving and other devices of the kind has been given up. True, the slight tactieal advantage of being able to dive vertically had therewith to be dispensed with, since the horizontal rudders worked only when the boat was moving ahead or astern. Nowadays two or three pairs of these rudders are commonly distributed over the length of the vessel; when one pair only is applied they are fitted, as in the case of a torpedo, at the after end, and if possible in the wake of the propeller, where they work very efficiently. The effeet of the diving rudders may be seen in Figs. 2 and 3. If in the case most commonly met with in which two pairs of rudders are fitted, C represents the above-mentioned permanent surplus, and T, and $T_{\text {b }}$, be the vertical eomponents of the rudder blade resistances R, we can set

$$
2 \times \frac{T_{t}}{2}+2 \times \frac{T_{b}}{2}=C .
$$

Further, if a and b be the distances of the centers of the hydro-dynamic resistances (practically the centers of means distances) of the sntfaces of the diving rudders from the vertical axis through the eenter of buoyancy F and weight G, we have

$$
z \times \frac{T_{0}}{2} \times a=2 \times \frac{T_{0}}{2} \times b \text { and } \frac{T_{0}}{T_{0}}=\frac{b}{a}
$$

The assumption is here made that the pernanemt surplus C lies in the vertical axis referred to. Otherwise a trimming moment $C \times x$ wothld also have to be overcome by the diving rudderx duriag sulmergence. To this must be added another moment, which may be called the "montent of propulsion." If P be the enaponent of the propeller thrust (see Fig. 3) in the

line of longitudinal motion, and R the total resistance of the boat, with all rudder pressures, erections and appendices in the submerged condition, R will not, as a rule, fall in the direction of P, but, in view of the complicated resistances of the extensive erections, may generally be assumed to act at a somewhat higher level. This at once establishes the couple Rt $\times c=P \times c$, the tendency of which usually is to raise the fore end of the boat, and which Jikewise has to be compensated by the action of the diving rudders. The last given equation thus takes the general form:

$$
2 \times \frac{T_{0}}{2} \times a-2 \times \frac{T_{0}}{2} \times b \pm C \times s \pm P \times c=0 .
$$

The so-called permanent surplus buoyancy C, which is usu-
must be capable of being peduced to the ordinary surplus C by the taking in of water ballast. As regards buoyancy, then, three different conditions of the boat have to be distinguished (see Fig. 4):
2. For surface runs the normal surface condition, in which displacement $\left(D_{\gamma}\right)=$ weight of vessel (W^{\prime}).
2. The half-submerged or awash condition, in which the full amount of the ballast water Q has been taken in, and the reserve buoyancy d is thereby destroyed. Here $(D+d) \gamma=$ $W+Q$.
3. The submerged condition, in which the surplus buayancy C is also overcome by the vertical components of the pressure of the diving sudders. Here

$$
(D+d+C) \gamma=W+Q+\left(2 \frac{T_{0}}{2}+2 \frac{T_{V}}{2}\right)
$$

In contradistinction to the pure submarine boats of older design, which during surface runs already swam on their cireular sectioned huths and which hat to find room for the necessary ballast water Q within the latter (see Fig. 4a), the whole of the water is in the extreme type of submersible banished from the inside of the inner hull and accommodated in external tanks. These latter, which represent such a marked new feature in the development of the submarine boat, were introduced by the former French Chief Constructor Laubeuf, who in the design of the Nurral (Fig. 4b) arranged an entircly new outer skin round the hull proper to take the water ballast. It may readily be imagined that the space within the hull of the pure submarine boat of the older type was very much taken up by the requisite machinery, accommodation and crew, so that linte room remained for the ballast water. The reserve buoyancy d, which is equal to the ballast in amount, could, in consequence, not be very large; it was only about 8 to to percent of the surface-run displacement. The earlier submarine boats could, in consequence, not be marked out for any very extensive use-they were only fair weather weapons of defense. The Nartal design changed all this at one stroke. The reserve buoyancy could be increased to any desired extent, limits being put to it only by considerations of resistance and of the time taken to dive.
The Narval brought a farther very considerable improvement with her in so far that, by means of the added outer skin, it at once hecame possible to make use of the old well-

FIR. 1
ally represented by the whole or part of the volume of the conning tower situated on the top of the hull, amounted, in the pure submarine boat of older design, to from $1 / 4$ to $1 / 2$ a ton. It will at once be seen that this small surplus of buoyaney by which, during surface runs, the boat would alone project above water, would not suffice to provide the necessary seawurthiness and security. It became necessary, then, for the by far the most frequent surface zuns to raise the boat higher out of the water: that is to say; to provide a certain freeboard, i. C.. a larger amount of reserve buogancy, which for diving
tried ship form for submarine vessels. In surface runs, indeed, the older submarino showed some very objectionable peculiarities. In the first place, they shipped a great deal of water, and. in the second, they showed a strung tendency to cut under the surface. It becante necessary, therefore, on surface runs to trim them by the stem by means of ballast, thus destroying a part of the seserve buoyancy and increasing the resistance. In the submersibles the latter of these drawbacks is avoided and the former considerably reduced. Meanwhite the stability conclitions are, at least at the small
angles, considerahly improved, the frechoard increased, and the range of vision enlarged.
The Narzal may be looked upon as an "exireme" design, in so far as pracically the whop of the ballast water is removed from whitin the hull proper and placed in the external tanks. In the thodern submersible (Fig. 4c), to which the designs of most of the navies now assimilate, only part of the ballast water, although the greater part, is arranged externally, while the rest is retained within the inner hull, so as to trim the vessel in the awash condition and to bring ahont an exact balance of the surplus buoyancy. The external tauks thus became somewhat smaller than in the Narzal, a large part of the deadweight represented $2 y$ the outer skin was saved, and in spite of this the remaining reserve buoyancy (30 to 50 percent of the surface-condition displacement) and the similarity to ordinary ship form were sufficiently preserved (Figs, it and 5). The permanent surplus buoyancy is increased to about 1.5 to 2 tons. In the fore body the modern submersibles
sibility of vision is, unfortunately, still dependent on the makeshift assistatece of the periscope, which cat be withdrawn into the tower or into the imerior of the boat. Windlasses or capstans may eventually be worked by electricity: When anchors are carried at all they are usually of the mushroom description, and eapable of being drawn completely into their haw se-pipes, thereby these adapting themselves best to the shape of the boat. Life and working boats have been entirely banished from the submarine vessels; only on practice runs on which no dives are to be made are single small boats occasionally carried.

The motor question cannot yet he looked on as solved in a uniform manner. For surface runs, however, the heavy oll motor may be considered to bave fually established itself, and its recent practical improvement has done a great deal towards the development of the submarine boat in general. Preference is slown in particular to an engine resembling the quick-running Diesel motor, which, cven in France, where perhaps the

ric. 5
are almost exactly like torpeclo boats, while the after body takes a somewhat different form, approaching to the well. known tetrahedron model. This form of after body offers many advantages: including greater initial stability, improved conditions of resistance, wider play for variation in the diameter of the propeller atd more efficient working of the latter, hecause the water can very casily flow into it. Further, the facility of course-kceping in the vertical plane during subsurface runs is favorably influenced by the above-mentioned form of model, as witl be seen further on. Extending over the whole boat is an erection, for the most part in tunnel form, exposed on all sides to the water, containing all the pipe leads. In many cases the erection is curved upwards in the fore body. whereby good working of the boat in a seaway is ensured. The inner hull accommodates itself as far as possible to the outward shape of the vessel; the pointed ents, forward and aft , have been cus off and replaced by strong, boiler-entl shaped bulkheads. In the center of the pipe-lead tunnel, the lop of which is utilized as a light platform deck, rises the comning tower, with its erections and appendages, which is itself strongly built to resixt pressure and frequently armored. In it are the comunumication appliances, the periscopes, the steering gears, the ceutral cocks for working the ballast tanks, depth manometers and the electrically-worked distance indicators of the compasses. The latter are often arranged outside the boat, on the one hatd, becauve in the completely enclosed steel immer hull or in the comning tower the lines of force of the earth magnetic field are renklered almost immune. and on the other, hecause the effects of the free edily currents within the boat, which are set up by the extensive electric installations, are therely removed as far as possible. The pos-
greate $\begin{gathered}\text { number of experiments with different surface mosors }\end{gathered}$ lave been made and return has repeatedly been made to the old, well-tried steam engine, appears to be finally accopted. Simall herght, short and compact build, very small weight and absolute reliability in working are demanded; the exhaust pipe, or opening, is placed for the most part as high as possible at ahout the after end of the pipe-lead tunnel, in order that the more powerful motors may during good weather be capable of being nsed in the awash condation also. For subsurface runs, of course, eleciric motors are used which have to be continuonsly fed from a storage battery. This latter is filled with peat mointened with acid, and is usually completely eased in, and provided winh small tubes in order that the acid may not casily run over when the hoat is inclined in either the transverse or the longitudinal direction, and that the gases developed in filling and during consumption of current may be able to escape. Connection is established between the individual moturs by means of electro-magnetic couplings, one each of which is arranged between the oil motor and the elecIric motor, and hetween the latter and the propeller shaft. The electric motor is so arranged that it can be used as a dynamo, driven by the oil motor for the charging of the accumulators; it is for the most part completely cased in, but in way of large cooling openings wound round with wirc, so that any explosive gaves that may be iznited at the sliding contacts are confined to the interior of the motor. The starting of the oil motors may be effected by means of the electric engines or by compressed air, a sufficient quantify of which is always catried by the vessel or can be produced on boatd In regard to the voltage, it is not found desirable to exceed 230 , on the one hand, for the safety of the erew and the prevention
of short cireuit, and on the other in order not to affect the compasses, which at the best are very unreliable.

In additinn to its well-known advantages for ordinary vessels, the sub-divition of the engine is further of special advantage for sub-marine buats, because the smaller units can be more conveniently accommodated in the inner hult; and, moreover, in a submarne boat in submerged condition the turning action of a sinkle screw must be especially unpleasan. Now, although in the newer type of submarine bonts fault-les-ly reversing heavy oil motors have been largely introduced, it has not been found desirable to dispense with the adjustable propeller blates. In engines of more than 200 to 230 effective horsepower this is, no doub, an unsatisfactory makeshiff, which, however, it is not thought advisable to dispense with, because the power of the oil motors cannot, for suriace rims, be raried within snfficient!y wide limits, and because the previous determination of the under-water power, i. e., the suitable number of revolutions of the propeller designed ior suriace work is so difficult that the posctblity muse be provided of determining the maximum speed under water for each individual hoat ly experimental variation of the pitch of the propeller, without the power of the motors having to be reduced.

Cases are also met with of threefold and fourfold subdivision of the horsepower, by which various combinations become possible. With three serews, for instance, the central engine could with advantage take the form of a larger, more slowly running oil motor (with small dyamo for feed purposes), to be used alone for surface ruming, whereas the two outer ones were electric motors to be reserved for diving. These two outer motors could, however, in addition be connected with oil motors of small power, so that for surface running all three propellers could be set to work without it being necessary to bring the accumulators into play. On the other hand, the parts played by the propellers and their motors in connection with submerged and surface runs may, on occasion, be interchanged, the screw or serews not doing work being in each case allowed to run free. Similar combinations can, to a more extended degree, be resorted to with four propellers. All such variations depend on the calculation of the most favorable manner of overcoming the resistances. We here come to one of the moss complicated and important theorems connected with the submarine boat.
For surface work the determination of the engine power necessary for a given speed, of course, presents no greater difficulties than in the case of an ordinary vessel; the Middendorf formula is said to give good results for modern submersilles, when the power otherwise necessary is increased by 30 percent to allow for the exceptiona! appendages of boats of this elass, including in particular the torpedo exit excreseences and flaps. A gool approximation is also given by
(area of midship section) $\times t^{-2}$
the formula $I . H . P .=$
surface trim the coefficient n ranges between 3.1 to 3.3 for modern type boats with $l .: B$ from $10: 16.5$, this embracing all additional resistanees.

For the determination of the resiatances for the underwater runs, however, all the ordinary aids of this kind become useless, and only model experiments corrected by constants obtained from actual experience enable a prediction to be made for the under-water power of a boat of a particular type. This is also to be expected. The effect of the complicated tower formation, the diving rudders, and the pressures on these, and the rest of the appendages, such as the tunnel, the forecaule, etc, cannot be put into figures, Very roughly speaking, an average boat of 300 tons surface displacement for 8 to g knots inder-water speed requires as much power as for a speed alout 12 knots at the surface, the re-
sistance of the horizontal rudders being in the former cave included. As already observed, however, this uncertainty as to the speed that will be attained is got over by the adoption of adjuwable propeller blades, With this the number of revohitions of the electric motors can be resulated at will. Meanwhile it must not be lost sight of that for the employment of the electric motor as dynamo a particular number of revolutions is necessary, which the oil motor must, while developing the necessary power, lie such as to aduit of. There ean be no doubt that for undef-water work the old submarine boats with their circular-sectioned hults, so long as these were not deformed by the fitting of external oil tanks, as in the modern English designs, gave hetter propulsive results than the present-day submersibles. This is probably the reason why many of the naval administrations have so long adhered to the pure sulmarine boat with its evident disadrantages. But the modern subnersibles are so dimensioned that the resistance keeps within reasonable bound, even under water,
The accommodation of the ballast water in external tanks atparently offers advantages of such importance that a slight increase of resistance which accompanies it is willinkly accepted. What bas been said in the foregoing alrout the hallast tanks will in general, with slighe alterations, apply to the oil tanks also. In eaces in which oil motors were applied to the old submarine boats, these latter tanks had also to be arranged within the hull. In the submersible boats they have made their way with the ballast tanks to the outside, their most suitable position being at about half-length of the boat, so that in case of an unequal consumption of fuel the slight leverages with which they act admit of the smallest possible trimming moments (Fig. 5). Just as the removal of the ba!last tanks to the outside brought with it an increase of the reserve buoyancy, so also the same manenver with the oil tanks enabled there to have a much larger capacity; thus the radius of action of the modern submersible is, on the surface, far greater than that of the old submarine boats. Under water the case is different. Here a speed of about 9 knots and a radius of action of about 30 knots bave to be made the most of. The space won by the removal of the ballast and oil tanks had to be used for the accommodation of the storage battery, which, as a result of the considerable increase of the displacement and the consequent increase of the under-watet horsepower, became unch more bulky. On the other hand, the surface speed was increased to 16 knots, and it will be seen that the modern submersible is, under surface conditions, becoming more and more a serviceable weapon of offense.
(To be concluded.)

Tonnage and Trade of the Port of London.

The increase by periods of ten years in the tonnage of British and foreign sessels entering the port of London from foreign countries and British possessions and coastwise (excluding vessels from the Medway) to discharge cargo, establishes the fact that, notwithstanding the gains made in other countsice, the port of bondon still occupies a uniqne place it the world's shipping, as the following statement giving the tonnage entered for $\mathrm{J} \$ \mathrm{Kg}$, iR90 and tge9 shows:

	Y'ank	American Tons.	Americas Tons	Tolat.
16k		5. 458,0iom		$13,305_{2}+2 \times 0$
1419		30,5it, 6 en	B,RAL, NH	1% \#ys.ty 10
$3{ }^{3}$		12,1993,400	$7,246,004$	80.245 .606

In the annual report of the port amhorities the statement is made that the tonnage of ships which used the London docks during the year ended March 3t, 1910, largely exeeeded that of any previous year, and it is thought that the new schedule of dock rates, which went into effect on Jan. r, rgir, will cause considerable additional shipping to enter the port--Daity Consular Keparts.

A Twln Hatch Steamer whth Central Deck Ballast Tank.

In these days only those vessels which are carefully designed with a view to economy of working expenses and equipped with the most expeditious means for working cargo can hope to be kept fully employed. It is, therefore, imperative on the part of owners, as well as shipbuilders, to be keenly alive to any proposed improvements in the design and equipment of ships. One of the latest ship constructions is the invention of Mr. E. W: Ashly, a Tyneside naval architect, whose aim
are arranged from the tank to the sides of the ship. These beams could be placed diagonally similar to the members of Warren girders in vessels designed to carry oil in bulk, preventing most effectually the increased tendency to work in such a ship, due to the nature of the cargo. Web plates are placed inxide the :ank to transmit the thrust, while the necessary support is secured by wide-spaced, strong pillars. braced in order to connect the tank rigidly to the remaining structure. A center-line bulkhead conld be substituted in oil steamers, in which vessels the deek ballast chambers would be useful

is to embody in a cargo vessel costing approximately the same as one of usual construction possessing equal dead-weight capacity several important advantages.
Referring to the illustrations, Fig. i represents the general appearance of the vessel. The distinguishing feature is the arrangement of continuous side hatchways on the deck, having deep coamings extending unbroken between the poop, bridge and forecastle. The outer coamings are fitted as close as possible to the sides of the vessel consistent with strength. Between the inner coamings is situated the working deck of the ship, raised considerably above the ordinary deck level, leaving I foot or less of these coamings standing above. This deck is continuous between the erections and can be gradually sloped as it approaches the bridge or poop in order to get the necessary tonnage openings in the end bulkheads of such erections. Between the hatches and below this deck is situated a water-ballast chamber, extending down below the molded depth level and having sloping sides meeting at the base. This tank, as will be seen in Fig. 2, is continuous forward and aft of the machinery space, the longitudinal strength being anply preserved by the bridge side and deck plating, extending considerably beyond the ends of the tank. It will also be observed that the bridge sides are in line and continuous with the outer coamings of the hatches. On the central raised deck, instead of the customary discharging gear composed of winches and derricks, etc., portable steam or electric cranes are used, moving along lines of rail attached to the deck and arranged to work self-filling and discharging grabs. This equipment, in conjunction with the long hatches on either side, will enable bulk cargo, such as coal, to be discharged with the minimum amount of labor. The cranes would possens all the usual motions and be constructed with warping drums, dispensing with the needs of winches for maneuvering the vessel in harbor.
The bollards, ventilators and other gear are also placed on this deck,

Referring to the midship section, Fig. 2, it will be seen that to preserve the transverse strength at the deck strong beams
for trimming purposes. It will be noted that half beams are not necessary, the flanged beams being of sufficient size 10 support the small width of deck. At the top of the hatchways are placed the usual webs, spaced 4 to 5 feet apart, supporting the wood or steel covers. Fig. 1 shows the arrangement of a steamer of handy size carrying about 3,000 tons dead weight, Fig. 2 being the midship section, while the group of three sections, Fig. 3 and the annexed table of data, compare the

capabilities and advantages of the differemt arrangements of hatches and water-ballast tanks. The particulars given have been carefully based on those of a vessel of normal construction, having the usual poop, bridge and forecastle, with two ordinary-sized hatches in each well.
The advantages claimed for this construction are numerous. Considering first the structural arrangement, the vessel has
greatly increased longitudinal strength, due to a nuch larger percentage of the steel work at the deck being utilized in resisting longitudinal stresses than is ordinarily the case of steamers constructed with the usual hatches and winch platforms: moreover, the stiffening of the central tank longitudinally instead of transiersely, as with side tanks, adds to the longitudinal strength. This would allow much greater length to depth than usual, also allowing the dead weight to be carried on a reduced draft of water relatively to that of a vessel of normat construction. The water ballast capacity is about equal to that secured by the same vessel if constructed with top-side wing tanks, about half of the total bal-

last being carried at the deck, and the compartment being arranged along the center line of the vessel would prove free from straining and leakage. The actual capacity of the tank, of course, is to some extent governed by the width of hatches required. The disposition of the ballast and its influence on the metacentric height and draft in ballast, as shown by the data given, should produce a steadier and more comfortable ship when in such trim, without undue strains. Perhaps the most important advantage gained by this method of construction, viewed from the shipowners' standpoint, is the increased immersion allowed this type of vessel by constructing the deck ballast tank partly above the molded depth level, which, in conjunction with the continuous side hatchways, forms a substantial erection, connecting up the ordinary erections and giving extra strength and reserved buoyancy, so that with litte increase in the weight of steel structure over that of the normal vessel a valuable reduction of the frecboard, and therefore a considerable increase in the dead-weight capacity of this ship, is gained, by the arrangement of the hatches and the formation of two trunks or feclers to the hold proper,

	${ }^{\text {Type }}$	Trpe	Type
Tois! estimated weruht of steel....Fercent	1.319	12198	1ais
bead.	3,tha	2, 150	3.410
Tot toanake	1,4ix	1,130	D, (c)
(sad lup-ude pank).icubic	13L.ss	16.8.80	15,060
Cubie capacity, excludons bunkers., Cubic it		130,100	,0*
	㳘		1, 1,300
Mesn draf with hatlart and	910	t0. $\mathrm{y}^{\text {\% }}$	170^{-}
Menaecntric beight, with bollast and bunktre			
Deadxergh - - net oonnus...	30	2.72	234
(ul	130	14	
apacity for untrimmed coal cargo net tonumge	to	13	
otat cubie capacily (5) + deadm			
Capracity for untrimmed coal			
	3	\pm	
weight of steel	109	$\times 3$	
Toral cubic capacity (5) + werghe of (t)	(\%)		

enabling such a ship to carry full cargoes of grain in bulk and dispensing with the necessary bagging otherwise required by law, while the expense of fitting shifting boards at the center line is reduced to about half, as the quantity required is necessarily small, the deck tank taking the place of the upper portion of these boards. By tapering the tank practically to a point at its lower extremity, and having the hatch coamings closer than usual to the sides, a self-trimmer is produced. Compared with other types, a greater pereentage of the hold and hatch space can be filled without any trimming.

The Wracking Submarine Boat Vulcan.

The l'ilican was designed by the French government to assist in case of accident the submarine vessels of their navy, and her building was kept very secret, but we were able to obrain a photograph, which we give in this issue. She is designated, however, in the French navy not as a wrecking boat for submarines but a steam lighter. Her dimensions are as follows:

Total length	$14 t$ feet.
Fxtreme breadth	22 feet 6 inches.
Draft	11 feet to inches.
Indicated horsepower	450
Speed	tt knots.

She is built entirely of steel and very stoutly. She is double bottom fore and aft, this double bottom having a height of 4 feet most of her length. The compartments adjoining the engine and boilers are watertight. She is divided into cight longitudinal compartments. She is fitted with a single

marine boiler, which furnishes stcam to the main engines and the auxiliaries

Her main engines are triple-expansion with three eylinders, making 105 revolutions, giving a speed of 11 knots.

On her tral trips she ran over 12 knots. She is fitted, it will be noticed, with davits in the bow, the use of which is apparent.
Just how this vestel will act when needed is a question which is yet to be settled.

Recent Trials of U. S. Battleship Utah.

With the recent trial of the U'tah the U'nited Statcs Navy Department is in possession of data of three Dreadnoughts which, while not identical in size or power, are sufficiently near to enable valuable and instructive comparisons to be made.

The Drloture and North Dakota have ilentical hulls and are nominally of the same power. The U'tah is of the same length as the other two, but has $\mathbf{3}$ feet more beam and about

18 inches more draft, so her displacement is nearly 2,000 tons greater. She is fitted with Parsons turbines.
In the case of these three ships the boilers are Babcock \& Wilcox, of standard construction, as supplied to the United States navy for large vessels. The boilers of the North Dakota and Delancere have 1,439 square feet of grate surface and $6 t, 950$ square feet of heating surface. The Utah has $t, 428$ square feet of grate surface, with 64,308 square feet of heating surface.
The following are the results of the C'tah's official trials at three rates of speed, but it will be noted that the horsepower is only on the main shafts of the turbine and does not include the auxiliaries:

Duration of trial (hours)..	4	24	24
Number of Parsons turbines in			
use	4	5	6
Speed developed (knots),	21.04	19.2	12.02
Shaft horsepower	27,038	17,150	3.938
Revolutions per minut	323.4	281.7	172

The Delatcore on trial made a maximum speed of 21.56 knots, with 29,043 horsepower for all purposes. The North Dakota made 21.01 knots, with 32,307 horsepower for all purposes.

Economical Results Obtained with a Loading Plant.

The enormous savings which can be made with modern loading appliances are shown by figures covering the performance of a new type of crane erected for the first time at the Grasbrook Gas Works, Hamburg, the characteristics of which can be seen in the illustration. The figures will be found of special interest, as a comparison is made with former mechanical appliances instead of with manual labor.

In bringing the jib of this crane into working position it does not drop in the usual way, as its special support on two hinged rods enables it to slide under the tackle, and thus make room for the action of the grab. Thus on sailing vessels the otherwise frequent and extensive repairs to the tackle are avoided, and on steamers there is no danger of collision with the wires for wireless telegraphy. The whole work, in particular the changing from one ship's hold to the other, is much simplified, so that the working pauses are reduced to a minimum. The result of this is an extremely good average capacity, which was assumed at 75 tons per hour for each cranc, although, as a matter of fact, an hourly capacity of 100 tons has been attained, and even considerably more when the conditions have been favorable and the hatchways of the steamers of sufficient width.
The statement of the savings made is even more remarkable. Formerly the coal vessels were unloaded by means of a

The Argentine Republic Minister of Public Works has signed a contract for the construction of a drydock at Pucrto Belgrano capable of holding the large battleships now being constructed in the United States for government of Argentina. The cost will reach $\$ 6,369,000$, and the work is to be completed in three and one-half years, mecting the rapidly increasing demands for docking facilities for naval and mercantile vessels.
hydraulic and a steam crane, by lowering small trucks of 1 -ton capacity into the ship and loading them by hand. During this operation two men were required to control the cranes, with an additional laborer on the steam crane, two men to direct the trucks, and twenty men to shovel in the coal, or a total of twenty-five hands. The discharge of the coal, including transporting to the coal sheds over an average distance of about

390 feet, cost about $61 / 4 \mathrm{~d}$. per ton, and about $1 / 2 \mathrm{~d}$. extra for stean and lubricating material, so that the total cost of discharging eame to about $61 / 4 \mathrm{~d}$. per ton.

Compared with these figures, the attendance on the two unloaders already erected (two further cranes are at the present time in course of construction) is very insignificant, as only two cranc operators and four men in the ship-or together six men-are required, representing a saving of no less than nineteen hands. The cost of discharge and transportation to the sheds now antounts to about 3 d . per ton, with an extra $11 / 2 \mathrm{~d}$. for currest, which will, however, later fall to about $1 / 6 \mathrm{~d}$., so that about $3 \frac{1}{4} \mathrm{~d}$, will be paid instead of the $6 / 4 \mathrm{~d}$. under the former arrangement. This represents a saving of about so percent on working expenses, or a profit per annum of about $\$ 6,570$ ($\mathbf{~} \mathbf{t}, \mathbf{3 5 0}$), assuming the present traffic of $\mathbf{t 0 0 , 0 0 0}$ tons.
In addition to this amount the allowance for reduced time required for unloading, which is calculated at fixed standards, must be taken into account. The time allowed varies according to the size of the steamer, but averages thirty-six hours per 1,000 tons, and an allowance of 65 . is made to the gas works for every hour saved. Now, assuming an average capacity of 100 tons per hour for each unloader, $\mathbf{t , 0 0 0}$ toss can be discharged in five hours with the two cranes already erected, or an average of thirty-one hours for 1.000 tons, or more than $21 / 4 \mathrm{~d}$. per ton; even in practical work on a large bulk of coal there was found to be an actual saving of $t \frac{1}{4} \mathrm{~d}$. per ton. To keep on the safe side we will therefore take the latter figure as a basis, and even this shows a saving for reduced time in discharging of about $\$ 3.407$ ($i j 00$) per annum, which is inereased to about $\$ 9.733$ ($\$ 2.000$) by the reduction in the sum paid for wages.

When the gas works are fully built to consume 3 fio,000 tons per annum, the actual saving will be no less than $\$ 3,504$ ($£ 7,200$). As soon as the two new cranes are completed the plant is also intended to transfer coal from seagoing vessels into barges, as shown in the illustration, for the use of the gas works Barmbeck and Billiwärder. For this service an allowance will be made to the Grasbrook works of about $83 / 4 \mathrm{~d}$., this rate including abont 254 d . for the cost of current. The profit here will therefore be about 6 d , or, including the saving for reduced time in unloading, $7 / 4 \mathrm{~d} .$, which would represent a further profit of about $\$ 28.226$ ($\$ 5.800$) on a yearly consumption of 180,000 tons. The total profit accruing per annum is therefore no less than $\$ 63,265$ ($41,3,000$), which would cover the entire cost of the plant in about one year's time.

This plant has been constructed by Messrs. Adolf Bleichert \& Company, London and Leipzig.

TWIN SCREW PASSENGER STEAUER PRINCE RUPERT.

The Prinee Rupert was buitt by Swan, tlunter \& Wigham Kichardson, Lid., at Wallsend-on-Tyne, to the order of the Grand Trunk Pacific Railway Company of Canada. R. L. Newiman superintended the building of this vessel and another similar one. These steamers inaugurate a new service between Prince Rupert, which is the western terininus of the Grand Trunk Pacific Rarlway, and Vancouver, and thence to Victoria at the southern end of Vancouver Island, and onwards to Seattle or Tacoma.
The steamer has a smart appearatice with its straight stem and cruiser stern. There are two pole masts and three funnels, the center one bearing the flag service of the company; viz.: a maple leaf in a circle traversed by a band bearing the initials G. T. P. The rounded cruiser stern has been adopted in order to obtain the best lines to give high speed. On service the ship will run at 17 to 18 knots an humr, though about 19 knots may be attained. The primeipal dimensions of the Prince Rupert are 320 feet over-all in leugth, 42 feet 2 inches in breadth, with a depth of is feet to the main deck. The ship is built to the highest class under the British Corporation survey, and also complies with the Board of Trade regulations for passenger steamers. The gross tonnage is 2.850 . The engines and boilers, with Howden's forced draft, were constructed by the Wallsend Slipway \& Engineering Company, l.td. The former consist of two sets of triple-expansion engines, balanced on the Varrow, Schlick and Tweedy system.

On the shelter and shade decks are staterooms of two herths each for about 220 first class passengers. There are aloo a few sets of staterooms en swite on the shelter deck amidships. Second class passengers are carried on the main deck forward. When occasion arises about $t, 500$ excursionists can be taken on board. A pleasant feature of the first class accommodations are two spacious corridors running fore and aft, one on each side of the engine casing, and to enhance the general appearance light is given from several domes in a long roof, which also has a clerestory. This design, hesides affording plenty of light and ventilation, gives a lofty appearance to the interior. The dining saloon on the main deck is at the extreme after end of the vessel. The rounded shape of the cruiser stern makes a handsome room, which is furnished and paneled in oak. Instead of having large tables there are several small ones placed in bays. Immediately forward of the dining saloon are the stewards' pantries and the kitchens.
At the after end of the shade deck is a handsome smoke-

room for first class passengers, paneled in fumed oak. The second class smoke-room is at the forward end of the shelter deck. There are special accommodations for ladies in the shape of a music room, dantily furnished in light colors, the painting being white enamel. The main staircase is a notable feature, the paneling of the walls being in white cnamel and the balustrades of wrought iron elegantly designed. The promenade on the shade and boat decks is spacious. On the shade forward of the funnels is the observation room, patteled in maple and sycamore. This room is specially lofty and well lighted by very large square windows, allowing passengers to have an uninterrupted view of the seenery en route. The cabins in all the deckhouses lave wide rectangular sliding windows, provided with jalousie screens. The Prince Rupert has a wireless telegraphy installation, refrigerating machinery for ship's stores and dairy produce, electric light and steam heating throughout. The rudder is of the balanced type, wholly below the waterline, and is actuated by a telemotor stecring gear.
have been thoroughly insulated and arranged for the carriage of frnit cargoes in bulk, and the preservation of these cargoes is ensured by the installation of an efficient plant of refrigerating machinery for the provision of cooled fresh air, which is delivered through ducts to each of the compartments by electrically-driven fans, thus securing the maintenance of an equitable temperature at all times, Access to the holds is by four large hatchways, equipped with steam wiwches, derricks and other appliances necessary for expeditiously dealing with a keneral cargo and fruit in bulk, while a special steel derrick is provided for lifting exceptionally heavy weights. The vessel is propelled lyy a set of improved triple-expansiou engines, supplied with steam from five single-ended steel multi-tubular boilers working under foreed draft. The Metapun has been built under special survey for the highest class in the British Corporation Registry of Shipping. and fulfills the requirements of the British Board of Trade and the United States Steamboat Inspection Service.

This vessel is a striking example of the embodiment in one

BTEAMBHZP METAFAN DESTORED FOL THE WEST INDEAK FRCET TAADE,

FRUIT STEAMSHIP METAPAN.

The Mctapan is the twelfth vessel built by Messrs. Workman, Clark \& Company, Ltd., Belfast, for the Tropical Fruit Steamship Company, Lid., Glasgow (Messrs. Clark \& Service, managers), and, like her sister vessels the Santa Marta and Almirante, has been specially designed and constructed for the West Indian fruit trade. She is 394 feet in length and has a gross tonnage of over 5,000 tons. A special feature of the vessel is the accommodation for over 100 first class passengers. The staterooms are roomy, arranged for two and three persons, and include a number of special rooms with iron bedsteads and artistic furniture and having lavatories adjoining. The public rooms include a large, well-lighted dining saloon, with tables arranged on the restaurant system; a spacious entrance hall, arranged so as to minigate as far as possible the congestion which frequently occurs at time of embarkation: a luxurious music room, opening off the entrance hall, and a comfortalle snoke-room. All these rooms have been arranged and furnished with a view to securing the utmost comfort and pleasure of the passengers, the furnishings and decorations being of the most luxurious and artistic character, while the lighting and ventilation of all the rooms, private and public alike, have received most careful consideration.
The cargo space is divided into eight compartments, which
design of the features developed in recent year* to provide for the comfort and safety of passengers and the economical dis* tribution and handling of ireight. The trials and the initial voyage of the ship proved the efficiency and reliable action of her propelling machinery:

EWTEANCE HAKF OA THE METAPAK.

American Vanadium Facts

 Published monthly by the American Vanadium Company

This is the only regular publication in the world on the industrial application of Ferro Vanadium and Vanadium Alloys.

In an age of Steel-making that is largely characterized as the Vanadium Epoch, the contents of this monthly journal must be of vital interest to every man who melts, fabricates or uses steel, iron, or non-ferrous metals.

Buyers of metals are specifying Vanadium in their compositions because Vanadium increases the strength, toughness and life of all metals. Makers of steel and iron castings, forgings, and miscellaneous parts must get ready for the specifications.

Send us your name and correct address and you will receive this valuable publication free every month. It shows how to reach the high points in making steel, iron, brass, bronze and bearing metals.

American Vanadium Company

Largest Producers of Vanadium Alloys in the World 318 FRICK BUILDING, PITTSBURGH, PA.

Entire product sold by:
Vanadium Sales Contpany of Ancrica, 318 Frick Bldg., Pittsburgh, Pa., and Universat Vanadium Conpany, 30 Church St., New York City; 64 Victoria St., Westminster, Lundon, England; 23 Rue de la Paix, Paris, France.

-PROPELLERS

WHAT IS THE FIRST REQUISITE FOR A PROPELLER?
A HIGH GRADE COMPOSITION METAL.
WHAT ARE THE ESSENTIAL CHARACTERISTICS OF THIS METAL? GREAT STRENGTH, TOUGHNESS AND NON-CORROSIVENESS. how Can these essentials be guaranteed?
bY USING VICTOR VANADIUM BRONZE.

Like few other high grade compositions, Victor Vanadium Bronze is non-corrosive in salt water. It is very strong and tough, as well as ductile, showing a tensile strength of $70,000 \mathrm{lbs}$. , and an elastic limit of $40,000 \mathrm{lbs}$., and it has a very close molecular structure.

Probably one of the most distinctive points is the light weight of Victor Vanadium Bronce compared with other bronze compositions possessing high tensile strength. The specific gravity of Government bronzes runs from 8.75 to 8.85 , while that of Victor Vanadium Bronze is only 7.84, a decrease of over 10%.

Specify Victor Vanadium Bronze in your propellers.

VANADIUM METALS COMPANY

GENERAL OFFICES - - - - PITTSBURGH, PA.
FOUNDRIES - - $-\left\{\begin{array}{l}\text { EAST BRAINTREE, MASS. } \\ \text { GROTON }\end{array}\right.$
GROTON, CONN.

New Vessels for the Porto Rlcan Service.

Steamships Corozal and Montoso liave just been added to the fleet of the Porto Rico Line. The design and specitications for these vestelv were prepared under the direction of Mr. Franklin D. Mooncy, vice-president of the line, by Theodore Ferris, oi Cary Smith \& Fierris, the New York architects.

> Length over all...... 347 feet 7 inches
> Length (Lloyds) 334 feet 5 inches.
> theam, molded. fo feet 9 inches.
> lepth, nolded to main deck........ 25 feet.
> Load draft............................ an fect.

The vewels were butt unuler special survey of Lloyds and to their hishert clac-. They make a speed of to knots in ser-

A BECENT ADDIFION TO FHE FLEET of THE PONTO ACO LBKE

The vessels were built by the Newport News Shiphuilding \& Dry Dock Company. The contract for both vessels was let on July 12, 1910; the keel of the Corozal was laid on September 28 ; the vessel was lauuched on Decemier 3t, and leff the builder's yard on February 19. This is a record of 188 working days from contract to completion.

The vessels were designed for the sugar and general merehandise trade, with a steel lower teck, eargo ports, large hatches and a specially complete outtit of winches and cargo booms. The dimensions are as follows:

AFTER DECK OV THE MONTO9O.
vice when loaded with alout 4.700 tons deadweight. This speed is maintained on a consumption of 22 tons of coal per day. The versels have a complete double bottom all fore and aft, a complete lower deck, and the main deck is flush with the steel inluarks. There are two tiers of stel houses amidships, with teak pilot house above and a small steel house aft. There are two masts and two derrick posts, with a total of eighteen cargo booms, one of which is designed to handle 30 -ton loads. The boonss are served by eleven winches. Two of the cargo hatches have a lenuth of 26 feet. two 23 feet so inches and one

NORGABD DECE or the MONTOSO.

13 fect. The beam stanchions are wide-spaced, with girders, and a watertight bulkhead is fitted to divide the fore hold. There are four cargo poris on each side for trucking freight from the lower deck. The machinery is located amidships, with a large cross bunker below the lower deck. The space between the lower and main decks abreast the machinery casings is arranged for carrying either coal or cargo. The total space under deck available for cargo is about 236,000 cubic feet. The officers have very complete quarters in the
shipyard, and the detached pumps, except the circulating pump, together with the deck machinery, were built by outside manufacturers. The machunery develops about 1,300 indicated horsepower in service at sixty-nine revolations per minute. A third vessel of identical design is under construction at Newport News for the same line, building under the superviston of the designers. The three pictures give atl excellent idea of the general appearance of the vessels and of the unnsually complete cargo-handling appliances.

'midship houses. The firemen and seamen sleep in the after house and mess amidships.
The machinery consists of three single-ended Scotch boilers built for 190 pounds working pressure, natural draft, and one triple-expansion engine with cylinders $211 / 2$ inches by 36 inches by 63 inches diameter by 42 -inch stroke. The steam auxiliaries are unusually complete. The propeller is of the sectional type with manganese bronze blades, In accordance with the general custom the main machinery was built at the

CANADIAN SURVEY STEAMER CARTIER.

The twin-screw steamship Corficr, built by Messrs. Swan, Hunter \& Wigham Richardson, Lid., at their Neptune Shipyard, Walker-on-Tyne, for the hydrographic service of the Canadian government, is illustrated in the accompanying engravings. The Cartier has been specially designed for survey work principally on the eastern shores of Canada, and in its design and equipment regard has been paid to the fact that on

occasion voyages will be for long periods. The general particulars of the vessel are as follows:

Length	173 feet 6 inches.
Breadth	$2 y$ feet $13 / 2$ inches.
Depth, molded to upper deck.......	15 fcel .
Gross lonnage	555.7 torts.
Net tonnage	2.34 tons.
Deadweight capacity	230 tons on 11 fect.
Displacement	1,035 ton 5.
Drafi	12 feet 8 inches.
Service speed on trial	$11^{1 / 4}$ knots.

The Carfier is fitted with twin-serew triple-expansion engines, with cylinders $111 / 2$ inches, 18 inches and $3 t$ inches by 25 inches stroke; is supplicd with steam by two cylindrical multi-tubular boilers, to feet 6 inches diameter and it feet 6 inches length, having a pressure of 185 pounds, and working under Howden's system of forced draft. As will be seen by a reference to the drawing there are many watertight compartments in order to ensure the safety of the vessel when in uncharted waters. On the lower deck, aft, is accommoda. sion for the hydrographic staff, consisting of saloon, bath. rooms, living room and four staterooms; and, forward, on the same deck is accommodation for the petty officers, seamen and firensen. On the main deck, aft, is a deek saloot and niesty roont for the hydrographic staff. with pantry and stewards' stores adjoining, and forward is the messroom for the navigating and engine staff, with pantry and stewards' stores and two staterooms for the second and third engineers and mate. In the forecastle side honses is wash-room and bath-room accommodation for the crew and petty officers on the port side, and earpenters. shop and coal storage on the starboard side, while immediavely under the forecastle is storage room for gasoline in tanks. On the shade deck is a "Lucas" sounding machine, arranged on the bulwark rail on the port side, and towards the eenter, abait the main mast, is a doublecylinder vertical sounding winch, constructed by Messrs. Clarke, Chayman \& Company, Lid ${ }_{2}$ of Gateshead-on-Tyne. This winch has cylinders 5 inches in dianseter and 6 inches stroke, and is fitted with whipping drum g $1 / 4$ inches in diameter keyed directly onto the erankshaft. The drum is fitted onsside of the frante clear of the engine, while the other end of the shaft is fitted with brake hand-wheel. The winch has reversing valve, serew-down stop valve, ete., and is mounted on a east iron bedplate with a trough cast on it to prevent oil and water running over the deck. Amidships on this deck is the chartroom and pilot-house, with bedroom and day room for the sailing master. The chart room, 15 feet by 7 feet, is fitted with a special drawiug table, 5 fees by to feet, built in three thicknesses of pine, the front and frame being of oak. There is accommodation for a total crew of forty-tliree, ineluding officers and engine men. The auxiliary machinery consisis of a steam windlass (Clarke, Chapman \& Company), steam and hand-stecring gear, by John Hastic \& Company, Ltd., of Greenock, and a refrigerating engine of the No. 3 single vertical marine $\left(\mathrm{CO}_{3}\right)$ type, by Messrs. J. \& E. Hall, L.td., of Dartford, Kent. There is steam heating thronghout the vessel, and in all rooms and toilets, with the exception of those under the forecastle, are stcam radiators, each having 25 square feet of heating surface for every 1,000 feet.

As the Cartier may be required to work in extremes of temperature. an elaborate system of ventilation has been introdoced. In shallow water the staff of the Carticr will leave the steamer and conduct surveys in lannches and boats, afterwards returning to the vessel to work 4 their observations. Accordingly, there are provided two gasoline (petrol) lannches. each 27 fect by 6 feet 7 inches by 3 fect, av also two gigs. 27 feet by 6 feet by 2 feet 5 inches, and one dinghy, 18 feet by 5 feet 4 inches ley 2 feet 2 inches. The steam winches, provided
for the housing of the boats, are arranked with special leading blocks, so that they may be used for hoisting any one of the four boats. There is an electric searchlighs on the bridge, and the other special outfit of the vessel comprises a standard compass of the Lord Kelvin navy pattern, while the steering compasses include a Ritchie standard compass and a Wilson \& Gillic compass. The Cartier was built from the designs and under the superintendence of R. L. Newmans, of Victoria, B. C., eonsulting naval architect for the Canadian government.

French Turbine Steamer Charles Roux.

The most notable feature of this new addition to the French mercantile fleet is her turbine machinery, the first to be installed in so larke a French-buitit steamer. Her speed of so knots will reduce the crnising of the Mediterranean from Marseilles to Algeria very consaderably: In fact, she will make the passage in iwenty hours. The following are her general dimensions:

l.ength over all.	400 feet 8 inches.
Length between perpendiculars.....	388 feet 5 inehes.
Beam	45 feet 7 inches.
Depth	26 feel 2 inches
Draft, forward	t5 feet 1 inch.
Draft, astern	20 iect 4 inches.
Displacement, full load	4,610 tons.
Gross register	4.104 tons.
Net register	3.055 tens
Indicated horsepower	10,000
Mean speed in service...	20 knots.

Accommodations for passengers on this steanter are superior to those of Lo Provence The bull is built of mild steel from latest improsements in order to obtain the highest rating in the French Bureau Veritas.
A double bottont has been worked from stem so stern, with a total capacity of 197 tons of water, which is quite sufficient to give the vestel the best trim. She is divided into cleven watertight eompartments and fitted with watertight doors, which may be closed from the navigating bridge in forty seconds,

Veriically, she is divided by three steel decks, worked from end to end. The twin deck is used for third class passengers; the man deck for first, second and thirel class passengers and crew; the spar deck by the first and second class passengers only; the promenade deck is used exclusively by first elass passengers.
The turbine engines are by far the most interesting part of the ship. They are Iocated in a special watertight comparment, situated very far aft. They require considerably less room than the reciprocating type of engine, and are at the same time extremely simple to handle.

These turbincs drive three propellers, 6 feet 3 inches in diameter each, with a pitch of 5 feet 7 inches, and they are run at 440 revolutions per minute.

The central propeller is driven by the high-pressure turbine, and the two outhoard propellers are driven by lowpressure turbines.
Stcam is supplied to the main engines as well as to all auxiliaries by eight eylindrical marine type boilers fitted with the Howden forced draft. They were buitt by the Chantiers de I'Aslantique, and the turbines were built by the Electro Mecanique Company of L'Bourget. Paris. The dimensions are as follows:

Two big funnels are used. The lighting throughout the ship is electrical, goo lamps being provided. The air of all the compartments and the bold is renewed ten times per hour. Steam radiators are supplied throughout which are able to maintain under all conditions a temperature of at least 70 degrees F. Refrigerating apparatus is supplied in order to care for the fruits which are a large part of the cargo from Algeria. Most of the auxiliary apparatus is electric-driven.

Bow-on Collislons.

The result of a bow-on collision with an iceberg is shown by our illustration. The Columbia of the Anchor Line ran into an iceberg at a very slow speed during a dense fog, and while no lives were lost several passengers were quite severely injured, being thrown down by the impact. It is not hard to imagine what would have been the fate of the vessel if her speed had been even moderate. In this case the wireless apparatus was in working order, but the operator was unable to pick up for a considerable time either a ship or station. The value of strong bulkheads is most clearly evident here, as without them the accident might have been a catastrophe or even a mystery.
In the English Channel the steamers Josephine and Dobrogea collided, and we reproduce a photograph of the Joseptine's bow. The plates on the port and starboard bow seem to have been most symmetrically foreed back and the stem maintained its vertical position. The quick bend of the metal on the starboard bow resulted in cracking the material, as can be clearly seen. Neither of these vessels required assistance to make their ports after the accident, and here again the value of the butkheads is made apparent.

 (Photograph by Le:ick)

DAMAGE TO A LAKE UREIGMTE ATTEE DINKIKE A STEAMSHIF,
In July the Great Lakes ireighter William Henry Mark during a dense fog rammed and sank the steamer Johm Mitchell in Lake Superior. The accompanying picture shows the serious damage done to the bow of the Mack. She was hauted out for repairs in the yard of the American Shipbuilding Company. These illustrations show the local weakness of steel ships, but they emphasize the value of collision bulkheads when built sufficiently strong and watertight.

BOW OF THE JOSEPMINE AFIER COLLSION, SHOWING CBACKED METAL

A STEAM JBAWLEA FOH THE FEEVCH NEWFOUMPLAND FBHEALES

Steam Trawler Notre Dame des Dunes.

The steam trawler Notre Dame des Duncs was built for the French Newfoundland fisheries, and by Messrs. Coehrane \& Sons, Selby. Her length is 160 feet; beam, 25 feet, and draft, it feet 6 inches. The engine with which she is fitted was built by Messra. Amos. Smith, of Hull. The cylinders are 14. 23

A Speedy Boat.

The motor boat Tyreless III., built by Messrs. J. W. Brooke \& Company, Lid., Lowestoft, for Mr. F. Gordon Pratt, is one of the very interesting boats of the season. After she was launehed there were only two days for tuning her up in preparation for the eliminating trials of the B. I. trophy.

and 38 inches in diameter, the stroke being 27 inches. The boilers are of Scotch marine type, 14 fect 3 inches in diameter by 11 feet long, and carry a working pressure of 180 pounds. The steam trawl winches have great eapacity, being able to earry 1,000 fathoms of warp on each drum, and all appliances fitted are of the best for deep-sea fishing. An electric light plant furnishes light for all hands, adding to the comfort of the officers and crew. The arrangemem, as shown in the sectional view, is worthy of study. Great care has been taken to ohtain an extremely large coal storage, necessitated by the vessel having to keep the sea for a long time. Two spare eoal bunkers are provided, whose eontents can be reached through a tunnel. The main eoal bunkers extend aft on each side of the boiler-room to the engine-room, and forward of the engine-room completely across the ship hetween frames 3t and 47 . The engine-room force is berthed just abaft the engine-room, but not on the same level as the engine-room floor, but above it. These quarters are comfortable and conveniently situated for those in charge of the engine-room. The crew are all berthed forward, while the officers are quartered amidships in the deckhonse.
A steam steering gear is fitted as well as an anchor hoist. It will be perhaps noticed by many that the deckhouse does not rake with the smoke stack and mast, which gives the vessel an odil appearance at first glance. This vessel fishes the Newfoundland water and also the waters near Iceland.

The brat made a speed of 30 knots, and the accompanying picture was taken when the boat was on her speed trial,
The hull of Tyreless /II, was designed by Messrs. Cox \& King, and was built by Messrs. Brooke \& Company of mahogany. She is equipped with two six-cylinder, 150 -horsepower Brouke engines, driving independent screws, one serew fitted below the other. That motor boats of this type prove to be most excellent sea boats is an interesting fact when it is considered they are designed for racing in comparatively smooth water.

TWI TVEILES 111, CIFABLE OF 30 KxOTH,

PRACTICAL EXPERIENCES OF MARINE ENGINEERS.

Incidents Relating to the Design, Care and Handling of Marine Engines, Boilers and Auxiliaries; Breakdowns at Sea and Repairs.

How the Work was Done by "Coupling."
Editor Inteksational. Marine. Enginemine:

The letters you scnt me about how I repaired a broken crankshaft made me feel pretty good. I will do my best to tell how that coupling job wa-carried ont as close as 1 can remember it.

I notice one letter goes into figuring, but I know enongh not to geI tangled up with $x, y^{\prime} s$ and $z ' s$, and 1 aceept one gentleman's idea that as the repairs staod all right there is nothing more to be said. As some one put it, "1f a thing is too strong noburly finds it out."

In Weat Indian ports, as long ago as I made them, the repair shops were not fitted out for much more than a rough job. When I found the piece of shaft I looked over the shop and found a crank shaper. I think it was called a "Richards" or "Richardson" shaper. It had a long bed with two working rams and knees, but one had been "carried away" and only the knee was left, but this conld be raised and lowered and fed alonk the leed. The kuees were about 16 inches wisle. The other tool needed was a $111 / 2$-inch lath; they call it a 23 -inch swing lath in America, I boisted the re-inch length of shaft onto the shaper with a great deal of trouble. I managed to cu the shaft half through by using three lengths of parting tomils, I then surned it half round and eut down throngh the other malf. I rook sare in tloing this so as to ket a good straight face. I cannot remember jutt how bong it took me to do this, bus I think it was fourteen hours. I rougherl out for the halfround. The most particular part in doing this was to get the sides parallel. The first side was easy enongh, but the second half took a lot of care to se: jnst right, as if I didn't get the width and depth in these slots juct the same on both sides I would not get a good fit on my "half moons" or have the couplings stand square. The end of the shaft which I cut off I had put in a lathe, and the stub cut off and the flange faced up good and square. I then had a b-inch hole bored through the couplings, and turned a 2 -inch recess 7 -inch deep in it. This was for the thickness of the metal I left between the end of the couplings and the slots. I could not go any further with this part of the work until 1 had the shaft end planed, as the lathe work only took about ten or twelve hours. I took the coupling out of the lathe and set four pieces of scrap iron $1 / 4$ inch the proper distance, and turned them off just so my 12 -inch recess would slip over them. This brought the coupling abwolutely true without any trouble. I can tell you, Mr. Editor, in doing all this work we just sweat blowal.

It took a good deal of care when I got the compling done to get the holes drifled in it just right, and one of them was off and I had to file it quite a bit. After I parted the coupling I clamped the parts sogether on an angle plate, and planed them off to a line.

It took abont eight hours to fit the two halves of the couplings in place and to drill the holes. "1 guess." as they say up in America, "most men would have done this job about as I have did it." I want to say that my "First" was a fine mechanic, and I wish I could remember his name to give him credit for much of the work on the job, and especially when it came to laying out and doing the finer parts. He always went by the name of "Rio," as we picked him up at that port.

Couplinge.

Repairing a Broken Shaft.

Emior 1 xternstional Makine. Enginefling:
It seems to me that the repair of the broken shaf! on the Clara Belle by "coupling" wav an aumurable trick. The incident is one of thousands which g.) 10 prove that the marine engineers are the ones who know how to do thangs. I believe that the repair is practically as strong as the 11 -inch shaft; af least the mathematical treatment of the ease confirms this belief, and nothing short of the actual teat will ever prove which part of the layout is stronger than the rest.
The furnlamental formula for torsion is $\frac{S /}{C}=P_{r}$, where S is the greatest stress per square inch, C is the distance from the center of the shaft to the center of gravity of the element farthest out, and J is a term called the polar mowenf of inertio. Without going into a mathematical demonstration of the orisin of J, it can be taken by the reader simply to stand for that part of the resisting moment of the shaft that is the sum of the products of each little area or element of the shaft multiplied by the square of its distance from the center. Fach square inch of the shaft offers a certain amount of resistance to torsion, and the value credited to each square inch will depend upon its location in relation to the center of the shaft. The letter f stands for a summation covering the entire area of the shaft, and the values of J for all standard forms are given in tables in engineering handbooks. Fer a solid circle $J=1 / 32 \times 3.1416 \times d^{\prime}$, and for a rectangle $)=1 / 6 b \times d\left(b^{2}+d^{8}\right)$.
By applying the prineiples explained above to our problem. we have

$$
\frac{S 1 / 32 \times 3.1466 \times 1 t^{2}}{5^{1 / 2}}
$$

for the resisting moment of the 11 -inch shaft, and

$$
5_{1} \times 1 / 6 \times 10 \times 6\left(10^{2}+6^{3}\right)
$$

$$
\sqrt{5^{\prime}+3^{3}} \cdot \text { or } 6
$$

for that of the tang on the 12 -inch shaft. Forming the ratio or proportion of maximum stresses in each part, we have

$$
\frac{S}{S^{1}}=\frac{1 / 6 \times 10 \times 6\left(10^{2}+6^{2}\right) \times 51 / 2}{6 \times 1 / 32 \times 3.1416 \times 11^{1}}
$$

concentrating and relucing

$$
\frac{S}{S^{4}}=\frac{2,720}{3.03^{8}}, \text { or } \frac{S}{S^{4}}=\frac{27}{30}
$$

approximately. This resull shows that the stress in the 6 by 10 tang is slightly greater than the maximum stress per equare inch in the 11 -inch shaft. But it must be remembered that we have figured on only the 6 by to section, whereas there are some 7.7 square inches additional in the two segments at the eruls of this rectangle. By taking the segments into account the value of J will be changed for the better: hence it is very likely that the tang on the end of the 12 -inch shaft is as strong, or stronger, than the it-inch shaft.
F. Webstrar.

Some Boiler Experiences at Sea.

Euhtor Intemational Maktie Esgeneeming:
There is a little anecdote knocking around, but only partially believed, of a philosopher skipper of a coasting vessel who met with a nasty accident to his boilers. He broke it gently to his owners by telegraphing. "Cannot put to sea. Boiler gotte out." His owners thought it was a case for the lunacy commissioners, but wired back, "Light the fires again." The reply was, "Cannot light fires. Boiler gone out through deck." While the experiences to be related are hy no means so liarrowing as this, they may contain points of interest to other engineers that will make them worth printing

First of all, however, it may be said that looking after a boiler while at sca is by no means the same proposition as attending to the comforts of a steam installation on land. In the latter case there are usually plenty of tools of all sorts available, if not on the works at least within telephone call, and in case of serious trouble the makers of the boiler can be got hold of and renewal parts dispatched without much difficulty. On board a vessel it is different. Often the supply of tools is not excessive; the matcrials for repair beyond the ordinary joint rings, ele, have to be sought for, and often trouble occurs just when it ought not to, as heavy weather always finds out the weak places. Even if a vessel can be got to port it is as likely as not a few thousand miles from anywhere where engineermg supplies can be bought cheaply, and where, probably, there is nothing to speak of in the way of an engineering shop in the whole place. For this reason the marine engineer is thrown very much on his own resources. Some of the johs he makes of repair work are erude if effective, until one takes account of the materials and opportunities at his disposal. Then they are oftentimes marvelous.
In one case the top of the boiler round about the main stop valve had become badly corroded and very thin. The eause of this in the first place was due to allowing the gland of the stop valve to leak. This had caused the covering to be worn off the boiler near the valve and eorrosion had set in. U'limately the boiler gave out while steam was being raised. On examination it was found that a considcrable area had lieen affected by corrosion, so that a piece was eut out of the bad plate measuring ahout z 'feet by $11 / 3$ feet. A piece of steel plate about $1 / 2$ inch thick was found on board, and this was eut down to about $21 / 2$ feet by 2 feet. It was then heated and hammered matil it was brought as near to the curve of the boiler shell as possible, and holes were then drilled through the boiler shell $7 / 4$ inch diameter by about $21 / 2$ inches apart. The plate was then put through into the inside of the hoiler, and the holes marked off on it while it was in place. After drilling it was bolted and hammered up into its place, afterwards leeing riveted with rivets made of the best Swedish irou These rivets, by the way, had to be made on board from bar-iron, as no rivets were procurable. When the riveting was complete, the plate was securely ealked, the valve was replaeed, and the part where the patch was heing lower than the boiler shell. owing to the plate being on the insile of the boiler, was filled tup with eement and smoothed over in order to prevent any water lying on the boiler. It was not, perhaps, a pretty repair, but it served its purpose.

Very nasty oceurrences can happen owink to improper treatment of boilers. They ntay stand it for some titue, but eventually there is the devil to pay. Some engineers, for example, when giving orders to light the main boiler fires, light the middle ones only, and leave the wing fires until the next morning They then wonder why the boiler begins to leak at the seans on the botton, A little consideration will show that the top will be hot, under such circumstances, long before the hratom is heated $u \rho$, and therefore unequal expansion will
follow, with the inevitable result of leaky seams. The proper way to treat a boiler is to light all the fires at once and to keep on cireulating until the steam is fully up. A marked difference in the state of the seams will be found with careful treatment of this kind.

Another thing in the treatment of a boiler which requires careful watching is the use of mysterious compounds known as boiler fluids. Sume of these are good, others are not; cven with the bext of them they ought to be treated as ghysic and given to the boiler in measured doses. Reckless wie of such materials may easily lead to scrions trouble. On one occasion a Fox tube, forming the center furnace of a boiler having three furnaces, collapsed suddenly, and the cause of the collapse was found to be owing to the reckless use of such a boiler fluid. This liquid was supposed to bring the scale off the water-side of the lreating surfaces, and the chief engineer used the flnid in unduly large quantities. The result was that so far as the small tubes and the tube plates were concerned, the scale was brought off most effectively, and the same action occurred on the tube crowns of the wing furnaces. The unfortunate part about it was, however, that all the scale ran down tyon the crown of the center furnace tuhe, with the reitalt that it became overlieated and laid down for a rest upon the firc-lars. As soon as the oceurrence was discovered the dampers of the faulty boiler were at once closed, and steam was taken off the boiler by opening the engines full out, putting the cold-water feed upon the other boiler and running the ballast donkey pump. As soon as it was safe to do so the boiler with the damaged furnace was shut off until the eollapwed furnace tube had been built up hard and solid with fire-bars, firebricks, scrap iron and anythiug else safe and handy. Then the other two fires were set away in the boiler, which was then only worked with the wing furnaces. The soyage was conmpleted by using steam at a reduced pressure, and the danger of two uuch boiler fluid was amply demonstrated.

One rather lively experience in connection with a boiler furnace tube shows the jnadvisability of thinking that they will work forever and a day. In one old steamer a piece of metal about $1 / 2$ inches wide and $21 / 2$ inches long blew out of the cemer furnace tube, which was plain, slightly above the line

ria. t.
of the firc-bars and a little in front of the bridge, as shown in Fig. t. The engincet on watch when the oceurrence happened, on learing the noise (which wat considerable), went to the stokebold, but could see nothing but steam. He could, however, hear plenty of water llying atout. He therefore west back to the engine room and had a look at the sage glasses. He found that the water was rapidly going down in the port boiler, and therefore put the extra feed full on, shut the other check down it the remainink boiler, opened the engines out, shut the main damper, and got the donkey feed frump under way as well. By this time the chief engineer had g.t to the serne oi action, and together they made an attempt $t 0$ get into the stokehold, but they had to come out again in a hurry. Oif comree, they knew that the trouble was located in the port boiler, and a, soon as the steam got riglat back they shut this boiler off. They eased the safety value and blew all
the steam off, the vessel stopping. As soon as this was done they succeeded in getting into the stokehold, from which the firemen had excaped, one with a very bad scalding. The place presented a rather disorganized appearance, as the furnace had no fire-bars in and everything lowse had been distribured round the stokehold. Steam was got up again in the starboard boiler, and the ship proceeded again at half speed on one boiler, while the hole in the port boiler was repaired by putting a patch on the inside of the furnace tube, as shown in the first sketch. The patch was secured by $3 / 4$-inch boits, and to stop the fire from burning the double thickness of plate which was now on the furnace tuhe, due to the patch, the bridge was built further out so as to come over the bolt heads and so protect the weak part. Steam was then got up again, and the repair carried the vessel safely to port. The cause which Jed up to this piece blowing out was that pitting had gone on to a very considerable extent at this point and tronble was expected, though not to such an alarming extent It should be said, by the way, that the joint between the patch and the furnace tube was made with Portland cement and gauze wire. The way the repair way effected may not recommend itself very much to the aristocrats with unlimited engineering means at their disposal. The "classy" way of effecting a repair on a furnace tube would be to hevel the hole, and then bevel the plate which forms the patch. Then the patch should lie on the fire side, and thus, theoretically, there would only be one thickness of metal. But the practical marine engineer who attempts to make the repair in this way while the vessel is at sca is either an extraurdinarily elever fellow or else he has bitten off more than be can chew.
Another instance of first-class trouble in a boiler due to apparently insignificant causes can be related. In this case the wrapper plate of the combustion chamber of a boiler became

N16. 2.
holed owing to the way the feed-water impinged upon it. Pig. 2 shows generally the way in which the boiler was arranged with the position of the check valve on the end of the boiler. Fig 3 shows nore clearly the slape and general arrangement of the internal pipe leading from the check valve into the boiler. It will be seen tha: this internal pipe was screwed on to an extended spikot which passed through the bole in the boijer plate back of the check valve flange. This internal pipe, as originally fixed in the boiler, was arranged to stand in an upright position, but in course of time it became loose on the screwed spigot and thrned round till it hung downwards. This caused the water to be discharged into the boiler in a stream, which impinged onto the wrapper plate of the comhustion chamber. The result was that the local action of the eold feed water upon the hot
plate soon weakened the latter, and whimately this weak part was blown out. The repair of this failure necessitated the blowing down of the boiler and waiting till it was cool enough to enter. The hole was then patched with a plate on the fireside, the bohts being put through from the water side and the nuts being therefore on the lire-side of the plate. The task of getting this plate bolted up into place will be seen to have been no easy one, when it is considered how all the small stays of the boiler got in the way of the engineers while at work. When the job was done the internal pipe was secured

in its proper position so that it would not turn round again. This pipe was about 18 inches long, and stood in between the two combustion chambers, the back plates of the combustion chambers being about 7 inches off the back of the boiler. The wrapper plate was holed in the plain part a little distance from the cover seam.

A fittle negligence goes a long way towards causing trouble in connection with a boiler, and the firemen need to be carefully watehed in this respect. A word may be said regarding the hahit of leaving the hot ashes on the footplates near the boiler. This is a very had practice indeed and should not be allowed on any account. Apart from the danger to boiler doors the front plates of the boilers in time beeome burnt, necessitating expensive repairs. Moreover, if the ashes are cooled ly throwing sea-water over them, and the ashes allowed to lie there in this wet state, one of the best ways of starting external corrosion of the boiter plates will have been indulged in, and this practice will sooner or later involve disaster if it is not noticed in time. An instance where a repair, which, although of a minor eharacter, is sufficiently typical, occurred through the firemen allowing the clinkers to remain on the footplates after cicaning the fires, is illustrated in Fig. 4.

He. 4.
In this case the trouble was located in the dog of a boijer man-hole door. This was on the bottom boiler door, and in the stokehold, and the firemen allowed the clinkers to remain, covering the door. The result was that the dog got burnt to the shape shown in the sketch (a) and the engineer of the vessel rightly considered it unsafe, in its weakened state, should there be a vacuum formed in one of the boilers when the steam was off. It, therefore, became necessary to extemporize a new dog as shown in plan and elevation in (b) by bending two picces of iron to the shape indicated, drilling 1 -inch holes through them, and then riveting the two pieces together. This made a good strong dog.
Trouble does not always oceur in the main portions of the boiler. The smallest details have to be watched as well. This way shown in a happily little experictice which occurred
with a salinometer cock. The engineer one day went to open the eock in one of the boilers to draw some of the water in order to take its density, and to his surprise the cock flew ont of the shell as soon as it was turned, as the thread in the gland nut had stripped. The engineer found the eock again and, at the expense of being scalded to some extent, he managed to get it into place again by holding it over the shell and giviug it a sharp tap with a hand hammer. He then hung on to it and held it down in its place until one of the other engineers arrived and bound it down with some copper wire. In ortler to make a permanent job of the matter, two small plates were cut, as shown in Fig. 5, and these were arranged with two $\$ / 6$-inch bolts and nuts so that they braced the parts

110. 5.
of the cock together, as shown in the illustration. This arrangement left the cock so that it could be worked in the ordinary manner without danger.

Every engineer with sea-going experience will know the great difficulty which is experienced with the packing of boiler fittings, so far as the material used is concerned. It is oftentimes a most tedious and difficult matter to deal with a refractory stuffing box, so far as the trouble of getiing the old stuffing out is concerned. The packing has often to be cut and chipped out with a hammer and chisel, as it becomes, in contact with water, hard with encrusted salt and in addition is baked solid with the heat of the boiler and stokehold. The amount of time taken up by chipping and picking the old packing out is enormous, and it is to be feared, if one may go by the unpleasant appearance in some stokeholds of leaky glands with great lumps of salt sticking to them, that the job of repacking is sometimes shirked when it ought to be attended to without delay. One engineer, impressed with the trouble and annoyance in connection with the use of ordinary packings, made the experiment of trying lead as packing for some of the stuffing boxes of his boiler inountings, and he found that the idea worked splendidly. In order to pack a stuffing box, he first cleaned it out thoroughly and then carefully rubbed the valve spindle and stuffing box over with some black-lead powder on every part which would he covered by the lead. He then ran the stuffing box up to a certain distance with molten lead, leaving sufficient room, say a quarter of an inch, for the gland to enter. When the gland was pit on and tightened down, it was packed in a way which lasted for years without any further trouble. The only thing necessary when opening or shutting the valves was to slack the gland back a little before beginning the operation, and to tighten it up again after the valve had been turned. With the heat of the boiler the lead was kept somewhat soft, but, of course, never obtained its melting point, which is between 400 degrees F. and soo degrees F., as the boiler water did nof reach that temperature. This methotl of packing is not to be advocated indiscriminately for every gland to be found on a boiler, as some valves, such as the main check valves, are constantly being worked, and such a packing would not be suitable. Where, however, valves are only used intermittently, say once or twice a week, such as, for example, the scum valves, blow down valves, etc., this form of packing sives excellent results, and may be recomunended to sca-going enginecrs with confidence.

In conclusion, it need hardly be said that these notes do not pretend to cover or even hint at the range of possible breakdowns which may occur on a marine boiler. Unfortunately. the varicty of trouble which can happen with a boiler is almost endless, and a book could be written on this subject alone. The above remarks are, however, typical of some of the things which a marine engineer has to look out for, and if they stimulate other engineers to contribute their experiences on parallel lines they will have served their purpose.

An Old Conthastor.

Broken Worm of Steering Gear Engine Shaft.

Edtoa 1ntervational Marine Engineeaino:

An old friend of the writer once told him that if he wanted to form an opinion as to the way an engineer on board of a vessel looked after his machinery he did not go first to the main engines, but to the auxiliaries. He argued that the main set was the show piece, and anyone worthy of his salt would keep that right; but the small details of the auxiliary gear were what tested a man's capacity for thoroughness and strict attention to every item that might lead to trouble. There is more in this view than some people suppose, and very frequently most harassing difficulties arise out of apparently unimportant parts of a ship's machinery. The moral of this is, that the fourth eugineer, who is usually told off to look after the auxiliaries, requires just as careful watching as the second and third.
In addition to this, owners of vessels very frequently fall into the mistake of trying to economize on the auxiliaries. They will buy a set of main engines with due regard to their performance, but any old thing will do for the donkey pump if it is cheap enough. It would hardly be thought that this would apply to such an important part of a vessel's equipment as the steering gear, but it sometimes does. For example, it is the writer's opinion that, as a general rule. the worms and the worm wheels of steering gears do not receive as much oil as they should. Sonne makers take care of this point, hut others do not. The result is far too rapid wearing on the worms, and eventually considerable trouble.

makes wown stirnimg gear.
If the worm wheel is a vertical one a very good plan to avoid a lot of bother due to this cause is to make up a small oil bath out of galvanized iron sheet of a suitable shape to encase the lower portion of the worm wheel. By keeping this supplied with oil, the oil is carried up to the worm with the revolution of the wheel and an immense amount of wear is saved. It will be found that the worms always wear nuch more quickly than the worm wheels, and for this reason due regard should be paid to the class of oil used. It is advisable to use a good thick, heavy oil, as light oil is of no use. A very good plan to give gromd resnlts is to take ordinary marine engine oil and make it properly thick by melting white lead and mixing this with the oil.

The sketch shown herewith gives a rotgh idea of what happened to the worm of a steam gear engine shaft. Owing to the worm having worn thin it got broken, due to the backlash which occurred on the worm wheel attached to the chain drum. This back-lash way caused by the rulder lashing about from side to side in heavy weather, and, therefore, the accident
occurred at a most inconvenient time, as most accidents do Incidentally it may be remarked that the heavy strains thrown on the chains, drum and worm wheel are often not appreciated. When the rudder is put hard over these are tremendous, so that proper supervision should be given to them. In this case, when the worm broke, the engine jammed itself and stopped. As repair was urgent, a series of $3 / 4$-inch tapping holes was drilled in the shaft with the holes close to each other, and in such a manner as to run in line with the worm. These holes were then tapped and $/ / 4$-ineh studs were serewed tightly in. They were then ehipped down to the same dimensions or profile as the rest of the worm. The repair fortunately held good throughout the voyage, although heavy seas were eneountered, and got the vessel home without further difficulty.

At Sea.
The Fockth Exanerr.

Mending a Cracked Shaft.

Editor Internattonal Marine Evginebing:

When I first read about a turbine boat I was oiling on a tramp. Now I am the chief of a tramp. Just after I got this position 1 made a certain English port, and heard the steamship _Wax there, which was fitted with this new style of engine, and I made a straight line for it. I had the good fortune to find a man aboard who had been shipmate with me on two voyages, so 1 got into the engine room without much trouble, and met another old friend (a shopmate) who was doing some repairs. I took a look around, but those round. barrel-shaped affairs with everything inside of them "looked sood to me," as the boys say, and I had about made up my mind that all the troubles of an engineer were at an end, and all that we would have to do in the future would be to turn on steam and "let her buzz." I told Jake, that was my old shopmate, my idea. Now, Jake was a Scotchman with the English name of Lym. He hand only one eye, and he took a look at me out of that one cye and drawled out, "When you ken a turribinne," and that is as near as I can write down
so that it would be just as strong as a solid one; but if I put in sixteen 2 -inch pins, each with an area of 3.t4, I would have about 50 square inches. I started some of the oilers with hack-saws cutting off the $t 1 / 2$-inch bars, so that I could get them in between the couplings and not have them right on the fillets, and 1 started Lymn and some other men with ratehets drilling 2 -inch holes about as shown on the drawing. We drilled them about 4 inches deep, and by shifting the men often we finished these holes in a little over fourteen hours.

1 had a small lathe on board, and 1 eut off from some round stock which was $21 / 4$ inches, and roughed them down to $2 \mathrm{t} / 32$ inches, and as soon ax 1 could caliper the drilled holes I turned the pins down so they fitted good, leaving them sticking out about $31 / 2$ inches. I drove these pins in with a light sledge; then I laid the $1 / 2$-inch square steel around the shaft, holding them in place temporarily with some small chain we had on board, and it was quite a job to get them in place. Of consse, the $t 1 / 2$-inch stuff didn't run perfectly straight or even, and when we came to the last length next the pin I had to do some filing, so as to let the length come in nice and snug.

Before I drilled the holes I got some 4 -ineh stuff by $t / 2$ inches which we had on board, and cut off two lengths, as shown in Fig. 3. I drilled the two end holes. After I got one of the holes next the erank drilled and the pin in, I put one of these pieces over the pin and used the other end as a jig to drill the second hole, 1 did this with the second piece, with the idea that this would hold the shaft together; that is, if it gave away it would not back off, and 1 found this held all right.

Among the firemen I had a man who was a pretty good smith, and he turned up out of some stuff, which was $2^{1 / 4}$ by about $\$ 8$ inch, some clamps, showa in Fig. 2. These we drilled in the lathe, and afier we got all the $t 1 / 2$-inch stuff nicely set round the shaft we started to spring these elamps around them, and this we found a good deal of a job; in fact, it took a whole lot of time: bot we mamaged to get them on, and

METHOD OF RZPAIMISE A CEACERD SHAPT.
how he pronounced it, "you'll bide in the ship where you are." 1 got a taste of that later; but 1 didn't start out to tell about turbines but the repairs to a shaft.

No matter whether you've got a turbine or any other kind of an engine, I suppose we'll always have to have shafts. I show a repaired shaft in the drawing herewith, and I want to tell you. Mr. Editor, that the drawing looks a good deal better than the job, and it's a good deal easier to make the drawing than it was to do the job.
A short time after this visit to the turbine ship I picked up my old shopmate, the Scotchman, pretty drunk, up in Montreal, and for old acquaintance' sake took him aboard my ship as an oiler, and after one trip I took him into the engine room. On my next trip South the first length of the shaft just abaft the thrust eracked, and we discovered it just in lime to shut down for inspection and consideration. I knew we had a lot of bar ateel on board, and I sent Lynn down to break it out so we could see what we had. He reported there was a hot of $t / 2$-inch square steel about to feet long. Now the diameter of my shaft was $121 / 2$ inches, so I figured it out that our aren of shaft was t22.7. Of course, I could not patch up that shaft
passed a bolt through them. I think we put in Iwo, but I do not remember that, and we had the job done, and old man Lynn, when he looked at it, said it put him in mind of one of those old-fashioned things the Romans used to carry about with an axe stuck in the top. But bad as the job looked we thought it was pretty solid, but as we had some $1 / 4$-inch wire cable we wound some of this around the bundle to make sure, and we started up very slow, and made our West Indian port about a day and a half late. Of course, there is small chanee of geting anything done in the way of a new shaft down there, and as the job seemed to be holding we started in ballast for an American port and made it all right. But the success of this was too much for Lynn, and he, finding a Seoteh friend by the name of Whiskey, the first time he went ashore, landed in the lockup, and I guess he is there yet.

Kingston, Jamaica.
II. S. G.

Mr. Willian Rowland, fur many years connected with shiphuilding in New York waters, died July $2 t$ at Spring Lake, N. J.. his summer home. His death marks the pasking of a type of man to whom the shipbuilding world owes much.

17 Battery Published Monthly at
17 Battery Place
New York by marine enginetrino, incorporated
H. L. ALDRICH, President and Treasurer Alsoce. Soc. N. A. and M. E. and at
Christopher St., Finsbury Square, London, E. C. E. J. P. BENN, Director and Publisher

Absoc. I. N. A.
HowARD H. BROWN, Ealtor
Member Soc. N. A. and M, E.; Assoc. 1. N. A.
AMERICAN zFPEERNTATIVES
GROROE SLATE, Viee-Preaident
E. L. BUMNER, Secretary

Circulation Manager, H. N. Dinsmone, Bs Fowler St, Bonton, Masa, Branch Offer: Baston, si3 Old South Building. S, I. Cakrcwzer,

[^39]
Notice to Advertisers,

Chomgor so be made in copy, or in orders for adocricina, must to in awr anads not later than the 19th of the month, to insure the carrying is to be submoitted. copy mand be in wwr hasds not fater thang. If proef the menth.

Whether a community of people are in a ship atloat or in a house ashore, their nature remains the same and the condition in which they have been brought up naturally affects their action. Afloat there exist conditions which bring men closer to each other than those ashore. It is clear that at sea one must do for all and all for one. A very little thought will explain this reason of closer relationship.

Before stean was known there was absolutely no possilility of a division of responsibility throughout a ship. Every order came from the captain: it was carried out by a man trained in exactly the same condition as he. What one said was in a language that had developed from the sea. When, however, steam came this condition changed. Here was suddenly introduced a set of men who did not have the same line of thought or training. Their language differed. "Valves and cylinders" meant nothing to the captain; "port and starboard," "luff and fill" meant nothing to the engiveer. It was, therefore, natural that this condition produced friction. The captain saw his skill, obtained by long years of training, becoming less and less valuable, and the self-reliant feeling bred of thorough knowledge grew less and less until the ship seemed to be under the control of another.

The knowledge required to guide a ship from port to port and to handle her under the conditions of storm is of no mean order. The sailorman had to go through a severe and long apprenticeship, and he has always commanded the admiration of the world. What is the outhook to-day? What is to be done? Are all scafaring men to become engincers, or are all enginecrs to become seafaring men? Or, again, are we to reach such a state of mechanical perfection that there will be no further need of any great intelligence in handling machinery on board a ship? Do not some of the later engineering developments poimt rather strongly to leaving the high-grade mechanical brains on shore? We have the turbine, which when it goes out of business at sea is apt to stay so. Makeshift repairs seem to be out of the question. From the bridge of a new collier the geared turbines are to be controlled without the intervention of any enginecr. The gyroscopic compass may hold a ship on its course more steadily than the best quartermaster to be found. Liquid fuel is changing the fire-room from a glowing seething mass of light and sweating humanity to a room in which are easy chairs. To-day if you buy a cheap watch it is guaranteed for a year, and if you take it back to-morrow on account of some trouble you are handed out a brand-new one and the watch is returned to the factory for repairs. Is it not possible that there will be no repairs whatever at sea? With twin screws every vessel can limp into port, and it can easily lo imagined that mechanical things can be so perfected that what might be called a fool-proof system will be worked out, and that every possible condition can be anticipated. The captain of the future ship will be more and more of a mechanician and the mechanician of future ships will be more and more of a sailorman.

The action of the State of Connecticut in respect to the port of New London is important and ought to be far-reaching as to its influence. It is the first movement of comprelensive harbor marine engineering in America. It provides not merely for expert engineering construction, but that which is of greater interest-intelligent operation.

For years International Marine Engineering has urged more scientific development of harbor and dock work, which is so carefully stulied and practiced in Liverpool, Antwerp, Hamburg and elsewhere. But for some reason American stcamship agents and owners have clung to old methols and have ignored tangible and substantial evidences of up-to-date methols which we have again and again shaken in their faces, as it were. The port of New London has the opportunity to place itself far ahead of New York, Boston and every other American port as the proper place for stcamships from all parts of the world to discharge their cargues expectitiously and economically and reload correspondingly.

LEGAL DECISIONS REGARDING MARINE WORK.

Injuries from Bursting of Boller Tube-Necessary Inspection.

A suit in admiralty was brought by the fireman of a steam schooner against the owner for damages for permonal injuries sustained by him by the bursting of a water tube in nne of the schooner's boilers, resulting in the almost total destruction of one of his hands. The ground of recovery of dantages was the alleged neglect of the owner and officers of the boat to keep its watertubes in proper condition. The cridence showed that the tube was overheated, atd the trial court found that this was caused by the accumulation of scale or some similar substance in the pipe. wherely the circulation of the water was impeded, resulting in the reducing of its thicktress by burning to the bursting point, and that the officers of the schooner were negligent, either in faifing to make such inspection as would disclose the existence of the deposit or to take proper steps to remove it if discovered. On behalf of the schooner it was urged that the injuries were caused by a latent deiect in the pipe. There were two boilers in the schooner, each of which contained sixteen 4 -inch and more than three hundred z-inch tubes. Expert evidence was given by a government boiler inspector and a marite engineer in the employ of the makers of the boiler in question, tending to show that the bersting was cansed by a latent defect in the iron. On behalf of the libelant the exploded tube was put in evidence as an exhibit. It showed that it had beets overheated and burned from sone cause, and there was testimony tending to show that the canse was neglect on the part of those in charge of the sehooner to keep the tubes properly cleaned out. Upon such evidence the court considered it would not be justified in interfering with the conclusion reached by the trial court, and affirmed a judgment for the tibelant.-Maritime Inv. Co. \boldsymbol{z}. Hanos. Circuit Cowrt of Appials, Ninth Circwit.

Damage to Cargo from Leaking Pipe.

In a suit in admiralty for damages sustained by a carso of grain delivered in damaged condition through contact with water while in the hold, it appeared that the water dripped through a crack in the main feed pipe, which extended about 9 feet through the eargo space between the engine and the botler. The vessel was built eleven years before the accident, which happened in $t 905$, and had been repaired in 1904. The position of the feed pipe was not unusual in vessels eonstracted for service on the Gireat Lakes. She was rated A-t, but after this conmroversy arose her rating was reduced. The pipe was covered with asbestos. It was inclosed in a wooden box. The pipe was of wrought iron $1 / 4$ inch thick and $21 / 2$ inches int diameter. Atthough such pipe comes in lengths long enough to brilge the distance which it ran through the eargo space, two lengths were coupled, not quite midway, but nearer the boiler-room bulkhead. Each length was threaded and screwed into the coupling. After the damage was discovered the pipe was stripped. It was found to be cracked at the bottotit of one thiread at the edge of the coupling. The crack went just through the pipe, probably three-quarters of an inch long: but the pipe was not broken off. A thorough inspection of the pipe could not be made while the asbestos and the boxing remained on. The last inspection with the covere removed was in 1gos, when the vessel was being repaired. The weather encountered was rough, but not unnsual at the season of the year (Octoher). It was held that the vessel had not sustained the burden of proving that the leak resulted from a "danger of navigation" within the exception of the bill of
lading. Whether the leak resulted because a seaworthy pipe was exposed to some extraordinary strain, or because pipe, weakened by age and by some incipient crack which had developed since its last thorough inspection over a year before, gave way under strains which were 10 be anticipated, and which would not have broken a seaworthy pipe, could not be said upon the proof. The decree for the shipper in the district court was therefore reversed and the case remanded for further action-The Rappahannock, Circuit Court of Appeals, Second Circuit.

Construction of "Inchmaree Clause" In Marine Insurance Policy.

The owners of a steamship claimed to recover for an average foss under a policy of marine insurance on the hull and machinery of the vessel. The policy was for twelve months against the ordinary Lloyd's perils; and it also contained the clanse known as the "Inchmaree Clause." For the purposes of the present case the directly relevant words of this clause are: "This insurance also specially to cover * * loss of or damage to hull * * through any latent defects in the * * hull * * provided such loss or damage has not resulted from want of due diligence by the owners of the ship, or any of them or by the manager." There was a defect in the ship's stern frame. This defect was covered ug by the makers. During the eurrency of the policy the defect became visible owing to the ordinary tear and wear, and the stern frame was condemned. The assured claimed to recover under the poliey the cont of replacing the condemned stern frame. It was held that there had been no loss or damage to the hull, and therefore that the assured conld nut recover.

The introduction of the "Inchmaree Clause" into marine insurance policies followed an explosion which damaged the machnery of the inchmarec, either through a valve beconing salted up or by the valves being closed by negligence of the engineers. The lJouse of Lords in Thantes and Mersey Marine Insurance Co. r. Hamilton, Fraver \& Co. (3 Times L. R. 764; 12 App . Cas. 484), held that such a damage was not recoverable cither as a peril of the sea or under the general words in a Lloyd's policy. "Inchmaree Clause" was introduced to give the protection denied by this decision. It eovers the negligence of servants, explosion and hursting of boilers, and it eovers loss or damage through latent defects.

In the court's view what is recoverable under the quoted part of the "Inchmaree Clause" is: (I) Actual total loss of a part of the hull or machinery, through a latent defect coming into existence and causing the loss during the period of the policy. This was the kind of latent defect alleged in the Inchmarec casc. (2) Constructive total loss under the same cireum= stances as where, though the part of the hull survives, it is by reason of the latent defect of no value, and cannot be profitahly repaired. (3) Damage to other parts of the hull happening during the currency of the policy; throngh a latent defect, even if the latter came into existence liefore the period of the policy. The pre-existing latent defect itself is not damage, indernity for which is recoverable, even if by wear and tear it becomes visible daring the policy.-Hifichins Bros. v. Royal Exchange Assurance, 27 Times L. R., 217 (K. B. Div.)

Construction of Steamer for Government a "Public Work."

An action was brought under the act of August 13,1894, Chap. 280,27 Stat at $\mathrm{I}_{-} 278$, as amented by the act of Feb. 24. 1905, Chap. 728, 33 Stat. at L. 8it, L'. S. Comp. Stat., Supp. t909. p. 948 , upon a bond given to the United States, as required by the act, to secure a contract by an engine works to build and deliser a single-screw wooden steamer for the United States. The main question in the ease was wbether the
statute applied to a contraet for a steamer, or, in other words, whether a steamer is a "public work" within the meaning of the statute, which gives any person who hav furnished labor or materials used in the construction or repair of any publie work, which have not leen paid Yor, the right to intervene in a suit upon the bond, and is intended, bessles securing the United States, to protect persons furuishing materials or lahor for the construction of public works. The eourt held shat a steamer is within the statute. By article 3 of the contract in question, partial payments were provided for "as the labor and materials furnished" equaled certain percentages of the total. By article 4 , "the portion of the versel completed and paid for under said method of partial payments shall become the property of the United States," although the contractor remained responsible for the eare of the portion paid for. By artiele 2 there was to be a tinal test of the vessel when com. pletect. The vessel had been built and accepted, and was then in possession of the United States. Notwithstanding this it was argued that the statute did not apply to the contract, because the laborers and furmsliers of materials had a lien by the State law : and that, even if the statute applied, they had lost their rights by not asserting them before the delivery of the vessel, as before that, it was said, the title did not pass to the United States. But the recent decision in United States v. Ansonia Brass \& Copper Company, 218 U. S., 452 , extals lishes that the title to the completed portion of the vessel passed, as provided in article 4 and that the laborers and material men could not have asserted the bien supposed to exist. The eourt did not consider itself bound to read the words "any public work" as eonfined to work on land. The fact that the bond was not executed until ten days after the contract was signed did not make it without consideration, as the transactions were practically simultancous. And the ase sigrment of some of the claims did not affect the remedy:Titic. Guaranty \& Trust Co. of Scranton z. Crane Co., U'nited States Suprome Cowrt.

TECHNICAL PUBLICATIONS.

Engines and Boilers. By W. McQuade. Size, $5^{1 / 2}$ by $8 \mathrm{~m} / 2$. Pages, 87. Illustrations, 62. London: G. Bell \& Sons, 1.td. Price. 3/6.

When it is remembered that Mr. McQuade uset but 87 pages to outline hoilers, engines, internal-combustion engines and steam turhines, it ean be easily seen that but a mere skeleton of the subjects has been presented, hut this skeleton is one on which the flesh of further knowledge can be indeed well applied. The author does not pretend to furnish a book the reading of which will result in one becoming an engineer, hut he most admirably starts a student in that direction. The illusurations uned are admirable. Not a single supertuous line is to be found in any of then, and they really look like drawinge such as are made by competert draftsmen and engincers. We regret that at times there is a mivuse of names of articles, and this should be corrected in the next issue, as, for instance, on page 5 there is an assertion that the "junk ring is held in place by set screws." Now, set screx s are not used for any such purpose, and this is misleading to the student, as is the statement that the starting valve on a locomotive is called a "regulator;" this is found on page (6). We bave never heard this appliance called anything but a throttle vulve. Wee do not think the author has been personally and practically in eharge of engines or he would never say as he does on page os that "the wear at the crosshead pin (connecting rol) is slight." For the student we recommend the book, and we consider it to be extremely interesting to many people who merely take a passing interest in mechanics, as many thing, in engineering which now seem blind to them will be made clear.

Railway Shop Kiniks. By Roy V. Kight. Size, 9 by $1: 3 / 4$ inches. Fages, 2yo. Illustrations, Ko3 Railavy $A_{g}{ }^{\circ}$ (iafette, New York-Linndon. Price, $\$ 2.00$.
No matter who bought thic book of Mr. Right's they could not turn a page without learning something. Many might say that the "kinks" showil are old. That may le true, but we do not all know them, and there are a lot of these "kinks" that seem new, at least to us. The International Railway General Foreman's Association, in solemn conclave assembled, passed rewslutions in due form to have this book published, and we are all going to be better off for it. We would, therefore, offer in return the following resoluthons; That whereas "Railway Shup Kinks" is a valuable book, full of practical information, and whereas knowledge is money in it most valnable form, be it resolved. that the readers of this notice order a eopy at once.
Fighting Ships. By Janc. Size, juy by 13 inches. Pages. 548 Jlustrations, endless London, 1911: Sampson Low, Marston \& Company, Ltd Price, 2t/ net.
To those who have had any experience in collecting data this publicatoon will awake their admiration. The work is admirably well done. It must be remembered that in making up such a remarkable volume it is with infinite difficulty that eertain detaik, and even generalities, concerning vessels of war are obtained, and absolute accuracy eannot be hoped for, hut we are fair when we judge a work ly what we perconally know, and in turning to fighțing vessels which are well known to th we find the detail strictly correct 1 it is a souree of wonder to us, however, that the work can be made to pay, as the cost must be very large and its sale somewhat limited, but there is hardly a publication that has ever come to our knowledge which is more thoroughly interesting from end to end than is this one. A treaty of peace between Great Britain, France and the Uniled States has been debated, and yet the guarantee of wheh peace must be found in the power to enforce the agreememt, and that power lies almost exclusively in the fighting ships of the various nations. To be able to turn to any vessel and find ont dimensions, speeds and other valuable information is not only of great interest but of the very greatest convenienec, and every naval arehitect with military inclinations certainly should have this work.
Valve Gears. By. H. W. Spangler. Size, 6 by $9 \frac{1}{4}$ inches. Pages, 179. lilustratiuns, 109 . New York: Jolan Wiley \& Son. Price, \$2.50.
Mr. Spangler asserts that the designing of valve gears is entirely a drawing board process. In all but radial gear, and even in them, this is true to a great extent. He has adopted the admirable system of taking the data of engines that have been actually construeted to illustrate and expatiate on. It does not seem as if there is anything uew on the interesting subject of valve gearing, and yet here is put forth in a much more concise way than is usual the results of the labor of many who have given the study of valve gear the elosest attention and who have become so thoroughly allied with the subject that their names are synonymous with its study, If the readers have no book on valve gear we know of none which it would be so wise to purchase as this, and if he does buy is and reals it, "marks, learns and inwardly digests" it, he will thoronghly understand valve gear.
Marine Gas Engines and Their Construction and Management. By Carl 11. Clark. S.B. Size, 51/4 by 8 inches. Hases, HS. Illustrations, to2. New York: D Van Nostrand Company. Price, \$t. 50 .
This partictlar field seems to be pretty well supplied already with booke of this charaeter, and in reading it over we do not find any new peesentation etther in construction or management. Primarily, we should judize the author's idea is to help those who are ruming engines rather than those who are con-
structing them, and in this it ought to be suceessful and a help in many cases.
Answers on Refrigeration and Ice Making. Two volumes. By Gideon Hlarris. Size, 6 by $81 / 2$ inches. Pages, 1.059 Numerous illustrations and rables. New York and London, Theo. Audel \& Company. Price, \$2 each.
A book of this kind is mont convenient for the man who has actual charge of refrigerating machinery, and is also most admirable for all refrigerating engineers to have at hand to turn to. The most insigniticant details are carefully noted and explained and illustrated. In many cases the information is given so that the man who is in a great hurry to know just what to do and how to do it ean immediately obtain it. The advantages and disadvantages of various systems of refrigerations are made plain, and the temperature at which varous products should be kept is clearly set forth. It is self-evident that the writer of the book, Mr. Gideon Harrts, is fortunate in his selection of assistants who anded him in making up the book, and the refrigerating world is much letter off for their work. If there is one thing to criticise it is the index; but it is a grave question whether it is possible to index a book of this kind so that it could be used so the best advantage until one is thoroughly familiar with it. This is largely accounted for by the line of thought of those who will use the book, but after a very short time we lelieve that almost anything connected with cold storage and refrigeration can be songht fur and found within the covers of the book. It certainly, at times, does not waste words, and this is a very decided advantage; for instance, the question is asked, how much eeiling space is needed? the answer is, " $3 / 2$ inch." Here is a gem.

An excellent table or \log is !aid out for use with refrigerating appliances, so that what is done can be carefnlly recorded with a view to leettering conditions from week to week. In short, the work is an addition, and a valuable one, to the literature of refrigeration.
Lloyd's Register of American Yachts. Size, $91 / 2$ by $71 / 4$ inches, Pages, 468 . Forty-tive colored prints and supplement. New York: Lloyd's Register of American Yachts, ${ }_{17}$ Battery Place. Price, single copies, $\$ 8.50$ and $\$ 7$.
This is the niuth edition of the l-loyd's Register of American Vashts, and in it is shown the increased predominance of power over sail boats, the proportion of power eraft being even greater than last year. Many important additions to the yacht world were made last year, among them the schooners Enchantress. Elena and Karina. The first, designed by Cary Smith \& Ferris, is Class $100 \mathrm{~A}-1$, and is the latest advanee in yacht construction. The Karina, designed by Theodore D. Wells, is designed for off-shore cruising. The Elcno is a racing schooner. The Enchantress and Karina are sailing yachts, but fitted for the ultimate installation of gas engines. One of the most notable additions to the list of yachts is the Sotereign, designed by Charles L. Sealoury, La Belle II, is a steel yacht fitted with triple serews and designed by Cox \& Stevens. In the smaller disisions of sailing yachts the additions are limited to 31 feet and smaller classes. The power division, however, inclodes many new crnising yachts of all sizes from 100 feet down, practically all equipped with gas engines. The Register has been slightly enlarged in the last year and thoroughly revised and all the old yachts dropped out. The list includes over 3,500 vessels, 472 yacht clubs and $3 t$ associations within the limits of the United States, Dominion of Canada and the West Indies. The burgees of 456 clubs and associations are given. Estimating elosely, there seem to be at least 600 yacht elubs within the territory mentioned. There are the names of 3,300 owners of yachts, with their full athress whenever it could be obtained, together with the elubs to which they belong. Yacht builders and yacht designers,
also engine builders, builders of yacht equipment, are listed most completely, as well as the manufacturers of miscellancous fittings for yachts.

Marine Engine Design. By Edward M. Bragg, S. B, Size, $6 \% / 2$ by, 8 inches. Pages, 172 . Numerous illustrations. New Fork: D. Van Nostrand Company. Price, \$2.
There is much concerning the design of engines in this book which is put in a clearer form than usual. It is evident that the book is the result of a want fclt by an instructor. The details of eonstruction are shown, and there are to the found tables which are most convenient to have for ready or quick reference. In commentiong on the turning and reversing ellgines, and giving data for their dcsign, we think the author would find that there is a wider diversity in this respect than anywhere else arising from a fact he did not mention; $i, c_{\text {. }}$ that such engines are made usually with very small bearings, as time of operation is never long-in fact, rarely more than a few minutes ; consequently small bearings are admissible, and, as a matter of fact, a good many engine builders in makiug these turning engines are apt to take any design that they happen to have and cobble it up so as to make something which will do the work with comparatively little attention to refinements. We recommend the book to all interested in marine engine design. It is a reprint of the excellent articles which appeared in our columns.

Praktischer Schiffbau Bootsbate. Size, 7 by $91 / 2$ inches. Pages, 327. Illustrations, 328. Issued by the Akademischen Verein Hutte, E. V. Berlin: Withelm Ernst \& Sohn.
This work goes into the construction of small boats in a very practical way. It also devotes a part of its pages to the description of motors and various kinds of propellers and boat appliances. It also touches on racing shells. The usual pains. taking German characteristic is clearly shown in the minuteness of the details given, and many of the drawings are most interesting of the sail boals as well as the motor boats.

Cold Storage, Heating and Ventilating on Board Ship. By Sydney F. Walker, R. N. Size, $5^{1 / 2}$ by 8 inehes, Pages, zfig. Illustrations, 7o. New York: D. Van Nostrand \&

 Company. Price, $\$ 2.00$In this book, which was reprinted from previous issutes of International Marine Engineering, there is no attempt to go into the details of the mechanical apparatus used for refrigeration on board ship. It wisely devotes its pages to the use and application of the various systems now generally employed for refrigeration, and these are most clearly described. The most conmendable featnre of the book is that of discussing the "faults," as the author calls them, commonly known as "troubles," and giving solutions which will rectify them. The method of operating each system is not perfunctorily entered, but all the explanations are practical. It must be rementhered that refrigeration at sea is a comparatively new development, and the value to seafaring men and their personal'comfort and the great value to the world at large have not been really thoroughly appreciated.
Blue Book of Ameriean Shipping. Sixteenth edition, Size, $7^{1 / 2}$ by 10 inches. Pages, fo8. Numerous illusirations and tables. Price, \$5.00.
The Blue Book of Amcricon Shipping has reached its sixteenth annual cdition. It contains its usual list of vessels, dry. docks, shiphuilding concerne, as well as the names of the beads of the various government burcaus, and this list of names is most valuable for those who are bidding or are carrying on business with the Rovernment in its sarious departments. The additions of vessels during the past year are entered, and we note that hercafter the publication will be issued biennially, which will cnable the list to the eorrected to a closer date than heretofore.

ENGINEERING SPECIALTIES.

Compact Electric Lighting Sets.

While undoubtedly the controversy concerning isolated plants will continue for some time, the Englerg Electric \& Mechanical Works, St. Joseph. Mich., seem to have settled the question concerning a compact, reliable and neat electric light plant, and they do not confine themselves to making these plants for steam only, but for internal-combustion drive as well. They make them from $21 / 2$ kilowatts, running at the moderate speed of 625 revolutions per mimute, up to to kilowatts, running only 350 revolutions; in internal-combustion engines they make, not only a vertical ontfit, but one with cylinders set directly opposite each other, thereby saving head room. These plants are made as small as $1 / 2 /$ kilowatts, running at 625 revolutions per minute, and weighing but 525

pomuls. The generator which is titted to these prime movers is made by the company, and is must eompact and yet rugred. In the smaller electric sets, run by gas engines, a revolving field is wed which does away wihh the fly-wheel, reducing weikht and making a very compact outlit. The steam engines are entirely self-lubricated, and the governing is right up to the requirements of the present day. The internal-combustion engines are titted with the splash oiling system throughout.

In connection with these generating sets the Eingberg people make a line of searchlights in three sizes, ur rather two sizes, 8 inches and to inches: but the tomeh is made for marine work as well as land work, and, conseqnently, has certain features which are only valualle for this class of work.

Company, Ltd., 93 Neate street, London, S. E., and is used for valves of all kinds. The nature of this substance is not explained in the catalogue, but its value is clearly shown, and most useful hints are given therein as to how valves of hoth

the rigid and flexible type can be hest applied. Numerous illustrations are given of practical forms of valve guards and grids, and their improved anchor bushing for valves, which we illnstrate, is deseribed, and by their use leaks in air pumps are kreatly decreased.

The "Columbla" High-Speed Universal Chuck.

The universal chuck, manufactured by Messrs. Schuchardt \& Schutte, go West street, New York, grew out of the demand created by the healy cuts which can be taken with high-speed steel. Let us say right here that the designation of chacks is very apt to lead to confusion. The universal chuck, such as shown in the illustration, has jaws which work to and from the center simultancously, and this word "universal" is often misunderstood and ordered where the combination chuck is wanted, the combination chuck being one in which the jaws can be made independent of each other in action or can be set

An automatic cmtoff is provided in these lamps, so that mis damage will be done if the operator neglects to pull the switch when the carbons are consumed. This is a feature, we understand, pussesed by no other searchlight. and certainly is a most valuable one.

Dermatine Valves.

The quality of material used in the mechanical part of a machine is of importance, but it is hy no means all of it. as. if the material is nut properly applied or usel trubble results. 'Tlermatine" is a subutance which is matle by the Dermatine
in any position from the center and then worked simultancously in combination, while the third style of chuck is called "independent" where each jaw is actuated by a serew so they cannot be worked smultancously.

The pecultarity of the "Columhia" is that the jaws slide un an incline, which gives a much larger wearing surface for the scroll, and a finer pitch of scroll can be used, which, of course. gives addutional holding power and far kreater wearing surface, wh that the chuck can be used on a single diameter for a great length of time without the jaws becomung loose in that particular posttion. This chuck is not adapted for holding rimss or an arricle which should be held from the inside by
expanding the jaws. They are made from an outside diameter of $3 \frac{1}{3}$ inches holding a 4 -inch piece up to $1615 / 16$ inches, holding a 16 -inch piece. This is an unusual range for a chuck, and yet the maximum size of work can be held absolutely firmly.

Queen Portable Testing Set.

The prineipal applications of the portable testing set aboard ship as made by Messrs. Queen \& Company, of Philadel. phia, are the checking of conductor resistances in dynamos, motors, starting boxes, etc., the measurement of moderate insulation resistances, the location of crosses, grounds and opens, the checking of ammeters and voltmeters, measure-

Battleship and Yacht Blowing Outfits.

The United States battleship U'tah and the seagoing yacht Aloha are fitted with "Sirocco" fans. In the case of the U'tah twelve forced draft sets are used. four in each of three blower rooms, each equipment consisting of 30 inches diameter by 30 inches wide "Sirocco" wheels, driven by 3 -horsepower electric motors, and each capable of delivering 22.000 cubic feet of air per minute. We are informed that these fans, displacing the above volume of air with a total of 264,000 cubic feet of air per minute, have rotors the combined volume of which is but 47 cubic feet, the fans thus handling a volume of air in cubic feet per minute equivalent to 1,800 times their own volume.
In the yacht Aloha one small fan 15 inches in diameter, driven by a direct-connected motor, is ample to produce sufficient draft for all needs, with ample margin against neces-

ments of capacity and inductances and other determinations dependent upon the electrician's knowledge of the fundamental principles involved and lis skill in applying them.

The installation of this instrument aboard ship evidences the advances made in electrical apparatus equipment. The outfit becomes a standardizing laboratory, capable of manipulation and aecuracy by those who may not be skilled in the use of measuring instruments, and makes it possible for the ship's electrician to carry out those tests essential for maximum efficiency.

The instrument illustrated is the Queen Dial Decade Portable Testing Set. The dial, a switch pattern, provides a somewhat quicker method of manipulation than a plug. The construction of the switch is such to insure permanency of contact, and provision is made so that it can be taken apart for inspection. The galvanometer is of the D'Arsonval type, uninfluencel by proximity to dynamos, and is balanced to minimize the effect produced by the rocking of the ship. The hattery consists of ten cells placed in a block: each individual cell can be placed in circuit. Provision is made for connecting an external battery, so that the instrument is never useless by reason of its cells becoming exhausted.

The lid is provided with a special gasket and hasps, so as to prevent the salt air from getting into the interior of the set. All interior steel and iron parts are heavy nickel-plated, and the resistances specially treated to prevent deleterious action of the sea air.

sity, prodacing 6,000 cubic feet of air per minute total, or 8,000 times the volume of the wheel.

The Utah on her trial trip made over 2t knots with but nine fans in operation. On the four-hour trial rus she easily maintained her speed. The entire twelve fans were run at below their maximum rated speed for coal only.

Some Rope.

The accompanying picture is a coil of rope made by the Columbian Rope Company, Auburn, N. Y. The coil stands 8

feet high and is 8 feet across. It contains 1,200 feet of continuous rope. In the coil are thirty-two bales of the best manila hemp. The rope is made in three strands of 510 threads each. The great weight of this coil and its exceedingly
large size made it necessary to charter a special freight car in order to ship it. The rope is 15 inches in circumference, and the full coil is 200 fathoms. It was made on order for the U'nited Fruit Contpany.

Reversing Motor Drive.

There is little doubt but what the planer has pretiy nearly reached its maximum size if driven with belts. The difficulty arises from the fact that in order to get the enormous power required for the quick relurn of a very heavy platen, high speed of belt drive is not alone necessary, but width of belt is also demanded, and this gets so cumbersome that to shift a wide helt became practically uncommercial. Four belts were retorted to, which helped matters some, but when the introduction of the electric motor hegan, and finally was selected as the means of an individual drive for various machines, it was not to be wondered at that the motor drive was first used in connection with belts, but of lave, both abroad and in the U'nited States, a great deal of money has been expended and a tremendous amount of experimenting done with the reversing motor drive.

The illustration which we gire is a slab which was worked up on a 76 -inch "Pond" planer driven by a 30 -horsepower reversing motor. The load on the table was 17,000 pounds.

The illustration does not clearly show just the conditions of the work. The 12 -inch scale, which lies on the piece, gives a fair idea of the dimensions of the piece planed. The extreme lefi portion, which is shown as being smoonh up, with a very wide cross feed, is in a higher plane than any of the other parts, numbered $1,2,3,4$ and 5 . It is, therefore, so be noticed that in planing No. 5 the tool dropped into the clearance space and planed up to an absoluce stop, which is the point at which part No. 4 started. It is to be noticed that this line is practically straight. The next step, No. 4. was taken with a different feed, and it in turn brought up against a shoulder which formed the right-hand edge of No. 3, and so on. The part marked No. 6, of course, had ample room to the right for the tool to start in its work, and it ran out in the clearance space at the end of the cut. but it is to be noted that the feed of this plane portion, No, 6, varied. This was done while the planer was in motion. The spuare part, marked No. 7, is a depression, the tool digging in at one end and running up against a shoulder al the other. This, of course, is not an operation that woutd often be required and wonld hardly be looked upon as commercial, but it is exiremely illustrative of the wonderful control which this reversing motor drive places in the hands of the operator.

The whole secret of the matier is that at the instant of reversal, when the leading or pilot switch comes in contact with the shifting dogs on the table, the controller short circuits the
armature, creatung therefore considerable resistance, which causes the motor to become a generator, consequently a most powerful electric brake. The cutting speed is shifted at any time the operator desires by merely moving a lintle comact hunon, while the feed can be varied in the same way and under the same conditions, and the comrol of the motor is such that there is practically no overload and no wide fluctuation of the amount of current id be supplied from the line. This is a most interesting point. The Niles-Bement-Pond Company, New York, handles these tools in its own shop.

COMMUNICATIONS.

Terminal Improvements at the Port of New London.

Editor International Marine Engineering:

The State of Connecticut has appropriated $\$ 1,000,000$ (2,00, . ovo) to improve the terminal facilities at the port of New London. The act provides that the State Commissioners "shall have full puwer on behalf of the State to acquire, own. construct, maintain and operate docks, wharves, piers, quays and dykes, canals, slips and basins, or any other appropriate harbor facilities, sheds, warehouses of all kinds, vaults, railroad tracks, yards, terminals and equipments and all other land and water transportation facilities in the city of New London necessary to expedite the interchange of rail and water traffic."
The cos1 of handling miscellaneous cargo freight between vessel and shore is one of the most important factors in inflisencing cargoes to go to any particular city. A differential of 2 cents (Id.) per ton in favor of a city on a large cargo of bulk freight would influence its going to that city, other conditions being equal. By installing the latest and most improved mechanism, under expert advice, so that miscellaneons freight can be properly handled, there will be effected a saving of at least 15 cents ($71 / 2 \mathrm{~d}$.) per ton, or including both the loading and discharging, total saving of more than 30 cents (15d.) per ton. On a 5.000 -ton cargo, this would be $\$ 1,500$ ($\mathbf{5} 300$) in favor of the city having the modern equipment. Besides the reduction in the cost of transference, rapidity is necessary.
The charter value of a freight steamer of medium size is about $\$ 100$ (8 No) per day. For every day saved, by rapidity it loadiug or discharging, there is over other cities not equally well equipped also a differential in favor of that particular city. If iwo days can be saved, $\$ 800$ ($\mathbf{~} 160$) would be to the credit of New London to attract commerce.
To show to what extent machinery has been used at foreign ports, at the Kuhwaeder dock alone at Hamburg there are installed around this dock 1.4 traveling elevated gantry cranes costing over $\$ 500,000$ ($\mathbf{f t 0 0 , 0 0 0}$). U'inder the control of the harbor authoritics at Hamburg there are about t,000 cargohandling cranes, and every active port in Europe is equipped with similar machinery.
The development of the city of Antwerp is highly corroborative of my statements that as well-equipped terminals are provided the traffic of the city and State expands. In 18 to the tonnage was only 200,000 tons. In 1900 it was $11.940,33^{2}$ tons from sea navigation and $8,169.754$ tons of interior vessels. Antwerp was visised by 6.135 ressels in tgo8. The increase of the population of Antwerp has been equally remarkable with the commercial increase.
Most of the large ports in Europe have been equipped wish machinery for icn or twenty years, and some are even now installing hydraulic machinery instead of the far superior electric. Reference is not made to them as examples to be
exactly copied, but as illustrating the great necessity of not neglecting mechanical methods. The cost of lifting package cargoes from the ship"s hold upon the edge of the pier may be 6 cents (3d.) per ton, but to assort and distribute throughout the transierence shel, or to the cars, would be at least 28 cents (tad.) additional Machinery can now perform these movements at a cost of 44 cents (7 d .) per fon. Provision should also be made for ceonomically transferring bulk cargoes.
Take the two cities Liverpool and Bristol, between which there was a straggle for suprennacy: Bristol did not expend the money for improvement, although it had equal natural advantages. Liverpool did, and to-day Liverpool is one of three great ports of the world. The Liverpool docks compose a large part of the city front and cost $\$ 200,000,000$ ($40,000$. 000). Twenty-six thousand vessels in one year sisited Liverpool, with a registered tonnage of $\mathbf{t 7 , 0 0 0 , 0 0 0}$, and the total tonnage, inward and outward, was $35,20 t, 767$ tons. These vessels pay dock, harbor and tmmage rates. The revenue for the year ending June, 191t, was $\$, \$ 99,000$ ($61,379,800$). London is another interesting example of the danger of neglecting terminal facilities. It' neglected to keep abreast with the demands of commerce, and within a few years awoke to the fact that Liverpool, Hamburg, Antwerp, Amsterdam, Rotterdam and other ports had wrested from it a large amount of its foreign commerce. It has now commenced the expenditure of $\$ 8,000,000(\$ 16,600,000)$ to recover, if possible, its former position.

New London is splendidly situated to become one of the great ports of the United States. On account of its close proximity to the sea, easy approach and a rich hinterland, largely imerested in manufacturing, with excellent railway connections, even to Canada, there is every reason to expect a great increase, if there is an open gate terminal through New London to the markets of the world. The Thames River is tidal for several miles, In 1900 there was a traffie movement of $44_{4}, 283$ tons. In 1907 reports show: Coal, 190,304 tons; lumber, 5,177 tons; steamboat freight, $\$ 86,566$ tons; miscellancous freight, $150,92 t$. Total, 697,139 tons. Among the transportation companies which do business in New London are: New England Navigation Company, the Thames Transportation Company, the American Lighter Company, McWilliams Bros, Montauk Company (L. I. R, R.), Fishers' Island Navigation Company.

On the 4 or 5 miles of frontage on the Thames River at New London the eity at present owns praetically nothing. It maintains merely a right to a ferry slip and one or two small dock privileges at the ends of streets. Practically all the water front is owned by private parties and corporations. The wharves and the most desirable front belong to the railway and steamship lines. Arrangements should be made that there should be berthings open to all the world. The present depth of the harbor is 23 feet. Loading and discharging bulk cargoes, such as coal, is done by means of cranes and tlerricks, but for the rapid and ccononical transference, which is most to lee desired for New London, there are no facilities. It is of the greatest importance that the piers, wharves, transshipment sheds and warchouses and railruad tracks be laid out with proper reference to each other, and also that they be connected with the gailroads.

There are a number of principle factors essential to a good water terminal. First, ample pier, quay and wharf capacity and hasins; vessels must not he delayed awairing a herthing Second, commodious and high transshipment sheds. Third,
as tlistinct from the transshipment sheds, warehonses and warehouse yard space. Fourth, moklers transshipment machinery. Fifth, mechanical connections between the piers, sheds and warehouses. Sixth, rail or water connections between the terminals and the cities of the hinterland.

These water terminals should not be under long lease, but the terminals and piers should be the publie servants of the whole port. There should also be private warchouses, as now proposed for New York, but subject to the control of the State as to rates.

There will be ample depth of water, and the wharves should be of aufficient length to accommodate the longest ocean steamers. To secure the best results at a complete terminal there should be included every factor necessary to secure easy freight movements, but all installed under expert advice, and co-ordinated in such a way as to secure the greatest possible rapidity and economy of operation.

The city should do everything in its power to provide paved roads to the terminals, and to rescrve wharves which ean be ocenpied by other vessels and freighters besides the regular lines, and everything should be done to make the city of New London an open port where steamships of every nationality can easily and quickly load and discharge. Provided that this is done under engineering direction, and modern improvements added from time to time, it is absolutely safe to predict that the growth of the city will be phenomenal. There have been published valuable figures slowing that for every ton of freight which passes through a city a certain amount of money is left in the city. Terminals under proper management can be made self-supporting. In the city of New York it is stated that the terminal charges have not only paid all port expenses liut also have produced a handsome surplus of over $\$ 100,000,000$ ($\mathbf{~} 20,000,000$), which it has invested in whanes, piers and dock properties. H. McL. Hahming.

New York.

A Correction.

Ebitor Internationat. Mintine. Engeneering:

Regarding the reference to my work by Mr. Barnaty in your August issue, in which he states that I have made the statement that thrusts as high as 16 pounds per square inch of projecting surface have been recorded in turbine propellers giving a fair amount of efficiency, I wish to make a correction.

Mr. Barnaby has taken a wrong meaning from what I intended. My statement was as follows:
"In case of the furhine ships with propellers of low pitch and high speed of rotation, a maximum value of meter thrust to hold so percent propulsive efficiency on bare hull appears to be reached at about 16 pounds per square inch of projected arca."

I had previously explained in the article, from which this quotation is taken, that by meter thrusts was meant the shafthorsepower multiplied by 33.000 , divided by pitch, times the revolutions, times the projected area of the propeller in square inches, while Mr. Barnaby assumes that the 16 peunds referred to was given as effective thrusta.
Washington, D. C.
C. W. Dison, U. S. N.

In the article on "Electritication of Narine Engineering Work" in our July issue, by an oversight the name of the Shields Engeneering \& Dry Dock Company, Lid., was left out.

SELECTED MARINE PATENTS.

The pwblication in this column of a palent specification docs not necessarily imply ediforial commendation.
American patents compiled by Delbert H. Decker, Esq., registered patent attorney, Loan \& Trust Building, Washington, D. C.

P93.440, ICE, MREAKER. ELOUILD DUPLESSSIS, OF SOREI, QUEBEC, CANADA
Claim.-An ice-breaking boat provided with a projecting proo adapted to extend undet the ice and hift and hreak the same sand prow alwo having laterally exiending parts (6) for seraping the ice from wharves which is deeper in the water than the body of the boat and is located only under ssid prow and las its hottom line incilined forward. its
 OF PORTLAND, ME.
OF PORTLAND, ME. allel hotirontally poatt wined lacoyant elrmienta, attached thereto, ope seties at each side of the bame, the t*D series being paraliel and being kephave, a head receiving openins in the base ponitioned between the tho series of beoyant elements, and means for securing the life preserver to the body. SUBMARINE BOAT GEORGE B. YERTON, OF NEW Y9t.j5?: SUBMARINE BOAT. GEORGE B. YERTON, OF NEW YORK, N. Y
Claim 1.-A hife boat for submarine craft, comprising a shell provided with a manhole in the floor of the thell, said ahell being adapied to be removshly secured to the submarme provided with a manhole in the upper part of the name, a removable and replaceshle cover for the maid manhole, to enter the said shell from the mand submarioe, a safety cover adapted to removably close the manhole in the said shell, an annular ehamber in the said submarine encircling the manhole of the Whmarine, and inter-connected gears in the nadd shell engaping the Three elaima for deconnecting the said shell from the said summarine. FREDERICK C SCHOFN, OF XEW YORK N. Y ASSIGNOR TO IIDGERWOOD MANUEACTURING COMPANY, A CORPO. RATION OF NEW YOKK.
Clame 2.-In ecombination a drum, a gear on the drum, a hand-power

gear, a second pinion on said shaft, and means for placing said drum gear in mesh with said firat and second gears simultancuusily. Fifteen
ROHFA POWER.TRANSMISSION MECIIASISM THEODOR RICHARD RYSZKA, OF KNNSAS CITV, KAN.
Clasw 1,-In power fransmission mechanism, a friction wheel having an annular concentrie flange, a amaller friction wheel concentric and
rotatable with the other wheel, two taterally flexible rotary shafis, imo rotatable with the other wheel, two laterally fiexuble rotary shafts, iwo ound shafts and disposed at diametrically opposite sides of the smaller friction wheel between said wheel and said fanke, and means for anmul tancously laterally shifiong sand shafts in opuosite directions, wereby both intermediate whecls may alternately be btuught into driving cogtact with the other two wheels. Six elsims. AIDAMS, OF CHARI, ESTON, S. C. ASSIGNOR OF ONENIAIF TOE, E. HEHMANX, OF CHARI.RSTON, S. C.
Clam,-In a stuffing boa for propeller shaft, the combination with the cylindrical externally threteded packing bos for the reeeption of a

Ghroun packing and having a base Bange integral thereailh lor ansech meat to the stern prat of a boat, an mitegral nipple projecting from said Glange opposite to the stafing boa and forming an elongeted shaft supporting bearing, and an infernally threaded relatively long cay fittine on said hox and having a propeller shaft aperture therein of greater duaneter than said bearing, of a follower mounted to move
longitudinally within the box for compressing the parking thercin and hiting the bua and shaft with sufficient accuracy to prevent the packing from slapping past the same, an anti-friction thrust bearing co-operating whth the outer side of said follower, a hearing ring for the shat located in the cap whereby entry of dirt into the cap is prevented, an ants-frietion thrust bearing co-operating with said ring, and a coil spring the compression being in the same direetion in which the water pressure act upon the packing.

British patents compiled by G. E. Redfern \& Company, chartered patent agents and engineers, 15 South street, Finsbury, E. C-t and 21 Southampton Building, W. C., London.
16,4s0. APPARATI'S FOR TRANSFERRING CARGOES TO SH11'S W1il
COLA. FLA.
In the lowest part of the hold are spiral converers, each receiving mo tion from a vertical shaft and bevel gear. Ahout mulway the lengit of the vessel is an bsirixh shaft, in which is an endleas hand con. convertets. A chute hinged to the upper end of the shalt can be rased or lowered to deposit the cargo into the hold of an adjacent slip by

meane of boome raised and lowetell by palley biecks and cables During the overation the vesacts afe conipreted hy gables the ends of which are attached by spring devoces on the tieck of the veswel containine the conveyers; the cordn passing around belaying pina of pulley blocks on the adjacent vessel, and then back to the other vessel to which it is attached eather directly or to a colled spring on to the deck as a further resiliency to prevent brcakage of the cable. Kesilient struta keep the vessels the right dissance apars.
 GRNPII COMT,ANY, LED., AN1) A. J, GKANT, BOOTLE.
Ifas reference to telegraphe apparatus in which the relative speede of two or more revolving shafts is indieated, say the two (or more) Iriven propeller shaita where it is desirable to keep the relative speeds opetal should he indicated and akcertained, or that the same total nums. ber of revolutions of the shaft should be made in any siven period of fime. In this arued indicator the train of wheels between the shafta

which transmit motion to the augaratus, and the indicating spindie, or axis, are of the aparf type atil artanged in parallel planes; and the two motions are tlansumited fiom the twa shafts to a large wheel. which is toothed externally to be geared up ditectly with the one shaft, and coothed internally to mesh with a "Hoating" whecl which is carricd on an axis adauted to be rotated relatively to of about the center of the large whrel; and the rotation of this whrel abowt iss revolving awis or apindle is transmitted through gearing to the indicator spendle or axis.
 OOLT(HMSE1E L'ND KNBELWERKE NKT, GFS., FK.NNKFLKT M. (iFKMANY.

This it a net of wire cords in whach each prommet is wound in the shape of a cable from a round wire cord conssasting of thin strabght ©3.266, SHIPS HERTIS, A, N. CHINMEREAIN, IIKMING11.3 .25.

The berth compiciset an angleiron framework in iwo perts pivoted torether, and when theme afe extended the flexible mattrest will acconnmoslite, say. Tan pertons, but when folded so that offelart bies upon another it forms a berth suisable for, say, wne twernon. In the lititer case a stretchef is turned outward to furm a support and stretcher for the otter asele of the mattress.

Sulize Difese Engines

Most economical Internal Combustion Engines, Burning cheap Liquid Fuel with high flash point.

Reversible Two Stroke Marine Engine (Engine itself reveralbie)
SULZER BROS.
WINTERTHUR, 8 witzeriand.

The Celebrated

PORT ORFORD CEDAR LUMBER
is the finest wood in the world for Boat material.

Will not rot, split, warp nor check.
Write for prices and information to

C. A. SMITH LUMBER COMPANY BAY POINT, CALIFORNIA

TRADE PIJBLICATIONS.

AMERICA

"American Vanadium Facts," published monthly by the American Vanadium Company, 318 Frick building. Pittsburg. Pa., is the only regular publication in the world on the industrial application of ferro-vanadium and vanadium alloys. This publication will be sent free every month to any of our readers mentioning this magazine. "Buyers of metals are specifying vanadium in compositions because vanadium increases the strength, toughness and life of all metals. Dakers of steel and iron castings, forgings and miscellaneous parts must get ready for the specifications."
"The Marine Transfer for Broadside Coaling in Harbor" is the subject of Bulletin No. 27, published by the Lidgerwond Manufacturing Company, 96 Liberty street, New York. This bulletin describes the Lidgerwood marine transfers as installed on the United States colliers,Mars, V'ulcam and Hector, and the bulletin states that two well-drilled winchmen on the collier Hector discharged tgo tons of coal in one hour from one hatch to a barge alongside. "Each collier has ten hatches E.ach hatch has one marine Iransfer. A collier alongside a warship can usually arrange at least five of the marine transfers to deliver coal to convenient points on board the warship. The clam-shell bucket digs the coal, hoists vertically and swings horizontally in a straight line, and will deliver coal at the same spot at each time. The booms are fixed. The coal may dump directly over a coal chute. When bunkers are empty the coal may pour into them at the full capacity of the marine transfer. Coal can be dumped on the deck, shoveled into bags or baskets and carried to coal chutes on the opposite side of a ship. Two battleships can coal at once, the collier being in the center. Or two colliers can coal one battleship, the hattleship being in the center. The employment of this invention means the emancipation of the sailor from the arduous work of shoveling coal into bags in the hold of a collier. Coaling warships results in more desertions from the navy than any other cause. The marine transfer will increase the speed of coaling and reduce the fatigue of the men performing the service."

Tools for Boiler Makers' Work.-In boiler shops we have two conditions. First, that of doing new work, and, second, repairs; and it is hard to say which requires the greates ability. But in either case the mechanic has constantly to get into the most cramped spaces where even a fraction of an inch makes it almost impossible to do work quickly and well. if at all. The Pratt \& Whitney Company, Hartford, Conn.e shows in a catalogue of small tools, those used by boiler makers, which are of more than usual handiness, and the quality is assured by being made by that company. Their ratchets are most compact, and permit use between plates where most ratchets could not be employed at all. They are made to receive either taper or square-shank drits, and the company provide standard pipe tubes made to fit the ratchets, and also a most handy combination of drill and pipe tap. which, while old, sometimes saves an endless amount of time by its use. The stay-bolt tap made by this company is constructed so that the lead of the external and internal threads are sure to coincide, which insures a contimious thread in the two boiler sheets when set apart, as, for instance, where stayholts are to be used. They, of course, make the regular spindle stay-bolt taps with its shank threaded to obtain the same results. The question of cost of home-made tools is always a vexed one in every shop, and the accurate production of such things as taps, dies, punches, etc., it must be admitted, is far more easily arrived at by those who make a business of producing these articles and are not intermittently engaged in their production. It is an art to make lasting punches and dies, and long experience has tanght the Pratt \& Whitney Company just what selection of steel is best for the work, and its treatment is not any haphazard method but a systematic hardening and drawing which results in lasting qualities. The rednction enupling for ounches made by this company saves a large number of stock couplings, as it can he used for manv lengths and sizes of punches. A flue beader for locomotive boiler tubes forms an inside head most satisfactorily, and the tool can be made for any thickness of steel. This, of course, is not a stock article. hut usually can be obtained on short notice. Reamers, hoth straight and tapered, solid or with inserted hlades, are always kept in stock, as are the dies for various sizes of stay-bolts and standard bolts. The company's catalogute is beautifully printed and thoroungly well illustrated.

Bulletin No. 201 describes the "Power" water cooler, made by the Power Specialty Company, it1 Broadway, New York. "The machine consists of a horizontal cylindrical chamber or casing, through which air is passed, a rotor within the chamber forming moving cooling surface, a fan for circulating air and a pump-when needed-for circulating water. The casing is of shect iron, cast iron, or concrete, according to the size of the machine. The lower part of the casing forms a trough in which water circulates. The rotor, which completely fills the casing, is made up of thin annular plates, nested concentrically. The plates are supported from a central shaft which revolves slowly in outside bearings. The fan is mounted at the end of the casing and blows air between the plates. The pump for circulating the water, and is not always required. The machines are very compact, occupy small space, moderate head room and require no storage tanks,"

Hydraulic Testing Apparatus.-In enginecring to-day it is essential that we be sure. Materials are tested chemically and physically as far as possible, but even then we must go further and test the entire made artucle. In boilers, tanks. pipes, etc., this is especially true, and it is rather strange that the idea is so prevalent that testing apparatus for hydraulic work is so very expensive. This is not so, and it is worth while to write the Watson-Stillman Company, t 88 Fulton street, New York, and find out from them not only the cost of testing apparatus but to get their cataloguc No. $81-\mathrm{A}$, and read about the ir products. In boiler work most of us have seen time running up into hours, wasted, trying to pump up a pressure with a poorly designed and made pump, and often the gage itself is a "used-to-be" affair, and reliance on it often causes no end of annoyance to the manufacturef. friction with the customer and rinancial loss all around. While the hydraulic testing apparatus is not expensive, even a dollar spent on one not thoroughly reliable and of first quality is an absolute waste. Reputation takes years to be worthy of, and when a test is to be made on which a repuration rests it is mere folly to use an apparatus which can be in any way questioned, and which, after a test is made, you still have to do gucssing. The Watson-Stillman people do not make toys or do business in an old-fashioned way. Every article they make is worked out to be of value to the purchaser, and, should a part of it get lost or any repairs be needed, their system of code number prevents any possibility of error in ordering. One thing which we commend is the fact that the catalogues of this company are of standard 6 by 9 size, and any one of the many they issue is well worth keeping, and generally has information concerning their specialties which is of great value.
"Power in the Air" is the title of the leading article in the latest number of American I'anadium Facts, published by the American Vanadium Company, 318 Frick building, Pittsburg. Pa. "Who would have imagined that so horsepower could be transmitted through a tubular shell of chrome vanadium steel $1 / 3$ inch in thickness, with a factor of safety ample to meet the constant hazards of flying through the air? This is not an imaginary problem but an accomplishment firmly fixed in the realmr of facts. The Bourne-Fuller Company, Cleveland, Ohio, furnished to the Roherts Motor Company, Sandusky, Ohio, some chrome vanadium matcrial known as Scott's unique alloy steel. This material was forged into a solid shaft under a steam hammer, rongh turned and heat-treated in the regular way. The forgings were then sent to the Roherts Motor Company, who finished them and bored out the center. They were tesied and developed a margin of safety 38 percent greater than is necessary for a so-horsepower engine with an explosion on the head of the piston of $t, 100$ pounds to the square inch. This accomplishment is extraordinarily good from two standpoints: First, because no other material with which we are acquainted is sufficiemly uniform and free from imperfections to flow evenly in the forging operations and come out without segregations or hard and soft xpots Nickel steel has been shown to be very unsatisfactory for such operations owing to the pasty of kummy nature of the product; forging people report considerable troulle with nickel stecl on account of the liability of this material to stick to the dies. In the second place, nickel chrome steel, we belicve. could not be machined and bored with satisfactory results. Three shafts. one of which is illustrated on this page, were made from forkings which in the rongh state weighed 8_{2} pounds each; after being completely finished they weighed 18 pounds each. and were used in three four-cylinder Roberts mutors to furnish the power for three Hadley \& Blond Farnam type biplanes which are now in successful service. The other photograph on page 2 represents one of these biblanes in actual Hight at Mincola, L. I."

RUSH WORK

It's the hardest kind. There's the strain on your nerves as well as your energy. Any little mishap seems much bigger than usual. Any error makes you mad.

Starrett Tools are accurate-they make no error-your confidence in them will give you belief in your results-you will work accurately and fast.

Starrett Hack Saws cut quicker and last longer-just the saws to trust for rush work.

Send for Catalog " 19 L ," it's free. If your dealer does not have the tools you want we will send them direct to you.

THE L. S. STARRETT CO. ATHOL, MASS., U. S. A.

NEW YORK, 150 Chambers se . CHICA00, 17 No . Jefferson st. LONDON WAREHOUSE, 36 and 37 Uper Thames St. E. C.

The Powell PILOT Brass-Mounted GateValve

A Double Disk Iron body Gate Valve for medium pressures. The body is strong and compact with heavy lugs carrying stud bolts E. The stud holes, in lugs of bonnet cap A, being accurately drilled to template, permit the valve to be assembled any old way. No matter how you handle it after taking a part, it always fits.
The Double Brass Disks, made adjustable by ball and socket back, are hung in recesses to the collar on the lower end of the stem. Stem is cut to a true Acme thread, the best for wear.

The Powell Pilot Gate Valve is also made all iron. For the control of cyanide solutions, acids, ammonia and other fluids that attack brass it has no equal. Send for special circular.
IP YOUR jobber does not have them in stock-ak us who does

Lubrication Troubles?

You can cure many or all of these with Dixon's Flake Graphite. Unlike oil, Dixon's Graphite will do no injury to boilers if it reaches them. Sample 75-C Free.

JOSEPH DIXON GRUCIBLE CO. JERSEY CITY, N. J.

Abstract

"Bearings" is the title of a booklet published by J. A. Nelson. 11 John street. New York. It consists of a series of questions on the subject of "Anti-Friction Bearings" and the answers given thereto "by an experienced and impartial engineer." A copy will be sent free to any of our readers upon request. "Economic Lubrication" is the title of a booklet published by the Albany Lubricating Company, 708 Washington street, New York, manufacturers of "Allany" grease. In this book is a practical talk on lubrication, the parpose of which is to assist in the selection of lubricants which will give the most satisfactory results when all conditions are considered.

The "Providence" steam towing machine is described in circulars issued by the American Ship. Windlass Company, Providence, R. I. The claim is made in the catalogue that this towing machine prevents the parting of hawsers, no matter how sudden the shocks, It tows with a steel hawser, and the drum stows all the line, leaving the deck always clear.
Ball bearing hangers are described in a catalogue issued by the Hess-Bright Manufacturing Company, Twenty-lirst street and Fairmount avenue, Philadelphia. Pa. "In the purchase of the equipment of a new factory, or in the remodeling of an existing plant, often very little consideration is given to the selection of the hangers to hold and support the line and countershafting. To many a shop owner a hanger is simply a 'hanger.' no thought being given to the saving that can be effected through the elimination of friction and the consequent increased efficiency of the power plant. The following pages contain information that will prove of interest to every power owner or user, and we offer the services of our engineers without charge to those desirous of reducing their factory cost."

Grooved ball and thrust bearinge are described and illustrated by the Standard Roller Bearing Company, Philadelphia, Pa., manufacturer of ball bearings for ali purposes. "The grooved ball end thrust bearings illustrated, described and listed in this pamphlet generally consist of three elements, two being grooved steel discs, the third being a bronze cage in which the balls of the bearings are self-contained. The dises or races are manufactured from high-grade selected steels, carefully heat treated, tempered and accurately ground, one face of each race being grooved, the form of the groove being circular, its radius being slightly larger than the radius of the balls to be used therewith. The cages are made of highgrade bronze, carefully machined, the pockets in which balls are confined being located with special tools to secure accuracy as to the diameter of pitch circle and the spacing of the balls in cage. The balls used in these bearings are of the highest grade, our "Standard Alloy" steel balls being used in all of these bearings. These bearings are made also of the self-contained type. In this latter type the bearing is of one unit, the two dises or races and the balls interposed between the races being bound together with a retaining band encircling either the outer or inner diameter, as is found desirable by the user. These latter bearings are not kept in stock, and are manufactured to order only. The material used and methods of manufacture of the races for the self-contained type are the same as those for the standard type. With the self-contained type, however, no bronze cage is used, balls being loosely laid between the dises or races in the grooves provided."

[^40]Sturtevant multi-vane fans for marine work are deseribed in a booklet published by the B. F. Sturtevant Company, Hyde Park, Mass. These fans are compact, requiring small space, and may he suspended from the ceiling or mounted on the platform. They are durable, being rigidly constructed for high-speed work. They are efficient, furnishing a large volume of air at small expenditure of power.
Air pumps, air pumps and jet condensers and surface condensers, which have been furnished during recent years by the Dean Bros. Steam Pump Works, Indianapolis, Ind, are described in Catalogue No. 75, which the company ha* just printed. Twenty pages of this list are devoted to the names of steamships which have been equipped with this company's product.

Racing sails, marine accessories, etc., are described in a soo-page marine supply catalogue published by George B. Carpenter \& Company, 202 South Water street, Chicago. Ill. We understand that a cony of this catalogue will be sent free to any of our readers who will mention this magazine. The catalogue is a splendid book of reference for any one interested in marine matters, as it contains an up-to-date treatise on the installation and operation of marine gasoline engines, and also a chapter on the care and handling of sail craft, both written by men who know.

Booklet No. 77. published by the Derome Standard Pulley Block \& Crane Manufacturing Company, 78 Southwark street, London, S. E. describes this company's pulley blocks and overhead traveling cranes. "Our lifting appliances of standard types are built in large quantities, and we can therefore offer them at very reasonable prices and effect prompt deliveries. You will find that our manufactures are of an unquestionably superior value and always give complete satisfaction. In fact, their equal is not yet on the market. The D. S. pulley blocks and D. S. overhead traveling cranes are used in all parts of the globe by the most important engineering estahlishments, and we have the custom of the primeipal governments and railway companies. We are always pleased to forward on trial, entirely at our risk and free of all charges, any pultey block with the required lenkth of chain. Do not hesitate to apply for particulars and appliances on trial."

TRADE PUBLICATIONS

GREAT BRITAIN

A catalogue published by John Gibbs \& Son, of Liverpool, deals with the construction and application of electric motor and belt-driven fans for ventilating purposes. The concluding portion of the catalogue is devoted to the ventilation of ships.
A circular recently sent out by the Machine Tool \& Engineering Association from its new offices at to4 High Holborn, W. C., states that the association has been registered as a limited company, as it was thought that this would he the best and most business-like form of organization. Its primary object is to exercise control over the organization and frequency of exhibitions, and its policy is to promote one in London every three years, and possibly one in the provinces alternately with those in London. The show which is to be held next year under the direct control of a committee of the association promises to be most successful, and at the present date just over 55.000 worth of space has been applied for and allotted to members of the association, exclusive of space applied for hy non-members. From negotiations that have been conducted with the Exhibitions Branch of the Board of Trade, it is stated to be probable that in the matter of exhihinions abroad the association will be asked by the Board of Trade to trade to take a very important and responsible position in connection with the engineering sections. Now that the preJiminary work has been completed it is intended to initiate a progressive policy which will be of adyantage to the trade generally, and information will be supplied to members from time to time dealing with trade openings abroad, with proposed legislation affecting the trade, and with other appropriate matters. The directors are: Mr. J. T. Peddie, of Vickers (chairman) ; Mr. W. Deakin. of H. W. Ward \& Company (viee-chairman) : Mr. J. W. S. Asquith, of William Asquith; Mr. A. Drummond, of Drummond Bros. : Mr. F.. M. Griffiths, of C. W. Burton, Griffiths \& Conupany: Mr. A. Herhert, of Alfred Herbert: Mr. W. D. Ford Smith, of Smith \& Coventry, and Mr. Charles Wieksteed, of Charles Wicksteed \& Co., the secretary being Mr. Herbert G. Williams.

Reilly Multicoil Reilly Multicoil Heaters
 and Evaporators are in stock at the shops, Pier B, Jersey City, awaiting Evaporators Improved Type

 your rusb orders. Coiled, flexible copper tubes, ground union joints (no expanded ends), and the Reilly manhole door, giving access to all interior parts, give the marine engineer an auxiliary which saves coal, increases Condenser capacity, and needs no repairs.

Send your vessel to our pler for her next repairs; and install the auxiliaries at the same time. THE GRISCOM-SPENCER COMPANY

90 WEST STREET, NEW YORK.
FORMERLY THE JAMES REILLY REPAIR AND SUPPLY COMPANY.

International Marine Engineering
 OCTOBER, 1911.

PROORESS OF THE DIESEL ENGINE IN MARITIME WORK.

(ty 3. HENDRLL WILGON.

Lord Furness, the head of Furness, Withy \& Company, Ltd., when he publiely gave out that his firm had placed an order for a 3,000 -ton vessel to be driven by oil engines of the
are already in active service, and by the end of the year these will be joined by small transatlantic liners, which are now in course of construction in Continental yards.

Diesel type, stated that to-day we are face to face with a development that will revolutionize the methods of proptlsion in shipping. Of this there can be little doubt, so rapid has been the development of the crude oil-consuming marine internalcombustion engine. What were considered merely wild dreams five years ago are now solid facts, and many oceangoing craft

advaxtages.

One of the principal claims of the Diesel-type engine is, of course, the great saving on fuel costs. Against this it has been argued that, after a certain number of such vessels are on the water, the price of oil will increase to the extent of rendering them more expensive to run than their
steam-engined sisters. This is a fallacy, or misstatement, to which no shipowner should give heed, as oil is distributed over a very wide area, probably over a wider area than coal. When the demand comes there will be a short disturbance in the market, and hundreds of new oil companies, good and bad. will be formed, and more oil fields opened up, as was the case with rubber recently. At present the flow of oil at the varions great oil fields is far in excess of the demand, despite the enormous quantity of refined oil consumed.

FLEL

Even were the price of oil fuel to increase, fuel charges are but a small item in the advantages of the heavy oil in ships. Oil being carried in the double bottom of vessels, the coal lunker space, and the boiler and condenser space saved enaliles

PGUGRESS ON THE CONTINENT.
Continental engineers realized these facts long before other nations, consequently they are far ahead, and the experimental stage with them is past. Already the Diesel-type motors in the Kussian navy and mercantile marine aggregate 23.000 horsepower, composed of about fifty engines. Among the more notable firms engaged in large marine heavy oil-engine construetion must be mentioned Fried Krupp, of Kiel-Gaarden, Germany; Sulzer Bros-, of Winterthur, Switzerland; Carel F'rères, of Ghent: Aktiebolaget Diesels Motorer, of Stockholm; Maschinenfabrik Augsburg. Nurnburg, Germany; Schnieder et Cic., of Paris: Sociéte des Moteurs Satbathé, of St. Etienne, Paris; Société des Ateliers de La Loire, France: Nederlandeche Fabriek van Werktuigen en Spoorweg Materiecl, of Amsterdam: Société Anon. John Cockerill, of

the same amount of cargo to be carried with a great reduction of tonnage. This means smaller harbor dues. Again, stokers are not required, a considerable saving in the wages and food bills, and their quarters can be given over to cargo space, again increasing the earning powers of the vessel on the same tonnage. When the ship is in harbor, "oiling" is accomplished by simply running flexible piping aboard, and the fuel tanks filled in a short space of time. Here, again, much manual labor, time, and consequently expense, are saved; also no time is wasted in cleaning up ship, as is the case after coaling operations.

A few years ago the large passenger vessel C'to, in service on Lake Zurich, had her steam machinery replaced with a 150 -horsepower Sulzer-Diesel motor. Originally she carried 150 passengers; but since the alteration she has been licensed for 200 passengers, so great was the saving of space. Naturally this made an enormots difference in her earning powers, and tends to show at least one advantage of oil engines, not to mention the many others.
So it will be seen that there are more points in favor of the internal-combustion engine than against.

Seraing, and Hoboken, near Autwerp; Burmeister \& Wain, of Copenhagen; Chantiers \& Ateliers Augustin Normand, of Havre, and the F. I. A. T. Company, of Turin. All these firms have already constructed marine oil engines up to $t, 000$ hersepower, and several have engines of 12,000 horsepower going through the shops, notably the F. I. A. T. Company, M. A. N. and Krupps.
deyflopment in gatat beitain.
The launching of several large ships of this elass right unde? their very noses awakened British engineers to serious consideration, and about thirty firms are now deep into tre problem. On the other hand American marine engineers are only begivning to show signs of progress in thas direction. It is time the U'nited States government gave the necessary impulse by fitting a small warship with Diesel motors, The British Admiralty have already moved in the matter, and have publicly placed an order for an internal-combustion engised torpedo boat destroyer with Messrs. John I. Thornyeroft \& Company: while there can be little doubt that Messrs. Vickers, Lid., is (in secret and at its own risk) butikling an eightcylinder engine of 12,000 horsepower to be fitted, in conjunc-
tion with steam engines, in a battleship. Vickers is, it is understood, benefiting by the experiences of Carel Frères, on whose license it is working, and the illustration, Fig. 2, shows the single-cylinder 1,500 -horsepower engine on which the design was based. This engine stands about 17 feet high, and has a bore of about 40 inches. It is of the four-cycle type with overhead valves. The high and low-pressure compressors are arranged by the side of the cylinder, but are not shown in the photograph for obvious reasons. The makers are bound by agreement with their licensees not to divulge any information, therefore further details cannot be given. The smaller engines to the left of the illustration are partly finished eastings of a aso-horsepower set.
Among other British firms actively taking up the new industry are: Richardson, Westgarth \& Company, of Hartie-

 MUTGE.
pool: Barclay Curle \& Company, of Whiteinch, Glasgow: Brazil Straker \& Company, of Bristol; J. White \& Company, of Cowes; Gardners, of Manchester; Swan, Munter \& Wigham Richardson, Lid., of Newcastle-on-Tyne; Beardmore Bros, of Dalmuir: Palmer Bros., of Jarrow; Babcock \& Wilcox, of boiler fame; Mirrless, Bickerton \& Day, of Stockport; Westinghouse Brake Company, and Willans, Robinson \& Co, Messrs. Barclay, Curle \& Company is building a 7,000 -ton motor vessel for the East Asiatic Petroleum Company, and Richardson, Westgarth is constructing an engine of 5,000 horseppower for the 3,200 -ton ship under construction by Sir Raylton Dixon \& Company for Furness, Withy \& Company, referred to by Lord Furness; while Messrs. Swan, Hunter \& Wigham Richardson, Lid., is building a 400 -horsepower marine motor based on the experience gained with the PolarDiesel engines of Toiler.

CONSTRUCTIONAL PROELEMS.

Many are the problems and difficulties that face builders of large marine heavy oil engines, the conditions at sea being vastly different from the requirements of land installations, especially in connection with the government arrangements. Perfect castings of a fine grain iron are required for the cylinders and pistons, in addition to very careful machining. It has been found that mechanics accustomed to constructing steam locomotives make the best fitters and turners for Diesel work, as being used to working to a very delicate gage. Regardink the cylinder castings, the chief problem is that. while the necessity for cooling the walls demands thimess. streugth demands thickness, as the casting has to stand internal pressures that may be anything from 400 pounds to $t, 000$ pounds per square inch. This pressure is, of course, not applied gradually, but in quick succession, about too to 200 times per minute. Strains of this nature demand all the designer's care, and a compromise has to be effected. Water-cooling
the pistons is another difficulty, but in one or two cases this trouble has been ingeniously overcome; with one engine this has been avoided by cooling the pistons with lubricating oil Of coursc, cooling is partially effected by the scavenging air, which with all two-cycle engines is blown through the cylinders at the bottom of every stroke. With the double-acting class of engine greater difficulties arise, as stufting-boxes to stand enormous pressures under heat of over soo degrees C. have to be made, and a suitable packing found; also the piston rod must be hollow and water-cooled by swivel-jointed water pipes or telescopic tubing. Propeller racing in rough weather can be guarded against by efficient governing, or by fitting a heavy fly-wheel; also the very high pressure is a factor against the engine suddenly picking up excessive speed. However, most of these worries have now been satisfactorily overcome

by Continental enginecrs, and I am enabled to give short descriptions and illustrations of the principal marine engines.

TYPES OF ENGINES, THE SABATHE.
A serious rival to the Diesel engine is to be found on the Sabathé crude oil engine, which has several distinctive features. Of the four-cycle type it is essentially a marine job, and the center of gravity is lower than is the case with the majority of engines of the Diesel variety. This, by the way, also seems to be a feature of Krupp engines. There are six cylinders, cast in pairs, each $13 \frac{3}{4}$ inches diameter by $131 / 4$ inches stroke, and 500 horseprower is developed at 400 revolutions per minute; but when required the revolutions can be reduced to 100 with excellent results. The cylinders are lined with stecl, and the pistons, which are not water-cooled, are each fitted with four broad, white metal rings in addition ${ }^{\text {- }}$ the ordinary east iron rings, which obviates any frictional tronble likely to arise from the steel walls. The top of the piston is concave, giving a large, efficient combustion area.
Air for starting and fuel injection is provided by a threestage compressor, which delivers the air at 800 pounds per square inch, and which is driven off the forward end of the solid machined six-throw crankshaft, as are the water circulating and lubricating pumps. The fuel pumps, of which there are six, are driven by eccentrics off the horizontal shaft,
which can be seen about 18 inches above the crank case doors, and a link motion gear alters the position of the fulcrum of the driving arms for varying the speed or shutting off the fuel feed. Regarding the fuel injection arrangements, there is a double valve in the center of the cylinder head, allowing the fuel to be sprayed directly onto the piston (Fig. 3). The needle value (G) and the poppet valve (S) are kept on their

Fig, 6,-A 500-मOUsEPOWER SABATHE CETDE OIL ENGINE, BUILY FOR A rasmen yackt.
seats by springs, the valve (G) being lifted by a rocking lever and a cam, while the valve (S) is raised by a collar (T), which is secured to the needle valve, so that as the latter opens to a certain extent the valve (S) is lifted. This system allows of a small quantity of fuel only being injected into the combustion chamber at low speeds. Fuel consumption, I may say, bas been brought as low as 0.4 pound per horsepowerhour of residual oil, the consumption of any engines of the
steam machinery from Dr. Nansen's Arctic exploration ship Fram and installed a 150 -horsepower Polar-Diesel motor for the Amundsen Antarctic expedition. Their engines are of the two-cycle type, and usually have six cylinders, four working and two maneuvering. The forward of the latter contains a compressor, which contains a big storage cylinder charged to about $t 50$ pounds per square inch, and this is utilized for starting purposes, supplying air through a reducing valve to both the maneuvering cylinders. As the working cylinders do not take up the load until the engine has made several turns, they pick up very easily. The maneuvering cylinders are, of course, double acting, and they also supply scavenging air at 5 pounds per square inch. Each of the working cylinders is equipped with a separate adjustable fuel pump. The exhaust and air scavenging ports, on opposite sides of the cylinder, are uncovered by the piston towards the hottom of the stroke, the piston head being so shaped as to ensure complete scavenging. In the cylinder head is the fuel injection valve, which is operated by a rocking lever, actuated hy an overhead cam shaft driven off the crankshaft, by a perpendicular shaft and akew gearing, at engine speed. An interesting and noteworthy feature is that each cylinder is fitted with a hand-controlled relief valve for use if the engine has stopped with a working piston at the top of the stroke, as the admission of high-pressure air at such a moment would put heavy strains on the big ends and main bearings and also prevent the engine from turning. It is interesting to note that Messrs. Swan, Hunter \& Wigham Richardson, Lid., of Newcastle-on-
 similar design.
The following is a report, hitherto unpublished, of a test made by Mr. G. Bremberg, surveyor to the British Corporation Registry, of a 200 -horsepower Polar-Diesel marine engine for the Southern Whaling and Sealing Company, of North Shields: This shipping firm is having the four-masted barque Sound of Jura, which was built of steel in 1906, installed with

v19. 6. -A 260 -

Diesel type being not lower than 0.42 pound. The above engine was built for a French yacht.

T4E POLAR-DIESEL.

It is not generally known that the Aktiebolaget Diesels Motorer, of Stockholm, makers of the Polar-Diesel motor as fitted aboard the Toiler, are one of the pioneers of marine Diesel work. This firm, by the way, recently removed the
a 2 to-horsepower Polar-Diesel engine developing its rated horsepower at 250 revolutions per minute. She is 210.3 feet long by 35.6 feet beam and 19.5 feet draft. The firm is also having built, by Messrs. Smith Docks Company, two motor whalers, each 92 feet by 88 feet by 6 feet 10 incbes, which will be fitted with Polar-Diesel motors of 200 horsepower at 280 revolutions per minute. The engine of which I give extracts of the tests is for one of the latter. After several hours' con-
tinuous run a consumption test of thirty minutes was taken with the engine at full load, the mean net load being 313 pounds. The engine averaged 282 revolutions per minnte and developed 200 brake-borsepower, the fuel consumption being 42 pounds for the thirty minutes, and the consumption per brake-horsepower per hour was .42 pound. Another sbort test was made to obtain maximum power. With a net load of 225 pounds, and with the engine turning at $29 a$ revolutions per minute, the effective brake-horsepower was 222; the exhaust gases were quite colorless, and no sign of warmth was noted in the bearings. Very satisfactory trials were also made of stopping, starting and reversing. Solar residue oil was used throughout the tests. The Aktiebolaget Diesel Motorer have supplied this type of engine to many firms, including the $320-$ horsepower tug Jakwt, owned by Mesers. Nobel Bros. Naphtha Company, of St. Petersburg. But their first marine job was the 60 -borsepower Polar-Diesel engine fitted in the 120 -foot schooner Oriom, owned by the Cassiopeja Shipping Company, of Stockholm. This was installed in the autumn of 1907. Among other vessels so fitted may be mentioned the 110 -horsepower Polar-Diesel engines in the cargo vessels Rapp and
low-pressure eompressors. Very great care has been taken in the construction, and the cylinders and piston rings are made of a special cast iron of fine grain, possessing exceptional wear-resisting qualities, the rings being turned with mathematical precision by a method ensuring equal radial tension, and are placed on the piston with polished faces. Tbe connecting rod, crankshafts and pins are of very tough forged steel, while the bearing bushes follow the usual marine practice, being of white-metal lined gunmetal. Balance weights are fitted to the crankshafts. It will be noticed that tbe cylinders are water-cooled their entire length, and that the trunktype pistons are exceptionally long, no erossheads and guides being fitted.

WERKSPOOR-DIESEL ENGINES.
These engines came into prominence in connection with tbe 1,goo-ton motor tankship owned by the Anglo-Saxon Petroleum Company, of London, this vessel being propelled by a six-cylinder Werkspoor-Diesel engine of 500 horsepower, constructed by the Nederlandsche Fabriek Van Werktuigen en Spoorweg-Materieel, of Amsterdam. This boat bas given such excellent results that her owners bave already placed an

Snapp, owned by the Alvar Shipping Company, of Stockholm.
Witb Polar-Diesel motors, which are of the two-cycle type, very nearly the same consumption of fuel as with four-stroke engines has been obtained, results quite unparalleled.

THE SULZER-DIESEL

Another firm whicb has bad much experience in this direction is Messrs. Sulzer Bros, of Winterhur, Switzerland, whieh is constructing the two 1,500 -horsepower motors for the 6,000 -ton liner now building at the Howaldt yard for the Hamburg-South America Company. Tbis notable Swiss firm numbers among its achievements the equipping of the $1,000-$ ton passenger vessel Romagna with two 400 -horsepower Sulzer-Diesel oil engines, which is now in service between Trieste and Ravenna, Austria. In the Sulzer engine, using oil fuel having a thermal value of 18,000 British thermal units per pound, the consumption at normal load varies from 0.40 to 0.55 pound per brake-horsepower hour, according to the size of the engine. This makes the running costs about 0.2 to 0.25 cent (0.1 to 0.15 pence) per brake-horsepower hour, basing tbe price of oil at $\$ 12.50$ ($50 /-$) per ton. This is, of course apart from lubricating oil; but the Diesel requires less Iubrieation than any other type of engine. Sulzer Bros. do not direct their energies to one particular type, but build both the two and four-stroke variety.
Fig. 7 shows the sectional drawings of a 400 -horsepower Sulzer engine, which is of the fonr-cycle class. There are four working eylinders, the two others being the high and
order with the same engineers for an engine of 1,000 horsepower. Vulcamus is 196 feet long by 37 feet 9 inches beam and 10 feet 2 inches draft. She is built of steel, and ber speed is over $81 / 2 \mathrm{knots}$. Her engine is on the four-cycle principle, with six cylinders $153 / 4$ inches diameter by $239 / 16$ inches stroke, and 500 horsepower is developed at 180 revolutions per minute. As far as possible it has been built to conform witb marine steam engine practice, and accessibjlity of working parts has been made one of the principal features of the design. The length is about 25 feet, and the height from the center of the crankshaft to the cylinder tops is 12 feet, while the weight is 42 tons without the piping, compressors, etc., the wbole weighing some 85 tons. On Taraken residue oil at $\$ 9.50$ (38/-) per ton the full speed consumption of fuel is. 42 pound per brake-horsepower hour and -5 pound when at half speed.
This engine differs from those previously described in this article, in that the compressors do not form part of the actual engine; but the engine is started by a two-cylinder, so-horsepower auxiliary motor of the Diesel type, also a very beavy fly-wheel is fitted to prevent racing of the engine when the propeller lifts from the water in rongh weather. The connecting rods are fitted with cross-heads and guides, allowing fairly short pistons. The so-horsepower auxiliary drives a twostage compressor for filling the air tanks, used for starting purposes and for maneuvering the main engine; but it also drives a centrifugal pump for discharging the liquid cargo, Vnlcanus being an oil earrier. The compressed air tanks, of
which there are four, hold air at 300 pounds per square inch. On the starboard side of the main engine are the threestage compressors used for fuel injection, the fuel being injected at 900 pounds pressure through a valve operated off the cam-shaft. The first-stage compressor is a single waterjacketed eylinder driven by links and a rocker off one of the cross-heads, while the second and third-stage compressors, are in one casting, and are driven off another cross-head. The water-cooling pumps are also arranged on the starboard side between the compressors. Lubrieation is by a Belliss \& Morcom oscillating valveless pump actuated by an eceeneric of the crankshaft, all oil, of course, passing through a filter before reaching the working parts.

The eylinders are east in threes, and are fitted with cast iron liners. Unlike the Sulzer enkines, which have exceptionally lengthy trunk-type pistons, the Werkspoor pistons, as before mentioned, are short, but are fitted with ten rings a

 660-3
piece to prevent the compression escaping to the crankpit. As cross-heads and guides are fitted there is no side thrust to worry ahout; but the pistons are hollow and are cooled by a fan driven by friction off the fly-wheel, the currcut of air being almitted into the body of the piston by telescopic tulvithk -a noteworthy feature. There is no crankease, but the cylinders are supported on I columns, the crank pit being covered in by large iron doors. By this arrangentellt the pistons and craskshaft can be taken out without disturbing the cylinders or valse gear.

Kegarding the valve gear, this is arranged in the cylinder heads, and there are four values to each cylinder-the inlet, exhaust, fuel and compressed air for starting, respectively. Each is operated by a east stcel rocker off an overhead eam shaft rumning the entire length of the engine. Being about 25 feet long it is, of course, well supported by ample bearings. The engine is reversille, but space prevents describing the valve mechanism in detail, and I have already dwelt at lemeth upon other parts. Mrielly, however, reversing is carried out by bodily moving the eam-shaft, bringing another set of eams into action for the opposite motion. I must refer, however, to a recent voyage made by Vwicanus from Rottctdam to Hamburk and back. The distance between the two ports named is 735 nautieal miles, the outward run from Rotterdam occupying just too hours. Her cargo for this voyage was t,000 tons of benzine; the maximum speed for twenty-four hours was 8.5 knots , att! the total fucl consumgtion $81 / 3$ tons. The return run with 475 tons of water ballast was aceomplished in 9^{2} hours, maximum speed 8.0 knots. The eost of her fuel was about $\$ 10(f z)$ per ton (although residue oil is obtainable at a lower figare), and her engines consume iton of oil fuel for every too nautical miles that J'mlcanus runs. Thus she can earry 1,000 tons of cargo 100 natutieal miles with a fuel bill of \$10, a saving of more than so percent over a steam vessel of similar cargo capacity, which is but one of the
many advantages that steamship owners must eventually realize.

THF COCKERILL

The system adopted by Messrs. Cockerill, of Seraing, and woboken, near Antwerp, for the engines under construction for the King of the Belgians' passenger vessel is entirely novel, and will give the ship excellent maneuvering qualities and economical slow-running powers; it is a practice tikely to 1e kenerally adopted should it prove successful. The engine is divided by a cluteh into two units or three or more eylinders, the forward half also beink connected by another elutch at the fore end to a compressor, while the after half of the engine is conpled direct to the propeller. When slow speed is required by the mavigator the forward half is disconmected and the compressor clutch thrown into gear, and the after part of the ergine is run entire'y on compressed air. This may seem complicated, but in reality is simple, and should prove to be very efficient.

> s. A. N.

In International. Marine Encineering of May last, the 3,000-ton auxiliary ship Qwerilly was described and the two zoo-horsepower M. A. N. (Maschinenfabrik Augsburg-Nurn= burg) engines with which she is fitted were illustrated. Each engine has seven eylinders, six working and one air-compres5ing eylinder-not four working cylinders, as was stated in the May issue. This air-eompressing eylinder is the bigh-pressure compressor for the fuel injection. A separate scavenging pump is attached to each cylinder at the lower half, virtually forming a cross-head guide for the connceting rod of the working cylinder pistons All the lubrication and watercooling pumps and the controls are mounted at the forward end of the engines. At the after end of each is a powerful clutcb, used for lisconnecting the propeller slafts when the vessel is under sail, allowing free rotation of the propellers. For starting purposes there are several air storage bottles, which are supplied by a compressor driven off an auxiliary engine, which also drives the electric light dynamo. On the test bed each engine developed 320 horsepower al 305 revolutions per minute on a fucl consumption of .462 pound of residual oil per horsepower per hour.
F. t. A. J.

The Fabrica Italiana Automobili Torino (F. I. A. T.), of Turin, is very busy with marine enkines of the Diesel type, the largest being of 12,000 horsepower for the Italian navy. of which, of course, they are unable to divulge details. But theif six-cylinder, foo-horsepower marine engine is of interest. It is of the tworeyele class, single-aeting, and the rated horsepower is developed at fino revolutions per minute. There are several decidedly novel features, one of these being that no separate pumps are fitted for air-scasenging the cylinder. This is arranged by double diameter pistons, the upper part being the working piston, and the lower portion acts as an air pump, while the air is retained in a resersoir formed in the crank-case easting, and supplied to the eylinders at the bottom of the stroke through two valucs on the cylinder heads. These valves are actuated by eams on the eam-shaft that work the fuel injection valve and starting air salve, also on the cylinder head. The exhanst discharge is through ports uncovered at the bottom of the stroke.

For supplying the air for fnel injection and air for starting purposes there is a two-stage compresion at the forward end, driven off the crankshaft. The pumps for water-cooling and lubrication are gromped at the forward end, where they are driven off the erankshaft extension through a reduction gear. It is interesting to note that with F. I. A. T. engines dificulties arising from water-cooling the pistons have been avoiled by oil-cooling the piston tops, which is found to be more suecessful than expected. The engine is, of course, reversible, and in the official trials by Italian naval officials the
reversing from full speed ahead to full speed astern was carried out with ease in five seconds.

CERMANBA MALINE ENGINE

Messrs. Fried Krupp, the fannous engineers of Kiel, Germany, have devoted considerable attention to the marine Diesel-type engine, and are the manufacturers of the Germania oil motor. This firm are building four 1,000 -horsepower oil engines for the two 7,900 -ton ships building for the German-American Petroleum Company. Through their courtesy I am enabled to illustrate a direct reversible, sixcylinder engine of 1,000 horsepower, which was iately built by them for the German government. It is of the two-cycle type, although Messrs. Krupp also make the four-cycle variety. The cylinders are divided into two units of three by the highpressure compressor, while at each end is a low-pressure compressor, the former being used for fuel injection and revers-
by two Diesel engines of 500 horsepower, and fitted with an auxiliary motor of 150 horsepower. Regarding other big motor vessels, Velcanus, Toiler, Qwevilly and Corncliws are already known to my readers.

VESSELS L'NDER CONSTRUCTION.

Big motor ships known to be now building are too numerous to deal fully with here, and probably as many are building secretly or quietly, especially when one considers the fact that the Maschinenfabrik Augsburg-Nurnburg has nearly 100 large marine engines of this type on order, including a sixcylinder engine to develop 2,000 horsepower per cylinder, for German naval purposes-most probably for the center shaft of a battleship-but authentic information is unobtainable. However, I must make brief reference to the two 6.500 -ton liners building for the Hamburg-American Line by Blohm \& Voss and Burmeister \& Wain, while the Hamburg-South

ing, and the two latter for air scavenging of the cylinders. Thus it will be gleaned that should one section of the engine break down the crankshaft can be uncoupled at the center and the vessel driven by the other half. The air and fuel injection values, which are arranged in the cylinder lieads, are driven off a horizontal overhead cam-shaft, actuated by a central perpendicular shaft and gearing, driven in its turn off the crankshaft. Sine large inspection doors are provided to the crankcase. As in the case of the Sabathe engine, the center of gravity is very low, there being no cross-heads, such as in the Werkspoor motor, trunk pistons being fitted. This engine is, of course, for naval work. The firm has just built an interesting motor vessel for the German government, which has been named Mentor. At present they are unahle to divulge details, but from other information received the is of 75 tons, fitted with motors of 600 horsepower. Personally, however, I believe she is a much larger vessel, and equipped with oil engines of several thousand horsepower.

Sulps Now is senvice

It is not kenerally known that there are already more than fifty large Diescl-engine ships actually in service. On the river Volga, Russia, the horsepowers of the various Diesel craft aggregate 23.000; two of these are gunloats-the Kars and Ardagan-each of 630 tons, which are equippell with motors of 1,000 horsepower. Messrs, Nobel Bros, Naphtha Company, St. Petersburg, owns half a dozen large motor ships, each of several thousand tons, while Messrs. Merkuljiff Bros. owns a vessel of 4,000 tons capacity, named Djalo, driven

America Company is having a 6,000 -ton liner built at the Howald yard, Kiel, with engines by Sulzer Bros., Winterthur; Messrs, Burmeister \& Wain is also building an 8,ooo-ton motor vessel of 2,000 horsepower for the East Asiatic Company, of Copenhagen, for service between Antwerp and Bangkok, Siam,

Again, the German-American Petroleum Company is having the 2,300 -ton tank ship Excelsior fitted with two goohorsepower Carel-Diesel type motors by the Reshertig Schiffsbau A. G. Of course, this paragraph is not given as netus, but merely to draw attention to work in progress. Other craft may be mentioned. There is the 3,200 -ton cargo vessel ordered by Messrs. Furness, Withy \& Company from Sir Raylton Dixon \& Company: Again, there is the 6,000-ton boat building on the Clyde by Barclay, Curle \& Company, of Whiteinch; also the 1,000 -horsepower tank ship for the Anglo-Saxon Petroleum Company, owners of Vuicanus. Also, there is the (oo-ton revenue cruiser to be fitted with motors of 1,000 horsepower building for the Russian gevernment by the Socićté Anon. Chantiers Navals Atelier et Founders de Nicolieff, and the Thornycroft oil-engined destroyer for the Brisish Admiralty. Last, but not least, is the 1,00c-horsepower Cockerill passenger vessel for the Congo, building to the order of the King of the Belgians, I could continue this list, but space forbids; however, the above will suffice to show that the future outlook is most promising, and shows strong indications that the Diewel type of oil engine will take a prominent place in the propulsion of ocean-going ships in the near future.

THE SUBMARINE VESSEL.

> By K. pietz.

(Concluded from page 360.)

In the determination of the value Q of the ballast water (see also page 358) it is to be observed that the amount Q_{1}. belonging to the external tanks, completely fills these in the under-water condition, and thus prevents the outer skin enclosing them from being bulged in by water pressure exerted from one side only. Similarly, also, the external oil fuel tanks inust be kept full by pumping in water as the oil is consumed. During submerged rums it is desirable that the outer flooding valves be kept entirely open, in order that the hydrostatic pressures within and without the tanks may be kept as far as possible alike. For the determination of the amount of the rest of the ballast water Q_{2}, which is still maintained within the inner hull, it must in the first place be remembered that a variation of the percentage of salt contained in the water is accompanied by an increase of buoyancy. Should, for instance, during a blockade, a boat be submerged at low tide in the brackish water at the mouth of a river; that is to say,
cement, etc., also have a certain displacement which must be exactly determined by calculation and compensated by ballast water.

The pumping out of the ballast tanks after an under-water run is effected in the awash condition by ordinary centrifugal pumps, the air thereby flowing in of itself. In case of necessity, however, it must be possible, in the submerged condition, or in that of sinking as a result of damage, to pump out ballast when the slipping of detachable lead ballast has proved unavailing. For this purpose moss of the pure submarine boats are provided with special high-pressure centrifugal pumps, which must be capable of overcoming the grealest hydrostatic pressure that will in practice be encountered. The air then flows from the inside of the boat into these tanks. In the case of submersible vessels, on the other hand, the emptying of the external tanks can be effected only by compressed air, and is not resorted to until the pumping out of the internal tanks has proved insufficient. For this purpose, indeed, large quantities of highly compressed air are necessary, the storage and constant replenishing of which within the vessel requires the presence there of new appliances. Special high-pressure air pumps are, as a rule, carried (outpot per

should the ballast tanks be filled with such brackish water ($\boldsymbol{\gamma}_{\mathbf{z}}=\min$. 1.0), a rapid equalization of the latter will not easily be effected even with the valves open, and the increase of the buoyancy $(D+d)\left(\gamma_{1}-\gamma_{v}\right)=\max .026(D+d)$. due to the greater specific gravity of the water at a distance from the shore ($\gamma_{1}=$ max, 1.026 tons* per cub. m.), will have to be overcome by the taking in of additional ballast. Further, in the case of external fuel tanks with volume V, attention must be given to the circumstance that the oil, the specifie gravity γ_{0} of which is less than that of the ballast water γ_{l}, will, under water with tanks nearly fult, continue to provide a maximum amount, $v\left(\gamma_{1}-\gamma_{0}\right)$, of buoyancy, which must likewise be overcome by an increase of the ballast water. Now, since $\gamma_{0}=$ about 0.85 and γ_{1} max. $=1.026$ tons per cub. m. Q must amount at least to $.026(D+d)+.176 v$. There must also be a further amount of ballast sutficient to overcome any trim the vessel may have in the awash condition. It is, of course, incumbent upon the designer to argange the ballast tanks in such a manner that, taken together, they trim the vessel horizontal when she is awash; but in spite of all care inclinations will always take place which will have to be adjusted. In the dimensioning of the ballast tanks it must further be borne in mind that all the structural parts of these and of the open crections, as well as all cavities in pipes passing through these latter, air storage flasks, exhaust pipes,

[^41]minute $=$ about 353 cubic feet of air at a pressure of 2,426 pounds per square inch). In case of necessity the compressor of the Diesel motor may also be pressed into the service. The use of compressed air for the emptying of the external tanks becomes necessary, because the outer skin is not strong enough to withstand great pressure, for water cannot be expelled till the air pressure within the tanks to be emptied is at least equal to the hydrostatic pressure without, so that the walls themselves (the outer skin) are actually not under onesided pressure. Care must be taken, however, that when the boat rises on the emptying of the external tanks, the compressed internal air is able to expand and escape through the flooding valves.

After the ballast water has all been taken in the transition from the "awash" to the "submerged" condition may proceed someshat as follows: 1. By alteration of the trim (Figs, 6a and 6b). 2. By the sinking of the boat bodily downwards, the position of her axis remaining parallel with that in the awash condition (Fig. 6c). Boats with single pairs of horizontal rudders at their after ends can dive only in this way (Fig. 6) ; but when a boat is fitted with several pairs of diving rudders it is mesible for her to dive in either way. For a dive by means of alteration of trim the foremost pair of rudders are so adjusted as to press the fore body down beneath the surface of the water. The aftermost pair are meanwhile adjusted for "raising." so that the boat under the influence of the thrust of the propeller and of the rudder
moments, $T_{0} \times a$ and $T_{0} \times b$ (Fig. 3), both acting in the same sense, describes a gentle curve in the vertical diving planc. As soon as the desired depth has bcen reached the horizontal submerged condition is attained by the adjustment of the after-diving rudders to the downward pressing position as well as the fore ones. This method of diving is a very rapid one, because the speed of the boat is made usc of to

nis. 7
bring her down. It is also, however, the most hazardous, since, with the sligbtest inattention, dangerous depths may very quickly be reached. Greater angles of inclination with the horizontal than 10 degrees are accordingly carefully avoided. In the case of a dive with the axis of the boat kept at the "awash" inclination to the horizontal, which is often called a "dive on even keel," all the diving rudders are at the outset adjusted so as to produce downward pressure, and so handled that the vessel sinks with a fair degree of evenness. A dive in this manner takes rather longer than one made as above described, but it may be accomplished with greater safety, and, with a relatively inexperienced and unreliable crew, should always be preferred. If the rate of the reduction of the speed which accompanies the transition to the submerged condition were known, a simple theoretical analysis (Figs. 2 and 3) of this latter method of diving might be made, since the condition of equilibrium at any moment existing between the vertical components of the pressures on the diving rudders and the part of the surplus of buoyancy already overcome is of a purely static nature. In view, however, of the unknown deflection of the particles of water, due to the shape of the vessel, all existing theories relating to rudder pressures break down; here, again, we are thrown back on the results of experiments with models which, on account of the separation of the resistance of the vessel from that of the rudder blades required for calculation purposes, become very expensive.

After the intended depth of immersion below the surface and the "even-keel" position have been attained, the aftermost of several pairs of rudders, when so many are adopted, are fixed at the angle for diving, and the finer adjustment of the vertical steering is effected entirely by the help of the foremost pair. We have already seen that a state of suspension of a submarine boat is an impossibility, and in consequence every excess of rudder pressure causes an acceleration and a turning of the boat downwards, and every deficiency of pressure a like motion. in the upward direction. It follows from this that during under-water runs the regulating diving rudders will be constantly in action; to enable her to maintain the intended depth of immersion the boat must constantly perform oscillations and stamping movements of more or less considerable amplitude. This tendency will be the more pronounced in boats fitted only with single pairs of diving rudders. In order to minimize these oscillations-that is to say, to give a better stability, of course, at the depth of immersion
desired-hydroplanes are fitted abaft the diving rudders, but the large proportion of length to depth (max. $L: B:: 12: 1$) is in particular design to give a certain steadiness in this direction. Further, the already-mentioned effect of the broad after-body on the course-stability also shows to advantage here. The center of mean distances of the greatest superficial extension of the boat in the horizontal plane, correspond-

ing approximately with that of the waterline of greatest area, is thereby kept unusually far aft and unusually far behind the center of gravity of the vessel when this point assumes its ordinary position. On the assumptions that with a given trim under water the turning of the boat takes place about a horizontal athwartship axis through her center of gravity, and that

nia. 1.
the resistance of the water to such turning acts approximately in the center of mean distances above mentioned, a moment tending to bring her back to her old course must be set ap with every vertical deviation from the latter. If this center of mean distances lay at a point forward of the center of gravity. the tendency of the boat to turn a somersault would, under certain circumstances, be directly promoted thereby. The
influence exerted by the broad after part of the vessel towards the prevention of vertical oscillations is therefore to be ranted in importance with that of trim by the stern of a vessel steaming at the surface to prevent her from falting off sideways from her course.
When submerged, a submarine represents a syssem which approximates very nearly to a condition of equilibrium between forces acting in the vertical plane. Sudden disturbances, such as the firing oi a torpedo, inclinations caused by the putting over of the vertical rudder, etc., may, with eareless manipulation of the diving rudders, cause incalculable coursedeviations in every direction, and this may suffice to show the difficulties of submarine navigation, impeded as it already is by the difficulties of obtaining bearings.
In the case of the large boats, at all events, the action of the increased inettia towards the prevention of alterations of trim

is agreeably in evidence. This was probably one of the reasons for the increase of the displacement of these boats beyond that formerly ruling. In view of the considerable cost for the construction and maintenance of the first experimental boats, the dimensions of these were, of course, kept very small; for dependence had in the main to le placed on the expensive purely electrical accunulatur systern for propulsion, even for surface runs. Since the systematic development and actual applicatom of the submarine boat as a weapon of warfare, however, its displacement las increased. To this growth a limit of about soo tons of surface displacement has now been set, chiefly becanse oil motors for the powers, which would. beyond this, be required, have not yet been built, and the necensary reliability in working with them would be missing. but also for the further reason that the deadweight of the storage battery, which always has to be carried, reaches quite unmanageable proportions, Were, also, however, experience has in general shown that increase of displacement brings advantages in almoap every difection. In addition to the improvement of the course-stahility and the action of the inertia in counteracting changes of trim, this lies in the cousiderable enbancement of the fighting value espeed. radius of action,
necessary comfort and saicty for the crew and increase of the shore of spare ammuition) in the improved sea qualities accompanying the increase of resefve buoyancy and in the improvement of the stability.
The advantages of greater displacement are especially prominent in the submersible, which in itself already represents an important step in adrance. For the magnitude of the reserve buoyancy of the suluncrsible there is, properiy speaking, no upper limit so long as the duration of the maneuver of submergence does not eume in question. A lower limit, determined in relation to the resulting freeboard exists, however, and this is set by the extension of the stability eonditions of a modern submersible as contrasted with those of a pure submarine boat In general, these are very simple. During surface runs they do not differ in any way from those of an ordinary vessel. The stability of a vessel floating at the surface of the water is, as is well known, made up of a weight stability and a surface stability, the former depending on the height of the center of gravity G and the latter depending on the height of the center of buoyancy and on the alteration of form of the displacing body at incliations from the upright (waterline stability); that is to say, on the lateral mosement of the center of btoyancy F, occasioned by such deformation. As may be seen from Fig. 7 the older submarine boats, which swam on their circular-sectioned hulls even on surface runs, have, hy reason of the arching up of their upper surfaces, very little water-plane stability, so that dependence must in the main be placed on the weight stability. It is advisable, therefore, in these boats to keep the center of gravity below the center of buoyancy, already in surface condition, so that a moment tending to eareen the vescel does not at any inclination occur. In the submersible the ease is different. Here the broad upper works give very considerable waterplane stability, and in order to attain reasonable stability conditions a position of the center of gravity ahove the censer of bnoyancy must, expecially for surface rums, then be aimed at.

If f b be the lateral moment of inertia of a waterline we obtain for the initial stability $M F=\frac{f_{0}}{v}$. Let us now consider the awash condition. If the surplus bnoyancy be represented by the volume of the tower, the hull proper will already be below water. If the slixht influence exerted by the tower, which is still above water, be neglected, we may set $J^{2}=0$, and also $M F=O$; that is to say, in the awash condition the metacenter eoincides with the center of buoyancy. The waterline stability is herenith destroyed, and only the weight stability remains; that is to say, it is imperative that the eenter of stavity G lie below the center of buoyancy F ($F G=250$ to 500 mm .). The same holds for ruus in the submerged eondition with buth types of boat, but on account of the tower, i. e., of the surplus buoyancy. the general center of buoyancy F^{\prime} will rise somewhat higher, and, acmording to the vertical position given to the horizontal rudders and the varying vertical pressures on these, the general center G^{\prime} of gravity resulting from $Q+W+\left(T_{0}+T_{b}\right) \cos \phi\left(\right.$ Fitg. 9) 9 will be subject to slight oscillations. X
Such is the stability in the final conditions. In the intermediate state between tire surface and awash conditions, however. it becomes complicated ly the circumstance that the free surface of the water in the gradually-filling tanks, with its stability-reducing properties, has to be taken into acenunt. In a pure submarine beat this is of small consequence, for, provided the eenter of gravity be not unduly raised by the water in the tanks, she is in a condition of absolute stability. with G below F. As a check upon the reduction of the stability, due to the free surface of the tank water, the inethod shown in Fig. 10 may be applied, the only assurnption in which is
that all the tanks are run up simultaneously. The surfaces of the water in the tanks will then be at about the same height at each instance. By means of the displacement scale D and the filling scale of the tanks Q, it becomes possible for each external waterline a or b readily to determine the heights and breadths of the internal water surfaces ($a^{\prime} b^{\prime}$) and the influence these exercise on the initial stability.
Exactly the same holds good for a submersible, on the assumption that the center of gravity is already below the center of buoyancy in the surface condition. Prominence is here assumed by the phenomenon that, aiter a certain point of time represented by the waterline c in Fig. 11 is reached, that
dangerous if the waterline stability were insufficient. It is absolutely necessary, therefore, and the height of the freeboard must be so arranged that the deck of the boat does not become submerged till a later instant of the awash period, 50 that a sufficient degree of waterplane stability is available at this critical time. It is also good practice to bring about the coincidence of the two points before the extreme waterline c (Fig. 18) is reached, so that there is then only one tank waterplane exercising a reducing influence on the stability. Fig. 11 gives, at its right-hand side, the suitable alteration of level of the two centers for the case assumed. F is the locus of the center of buoyancy ahove top of keel (to the external

two free water surfaces in the tanks have to be reckoned with-that of the outer ballast water Q_{1} and that of the inner ballast water Q_{T}-which may, for any external waterline, be obtained from Fig. t in exactly the same manner as for a submarine boat from Fig. to. The stability-redueing infuence of the ballast water between the surface and awash conditions is given for the transverse and longitudinal metacenters in the right-hand diagram of l'ig. 11. The curves M_{h} and $M \cdot$ give the metacenters regardless of, and Mb^{\prime} and $M_{3^{\prime}}{ }^{\prime}$ these as affeeted by, the water surfaces of the tanks. For the longitudinal stability is also affected by these, and the longitudinal metacenter in the submerged eondition again coincides with the eenter of buoyancy, so that below the water the longitudinal and transverse stabilities becorne exactly alike. It therefore is necessary to eare for a sufficient degree of subdivision of the tanks in the longitudinal direction and the necessary wash-plates must in every case he provided.
Of special interest again are the stability eonditions of a submersible in which the center of gravity is above the center of buoyancy in surface trim. In the submerged condition G must lie below F; during the running up of the tanks, then, the eritical condition must at one particular instant oceur in which the two eenters coincide ($W^{\prime} L$ a). This might be
waterlines, set off from the vertical line $\mathrm{O}-\mathrm{O}$). G is the locus of the center of gravity. Waterline a is the critical one for the stability. It may at the sante time be seen from the figure that the longitudinal and transverse stability are at their minimum in the awash condition; for the influence of the vertical diving rudder pressures $T_{\text {: }}$ and T_{5} on the vertical position of the general center of gravity is, for the most part. less than that of the surplus buoyancy on the general eenter of buoyancy.

Hitherto the assumption has been made that the surfaces of the water in the tanks are "free." This is not, however, in accordance with the actual eonditions. In regard to the stability, indeed, these are still less favorable, since they include a certain leakage through the valves, which have to stand open during the awash period. The ingress of the water is here kecater at the side which is becoming submerged on account of the increase of the hydrostatic pressure. The leakage, however, can only be looked on as exercising a limited inflnence; for the flow throngh the valves will always be throttled to a considerable degree, so that for small inclinations the eondition of free water planes above mentioned may practically be reckoned with. Of interest, also, is the circumstance that when the diving rudders are turned during an irtelination of the vessel the vertical pressures are $T, \cos \$<$
$T_{.}$and $T_{b} \cos \$<T_{0}$ (Fig. 9); that is to say, the rudders must then be turned to a greater angle. If the inelination of the boat were 90 degrees, no further diving could take place, and the boat would certainly come to the surface.
There is no difficulty in providing the necessaty local and general strength required by a submarine boat. As was to be expected, the experiences obtained in the construction of ordinary vesscls were, in the first designs, made use of. The early methods have latterly, however, been entirely discarded. The ordinary transverse and longtudinal structural arrangements are applied only to the erections outside of the hull proper, while the latter, when of circular scetion, has no inner framework except what is necessary for the seatings and brackets for the machinery and other equipment. The strong shell plating which is necessitated by the external hydrostatic pressure is, thanks to its circular form, itself so well able to resist longitudinal bending moments that nothing further is required. It results from this that the internal space is no longer cramped by projecting structural parts, and that the hull itself is evenly stressed; for, when frames were fitted, the resistance to external pressure, although very great in way of these, was, owing to the reduction in tbe thickness of the plating, considerably lessened between them. The great advantage possessed by the frameless hull, however, is that it can be built in sections, each of which in ittelf forms a completely welded-up length of tube. By this means the dangers of leakage at riveted connections are completely remored, and the circular form of the hull can best be kept true. The further experience appears here to have been obtained that, even when frames were fitted, no considerable amount of weight was saved, in spite of reductions that could be made on the shell plating. The only objections to the welding of the hull are that the process itself is very expensive, and that it is difficult, if not impossible, to check the quality of the work.
The stresses due to external pressure, which are applied only to the inner hull, the tower and the hatch casings, are accompanied by the ordinary longitudinal ones which are present in every vessel, and which are here subject to slight alteration only in connection witb the diving-rudder pressures and the surplus buoyancy in the submerged condition. Tbe first-named stresses reach their maximum in way of the largest diameter of tbe inner hull, and the others in general at a section at another point in the lengthx It is the affair of the designer to determine the section between these two which is actually subject to the action of their greatest resultant. The greater the depth of immersion assumed in the preparation of the strength-diagram the smaller will be the influence of the longitudinal stress, unvarying as the latter is for all depths. It must here not be lost sight of that the longitudinal bending moment also affects the more lixhtly built erections and the walls of the external tanks; in view of the riveted connections of these their strength conditions must receive special attention.
For the determination of the stress to which the hull proper is subjected by the external pressures, one of the many available empirical formulx may be applied. The approximation to the actual conditions hereby obtained is sufficiently aceurate. because the variation of the contour of the inner hull of a submersible, in particular, from that of a spindle-shaped body, to which these formula in general apply, cannot yet be taken into account. If, however, the sections of the inner hull are not circular, as in the case of the Italian Laurcnti design, the method of determining the stresses adopted by Hurlbrink (Schifflau, Annual No. IX.) may be recommended. In this the local stresses are also taken into account, but, above all, the point in each section of the inner hull under investigation at which the greatest transverse bending moment occurs, and which must therefore be most strongly stayed, is indicated.

The transverse strength of the inner hull receives considerable support from the presence of bulkheads in the hold. Formerly much uncertainty prevailed as to whether it was desirable to fit bulkheads into a submarine boat, because they prevented a good survey of the interior. As the displacement gradually increased this reason ceased to be in itself conclusive. The next step, therefore, was the fitting of light watertight bulkheads, the sole object of which was the localization of explosions or of gases which might be unpleasant to the crew. The tacit hope seems, however, to have been entertained that at shallow depths they would, in case of leakage, be able to withstand one-sided water pressure. In some recent boats, bulkheads would appear to have been fitted that are specially designed to resist one-sided pressure even at considerable depths of immersion.
The foregoing may serve as a general survey of the many theorems which come in question in the design of a submarine boat. The clearing up of the many doubtful points which still await complete theroetical and practical solution must be left to the future. These, however, are mostly of a minor description; the general problem of the submarine boat may be regarded as completely mastered.

Recent Development in Sea Transportation of Swedish Ore.
 sy J. Јоим son.

The vessels employed in this trade (ore carrying) are neatly all tramp steamers, of which those which are especially built for the trade have a distinguishing feature-a special outfit of a large number of ordinary steam-hoisting winches. In the best-planned vessel of this kind the arrangement of hatcbes has enabled the cargo to be better distributed in order to reduce the straining effect on the ship. The discharge of ore is still done chiefly by manual labor, it being shoveled into ore bags, which are hoisted in the usual way and emp:ied in the chutes. Shoveling iron ore by hand is extremely laborious and not in keeping with the best-equipped loading ports. Naturally onc's attention is turned to the latest system of djscharging ores in the United States, but the condition of the American ore trade differs from that of Europe.
Iron miners in Sweden decided to try the Johnson-Welin system, which proved very satisfactory, and in the following year a vessel of about 8,000 tons dead weight was fitted with the same. The systern is to sub-divide a steamer by means of transverse bulkheads, forming alternately bins for the cargo and discharging shafts. The vertical bulkheads do not extend to the bottoin of the hull, but terminate about 7 feet from the tank top and are connected to the sloping bottom of the bins, the slope being about 42 degrees from the horizontal. The design further embodies wing tanks for carrying water ballast, and the tops of these tanks are sloping in order to convey the ore to the wing outlet chutes. This system dispenses entirely with all the hands on deck except the crane driver, the hoisting, slewing and tipping being done by one man on a platform on the crane, and the electric transmission of power lends itself admurably to the smooth and effective working of these crancs. Steam-heating pipes are fitted in the holds under the botiom of the ore bins, which prevent them from freezing when the ore is received covered with snow. The vessels so far built on this system are the Vollirath Tham, 8,000 tons; the Sir Ernest Castle, 10,800 tons. They were built hy R. \& W. Hawthorn, Leslie \& Company, of Hebburn-on-Tyne. These two vessels during continued scrvice have fulfilted all expectations of their owners, designers and builders.

[^42]
FOR HEAVIER ARMOR.

Dr sypmey G. KOom, M, M. E.
In connection with the re-designing, last year, of a dreadnought for a South American power, a curious result was obtained upon an investigation as to the best means to utilize increased displacentent in adding to the armor of the ship. The vessel, as originally designed, carried a powerfut battery associated with high speed, but the armor protection was the target for a great deal of criticism. For this reason it was decided to allow the designers an extra t,000 tons of displacement, to be utilized, so far as possible, in strengthening the protective elements of the ship. And right here is where the difference of opinion set in; ior one faction wanted to completely overhaul the design, expanding the vessel in every direction to accommodate the increase in displacetuent from 28,000 to 22,000 tons. The other side wanted to hold the design as it was, so far as possible, and to obtain the extra displacement by deeper iminersion (a matter of $12 \psi_{4}$ inches). As the eontroversy showed no signs of clearing away, the case was made the subject of an investigation, of which the following is a brief account:
The original design showed a waterline length oi 5 to fect, a beam of 87 feet and a normal draft of 28 feet (uniform), the block coefficient being 0.5916 . The designed speed was 22 knots. The shait horsepower of the propelling turbines was to be 33,000 , based on an Admiralty coefficient (K) of $2451 / 2$, its the well-known horsepower formula

$$
H=\frac{D^{3 /}, V^{n}}{K}, D^{v / 2} \text { being } 76 \mathrm{t} \text { and } V^{v} \text { being to,648. }
$$

The battery incladed eight 14 -inch guns mounted in pairs in four turrets, after the manner of the 12 -inch guns on the United States battleship Michigan; twenty-four 5 -inch guns in the battery; fourteen 3 -inch semi-automatic guns on the superstructure, under the bridges and on the upper turrets, and four submerged tubes for discharging $\mathbf{2 t}$-inch torpedoes. The main items of weight are shown in the table, in the column headed A, that marked B being for the expanded ship, while C shows the weights for the ship more deeply immersed.
The armor protection, about which the whole controverzy raged, included a belt amidships, 300 feet long and 12 feet wide, of which one-half was above and one-half below the normal water plane. This belt had a uniform thickness of 9 inches. It was continued to the bow and stern by a 12 -foot end belt 5 inches thick. Diagonal armor, starting at the ends of the heavy belt and sweeping around the bases of the endmost turrets, was $t 2$ feet deep and 6 inches thick. Above the main belt and diagonal was a citadel tt feet higb and 6 inches thick. The 5 -inch guns were so located as to train over the upper edge of this citadel, and were further protected by 5 -inch battery armor rising 3 feet above the citadel. The axial height of these 5 -inch guns above the normal water plane was 18 feet. Barbettes for the heavy guns, 33 feet in diameter, were protected by $9^{2 / 2}$ inches of armor wherever exposed, and by 4 inches where behind other armor. The turrets had 11 -inch face plates and 8 -inch backs. The one conning tower was $t 2$ inches thick.
The expanded design had a length of 519 feet, a beam of 88 feet and a draft of $281 / \mathrm{j}$ feet, the block coefficien: of fineness being 0.5916 , as before. With $D^{8 / 2}$ raised to 785 , the new shaft-horsepower becomes 34,000 on the same Admiralty $=0-$ efficient. The battery was identically the same. With the added weight allowable for armor it was found possible to increase the thickness of the main armor belt to 10 inches; of the diagonal and citadel armor to 7 inches; of the battery to $51 / 2$ inches, and of the exposed portions of the barhettes to to $1 / 2$ inches.

In the design C the draft becomes 29 feet $1 / 4$ inch, and the block coefticient 0.5971 . This was considered a little more difticult tc propel than design B, and the Admiralty coefficient was accordingly reduced to $24^{2 \frac{2}{4}}$, at which the shaft-horsepower figures out as 34.500 . The battery is as before. The additional armor weight permits an increase in the main belt to 11 inches; in the ends to $5 \frac{t}{2}$ inches; in the battery to 7 inches, and in the barbettes to it inches. The diagonal and citadel armor are 7 inches, as in design B. Splinter protection in the battery, to the amount of 45 tons, was also added. The deeper immersion required the raising of the entire armor belt about t foot, but stability was ample to permit this.

${ }^{\text {Distmection of Weights. }}$	A.	B.	c.	D.
Hust and fitings.	8,400	8.800	8.450	8,418
Equigment and stores	1,065	1.100	1.070	1.070
Machuery and water	2.310	2,380	2.456	2,880
Normal fuel supply	1.650	t,700	1,726	1.700
Rattery and ammuntion	2,560	2.500	2,000	2.500
Armor, complete .	S,075	5,520	8,840	6.492
Total	21,000	23,06e	22,000	21,570
Details of Ambon Weights.	A.	B.	C.	D.
Main bets	1,182	1,at ${ }^{\text {a }}$	1,444	1,318
lielt al endo	464	483	607	484
Diagonat armor	818	871	371	363
Citadel, somplete	t,018	1,141	1,173	1,178
Battery armor	301	939	421	831
Splinter sluelds			45	
Ratioties	696	715	734	715
Turrets .	780	780	780	780
Conning tower	80	80	H0	50
Total armor	4,830	8,25s	6,580	5,239
Macking and bolta.	245	268	280	263
Total	5,075	6,520	6,840	6,497

In the general distribution of weights it will be seen that the expanded ship B requires 400 tons additional for hull weights, where the deepened ship C takes an increase of only 50 tons. The weights allotted to equipment and stores show only moderate changes, due in part to the additional horsepower and in part to increased general size. The weight of machinery and water (ior steaming purposes, including condensing water actually in the condensers and pipes) follows the horsepower directly, so also does the fuel supply (equal steaming radii being required). The battery was not changed at all.
In the expanded ship the turrets are all located in the same position, relative to the center of length, as are those in the other two designs. This means that the length of main armor belt remains constant, and the only required additions to armor weights, as a direct consequence of augmented size, come from the "end belt" 9 feet longer than in A and the diagonal armor on water plane and citadel, due to an atldition of t foot to the ship's beam (16 inches added to length of diagonal armor at each end of vessel). From these three sources the necessary weight increments amount to about 88 tons, which would have increased the armor weight of B, en the schedule of thicknesses adopted for A, to s.ro3 tons. We have thas obtained from the additional t,000 tons of displacement in B a gain in armor of $5.520-5.103=417$ tons, or 41.7 percent of our added displacement. In C, on the other hand, no changes in dimensions call for additional armor weight, and the full difference, $5.840-5,075=765$ tons, or 76.5 percent of the added displacement, becomes available for increased armor protection.

Had the armor schedule in B been expanded from that of A on the same ratio of expansion as the dimensions, but without increasing the thickness, the required armor weight on B would have been $5.075 \times 785 \div 76 t=5.235$ tons, which would have permitted us a gain of only $5.520-5.235=285$ tons, or 28.5 percent of our added displacement. This would, of course, have presupposed a slightly wider and longer heavy armor belt, and other dimensions accordingly. Suth an arrangement would have deprived us oi 132 tons, or nearly onethird of our actual 417 -ton gain.

One interesting point brought out at the discussion on these
several designs, which, after all, were not used, but were later abandoned in favor of a heavier and somewhat different one, was that a ship with all the advantages of B could be designed after the manner of C, but with a considerably smaller dieplacement addition than the 1,000 tons allotted. This vessel. called D, is also shown in the table. The estimated difference in cost between B and D, which is about $\$ 175,000$ ($£ 36,000$), would cover the cost of a small submarine.

FREIOHT TRANSFERRING MACHINERY AT ANTWERP.
 oy ack handra*

Terminal engineering, especially that branch which pertains to the installation and operation of freight-handling machinery, has now become a most important branch of engineering. It is history that two cities may start with equally natural advantages but the one which furnished the best terminals and approaches will soon outstrip the other. There are many

Where there is plenty of water area, as in a bay or harbor, the piers sliould be extended either at right angles or diagonally to the shore line. Another method is to build the quays parallel to the shore front and also to cut into the shore and form docks of basins. Antwerp, located upon a rivet, has built massive masonry and wide quays in length about 3 miles, and has constructed a number of docks or basins in addition. There are at present ten inner docks in the north of the city, three barge docks on the south, and an outlet to the Campine Canal for the use of inland shipping. There are six drydocks, $4,500,000$ square feet of sheds and many large buildings, such as warehouses and storehouses.

Freight Transshipping. - Among the freight-handling machinery may be mentioned one sheer of 120 tons, two 40 -ton cranes, one 50-ton crane, one so-ton crane, one 5 -ton crane and nearly $\$ 00$ power cranes of smaller capacity. An apparatus for lifting and dumping trucks containing 25 tons of coal, a barge with movable appliances for the transshipment of ore and sixty powerful capstans were installed.

Transference of Fueight Between Vessels and Cars.-

examples that the city which neglects its terminals endangers its commercial existence. A port may be said to be built up through convenient, quick and low-cost transference of ircight between vessel and shore. A difference of one penny per ton in freight transportation will oflen change the destination of a ship's cargo.
Antwerp, one of the four greatest ports in the world in reference to foreign commerce, realizing this, is now making most extensive improvements and planning for a still greater enlargement of its commodious harbor. The city is located on the river Scheldt, about 53 miles from the North Sea. Antwerp forms the port of entry and exit for the trade of Belgium, and a portion of Southern Germany, of France and Switzerland. In order that there may be no limitations as to the length and depth of the vessels which here are to be accommodated, the Belgium government is arranging to cut an entirely new bed for the river and diverting its course. In general, there are two ways of increasing port facilities so as to give the greatest lineal frontage for the berthing of vessels.

[^43]For this movement of freight there are ninety-one power cranes of $11 / 2$ tons and 2 tons capacity. These cranes are similar and move on a 4 -meter gage line, allowing the cars to pass between the arches of the cranes. The cars are transferred from one track to another by sliding transier platiorms. By an akreement between the general government of Belgium and the town of Antwerp the latter supplies the power for the capstans placed along the quays, also for moving the transfer platforms and the railway trucks along the quay frontage. Many of the cranes have been installed for a number of years and should not be considered as representing the best practice. There are other quays and docks located a distance from the city to avoid the danger of fires, where petroleum, benzine and other heavy oils are loaded and discharged. The installation for this oil handling covers 74 acres. The main system of inner docks is at the north end of the city and covers 220 acres, and there is 46,200 running feet of quays and wharves. There are 262 acres on the quays for storing merchandise, where docks can accommodate about 350 vessels of moderate tonnage. At right angles to these two docks and parallel with the river bank is the Kaltendyk Basin, which is in the center of the port
section of the city, and about it are grouped warehouses of large dimensions. There are six drydocks, as mentioned above, and the length of the new drydock, which has been commenced, will be 726 feet. Although Antwerp has the above facilites, yet for some time it has become apparent that the commerce of Antwerp must soon outgrow its docking accommodations.

About ten years ago engineers were put to work to prepare plans that would make the port equal to any demands that are likely to be made on it for many years to come. These plans have received the sanction of the royal government, and will make the port of Autwerp a larger one than any in existence,
cranes, 3.350 pounds capacity, 19 cents (10 pence) per hour.
The crane shown in the illustration deserves special study, both from its massive construction and the way it is supported, there being only one leg, the other end being supported upon the girder at the edge of the shed. There are many oi these cranes. It will be noticed that the freight is transferred from the hold of the steamship either directly upon drays, cars or elevated platforms. These cranes are adjustable, so that they can be placed directly opposite the hatchways of vessels. For moving the freight between the vessels and the shore this crane does excellent work, but is limited to an in-reach of about 40 feet. If the freight is to be

and three times its present size. The new docks will eonsist of a canal in the shape of a quarter circle, 815 feet wide and nearly 40 feet deep, extending from the Kattendyk dock for a distance of about 5 miles to the northwest, and there entering the river Scheldt. With this canal will be connected a large turning basin, a system of drydocks for loading and unloading, each 660 feet wide with an average length of 3.960 feet. and complete handling equipment of the latest and most improved character. In the cutting of an entirely new bed for the river there will be removed several bad curves.
Antwerp up to date has spent more than $\$ 5,000,000$ ($\mathbf{6} 9.000$,000) in improving her harbor, and the improvements above outlined are estimated to cost more than $\$ 55,000,000$ ($\mathbf{f 1 1 , 0 0 0 , -}$ 000) in addition, making a total cost of about $\$ 100,000,000$ ($\mathbf{~} 20,000,000$). It is the chief commercial city of Belgium, and has a population of above 300,000 . All matters pertaining to the harbor and port are administered by the city.
Sea-going vessels pay to cents (5 pence) per ton for two months and I cent per ton per month afterwards. Warchouses are rented by the month for 2 cents (1 penny) per square foot on ground floor and four-tenths of this amount per square foot on top floor. In 1007 by sea-going boats there were $11,200,000$ tons. There is a charge of 10 cents (5 pence) per month per linear meter (3.28 feet) to merchants outside of the city: 14 cents (7 pence) per month per square meter ($10 / 75$ feet), and one-third of this amount for storage in yards. Cranes, 10 tons capacity, 39 cents (20 pence) per hour. Small
caken into the sheds there is the necessity of rehandling, and much of the advantage of the erane is lost. The freight, when loaded into the steamship, is generally stowed in the vessel without regard to consignments. It may, therefore, happen that the freight taken from the hatch may not be routed for a car directly opposite the hatchway, but for one of the train of cars located at a considerable distance to right or left of the car opposite the hatchway. This means rehandling by manual labor, which is expensive, and even more expensive than the rest of the movements. In similar cases elsewhere where the expense was 6 cents (3 pence) per ton to place on the pier to handle in and place upon cars within the shed, there was an additional cost of 26 cents (1 shilling). Other types of crane along the river and on the Campine Lock have two legs instead of one. These cranes are elevated so that cars and locomotives can pass beneath. There are open sheds back of the river quays for the temporary storing of freight, and elsewhere convenient to the water front are great government warehouses for storage purposes. These warehouses are of very pleasing architecture and fitted with all freight-handling appliances.

A replica of the first steanboat to navigate the Ohio and Mississippi Rivers has been constructed to aid in commemorating the centenary of steam navigation on the inland waters of the U'nited States by steaming from Pittsburg to New Orleans.

SIDE-HAUL RAILWAY DRY-DOCK FOR THE UNITED STATES GOVERNMFNT.

Some months ago there was completed for the Mississippi River Commission a side-haul railway drydock of $t, 500$ tons capacity, which contains some unusual features, and which in all probability represents the most highly developed form
cubic yards of earth were removed from the bank, the deepest part of the cut being about 19 fect. The material was dug and handled by heavy scoops of one cubic yard capacity. which were operated by engine power. A small amount of dredging for the underwater portion was also required.

The dock in general consists of twelve lines of tracks, laid in pairs, of total length 315 feet. The upper portion of 150

of this kind of drydock. The question of the type of drydock which would meet the requirements to the best advantage was carefully considered, with the result that the sidehanl was chosen in preference to the end-haul or the floating dock, as better adapted for the handling of the flat-bottom, shallow draft boats predominant on the Mississippi River.
feet is composed of reinforced concrete, connected to the lower portion of 365 feet, which is built of timber and thoroughly braced. The upper portion rests on reinforced concrete piles, spaced 7 feet 6 inches centers, while the lower is secnred to timber piles. The distance between each pair of tracks is 19 feet, while the individual pairs measure 15 feet

WORM-GEAR MECHANISM LSED IN OPEAAING THE SIBE-HACL DAY-DOCK.

The site selected for building is at West Memphis, Ark., which is the headquarters of the Mississippi River Commission's fleet of dredges, steamboats and other floating craft, and where the repair shops are located. To prepare this site for the foundations, and to bring it to grade, some 13,000
centers: the total width from outside to outside being 185 feet. The grade is $1: 6$. Upon the tracks travel six fabricated steel cradles, which measure 52 feet long horizontally. To the under chord are attaclied the truck wheels, which are of cast iron, double flanged, chilled $1 \mathrm{read}, 12$ inches diameter.
and run in enclosed bearings, which contain grease reservoirs. On the top chord is placed a patented device for releasing the cradles from under the bottom of the vessel, and which is operated by releasing and tripping mechanisms, handled from the outside of the cradles. By this means the cradles can be conveniently and quickly released, leaving the vessel, if so desired, resting upon blocking laid upon the ground in the 19 -foot space between the cradles and independent of them. Any extensive repairs may, therefore, be done on the vessel, while the drydock may be used for further docking.

The cradles are hauled on the endless chain system, the chains passing over sprocket-wheels, which are operated through worm-gear mechanisms. These are of the special M. R. side-welded, long-link type, and of the highest quality of material and workmanship.

The hoisting machinery consists of six separate units, which are operated by a line shaft extending from one end of the foundation to the other, and which is made to revolve by double-cylinder reversing engine placed in mid position. Each

PROQRESS OF DISSOLVED ACETYLENE FOR MARINE SIGNALS.

The adoption of acetylene for lighted aids to navigation dates back less than one decade. Beginning with the cumbersome carbide generator beacon (such as are still in use to-day in Mobile Bay), the acetylene aid has developed through the various types of apparatus which generate their own gas on the light stations up to the modern and scientific system where the illuminamt is compressed into portable steel cylinders charged at large generating plants on shore. The process of safely storing large quantities of gas in small cylinders suitable for marine work is known as the "acetone process," and is a European inveution. Pure acetylene alone cannot explode, but when combined with air in certain proportions it becomes highly explosive, therefore it is dangerous to compress neat acetylene in store holders; but with the acetone system the gas can be highly compressed with just as great safety as you would compress ordinary air.

Acetone is a liquid somewhat resembling alcohol, and has

אOBTKEAST EXD LGGHEMIT NO. 44, OFF CAPS ANM, EQUIPPED WITH ACETYEEXE VLASHIMG LIGHT.
unit may be operated independently of the other, or the whole lot may be run in unison by simply throwing in or out the shifting clutches. The foundations are composed of concrete, bedded solidly in the ground, and braced to the heads of the tracks. The time of hauling full-rated load the total length of the track is 45 minutes.

This dock was built by the well-known firm of drydock builders, H. I. Crandall \& Son Co., of East Boston, Mass, The chains were manufactured by Bradlee \& Co., of Philadelphia, Pa.

Mr. Oscar R. Cauchois, assistaut general agent of the Compagnie Gésérale Transatlantique at New York, has been decorated Chevalier de la Legion d'llonneur, in recognition of his many years of valuable service in promoting and furthering commercial relations between France and the L'nited States.

Mr. Omar N. Steele, manager of the Cleveland yards of the American Shipbuilding Company; died Aug. 17, aged 68 years. He was an engineer on the Great Lakes for twenty years, and brought out the first iron boat built on the Lakes.
the property of absorbing or dissolving twenty-five times its own volume of acetylene per atmosphere of pressure. Before introducing the acetylene, the cylinders or accumulators (which are of heavy solid drawn steel) are filled with a porous mass composed of infusorial earth, charcoal, asbestos and certain metal oxides. This mixture is poured into the cylinders as a semi-liquid and, after being carefully shaken down so that every space is completely filled. allowed to harden. This hardening process is assisted by baking in a special oven. In this mass, which is Ro percent porous, there is no space large enough for an explosion to occur, and in no case can an explosive wave travel through the porous mass. An amount of acetone equivalent to 40 percent of the internal volume of the cylinder is next poured in, and the cylinder is then ready to receive the acetylene. The initial supply of acetone is sufficient (with very little replenishing) to last for the complete lifetime of the cylinder. A cylinder prepared in this manner will contain 100 times its own volume of acetylene at ten atmospheres pressure (150 pounds per square inch).

No surer guarantee of the absolute safety of dissolved acetylene prepared in this manner exists than its present
extensive employment by the Light House Bureau of the United States Department of Commerce and Lator for lightships, beacons and buoys.
Accomulators are made in various sizes to suit all varieties of lighthouse work. The large cylinders are used in connection with buoys, one of these containing sufficient to maintain a buoy in operation for from one to two years. The type usually enployed for beacons and light vessels weighs, when fully charged, about 200 pound\%, and contains at ten atmospheres pressure 1 to cubic feet of available gas.

The next most important part of this lighting system is the mechanism for reducing the pressure of the gas to suit the burner and for producing distinctive light characteristics, i, s. alternate light and dark intervals. The flashing mechanism is provided with accessible adjusting screws by which it is possible to adjuat it aecurately to any desired characteristic.
Occulting light as a peculiarly distinctive signal is well known to mariners. The pilot burners used with this system consume about $1 / 75$ of a cubic foot of gas an hour, which is about one-third of a cubic foot of gas a day.

The powerful light produced by acetylene, together with the wirle possibilities proxided by this flasher in producing any degired light sharacteristic, has introduced to lighthouse work an opportunny for improving all minor lights. Witherto ouly relaively large liglit periods (five seconds or more) in cornbination with dark intervals of about the same length have been used; partly awing to the adherent limitations in the design and structure of the flashing mechanism, but chility on aceount of the feeble lighting power of the illuminants used. In large lighthouses short flashes have been in use for years, and are considered by all tighthouse experts more effective than long flashes. The characteristic most uxed with this new system is .3 second followed by 2.7 seconds eclipse. With the multiple flashers used with this system a great variety of light characters are readily obtained such as hitherso have been possible only in large lighthouses provided with revolving lesses or screens operated by machinery.

Another interesting feature of this system is the device known as the sun valve, which automatically performs the functions of a light keeper. The sun valve is a combination of metal rofls which, by the action of light, eontrol the flow of gas to the burner, closing off the gas in the morning and

Cape May, was similarly equipped. Four other light vessels are being fitted out at present, and will be installed at important light stations on the Atlantic coast.
The accumulators, six of which are generally employed, are installed below the main deck; the piping is carried from the accumulator through a manifold to the pressure regulater. which is fastened underneath the deck, thence to a valve also underneath the deck, and then up the mast to the lantern.
The pilot light operates contimuously, but the masin light is cut off in the morning by the value jutst mentwoed and allowed so light up again when required at night. The lantern containing the flasher is suspended on gimbels at the masthead. so that in the heaviest sea it remains perfectly vertical, and thns throws the light beams in a horizontal plane at all times. These acetylene lights are visible at 15 miles in elear weather. This system is replacing the ofd oil lamps, and eventually wil! be used on all light vessels, with the exception of those using very powerful electric are lights.
The dissolved acetylene light system is now in use all over the world. In America the following important channels and light stations have been equipped: Ambrose Channel, in which eight buoys are now employed: Point Judith, Montank Point, and varions minor lisht stations along Long Islans] Sound; Great Round Shoal thear Nantucket Shoal), also of Atlantic City. Fenwick 1sland Shoal, Winter Quarter Shoal, Heizel Shoal, Tampa Bay, Savannah harbor, Charleston harbor, etc.
Acetylene beacons are installed in Alaska (thirty or more): also of the coast of Oregon, Washington and Maine, and forty or more from Maine to Florita. They are also used in the Hawaiian Islands, on the Great Lakes, and the Livingstone Chanael in the Detroit river will be lighted throughout with beacons and buoys using dissolved acetylene.

Contracts for U. S. Torpedo Boat Destroyers 43 to 50.

Bids were opened at the Navy Department, Washington, on Aug 7, 10ft, for the construction of eight torpedo boat destroyers. The award of contracts was male on Aug 27 to the following snccessful bidders, at price of construction and under guarautees as given below :

ondt are tried ot Thelawarc Hreskwater courne.
thus extinguishing the light, and opening the chamber for the gas to flow again at night when the light is again required. Fifty percent of the gas supply is saved by this mechanism. The sun valve will operate equally well in cold or trepical climates.

Last summer Cornfield light vessel, Long Island Sound, was equipped with an acetylene flashing light. This is the first lightship in which an acetylene flashing light apparatus has been installed in America. This year light vessel No. 44, off

Monthly Shipbullding Returns.

The Bureat of Navigation reports 115 sail and steam vessels of $17,4 \times 9$ gross tons were built in the United States and officially numbered during the month of August, 191t. Two steel steam vessels of 4.897 gross tons were huilt on the Atlantic coast and two steel steamships of 7.372 gross tors were built on the Great Lakes.

THE LOCATION AND DISPOSAL OF DERELICTS. or stanley v. palkze.

Derelicts always have had a fascination for those who are interested in the sea and its mysteries, but a practical consideration of them has seldom appealed to other than those whose profession made them aware of their danger and interest. A few years after the meeting of the International Marine Conference at Washingıon, which came to the conclusion that a division of the sea among the nations of the world for the purpose of keeping the pathways of commerce clear of dangers was impracticable, the acifity of the United States hydrographic office in the interest of shipping resulted in the publication of a paper of statistics about derelicts. As a result of this, the British maritime interests took up the question of the removal of derelicts under the impression that the British govermment had never taken any steps in the matter. A board, consisting of inembers from the Board of Trade and the Admiralty, after a careful and exhaustive taking of testimony, flaced as they were on the defensive by the demąnds of the maritime interests, coneluded that as the number of derelicts afloat was so small and the knoren collisions with them so few, no action it the matter further than had already been taken by those responsible for the removal of wrecks in British home waters was justified. Lfowever, the United States government, being more afflicted with these menaces of the ocean, employed the vessels of the United States navy at tumes for their location and removal and, finally, Congress authorized the construction of the derelict destroyer Sencra, the first vessel built for this express parpose.

Except those whose duties connect them with the fication and removal of derelicts, few mariners realize the difficulties that beset the parh of those engaged in the work. It is no rash statement that the location without some tnethod is as difficult as the proverbial attempt to find a needle in a hay stack. However, methods have- been developed for this work that have proved successiul and others are hoped to prove staccessful, and it is with some of these and of the methods of disposal that this paper will deal.

CRUISING SUSPECTED AkEAS.

The methods of cruising to cover a given area in which a derelict is suspected to be are several. In one, a series of concentric squares or rectangles is cruised about the origin.

ric, 1.
the last reported position of the derelict, as a center (Fig. i). This does not appear to be a very satisfactory method, for, if we have any information in regard to winds and currents that have prevailed, we are simply wasting time on a great part of the area. This would seem to be equally true of the method in which a spiral is cruised about the origin. The more we can restrict our cruising area, the less the distance we have to cover and the longer our coal will last. Both of the methods just mentioned may be used to good purpose in searching for stranded wrecks whose position is uncertainly located, but their use would seem to be a waste of time in locating drifting
objects when we can forecast at all the direction of drift of the derelict.

Another method consists in cruising a series of partial rectangles along a line which we assume lies in the direction that the derelict has drifted (Fig. 2). This should prove to be a very efficient method, provided we have an efticient scheme for estimating the derelict's drift. As the uncertanty of the derelict's direction of drift varies as the square of its distance

from the origin, it would seem to be wise to lengthen the rectangles latcrally as we recede frum the origin. This constitutes another method of covering cruising ground. If we ean estimate the proper length of the sides of these rectangles at a certain distance from the origin, we can thereby determine a sector to which we can confine our cruising. The angular magnitude of these sectors will depend on the exactness of our knowledge of the winds and currents that have prevailed. To cover a linear distance of 100 miles along the bisector of a

¥ic. 3.
90-degree sector would require us to cruise a distance of about 6 qu nautical miles. This would require, supposing we confined our cruising to daylight, cruising for 12 hours a day at ten knots, about five days, and it would seem to give a very discouraging outlook. But we must notice that, although we may not be drifting at the same rase as the derelict, nevertheless we are generally drifting in the same direction and the derelict is not drifting away irom us as fast as at first glance might appear. We will consider this in more detail later.

In the case of a 45 -degree sector (Fig. 3) we will have to cruise a distance of 290 for every too miles along the bisector.

This would require a little over two days' cruising at the speed above mentioned. In all the diagrans illmstrating the sector method, the lines for eruising over are at a distance apart equal to twice the range of vision at a height of 60 fect, and it was on the assumption that the crow's nest would be at this height that the distance and times above noted were computed. This height of 60 feet was assumed because if we work with a less height, our distauces to be eruised are greatly increased, and a height of to feet can be attained on almost any seagoing vessel. It will also be thoted that we cruise directly along the bisector until the sides of the sector separate a distance equal to twice the range of vision, and that then the method of crnising becomes that of the varying rectangle. In many cases it will be necessary to lessen the distances between cruising tracks on account of the thick weather, etc., or the search may have to be, for the time being, discontianed, but it is not advisable to reduce them if we can see distinctly.

DETERAINING THF DERETICT'S DKIFT.

In considering the time clapsing between the sighting of a dereliet and the arrival of the destroyer at the point at which the search is to begith, it will be of value to consider their general location in the North Atlantic. Issuing from the Gulf of Mexico through the straits of Florida, the gulf stream flows to the northward along the coast, tending always more to the eastward. South of Nova Scotia its course is almost due east, hat after clearing Cape Race its course is more to the northeastward. It is not always well defined, being intluenced by the winds, but its maximum and minimum rates of drift are fairly well known in most positions. Abandoned vessels along our coast are, in the majority of eares, formd in this stream and, carricd along in it, they sometimes cruise thousands of miles. In any part of the stream they are a menace, but in that part of it south of Newfoundland they are directly in the path of the fast transatlautic liners They are at times found in the counier and branch currents of the gulf stream, such as the Arctic current that tonnds Cape Race, in the counter curreat along our coast, or it the branch current flowing from a position approximately latitude 41 degrees, longitude 50 degrees to the southeastward and southward to the great calm belt in the middle of the ocean, commonly called the Sargasso Sea. An examination of a current chart of the North Atlantic Ocean would seem to indicate that under certain circumstances a derelict vessel might make a complete circuit of the oceatr, and that this is possible is shown by the cruse of the derelict schooner Fannie E. Wolston. Abandoned off Cape Hatteras. Dec 15, t89t, she was earried very nearly due east, was drifted aloots in the calm belt, reaching a position as far east as longitute 38 degrees 30 minutes or about 1,770 miles east of Hatteras, was then carried to the southward, thence to the westward and on Feb. 29, 1894, was seen about 2.40 miles S. S. E. of Cape Hatteras. She had then been a derelict 850 days and had erticed 7,025 miles,
The information concerning derelicts in the North Atlantic Ocean is ordinarily transmitted to the United States hydrographic office and is pusblisted in its bulletins and represented graphically on its pilot charts. The New York Herald also publishes daily sttch similar information as may be reported to it. Generally it is not submittel until the reporting vessel's arrival in port, and this, from the general position of derelicts, results in a delay of the report of from perhaps 24 to 72 hours. Add to this the time it takes the destroyer to reach the point for commencing the search, say 18 to 60 hours, and the arrival at the point is delayed some 42 to 132 hours. This might be avoided if the masters of reporting vessels equipped with wireless would send in report at the time of sighting the obstruction. Between the time of the sighting of the derelict and the arrival of the destroyer, the derelict has had an
opportunity to drift, and, as their rate of drift may be as great as $21 / 2$ knuts, in fact derelicts hase been known to drift that fant, her position may be at a distance of some 300 miles from the origin. An accurate catimate of the vessel's drift would be difficult to make, given our present knowledge of the subject, and some method of approximation is all that we can now hope to use.

The considerationt of the relative effect of wind and current on the derelict's drift is of considerable interest, It will be found that where a current of any strength prevails, the ultimate position of the dereliet depends upon the current. This is particularly true of the gulf stream, However, the position within the eurrent or the predilection of the derelict for branches of it will depend upon the wind. Thus, as the current may be bundreds of miles in width, the derelict's position within the current is of as much importance to us as its ultimate destination, if it is not more important. The reason for the great difference in the effect of these two elements is that the current is practically always in motion, while the wind uny be light or there may be calms at times. Again, the toplamper of a vessel is oftentiucs carried away after a time, and the wind has little surface exposed to it. In the horse latirudes the jumble of tracks of a single derelict shows the uncertainty of purpose due to the absence of current and the prevalence of variable winds or calms. This uncertainty is weldom scen in the tracks of derelicts in the gulf stream. The efiect of wind as determining the derelict's predilection for a part of the current or for branches of it, is well shown in the tracks of the two derelice vessels, the Anna R. Bishop and the Eltira Ball. Both aloandoned on the American side of the Atlantic; they both passed very close to the point in the stream above mentioned where the branch of the current flowing to the southeastward branches off. The Bishop, evidently meeting sontherly winds at this point, was driven to the northward into the branch flowing toward Greenland, then met northerly and westerly winds and was driven toward the British Isles, The Ball, mecting mottlerly winds at the point above mentioned, was taken in charge by the southeasterly branch, then enconntered westerly winds after arriving in the area of little current, and was finally picked up not far from Fayal in the Azores. The final positions of these vessels were hundreds of miles apart.

A very few dereliets have drifted counter to the gulf stream, but they are but a few out of hundreds; and if such a one was sighted more than once, the reported positions would be a guide to that fact.

A vessel's speed before the wind would depend on the ratio of the areas exposed to the wind and exposed to the water resistance rexpectively, and we have no accurate information as to their behavior uthder the varions circumstances. A method of determining a derelict's position when acted upon by the sind alone, which has suggested itself, might be of considerable value, as the knowledge of the actual rate of drift does not enter. We assume that the speed of the derelict varics directly as velocity of the wind. Suppose we assume that a wind of Beanfort scale force $\mathbf{s}_{\text {, }}$, having a velocity of 24.3 nautical miles per hour, causes a drift of one nautical mile per hour. Then the drift that any other wind will catse will be proportional to its velocity with respect to 24.3 . We can now prepare a table giving the ratios of the various winds of the Beaufort scale to the standard breeze No. 5 . Suppose we have a record of the wind's force and direction since the sighting of the derelict. We multiply the number of hours" duration of the first wind by its force multiplier in the table and lay down in nutical miles from the origin the resulting uumber in the direction in which the wind has blown. Now praceeding with the next wind that has blown as before, lay down its length from the last point reached. So continue until we have completed the plotting np to the time of

TABLE OF MCLTIPLIESS.		
Beaufort No.	Velocity. 6.9	Multiplier. .284
2	11.3	.465
3	15.6	. 642
4	20.0	. 82.3
5	24.3	1.000
6	29.5	1.214
7	34.7	t.4.28
8	41.6	1.712
9	48.6	2000
10	56.4	2.32 I
11	65.1	2.679
12	78.1	3.214

[Note:-lt will be noticed by reference to the Beaufort scalo that the values of the velocities in the above table are, with the exception of the No, 12 wind, the maximum values. It would seem to be advisable to use instead the mean values, but inasmuch as we are simply using the values of the velocity to obtain ratios, it is not essential that we use the mean values, as the proportions wonll he practically the same.]
arrival of the destroyer at the proint of commencement of the search. Now les us assune that a 5 breeze causes a drift of two knots. Our values in the table will be doubled and, plotting the tracks again, using the same data as before, but using the new table values, we reach another point which, it will be discovered, is on the extension of the line drawn from the origin through the first point reached. It is probable that, no matter what assumption we make as to the actual rate of drift, provided we assume that the drift is proportional to the velocity of the wind, all the points reached will be on this line. And that this is true is easy of demonstration. The determination of this line, then, simply requires the determination of one final point as above, and our line will be that joining the origin with it. We can not determine the exact position of the derelict along this line, but we now have some means of restricting our cruising area.

The average quartermaster can judge tine Beaufort force of the wind to at least the first srale number on each side of the actual force. This would nean, in the ease of a five breeze, an error of about five knots, or propprtionally of about onefifth. It is evident that if the errors are all plus or if they are all minus, no error will result in the direction of the line, but that if the estimates are one-half plus in error and onehalf minus in error the error in the trend of the line will be a maximum, for in the first case the quartermaster has practically used a table with larger or smaller multipliers, while in the other ease the error is always onesided. The errors will effect a maximum error in the trend of the line when the track lines are nearly perpendicular to the locus obtained, and will be a minimum when the lines nearly paralle! the locus, being in intermediate prositions proportional to the sine of the angle of the tracks of the locus. The practical application of this point (Fig. 4) would consist in laying off on each side of the bocus at the final point a distance perpendicular to the locus equal to one-fifth of the total departures, as the projection of the various tracks on a line perpendicular to the locus might be called, thus forming a sector. This would resuit, in cave of tracks near the origon which were generall'y perpendicular to the locus, in the sector forned by the lines from the origin to the two correction points being of great angular extent. Practical considerations of distanees to be cruised would generally limit the sector to go degrees, as it is simply a provision against error that may or may not exist.

It is evident that to correct our line of current it will be necessary to shift it in the direction of the set a distance equal to the drift per hour times the number of hours since the las:
report of the derelict. This, of course, refers to a current constant in drift during that time. If the eturrent is not constant the line becomes a curve, difficult of determination. These observations are truc, because no matter what the position of the derelict along our locus, provided the current is constant, it will be set an equal distance in an equal length of time. On the other hand, not knowing the exact position of the derelict on the locus, if there are different currents along it, we can not determine when it entered a particular current, nor how long it remaited in that eurrent, so that the shift of the locus becones variable, according to the length of time spent in each part.
The question now occurs: "How are we to obtain the drift of a current at sea so as to correct our line for current ?' An examination of a current chart of the North Atlantic (hydro-

rita, 4.
graphic office No. 1,308) will show that the eurrents with their drift per day (24 bours) are noted on the chart. It will also be noticed that in most cases two values of the drift are given. This means that under certain circumstances at certain parts of the year the drift is greater or less than at others, although during a period of several days or weeks it may remain the same. This fact, then, adds a complication to the shifting of the locus for current, and it will be necessary to apply both drifts unless we have more accurate information. So that to shift our line we will run it up according to both values of the current given, thus obtaining two lines parallel to each other, so that the probable position of the derelict is somewhere between them (Fig. 5). These lines will be, of course, at a distance apart equal to the product of the days and the difference between the two rates of drift. In the stream to the eastward of Caje Henry the two values appearing on the chart are 24 and 95 , about the greatest difference in drift that we find. Supposing five days to have elapsed since the sighting of the derclict, the lines will be 355 nautical miles apart. If we were to use these lines as the sides of a parallelogram approaching a rectangle, the other sides being too miles apart, for defining a probable area, it would be necessary to cruise an area of 35,500 square miles in the scarch. This, if we used the rectangular method of eruising, would necessitate the cruising of a divance of 2,000 nautica! milet, which, at the rate of cruising noted allove, would require about 14 days. A greater number of days between the sighting of the derelict and the arrival of the destreyer at the point of search, in this part of the ocean, wonld reguire a correspondingly greater time of cruising. We see from this the need of the utmost speed in reaching the area to be searched.

With a familiar knowledge of the effects of the scasony and weather on the gulf stream, derived from experience and what has been published on the subject, it may be possible to restrict the probable eurrent values to still closer lianits, and thereby reduce the area to be searched. Off Cape Hatteras, it will be noticed that a multiplicity of current sets and drifts prevail; it would be necessary in a case of this kind to apply the very maxinum and ininimum limits of the assortment of corrent sets and drifts if we cannot say accurately which eurrent the derelict may be in. This would relieve us of the necessity of determining the curve for the variable set and drift of the current above mentioned, although it would undoubtedly inerease the area to be covered. Sometimes the cursents in a ueighborhood will be so contrary in set and so varially in drift that we will have great difficulty in making any estimate at all. A guide as to which current the derelict is in might be

the temperature of the water at the origin, but too implicit faith should not be placed in such a test, and it would at least require us to proceed to the origin. We see then that we have some method for determining the area to be searched, although this area may be consideralle.

To show the application of these theories, let us suppose we are ordered to search for a reported derelict. The navigator should obtain from the vessel which reported it, if possible, an abstract of her weather log for a few days preceding and following the sighting of the derelict, tegether with the approximate positions at the times of the entries. He should also attain the position of the derelict ancus, as an error of hundreds of miles might result from a telegraphic or typographical error. With this information and any other weather information of the position on hand, the wind locus should be deterinined and eorrected for current approximately. When the vessel leaves port she should obtain from the liglitship nearcst the position of the derelict, and vessels in that neighberhood and which have been in that neighborhood, abstracts of tbeir weather togs, and the locus should be corrected so as to represent that ohtained from the moss accurate information. The approximation of these winds obtained from the pilot charts, the use of which has been suggested. would be of little value unless no other information were available. The data on the pilot charts regresent average conditions, and in places other than the trade helts a deviation from the average would very probally exist for days at a time. It is only necersary to glance at a pilot chart to sce that a derelict will for days run counter to the longest wind lines. Neglecting current, they may follow these average winds in the long run, but as our search is limited to days or weeks, we ean not be
suce that the derelict's drift will be that which would be caused by the prevailing wind.
The locus should be corrected for wind and current up to the time of the arrival at the point selected for the commentement of the search. It will be remenabered that with our loces methed we obtained a line that the object of ous search would be on if the wind alome hat affected her; again, we saw that in order to correct this lime for current it would be necessary to slift it. Using the maxinam and minimum values of the drift, the line when shifted would be represented by two lines, one for each rate of drift and, evidently, to cruise the area between the lines will consume considerable time. If we can further restrict the area to be eruised we will be much better off. The use of tables with various drift assumptions for the standard breeze will be of value when we have had enough experience to be able to assume a fairly

rac, 6.-connctip sectoz. sMifitb pale cemennt.
accurate drift of the derelict from her build, rig. etc., as obtained from 1.loyd's Register and the description of her condition received from the vessel that sighted her. Having made that assumption we can then use the table that has that rate of drift for the standard breeze. However, until that is done. we must do the best we can with the present table.

Having shifted locus, origin and sccond point so that we now have two loci, two origins and two second points, we, by them, determine a parallelogram that represents in its area the area of the probable position of the derelict (Fig 6). Upon reaching the minimum drift origin position (or the maximum if that be closer) the searching vessel would be put on a course along the current side until she reached the opposite wind side of the parallelogram, when her course would be changed to follow the far side until she had gone along that side a distance equal to twice the range of vision at the crow's nest, when she would parallel the first course back, continuing this as in the rectangular cruising method, although the partial figures may not be right fignres, After we had finished cruising the parallelogram, if we had not found the object of our search, we should continue over an extension of it until we were compelled to return for coal. By so continuink this crtising we would nullify any effect of the error of the assumption that the drift before the wind was it to o for the standard breeze. If our wind locus had been corrected for possible error in judgment of the wind and, therefore, is a sector, onr shifted figure would be an irregular one, resembling somewhat a trapezoid.

It will be noticed that the closer the knowledge of the current drift and the more nearly the maximum and minimum walues ampoach each other the nearer otur Inci lines approach
each other, and the less the area to be searched, until, if the current is accurately known and has but one value, the locus will be shifted as one line or figure. In this case it woutd be advisable to make the locus the bisector of a cruising sector and follow the sector cruising method.
Each day we should continue the search until dusk, when cruising should be discontinucd and the vessel simply kept under control until daylight, being kept near her position when she stopped searching by cruising in a restricted area, and at daybreak searching should be resumed. We can assume with accuracy that the destroyer is drifted by the current at the same rate as the derelict. The assumption that she has been drifted at the same rate as the derelict by the wind would not be accurate. This rate of drift depends, as was said before, upon the relative area submerged and exposed to the wind, and these will not be necessarily the same for any two vessels, But the difference would only be material with winds of considerabte force. Therefore, under average conditions, it would be proper not to correct the pasition of the ship on the diagram as the result of sights taken, but we would consider that the destroyer, derelict and diagram had all been drifted an equal amount, and our dead reckoning would be used as far as our cruising for the derelict is considered. Of course, 1 do not mean to say that an accurate record of the ship's position should not be kept, but it would not be used to correct the ship's position on the diagram.

If of account of the great length of time spent on the search, the knowledge that the derelict is light and will therefore drift faster than the ship, or that she is waterlogged and will not drift so fast, during all of which time a considerable wind were blowing, there would be doubt of the advisability of acting as above noted. It would be better to use the ship's observed position and correct the diagram for the force and direction of wind and current that has prevailed since the beginning of the search, and then maneuver to get back to the diagram where we left it.

There is no dotibt that the information given commanding officers ordered to search for derelicts is far from satisfactory. A sample report taken at random from the New York Herald:

> "Boston, March 2t, Steamer Nanma (Nor), from Macoris, reports March 16 , latitude $36-17$, longitude $70-4 t$, passed a vesse1, botton up, about 200 feet long. evidently a recent wreck."

Here we have no information whatever concerning the winds prevailing at the time, nor the apparent current experienced, and we must rely on information obtained subsequently either from the nearest lightship or from the pilot chart and current chart, or on the chance of getting some information from vessels that have been in that vicinity, and this information we may or may not be able to obtain. This is a typical report, and I have never seen one that really contained any valuable information from the standpoint of the searcher.
io remedy this I would suggest a form of report somewhat like the following :

> REPONT OF DERELCT SIGHTED.*
I. Iosition Latitude or bearing
2. Date and hour of sighting.
3. When and where last scen (if as above, so state).
4. Name of derelict.
5. Rig.
6. Condition (Bottom up or otherwise).
7. Masts (Standing?)

8, Condition of hull (Breaking up? etcu).

[^44]9. Wind's force and direction at time.
10. Wind's force and direction every 2 hours for 12 hours, before and after. (True force, magnetic direction.)

Before	After
2	2
4	4
6	6
8	8
10	10
12	12

11. Current experienced at time and for 2 days before and after.
12. Where bound at time of sighting.
13. Temperature of water at time of sighting.

This form would call attention to the essentials of the information required. The forms conld be printed with plenty of room on them for remarks, and in sending information by wireless, which should be encouraged, it would only be necessary to affix the information desired to a number representing the particular item in the talle. It will be noted that all mumerals are to be written ont in the position; this to avoid erfor.

(To be conciuded.)

The New Transatlantique Steamer Rochambeau.

In May last we published a view of the steamer Rochambeau, which was built for the Compagnie Génerale Transatlantique at the Allantic Works at St. Nazaire. She is second in size to the steamer France and La Provence. The general dimensions of the Rochombeow are as follows:

Length over all.,	597 feet 9 inches.
Length between perpendiculars.....	538 feet 6 inches.
Beam	6,38 feet.
Depth at the spar deck.	43 feet 4 inches.
Displacement	70,300
Indicated horsepower	12,500
Designed speed.	17 knots .

Mild stcel is used in the construction of this vessel, and she is divided into thirteen watertight compartments. The double bottom, extends from end to end of the ship. The hull is divided by five steel decks, worked from stem to stern. Above the spar deck are the promenade and the boat decks.

She was designed to carry first and third class passengers, as well as steerage, totaling 1,450 souls. She will run between llasre and New York.

A peculiarity of this ship is that she will be propelled by a combination of reciprocating and turbine engines, and this is the first time that such a combination has been tried in the French liners. She has two triple-expansion main engines of the three-cylinder type of the following dimensions: High, $331 / 2$ inches; intermediate, 49 inches; low, 56 inches; stroke, 29 inches. The revolutions per minute are 115 . The turbines will be run at 350 revolutions per minute. The diameter of the turbine rotors is 68 inches. The reciprocating engines will drive the center shafts and the turbines the outside propellers. The main engines, when going astern, will exhaust directly into the condensers. Steam is supplied to both main and auxiliaries by a set of nine marine cylindrical boilers, t6 feet 9 inches in diameter and it feet 2 inches in length, carrying a normal pressure of 200 pounds. The grate surface will total 690 square feet and the heating surface 26,820 square feet. It is expected with this combination that the maximum efficiency will be obtained.

When they attempted to launch this vessel tallow was frozen on the ways and she could not be started, and the next spring tide had to be waited for.

American Vanadium Facts

Published monthly by the American Vanadium Company

This is the only regular publication in the world on the industrial application of Ferro Vanadium and Vanadium Alloys.

In an age of Steel-making that is largely characterized as the Vanadium Epoch, the contents of this monthly journal must be of vital interest to every man who melts, fabricates or uses steel, iron, or non-ferrous metals.

Buyers of metals are specifying Vanadium in their compositions because Vanadium increases the strength, toughness and life of all metals. Makers of steel and iron castings, forgings, and miscellaneous parts must get ready for the specifications.

Send us your name and correct address and you will receive this valuable publication free every month. It shows how to reach the high points in making steel, iron, brass, bronze and bearing metals.

American Vanadium Company

Largest Producers of Vanadium Alloys in the World 318 FRICK BUILDING, PITTSBURGH, PA.

Entire product sold by:
Vanadium Sales Company of America, 318 Frick Bldg., Pittsburgh, Pa., and Universal Vanadium Company, 30 Chureh St., New Yurk City; 64 Vietoria St., Westminster, Lundon, England; 23 Rue de la Paix, Paris, France.

[^45]
-PROPELLERS-

WHAT IS THE FIRST REQUISITE FOR A PROPELLER?
A HIGH GRADE COMPOSITION METAL.
WHAT ARE THE ESSENTIAL CHARACTERISTICS OF THIS METAL? GREAT STRENGTH, TOUGHNESS AND NON=CORROSIVENESS. HOW CAN THESE ESSENTIALS BE GUARANTEED? BY USING VICTOR VANADIUM BRONZE.

Like few other high grade compositions, Victor Vanadium Bronze is non-corrosive in salt water. It is very strong and tough, as well as ductile, showing a tensile strength of $70,000 \mathrm{lbs}$., and an elastic limit of $40,000 \mathrm{lbs}$., and it has a very close molecular structure.

Probably one of the most distinctive points is the light weight of Victor Vanadium Bronke compared with other bronze compositions possessing high tensile strength. The specific gravity of Government bronzes runs from 8.75 to 8.85 , while that of Victor Vanadium Bronze is only 7.84, a decrease of over 10%.

Specify Victor Vanadium Bronze in your propellers.

VANADIUM METALS COMPAN.Y

GENERAL OFFICES - - - - PITTSBURGH, PA.
FOUNDRIES - - \quad EAST BRAINTREE, MASS. GROTON, CONN.

THE SPERRY QYRO-COMPASS.

As ships are constructed more and more of steel, wood being replaced, and especially as they have become larger, it hav been found that the magnetic compass becomes more and more of a problem. In earlier times the earth's magnetism, upon which the magnetic compass depends, had no difficulty in finding its way directly to the compass needle, but now, with steel ships, the ship itself becomes strongly charged or magnetized from the earth's magnetism, and thus steps in as a powerful dactor and tends to control the needle. The ship it+elf thus becomes a great magnet, and it is with much difficulty that the needle is brought to be influenced even to a small extent by the earth's magnetism, as the needle naturally tends to point to the induced magnetic poles upon the ship

Fia, 1.
which are comparatively close by, and thus move with the ship rather than point to the earth's magnetic pole.
Again, the magnetic pole is nearly 1,000 miles removed from the North Pole, so that a compass needle in Iceland points westwardly. The compass is 32 degrees out on the northern steamship course between England and America. There is only one place out of ten thousand different positions upon the earth's surface where the needle can point north. These spots, together with all magnetic meridians, are constantly moving and changing locus. The object of the non-magnetic yacht Carnegic is to explore in attempts to relocate many of these meridians whiclt are known to have shifted.

On warships the uncertainty of the compass is still further aggravated by the fact that gunfire, moving of turrets, or shift. ing of any gun or other piece of machinery on board ate found to greatly disturb the compasses, rendering them unreliable. The starting up of the forward bank of boilers, and consequent heating of the funnel, has been known to throw the magnetic compass out ts degrees.

Marine insurance reports show losses to the extent of many millions annually, traceable directly to compass failures and deviations which oceur without the knowledge of navigation officers, especially in cloudy weather, when the navigator is without means of checking. Many attempts have been made to find some phenomenon outside of the earth's magnetism which may be employed to develop true direction or terrestrial position. In 1852 Foncault discovered that a rapldly spinning mass would detect the earth's rotation, and named the instrument the gyroscope (gyro to move, scope to measure). Great excitement was caused at the time in ecientific circles, especially in the Royal Suciety of Great Britain, by Foucault's demonstration of this wonderful property of his gyroscope, but it haz been left to an American engineer to devise simple
and practical means whereby this wonderful instrument, known as the gyroscope, shall seek and persistently hohl exact geographical north, indicating the exact position of the North Pole of the earth, and this regardless of where it stands upon the earth's suriace or to what position it is transported; and what has been very much more difficult to accomplish, the machine is so constructed that it successfully withstands other forces, snch as acceleration and decelaration pressures, jar and shock of gunfire. having recently withstood all of the salvos of the ten great $\quad 2$-inch gums upon the Coronation battleship Delaware when they were all fired simultanously.

The practical machine develops a directive power which holds true geographically. Instead of pointing to the magnetic pole it points absolutely true to the North Pole of the earth.

To add another chapter to the wonders of this instrument it may be stated that it derives its directive power by actually reaching down some 4,000 miles and "laying hold," as it were, of the exact axis of the earth a notrmenon, this imaginary line passing through the earth's center of gravity about which the earth revolves, and even thongh it is compelled to att at this great distance, yet in protracted sea trials, which we are informed have been of the most searching character, through which the United States navy has recently carried this compass, it was found to have a directive power of about 7,000 times the directive power at the Equator, and no force was found that could tear it away from its dead north indicating direction, no matter how many times the ship was swung entirely around the circle or back, or how great a storm the ship was in, or how mach motion or jarring the ship had or
tremendous vilration through gunfire. No force was discovered which could turn it aside from its wonderful tenacity of purpose.
The gyro navigation equipment consists of a master gyroscopic compass which is located below decks. It is about $13 / 2$ feet in diameter and about the same in height. It contains a small spinning-wheel, which is electrically driven, and requires about the same current as wonld operate two or three ordinary incandescent lamps. The littie whel operates on two small ball bearings, which require practically no attention and maintain a life of many months in constant use. The wheel is enclosed and can be seen depending from a large horizontal compass card below the cardian or suspension ring in Figs. I, 2 and 3. These figures are of added interest, owing to the fact that this group of photographs constitutes a moving picture, indicating the exact motion one sces the gyro-compass make when the ship is turning around in a circle or through 90 degrees.
In Fig. 1 the casing containing the gyro-wheel, or gyroscope, is seen edgewise to the observer; in Fig. 2 the forward edge has swung around somewhat to the right, and in Fig. 3 still further to the right, nearly go degrees from the first position. Athough the wheel and casing are seen to move, this is only apparent. The facts are: the spinningwheel and the casing are standing absolutely still in space. pointing to the North Pole, while the walls of the room and the ship as a whole move about it. Although this master compass down in the hold of the ship is possessed of a compass card and is directly used for navigating purposes, yet it need not be so used, because the little mechanism seen on top

 DESTBOYEA Beayton
of the compass, in Figs, $\mathrm{t}-3$, constitutes a transmitting device whereby all of the directive movements, even to the most minute, are instantly transmitted to a number of repeating compasses located on the bridge, in the wheel-house, or in the chart room, and, in fact, wherever else desired throughout the ship, a simple electric wire connectirfg them for transmission of the directive forces. Fig. 4 shows the position of the gyroscopic repeating compass in its own binnacle, the one to the left arranged close to a magnetic compass, on the bridge of the United States destroyer Drayton, one of the flectest ships in the United States navy, which was designated to make the initial sea trials.

These photographs were taken in New York harbor, where the magnetic variation is about 9 degrees. There was also a magnetic ship deviation at this particular heading of several degrees, and their sum is exactly the difference that can be seen between these two compass cards, the kyro-compass holding to the geographical meridian-dead north-whereas the compass card is pointing 12 to 15 degrees away from true north. It was found at the end of the trials and after the repeating compasses had changed their positions a great many hundred thousand times that there still remained no difference between the readings of the master and repeating compass.
In the case of the Drayton the demands of the United States Navy Department were unusually rigid, and the master compass was required to periorm its full function when placed

PiG. 5.-sPERAY GY*O-COMFASS ON THE STEAMAKIF FEINCESS ANBK.
away down in the hold of the ship; in fact, in the lowest part, just on top of the keel in the powder magazine, surrounded on every side by solid steel walls, where the earth's magnetism conld not penetrate nor have ever been ayailable to the slightent degree, and where no mariner would ever think of placing or atempting to operate a magnetic compass.
sea trials on nayal vessel.s.
The series of sea trials referred to above has resulted in establishing many points of interest regarding gyro-navigation, some of which are noted below.

All readings of all azimuth circles or indicators. whether master compasses or repeating compasses, are held dead upon the meridian, thus avoiding all necessity of calculation or reference to charts in translating the observations: especially is this emphasized when it is remembered that prior to Mr. Sperry's work, with the reading of the gyro-compass indication, at least three other simultaneous observations had to be made, namely: The ship's speed or headway; the ship's course, and especially the meridional component of the course: the latitude, and then calculations made, or charts or tables consulted before the proper correction is ascertained and position of the meridian found, this being hitherto the universal practice with gyro compasses.

The amount of correction, and whether it is positive or negative, which is being at all times automatieally intrulaced by virtue of the peculiar structure of the compass itself, is given on a special scale which can be read whenever desired.
Directive power of at least 200,000 dyne centimeters, about 7,000 times the magnetic, in the east and west position at the Equator is available with less than 9,000 revolutions per minute. The comparatively low speed of the Sierry byro-compass is adtamageous on a number of important accounts, among which are integrity of bearings and rendering the machine low in point of maintenance and attention requised, as well as low in power absorption during ogeration, and also important on account of quick starting.
Gyroseope compasses have a very long period of swing or oscillation. This period is in direct proportion to the gyroscopic moment or the direstive power of the compass, atsd one great difficulty in developing a compass with as high a directive factor as that of the Sperry compass has been to devise means whereby this periol of oscillation can be brought down within practical limits. It is just here that engineering skill is displayed in introducing an entirely new phenomenon into the art of gyro-compasses, viz.: positive orientation, whereby the period has been relneed by about soo pereent and becomes a perfectly practicable operative quattity. All Sperry gero-compasses have this feature.
All azimuth indicators, scales or pointers, either master, repeating or reeording, including those for navigational purposes. and atso those for ordnance, are positively driven and possessed of a large and positive torque factor, whereby all sensitiveness of indieation is removed and the instruments freed from disturhance from gunfire, etc.
Definite provision is made for simultaneous comection and operation of other special automatic instruments, including the automatic pelores azimuth indicator, recording and other various navigation and ordnance instruments now in operation on the battleships of the United States nary. These function properly by virtue of the non-lag mentioned in the previous paragraph,
The entire circle in azimuth is turned in less than one minute instead of six minutes heretofore required; not that some ships will turn an entire circle in this time, bnt many motions requiring aceurate indication without lag are made at least at this rate, and are thus made instantly available for accurate steering, and especially for other important purposes in which their use has been established.
All repeater scales or eards hold to their positions instead of being constantly on the move. A method has been discovered and adopted giving the time of rest, very large as compared with the time of taking up the new position, nearly five to one, thus greatly facilitating taking of observations.
Artificial oricntation is possible and conventiently arranged. The combination with the aximuth-moving element of the instrument of an indieator mounted upon the freely-moving wheel frame, combined with handles by means of which the intstrument can be almost instantly set upon the meridian, and whereby even the most ordinary attendant can instantly disern that the apparatus is in condition of permanency during the operation of seting, and will maintain its indication for an indefinite period if the setting be correct.
As correlative to the last feature is the fact that these particular features of the equipment constitute an apparatus by means of which the position of the meridian can be quickly found or determined when its position is not known without waiting for the instrument to come to the north and settle itself, by means of which this setting operation can be very materially hastesed. On the batteship Delaware the meridian was lncated on test by Engineer Ford in ahout twelve minntes while the boat was maneuvering constantly, and where, the gyro-compases heing down very low in the ship.
the lowation of the north was entirely unknown to Mr. Ford. Proviston is made for rummg the spinning-wheel in vacuum, whereby a material saving of electrical energy is effected, especially when the compass is operated on submarines where this energy must be furnished from storage batteries. It is found that a saving of fully four-fifths of the energy is in this way effected.
The advantage of vacnum operation was furthermore demonstrated on toth the carlier rea trials where the current was off for periods up to three-qnarters of an hostr, and in that time the speed had not diminished materially, and the directive power had kept up so that the meridian was held throughout; under almospheric pressure the kyrowheels wonld have run down mach more sapidly, fully five times as rapidly for top speedt, especially when this wheel is used to Renerate an air blant.
Electrical energy is saved in not being employed to develop an air blast or any other extraneous forces, and a point of the greatest importance is secured, namely, accumulations of grit, dirt and foreign nuatter are thens prevented from reaching the interior of the most important part of the equipment, ineluding the main journals, whieh by the Sperry arrangement remain hermetically sealed and are found not to require attention and eleaning nor even oiling except about once monthly.
The suspension system is purely mechanical, consisting of a short, stout torsion suspenston of pianoforte wire; it is possesisel of very gfeat sensitiveness-this factor being such that the wheel when at rest will make npwatels of thirty vibrations across the hair line in coming to rest when pulled aside only one degree and released. Alt mercury or other volatile liquids or fluids are eliminated, and the supports are reduced to a few simple and purely mechanical factors. The elimination of mercury is considered by those experienced in its use to be a positive and important step in advance. In operating without mercury the drawing around of the compass from the true north through the well-known drak or reaction of the swirling of the mercury bath upon the float is entirely avoided. Certain compound motions of the boat are very likely to set up these swirls, especially whrre the mercury is present in the form of a ring or annulus and when the float supplying the card is also annular, thus introducing serious errors without giving the slightest warning or alarm. Defiections as high as to degrees have been noticed due to this eause.
Integrity of circuit is oltained because the electric circuits within all the repeaters are permanently closed, and there are no traveling or moving contacts, commutators or the like. All wiring and parts are soldered and permanent and cannot get out of order nor require attention. The azimuth controllers or actuators are all in duplicate and separately removable and replaceable, and may te removed, inspected or adjusted at will without in the slightest interfering with the operation of the instrument. The master compass oceupies comparatively small space, and requires no adjustment, addition and removal of weights with changes in latitude or in chanking from north to south latitude, this difficulty being entirely overcome by functions which are automatically introduced.
The master compass is entirely independent of position in the ship with reference to the ship's axis of oscillation, and reports show that it works equally well and with equal preeision in any position. The oil equalization system, comected with the main gyro bearings, does away with inequalities and out-of-balance conditions arising throngh unequal oil consumption. Perfect equilibrium is at all timess automatically maintained, both oil receptacles beirg also automaticalty refilled throngh a single opening, and this only at very infrequent intervals, the shole rotor system requiring very little attention.

The repeating-compass operating mechanism is made light and stnall, with a view to its being placed when required in an
extremely light and small "portable," and in supplied with a light flexible cable of some length for use in submarines in connection with the different positions and stations requiring the presence of the commanding officer. Wherever the commanding officer is he is thus supplied with a precision instrument operating with an accuracy of a small fraction of one degree, aiding greatly in the accuracy of his aim and in determining the exact moment for the discharge of his torpedoes, to say nothing of the advantages in navigation as such, especially in connection with accurate maneuvering.

SEA TKIALS OF THE SFLKKY GVEO-COMPASS ON TRE PRNCESS ANNE,
A five-day test of the Sperry gyro-compass was made recently on the steamship Princess Anne, a vessel of about 2,200 tons, belonging to the Heet of the Old Dorninion Line, plying between the ports of New York and Noriolk, Newport News and Old Point, Va. The tests were conducted in the presence of Mr. John Bliss, of John Bliss \& Company, New York City, compass adjusters of the pert of New York, whose sun instrument and chrononeters were used. The master compass was set with its motor generator in the steering engine room of the vessel, two deeks below the bridge. The repeating compass was placed in a tripod, furnished by John Bliss \& Company, a few fect astern of the ship's standard compass on the bridge. These were connected by wire cable, ordinary lamp cord, No. 18, being employed. The gyroscupic compass persists with great rigidity in the meridian, showing the very minutest deviation of the boat. The repeating eotupass follows these deviations with every change of one-third degree. A great many comparisons were made, and it was always found that the repeating compass retained permanently its original "set" and never varied therefrom. At the finish the correspondence was found to be perfect between the two compasses, although it is estimated that there were over a half million changes in azimuth made by the repeating compass. No supplies were used on these trials except about two tablespoonfuls of oil in the compass supplied to the motors-bearing equalizer pipe. The only adjustment found necessary was the original adjustment of the lulber line to bring it in correspondence with the ship's axis. On one occasion the current was turned of by accident while operating the headlight. After it had been off about twerty minutes it was discovered and turned on again, but the speed of the gyroscope had not come down very much and the directive power had not been sufficiently impaired to be digcernible. It was immediately compared with the other compass and checked exactly with the proper difference. The compass required practically no attention.

During these trials the ship rolled considerably. Its period seemed to be between ten and twelve seconds. Some rolls were about 40 degrees total are, a great many 32 degrees, and one was measured to the leeward 22 degrees from the vertical. These motions of the boat seem to have no effect upon the operation of the compass. While swinging in the harbor of Newport News with a hawser at the bow of the ship and the propeller reversed, there were various resonant points in the period of the spring of the boas when the boat shook very vigorously. Upon this occasion. Commander A. M. Cook, of the Ordrance Bureau, was present, and reported that this vigorous shaking. which seented at times of the magnitude of 8 inches up and down and in period with the engine vibrations, was very much more severe on the compass than heavy gunfire would have been on a warship with the compass in, or about, the engine-room. These motions seemed to have not the slightest effect upon the instrument or its accuracy.
During the trip a speed of only 6,000 revolutions per minute of the little gyro-wheel was maintained, developing all the directive power that was necessary, holding both the master compass and the repeating compass practically absolutely upon
the meridian. The course laid between magnetic variations of about 9 on the north to $47 / 10$ on the south end of the course. During the voyage Sonth the magnetic compass was seen to kradually elose in, bringing the needle more nearly in line with the readings of the goro-compass, and on the return course the magnetic compass gradually pulled away from the readings of the gyro-compass. This observation was of considerable interest to many.

THE U. S. COLLIER NEPTUNE.

The aboventined ship was built by the Maryland Steel Company, Sparrow's Point, Md. The contract was awarded Sept. 23. 1909, the price of construction being $\$ 889.600$ (1182,000), and time of completion 20 montlus. Standardization trials were performed July 26 last and the 48 -hours' fullspeed trial on July $2 \pi, 2 R$ and 29.
The Neptunc is a sister ship of the Cyclops, completed on Oct. 28, 19to, by the Willian Cramp \& Sons Sltip \& Engine Company of Philadelphia. Both of these colliers were authorized by the Nasal Appropriation Act approved May 13, 1908. The principal contract requirements stipulated were: An average speed of the vessels on a continuous 48 -hours' trial of 14 knots when carrying a full load of 12,500 tons of coal, inclusive of bunkers; 100 tons of reserve feed water, 20 tons of drinking water, 130 tons of stores, and with equipment completc. Besides the foregoing it was stipulated that the coal consumption for all purposes should not exceed 1.8 pounds per indicated boriepower per hour, figured on the power developed by the main engines. Both of these vessels were built in conformity with the rules and regulations of the American Bureau of Shipping and the United States Steamboat Inspection Service.
The essential data of hull and machinery, with especial reference to the Neflunc, are incorporated below:

Length between perpendiculars..	520 feet
Length, over all.	542 feet 10 inches
Length on load waterli	320 feet 10 inches
Beam, extreme.................	65 feet 3 inches
Beam on load waterline..	65 feet
Mean draft, load.	27 feet 75% inches
Displacement on load draft.	,440 tons
Block eoefficient.	. 734
Material	Mild steel

The machinery installation of the Cyclops, partly described in a previous issue of International Marine Encinerrinc, consists of twin-screw, three-cylinder, vertical triple-expansion engines, 48 inches stroke, cranks at 120 degrees, and piston valves on all cylinders. The machinery installation of the Neptune consists of 1 win-screw Westinghouse turbines, connecting to the line and propeller shafting by MelvilleMacalpine reduction sears. The main boilers, as in the Cyclors, are three double-ended, eylindrical return fire tube, with one single-end Scotch donkey boiler.
Condensing surface in the Neplune, distributed in two main cylindrical surface condensers and onc auxiliary condenser, tutals $11, \pi 00$ and $1, n o 0$ square feet respectively. The main airpungs are of the Le Blanc-Westinghouse type. Dynarnos, eentrifugal pumps and fans are all engine driven. The following table gives speed in knots, revolutions per minute, horsepower, etc., on trials:

cyclops.

Speed in knots 14.61
Revolutions per minute 92.26
Average steam pressure at boilers.............. 19200
Vacuum, inches 27.1
Collective indicated horsepower of main engines

6,705

Pounds of coal per indicated horsepower per hour (main engines only)..................	1.48
Displacement at middle of trial........ netune.	19,095 tons.
Speed in knots	12.926
Revolutions per minute	19.5
Average steam pressure at	173.0
Vacuum, inches	28.30
Collective brake-horsepower of tur	5.409
Equivalent indicated horsepower of turbines...	5,879
Pounds of coal per indicated horsepower per hour	8.59 t
ge did	. 531

In commenting on the preliminary contract trials of the Neptune the following citation is made from the August number of the Journal of the American Society of Naval Engineers: "On the 48 -hour full-speed and endurance trial the contract speed of $t 4$ knots was not maintained, due to the use of very inefficient screws. * * . The reduction gear worked very satisfactorily on the trials with but little noise and no appreciable vihration."
While the Navy Department has decided to take over the

SINGLE SCREW STEEL COLLIER SLFFOLK.

The New York Shipbuilding Company, Camden, N. J., has recently completed and delivered to the Coastwise Transporta tion Company, Boston, Mass., a steel screw collier of the following dimensions:

Length between	373 feel.
Beam, molded	so feet.
Depth, molded	32 feet.
Draft, loaded	25 feet.
Cargo carried at this drait	7,200 tons.
Gross tonnage	4,788
jpeed at sea.	10 kn

The vessel is of the same type as the Coastwise and Transfortation, built by the New York Shipbuilding Company for the same owners last sear ; the dimensions and deadweight, howerer, have been increased. The construction is in accordance with the requirements of the American Bureau oi Shipping.

The vessel has a single deck of steel, with poop 80 feet. bridge 17 feet, and forecastle 34 feet long, seven steel watertight bulkheads, two pole masts, straight stem and semi-

COASTWISR TEANSPORTATIOX COMPAKY'S SIW COLIIEZ SLYPOLK,

Septune temporarily and place her it service at once, so as to lose no time in gaining valuable experience in the operation of the reduction gear, it is at the same time understood that the contractors have nade arrangements to replace the present turbines with others expected to fultill all requiremens. New screw-propellers are also now being made and will be finished shortly. Six ntonths at least, however, will be necessary for the manufacture and installation of the new turbines.
It will be of interest to the readers of Internafional Martie Engineering to learn that the Jupiter, a third colher of identical dimensions and requirements as those which refer to the Cyclops and the Neptune, now building at the Mare Island Navy Yard, California, will be equipped with an electric system of propulsion. The contract for the installation in question has been given to the General Electric Company of Schenectady, N. Y., and will be along lines described by Mr. W. L. R. Ermmet, in a paper read before the American Institute of Electrical Engineers, the contents of which were given in an abridged form in the July number of this magazine.
Much instructive and interesting data will be afforded the engineering profession when the comparative results of the three vessels here referred to become available, but the liberal policy pursued by the Government in this regard will be valuable not only to the engineer, but will at the same time be commercially useful.
elliptical stern. A deep double botton is fitted all fore and aft for the carriage of water ballast, and particular attention has been paid to the construction of this part of the vessel; the plating being of extra strength and fitted flush; no wood ceiling is fitted. The five cargo holds are entirely clear of beams and pillars, the deck being supported by deep arched beams and web-frames placed midway between the watertight bulkheads; a continuous trunk, 24 inches deep by 30 feet wide. is carried on the upper deck for the full length of the cargo spaces. Large steel cargo hatches are in the top of this trunk, eleven in alt. Six steam winches are fitted in connection with five pairs of king posts for raising the hatch covers and securing them in place when open. A cargo boom is located on the fore mast for handling stores, etc. The coal bunkers are at the sides of the vessel in the boiler room and in the poop 'tween decks, with hatches on the poop deck and pockets leading to the fire-room. The peaks are both arranged as waterballast tanks. The accommodations consist of a midship deckhouse on the bridge deck for the captain's stateroom and spare room, with a pilothouse over; the saloon officers' and petty officers' berths, pantry, toilet, etc., are in the bridge; the engineers, cooks, steward, messrooms, refrigerator, toilets, galley, etc., are in the houses on the poop deck, and the oilers, seamen and firemen are berthed in the poop abreast the engine casing.
The steam windlass is fitted with warping ends and located on the forecastle deck, with the engine below in forecastle.

The steam capstan is on the after end of the poop deck, with the engine below. The stearn steering gear is on the upper deck abaft the engine casing, with eonnection to the steering stations in pilothouse and on navigating bridge: atixiliary hand-stecring wheels are also provided. The propelling machinery is placed aft, and consists of one triple-expansion, inveried reciprocating engine of about 2,100 indicated horse. power, and two single-ended Scotch boilers having a working pressure oi 175 pounds. The vessel is intended for the coast. wise coal-carrsing trade between Baltiatore and Boston. Loading and discharging hear is not fitted on board, the two terminal points being arranged with these facilities.

GAS ENGINES; THEIR DESIGN AND APPLICATION.

 sy 2 M. PEZCY.(Continued from page 332.)
The effect of compression is threefold, first upon horsepower, second upon economy and third upon design. High compression increases the horsepower becanse in order to have high compression it is necessary to have a proportionally small clearance, which permits the egress of a large portion of the burnt charge and the intake of a larke fresh charge, obviously resulting in more horsepower.

To find the limit of velocity, we know that pressure varies invertely as volume with gases. When these gases are suddenly compressed work is done, which is converted into heat which is expressed by rise in the temperature of these gases. A eorrection is necessary, as it is obvious that with temperature there would be increased pressure, hence some modifying factor must be introduced into the well-known formula: $P V^{\prime}=C$. This has been established with very fair accuracy with theoretical conditions, such as isothermo compression, or compression with a rising temperature and adiabatic compression, or eompression at a constant temperature, the heat being abstracted at the same rate as added. This formula may be empioyed with fair aceurary for air compressors working under known conditions, but the constants for gas engines are impossible to derive theoretically except by assuming certain conditions which cannot be proved to exist in the gas engine.

The acknowledged proper form for an equation for com. pression is $P \nu^{\circ}=C$. From an enormous number of experiments the valse of n is found to vary from 1.3 to 1-5; 1.4 heing accurate enough for all practical purposes and norma! designs. The most practical way to handle this formula is obviously by the aid of logarithms, it heing somewhat awkward on the slide rule.

PRACTICAL METHODS OF FINDING COMPRESSION.

The true compression of an engine can only be found approximately, and then only for given conditions. Careful calculations for given conditions will indicate the compression more closely than it can be found by any instrument, providing the conditions in the engine and in tlie calcuiations coincide. The indicator eard, when taken with the proper instruments, shows not only the amnunt of compresslon but also its instantaneous character and the extremely instantaneous character of the maximum pressuse about it, being in most cascs a sharp point far above the test of the diagram; at the same time an engine having a throttle governor or a governor which in any way alters the charge will so change this compression at any variation of load that it is entirely a mattef of judgment as to what is the true compression of the engine, it being usual to assume the maximum eompression as the true compression. But this is seldom the case so far as averages are concerned.

No method could be more unsatisfactory than that of putting a gage on the cylinder to learn the compression, as when stich a gage is used and the engine turned by hand the com-
pression indicated is barely two-thirds of the true compression. On the other hand, if a gage with check valve and receiver be used, and the engine operated at full speed by an outside source of power, the compression is still ineorrect because the cylinder valves and piston are not so highly heated as in the case of at engine under fuli operation.
In a $6, \frac{1}{4}$-inch by $71 / 3-$ inch single-cylinder engine running at 400 revolutions and under normal conditions a compression of 75 pounds was shown both on the indicator cards and by careful computation. The steam gage test carefully applied for tests extending over an entire day with two gages, check valves, and so forth, operating the engine from outside power, also turning slowly by hand, show the compression to wary from 50 to 57 pounds.

In general, as a rough average, it may be stated that for a given relation the compression in a gas engine under operative conditions is anywhere from 5 to 20 percent more than a carefully cooled air compressor. Hence to determine compression for particular conditions one is dependent upon either one of two methods, calculation or the indicator card.
The effect of compression on economy is best shown by actual test, as stummed up in Table 4. This table quotes from tests of Proi. Burstall, all on the same engine at Birmingham, with gas, as given in the proceedings of the Institute of Mechanical Engineers, 1898.

It will be noted from this table that the heat efficiencies and the total efficiency increases with the compression, also that the clearance volume approximated the compression amount when calculated $P_{1.4}=C$.

By referring to Table 5, in which four particular compressions have been experimented with, each with a different volume of air to volume of gas, the effect of each upon the heat efficiency and the other factors may be noted.

Practically, compression should be as high as possible for the sake of technical economy. The combustion chamber should be as nearly glolular as possible. The means of ignition should be as near to the center of this globe as possible, so that explosion might be provided on all sides. The piston speed should be as high as possible in order that the loss, due to radiation, be reduced to a minimum, and the stroke should be long enough to allow complete combustion.

Opposed to these theoretical requirements and their relations to combustion are the requirements or reliability and durability representing commercial efficiency. These requirements call for ample bearings, slow speeds, moderate compression, ample cooling surface and great capacity for governing, regardless of economy. Thus any design which goes to ratical ends to attain technical economy is apt to depart from the requirements of commercial economy and is field of uscfulness ceases to exist. Among the more or less radical steps to obtain all the advantages of high compression without infringing upon these immovable commercial requirements are the injection of water, off-set cranks, the ahsence of fuel until after compression and slow-burning mixtures.

The water injection engite has been used in many forms, some engines using it in the form of steam after evaporation in the engine jacket. These engines have, in addition, a very high thermal efficiency, but for reasons doubtless practical and founded on experience do not compress above 60 or 70 ponnds and are designed to burn oil exclusively. Off-set cranks, while not practically allowing a very high compression, diminish or eliminate the shock incident to greatly advanced spark or rather high compression. Of the many engines which compress pure air and afterwards igniting the fuel, the Diesel seems to be the only one aggregating more than 100 pounds compression; hence it cannot be stated that the fuel value of compression is utilized by carbaretors of the ordinary engines.
(To be continued.)

PRACTICAL EXPERIENCES OF MARINE ENGINEERS.

Incidents Relating to the Design, Care and Handling of Marine Engines, Boilers and Auxiliariess Breakdowns at Sea and Repairs.

A Remarkable Series of Breakdowns.

Edtor International Marine Engenfentsg:

While on a recent voyage to the Orient, the Great Northern Steamship Company's $28,000-t o n$ liner Minnesota had an extraordinarily bad run of luck, breaking both tail shafts, thrust shafts and short section line shafts in addition to losing her port propeller, and Chief Engineer George Allan and his assistants had an opportunity to perform some exceedingly skillful repair work, considering the conditions under which this was done. While the engineering force did several noteworthy repair jobs at sea, probably the most commendable was that to the port thrust shaft. It was accomplished under most severe difficulties, as the sea was very heavy and the ship was
for her disabled shafting. While here the starboard fractured thrust shaft was replaced. A spare thrust shaft, two spare tail shafts and two spare short section line shafts were placed aboard before she departed again. These were furnished by the Midvale Stee! Company, of Philadelphia.

On last New Year's day, while crossing the Pacific from Puget Sound to Japan, the Minnesota sustained the first of this remarkable series of mishaps. The port tail shaft broke about 5 feet from the end, the propeller dropping into the sea. Heavy head weather prevailed at the time, but the remaining 790 miles to Yokohama were steamed under the starboard engine alone. Thence she proceeded to Nagasaki under starboard engine, and at the latter port she entered drydock. The broken port tail shaft was withdrawn, and a survey disclosed no weakness or injury at the iuboard end nor any other de-

BROEE BHAFTIMG TEOM THE HEXNBSOTA ON THE DOCK AT SEATTLE, WASH.
rolling. To make these repairs, as the shait was cracked obliquely and also through the Verity coupling, three strands of cable were wound around the fracture. One strand was $3 / 6$ inch, another $5 / 6$ inch, and the third $1 / 4$ inch. the smaller strands fitting in between the layers of the larger. To hold these cables, which were drawn taut by turning the shaft and pulling the strands tight, six $3_{i g}$-inch pins were drilled iuto the shaft, preventing the cables from slipping off. On the face of the coupling a plate, $1: / 5 \mathrm{inch}$, was fastened, bolted through two couplings. Then a band was shrunk on the circumierence of the coupling, with bolts 6 inches in length by $11 / 2$ inches diameter. This work took about two days, and is considered a noteworthy engineering accomplishment. That this repair job was thoroughty done is evident, as with it the steamer returned to Japan under the port engines alone, steaming probably 1,500 miles with this thrust shaft thus temporarity repaired.
The Minnesola was again in the Orient after having spent two months in Seattle, her home port, awaiting spare parts
fect in the machinery. She remained in dock twelve days, during which the spare tail shaft, port side, was shipped, as well as new hub and blades.

Proceeding, the Minmesota went to Manila and Hongkong. the usual ports of call, and returned to Nagasaki and Kobe, sailing from Yokohama on her homeward passage Feb. 24 Previous to this, in steaming from Nagasaki to Kobe the big liner, with pilot aloard, struck bottom in Shimoneseki Straits, near Takase buoy. This brought the starboard engine up standing, bending two of the propeller blades while in contact with some hard substance. After grounding, the vessel slipped over the bottom into deep water, and continued to Kotie and Yokohama, no damage apparently having been done to the machinery. After leaving Yokohama, homeward bound. the steamer's machinery worked satisfactorily until, when she was goo miles out, the engineers discovered a fracture in the port thrust shaft's Verity coupling. They began temporary repairs, as already descrihed, the vessel meanwhile steaming on her course under starhoard engine. About March'I the
temporary repairs were finished, and the port engines again placed in service at 50 revolutions per minute.

It was just two hours and thirty minutes later that it was noticed that the starboard thrust shaft had given way, and examination proved that it was fractured through the Verity compling. As the engincering force had no means or material by which they could shrink a band on this coupling, it was necessary to turn back to Yokohama, it being deensed unwise to attempt to make the remaining distance across the Pacific under port engine alone, the thrust shaft of which was temporarily repaired. She arrived at Yokohama nine days after

 EEFAIES

repairs had been finished to the port thrust shaft, steaming under port engine for 1.500 miles, during which the repairs to the port thrust shaft held out well. A thorongh examination at Yokohama was made of both engines, and it was discovered that in addition to a fracture in the starboard thrust shaft the starboard tail shaft was cracked at the inboard end. There was also a fracture in the Verity coupling of the starboard short section line shaft. At this time it was concluded that the injury to the starboard shafting was due to the stranding in the Inland Sea. It was also surmised that the first mishap, when the port tail shaft broke, was the cause of the injury to the other shafting on that side. It was evident that after the port tait shaft broke the enkines raced considerably hefore the governor took effect, undoubtedly causing the fracture to the port thrust shaft and injury to the short section line shaft on the same side.

While at Yokohama the spare thrust shaft was placed on
the port side and temporary repairs made to the starboard thrust shaft and short section line shaft on the same side. On the starboard thrust repairs were made by shrinking a band $4^{2 / 2}$ inches by 4 inches thick on the Verity coupling. This worked satisfactorily during the remainder of the voyage across the Pacific. From Yokohama the liner returned to Nagasaki, where, for the second time on this voyage, she entered drydock to ship the spare starboard tail shaft, which was fractured at the inboard end but otherwise intact. From Nagasaki the vessel returned direct to Puget Sound, where it was necessary to install only a new thrust shaft on star-

TEACTURED STAMBONRD THEUST EHAFT,

FRACTUMED STAAFOMED TAEL MMAFT, INBOARB END.
board side, replacing that one which had done service under temporary repairs for more than 5,000 miles.

On the company's docks in Seattle are lying about fo tons of steel shafting, this including two tail, two thrust and two short section line shafts. With the exception of the port tailshaft, which wrenched off at the outer end, each shaft contains one or more fractures, some very slight. To the expert these cracks present the peculiarity of not having passed through the weak points in the couplings. One of the short section line shafts contains two fractures, one along the lug and the other through the coupling, it being believed that the latter developed first. The Minnesota's shafts are hollow, each haviag an 8 -inch bore throughout. The tail shafts are each 37 feet long, 19 inches diameter through the steel and 2176 inches over the lines, Fach weighs 36,603 pounds. The thrust shafts measure 14 feet in length and 18 inches diameter, each weighing 13,325 pounds. The short section line shafts are 7 feet

Io inches long by $771 / 4$ inches dianeter, and each weighs 6,295 pounds.
While returning to Yokohama on both occasions, the first time under starhoard engine alone and the second time under port engine, the Minnesola was in exceedingly heavy weather. The second time she steamed $t, j 00$ miles against unusually high seas. On her return from sea the second time she was in company with the Japanese liner Sadom Marm, which stood by until the Minnesota's passengers, mail and fast freight were transferred for the American side. This was no easy task, as the weather was bad and the Minnesoto was lard to maneuver under one engine alone. This is stated to have been the first time that mails have been transferred from one liner to another in uid-Pacific.

By wireless and cable the Minnesota's plight was soon known to her agents in Seattle and St. Paul. When she sustained her first mishap the wireless carried the news ashore 800 miles, and it was immediately cabled to her agents on this side. On the oceasion of the second accident the news was "quickly known; for although she was 900 miles out from the Japanese side, within nise bours news of the mishap was known here. The Minmesota has been an unfortunate vessel, having had several bad breaks in her machinety. But for the fact that she has twin screws it is possible that she might have been lost before this, or at least would have cost her owners a large sum in salvage. Two years ago she broke one of her tail shafts when about 600 miles off this coast. Under the engine still intact she made the remaining distance, and at that time was docked in the Puget Sound navy drydock.

Seattle, Wash.
R. C. I1 11.L.

Another Method of Repairing a Fractured Shaft.

Edtion Intrrnational. Marine Enginerring:

Quite an interesting letter that of H. S. G., page 377 of the September issue of the journal. As stated by F. Webster, in the same issue, marine engineers are the ones who know how to do things. In fact, they must know, for very oiten it is a case of sink or 5 wim with them, and at such a time their inventive faculties are very much alive. Too bad that H. S. G. did not have a friction coupling such as I am about to describe, for with it he could have done the joh much guicker
shown in Fig. 2. The three parts must be drawn up with the bolts equally, so as to have an even stress on all paris. When the clamp is properly tightened there is not much danger of the shaft slipping, especially when it is considered that a fracture seldom if ever occurs exactly at right angles to the center line of the shaft, and therefore an irregular break will assist the coupling to turn the outboard broken piece. Of course, it would be better to put in two, or preferably three sunken keys, as shown in Fig. 2. The dimensions of such keys will suggest themselves to the engineers about to use them. I merely assume a case in the illustrations and dimension the keys to suit. Tlie keys should be slightly tapered toward the center of lengths, so as to insure the broken pieces of shaft not pulling apart.

With ratchet and drills and chisels, which all ships carry in their engineer's storeromns, the key-seats can be cut in a few hours; in the meanwhile the keys can be made by those bot engaged in making the key-seats. The keys do not have to be as neatly fitted as though the job were to be permanent, for when once in place and secured by the cast steel frietion clamp there is no danger of either slippage or failure of the keys to remain in their places. This kind of repair has stood the test and will, I am sure, commend itself to those who may some day require it.

Charles J. Mason,
Scranton, Pa .

Cut-Off for Mid-Oear Position.

Edrtor Intebnational Marine Engineering:

The Stephenson link motion, which is one of the most common reversing gears, serves the double purpose of reversing the direction of rotation of the engine and of varying the point of eut-off. The point of cut-off may be chaused by changing the link to some intermediate position, the effect being to hasten the cut-off and the compression and, consequently, increase the number of expansious. When the link is placed in its mid-position the engine utually stops, for the reason that the amount of steam admitted is not sufficient to overcome the resistance of the engine. The steam ports are not entirely closed, as sume are inclined to think. but they may be opened an aniount equal to the lead; that is, the maximum port opening for mid-position of the link is

and with less labor: and, I believe, a better all-round job. Not that I discount the job as it was done, as he evidently did the best he could with the facilities at hand.

Probahly the accompanying illustrations-Figs. I and 2 will tell the story pictorially as well as words would do. But, on second thought, a brici word explanation will not be superfluous. Fig. 1 shows a three-piece clamp or friction coupling, as it is sometimes ealled. It is made of cast steel, ribbed at the hack, and is usually made from two and one-halt to three times as long as the diameter of its bore, which is made to suit the shaft for which, in any case, it is intended. Many ships carry clamps like the one referred to, as it bas proved its worth.

The clamp is placed over the fracture, which fracture is
equal to the lead. The displacement of the valve, that is, the distance that the valve moses in either direction from its mud-position, is cqual to the lap plus the lead. The tolal travel of the salve is, therefore, equal to twice the lap plus twice the lead.

With the foregoing information and the use of a diagram the point of cut-off for mid-gear position may be found. Draw a horizontal line, $a b$, to some convenient scale to represent the stroke of the engine. The circle $a c b d$ then represents the crank circle. At a distance equal to the lead above the stroke line $a b$, and parallel to it, draw the line ef, which will be known as the lead line. Now, with a radius equal to the lead, and with the center O of the crank circle as a center, draw the circle.g h, which will represent the port opening
circle, since the maximum port opening is equal to the lead. The lead line e $/$ will be tangent to this circle, as shown. From the point O, which is the center of the crank circle, erect a perpendicular, o c, to the stroke line $a b$. From the lead line e f lay off a distance, $g f$, on this vertical line equal to the lap of the valve. Then, with the point j as a center, and with the lead $g j$ as a radius, describe the circle g ik tangent to the lead line ef. The distance $O j$ then represents the displacement of the valve for mid-gear position, since the displacement of the valve is equal to the lap plus the lead. The center j of the lap circle must be vertically above the center

DIACEAM FOE CUT-ORY FOR MID-GEAK PUSTTION.
O for mid-gear position, because if the center of the lap circle is taken either to the right or left of the vertical through O, and the lap circle is drawn tangent to the lead line ef the displacement of the valve $O j$ will be greater than the lap plus the lead.
Having located the lap circle as shown, then from the center O draw a radial line tangent to the lap circle at k, cutting the stroke circle at l. Then, with a radius equal to the length of the connecting rod, and with a center on the stroke line produced, draw an arc of a circle from the point l, and cutting the stroke line at some point as shown. The distance $\alpha \mathrm{m}$ measured to the same scale as $a b$ will be the portion of the stroke completed when cut-off takes place. The principal employed in the above diagram is the same as that employed in the Bilgram valve diagram, which is probably familiar to many of the readers of this paper.
T. W. Holsoway.

Scanton, Pa

Trouble with a Capstan Motor.

Edito International Marine Enginezring:

On a vessel in which electricity was employed for auxiliary purposes the anchor winch was operated electrically. In such winches and capstans there is, or should be, always some form of safety device whereby, in the event of the chain fouling, or the load becoming excessive, the motor and capstan are protected from too heavy strains. In the case considered the motor was arranged with a friction clutch, so that this would slip when the motor was subjected to an excessive load. Of course, it did not at any time allow the motor to run free, as it always maintained a certain amount of strain on the winch.

One time, when the winch was hauling the anchor the latter suddenly got caught and the motor was at once heavily loaded. Probably the clutch was dirty; at any rate it did not do its duty in slipping under the excess load, with the result that the motor was suddenly brought to a
standstill and the rush of current through it damaged it very severely. The motor was probably over-fused at the time; there is a tendency on board ship, if an electric fuse blows, to strengthen it, so that it will not give any more trouble, and this sort of thing will always occur so long as all and sundry can get at the fuses. Another thing which might have been done to avoid trouble of this sort would have been to put a compounding winding on the field of the motor, which would have stiffened the field (and therefore the back electro-motive force of the motor while running) against the strain. This would, however, have made the motor more expensive, and shipowners usually do not spend too much on their electrical equipments. Yet another way to protect a motor of this sort would have been to have had a resistance, which, when the motor was overloaded, could be inserted in series with the armature by automatic switches, thus bringing the current down to limits which would not damage the armature. For this arrangement a series motor would have been required.
Probably the best cure of all, however, is the simplest; this is attention to details. However small and insigniticant a part of the ship's machinery may be, it should have its turn of attention and repair. If the clutch had been systematically cleaned, and if the surfaces, when worn so that the elutch was "fierce," had been renewed, the trouble would probably not have occurred and the expense of a new armature would have been avoided.
S. A. Bootr.

Fracture of a Feed Pump Barrel.

Fitior International Marine Engtneering:

The steamship "B-" was on a voyage from Valencia, in Spain, to Liverpool. We were two days out from Valencia, and during this time the engineers experienced great difficulty in keeping a proper quantity of water in the boilers, although the feed pumps were working properly and the evaporator was going all it knew how all day. We made an external examination, but failed to discover any leakage. The evaporator was blamed for the whole trouble. The evaporator was really a very good one, and the loss of water seemed likely to continue, when, fortunately, one of the engineers grasped the bilge discharge pipe to prevent himself from falling during a heavy roll of the ship. Finding the pipe extremely hot he immediately suspected where the lost feed water was going, especially as the feed and hilge pumps were all in one casting.
The chief at once ordered the feed donkey to be started and the pump opened out, and when this was done we found a hole between the feed and bilge pumps, which we afterwards found out was due to a faulty casting. We then made a lead templet, from which we made a brass patch to cover the hole. This was bedded on and jointed up, and we then started the pump up again; but, I am sorry to say, the repair gave way after working for two days, due to it being impossible to secure the patch properly against boiler pressure. We then tried working with one pump, but failed to supply the necessary quantity of water, so we decided to attempt another form of repair. The ram was taken out of the bilge pump and a blank flange was fitted over the stuffing box. The bilge suction valve box was uncoupled and a blank flange fitted, and wood plugs were inserted in the bilge suction, and the discharge pipes were uncoupled.
As will be seen, the bilge pump was then shut off and connected to the feed pump, the leak being effectually stopped.
The after well and bilges were alternately pumped out by the after bilge pump. Upon arriving in a home port, a new feed and bilge pump casting was supplied and fitted.
Camden. N. J.
F. J. S N,

Published Monthly at
17 Battery Place
New York
by marine enoineerino, incorporated
H. L. ALDRICH, President and Treasurer Assoc. Soc. N. A. and M. E.
and at
Christopher St., Finsbury Square, London, E. C. E. J. P. BENN, Director and Publisher Assoc. I. N. A.
howard h. BROWN, Editor
Member Soe. N. A. and M. E.; Assoc, I. N. A.

Amearcall menasentatives
OEOROF SLATE, Vice-Prealdent
E. L. SUMNER, Seeretary

Branch Office: Boston, e62 Otd South Building, S. 1. Canpentek

```
Entered at New York Post Office as second-clase matter,
Copyrizht, 1011, by Marine Engineering. Inc, New York Imizanarional Marina Enamazaing is registered is the Unitod States Patedt Ofice.
Copyright in Great Britain, entered at Stationers' Hall, Londoa,
```


Notice to Advertivers.

Changes to be made in copy, of ia ordere for adoporiting, mwet be in our hassds net later than the isih of the mionth, to losure the carrying itut of eush instructions in she suswe of the month fodewing. If troted the month.

Shipbuilding Revival in the United States.

The completion of the Panama Canal in 1913 will open a new field for sea transportation in the United States which has not been paralleled in history before. Preliminary preparations to take advantage of some of the opportunities offered by this new method of carrying on commerce between the Atlantic and Pacific coasts and between the United States and Central and South American countries have resulted in the tentative calling for bids from American shipbuilders for about forty new passenger and freight steamships of large tonnage and speeds corresponding to the services required. This prospective activity in building large steamships will be accompanied by the construction of a great number of barges, tugs, lighters and shallowdraft boats for service on both the Atlantic and Pacific coasts, and particularly in Central America, where a vast amount of trade awaits the connecting link of sea transportation through the Isthmus.

The most important development of the coast-tocoast traffic by sea through the Panama Canal is the call for bids on the ocean mail service advertised by the Postmaster-General between New York and Colon, New Orleans and Colon, San Francisco and Panama,
and Seattlc and Panama, with calls at intermediate ports. This coast-to-coast mail service is to be maintained weekly, and will call for about fifteen ships capable of sixteen knots. The principal company, which has been incorporated for bidding on this work, considers that such a service will form but the nucleus of a rapidly-growing and most important transportation service by opening up direct connection with thousands of miles of navigable inland waters in the Mississippi Valley and in the Central American countries, together with transshipments at the canal terminals to and from the steamship lines from all other nations in the world. This sort of traffic has already been provided for by the Government by beginning the construction of piers and warehouses equipped with the necessary freight-handling appliances at the canal entrances. In this direction much can be done at the ports which are to benefit by the coast-to-coast service. Improving terminal facilities in American ports has always lagged far behind the progress made in foreign ports where the improvement of terminals has kept pace with, and more frequently preceded, the domestic development in shipbuilding and occan transportation. This state of affairs, in view of the coming impetus in the American merchant marine, should be given prompt and careful consideration in order to make the most of opportunities.

Although shipbuilding in the seacoast yards of the United States gives promise of a substantial increase during the next few years, with equally good opportunities to follow, the outlook for the shipyards on the Great Lakes, where such large amounts of tonnage have been produced in the last decade, is not so good. The production of freighters has apparently been overdone, but there is still some indication that orders will be placed for ships of special classes, and that the lull is temporary.

Development of the Oil Engine.

Propulsion of ships is a subject prolific of countless changes and innovations in the various means available for generating, transmitting and applying power to overcome the resistance of ships. Fuels, generators, prime movers, transmission devices and the vast hoard of auxiliaries all receive due attention, and often the changing of one involves the entire readjustment of the others. It is only the result of years of experiment, trial and development that any definite type of power plant attains the state of perfection which insures increased efficiency and the desired economy in operation. The internal-combustion engine using heavy oil as fuel, or, as it is usually called, the oil engine, is no novelty, and has long held a minor place in marine work as a prime mover. Its possibitities have been widely proclaimed, and many of its fcatures which tend toward simplicity in the whole
plant by doing away with much of the machinery and manual labor required in operating a steam plant cannot le ignored. The savings in weight and space on board ship, the thermal efficiency of the engine and the ease in handling the fuel apparently indicate a valuable saving in running expenses and an increased capacity in the ship, which mean added returns from the earning power of the vessel. It cannot be assumed, however, that such alluring possibilities of a comparatively new form of propalsion can supply a demand for it by themselves. The problems concerning the available supply and cost of the fuel, the relialsility and actual efficiency of the engine as shown by practical results, and the practical construction, operation and repairs of the engines designed in large sizes for various uses need careful consideration. Fortunately much progress has been made in this direction in the last two years, particularly in Europe and Great Britain, and the reader can form some idea of its magnitude and the results to be expected from our leading article this month.

Success in the propulsion of ocean-going ships by oil engines, whether of the Diesel or similar types, will depend largely upon the knowledge and practical experience gained from the volume of this work now going through the shops of prominent builders of marine machinery. Constructional problems cannot be solved at a glance, nor can the difficulties at sea be eliminated by preliminary experiments on shore. Oil ellgines, if successful, require a high grade of material and the most careful workmanship by skilled mechanics who are accustomed to delicate work. Operation, npkeep and repairs at sea will require the same intelligent work, with a full knowledge of the principles and practical operation of such engines. With the rapid progress in the development of oil engines now in sight it is advisable for marine engineers to give the subject a carcful stndy. What the engine buillers and naval architect put before you in this way is not merely a matter of passing interest, but food for thought.

Improving Terminal Facilities.

The port of Antwerp is one of the most progressive Eiropean ports, and the description of some of its terminal features, which is published elsewhere in this issue, is worthy of examination by those connected with shipping interests in large American ports where very little progress has been made to increase the transshipping facilities for handling freight from the railroads to the steamship lines. Not all of the Antwerp equipment is modern, but its usefulness has been proved, and the application of the same principles to the old-fashioned docks where freight transferring is done principally by manual labor could be adopted with profit. The harbor arrangements and dock facilities at Antwerp have been steadily improved, and
in connection with them government warehouses of ample capacity and convenient location have been installed. Freight is easily transferred by mechanical means from the hold of a steamship upon trucks or railroad cars, or placed on platforms where consignments can be sorted and the re-handling reduced to a minimum. The cranes are movable, so that they may be placed directly opposite the hatches on the steamship and swing the ifeight to the cars, which can be driven directly under the frames. Also, the govermment warehouses are fitted with freight-handling appliances, so that the time and cost of handling freight are both reduced.

To secure the best efficiency in handling freight mechanically at terminals, both speed and immunity from damage are necessary. Whatever gain is made by quick transference of the freight from the ship to the pier may be lost if much rehandling and transference by hand labor are necessary. Special forms of dock cranes and transporters are needed in most cases, depending upon the conditions to be met. Perlaps the worst obstacle in the improvement of American ports is the control of water frontage by private interests, where little help can be expected from municipal or State action. Whoever owns the water frontage in a harbor will, taturally, develop it for his own exclusive interests, and many things which would benefit the port as a whole are disregarded. There are some ports where government control is possible, and it is here that the more important improvements can be made which will benefit all of the corporations who use the harbor as a terminal. With the rapid increasc in the American merchant marine which is expected, it is undoubtedly true that there will be more direct and progressive action on the improvement of ports, bringing about the same facility and economy that are secured at Antwerp.

While many arrangements for transporting freight must conform, in a measure, to the requirements imposed by the kind of construction used in existing freight steamships, yet, as has been brought out before by the discussion in these columns, there is much to be gained by co-operative work between naval architects, shipbuilders and the designers of mechanical appliances for handling freight at steamship terminals, so that improvements can be embodied in the design of vessels which will simplify the adaptation of the cargo-transferring devices and permit a ship to be loaded or unloaded in a shorter period of time and with less damage to the cargo. Of course, any change in ship design is but one feature in the question of transporting freight at terminals, for there are many other local conditions which affect the delivery of cargo from ships to its destination; but the design of a freight steamship is of much more importance, and much can be made of it to sccure better results even in the best equipped terminals, such as Hamburg, Liverpool and Antwerp.

ENGINEERING SPECIALTIES.

Acme Steam Engines.

The Acme engine, formerly manufactured by the Rochester Machine Tool Works of Rochester, N. Y, and now by the Sterling Machine Company of Norwich, Conn, has been on the market for the past twenty years and has been improved, from time to time, to meet the demands of the day for a rugged, simple and economical unit. These engines are of the vertieal, two-cylinder, single-acting enclosed type, with a balance rocking valve, and are splash lubricated. They are built in three series of sizes. This range of sizes covers all the applications to which these engines are especially adapted. Because of the extreme simplicity of construction, the type of valve which adjusts itself to wear, the large bearing surfaces which are thoroughly well lubricated at all timcs by a splash of oil, they are especially well suited in marine service for

driving lighting sets, ammonia compressors, ventilating fans, etc.

The character of internal construction shows the influence of automobile engine practice in many of the details. For example, the crank shafts are drop-forged and ground to very accurate size, the connecting hods are of the popular I-beam section, bushed with bronze at both ends; the bearing cap on the crank end being held in place by castle nuts and cotter pins, as is common in automobile work; the piston rings are of the diagonal cut type, two being placed above the wrist pin and one below. These rings are re-turned after cutting and ground to accurate size. The valve is a simple one-piece casting, which is ground on the outside to fit a very accurately bored chamber, and is fastened to the extended valve stem with a cross key in just the same way that the ordinary Corliss valve is fastened. A further point of considerable interest is the matter of automatic cylinder relief valves, which are built into the cylinder heads to relieve any water that might otherwise cause damage. The governor is of a very simple type, consisting of four main pieces, the action of the weights being modified by means of a hardened roller which travels in a milled arc. The entire governing mechanism is contained in an oil pocket, only the pin to which the lower end of the valve rod is connected being extended through;
and, further, inasmuch as this mechanism is on the outside of the fly wheel it is readily accessible. There are but two grease cups requiring attention, all other surfaces being amply lubricated by the internal splash. Provision is also made in the base of the engine for the elimination of the condensation which may collect, and the leakage from the valve stem stuffing box falls down into the engine base through the vent pipe at the end of the engine. The entire series of engines is built with new and accurate jigs on the interchangeable plan.

Robb-Brady Boller.
The Robb Engineering Company, of South Framingham, Mass., and Amherst, Nova Scotia, is marketing the RobbBrady Scotch marine boiler.
The boiler has two drums, which are connected by two necks-the lower being entirely filled with water, while the upper drum is for steam space. The lower drum is filled with tubes. The combustion chamber is cylindrical and of a

diameter nearly equal to that of the larger shell. The tubes take the place of through staybolts. The main point claimed is that the arrangement results in better circulation than is obtained in the usual Scotch boiler. This is obtained by comnpelling the hot water from the steam drum to flow down the fromt neek and around the shell through the annular space, the water from this space emptying below the furnaces and replacing the hot water and steam which take the shortest path to the top, passing to the steam drum through the rear neck, thus increasing the economy of the boiler, as this rapid circulation keeps all heating surfaces clear, resulting in a more uniform expansion and eliminating the necessity of a special pump to increase the circulation. This boiler is made in sizes from 50 horsepower up to 300 , and for pressure up to 225 pounds.

Maxim Boiler with Allison Economizer and Arch Drum.
The Maxim boiler is a watertube boiler which has no flat surfaces, stayed parts, headers or hand doors, a construction which, it is claimed, insures entire freedom for expansion and contraction, and makes the boiler suitable for high-pressure requiring minimum floor space. Three manholes give access to all drums and both ends of every tube. The alleys are wider than the tubes, so that any tube can be replaced without disturbing the others. The lower main drum and blow-off pipes are thoroughly protected from the action of
the fire. Wrought steel construetion supports the boiler independent of the brickwork. Both the furnace and combustion chambers are of brick, and they are of ample size to insure good combustion.
In the Allison patent economizer or fourth pass the gases pass down while the water rises. A partition in the lower main drum opposite the baffle prevents the feed water from getting into the boiler circulation until it has been heated and purified in the economizer tubes. This, it is claimed, insures low stack temperature and a clean boiler. On test it was demonstrated that with steam at a temperature of 357 degrees F, the temperature of the escaping gases was only 312 degrees F. This boiler is sold by Allen Stirling. Drexel building, Philadelphia, Pa .

Acetylene Welding and Cutting Machine.

A machine for welding and cutting material by means of an acetylene torch has recently been brought out by the DavisBournonville Company, of go West street, New York City.
The illustration which we give shows the tool set up in a shop. It is in appearance, in a general way, very much like a radial drill of light construction.

By means of a friction drive in the column and gears on the driving shafts, the screw seen above the extended arm is made to actuate the sliding saddle which travels on the arm, and which carries the torch to which the oxygen and acetylene are brought by flexible tubes, which are of the ordinary form. The torch can, of course, be replaced by a cutting jet. The feed of the torch can be varied from 3 to 24 feet per minute,

Fuel, Led., 17 Victoria street, London, S. W., and in America by the Davis Volatile Fuels, Ltd., Land Title building, Philadelphia, Pa.
The apparatus consists essentially of means for admitting air and gasified oil, both above and below the grate, in quanti-

ties which can be regulated to give complete combustion of the fuel in the furnace. When applied to Scotch marine boilers the portion of each furnace nearest the furnace door is fitted with a cast iron air-heating chamber resting on the dead plate, with an opening through the same corresponding with the size and shape of the furnace opening. Air is admitted directly into this chamber through two air holes, 3

and work 6 feet long can be welded. The work is clamped on the table. The arm can be raised or lowered by means of a rack and pinion. A tight and loose pulley is used in connection with an ordinary countershaft for driving.

The Oregory Patent Coal-Oil Apparatus.

A device for preventing smoke, accomplishing the complete combustion of inferior grades of coal, anthracite, bituminous and lignites, as well as peat, etc., and increasing the economy of boilers has been placed on the market by the Direct Gas
inches in diameter, on each side of the furnace door in the furnace front. Underneath each fire grate and extending for half the length of the furnace another chamber is fitted, forming an air duct to that portion of the grate where the draft , is least effective. The draft is admitted to this chamber throukh a delivery pipe, on the inner end of which is attached a nozzle of special form fitted with a small steam jet to assist the draft to the front half of the grate. Either compressed air or steam can be used. The admission of air through the delivery pipe is regulated by a small valve, so that the proper quantity can be admitted to insure the combastion
of whatever kind of fuel is being used. Inside the air-heating chamber, immediately over the furnace door, is a specially constrtucted nozzle pointing into a discharge pipe fitted close to the top of the furnace, the mouth pointing slightly down towards the fire. Radial pipes 2 inches in diameter branch from each side of the nozzle in the upper heating chamber, and pass around the furnace opening, forming a connection to the air chamber below the grate. A steam pipe of small bore is fitted through the furnace front into the nozzie, so that a small jet of steam or compressed air may be introduced when desired.

The discharge of steam through the nozzle produces a partial vacuum in the nozzle, so that air is drawn from the air chamber below the grate through the branch pipes, and in passing through the air chamber at the top of the furnace becomes heated. The steam mixing with the heated air forms a gas, and the gas thus proluced is projected from the nozzle through the deflected discharge pipe into the furnace, and combining with the other gases as it passes over the fire it ignites and assists in the combustion of the fuel, In addition to the steam or compressed air jet, a small pipe is fitted for the supply of oil, and a quantity of oil may be introduced into the nozzle with the steam This action gasifies the oil and assists materially in consuming the gases from the fire, which would otherwise pour out of the stack in the form of sinoke. The oil supply can be repulated at cesired, but it has been found that the average proportion of oil should be alout 2 or 3 percent of the coal used.

A number of steain sessels have been fitted with this device, and under test on a vessel which used coal at the rate of 10 tons per day a saving of about 2 tons of coal per twentyfour hours' steaming was shown to have been obfained by the use of the Gregory apparatus.

TECHNICAL PUBLICATIONS.

Annual Report of the Mercantile Marine Bureau for the Year 1909-19io. Department of Communications, Tokyo, Japan.
This compilation is most instractive and seems thorough to the last degree. It takes up tonnage, shipbuilding, inspecting, casualties and many other sub-divisions of marine work, also the matter of subsidies granted various lines, giving their earnings and expenses, which show a profit in most cases. The dimensions of vessels, together with the horsepower, are given, and, taken altogether, the isvue is well worth stulying.

Essential Factors in the Formation of Producer Gas,

 Bulletin No. 7, Bureau of Mines. By J. K. Clement, L. H. Ndams and C. N. Ilaskins.The Bulletin is of a scientific character, and will be of interest to engineers engaged in gas-producer and gas-engine work. Copies may be obtained by addressing the Director of the Bureau of Mines, Washington, D. C.

Self-Taught Mechanical Drawing in Elementary Machine

Design. By F. L. Sylvester, M. E. Sire, $5^{1 / 4}$ by $7^{1 / 4}$ inches. Pages, 325. Illustratioms, 218 . The Norman W. Henley Publishing Company, New Vork.
All through this work the author has stuck closely to the highly practical. The mathematics needn't frighten anyone. They are extremely simple, clear and can be understood by anybody that can multiply, divide and suburact It is much more than a book just on learning to draw and design, as it gocs into the fundamentals of physics clearly and concisely. It gives excellent examples of various accepted styles of mechanical contrivances, and it would seem to us that the apprentice should welcome the hook most heartily. The only thing that we criticise is the author's idea of making selfstudy easy. We are not of the opinion that anything that is
easily obtained sticks well. A little hard digging is good. The ambitious boy that wants to know something can learn, but there is a never-ending lot who are mentally ambitious and thoroughly lazy. This class want their study in capsules to swallow at a single gulp, and we hardly think that the class is worthy of consideration, but any determined young man in the mechanical trade can read Mr. Sylvester's book with advantage.
The Naval Pocket Book. By Rollo Laird Clowes, Size, $3^{\frac{1}{4}}$ by $\mathbf{5}^{\text {inches. I'ages, } 1,020 \text {. Ilfustrations, numerons. }}$ N. Thacker \& Conpany, 2 Creed Lanc, London, E. C. I'rice, $\$ 2.00$.
It is quite impossible for the man who is interested in marine matters to be without this book. Every newspaper in the world shonld have it, and, in fact, the iaformation contained therein is of gencral interest, as even with the peace movements of late the power to make perpile be good is needed, and every country takes interest in its navy, and from The Naral Pocket Book the important facts conccrang it can be learned.

Practical Applied Electricity. By David Pemn Morcton. Size, 5 by 71/ inches, Pages, 414, 1llustrations, 323. Numerous tables. The Reilly \& Britton Company, Chscago, IIL Price, $\$ 2.50$.
There is no place where training is better obtained for those who desire to impart information thats through the evening schools. Here the pupil is anxious not merely to get through but to learn, and be is a sponge in absorbing knowledge. Mr. Morcton, who is the author of Practical Afplied Electricity. has had this training, and certainly be is to be congrasulated on what he has turned out, and while he says he may not be considered "at all times logical," he must be considered, we think, at alt times highly practical, and that is the object of his work. The use of something visible in explaining electricity is most happily chosen, as, for instance, the hydraulic analogy of electrical currents helps the beginner to understand, through his eyes, which are, in fact, our greatest teachers, and Mr. Moreton has most admirably used this idea in his explanation.
The Slide Rule-A Practical Manual. By Charles N. Pickworth. Size, 5 by $71 / 2$ inches. Pages, ${ }^{118}$. Illustrations, 34. New York: D. Van Nostrand \& Company. Price, \$1.00.
The value of this littie book on the slide rute is largely proved by the fact that it has passed through eleven editions. and in the present issue it has been revised and extended There is not much to be said on the strbject that is new. The significance of various gage points is commented upon, and some new styles of slide rules are described. It seems from our observation that a person once started on the study of the slide rule very soon "gets the habit," and its practical use is really endless, and to the busy engineer or draftsman it is of the very greatent liclp.

COMMUNICATION.

Notes on the Strength of Ship Columns.

Eohlor International Marine Extinfuring:
The following notes may have interest in view of the recent addition of comprchensive column tables to the general specifications for bnilding ships of the United States navy. The explanation in which Mr. R. E. Anderson, in the Oetober and December, 19to, issues of International Marine EngineerING, foreshadowed their appearance, is alvo alluded to.

Classtis or COLUMNS.
Warship columns may be divisted into two classes-structural ant local.

Structural columns are those which support the main
structure of the ship, and which are as much a part of that structure as the frames and beams.

The scantlings of structural columns are not worked out in detail, but are a matter of judgment and experience, as the maximum load they may have to carry is unknown. So far attempts to find these loads hy Dr. Bruhn's method of least work has not furnished quantitative results,

Local columins, which form the second class, are those which support local loads, such as capstan, gun and other foundations.

It is here that formule can, in general, be applied, but the thick deck plating and heavy overhead girders now obtaining in warships form such rigid abutments that to neglect end fixing is absurd.

COMPARISON WITH REAMS.

Putting on one side the direct stress in columns and shear in beams, we have for the same form of elastic surface a perfect analogy. Take, however, actual loadings-simple compression for the column and uniform loading for the beamand consider the ends fixed.

Assuming a high value of L / v we may apply Euler's method. Let W be the equilibrating load for a column of tength l, and Ma, Mo, Mx the bending moments at ends, middle of length, and a section distant x from one end, respectively the deffection at the x section being y, we have

Again by cubstituting, we have:

$$
\begin{gathered}
M_{x}-\text { Cor. } \sqrt{\frac{H^{\prime}}{E} I} \times M_{a} \\
\therefore \text { When } x-o_{0} \text { or oo } M_{1}-M_{0} \\
\text { \& When } x-\frac{\rho}{2} \cdot M_{x}-\cdots M_{0}-M_{0}
\end{gathered}
$$

We thus see that fixing the ends reduces the bending moment at middle to one-fourth of that for free ends, and that the bending moments at the ends are equal to that at middle.

For beams, we know that fixing the ends reduces the bending moment at middle to one-third of that for free ends, while the bending moment at ends are twice that at middle.

end fixing

Watertight-bulkhead testing affords a sood criterion as to end fixing where the stiffeners are resarded as beams.

A large number of tests were analyzed by the writer, the results of which were given in a paper read before the North Fast Coast Institute of Engincer; and Shipbuilders, and it was there shown that for watertight bulkheads having good, solid abutinents the degree of constraint of the stiffeners was 60 percent.

Taking into account the above comparison of distribution of bending moment, it secms reasonable to expect for local
colnmns a rood degree of constraint. In general, experiment supports this conclusion.

THE COVERNMENT COLUMN TAALES.
Consider these two excerpts from the instructions for proportioning compressive members:

1. "In determining the saie loads no distinction is to be made between fixed, flat, pin hinged and round ends." * * *
2. "For pin-end compressive members * * the radius of gyration used should be that corresponding to the probable plane of failure, provided this radias of gyration be not greater than twice the least radius of gyration of the cross section."

In actual practice we find that structural columns, not being "figured out," are not affected-a divergence of $1: 2$ for similarly placed columns existing in recent warships.

The Navy Depariment tables, taken as self-explanatory, do not meet the case of local columns, inasmuch as they entirely neglect end fixing, and in consequence demand scantlings two to four times heavier than necessary.

Mr. Anderson's justification for his neglect of end fixing seems to rest partly upon the supposed incompetence of draitsmen in shipyards aspiring to government work, and partly upon one of two opinions which are really not applicable.

For instance, Mr. C. C. Schncider (Quebec Bridge Report), when speaking of the "elastic deformation of the truss," was not referring to a (oo-pound N, S. deck to which a column was firnily bolted, nor did Moncrieff, in speaking of the difficulties of estimating the restraint, infer that it should be neglected.

The second excerpt may be written thus: Pinning the ends of a column may be regarded as fixing them in a plane parallel to the center line of the pins to any extent up to 100 percent.

Here Mr. Anderson errs on the other side, for a single pin, unless a very vicious affair, would hardly produce absolute constraint.

The innovation of using nominal ultimate loads-loads which are purely hypothetical, and tax the imagination to con-ceive-is apt to lead to some confusion.

The upper limit of the range of nominal factors given is 9. which corresponds to a true factor of 54 , and which would barely cover the case of a column likely to be much fatigued.

THE ROOT FOHMCLA.

Mr. Anderson eschews the Rankine-Gordon formula, and considers it the "least accurate of all." This is most interesting, as only last year Dr. Lilly, one of the highest authorities, gave as his opinion that it was the most satisfactory of all columin formula. Hetwcen the limits usually taken -namely, $f_{.} / r=20$ and $L / r=200$-the Rankine-Gordon formula is the most reliabie.

For mild steel, rounded ends, the formula is

$$
\frac{H^{\prime}}{A}=\frac{21.4}{I+1 / r{ }^{\prime}}\left(\frac{\rho}{r}\right)^{2} \text { (tons per square inch). }
$$

Between the limits stated the writer finds a close agreement with the tables, excepting that the loads there given are less for the lower values of $L / / r$. Now, the Rankine-Gordon formula is on the safe side for short columns, so the Moncrieff curse droops too much. It would seem that the eccentricity factor of Mr . Anderson does not take into account the fact that eccentricity is more marked the shorter the column.

As regards rationality, there is nothing to choose between either of the above formula.

Mr. Anderson is to be complimented on having made a determined onslaught on the rather mehulus data pertaining to strength of columns: hut even white admiring the result, one wonders if system, like fire, though a "good servant," may not prove a "bad master."
A. J. M'rRAY.

Quincy, Mass.

SELECTED MARINE PATENTS.

The publication in this column of a patent specification docs not necessarily imply editorial commendation.
American patents compiled ty Delbert H. Decker, Esq., regislered patent attorney, Loan \& Trust Building. Washington, D. C.
99607. FREIGHT VESSEL AU'GC'ST J. PEEBLES, OF MOLClaim 1-A
Claim 1.-A freight vessel having a plurality of storage tanke catend. ing side by side lengthmise thereof, and bwoyant tabes asoociated wih

and located in the intervening apaces above and below and tanks. Four clams.
Ph,5e2. PRGPELLING.WHEEI- JOHN PLEWES, OF RIM. BERA, Y, ONT, CANADA.
Clown 1.-A propellmg wheel comprising a huh, four blades each hoving a straight front edge radiating from the center of the hub, a peripheral edge concentric with the asis of rotation and the hack edge cut away or hollowed in compound curve orm in proximity to the hu outer edge, and each blade increasing in width from the boh to the concentric auter edre, so that a line drawn at any point across the width of the blade is equal in length to the radial distance to such tine and the pitch of each blade being so arranged as to have an even
 GF6, S4. PROPL1SION APPARATLS FGRSIIITS HOATS AND STEAD, LONDGN, ENGLAND.
Chaim 1.-In combination, a turhine having one or more bladed members, plurality of suidet conacting with the blades of said members to

form a plurality of paths for the working flaid of varying operative lengths, together with means for supplying working flusd to any of said
paths at wil. Eight elaims. $908,9 \pi 0$ FLOATI CGOCK. CESARE LAURENTI, OF SPEZIA. ITAIN, ASSIGNOR TO SOCIFTA ANONIMA FIAY-SNX GIOKCIO, OF SPEZIA, ITALI.
Clain 1. In a floking dry dock, the combination of a eylindrical water. tieht receplacle adapted to entirely inctose a vestel, means for adenttina

a vesiel to said receptacle, and caissons supporting said receptacle. Thir teen elaims.
999.7 54 FOLDING ANCIIOR. DANIEL A. JONES, OF OSIf KOSH. WIS.
Clown 1.-A folding anchor, comprising a shank having arms and stock members pivotally connected thricto, and means operatively connected to the armas and to the stock members to cause the sand arms and the avans alac extending through the upper end of said shank for connection with o cabie. Eleven clains.

Britisl: patents compiled by G. E. Redfern \& Company, chartered patent agents and engineers, 15 South street, Fins* bury, E. C., and $2 t$ Southampton Building, W. C., London.
19.s@r. PROPELLERS. F. H. TREWEEK, FALMOUTH.

By thas invention the maximum throst per borsepower is obtained. In mhape the hladca are nearly aemi-circular bot radially shorter at the omallest connection consistent with strengis to allow free accesa of the

wates to the blades. The petch of the blades is emall at the front cdge and gradually increases towards the rear edge, thus gradually im parting velocity to the water as it passes through it. An axial section gives a curve inciming, andis concave side facing hacirwarda and both the inclimation and the concavity gradoally inctease from the front to throw the water, of the hlades.
20,607, IND1CATING THE POSITION OF SUNEEN YESSELS, J. B. EILAINE, S. R. F.AST ANO J, G. NTEVENS, NEW ZEALAND, When the veasel sunks, a buoy, contained in a stand on deck, foats and at night by means of a pilot hight in the chamber. There is a compartment for documentis, ete. The chain is mide in, say, fathom lengthe partment or documenta, etc. The chasn is onde in, say, fathom lengthe which the vesuel is submerged.
38.443. PKEVENTING THE RACING OF MARINE ENGINES. F. TANNEK, H. J. HARRIS. AND H. BURT, NEW ZEALAND. A tarottic valve in the masn steam pipe has a jever upon its opindic. its full extent. A wesgited pendulum, which is adjustable to suit the

loading of the ship, is arranged to close sontact in an electrie circuit when the stern of the ship rines in the ait. A motor in this circuit is thus hrougth difecty into operation, and by actoating suaitabie seariag fendulum to prevent shock
17.935. SCKEW PKOJELLERS, J. HALLIDAY. LIVERPGOL

This refets to the type of propeller blade provided on its thruating utface, with serica of projecting ribs tae iovention consists in

and in providing the plane thrusting faces with transverse grooves sunk below the aurmal surface. The face vice of the blade is approximately rectangular twh rounded corners as distinct from the usuat elogated oval.

The Celebrated
 PORT ORFORD CEDAR LUMBER

is the finest wood in the world for Boat material.

Will not rot, split, warp nor check.

Write for prices and information to

C. A. SMITH LUMBER COMPANY
 BAY POINT, CALIFORNIA

TRADE PIJBLICATIONS.

america

International Acheson Graphite Company, Niagara Falls, N. Y., has extablished a marme department to assist in the introduction of the Acheson lubriciants-Oildag, Aquadag and Gredag-to the marime trade. Mr. J. J. Lym, Port Huron, Mich., is in charge of this department. These lubricants are described in buoklets, which will be sent free to our readers upon request. "Oildak is defloceculated graphtite diffused in oil The kraphite will make \& gallon of Oildag do the work of 3 gallons of oil. It is put up in condensed iorm for charging $3,5,10$ or 50 gallons of oil. Aquadag is detlocculated graphte diffused in water. It is an ideal lubricant and coolant, ralnable as an and in all kimels of metal cutting. It is put up in condensed form for charging $\mathbf{t}, 5,10$ or 40 gallons of water. Defloceulated graphite is graphite reduced to the molecular state, in which form it is easy to diffuse it in oil or water. This graphite is not obtainable in powder form, nor in any luhricants but Oildag and Aquadag. Gredag is a ready-to-use lubricant that is far superior to plain grease." It is the only grease that eontains pure, gritless Acheson graphite."
The McKim gasket, made by the McCord Manufacturing Company, 2587 East Grand Boulevard, Detroit, Mich., is described in a catalogue the manufacturer has just issued. "The McKim tasket comprises a proper combination of soft, ductile metals and a variety of elastic packings, resulting in a gasket capable of resisting heat, pressure and chemical action of any circulation, at a minimum tension of bolts and unions, and at a price that deines competition, even when compared with the cost of cheap and inferior gaskets. The McKim patent gasket combines all the attributes of a perfect packing, forms a natural expansion joint, will not spread, is impossible to blow out, can be used again and again, is a factor of safety, and is as good as an insurance policy. Above will be noted sections snowing construction of various styles. Figs. I and four iffustrate double copper jacket asbestos gaskets, which are used on flanges for superheat and extreme service; Fig 2, a single copper asbestos gasket for high-pressure and ordinary steam zervice; Fig. 3, a single copper rubber gasket for low-pressure and cold water, etc., service; Fig. 5, a doulle copper asbestos gasket as used in handhole plates on watertube boilers."
"Comparative Tests of Large Engine and TurbineDriven Centrifugal Pumps" is the title of an article by Mr. Francis Ilead, member American Society Marine Engineers, which recently appeared in one of the technical journals, and has been reprinted by the De Laval Stearn Turbine Company. of Trenton, N. J. "The tests were made at the Torresdale Filter Plant of Philadelphia, where there are installed seven compound-engine-driven centrifugal pumps, each having a capacity of $45,000,000$ gallons per day against a head of about 45 feet, and one steam turbine-driven centrifugal pump of a capacity of $50,000,000$ gallons per day against the same head. During the past year six of the engine-driven pumps and the turbine-driven pump have been carefully tested for economy. according to the specitications, by representatives of the contractors and of the eity. The pamphlet before us gives the detailed results of the test, which show that the turbinetriven pump developed a duty of over $2 t$ percent in excess of the duty shown by the compound-enginc-driven pump, and required less attention and secmed to be more rasily mainsained. The economy developed by the turbine putmp was t04,000,000 foot-pounds of work per thousand ponnds of steam, not creditng the pumtp with the head lost in the condenser and power consumed by condenser. While this may appear low in comparison with the doty shown by vertical triple-expansion, crank-and-fly-wheel pumping enkines, it should be bertue in mind that the annual charges akainst tur-bine-driven pumps are very small alongeide of those upon expensive high-duty pumping engines, and that the total cost of pumping per year with cral at $\$ 5$ per ton and less will, in most eases, come out decidedly in favor of the turbine-driven pump. In tenders recently made to one of the large eities in this country, for instance, it was found that the total operating cost with coal at $\$ 3$ per ton would be $\$ 43.372$ per year for the triple-expansmon ensime having a duty oi $170,000,000$, as against only $\$ 27,{ }^{2} 46$ for the turbine-driven centrifugal pump having a duty of $120,000,000$ foot pounds per thousand pounds of stcam. As a matter of fart, the actual cost of coal was orily \$1.50 per ton, and further computation shows that in order to bring the cost of pumping by the turline-driven centrifugal pumps up to the cose of pumping by the vertical triple-expansion recibrocating pump, the price of coal would have to be in excess of $\$ t 3$ per ton." Copies of the booklet mentioned will be sent to interested persons upon request.

The turbo-blower, a machine designed to produce the proper draft in a boiler, that is necessary to burn all grades of fuel in such manner as to effect complete and economical combustion, is described in a catalogue published by TurboBlower Company, 30 Church street, New York. "In most cases where natural draft is used conditions are such that the amount of steam obtained from the fuel in use is inadequate to the requirements of the plant; of if sufficient steam is produced more fuel is consumed, and in addition more labor is expended than would be necessary if a proper system of mechanical draft were employed. It is well known that from 25 percent to 40 percent of the heat generated in the boiler furnace passes away through the chimney and escapes into the atmosphere. Only a small portion of this heat is actually necessary to create the draft needed for comhustion of the fuel. The remainder is dead loss. Stacks require to be heated to a high temperature in order to draw, and the greater part of the enormous amount of fuel used to produce this heat is saved by the use of the turbo-blower."

The Bristol Company, Waterbury, Conn., has just issued condensed Catalogue No. 160, describing recording instruments for pressure, temperature, electricity, speed, time, etc. "This is a condensed general catalogue and price list of Bristol recording instruments for pressure, temperature and electricity, including a few indicating forms, such as the ther-mometer-thermostat and indicating pyrometer. Since the first Bristol instruments were put on the market more than twenty ycars ago hundreds of different applications have been found where recording instruments would pay for themselves in service, and to meet the continuously-increasing requirements a great variety of Bristol instruments have been developed. More than a thousand charts of various sizes, covering hundreds of different ranges of pressure, temperature and electricity, have been specially engraved for use with Bristol instruments. and charts of special ranges will be engraved to order. The individual lines of these instruments are cataloguted separately in special bulletins, as noted on page 5, and copies of these special bulletins for any particular line of Bristol instruments will be mailed upon request. Thousands of Bristol recording instruments are now in daily service. The continuous records of pressure, temperature or electricity, made automatically by these instruments, are of great value in helping to maintain uniform operating conditions in manufacturing plants and industrial works. Results ohtained have led to their being regarded as an operating necessity in many processes. One of the most important features of Bristol instruments has always heen their extreme simplicity of construction and operation. The general principle on which they have been designed is that the most simple equipment that will do the work is the most practical equipment for that work, because it is the easiest to maintain."

Conveying machinery is described in Bulletin No. 110. published by the Conveying Machinery Company, so Church street, New York. Among the illustrations in this bulletin is one showing the naval coaling station built for the United States government at Algiers, La. "On the dock there is a pocket having a capacity of about 300 tons which can be discharged by gravity into vessels lying alongside. The coal is discharged from vessels by a grab bucket operated by electric hoist with alternating current, 2,200 volts, 60 eycles, and deposited into the receiving hoppur in the movable discharging tower, and is distributed in the dock storage pocket by a gravity hucket conveyor system. From coal storage pocket on the dock the coal is taken to the coal storage building by a main gravity bucket conveyor system, which encircles the building. The same conveyor system takes the coal from the coal storage building to the dock storage when desired. Coal is aloo received at the building in cars, and put into storage with the same conveyor system. The distribution of coal from the coal storage building to the various points in the naval station is done by delivery to wazons or cars through gravity chutes. There are weighing devices located at the dock and coal storagc, suitably arranged to accurately record all coal received and disbursed from the station, whether ly wagon, vessel or cars. The entire structure being fireproof steel conercte construction. and all handling of coal to or from the station at least possible expense, make it the most complete and economical coal storage plant in the world. This conveyor system is built with 24 -inch by 24 -inch malleable iron buckets and dropforked links, having a capacity of over too tons of coal per hoir. It handles all kinds of coal, principally run-of-mine. There is over 14 feet of ennveyor with a vertical rise of 56 feet. and operates with less than 16 horsepower."

RESULTS COUNT

It isn ${ }^{\circ}$ merely finishing a job in a given time that you should be proud of-but having it accurate. Right to the last detail-then you can stand up straight and throw out your chest. You have reason to be proud.

There is no way, however, for you to be so sure of your work, as you go along, as to check it up with the accurate Starrett Tools.

There is a Starrett Tool for most every sort of measurement you want. Many helps for the sureness of your work.
Write for 274-page Catalog No. 19L. It's full of illustrations and information.

THE L. S. STARRETT CO. ATHOL, MASS., U. S. A.
NEW YORK, 130 Chambers Se . CRICAOO, 17 No. Jefferson 5 t LONDON WAREHOUSE, 36 and 37 Upper Thames St., E. C.

Lifts water on three-foot length of pipe between tank and combining tube on 18 lbs steam pressure. Will lift water through twent y-foot pipe on 60 lbs . steam pressure. Handles hot water up to 123 degrees.

The Powell Automatic Injector is arranged so as to produce the liighest standard of efficiency, yet without any conuplicated parts. They are so made they can't be inverted or replaced wrong when taken apart for cleaning or repairs. Write for special circular.
POEELL'S STEAM SPECIALTIES ARE STAMDARD Ask Your Jobbsr-Mo Ksems DIB VOU GET OUR CATALOE?

International Marine Engineering
 NOVEMBER, 1911.

A FEW NOTES REGARDING THE HISTORY OF SHAIIIOW RIVER NAVIGATION,

In reference to the descriptions given in this issue of the very latest types of vessels built for the purpose of shallow river navigation, it may not be uninteresting to go back to the history of steam navigation specially adapted for shallow rivers.
In the year 1737. Jonathan Hull invented and built a remarkable vessel, which he called "A machine for carrying ships in and out of harbor against wind and tide." This eonsisted of a wooden hull and a paddle wheel without any rims, the supports for which projected from the stern of the ves-
tno models exhibited there, one in the Kelvin Hall, and the other afloat in the river Kelvin
These two nethods of propulsion gradually developed until a side-wheel vessel, ealled the Scotia, was built, which erossed the Atlantie in about twelve days; but, with the exception of vessels built for short passages, such as from Dover to Calais or from England to the Channel Islands, the serew propelier has now practically ousted this form of propulsion.
In $\mathbf{1 8} 56$, John Buchanan introduced a device by means of which a screw propeller could be used with advantage for

sel We believe it may be said that this stern-wheel vessel is the prototype of all steam vessels.
In 1803 , Symington produced what was termed at the time "The first practical steamboat," which was named the Charlotte Dundas. This vessel, which was also a stern-wheel boat. had a paddle box embodied in the after part of the hull.
Four years later the Clermont was built by Fulton. This boat was a side-paddle boat, a type which is now so much more familiar to the general public than that of the older stern-wheel boats.
In 1817, Henry Belt, whose name is almost as familiar as that of Watt, built a vessel called the Comet, which is also a side-wheel boat; and it is very familiar to all those who have visited the Scottish Historical Exhibition, there being
vessels of very shallow draft. The propeller revolves in an arched tunnel, built up from the bottom of the hull, the bottom of the tunnel being open to the water. The tunnel on cross section has vertical sides and semi-cireular top.
This method of a propeller working in a tunnel had an advantage because a fast-running engine could be used, being very much lighter than the slow-running machinery used in the case of either the stern-wheel or side-wheel boat. A certain number of vessels were built from time to time on this method, but the objection to it was that, when the vessel was loaded below its light draft, the after part of the tunnel produced a very serious resistance to the speed of the vessel, and for this reason the system fell out of use. It was again introduced by Messes, Yarrow in 1892 , and a good many fairly

THE CLEAMONT.
successful boats up to 100 feet by 20 feet were constructed. In the case of pleasure boats and gunboats, in which the draft of water was scarcely varied, these boats were very successful, but when it came to boats of varying draft the resistance of the after portion of the tunnel had to be considered. This trouble arose only when the vessel was deeply laden. This difficulty was overcome by the builders in a very simple manner by making the after part of the tunnel work on a hinge, so that the rear portion of it could be adjusted to touch the surface of the water, without being immersed in it, on what-
ever draft the vessel might be running, a device wbich has proved very successful. Not only does this adaptability of the after part of the tunnel to various drafts increase the speed when the vessel is laden without necessitating extra power, but even on a light draft it is a great advantage, because, when the propeller is at work, it raises a mound of water behind it, and the tunnel can be adjusted to touch the top of this mound, which is often a good many inches above the level of the water outside.

Many gunboats have been built on this system for the

THE CONTT.

British and other governments. Besides Macas, built for the Portuguese goverpment, and the Widgeon, the last of eleven gunboats built on this system for the 1british Admiralty, a similar boat was built for the Japanese government and sent in pieces to be riveted together in Japan. This boat left the country just before the declaration of war between Russia and Japan, and every effort was made by the Russians to have it stopped. During the voyage out of the freight steamer through the Red Sea the latter was overbatied by the Russian groboat, whose captain had been informed that a Japanese gunboat was on board. The officers searched the freight vessel, but seeing nothing but wooden cases returned with the report that no gunboat was on board. The freight steamer's destination was Hongkong, and there the British authorities had orders to stop her and take ont the gunboat. The captain of the freight vessel, however, had secret orders to proceed direct to Japan, without calling at Hongkong, and so the shipment safely arrived at its destination and was riveted together by the Japancse.

The importance of shallow-draft vessels can hardly be overestimated. In geography books the rivers in various countries are described as being navigable up to a certair point, and the function of the shallow-draft boats is to carry this point further to the source. We may state that these vessels have been sent on expeditions among the primeval forests of Africa, where dwell the dwarf races. They have been sent into the mountains of Peru, where white men have never been before and where the natives are in the Stone Agc. These people wear no clothes and know no weapons but stone axes and poisoned arrows, and are shot at sight like wild beasts by the half-civilized natives of the surrounding regions. They have also advanced along the shallow tributaries of the Amazon, which are practically unknown to eivilization, and where the natives are scarcely superior to those mentioned above. The natives of these regions are very fierce and disfigure their faces in every kind of grotesque manner.
If a history could be written, giving the combined experience of those who have accompanied these boats, it would be a very interesting one, as illustrating the very first introduction of civilization to the naked savage.

American River Steamer Saguenay.

The Richelieu \& Ontario Navigation Company's new steamer Saguenay was constructed at the Fairfield Shipyard, Glasgow. The Sagwenay is 275 feet in length, 56 feet 6 inches in breadth, and 40 feet in depth to hurricanc deck. She is fitted with two direct-acting, triple-expansion surface-condensing engines, each having four inverted cylinders, with cranks on the Yarrow-Schlick-Tweedy system of balancing. One of the fow-pressure cylinders is at the forward end, and next to it is the high-pressure, then comes the intermediate-pressure cylinder, with the second low-pressure at the aft end. The engines are designed to develop a total of 2,300 indicated horsepower when driving the ship at 15 knots sea speed on a draft of to feet.

As is usual in American river passenger steamers the starting platform is situated at the level of the main deck within the engine-room casing, and the gear is so arranged that both sets of machinery can be conveniently operated by the engineer in charge.

The steam generating plant consists of three single-ended boilers of the multi-tubular type, each designed for a working pressure of 180 pounds per square inch. All the furnaces are of the suspension bulb type, workiug under Howden's system of forced draft.

The electric generating plant consisss of two sets, manamace tured by Allen, of Bedford. Fach set is constructed for a continuous output of 75 kilowatts at 100 voles when running at a speed of 900 revolutions per minute.

CHAIN AND ROPE TOWAGE ON OERMAN RIVERS.

3V K DIRTR

It is about forty years since the needs of the high-running tide of German comnerce began to direct renewed attention to the possibility of making use of the inland waters as traffic ways. The want of suitable means of transport, especially for cargo, made itself the more felt because the railways had not then developed to their present high state of efficiency. Even in the face of this powerful rivalry a large share of the transport of goods still falls to the cargo vessels on the rivers and canals, and will probably continue to do so for all time, in Germany as well as in other countries, because, on account of their low original purchave, maintenance and working costs, and therefore of the small amount of the interest on and amortization of their working plant, they can work at much cheaper rates of freight than the railways. In the case of bulk goods, for which rapidity of transport is less required, this latter circumstance is of great importance.

By reason of the low state of the water occasionally experienced in most of the rivers of Germany, the conditions there are, it is true, no longer so favorable for inland shipping as they formerly were, so that the competition of the railways has gradually become very formidable. Moreover, this occasional shallowness of the Gernan rivers admits only of a partial use of cargo steamers, a peculiarity of which is that, apart from their high original purchase and maintenance costs, a considerable part of their otherwise available space and carrying capacity has to be surrendered to the accommodation of engines, boilers and bunkers. Also, in view of the in part very considerable fall of the rivers, and of the consequent speeds of the currents during high stages of the water, power would have to be amply apportioned to such vessels to enable them to make fair headway in the up-stream direction. The result of this state of things was the retention of the oldfashioned engineless cargo barges fitted, for occasional use only, with from one to three large sprit sails. It now, however, became urgently necessary to provide for their upstream journeys special tugs, which should be capable of propelling themselves and the barges on these shallow waters even against a strong current. Thanks to the very extensive regulation of the courses of the rivers, shallow-going side or stern-wheel paddle steamers, which, with draft of about 2 feet, can carry engines of as much as 350 indicated horsepower, are generally made use of with advantage. Not many decades ago, however, when jutting promontories of the banks or narrow bridges severely throttled the current, and rapids rendered up-stream voyages difficult, the so-called Tauerei, or mechanical towage, was in full bloom on the German rivers. The term Tauer, or towing vessel. was applied to all river steam tugs which by means of mechanically-operated drum or wheel appliances wound themselves and their trains of barges along a rope or chain that was permanently anchored in the river.

It will at once be apparent that the advantage of this method of towage over that with paddle or screw lies in the avoidance of the slip. The slip of the paddle or of the screw must, in view of the opposing speeds of current and small depths of the water, make itseli specially unpleasantly felt when, in addition, the propeller is burdened with the eonsiderable resistance of the train. This consideration will at once show that, where the last-named influences (fast-flowing currents and small depths of water) are especially operative, paddle or screw steamers will work very uneconomically, whereas the Taner will move forward with the speed due to the revolutions of its machinery uninfluenced by the speed and depth of the current. The propulsive efficiency of the Tauer is here

[^46]TIATE 1.

affected only by the ordinary resistances in the engine itself, and by losses in connection with the gearing and drums (kizen by Arntzen at 23 to 25 percent for ropes); further, there is a certain loss of efficiency due to the raising and stretching of rope or chain or to slipping (about 3 percent for ropes according to Arntzen, about 10 percent according to Bellingrath). For chains the latter assumes a total efficiency of $.7 \times 87$ (these being inclined from 8 to 10 degrees from the horizontal with an engine of 120 indicated horsepower, a speed of vessel over the ground of 5 jeet per second, and a weight of chaitt of 10 pounds per foot of length). On the other hand, in addition to the ordinary losses in the engine, serews and paddles are further subject to vertical thrust and water-raising losses and to their frictional, form and eddy resistances, so that a towing vessel of this class may be credited with an efficiency hardly exceeding about 30 percent. For the institution of a comparison between the norking capabilities or rope Tauers and paddle tugs, Prof. Teichmann (1880) gives the figures in Table t.

The resistances of the barge train that here come in question vary very considerably with the attendant circumstances. It is in such cases advisable first to institute on the special experimental trials for the type of barge found on a particular river in question on the reach on which it is intended to ply. Account must here be taken of the experience that, in
contrast to the conditions with a Tauer, a barge behand a paddle or screw-steamer has its resistance increased on the average by 10 percent. It is, moreover, a well-known fact that the bargemen much preier to have their vessels drawn along behind a Taver than behind a paddle or serew-vessel which churns and tosses the water about, quite apart from the consideration that the section of the river may be damaged by the waves raised by a sug-steamer of one of these types.

The following illustration (Fig. t) shows within what wide limits the resistance of the barge trains may vary. It must not here be forgoiten that the resistance of wooden cargo barges is about 50 to 75 percent greater than that of iron ones of the same size. The fitting of a wooden bottom in an iron vessel alone suffices (according to Haack and Engels) to increase the resistance by an average of 33 percent. On the other hand, it is not advantakeous to reduce the resistance of the tug itself too much by reducing her coefficient of displacement or by other means of this kind. Blumeke (see the papers of the Permanent International Association of Navigation Congresses) very appropriately compares the required minimum displacesuent with the minimum weight which a locomotive must have in order to give the necessary rail friction for lieavy work. The degree of efficiency found by experience to be necessary for a chain-towing vessel may be obtained from the following considerations:

If $W=$ the tolal resistance of the tug with its train,
$n=$ the number of sowed vessels, not including the tug.
$\chi^{*}=$ about $3=$ coefficient of resistance, and
$F=$ area of "midship section of one of the towed vessels in square meters,
$K_{1}=$ aboul $-4=$ coefticient of resistance, and $F_{1}=$ area of 'midship section of the tug in square meters,
$v=$ the speed of the tug over the ground in meters per second,
$c \equiv$ the speed of the current in meters per second, $N_{t}=$ the total efficiency of the installation,
$g=$ the acceleration of gravity in " $/ \mathrm{sec}$ ",
then $\frac{W v}{\pi 3}=$ Ni \times I.H.P.
$W=\left(\frac{n+1}{2} \times K \times F+K_{1} \times F_{1}\right) \frac{1,000}{2 g}(v+c)^{2}$.
and therefure $\left(\frac{n+1}{2} \times K \times F+K_{1} \times F_{1}\right)$

$$
\times \frac{1,000}{2 g} \times(v+c)^{2} \times v=N_{1} \times I . H . P . \times 75
$$

Thanks to the very economical use of the horsepower juxt set forth the costs of working are relatively small. For instance, the coal consumption of a chain tug on the Fibe is only one-third that of a paddle tug. and that of a rope tug on

$$
t
$$

the Rhine only $\frac{}{3.6667}$ of the latter for the up-stream
journey. On the down-stream journcy the difference, of course, becomes less. An additional advantage is to be found in the reduced number and wages of crew required and in the relatively small expenses of maintenance and repairs.
Bellingrath, the staunch upholder of the German chaintug traffie, writes of 6 percent of the first cost of the chain vessels (exclusive of equipment) and 7 percent for the chains. He assumes the annual cost of the repairs of a chain vessel of about 130 feet in length with engines of 130 indicated horscpower to be about $\$ t, 200$ ($£ 240$). Judging by the balance sheets of the chain traffic companies, these figures would appear to be somewhat too low. In 1880, for instance, we find $12 \frac{1}{2}$ percent written off by a lower Elbe company for the chain and about twice as much for repairs to a chain tug approximately corresponding with the above in size.
It is true the chain and rope towage systems also have many disadvantages. The heavy first cost will only admit of the use of a single line of chain or rope for up-streani and down-stream work, so that when two vessels meet their passage becomes a difficult and complicated matter. This operation has been somewhat simplified by the fitting of a special propelling plant for the down-stream journey, But during work the small degree of mobility and the constant dependence on the length and position of the chain or rope form a not inconsiderable impediment to the rest of the river traffic. This is, moreover, especially the case when the chain or rope breaks, so that a whole train of barges lies helpless in the channel. Further, the permanent installation of such a valuable object as the chain or rope on the bed of the river, where it is exposed to the action of drifting iee and to decay in various ways, and where it is also difficult to look after, has its objections. It once happened on the Elbe that a trunk of a tree was caught by the chain in such a way that one of its ends stuck in the ground and the other penetrated the skin of the vessel, whicls then sank. Again, on the downstream journey, screw and paddle tugs give greater security in the towage of barges so that they can take the same number of these as on the up journcy. Moreover, a screw or paddle steamer may be applied to other purposes, or may be sold, whereas this would be very difficult in the case of a chain or rope vessel. Finally, the introduction of the chain and rope systems meets with difficulties on rivers the courses of which are interrupted at frequent intervals by dams or locks.

The question whether the chain or the rope system is the more advantageous was the snbject of somewhat extensive discussion about forty years ago in Germany. A fact it is, that in view of the eonsiderable practical stecess attained with the chains, which were the first to be introduced into Germany, they for a considerable time held their ground. Towards the close of the seventies, however, a powerful competitor arose in the flexible steel wire rope. The deciding factor in the question whether rope or chain shall be resorted to is the available depth of water on the reach in which the vessels are to ply. Thus on the Rhine, with its ample supply of water, we find the rope system (average depth of water on the reach in question equals 3.28 feet), while on the shallower tributaries of the same river and on the Elhe (average depth of water 1.6 to 2.6 feet) the chain system is the one in use. The point of importance in shallow waters is not so much the strength as the weight of the appliance. In shallow water
a fope would, by reason of its small weight, have to be raised from the ground for too great a distance, and this would be especially awkward at sharp bends of the river or in caves of meeting with other vessels. On the other hand, however, a chain may in such case be sufficiently depended upon to afford the necessary friction on the river bed against the puli of the veisel and against lateral shifting. The chain also, when raised by the vessel, drops into the water again more easily than the rope, on account of its much greater mobility; for the same reason its application adntits of the use of comparatively smaller and lighter wheels, rollers and drums The chain is also less easily affected by local stresses, so that, cven at the lowest state of the water and with moderate iee drift, the service can be maintained. Further, the breaking of a chain can, by the interposition of a shackle, be more easily repaired, and shortening or lengthening may be more readily effected than in the case of a wire rope. The winding drum for a chain is also to a certain extent simpler in itself and in its fittings, the chief advantages being the leading of the chain along the center line of the vessel with the attendant symmetrical arrangement of the weights on board and the eonsiderably improved steering.
On account of the readiness with which disconnecting can he effected the tug can use the same chain also on the down-

stream journey. The parting of the chain to enable an approachitug train of vessels to pass, which will be described later, renders the provision of a separate propulsive arrangement for the down-stream journey unnecessary.
According to information kindly supplied by the "Vereinigte Elhe-Schiffahrts-Gesellschaft, Dresden," which still carries on the chain towing service on the upper Elbe and Saale, the links of the chains used in these rivers have the dimensions given in Fig. 2, the figures in parenthesis applying to the Bohemian reach of the Elbe, which has a somewhat greater fall than the others. The chain is manufactured in lengths of from 1,640 to 3,280 feet, and the connections are made by means of chain locks, or double shackles, which take the form shown in Fig. 3. Similar chain locks are kept in readiness on the steamers, and, if the chain happens to break, are used for reconnecting. The diameter of link of the chain that is still in use on the Neckar towing service is 1 inch, and its first cost, incluting laying, on the 79 -mile towing reach are stated

The life of a good chain of about 1 inch in diameter of link on a difficult river reach ranges from about four to at most six years when used from three to five times a day by tugs. After this, however, it can still be used for several years on reaches on which the general conditions and the stresses are less severe. The chain on the Else is anchored at each end.
In spite of the undonbtedly great advantases of the chain, it also has serious disadvantages. Its great weight limits the stecring capabilities of the thg and of its train, and the ability of these to deviate from the line of advance to a considerably greater degree than in rope towage. By reason of its kreat weight and of its structure, the chain also wears away much more rapidly than the rope, and also wears out the drunts and wheels, this action being further increased by the sand and dirt from the river bed which allheres to it, and by jts twisting and frequent entanglement. In addition the chain causes severe vibration of the whole structure of the vessel and makes a good deal of noise in passing over the drums and
wheels. The first cost of a wire rope, moreover, is only about one-fifth of that of a chain, and therefore is associated with relatively smaller interest and amortization. The chain, then, when separate lines are provided for the up-stream and downstream journeys, will be economical only in case of very great trafic. High stages of the water will oblige the chain vessels to cease work sooner than the rope vessels. For the considerably increased weight of the lifted chain acts very unfavorably on the stability of the tug. especially when the pull is partly lateral. A case actually occurred on the Neckar during a somewhat high state of the water, in which, probably from the cause referred to, a chain-tug was blown out of her course by a lateral gust of wind and caused to capsize. Then, again, a wire rope, by reason of the uniform stressing of all its strands, gives greater security against breaking, and a broken chain always causes unpleasant disturbance of work, loss of time and expense, not to mention direct danger, to the crew and to the rest of the traffic. This advantage of the rope is unquestionably to be autributed also to its smoothness of working and to the possibilities it gives of exact manufacture and testing, all this at the same time considerably reducing the annual outlay for repairs.

The wire ropes for the tug-steamers on the Rhine are made up of seven strands of seven wires each of Siemens-Martin steel; the whole rope has a diameter of 1.7 inches and a weight per foot of 5 pounds. The center strand is enclosed in a waterproof covering, and the splicing of the ends is performed with especial care. The life of a rope is found by experience to be from five to six years,
The structure of another rope, which has been supplied for a wire-rope towing vessel on the very dangerous Iron Gate reach of the Danube, may be seen from Fig. 4 This rope has been armored by a covering of special Z -shaped external wires to protect it from the very sharp rocks and stones, with the incidental effect that wear and tear has been reduced, and that any eatching of the rope on projecting points and corners is prevented. Within the armoring come two layers of flatsided ring-segment-shaped wire, and the necessary flexibility is obtained by the $12+6$ round inner wires. As a result of its structure, every rope has the tendency, in a greater degree than a chain, to twist about its longitudinal axis. In view of this a swivel arrangement was in the first instance attached to 2 block of stone in the river bed, to which in the above-mentioned case the rope was anchored, ball bearings being used in order to still further reduce the resistance to twisting.
After the foregoing observations on the principal members of the towing installation we may return to the vessels. The first chain was experimentally installed on a reach of the Elbe between Magdeburg-Neustadt and Buckau (about 3.4 miles in length) in $\mathbf{8} 866$, and a chain-tug was set to work to tow laden and unladen vessels cheaply and safely up-stream through the Magdeburg bridges, where a strong current runs. The favorable results thereby achieved encouraged the promoters of the undertaking to extend the chain towage service from Magdeburg to Hamburg on the lower Elbe in the one direction and to the boundary between Saxony and Bohemia on the other: it was subsequently continued onwards far into the latter country. On other rivers also the system was taken up. In 1891 we find it introduced on the following reaches:

On account of the year-by-year advancing regulation and canalization of the rivers and the accompanying reduction of the speeds of the currents, the chain steamers werc, however, obliged one after another to give way to the supcriority of the paddle tugs; at the present time the chain-towing services are retained only on the upper Elbe, the Saale, the Neckar and the Main.
The dimensions of the chain steamers of the "Vereinigte Elbe-Schiffahrts-Gesellschaften, A. G. Dresden," which now carry on the service on the Elbe and Saale are the following: Length over deck, 125 to 183 feet.
Breadth, molded, 22 to 27 feet.
Depth, molded, amidships, 6.6 to 8.5 feet.
Draft without bunker coal, 2 to 2.9 feet.
Number of boilers, 1 to 2.
Heating surface, 880 to 970 square feet,
Indicated horsepower, 100 to 200.
In view of the circumstance that the steamers in moving up and down stream are connected in the same manner in each
outriggers. On each of the older vessels two chain drums, a (Fig. 6), which are driven by the engines below deck, and each of which is arranged to take three turns of the chain, are installed at about the middle of the vessel. By means of two disconnectable systems of wheel gearing with different reduction ratios, different speeds of drum or of advance of the vessel can be applied for the up-stream and down-stream journeys, respectively, without any alteration of the revolutions of the engine, which it has not been found desirable to vary to the otherwise necessary extent. Each of these chain drums consists of four single wheels with steel tire bands, which are separated by wrought iron disks, which project so as to form flanges. By this means grooves are formed, which take the chain, the latter being prevented from slipping entirely by its friction against the periphery of the drum. The fitting of two drums was necessary because it was impossible with a single one to get the chain to wind itself evenly onto the one side of the drum and from off the other side without lateral slipping. The flexibility of the chain renders possible the use

na. 0.
case with the chain, their longitudinal section is made symmetrical (Fig. 5), so that the alteration of their direction of motion is effected by the reversing of the engines alone. Following the inclinations of the incoming and outgoing chain, the deck slopes down at each end to about 40 inches below the 'midship height. In order to increase the maneuvering power of the vessel she is provided with a rudder at each end, which can be separately actuated from the bridge by means of shafting, $h-v$ (see Fig. 5). The later steamers are buile entirely of steel, while some of the older ones have wooden bottoms. The engine and boiler rooms are arranged amidships, the crew space and other rooms being at the ends of the vessels. Forward and aft on the deck of a chain vessel is fitted an outrigger, a, the length of which is about one-sixth that of the vessel, and which is hinged in vertical rollers, c, and turned on one or more semi-circular racers, b. In conjunction with chain troughs, d, which, to facilitate the leading of the chain, are provided with vertical and horizontal rollers, the outriggers serve to lead the chain to the drums. The rollers are of cast steel or case-hardened cast iron; the non-movable chain trough, which at the same time serves to take the rollers, is made of plates and angles riveted together. To enahle the chain to be brought back to its proper position in the channel in the case of sharp bends of the river the aiter outriggers are so arranged that they can, by means of special hand winches, be turned to a considerable angle in the lateral direction; spring buffers, f, limit the lateral movements of the
of relatively small wheels and drums, and this again admits of lighter construction of the winch and of the leads along the vessel. The circumference of the drum over the tires is about 11.5 feet, corresponding with a diameter of 3.6 feet. The distance between the axes of the drums is about 8.2 feet, and the reduction ratio of the drum to the engine is about from 2 to 1 to 25 to I .

Now it is clear that on account of the maximum stresses which there occur the outer grooves of the ehain drums are specially subject to wear. The result of this is that their diameter becomes smaller, so that the central grooves have a tendency to wind on more chain than the outer ones. By reason of the lengthening of the chain at this turn on the drum, even when no twists nor kinks have to be reckoned with, stresses of such magritude have been set up that most of the breaks that have occurred could be clearly traced to their infmence. Here, again, our thanks are due to Bellingrath, whose chain-grip wheel (D, R, P., No. 67,813, Fig. 7, and also m in Fig. 5) avoids all the disadvantages of the old chain drums. This clain-grip wheel has in consequence lately been applied to all the German chain vessels. The arrangement consists in a single driving wheel, over the upper half of which the ehain is led. In other respects the manner of leading the chain to and from the wheel is the same as before. The grooved driving wheel, a (see Fig. 7), has flanges, b, through which the fingers, c, from four to five of which combine to form a hand, c, are made to project on each side. The fingers,
which are provided with springs, d, that press them against the links of the chain, are fixed within the hands, e. By means of the rollers, ℓ, these latter are forced to move in a separate guiding frame, g, in such a manner that during the passage of the chain the fingers are successively inserted between its links and prevent these from slipping. At the point where the chain leaves the wheel the hands with their fingers are, by means of guiding frames, g, corresponding with those which effect the grasp, set free again (see Fig. 7). The excessive wear which was expected to be set up by reason of the many moving parts has not taken place. The experiences obtained with the appliance are of the best, and the chain itself has suffered much less than by the old method.
With a view to the avoidance of the several turns of the chain round the drum, de Bovet proposed a single wheel, on the upper periphery of which the friction of the chain was to be increased by electro-magnetic adhesion. Experience is said to have shown that a partial turn of 270 degrees is sufficient
towing hawsers, c, the windlasses, i, and the funnel winches, k (Fig. 5), are arranged on deck. A separate towing apparatus, $z w$, is provided for the down-stream journey.
On several of the chain tugs the experiment has been tried of fitting each of them with a pair of four-bladed screws with separate compound engine for the down-stream journey; but this principle has not found universal acceptance. On the newer vessels the screws are replaced by Zeuner turbine propellers (g in Fig. 5), which are stated to have given satisfactory results.
For those chain tugs, however, which negotiate the upstream and down-stream journeys with the same chain, special measures are adopted to enable vessels to pass each other. Although it would be possible for a steamer A proceeding with her train in the up-stream direction to transfer her barges to a steamer B approaching from above, another method which is considered to cause less loss of time is preferred. During the passage of A, B is disconnected from the chain. To effect

Fig. 7.
even in presence of moisture and dirt. Both chain and wheel are undoubtedly saved from wear by this means. It appears doubtful, howeser, whether it would be equally effeetive in ease of violent twisting of the chain.
The engines used in the older vessels for the driving of the drums or gripping wheels are of the twin-cylinder description, with jet condensation. (Diameter of cylinders about 15.4 inches, stroke 27 inches and revolutions per minute 50.) Recently four-cylinder compound engines with jet or surface condensation have been substituted. The Woolf engine for the winding gear of the steamer Baensch (Fig. 5) has eylinders of 9.85 and 17.6 inches in diameter with a stroke of 11.8 inches. The newer vessels have the low-pressure cylinder with its rod at the one side of the winding gear and the high-pressure cylinder at the other. The boilers are of the single-ended marine description, with one or two furnaces on the returnflame or on the direct-flame plan. Their working pressure is 60 to 150 pounds per square inch.

Separate auxiliary engines for paying out and hauling in the
this B looks for a chain lock and opens it at a point on her deck opposite to the down-stream outrigger. A rope is attached to each of the loose chain ends, and the vessel makes her way slowly down stream. When the rope attached to the up-stream chain end has reached the drum of B, it is replaced by an auxiliary chain \mathcal{C}, which is then attached to the main chain. During a further advance down stream this auxiliary chain is wound over the drum in place of the main towing chain, and drawn along the fore chain trough up to a point in way of the up-stream outrigger. The lower main chain end has meanwhile been lowered onto the river bed by means of the attached rope, and since the vessel has moved down stream it also comes into the vicinity of the up-stream outrigger of B. Here the loose end of the main chain is raised by means of the rope and again connected with its other end on tug B by means of the original chain lock, after the up-stream end has been taken out of the outrigger, so that the main chain again forms an unbroken whole. The auxiliary chain C is now disconnected from the main chain again after the tug B has attached
herself to the Jatter by aneans of another sraall chain D. On a preconcertel signal the up-stream moving tug A with her train comes nearer, till she lies alongside the tug B, which now attaches lierself to the ugg A. The later continuing to move up-strean, B is taken along till the small auxiliary chain D can be detached from the main chain. The two tugs, thus coupled together, continue their advance up-stream until the chain lock already made use of cones outt behind the downstream outrigger of the tug A. Here the look is again opened, and the down-stream chain end, to which a small line has been attached, is taken over to the tug B, through her after outrigger, and made fast there by means of a chain eatcher. Tug B is now cast loose from A, and drifts back till her up-stream outrigger is opposite the down-stream outrigger of A. The chain \mathcal{C}, which is still on the drum of B, is again passed through the down-stream outrigger rollers of the the A and connected with the main chain end, which is still lying there loose. The two steamers now move one behind the other upstream. A is free to continue her journey up-stream, and B follows her until first the chain C and then the main chain has passed the drum of B. Chain C is then removed again, and the loose main chain end, being drawn by means of the attached line through the fore outrigger and through the chain trough, the ends of the main ehain are connected together again with the original chain lock. Steamer B, also, is now enabled to continue her down-stream journey.

The passing of two steamers in this way occupies a time of from fifteen to thirty minutes, while the transference of the train of barges to the approaching tug B would take twice as long.
In case of the breaking of a cbain the engines are at once stopped by the shutting off of the steam supply by means of a weight, which, when the engine races, is released by a governor with four fly-balls on the attainment of a certain number of revolutions. The anchors must then be let go to prevent the train from drifting away or the barges from colliding with each other or with the tug. When the chain fracture occurs on the steamer herself the running out of the towing ehain is prevented by chain catchers fitted for the purpose. On the insertion of a chain lock (see Fig. 3), which is accomplished in about fifteen minutes, the journey can be continued. If, however, the chain fracture occurs in open water ahead of her, a steamer that is provided with apparatus for self-propulsion will, after anchoring the train of barges, attempt to pick up the lost ehain-end by means of a small search-anchor. A steamer not so provided must conduct these operations from her boat. By means of a small auxiliary chain the loose end is then drawn through the outrigger onto the vessel till the two ends mect: they are then connected together by a spare chain lock held in readiness for such occasions.
The up-stream journey on the Elbe with the chain is, on the average, accomplished at a speed of from 2.5 to 31 knots , and the down-stream journey at about 5.4 to 6.5 knots. The engine of the steamer develops about $130-180$ indicated horsepower, and is so dimensioned that from 1,200 to 1,500 tons of eargo can be carried up-stream in from four to six towed barges.
On the older vessels the coal consumption was about 7.7 pounds of lignite per indicated horsepower, but on the introduction of the eompound enkine this was reduced to from 4 to 4.5 pounds per indicated horsepower per hour.
For the development of the chain-towing traffic on the rest of the rivers of Germany the experiences obtained on the Elbe have been in general followed. On the Neckar, seven chain tugs belonging to the "A. G. Schleppschiffahrt auf dem Neckar, Heilbronn," carry on the service. The particulars of these vessels are: Length, 147 feet; breadth, 21.3 feet, and displacement $1: 2.5$ tons at a draft of $t .75$ feet. Their contract price was about $\$ 14,000$ ($\mathbf{i 2 , 8 0 0 \text {) each, and the material and }}$
engine stores used are stated to cost about $\$ 400$ (880) a year. With engines of fto to 130 indicated horsepower their maximum speed up-stream is 2.8 knots, and their maximum speed down-stream about 68 knots. The engines are of the highpressure condensing type with an admission of 3 . The average hourly consumption of coal is about 3.5 pounds per horsepower per hour. The working conditions on the Neckar are specially farorable for clain towing, because, owing to the peculiarities of the river, any competition from paddje or screw-tug steamers is impossible. As a result of this the finameial result is a very good one. On the other rivers this is not everywhere the case.
(To be continued.)

A SINGLE-SCREW STEEL RIVER TUG.

Among European rivers the Rhine is the one which carries the heaviest tratfic, and although some small sea-going ships ascend as far as Cologne, it is interesting to note that the river traffic between the seaport Rotterdam and the different points beyond the German frontier is carried on in a manner quite different from anything to be found elsewhere. The greatest part of the freight handled is iron or coal and other bulk cargo. The goods are trans-shipped in Rotterdam in so-called river lighters, the lighters coming alongside the sea-going ships for the eargo. The capacity of these lighters ranges from 300 to 3.600 tons deadweight, and all of them are towed to their destination by river tugs.
The tugs differ widely in size, construction and efficiency, but for rekular long-distance work they run from 150 to 1,500 indicated horsepower. The larger ones, whith are mostly paddle steamers, serve on the upper Rhine, principally between Duisburg and Mannheim, and even as far as Strassbourg when the depth of the water permits. The smaller tugs up to 600 indicated horsepower maintain the traffic between Rotterdam and Duisburg, although some of them go as far up the river as the biggest side-wheelers.

The tug illustrated is one of the latter class, which was designed and constriteted by Messrs. Arnhemsche Stoomsleephelling Maatschappij in Arnheim, Netherlands. She was designed to draw a load of $\mathrm{t}, 500$ tons in two lighters up stream from Rotterdant to Duisburg in forty-five hours, on a guaranteed coal consumption of 1.7 pounds per indicated horse-power-hour, using slightly superheated steam of about 250 degrees C., with her engines working at normal cut-off, making about tgo revolutions per minute, the firing to take place under natural draft.

The hull, constructed of mild steel, is 83 feet long between perpendiculars, 17 feet 6 inehes breadth, mwided, 18 feet 6 inches breadth over guards, 8 feet 5 inches depth, molded, 6 feet 3 inches drait with 35 tons of coal in the bunkers. Four watertight bulkheads divide the hull into five watertight compartments, the fore-and-aft peaks serving as water-ballast tauks. The captain's quarters are fitted forward, and the crew is herthed aft.

The machinery consists of a set of diagonal triple-expansion engines, fitted with a jet condenser and horizontal air pump, developing about 275 indicated horsepower with normal cut-off and running at 190 revolutions per minute, using steam at 205 pourds pressure superheated to 250 degrees Centigrade. This construction of engrse is a specialty of this firm, which was patented in $\mathbf{t 8 8 8}$, and of which a great number have been built, varying from 70 to fon indieated horsepower, mostly for river work. The engine for this boat has cylinders 11 inches, 18 inches and 20:/2 inches diameter, with a common stroke of 14 inches. All three connecting rods work on a eommon crank.pin; all valves receive their motion from one common
eccentric strap, thus reducing the wearing parts as much as possible. The high-pressure eylinder is fitted with cut-off which can be varied from 56 percent, which is the normal up to 75 percent, which is the maximum. This arrangement is actuated by a sinall eccentric placed on the crankshaft between the forward main bearing and the eccentric governing the valve motion. It works on an ordinary double-bar link, which can be lified or lowered, and gives the necessary changes in travel of the valve and cut-off. With this arrangement the engine can be forced to develop about 370 indicated horsepower at about 220 revolutions when working on the maximum cut-off. This is used at places where the current is exceptionally strong on the upper Rhine and in the rapids near Bingen.

The eylinders are of hard, close-grained cast iron east in one piece, with the valve casings and with the necessary flanges for pipe connections. The high-pressure valve is a piston valie, the intermediate valve an ordinary D valve, and the low-pressure valve a double-ported slide valve.

The bed-plate and framing of the engine are of cast iron, secured to the engine seating in a rigid manner, as can be seen from the illustration. All the shafts, connecting rods, crossheads, eccentric straps and all rods and levers in connection with the air pump gear and valve motion are of the best forged steel.
The jet condenser is cast in one piece with the air pump, and is placed just behind the low-pressure cylinder. The air pump is of the horizontal type, double-acting, the rod being carried through the back cover, acting as the feed pump planger. The bilge pump, which is of the ordinary singleacting horizontal type, is connected by the air pump eccentric, which is keyed onto the erankshaft just behind the main bearing. All bearings throughout the engine are of hard

WINE BVEL TVG
gunmetal, and when transmitting a rotary movement they are lined with high-grade white metal. The thrust block is situated behind the engine on a rigid foundation.
Just above the air pump and thrust block an exhaust feedwater heater is placed, through which the exhaust is conducted before being condensed. The heating surface of the heater is about 90 square feet, giving a rise of temperature to the feedwater of about 15 degrees C.

Steam is supplied by a Scotch boiler of the river type, II feet long, 8 feet 9 inches diameter, with a heating surface of about 930 square feet. The boiler has a dome 16 inches diameter, 20 inches high, and all steam connections are taken irom the dome through a heavy gunmetal T-piece. In the smokebox is a steam superheater with a total heating suriace of

330 square feet. The temperature, when working under ordinary circumstances, varies from 240 to 260 degrees C, and although not a high degree of superheat it gives an average of about 7 percent above saturated steam, without the drawbacks which come from superheated steam of very high temperature.

On trial the vessel used forty-three hours in running from

Rotterdam to Duisburg with a load of nearly 1,700 tons in two lighters, the coal consumption working out at 1.57 pounds per indicated horsepower-hour.

Compound Non-Condensing Machinery for a Light SideWheel Steamer.

A set of compound non-condensing machinery for a light side-wheel steamer, the hull of which has been built in Rangoon, but for which the design and working drawings were supplied by the makers of the machinery, has been built by Messrs. W. Sisson \& Company, Lid., Gloucester. The engines are of the makers' standard design, generally similar to the stern-wheel engines described elsewhere in this issuc. The cylinders are 9 inches and $131 / 2$ inches diameter by 36 inches stroke, driving side paddle-wheels of the makers' specially designed feathering float type, which has an arrangement of grease lubrication to the joints. Since this vessel is to ply in the Rangoon River, the water of which is often sandy or dirty, this plan of grease lubrication, in conjunction with the easily removable and replaceable sleeves and bushes of the feathering gear, is a great advantage. The boiler is of Sisson watertube type, the working pressure being 165 pounds per square inch. A feed heater is provided, through which the exhaust steam from the engine is carried on its way to the blast nozzle in the base of the funnel, and a feed pump on the main engines delivers the water through this feed heater to the boiler. There is also an independent double-acting steam pump arranged with suitable connections for feeding the boiler or delivering water on deck for washing or fire extinguishing purposes. A third means of feeding the boiler in case of emergency consists of an automatic restarting injector. With this machinery a steam eapstan of W. Sisson \& Company's special design has also been supplied, there being two horizontal steam eylinders driving a vertical capstan head through worm gearing, but with special arrangement for hand working also. This machinery was supplied complete with all necessary accessories, also spare gear and outfit.

ARMORED MOTOR PATROL LAUNCHES FOR THE TURKISH GOVERNMENT.

No fewer than twenty-two armored motor patrol launches of the type illustrated have quite recently been constructed at the Woolston Works, Southampton, of John I. Thornycroft \& Company, Lid., to the order of the Imperial Ottoman government. These vessels are intended for service in the Red Sea, Persian Gulf and Mediterranean Sea, and will be used for the prevention of smuggling and kindred purposes. They have a length over all of 60 feet, a beam of II feet, and a depth of 5 feet 6 inches. The draft of water has been kept dowu to the minimum, being only 2 feet 6 inches, to render them capable of shallow river work. The lines have been designed to give the best results on a shallow drafi, the flat stern giving easy running lines and keeping the stern from pulling down when going at full speed. The speed guaranteed as a mean of six runs on
side of the cabin, and the seat backs arranged to hinge up to form top berths. The underside of the casing top has been lined with "Vanesta" wood in panels with air space to keep the cabin cool. Forward of the machinery space a cabin has been provided for the crew, with locker seats on each side to form lower berths and folding pipe berths with canvas bottom above. The boats are fitted with double canvas awuings, all fore and aft, carrled on ridge wires and supported on wrought iron stanchions. Two guns have been fitted, one forward and one aft, of the Vickers Maxim patent 37 mm . quick-firing type, having water-cooled barrels. One thousand rounds of ammunition per boat are carried and stowed in lockers in the crew and officers' spaces.
The construction is practically similar to that adopted by the British Admiralty for their 50 -foot and 56 -foot pinnaces. The shell consists of two thicknesses of teak, the inner thickness laid diagonally and the outer fore and aft. The hull from keel

TUAEISM ARMOER MOTOR FATAOS LAUKCH.
a recognized measured mile was in knots, and this speed had to be maintained for a further period of two hours.

On official trial a speed of over it.9 knots has been attained with engines not fully extended. All the boats yet tried have been capable of a knot over the contract speed. The boats have proved to be very handy, and can turn a complete circle of about a length and a half in diameter when running at full speed. Steering is effected by means of a hand-steering gear fitted in the wheel-house, and connected to the tiller on the rudder head by wire rope leads. Protection has been afforded to the steersman by constructing the wheel-house of bulletproof nickel steel. The hulls are protected against rifle bullets by means of bullet-proof nickel steel fitted inside. This extends from the aft end of after cabin to forward end of the motor room and from the waterline to the deck. The casing sides also have been protected for the same length up to the height of the motor casing. The top of the motor casing is covered with nickel steel bullet proof at 60 degrees.
The arrangement of the boats is compact. The machinery is placed in a separate watertight compartment amidships, and is separated from the cabins, etc., by steel watertight bulkheads. The main fuel tanks are carried at the forward end of motor space in two eircular brass tanks, the top one is used as a service tank and supplied to the motors under gravity. Two reserve tanks of brass are placed in the stern compartment, and connected to the forward tanks by means of a semi-rotary pump. The total fuel capacity is about 740 gallons of kerosene (paraffin), giving a range of over 600 knots at full speed. Abaft the machinery space a cabin for officers has been arranged, with a sofa-seat berth having cushion backs on each
to about 4 inches above the waterline is covered with 12 -ounce copper sheathing. The keel is of oak, with a $11 / 2$-inch rubbing strip to take the wear. The boats have been built under the supervision of Lloyd's surveyors, and are equal to Class A in their yacht register for river service. The mild steel armor has been tested under British Admiralty supervision.

The main engines consist of two of the Thornycroft C/6 type, having six cylinders 6 inches bore by 8 inches stroke. At 750 revolutions per minute each engine will develop 70 horsepower, but in these boats the engines are kept back to 670 revolutions per minute by means of a spring-controlled governor. The fuel used is commercial kerosene (paraffin), which is vaporized in a Thornycroft vaporizer heated by the exhaust. Starting is effected on kerosene (paraffin) by heating the vaporizer with a blow-lamp, or if gasoline (petrol) is available by runniug on gasoline (petrol) for a few minutes. Ignition is by high-tension magneto. Lubrieation is effected by means of the drip method, a pump pumping oil into a pipe over the cylinders, from which it runs through nipples to each majn bearing and connecting rod. The pipe is provided with an overflow into the crankcase. This method of lubrication is at once sure, fool-proof and extremely economical in practice. Reversing is effected by means of an epicyclic reversing gear.
There is also an electric lighting set, consisting of a Thornycroft M. I. kerosene (paraffin) engine, having cylinders $41 / 2$ inches by 6 inches, connected to a Crompton four-pole directcurrent dynamo, giving an output of 60 volts and 4 I amperes at soo revolutions per minute. This dynamo, which can also be driven by a belt off the main engine, is used to light the ship (ten electric lamps being provided), run three electric fans and
work the searchlight. The latter is of the Crompton type, with automatic and luand control, and has a projector 16 inches in dianneter. Four of the boats were built in steel, and three others of the same power and of similar general arrangentent, but of a still shallower draft (viz, 22 incles), are also of stecl. The hulls were built complete at Messrs. Thornycrofi's Woolston Works, Southampton, and as they were put into the water they receivell their motors, which were malde at the Thornycruft Cumpany's Mutor Works, Basingstoke.

COMMERICAL. MOTOR BOAT FOR CHINA.

The muteot boat Roscrte illustrated herewith is of the shallow-dfatt, thmel-stern type, her priseipal dimensions being 45 fect lomm, to feet bean and 3 feet 6 inches depth. She hay been desixued by Mersrs. K. Wilwin \& Sons, of South Shields, and Imilt loy Mevors. Hanker \& Company, of Ilongkong and Wuchow, to the orfler of the British-. Smerican Tobacio Connpany in llongkeng.

The heat will be run by a Chiucse crew eutirely; and in adelition there will be two Einropeans in charge of and to negotiate the sale of the cargo at the tarious river side villages, as the boat was designed and built exclusively for the sale of cigarctes at the various wayside villages on the Chinese W'est River and tributaries, her first run being one of 250 miles, and then $t 20$ to 200 miles to the nearest supply base.

The hull is divided by watertight bulkheads into four compartments, the hold and engine room being amidships, and a large larerette aft, fuel tanks and chain lockers being forward. The galleys and lavatories are arranked on the main deck aft, and the salons and sleeping accommodation for the two Europeans on the upper deck. The steering wheel and telegraph are placed uell forward on the upper deek and covered by an awning. To obtain all possible deck space a gangway is placed full length of the vessel each side.
operate, but the engine is of the above firm's M. E. type, and runs entirely upon ordinary petroleum.

The engine cylinders are east in pairs, and the bed-plate is one solid casting, upon which is mounted the whole engine and reversing gear (also the firm's own make), and the cylinders follow the firm's usual practice, being supported on steel columns, which method allows all stress to be taken up by the solid bed-plate. The engine details consist of Bosch hightension magneto ignition with battery and coil as a standby, with bronze plunger pumps for fuel, circulating, forced lubri-

CHINESE LIVEA DOAT BOAETHE,
cation and bilge. The fuel pump delivers to a small reservoir, which feeds the three float chambers, each pair of eylinders having its own vaporizing system. There are no induction pipes, as the fuel on being vaporizel passes straight into the cylinders. This system is also noteworthy by virtue of the entire smokelessness of the exhaust. Accessibility is a prominent feature, the connecting rods and pistons being removable through the crankease doors, while a few minutes are sufficient to remove the cam shaft and value tappets. The valves, of course, are all on the starboard, so that the port side is free from gear. This is the standard practice on all Djinn engines.

SIX-CHLIXDEA, 6S-HOASEFOWER DJIMM FETEOLEUM MOTDE INSTALLED ON THE DOEITR.

The maclainery consists of a six-cylinder Djinn petroleum engine, butt by Messrs. Mrazil, Straker \& Company, Led., of Bristol, developing 45 brake-horsepower at soo resolutions per minute, giving a speed of 10 knots to the vessel when going "all out." This engine was built to the order of, and under the special survey of, Messrs. R. Wilson \& Suns, and installed in Hongkong by Mr. K. Wilson, Jr, who ran the vessel from llonskang to (anton (So miles), making a nonstop run withcut any engine or navigation troubles. Gencrally, no gasoline (petrol) is ohtainable in the district in which this vessel will

A water-cooled exhaust branch connects the exhaust outlet, and into this the cooling water is discharged, passing thence to the silemer.

The Hamburg-American Liner l'ictoria I-wise, which was formerly the Drutsihland, recently made her first trip to New York. Since remodeling the vessel's speed has been reduced to 17 knots, anti-rolling tanks installed, her passenger accommodations enlarged, and in future she will be used as a cruising steamship for extended cruises,

Stern-Wheel Steamer Girenfell for the Congo Mission Service of the Baptist Missionary Soeiety.

This vessel is somewhat similar to the Endeavor, built for the Baptist Missionary Society for their Congo Mission service in 1905, and as illustrated in the November, 1910, issue of International Marine Enginfering. It is, however, a smafler vessel, since it is to be used for pioneer work in the upper reaches and tributaries of the river, where the Endeavor cannot be navigated. The general arrangement is shown in the drawing. The length over all is $G 8$ feet, between perpendiculars 60 feet, the molded beam is 11 fect, the molded depth 3 feet and the draft if foot 6 inches. The hull is of steel throughoust, and all this, together with the sundry iron work, is galvanized. Speeial attention ought to be directed to the novel design of this hull. In order to secure strength and lightness the usual gunwale angle is dispersed with, and the sheer strake is curved and brought inboard to form the deck stringer. The
stroke, and driving two separate paddle wheels, the erankshafts being eoupled by a drag link. This design has substantial advantages over the usual type, being light, compact and less liable to intericrence or damage; the passage of steam from one eylinder to another is very direct and the drainage of the cylinders excellent. The arrangement of separate wheels and crankshafts sccures flexibility, and therefore much less risk of injury if the hull is subjected to any special strain or distortion takes place. As will be noticed from the illustration the framing is comparatively lixht, and yet quite effeient owing to the special design, as it is triangulated in two planes and the materials employed are east steel and malleabie steel only. The connecting rod bodies are tubular for lightness; the steam distribution valses are both of the piston type, and the valve gear of the makers' specially designed single fixed eccentric or elliptic type. This gear has been exclusively adopted by them owing to the very satisfactory results obtained with it in aetual work extending over a number of years, It

maximum radius of the curved part is about 6 itches, and the coamings are placed where the curve runs out into the flat portion of the deck stringer, and this is shown in the plan view above. The trussing is of special design, having vertical tubular pillars which combine strength and lightness. The upper and shade decks are of teak, the former laid on two thicknesses breaking joint, and the latter covered with waterproof canvas. The cabin and eonveniences arc of teak, and arranged as suitably as possible for ventilation, as the climate is a hot and very trying one. The contract was placed by the society with W. Sisson \& Company, Ltd., of Gloucester, who constructed the machinery, designed the hull and supplied the working drawings thereof to the builders, Messrs, Salter Bros., of Oxford. The vessel throughout was inspected during construction by the Rev. F. Longland, who came to England for this purpose and has since returned to the Conko, where he will supervise the reconstruction of the vessel and put it into aetive service.
The machinery is arranged on the middle line of the vessel, and eonsists of a set of the makers' specially designed compound non-condensing engines, having partially superposed eylinders $61 / 2$ inches and $10 \% / 2$ inches diameter by 30 inches
gives an excellent steam diatribution, the loads on the parts are light and the surfaces ample, so that the wear is exceedingly snall, while there are no sliding working parts, but pin joints either bronze bushed or made with adjustable brasses, so that the adjustrment is very simpie. Owing to the light loads on the parts the handling of the engine is rendered very easy indeed.
The paddle-wheels are of the makers improved light framed, feathering float type, with their patent system of grease lubrication applied to the working joints of the feathering gear.
The boiler is of the makers' special watertube type for 175 pounds working pressure, constructed throughont of best mild steel, the tubes being of seamless steel, all straight and of the same length. The steam drum is made specially large, so as to give ample steam space required for the long-stroke slowranning engine. The two water drums are formed of welded steel tubes pressed into a lune-shaped seetion, so that there are no longitudinal riveted joints. The steam drum is of sufficient diameter to admit of the tubes being inserted and both ends expanded from it. This design of watertube boiler has ample steam space, witer capacity and free surface, so as to avoid priming, there being also no necessity for any automatic
feeding arrangement, while the grate area and furnace capacity are ample, thus enabling inferior fuel to be utilized, In the present case the furnace fittings are arranged for burning wood, this being the only fuel available.

Seamless Steel Shallow Draft Motor Launches.

A motor launch for commercial and general purposes in the Straits Settlements is manufactured by the Seamless Steel Boat Company, Lid., Wakefield. The launch illustrated is 24

SHALLOW DRATT SEAMLESS ETEFL LAENCH.
feet long, 5 feet 6 inches beam and 2 feet 6 inches depth. The boat has a tunnel stern and is fitted with a two-cylinder to-horsepower kerosene (paraffin) motor, which gives the boat a speed of $81 / 2$ miles an hour when loaded to a draft of 1 foot 2 inches.

STERN-WHEEL STEAMER FRANCESCO SALLES.

One of the large stern-wheel steamboats built last year in England was the Francesco Salles, built by Messrs. Cammell Laird \& Company, Ltd., at their Birkenhead Works for the Madeira Mamore Railway Company of Paris, under the inspection of J. Ward, Esq., naval architect and consulting engineer for the railway company. The principal dimensions of the boat were as follows:

$$
\begin{aligned}
& \text { Length.of hull.................... } 180 \text { feet } \\
& \text { Breadth, molded................ } 33 \text { feet } \\
& \text { Depth to main deck............. } 5 \text { feet } 6 \text { inehes }
\end{aligned}
$$

The hull is built of mild steel of the highest quality and subjected to Lloyd's tests, and is divided transversely by ten watertight bulkheads and longitudinally by one bulkhead extending from stem to stern, and in the way of the boilers by two extra longitudinal watertight bulkheads, thus forming in all eighteen watertight compartments, the bulkheads being specially arranged to stiffen the vessel against damage by striking floating logs, etc., and to minimize the danger of sinking. Nine of these compartments are suitable for carrying general cargo-four for coal or wood fuel, while the remainder act as store rooms and buoyancy chambers.
Sleeping accommodation has been provided in the promenade deck for fourteen first class passengers, arranged in two-berth cabins, and for the captain, pilots, mate and steward, while the engineers, boatswain, cook, seamen and firemen, etc., have spacious accommodation on the main deck. The principal deck-houses are of teak fitted with jalousie windows and doors, the tops being fitted with expanded metal, thus affording ample ventilation.
The dining accommodation consists of one long table with seats for about thirty-two persons, and one smaller table with seats for twelve persons, both arranged in convenient positions to the pantry and galley. The plumbing arrangements are

LABCE STEAN-WHERL BTEAMEX PQANCESCO SALLES.

Shlpbullding Returns.

The Bureau of Navigation reports 92 sail and steam vessels of 23,282 gross tons were built in the United States and officially numbered during the month of September, of which nearly 80 percent was built on the Great Lakes, During the quarter ended Sept. 30, 350 sail and steam vessels of 56,217 gross tons were built, which is only about 60 percent of the tonnage built during the corresponding quarter last year.

Lloyd's Register of Shipping reports that, excluding warships, there were 493 vessels of $1,446,317$ gross tons under construction in the United Kingdom at the close of the quarter ended Sept. 30, whieh exceeds by jg2,000 tons the tonnage under construction during the corresponding quarter in 1910.
very complete, laving a system of steam bilge ejectors, each of about 20 tons capacity per hour, connected to the principal compartments, having a line of steel piping with gunmetal valves communicating between ejectors and boilers.
The vessel is provided with a powerful combined steam and hand-capstan windlass, one large steam winch of Messrs. Clarke Chapman's make, combined steam and hand steering gear fitted forward of Messrs. Donkins' make, a complete installation of electric light on the double-wire system, and an outfit of anchors and chains, bollards, fairleads, mooring pipes, seamless steel boats, life belts and life buoys, oil lamps, compasses, bells, spanners, and everything necessary to complete the hull in a first-class manner.
The machinery consists of a set of compound surface-
condensing engines, steam being supplied by two boilers, constructed ior a working pressure of 150 potunds per square inch. The cylinders are 18 inches and 38 inches diameter by 5 feet stroke, made of hard close grained cast iron and fitted with flat type side valves; the pistons are of cast iron, having large bearing surface on lower edges and futted with spring packing rings. The slide valve gear is of the locomotive type, with slot links bushed with phosphor bronze, the weigh shafts and levers being of forged steel. The condenser is of cast iron, having ample cooling surfaces and fitted with brass tubes and tube plates; the oil circulating and feed pumps are all of the independent type. The boiless are of the locomotive type, fitted with large furnaces, suitable for burning either coal or wood fuel, the heating surface being about 1,800 square feet; all the necessary manholes and mudholes are fitted for access, also

smokebox and steam mountings, etc. The paddle-wheels are about $t 7$ feet in diameter, fitted with twelve elm floats, which are capable of being reefed; the arms are securely bolted to cast steel centers, keyed to the paddle shaft. It was originally intended that the vessel should be erected, dismantled and packed for shipment, but unfortunately, owing to a strike of workmen, was delayed, with the result she was too late for the season on the route she was built for, and had to be placed on another of the railway company's numerous routes, thus necessitating the vessel being completed and tried under weigh in England.

On the official speed trial, which took place in the River Mersey, she developed a speed of nearly 12 knots, which was considered highly satisfactory by the owners' representatives.

After completion of trials the vessel was placed in dock and the paddle-wheels taken adrift, funnels removed and stowed, together with all movable gear, vessel ballasted and afterwards boarded up and otherwise prepared for the towage to Brazil, where the boarding was removed and the machinery, etc., fitted up ready for service.

STERN-WHEEL MOTOR BOATS.*

WY EEWIS C. ALEEX.

Along the Ohio and Mississippi rivers alone there are thousands of stern-wheel boats-work boats used for herring fishing, clam shell gathering, towing and earrying passengers. These industrial boats are driven by internal combustion engines, and are much larger than pleasure boats. They are real competitors of the large steamboats in many instances.
About twenty years ago the single-cylinder horizontal stationary kasoline (petrol) engine was adapted to the propelling of shallow-water, stern-wheel boats, using two long drive belts, a countershaft, chain and sprockets. Countless
of the same horsepower running at a speed of from 350 to Soo revolutions per minute, using the same method of speed reduction, and an investigation will show belt and chain transmission is more efficient than gear transmission. Then, too, the long shaft running fore and aft necessary with a gear transmission binds with the roll of the boat, and much care must be used in lining up the shaft, because of the necessity of great accuracy in meshing the gears.
The heavy fly-wheels of a horizontal engine balance the wheel, and are a decided advantage in a tight place, when the load is thrown on the engine suddenly, because the stored energy in the fly-wheels acts against the momentary overload. The acceleration or starting curve of a single-cylinder enkine is sharper than that of a multi-eylinder. This enables

KEBOBENE (PABATPIN) ENGINED AVEM BOAT URED AS A FEABV,
attempts have been made to improve on this combination, but so far with small success in the large sizes.

At first sight this style of drive would appear to be about the most undesirable way of propelling a boat by an internal combustion engine, taking up, as it does, so great a portion of the available room on a boat, and making a load for a boat in itself by reason of its great weight; but in shallow draft boats all ordinary forms of propelling are disqualified because of lack of water under the boat to operate the blades in. This lack of water and space is still further augmented by the tendency that all boats have to sink at the stern, or draw down, as it is called, while ruming.

A great many attempts have been made to supplant the single-cylinder horizontal engine and its belt drive with a multi-cylinder engine and gears; but the single-cylinder horizontal engine, with all its draubacks, has proved very efficient for this work. This is due in part to its slow speed and heavy fly-wheels. Then, too, you get a slight slippage of the belts on the pulleys under a sudden strain, and this is an advantage, although it would not seem so until you stop to think that the shoek of reverse and starting must be absorbed somewhere.

An engine running at 200 revolutions per minute can be harnessed to a stern wheel running 35 to 50 revolutions per minute with less loss of power than a multi-eylinder engine

[^47]this type of engine to gain its speed with greater dispatch in starting, and ako helps it to resist the tendency to reduce speed when under an overload. In towing, the strong impulse of a single-cylinder enkine at each explosion carries the bnat along much better than a number of weaker impulses. The river men eall this "grit," and they claim the singlecylinder engine has more towing "grit" than a multi-cylinder enyine of the same horsepower.

The cost of repairs on a single-cylinder enkine is low, beeause every part is larke and strong, and the belts absorbing the sudden shucks, as they do, make the replacements on this form of transmission few and far between. Friction clutches are used on the larger sizes of single-cylinder engine equipments to accomplith the reverse, and the wooden friction blocks also help to absorb the sudden stresses and protect the engine. It is true that the multi-cylinder engine occupies less space and is lighter in weight, but the disadvantages are so many that the actual proportion is much in favor of the single-cylinder engine. Then, too, the single-cylinder engine is the simplest and least complicated engine of the two to operate, which is a factor on the rivers, where mechanics are few.

A common form of complaint against the single-cylinder engine-the vibration-can be overcome by the use of a throtling governor engine in harness with a staggered wheel. The throttling governor engine most commonly used is a combined fuel type of engine, and burns either kerosene
(paraffin) or gasoline (petrol) or both, changing from one to the other without stouping the engine.

The most successful combination of belt and chain harness for horizontal, single-cylinder engines consists of a very widefaced steel split driving pulley, fastened to the main shaft, which projects about half the distance through the pulley. A rubber disk is inserted so that it fits over the end of the main shaft: a second piece of shafting, long enough to reach an outboard bearing on the gunwale of the boat, is butted up
be used instead of a chain drive, but they are hard to keep in line and do not balance up as well. Being rigid on double centers they break much easier than a chain and give much more trouble when two pitmans are used. Rubber blocks and springs back of the boxes have been tried in an effort to eliminate this feature, but without the success anticipated. Several ratios of reduction are used. Generally the sproekets and chain do the major portion of the reducing, the proportions used being 4 to t in a great number of cases.

MOTOR PACKET DOAT USED ON AMEACAN BIVEAS,
against the rubber disk. This arrangement will not cause trouble when the boat rolls, as would a solid main shaft and outboard bearing ; and it is not hard to keep the bearings in line. The cylinder end of the engine is placed toward the bow of the boat, and the the two drive belts (both on one side of the engine, as they are) enalle the operator to get to all parts of the boat without going through the belts. The two belts can be carried close to the wall or bulkhead of the engine room, and the amount of space available on the boat for other purposes is greatly increased. The cross-helt is used for the "go-ahead" drive, because it has more grip on

Loowe pulleys, in combination with a tight one, are used in place of friction clutches in some cases, especially on the smaller sizes of boats. They have the advantage of being lighter and cost much less, but are not suecessful on wide belts, as the belts are too hard to shift. Reverse gears, such as are used in oil-field and marine work, have been tried, both on the main shaft and on the countershaft, also in connection with a large spur gear fastened to the bed of the engine; but, as a rule, they are not success ful.

A large part of the trouble on a stern-wheel boat comes from the stern-wheel flanges cutting their keys and breaking

TYPICAL AETHOQ of HANHLABG FAEGGT BY A MOTOE PACNET BOAT.
its pulleys as well as to climinate the necessity of running the drive along the working side of the engine.

The stern bulkhead countershaft carrying two friction clutch pulleys should be at least to feet on centers from the engine shaft. The sprockets and chain, being located on the side of the boat opposite the belt drixe, are almost an exact balance for the belts and pulleys, and by setting the engine a little off the center of the boat along the keel line a perfect balance can be obtained without using ballast. Pitmans can
their fastenings. This can only be remedied by substituting a hexagon shaft for a round shaft, as is done in steamboat practice. The strain on the wheel is further increased if the wheel is set too close to the stern bulkhead, as the water piles up on the wheel in making a quick reverse and adds greatly to the strain and also retards the speed of the boat in guing ahead. The wheel should dip in the crest of the first wave hack of the bulkhead. This wave is caused by the forward motion of the boat and consists of solid water coning
from under the boat, and gives a much better purchase for the wheel than if it were set closer.
The advocates of a bevel gear driven wheel mention the split or double wheel with stagkered paddles as an advantage ; and anyone using it (and it can be used just as well with a chain drive) will find it reduces the vibration of the boat materially-and it is a wonder that more of the wheels are not built double.
The amount of dip to give the paddles is a question that causes serious thought. One manufacturer shows in his catalogue an adjustable stern-wheel bearing that raises and lowers the wheel, and means for tightening the chain can be provided with this bearing. There is another way of regulating the dip that has lately come into use. Tanks or bulkheads are built in the bow of the boat, and a small centrifugal pump with a two-way connection enabling water to be pumped in or out is installed and can be driven by belt from the engine. Water as ballast can then be used to trim the boat. Experiments then will give the proper dip for greatest efficiency. Some use side tanks also, as a boat that is heeled over will not run as well as a boat in full trim.
One of the most common mistakes made by builders is to hog-chain the boat as they would a small steanuboat. Just remember that the weight of machinery comes in a very different part of the boat in this case.' Put your hog-chain braces in with some idea of taking care of the weizht of the engine, and not with the idea of making the boat look like a steamboat. If you run timbers acruss the boat under the engine to form a saddle and swing this saddle on auxiliary braces running to the main chain braces it will strengthen the boat and eliminate sume of the vibration.

SHDCCO VANE FOZ NOACED DEATT ON THE CHESTEM.
hoat, desigued originally to use combination machinery, consisting of reciprocating and turbine engines, steam being supplied by watertube boilers using oil as fuel. This type of propulsion was expected to add much to the efficiency of this method of transportation. The boilers are fitted with a mechanical draft equipment, consisting of two full-housed, righthand, top-vertical discharge, single-inlet Sirucco fans, with direct-connected 5 -inch by 5 -inch vertical inclosed self-oiling

RENEWAL OF NAVIGATION ON THE MISSOURI RIVER.

Attempts have heen made during the last year to re-establish navigation of the Missouri River by the organization of the Kansas City Missouri River Navigation Company. This company has purchased two shallow-draft passenger and freight boats, both of which are of the tunnel type, arranged for screw propulsion. The first of these boats is the Chester. which has been remodeled from a stern-wheel boat to a tunnel
steam engines, supplied by the American Blower Company, Detroit, Mich.
The other boat of this company's flect is the A. M. Scott, which was illustrated and described in our November, 1910, issue. She is a light-draft steel towboat, tso feet long, 26 feet beam, with a depth of 5 feet, equipped with tripleexpansion condensing engines of 700 horsepower, driving twin screws, which give the boat a speed of 15 miles per hour. She was built by the Chas, Ward Engineering Works, Charleston, W. Va.

Tungku Miriam, a Shallow-Draft 63-foot Motor Vessel for the British Colonies.

iy J. aempere wismon.
The Tunglw Miriom is a shallow-draft vessel of an interesting type, recently designed, built and engined by Messrs. John 1. Thornycroft \& Company, L.td, to the order of the Crown Agents of the Colonies, mader the supervision of Messrs. Flannery, Baggallay \& Johnson, who are the consulting engineers to the Crown Agents, She has not long since taken up her station on the Pahang and Perak Rivers in the Federated Malay States, where she is used for carrying officers
roof of the permanent asbestos-covered wooden awning right forward, which is mounted on steel tubing, and in its turn sheltered from the sun's rays by a smaller awning. This arrangenent gives the helmsman an excellent outlook over distant low-lying banks. The main awning is also used as a promsenade deck, wire guards being fitted.
Her nachinery, which is arranged just abaft of amidship, consists of a six-cylinder Thornycroft gasoline-kerosene (petrol-paraffin) engine of the four-cycle type, driving two propellers on one shaft in a tunnel, through a clutch and reverse gear. The cylinders are each 6 -inch bore by 8 -inch stroke, and 70 horsepower is developed at 360 revolutions per

and supplies. Her prototype, by the same builders, was the Spider, a rather smaller boat on the same lines, that has been running for about four years on the Cross River in Southern Nigeria, during which period she has successfully run in the neighborhood of 30,000 miles without a breakdown, in charge of two native engincers under the supervision of a white officer.

Tungku Miriam is built of steel and the hull is entirely open, with the exception of a short flush-deck forward. She is 63 feet 2 inches long over all, with a molded breadth of 9 feet and a depth of 2 feet 10 inches. Her draft with a load
minute on kerosene (paraffin) fuel, gasoline (petrol) being only used for starting if required. Under normal conditions the engine is run at 450 revolutions per minute.

The engine follows the latest Thornycroft marine practice, with the exhaust and inlet valves arranged on the port side. The reverse gear is controlled by a wheel, a couple of turns being sufficient to send the vessel from full speed ahead to direct astern. On the port side, between the reverse gear and the engine, the control levers are arranged on a perpendicular cast iron standard, directly overhead of which is a speaking

of 4 tons is but $t 4$ inches, the hull being quite flat-bottomed excepting right forward. The hull is divided by six watertight bulkheads, and the boat will float with any two compartments flooded.

It is interesting to note that three semi-balanced rudders have been fitted, which give her excellent maneuvering qualjties, rendered necessary by the winding nature of the rivers on which she is working The steering control is carried to the
tube carried from the steering whecl. On either side of the machinery is a large oval-shaped brass fuel tank, with gages and safety devices, yet leaving ample room for the engineers to work. The exhaust gases are carried to a water-cooled silencer on the awning, just abaft amidship.

On her trials Tungkw Miriam attained a speed of very nearly 12 knots over the measured mile, and when towing a 25 -ton barge she made 6.35 miles an hour.

LIGHT DRAFT TUG MARIA HENDRIKA III.

 ey m, Koosjman.Steam tugs designed for light draft river work and harhor construction, with, at the same time, sufficient sea-koing qualities to enable them to do some fowing at sea, have been constructed by J. Constant. Kievits \& Co., Ltd., Dordrecht, Holland. One of these tugs is slown in Fig. I. The vessel has been built in excess of Lloyd's rules and has been classed 100 A , for towing purposes. Her principal dimensions are:
Length, over all.............. 100 feet
Length, between perpendiculars 91 feet to inches
Depth, molded $\ldots18$ feet 8 inches
Breadth, molded $\ldots \ldots . . .18$ feet 8 inches

The draft is 7 feet aft, and on a mean draft of 5 fect 10 inches she carries to tons of coal. The total bunker capacity is 50 tons. In fore-and-aft pcak tanks 15 tons of fresh water can be carried for boiler-feeding purposes: these tanks are connected with the donkey pump, and the feed pump can take the fresh water from the after peak tank. At the sides of the boiler side bunkers are situated, having large square hatches on deck, and these side bunkers are connected together by a
engine and hoiler space. They extend in one piece from the keel to the deck stringer plate. The reverse frames are 2 inches by 2 inches by $5 / 20$ inch across the top of floors only. Fluor plates 10 inches by $3 / 30$ inch are fitted to every frame. The beriler and engine lwarers are $3 / 16$ inch, the latter in one plate. The watertight bulkheads are $5 / 20$ inch, their stiffeners are 2 inches by 2 inches by $5 / 20$ inch. There is a kedsem $5 / 30$ inch, made iniercostal with two angles $25 / 2$ inches by $2^{\prime} \dot{4}$ inches by $5 / 20$ inch on the topside. Under the boilers there are on each side 12 inches intercostal plates, thickness $5 / 20$ inch, secured with two angles, $21 / 2$ inches by $21 / 2$ inches hy $5 / 20$ inch, to the hull plating, and with two such angles riveted to the top. L'nder the engine the floor plates extend to the underside of the engine seat. These floor plates are riveted to the top plate, which is $1 / 2$ inch, with two angles, 3 inches ty 3 inches ly $\frac{1}{3}$ inch.

The engine is bolted to the top plates by 25 bolts $1 / 4$ inch diameter, and of which twenty pass through the angles. Intercostals of $3 / 6$ inch steel plates are worked under the engines in way of the holding down bolts, secured to the shell and top plate by donble angles 3 inches by 3 inches by 36 inch. There is one side stringer, extending all fore and aft of double $2^{1 / 2}$ inches hy $21 / 2$ inches by $5 / 20$ inch angles, riveted back to

FIG. 1.-GNEE TUG MAKIA BENDEIKA HI.
cross bunker, which has a tunnel for communication between the engine room and stokehold. On the top of the cross bunker, the towing post and steam winch for hawsers are placed; the post is equipped with three double spring loaded tow hooks, and the winch is so arranged that the steel wire ropes can be lodged on the long barrels when the ropes are taken in, and has also two cast iron drums to maneuver the manila hawsers.
The arrangement necessary to lodge a crew of ten lias been a point of special consideration. The officers are berthed forward of the boiler space under the deck, a wide staircase leading from the steel deckhouse forward of the boiler casing. The saloon is fitted in mahogany, with seats at the sides and two small cupboards, and a teak skylight over the saloon. There are scparate cabins for the master and engineer, and a double-berthed cabin for the mate and second engineer. On the port side in the steel deckhouse is the galley. The crew is lerthed aft in one compartment.

heil consteuction.

The bar keel is 5 inches by $11 / 4$ inches, the stem of hammered steel $31 / 2$ inches by 2 inches. The stern frame is in one piece of hammered steel, $5^{1 / 4}$ inches by $21 / 4$ inches, the frames are $2^{1 / 2}$ inches by 2 inches by $5 / 16$ inch, and are double in the
back and to the double logs; they are bracketed to the bulkheads and are connected at the ends of the vessel with $3 / 20$ inch plates forming breast hooks.
The main deck beams are 3 inches by 2 inches by $6 / 20$ inch. In the engine and boiler rooms they are $31 / 2$ inches by 2 inches by $6 / 20$ inch fitted on every frame and connected to the frames hy sicel bracket plates 12 inches by 12 inches by $5 / 20$ inch. The shell plating on the sides and bilges is of $5 / 20$-inch plate, the sheerstrake $3 / 20$-inch. The bulkhead strake is $5 / 20$ inch. The deck forward of the boiler room is of pitch pine 3 inches by 4 inches, after the boiler bulkhead it is of steel check plating $5 / 20$ inch. The side plates of the boiler casing are $3 / 16$ inch, with stiffeners $2^{1 / 2}$ inches by 2 inches by $\$ / 20$ inch, the top plate $3 / 16$ inch check plate.

Propelling machinery.

The main engine and boiler have been built hy Maschinefabriek "Bolnes," v/h. J. H. van Cappellen in Bolnes, near Rotterdam. The main engite shown in Fig. 4 is of the direct-acting, inverted cylinder, triple-expansion type, having cylinders 12 inches, $171 / 4$ inches and 29 inches in diameter, with a common stroke of 15 inches. All valves are worked by the Stephenson's overhung link gear. the reversing of the engine being operated by a handwheel. The engine cylinders
are cast separately. The high and intermediate-pressure cylinders are fitted with a piston valve, provided with solid cast iron packing rings. The upper ends of the piston valves are $1 / 6$ inch larger in diameter than the lower part, so as to take out the valves casily from the topside. Liners of hard, close-grained cast iron are fitted in the intermediate-pressure and high-pressure steam chests, held down by the covers on the top and bottom side. The low-pressure cylinder is fitted

with a double-ported slide valve. The steam passages and pipes are designed for moderate steam velocities, when the engine is turning at about 200 revolutions. The minimum thickness of the cylinder walls of all cylinders is $13 / 8$ inches. The cylinders are fitted together, and to their supports, by $\$ / 4$-inch bolts, driven into reamed holes. The clearances at

 CYLINDER.
top and bottom are, in the high-pressure cylinder, $3 / 16$ inch and $1 / 4$ inch; in the medium-pressure rylinder $1 / 4$ inch and $5 / 16$ inch, in the low-pressure cylinder $1 / 8$ inch and $1 / 2$ inch. Relief valves, with a minimum diameter of 2 inches, with brass valves and seats and adjustable protected steel springs, are fitted to each end of each cylinder: $1 / 2$ inch-drain cocks are fitted to the cylinders and receivers, thus from the highpressure receiver a pipe leads to the casting on the ship's side for the circulation suction valve, to serve for heating the cir-
culation water in freezing weather; the other pipes are led to the condenser. A two-way cock, t inch bore, may pass steam to the intermediate-pressure and low-pressure receivers for starting purposes. The steam for this cock is taken from the main steam pipe after the engine stop valve.

The engine framing consists of three front columns of forged steel 3 inches in diameter; the back columns are cast on the condenser and fitted with close-grained east iron guide plates securely bolted on. Between the guide plates and the condenser columns water may circnlate for cooling purposes. The pistons are of sound east iron, 4 inches deep, fitted with Ramshottom cast iron springs. The junkrings, very stiff, are held down with $1 / 4$-inch steel bolts. The piston rods are of Siemens-Martin steel, $23 / 4$ inches in diameter; the crossheads are of forged steel, with pins $3^{1 / 4}$ inches diameter by $31 / 4$ inches long, forged solid with the crossheads. The piston rod is fitted to the crosshead with a taper of t in 4 . with a shoulder of $1 / 16$ inch, being the same at the attachment to the piston. The piston rod screws are 2 inches. To the

ric. 4. - HAth ENGINE.
crossheads are secured cast steel slippers, the slippers directly running on the cast iron slides. The crosshead pins are all hardened and truly ground. The connecting rods are of nild steel, forged from a solid bloom without welds. The top end is forked to take the crosshead brasses. The length from the center of crank pin brasses to center of crosshead brasses is 2 feet it inches; the diameter at the crank end is 3 inches, tapering to $25 / 4$ inches at the crosshead end. The crank pin brasses are of lurass lined with white metal. The brasses were carefully tinned before the white metal was poured in. The crosshead brasses are of gun metal, not lined. The diameter of the crank pin is $51 / 2$ inches, the length of same 6 inches.

The crankshaft is $51 / 2$ inches in diameter, of forged steel, in one piece. The cranks are set at 120 degrees, with the high-pressure crank leading. The breadth of the arms is $61 / 4$ inches, the thickness $31 / 2$ inches, the flanges of the shaft are $t 01 / 2$ inches by $11 / 2$ inches thick. The thrust shaft is $51 / 2$
inches in diameter under the eollars, at the ends the shaft is $51 / 4$ diameler. The thrust lecariak is of the horseshoe type. There are five cast irun shoes, lined on both sides with white metal if inch thick. On the shaft are six collars, diameter 100^{\prime} inches. The bearing surface is 220 square inches, give ing at to knots from the mean normal thrust a pressure per square inch of 45 pounds. The bottom of the block forms an oil bath; this oil is cooled by water from the circulating pump. The learing surfaces are all well grooved for lubrication. On each side of the thrust block is a bearing lined with white metal to support the werght of the shaft. The intermediate shaft is of the same quality as the crankshaft: the diameter is $5 \% /$ inches. There is one intermediate shaft bearing, 8 inches long, of east iron, lined with white metal in she lower half. The tail shaft is also of steel, 6 inches smailest diameter. The stern tube is made of cast iron, with a fiange at inner end, by which it is attached to the bulkhead. The east iron bush at the outter end is limed with white metal, and the cast iron packing gland is also lined with white metal,

The engine bed plate is of the box style of cast iron, bolted to the engine seat. The flat-bottomed bearings are of cast iroin lined with white metal; the bolt holes are bored half in the brasses and half in the bed plate, so as to prevent the brasses from shifting. At the after end of the engine a turning gear is placed; a worm wheel is keyed on the flanges of the erankshaft and thrust shaft, the cast iron worm is keyed to a steel pin which may be turned by a wrought iron ratchet. The worm is arranged to be put in and out of working position easily: The high-pressure and intermediate-pressure steam valves have solld rings, which are arranged to have a little play on the valves; the value spindles are $1 t / \delta$ inches in the value and 2 inches in the stuffing-boxes. The spindles are screwed with checknuts into the part sliding in the guide. The guide has phosphor bronze adjustable bearings. The Iowpressure value is double ported, and has a web at the back to keep the valve up to face.

The valve gear is of the Stephenson overhung type; this type was chosen because the steam distribution is in this case better than when the center of the valve spindle coincides with the eenter of the eccentric rod. In the latter case the steam admission on the top side of the piston is always later than on the bottom side. When the links are overhung the cut-off at top side and bottom side are very nearly equal, or at bottom sikle a little later, which arrangement is better. In Fig. 3 a diagram is shown, from which may be seen that the steam admission on both sides of the pistons are nearly equal.

The engine is reversed by mealls of a hand-wheel which turns a threaded rod. By five turns of the hand-wheel the levers are changed from full ahead to full astern. Due to the balanced high-pressure and intermediate-pressure steam valves the engine is very easily reversed. All bearings of the valve gear are adjustable, the high-pressure drag rod lever is provided with means for easily altering the steam admission in the high-pressife cylinder without stopping the engine and without altering the cut-off in the intermediate-pressure and Inw-pressure cylinders.

The condenser is of cast iron, and is connected to the bedplate with a horizontal joint. The lack columns are east on the condenser. The tubes, of solid drawn brass, are $1 / 4$ inch in diameter by Na 18 W . G.; they are packed in the tube plates by cotton packing and screwed glands. The tube plates are of rolled brass and $3 / 3$ inch thick, the center plate is $5 / 2$ incls thick. There are 336 tubes, which are 7 feet $9^{1 / 2}$ inches long between tube plates, giving a eooling surface of $5 t 5$ square feet. A feed heater is bolted to the top of the condenser, the fecd-water is therein heated by the exhaust steam; it is further heated in a second feed heater by steam from the intermediate-pressure receiver, which is led into a coil. A baffle plate is fitted opposite the exhanst steam inlet, a dis-
tribution plate is fitted between the two tube nests over threefourths of the length of the condenser, so that the exhaust steam must flow from the aft end to the fore end of the condenser and then to the air pump inlet. The cooling water circulates two times through the condenser. The suction and delivery pipes for the cooling water are 3 inches in diameter. There are two small doors 5 inches diameter in the condenser to sight the tules.

The single-acting air pump is of the Ellward type, to inches in diameter, the stroke being $71 / 2$ inches; the pump clamber, the piston, the gland, neck bush, head valve seats and guards are of bronze, the rod of gunmetal. There is a weir to keep 2 inches of water over the head valves. The bottom of the patmp is 6 inches below the bottom of the condenser. The waste pipe is $3 \mathrm{~J} / \mathrm{s}$ inches in diameter; to the bottom of the hot well a 1 If-inch pipe with valve is fitted. The circulating pump is double-acting, $61 / 2$ inches in diameter by $7^{1 / 2}$ inches stroke, with bronse chamber, piston, kland, neck bush, suction and delivery valve seats and guards. The rod of gunnetal, the valves of rubber. The feed pump is single-acting, $2 \frac{1}{4}$ inches diameter by $71 / 2$ inches strake; the ram, of bronze, is rounded at the bottom; the air vessel has a capacity of four times the capacity of the pump. The bilge pump is of the same sice as the feed pump, but is not provided with an air vessel nor with a relief valve. The pumps are driven from the lowpressure crosshead by cast steel levers of the T form.

The right-lianded propeller is of cast iron in one piece. The diameter is 5 feet 11 inches, the pitch 5 feet 4 inches, and the projected area is square feet.

The boiler is fitted in the ship 2 inches to the starboard side, to balance the coudenser, pumps and feed tank. It is of the two-furnace single-end Scotch type, to feet 8 inches diameter and 9 feet $91 / 4$ inches long. The furnaces are of the Morison type and withdrawable. The combustion chamliers are separated. The tubes are lap-welded, of iron $3: / 4$ inches external diameter by 6 feet 9 inches long between the tulie plates; the plain tubes are No. 10 W. G. thick, the stay tubes $1 / 4$ inch. The plain tubes are swelled $1 / 16$ inch at one end, the stay tubes also at one end and threaded with ten threads per inch at both enuls. The stays in the steam space have the nuts and washers in ofte piece, riveted to the front ends. The shell is in one plate, the longitudinal seams are double-butt straps, and treble riveted, the seam lying in the steam space; the circular seams at the ends are double riveted. The front and back end plates are in one piece. The diameter of the funnel is 3 feet 7 inches, and it is made to be lowered. The heating surface of the bniler is 1,16225 square feet, the grate surface 350 square feet. The boiler was tested to 290 pounds per square inch water pressure.

The trial trip took place on the Rirer Maas, between Rotterdam and Hoek van Holland. The indicator diagrams, taken on the full-power trip, are shown in Fig. z, the boiler pressure being 195 pounds, the engine turning with 226 revolutions and indicated 412 horsepower (129 in the high-pressure, 160 in the intermediate-pressure and 123 in the low-pressure cylinders). The stcam pressure in the intermediate-pressure receiver was 65 pounds per square inch, in the low-pressure receiver 9 pounds per square inch, the vacuam was 25 inches. The draft of the boat was 4 feet It inches forward and 6 feet 8 inches aft. The temperature of the sea was 40 degrees, of the engine room 74 degrees, of the stokehold 76 degrees, on deck 42 degrees and of the circalation discharge 125 degrees. The boat attained a mean speed of 10.3 knots.

All records for unloading iron ore in a day of iwenty-four hours on any Lake dock were broken recently at the docks of the Pittsburg \& Corneant Dock Company, when 61,661 tons of ore was unloaded from eight ships at the rate of 2,569 tons per hour.

SINOLE-SCREW TUNNEL LAUNCH CONNAUQHT,

The light draft single-screw tunnel launch Cownaught, specially designed for passenger service on the River Thames, is of the following dimensions: Length over all, 110 feet; between perpendiculars, 108 feet; beam, molded, 16 feet 6
throughout extremely well fitted and arranged for carrying a large number of passengers with comfort.

The machinery is of the compound surface-condensing type, but not of the ordinary design, the engines being of four-crank type with partially superposed high-pressure cylinders, as in the case of the Sisson patent vertical high-speed, double-

inches; depth, molded, 5 feet; draft, 2 feet 3 inches; tunnel, 1 foot 9 inches high. The launch was built by Messrs. Salter Bros., but the lines were worked out by the builders of the

SHEOM COM POUND ENGINE TOR TVMNEL LAVMCN,
machinery, W. Sisson \& Company, Lid., engineers and naval architects, Gloucester. The hull is constructed throughout of mild steel, the deck and cabins being of teak, and the vessel
acting enclosed self-lubricating engine, but otherwise similar to their standard light framed marine engines. These engines have two high-pressure cylinders, each 6 inches diameter, and two low-pressure, each 12 inches diameter, the stroke of all four being 6 inches. The valve and reversing gear is of a type similar to that used in the above-mentioned engine, but, of course, adapted to this particular type of engine. The aurface condenser is independent, and formed of a mild steel shell, galvanized after completion, and fitted with rolled yellow metal tube plates and seamless brass tubes secured by serewed glands and cotton packing. The air, circulating, feed and bilge pumps are also independent and worked by a single steam cylinder, which exhausts into the intermediate receiver of the main engines. The boiler is of the makers' special design of watertube boiler, the working pressure being 165 pounds per square inch. The vessel itself and the whole of the machinery were constructed throughout in accordance with the Board of Trade requirements so as to obtain the necessary certificate for passenger service.

Tow Boats for Florida Rlvers.

The tug Vixen, owned by M. C. Hutto, Jacksonville, Fla., is a gasoline (petrol) boat so feet long over all, it feet beam, with a draft of 4 feet 6 inches. The engine is a so-horsepower Buffalo heavy-duty engine, manufactured by the Buffalo Gasoline Motor Company, Buffalo, N. Y. This motor gives the boat a speed of 12 miles an hour. The illustration shows the boat at her daily work towing three lighters, 80 feet by 28 feet, loaded with 10,000 railroad ties and drawing from 5 to 6 feet of water.

WIVE: TEANSPOETATION IW TLOMIDA.

VANADIUM METALS COMPANY

FRICK BUILDING, PITTSBURGH, PA., U.S.A.

AMERICAN STERN-WHEEL RIVER BOATS.

There is probably no place in the world where steam navigation on shallow rivers has reached such a magnitude as was the case about fifty years ago on the Western rivers of
towing purposes where immense cargoes are carried in a single tow.

Although river transportation on Western rivers in the United States has now been overwhelmed in most cases by railway competition, nevertheless the type of river steamboat

the United States. The great demand and necessity for successful steamboats for this service resulted in the development of a type of steamboat which may be called purely American. By this we refer to the stern-wheel river steamer which has been used for freight, packet and passenger boats, and also for
developed in early days and steadily improved has been kept in constant use, and is now being supplied to navigable rivers in foreign countries. During the last year, James Rees \& Sons Company, Pittsburg, Pa., built a boat for this type for the Missionary Society of Oregon for the African Mission of that

Church, having their headquarters at Bolenge Station, Congo Beige, W. C., Africa. This boat is 75 feet long on the deck, 18 feet beam and 4 feet depth of hold. She is equipped with engines 8 inches in diameter, 27 inches stroke, supplied with steam by a locomotive type of boiler desizned to hurn wood. Her speed is ten miles per hour. The general arrangement of the boat is shown in the illustration.
Another stern-wheel freight and passenger steamhoat was built during the year by the same firm for the Magdalena River in the Republic of Colombia, South America. This boat, named the F. Perez Rosa, is 170 feet long, 38 feet beam, $4 / 2$ feet depth of hold. She is equipped with high-pressure engines with poppet valves with adjustable cut-off. The cylinders are 15 inches diameter by 6 feet stroke. Steam is sup-
tubular marine type, with 340 square feet heating surface and 105 pounds working pressure. It is 6 inches diameter, with a length of 9 feet 6 inclies and a special grate arrangement for burning wood. The paddle-wheel is to feet 4 inches outside diameter, has nine radial blades 8 feet 3 inches wide.

Single-Screw Amazon River Steamer.

The single-screw river steamer Excellencia, 145 feet by 30 feet by 8 feet 6 inches, has been built hy the Smith's Dock Company, Ltd., Middlesbrough, for service on the Amazon River. This boat is propelled by a triple-expansion engine, with cylinders $121 / 4,20$ and 34 inches diameter and 22 inches stroke, driving a single screw. Steam is supplied by a single

plied hy three tuhular boilers of the Western river type, 14 feet long, 48 inches diameter.
Another coniract for fourteen stern-wheel river boats for the port of Para, Brazil, to ply on the Amazon River and the several trihutaries, has also been received by this concern. These boats are designed especially to reach the upper head waters of the river beyond the points which are commonly called the navigable parts of the river. The boats are designed to carry about 40 tons on a draft from 24 to 26 inches, having a speed of ten miles per hour in dead water. The length on the deck to the main transom is 125 feet, the beam 26 feet, the depth of hold 3 feet 6 inches, the sheer 3 feet. The hull and cahin framework are of steel, the hull having three longitudinal bulkheads and three transverse hulkheads. making in all seventeen watertight compartments. The cabins are on the upper deck, as shown in the drawing. The machinery for these hoats consists of engines 9 inches diameter, 48 inches stroke, supplied with steam from locomotive boilers having 800 square feet of heating surface. The boats are to be lighted by electricity.

It is interesting to note that these hoats, when completed, will be run by skilled American steamboat men; that is, the captain, pilot and engineer will be taken from different Western rivers in America.

A Stern-wheel Missionary Boat.

The stern-wheel steamer Bamania St. Joseph, built by Wilton's Engineering \& Slipway Company, Rotterdam, for the Beigian Missioners in the Congo, has a length of 56 feet, a beam of 16 feet 5 inches, a depth of 3 feet $53 / \frac{6}{6}$ inches, and a draft of 2 feet $\varsigma^{1 / 夕}$ inches. The enkine is of the twin-cylinder non-condensing type, with discharge in the funnel. The cylinders are 12 inches diameter and $291 / 2$ inches stroke. The designed horsepower was 75 . with 40 revolutions per minute, giving the ship a speed of 8 knots. The boiler is of the multi-
boiler at 180 pounds working pressure. The designed speed is 11 miles per hour when the boat is loaded.
The hull is built with three decks, the main deck being steel sheathed with teak, the promenade deck of teak, and the awning deck of teak covered with canvas. A teak deck-house is huilt on the promenade deck, containing passenger staterooms. The dining satoon is located aft on the same deck, Electric lights are installed throughout the boat, and fans are supplied in the deck-houses. The auxiliaries include an icemaking plant located on the main deck aft, a steam-steering gear, a steam windlass and two steam winches.

Tunnel Steamer for the Amazon.
Every year more rivers are being opened up in distant parts of the world, which necessitates the design and construction of

TWIN-SCEEW TUXXRL SONT BEFO日E SHIPMENT.
shallow-draft steamers to suit the speeial local conditions. The latest shallow-draft steamer, constructed at the yard of Messrs. G. Rennie \& Company are for the exploration of some of the higher reaches of the Amaron River. The primary conditions which these vessels had to fulifl were as follows: L.ength not to exceed 58 feet 6 inches, breadth 10 feet 6 inches, draft 2 feet 3 inches boaded. The owners were anxions to obtain the accommodation usually found on steamers of 20 to Ro feet, and great care had to be taken to utilize every available bit of space in the boat
Regarding the gencral arrangement of these steamers, the upper deek is arranged to be entirely mosquito proof, with copper gauze portable panels on a wood frame. The forward part is arranged for shinging six hammocks for the officers There is a bath and toilet arranged on this deck. Below the deck there is a small salom with seats and table, a pantry, the captain's calbin, refrigerating mom and toilet. The sesset is lighted throughout with electric light, and the refrigerating plant is also driven by electriciny. Aft of the engine room are two small houses, one for a galley and one for a shower bath. The whole of the woodwork is carried out in threc-ply "Venesta" wood on account of its lightness and strenkth.
The machinery consists of compound surface-condensing engines of $: 40$ indicated horsepower, driving $\mathbf{t w i n}$ screws in tunnels at soo revolutions per minute. The boiler is of the watertube type for burning wood fuel or coal. A fan is driven off each engine to assist draft.
On trial, with all weights on board, the speed of the vessel was 11.25 knots, the gnaranteed speed being 10 kriots. The draft forward was \boldsymbol{f} foot 6 inches and aft it foot so inches.

GAS EVGINES: THEIR DESIGN AND APPLICATION.

(Continwed from page 4 tR)
Referring back to Table 3 (page 352), the comprestion in the most morlern gasolene (petrol) practice will be noted. The various compressions in practical use to-day run abont a* follows:

Gasolene (petmol) and distillate caabigetoz typl.

Conservative, heavy-built, slow-speed stationary or marine type developing power on $1 / \frac{1}{6}$ to $1 /$ to of a gatlon per horsepower per hour, 65 to 70 pounds.
High-speed motor boat and pleavure boat engines. 80 to 90 pounds.
Small gasolene (petrol) engines of all kinds, 100 pounds and up.
Alcohol and kerosene (paraffin) engimes, tio to izo pounds.

gas engines.

Rich gases, sto to 130 pounds; weak gases or producer gas. 150 pounds and up.
Pre-ignition is largely dependent upon the sire of the cylInder and the shape of the comimstion chamber, as well as on the compression. For instance, with gasoletse (petrol), which is more apt to pre-ignite than any other fuel in common use. a very small engine will run as high as 200 pounds compression and engines are actually manufactured in two and fonrhorsepower sizes, giving no trouble and never pre-igniting. whereas a 4 -inch kamplene (petrol) engine eylinder will frequently pre-ignite if thot carefully cooled at 90 pounds.
For economy it is essertial that the combustion chamber or compression space be as nearly globnlar as possible when the piston is at the top end of the stroke. Combustion should begin in the center of this space and spread on all sides, and should not begin in some distant pocket or corner to slowiy burn itself out and probably finishing its combustion after the exhaust pige is opened. All engines which have made records
for economy properly authemicated, etc., have been without pockets of any kind in the cylinders and have ignited at a point where the explosion could spread on all sides, somewhat as a center fire gun is fired, the charge almost detonating instead of slowly burning. The explosion of such an enkine is a sharp crack, like the shot of a pistol, rather than a puff. While the engines, with poikets, may have structural and eommercial adsantages, althoukh even this has been disputed, they have certainly failed in tests of economy. This is protably due to the fact that the charge is exposed to so much cooling surface at the moment of explosion, resulting in the quick collapse of the gases.
It is easy to conceive how engines without pockess, flat or domed head and cup piston form a chamber of the minimum area of cooling surface, and the explosion will show an indicator card with a bigher expansion lize for any given amouns of fuel than with any other form of combustion chamber. This principle is not only upheld by Clerke in his "Axioms of a Gas Engine," bit by ordnance experts and automobile manufacturers.
Among conmon forms of combustion chambers, sonie of the worst designs possible are as follows: First, the domed piston; a domed piston gives a shapeless combenstion chamber with feather edges. The counbustion will begin in some far corner of the chanuber, seldom directly from the center, and spreads on all sides down into the feather edge of the piston until it is so cooled by the piston and cylimed walls that combustion cannot proceed any further and only unburnt gas is left around the piston. The same may he said of a head which is domed inwards and of pockets and recesses of any kind whatever. There probably is no more important factor of design before gas engine manufacturers to-day.
The compression of various mixtures has no effect whatever upon the subject of compression proper, but as the maximum pressure is the subject immediately succeeding compression it might be said that innumerable experiments have been made in the explosion of gases mixed with various proportions of air under varions pressures with a view to establishing data: but these, like most other experiments which are not made under the operating conditions of the inside of the gas engine cylinder, are comparatively worthless to the gas engine men and hetter than wasting time with these purely theoretical tests it is advisable to study the many resultes available from actual experiments with gas engines. The same might be said about the huge, complicated and useless thermodynamie treatises upon the gas engine, none of which are accurate, however much they may assume to know what the conditions as to cooling. combnstion, etc., will be within a given cylinder.
The calorific valne of a fuel being known, the compression and economy being chosen with careful judgment by the designer, it is a simple and practical method for him to figure backwards from the one-eighth or one-tenth of a pallon per horsepmer per hour or number of cubic feet of gas to what his charge will be in the cylinder.
To find the pressure from a given passible explosion with a given fuel it is necessary for purposes of practical design that the maximum pressure of explosion be assumed. This and other data are obtained from previons experience, together with experiments and progress.

WetGuts and cost of varhoth types of engines.

These vary so widely that it is not porsvihie to state them specifically without carefully classifying the various types of engines.
Taking first horizontal gas engines of large power, say s,000 horsepower or more, of either the two or four-cycle type of the generally accepted arrankement of two double-acting eylinders arranged in tandem, together with duplicates of this arrangement acting upon the same crank shaft. These engines
complete, with bed plates, crank shafts, valve-gearing tools, pipe-fitting aecessories necessary for connection with gas producer, or other source of fuel, can be purehased in Eastern parts of the United States by the best makers for about $\$ 32$ (66.6) a horsepower. This refers to engines of the highest grade, made by peputable firms. Less desirable engines of the same power are made by large firnus, not specialists in the business, for as low as $\$ 26$ ($\mathbf{5 5 - 3 5}$) per horsepawer. The firstnamed engines in general are exclusively of American design, the styles of which will be considered later; while the latter, made by several large firms, are imported German designs.
These types are changing very rapidly from year to year, but, in general, it may be said that the speeds and compresaions are inereasing. the eylinders are being multiplied and the bore and stroke per horsepower reduced; while the total capacity of the units are being increased, some having been constructed as high as 6.000 horsepowet.
Of the smaller power engincs, from 200 to 1,000 horsepower, single and double cylinder engines are mostly used, same being coupled in tandem; or, in the case of 200 and 300 horsepower. only single-acting cylinders with truak piston are tused. The highest grade of engines in the case of single-acting cylinders nevertheless use hollow, water-cooled piston with rod and outside cross-head in ordinary steam-engine form, the erosshead into the cylinder being wide open. Of the engines less than 200 horsepower their name is legion and their type is well known.
The typical factory-made cheap gas engine of the horizontal type, made in large quantities for use on farms, etc., with all aceessories up to 10 horsepower, may be had for about $\$ 30$ (66.2) per horsepower. Above this they cost less up to 50 horsepower, at which size they are hardly made as yet in large lots by faetory methods, rather being jobbed by special order.
 horsepower.
Some of the special types of horizontal engines which may be mentioned as well up in popular favor are the donbleopposed, high-speed engines made in sizes up to 50 horsepower: very successful engines operating quietly up to 8oo revolutions per minute, which makes them suitable for direct connection with generators, eentrifugal pumps, ete. These engines are also made air-cooled, and in either case they may be expected to eost in the open market about $\$ 25$ ($\$ 51$) per horsepower when purehased from reputable firms.
High grade two-eycle engines, oil injection engines of the highest grade, large gasolene (petrol) engites aml other types of more or less standardired horizontal engives between $\mathbf{j o}$ to 200 horsepower may be expected to cost $\$, 30$ (ffi,2) to $\$ 3,5$ (57.2) per horsepower in the open market. Extremely highgrade enkines, with extra finish, etc., will run up to $\$+0$ ($\mathbb{\infty}, 2$) per horsepower.
With the vertical engines, as with the steam engine, the most highly developed type is the marinc, having to deveiop the maximum horsepower in a limited space and limited in weight, at the same time requiring unusual wearing qualities, relialibity, economy and reaconable cost, thereby putting a heavy task upon the designer. The inevitable result has been a vertical high-speed muiti-cylinder, whort comnecting engine, wswally of the single-acting type. although the doulle-acting type is rapilly growing into favor.
Those engines in which the mixture is prepared outside of the eylinder have been adopted 25 best meeting the requirements. The two-cyele is cheap and in a wobbly, uncertain manner reversible. Its usfulness, so far as a hard-working motor is concerued, is not great, but it makes a sery excellent pleasure engine, because of its lighter complication and the fact that it can receive considerable attention without delaying important affairs.

The vertical stationary engine has been very mueh affeeted
by the development of the marine type, if, indeed, it does not spring from it. This type of engine is as much of a factor in large power production as the horizontal type. While not yet developed in as large units, it is perfectly capable of so being and can, in every way, arcomplish the same resulta as the more cumbersome horizontal engine with less initial cost and with a higher speed, more suitable for modern machinery. oceupying less floor space and being under less cost of maintenance. Small vertical engines of the higbest grade for marine purposes with reverse gear up to to horsepower may be purchased in the open market for about $\$ 75$ ($\mathbf{f t 5 4}$) per horsepower. From to to 20 horsepower they greatly drop in value to alout $\$ 40\left(E \mathbb{N}_{2}\right)$. From 20 to 50 horsepower their value again decreases to alout $\$ 30$ (E 6.2) per horsepower, which is as cheap as high krate engines ean be purchased. Factory-made engines can be purchased for 40 percent less, but there is no factory-made enkine available to-day which can stand up to the marine work at hard going every day in the ycar under conditions of rough water, ice, snow, lack of altention, ete. This same type of enginc, arranged for stationary purposes, will cost as a rule about 20 percent less. The weights of engines per horsepower will run about as in the following table.

Hiampontal.	
Statomasy.	Weght.
Lerie undene conatrucsed of the heavies type 500 H. P. and over Same coastruction, 500 H P. and under. Standard itpe gas engine, 50 to 100 H P Slaniard type an eagise, less than $50 \mathrm{H}, \mathrm{P}$	Pounds. 250 260 206 360
Gas Pbmocizas.	
Small. To 50 11. P To t00 H. P. Ts $1,000 \mathrm{H} . \mathrm{P}$ and ovt?	$\begin{gathered} 350 \\ 150 \\ 150 \\ \text { and even to } \end{gathered}$
Vfrtical	
Maxinz Typr	Weight.
Singie cslinder. less than $10 \mathrm{H} P$ thauble cylinder, Irwe that 20 H. P 3-ylagher, Irm than 50 II. P 3 cylander, 50 H. P. upwands A-cylinter, less thas 20 H P f-cylialier, ins than 50 II P i-cilunder, 50 HI. P upwards.. b-cylinder, same as 3-cylamber	Poupds 185 210 210 108 110 110 120

The cost and weight of gas producers for engines vary somewhat, depending very much upon the installation, but, in a general way, for less than 1,000 hersepower for almost any size installation, the cost of producer plant complete, with serubber, etc., will not be far from $\$$ to ($\boldsymbol{K}_{2} 1$) to $\$ 12$ ($\mathbf{6 2 5}$) per horsepower.

> (To be continued.)

Unofficial reports regarding the new Hamburg-American transatlantic steamer originally ealled the Europa, but now named the Imperator, state that the vessel is to be fitted with forty-six watertube boilers of a modified Thornycroft type. Fropulsion is by four mouditied Passons turbines, and the ship is to be fitted with three funnels, two of which are used for boiler draft and one for ventilation, so that all ventilating cowls are dispensed with. The exact dimensions of the Inffrator have not been announced, but it is known she will be ajpruximatels goo feet in length. She will have a beam of (4) feet and a gross tonnage of 50,000 . A crew of $t, 000$ will be required to run the great ship, atul her cabins will ace commolate 4.2 an pasengers. Her engines will develop 70,000 horsepower.

THE LOCATION AND DISPOSAL OF DERELICTS,

> by stanley V. panker.
(Concluded from page 409)
The disposal of derelicts depends largely upon their condition when found. It is the general opinion that if possible, the vessel should be towed into port or beached. This would seem to be true, because the derelict is generally of some value, and it is doubtful if a vessel went held together can be so wrecked as to make her fragments harmless without an excessive expenditure of explosive. The disadvamtage is the added labor of getting her into port involved, as the derelict generally offers some considerable resistance to towing and the expenditure of coal and lines, but it would seem that,

WBECE1MG A bexExict wITH MINER
if the vessel were of any real value, the owners or underwriters would gladly pay for the expense of getting her back.

From stalistics, the destruction by fire in the case of wooden vessels seems to have been very satisfactory; destruction of floating wrecks by explosives has been so little tried, and therefore so little experience has been had with it, that of its value and difficulties little of real value can be said, and destruction by ramming is in about the same category. What will here be said about the disposal of derelicts will refer to wooden vessels unless it is otherwise stated.

During the period of 1887 to 1893,41 derelicts were towed into port, but there is no account of the experiences and difficulties encountered by the workers. Since that time many more have been towed in, but the lack of reliable information in regard to them prevents any exact consideration. We can well consider the condition of the derelict as affecting the methods employed.

In the case of a vessel with steering gear intact, a good sized hawser should be run into the dereliet in order that we be not disturbed at night with a parting hawser. One of 9 or 10
inches would serve the purpose well. We may place our faith in a 6 -inch line only to have to run another at one $\mathbf{a} . \mathrm{m}$. with a nasty sea to complicate the operation. The size of hawser is necessary because usually the derelict is waterlogged and offers a great deal of resistance to towing. The hawser would well be nade fast to the formast near the deck and lead to the towing vessel through a chock, being protected in the wake of ehock, bobstays and other head gear by parceling or other cliafing gear. A party should be sent aboard the tow to watch and steer, and the regulation lights should be provided. The party should be provided with a boat to be towed astern of the derelict with sails, signal flags, lantern, food for several days, water, axe, marline spikes, scizing and small stuff, heaving lines, life preservers, etc., in fact, everything that would be absolutely necessary if the party should be cast adrift. Otherwise the tow would not require any other than the usual towing methods.
If the steering gear is disabled beyond repair, time permits and the decks are habitable, an improvised jury rudder win save much wear and tear on the nerves of the people on the towing vessel. The hawser would be secured as above de-

UNBED states kavy wagcking chaace
scribed. If the rudder could not be rigged the hawser should be secured to the tow with a span to prevent her yawing, and it has been generally preferred to towing stern first. Towing such a vessel without a span results in her taking violent sheers alternately from side to side, and I have seen such a tow actually come up abeam on either side of the towing vessel, endangering the line, racking the tow and making speed absolutely impossible. It would be a wise provision to have such a span on board the vessel as a permanent part of her outfit, ready for use at a moment's notice. It should be provided with plenty of end for taking turns or for lashing, and should have a form of thimble at the V that would prevent chafe on the line. In addition a drogue to be secured on the after end of the tow might be of assistance, and this should also be a permanent part of the outfit. These items should be kept on hand, because in the haste and confusion of making fast we are simply wasting valuable time if we stop to make spans and drogues; oftentimes we will have to seize an opportunity while a sea is making up before it becomes too rough for boating. If we are not so provided we shall have to depend on a single line, ard it is well nigh inupossible to break such a tow's sheer without parting the hawser, and meanwhile we are working to port at the speed of about 2 knots. It will likewise here be advirable to keep sortie men aboard the tow if the decks are habitable and the weather is not severely eold. If the vessel's steering gear is jammed over beyond hope of repair we might blow it away. If this is impossible we shall possibly have
difficuly in spite of the span. A vessel towed astern of the derelict would straighten her up, but, generally, we have no other vessel with us.
If the vessel is botom up we must find some place to make the line fast, and several ways of securing it suggest thenselves. If we can get a man aboard her with tools we can cut out a section of the keel about a foot in length. Into this would be dropped a bowline on our line, and a heavy plank would be spiked across the chanuel. The hawser, of course, would have to be protected from chafe, and the heaviest line on board used, as we will have a heavy tow.

A heavy wrought iron shackle, to be secured to the keel or bottom of a capsized vessel, has been designed and tried. Weighing 200 pounds, it is rather difficult to handle from a small boat, but that it is practicable in some cases has been demonstrated. Built in sections it inight be more readily handled.
Another scheme that has been suggested consists in boring a hole in the keel of a vessel hy firing a shell through it. This

A DEALLACT THMRE-MASEFE THAT WAS TOWED TO FOHT,
has been tried with a 6 -pounder: but the wood being more or less spongy the hole closed up quickly after the passage of the shell. If we are successful we can reeve our line through the hole, or better, provided with an iron or steel bar, insert it in the hole and secure the line to a shackle made fast to the bar. A versel on her beam ends would nearly always afford som: place to which we conld secure a line.
In towing steet vessels the same general methods above described would be used except those relating to capsized resels. A steel vessel on lier heam ends would rarely be met with. If battened down she would present no insurmonntable difficulties, and the value of such a vessel would undoultedly lead us to use every effort to get her into port.
A steel veswel brottom up would indeed be a curiosity, but versels in such a condition have really been known of. To tow her by seearing a line to her rudder post or shaft might be feasible.
The resistance to motion through the water increases so rapidly with the increase in speed that we need not expect to
be able to make very great speed with our tows in their usual condition-waterlogged or capsized. We should, as said before, use our heaviest line. If under those circumstances we wish to compute the strain on the line for certain speeds we would not find it a monumental task to do so roughly, but undoubtedly most of us would rather rely upon our judgment.

A typical peabitct.
These capsized vessels could only be taken into certain depths, of course.
The destruction of the terelict should be given considerable thongit. The advisalility of its partial or complete destruction ly fire should lie considered, and if practicable should certainly le adopted. A vessel in ballast burned to the water's edge would certainly simk. In case we do not complete the destrnction by tire we can use explosives to finish the work. Statistics collected from $1890-1 \mathrm{~N}_{\mathrm{g}}$ show that of seventy-six dereliess set on fire seventy-two were thereby destroyed.
The attempt to destroy the Fannic E. Wolston by fire failed tweatse she was so badly' waterlogged, and it would generally be difficult to destroy by fire a vessel in her condition. However, in a good many cases if it were feasible to start a hot fire with the assistance of kerosene (paraffin), even though

slikhtly waterlogged, we might accomplish our purpose, as the wooll of the parts near the flames would be prepared for the lire by its heat. In the case of a partially successful attempt to destroy by fire, as said before, we could resort to explosives to complete the destruction. In fact, in some cases we would be compelled to use it from the tirst. The most obvions question then is, "What explosive shall we use?" and the natural answer would be "The most violent." But safety in handling and storage plays an important part, and the explosive must be unaffected by water, or at least its receptacle should exclude the water if not. The high explosives, together with black
powder, in the order of their explosive strength, are as follows, the staidard being nitro-glycerine, 100 :

Explosive gelatine	106.t7
Nitro-glycerine	100.00
Gun-cotton	83.12
Dynamite No.	$8 \mathrm{t} .3{ }^{\text {d }}$
Rackarock	6.71
Picric acid explosives	50.82
Black powder, fine.	28.13

Explosive gelatine is then the most violent of the high explosives; in fact, it is so violent that generally some other substance is incorporated with it to reduce somewhat this violence. It is composed of a mixture of nitro-glycerine and a nitro-cellulose coupletely soluble in ether-alcohol. In its camphorated form it is comparatively insensitive to shock except when frozen, and then it is extremely sensitive and dangerous. As nitro-glycerine and its mixtures ordinarily freeze at about 40 to 45 degrees F. their use on board ship. where, at times of the year we commonly experience such temperatures, would not be advisable.
Nitro-glycerine is next on the scale, but on account of its sensitiveness, its high freezing point, and the danger of its leakage unnoticed, it is eminently unfited ior stowage on board ship.

We now conne to gun-cotton. It is highly nitrated cellulose (insoluble in ether-alcohol). Its great value depends on the fact that when wet it is comparatively insensitive to shock, and can only be detomated by the explosion of dry gun-cotton in eontact with or quite near it. As we can dry the cakes of wet explosive as we need dry primers (there being but 25 percent moisture in them) we need have no large amount of dangerous explosive aboard except when actually engaged in its use. The value of gun-eotton has long been recognized, and it is a standard military explosive, being used in mines, torpedoes, wrecking charges and in the field for the destruction of structures and material. In handling the explosive it is essential in submarine blasting that its form be convenient and that the dry primer be protected from the water. The standard navy wrecking charge is constructed as follows:
A sheet copper or sheet iron case, rectangular in section, tinned inside and out, $12 \neq 6$ inches long and 9 inches square inside, is the receptacle for the explosives and the primer case. The primer case, fitting inside the outer case, is $81 / \mathrm{f}$ inches long by 3 inches square inside, and is closed at one end. In the sheet iron mine it is of tin, in the copper mine of copper. Around the filling hole of the large case at the top is soldered a brass ring with a flange, and this flange is threaded for the reception of a brass cover. In the assembled position the flange of the primer case seats on a rubber washer inside of the flange of the brass ring. The serew cover serews down over a rubber washer over the primer case flange, thus making a watertight joint around the circumference. A boss on the eenter of the cover plate provides a serew scat for a cap and a peculiar form of stuffing-box is formed in it by the insertion of a ruliker ball, drilled through in two places for the entrance of the leading-in wires.
The large case is filled about the center with eight piles of six cakes of wet gun-cotton each, making a total of 48 wet blocks, and to this is added two wet hlorks placed in the center under the bottom of the primer case, thus making in all 50 hlocks of wet gun-cotton. These blocks are 2.9 inches by 2.9 inches by 2 inches in size.

Between the piles of blocks on the sides and over the two blocks in the center the primer case is inserted, its flange resting on the wather inside the brass cover ring. This case contains a single pile of four dry gun-cotton blocks, each block bored out in the center so that a continuous central channel leads from the top to the bottom of the pile. The detonator,
a fulminate of mercury electric exploder, is inserted in this channel, and its wires are spliced to the leading-in wires, so that the splice will be inside the case, the leading-in wires having first, of coursc, been led through the holes in the ball packing. The cover cap confines the ball, compresses it, and makes a watertight joint about the leading-in wires. The mine loaded weighs from 30 to 60 pounds. For firing it a battery of elecric cells or a form of Farmer's machine, a small, handily operated but powerful magneto, are commonly used, and a standard insulated cable is used in connection with it.

The method of handling the mine and the number to be used depend on circumstances, The suggestion for using wrecking outfiss, contained in the naval ordnance pamphlet No. 343, Deeember, 1905, says:
"So long as the unit mine charge is large enough to cause disintegration of the wreck in its immediate vicinity, it is better to distribute such units at different important points rather than to group them at one spot. It has been found, however, that a single mine charge is rather light for isolated use, except with very weak structures, and ordmarily the use of more than one at any given spot is advisable. Good judgment on the part of the officer ordering the arrangements is necessary.
"The mines should be submerged as much as possible and placed under the wreck, as the explosive effect is greatest in the direction of least resistance, which is usually upward. As the destructive effect of a charge of gun-cotton upon a body decreases proportionately to a fairly high power of the distance of the center of gravity of the mine from the body, it is necessary that the mine be held as close as possible to the part of the wreck to be attacked.
"In dealing with lumber-laden wrecks it is well to blow off the upper decks, so as to allow the cargo to float out, as little can be done toward destroying the wreck so long as the eargo remains intact. If she be a floating derelict the deck should be sufficiently destroyed to allow the lumber to float out, and then the bottom sufficiently damaged to sink her.
"A mast can easily be removed by exploding a mine near its hase."
The direction in regard to submerging the mine is of considerable importance. The water acts as a tamping and prevents the excessive radiation of the explosion in all directions.
If we could determine in what part of the ship the explosion would have the greatest effect on weakening its structure we would be able to work intelligently at it. The destruction of the deck beams would wreck the parts of the structure which hold the sides together, and this would seen to be a very much desired result. It might be of value in some cases, but the general opinion is that once the bow and stern have been wrecked we will have very litete trouble with the rest of the structure. A eombination of the two onght to give good results when we are so situated as to be able to use them. The use of a number of mincs in series would facilitate the destraction in this case.
A line of mities under the keel athwarthips at each end of her could be placed with the assistance of sweeps such as are used for placing collision mats, and their explosion at the same time in series would undoubtedly rack the strncture greatly, and probably would remove how and stern. The further destruction of the hulk could be accomplished by running with a series of hogging lines a number of mines along her keel to be exploded in series at the same time. Of eourse, the expenditure of explosive would lie considerable, but to destroy a derelict that was in good condition and strongly held takether could not be accomptished without this expenditure. Generally such a veasel would be towed into port or first burned. In any case, placing the mines wnder a vessel would place the mines in an advantageotis position and provide
them with a magnificent water tamping. The fragments of the vessel, if large enough to constituse a menace, could then be treated separately.

A vessel capsized presents a rasher difficult problem. We can treat her as we have just described for a vessel in her normal position, provided we can get our mines close enough up under her to get them near the decks. This would be complicated by the difficulty of getting lines under her jibboom and past her masts. As to the first ohjection, when we consider the magnifieent tamping that the mines will probably have, the effect of the explosion will not be so very slight, and as to the second, in good weather, one such line could be got under her forecastle by letting two boats with a leaded sweep between them pull down from ahead of the dereliet and others by pulling from astern. Our mines would be hing from this linie. If we are unable to get the mines under her, it becomes necessary to get them inside of her, but exploding gun-cotton inside of her without the fine tamping before mentioned would be a poor substitute for the first method. The expedient of firing a high explosive shell into the dereliet has been suggested, and with a 5 -inch gun firing such a shell we could easily make holes in her bottom, and in bad-boat weather pretty well destroy her with several shots.

Ramming might be resorted to at first to rack the derelict, but it would hardly be wise in most eases, unless our destroyer was particularly strengthened forward. Small vessels would ordinarily be too lightly built to atteropt seriously such an operation. However, if our bows are strong enough to resist the shock, ramming would undoubtedly greatly weaken the derelict and start the work of destruction.

What has just lieen said refers to wooden vessels, and the destruction of floating derelict steel vessels would probably present no necessity for the use of explosives except for blowing a hole in a compartment or in her bottom. They would naturally be towed into port.

STRANDED WRFCK5.

If a stranded wreek has six or seven fathoms or more water over her deeks it will generally be sufficient to remove her masts. As the directions before mentioned state, it will be aecomplished by exploding a mine or mines at the partners. This is not always as easily accomplished as we might expect, as the vessel may be lying in a swift tide way and her yards and gaffs may still be in place, and it consequently is difficult to land the mine where needed. The use of a grommet of chain or cordage will be of assistance if the mast is elear of yards and gaffs; if it is not, we shall have to do the best we can, lacking the services of a diver. Except in bad swells a diver would be of incalculable value. It will generally be unnecessary to ctt the rigging of a vessel, as it will be parted by the jump oi the mast. The explosive should be handled preferably from a ship's boat, and the boat should be clear of the wreck at the time of the explosion. The mines are secured to the lines by slinging them with small stuff, and they should not be handled by the leading wires; a small bight of these should be strapped to the boss of the mine's case, so that no strain will come on the stuffing-box. If the sessel is in such a position that her hall iteelf is in the fairway, and there is not water enough over her to allow sessels to pass, we shall have to destroy the hull also, and here the pian of blowing off stern and bow first would be used. By the time her stern, bow and masts were gone, more mines could reasonably be expected to totally wreck the vessel. If then the fragments are a menace we shonld have a lighter equipped with stout derricks to get them out of the way. Here again we would need a diver. If the current is bothersome or dangerous to the diver we can weil postpone ou: operations to slack water each day.

ANNUAL MEETING OF THE NAVAL ARCHITECTS* SOCIETY.

The nineteenth anntal meeting of the Society of Naval Srchitects and Marine Engineers will be held Nov. 16 and 17 at the Engincering Societics' building, 29 West Thirty-ninth street, New York. The nsual banquet will take place on the 17 th, and a sotable feature will be the presence of the society's distinguished honorary member, Sir William White, who will be presented with the John Fritz medal by representatives of the societies of Civil Engineers, Mechanical Engineers, Mining Engineers and Electrical Eingineers.

Shipbuilding in Scottish Yards.

According to the Glasgow Herald there has been a slight falling off recently in the tonnage of new shipbuilding contracts, and the orders reported during September were considerably fewer than the monthly average for the year. It is stated, however, that more large eargo steatners have been ordered from Clyde and Northeast Coast yards than have been made public, and the activity in most of the marine engincering works seems to indicate a continued demand for high-class propelling machinery. There is no decrease in the production of new tomage. The output of the Clyde yards during Septemher was thoroughly satisfactory, and the total for the nine months show's that the year will take at least third highest place in tonuage statisties up to date. The trouble with the holders-ont has passed meantime, and it is bẹlieved that arrangements will be made whereby stoppages of work of that particular kind will be obviated in future. Freights continue fairly good, and the number of idle vessels is small. The large tonnage which has been eompleted this year has nearly all found employment, and owners are still willing to take delivery of new ships as early as builders can manage to hand them over. The great majority of the berths in the yards are occupied, but the recent advances of wages and the low price at which contracts have to be booked are keeping profits at a low level.

NLSECO OIL ENGINES.

In the May and October issues of International Marine Exainekriva bricf descriptions were published of the type of Diesel oil engine developed by the Maschinenfabrik AugsburgNurmberg Company of Germany. This engine is now being placed on the market in the United States under the name of the "Nlsero" engine by the New London Slip \& Engine Company, Groton. Conn. These engines are single-acting, working on the two-stroke eycle with combustion of the liquid fuel under constant pressure. On the up-stroke of the piston, air is compressed in the working cylituders to a high-pressure, and shortly before the end of the up-stroke a spray valve opens and oil is injected into the eylinder. The high temperature of the compressed air ignites the oil and causes combustion, which during the first part of the down-stroke takes place under constant pressure. During the latter part of the stroke the products of combustion operate the engine by expansion. At the end of the working stroke the burnt gases are exhausted through ports uncovered by the piston, and the cylinder is scavenged hy pure air supplied by a scavenging piston.

The cylinders are water-conbled, and the pistons are also cooled by special arrangements to avoid any danger to lubrication in case of leakage. The wrist pin, or gudgeon pin. is placed well below the hot portion of the cylinder, being placed
in the scavenging piston which, besides supplying the scavenging air, serves as a crosshead to relieve the working piston of any side thrust. Forced lubrication is used throughout the engine, the system serving to cool the main crank-pin and wrist-pin bearing, as the oil is used in a elosed circuit and cooled by a suitable cooler.
marine work, other items than the fuel economy must be taken into account. In general, oil engines have been found to save something like fo to so percent in the weight and space required for the machinery and fuel, offsetting the slightly greater first cost of the installation and affording increased carrying capacity and earning power of the vessel.

The fnel is injected moto the cylinders by compressed air furnished by a two-stage air compressor driven from the crankshaft. This compressor has a capacity in excess of the fuel injection requirements.

The control gear of the engine is knated at its forward end, and is so arranged that the operations of stafting, stopping, reversing or changing speed are all accomplished by the simple movement of a hand lever or hand wheel. which. with the necessary gages, speed indicators, etc., is grouped at this station, so that the operator ean keep posted on the various conditions affecting the working of the engine.

These engines are wsually made in six-cylinder units, which are found to give good halatice and freedom from viluration as well as a very uniform turning moment without the necessity of uxing a fly-wheel. The scavenking and fuel valses are mounted in cages, so that they can be easily removed for examination and gronnd in when required.
The most important prints alout any marine engine involve a consideration of the linal economy of the engine. In the case of the oil engine remarkable results are given for the actual fuel consumption per brake-horsepower per hour. In the case of the "Xlseco" engine, a fair average fnel consumption is said to be .5 pound per brake-horsepower per hour, this figure varying slightly on acconnt of the size and speed of the engine, being lowest for large and slow-speed engines and a little higher for small and high-speed engines. The average price of such oil in the principal seapurts is 3 cents a gallon. and reducing the figures for fuel consmmption to cost the average fuel cost is fonnd to be . 2 cent per brake-horsepowerhour. This, if compared with the coot iff gavoline (petrol) or steam power for similar installations, thows a great alvantage for the heavy oil engine, as far as fucl cost is concernerl, the cost for gasoline (petrol) being about seven and one-half times as great and for steam about two and one-half times. In comparing the different forms of motive power, however, for

MIETZ \& WEISS OIL ENGINE.

A 75 -horsepower, three-sylinder oil engite is being installed in a commercial motor boat. 36 feet long and about $t 2$ feet beam. This engine, which is manufactured by August Mietz, New York, is a reversible engine coupled directly to the propeller shaft. It is of the vertical type. with eylinders to inches dianseter by 12 inches stroke, rusning uormally at $\$ \mathbf{\$ 0}$ revolutions per minute. The speed can be reduced to 8o

FOTE CTLINDER MIETK A WEASS OLL RNGGNE
revolutions per minute for constaut running, so that the boat will be kept barely moving There are two large air tanks and one emersenty tank in the engine room, which are usually kept up til a pressure of 175 prounds per square inch by a small air compressor attacled to the rear cylinder of the engine and operated by an eccentric from the main shaft. There is also a small auxiliary compressor, which is operated by a z-horsepower Mietz \& W'eiss vertical oil engine, but this is
intended to be used only in exceptional cases, whenever the air pressure should fall below ϵ_{5} pounds, or for the initial pumping ap of the tanks. With this air storage compressor, it is claimed the engine can l.e started and reversed from ten to twenty times, and when the engine is running full speed ahead it can be revereed full speed astern in less than sesen seconds.

Ordinary oil fuel is used for this engiue, costing in New York harbor about 3 or 4 cents per gallon. The fuel consumption is said to be not over 9 pound per horsepower-hour at full load, so that for constant operation at full speed it would require 75 gallons of this oil for a ten-hour run, which, at 4 cents per gallon, wonld bring the cast of fuel to $\$ 3$ ($\mathbf{f 0 . 6 1 5 \text {). }}$

In accouplishing reversal of the engine in this way there is one featire which requires particular attention, and which is very important in this type of engine: the fuel oil which is supplied to the cylinder under pressure by a small plunger pump under direct control of the governor, must be controlled in such a way that no oil will be injected into the cylinder daring period of reversing the direction of rotation of the engine, but also just as scom as the engine has started in its rotation in either direction the oil must be immediately and automatically injected. For this purpose there is arranged at the lower projecting end of the rotating valve, where it is driven by a bevel gear from the main shaft of the engine, a pinion driven ly a friction collar. This pinion engages in a

THKEFEYLTMDER MIETK a weiss mil ENGNK.

The reversing nechanism of the engine is known as the S. \& W. distributor. It consists of a rotary value with positive drive from the main shaft of the engine, controlling the flow of air from the air pressure tanks to the cylinders in proper order for rotation of the engine either ahead or astern, under control of the lever at the front of the enkine, In the casing in which this valve rotates there are corell as many ports as there are cylinders in the engine. Each sylinder is connected by a pipe to its port in the value casing The value is made with a single partition, for the purpose of directing the air to the cylinder for rotation in either direction. Directly in front of this rotating valse is the hand lever-controlled valve to which the air flows from the tank. This lever valve is also made in two sections, for the purpose of directing the air to one or the other section of the rotary valse for rimuing the engine either ahead or astern. The controlling lever moves over a segment, to which it can be locked by a spring bar extending to the handle of the lever. When the handle stand- in the cenmral position the air is slant off entirely; when it stands in the extreme right-hand position the engine runs ahead, and in the extreme left-hand position the engine is reversed.
segment which carric: a cam acting on the stem of a small ly-pass valve. The first movement of the hand lever throws this segment in a censral position. The segment is locked and no oil can pass into the engine. A further movement of the lever unlocks the segment and allows the air to start the engine, and immediately the frictional pinion carried on the projecting end of the rotating valve moves the segment to one side and closes the by-pass and then the oil is pumped to the engine This takes place for rotation in either direction.

This oil-controlling action with a reversing mechanism is claimed to provide an abvolute control of the oil, and is, of course, of great imporiance. If there were mo such control the oil eould be injected immediately on starting the engine in either direction, and there would be an explosive mixture at the start of the compression stroke of the piston at tank pressure, which is generally about 175 pounds per square ineh. The compression pressure in the engine being about 100 pounds per square inch, this would bring the internal pressure up to over 1.500 pounds per square inch, and the explosion pressure which follows would be approximately 4,500 pounds per square inch, which is considerably higher than the highest normal pressure which is ever ohtained in these engines.

LETTERS OF INTEREST FROM PRACTICAL MARINE ENGINEERS.

Incidents Relating to the Design, Care and Handling of Marine Engines, Boilers and Auxiliaries; Breakdowns at Sea and Repairs.

Repalrs to a JackIng Engine.

Editor Intervational Maane Enginerging:
The accompanying sketch gives an idea of a breakdown to our starboard jacking engine and how it was repaired:
The lugs by which the cylinder casting is secured to turned columns broke through, as shown by dotted lines, which left the front part of the engine without support. The cause of breaking were flaws in casting and water in cylinder. The engine was 5 inches by 7 inches, with two cylinders and two piston valves.

After breaking the engine could not be used. The worm was in gear, we were going out next day and the worm

could not be removed without running the jacking engine. A hasty repair job was started and completed within eight hours.
As will be seen by the drawing, the nuts on top of columns were removed and extensions put on columns, similar in appearance to socket wrenches, but with the lower ends tapped for threads on the column. Plates of $1 / 2$-inch iron were gotten out of such shape as to permit botting to the cylinder heads by use of longer studs, and to receive the top end of the extensions, with a nut above and below the plates. The engine was then warmed up and the top nuts secured. Then the bottom nuts were screwed up tight. This took care of expansion. The job has been installed six months and is as good as a new engine.

All three lugs broke and were repaired this way, but ouly two plates and extensions are shown, while the third shows the original form.
G. C. Eleekton,

Fi. Munroe, Va.
Chief Machinist, U. S. N.

Trouble on an Oil Tank Steamer.

Editor International Marine Engineering:

An engineer, invested with the responsibility of one of the vessels of sorts that go kicking about the world in the happy-go-lucky style that belongs to the boats of the smaller owners, is sometimes tempted to cast the eye of envy at the little tin gods in smart uniforms that entertain the ladies on the liners when they are not toying with a spanner. The difference is marked, but if experience is anything it is pretty safe to say that the man who has to get through as best he can gets the experience in chunks. As an example of the way the engineer has sometumes to get a move on his wits, the following little anecdote about trouble on an oil tank steamer may be interesting.
On one occasion it was discovered that the line between the pump room and the forward tanks on the boat had become holed. Of course, these pipes should not have been made of cast iron, but they were, with the result that they became corroded until a hole was formed. This was only discovered when it became necessary to pump the forward tanks out. Naturally the pumps would not draw the oil because the vacuum in the pipe line was lost; the forward tanks were nearly empty, there being only about 3 inches of oil left in them, but it was, of course, necessary to get the remainder of the oil out.
As the tank in which the damaged pipe was situated was full of gas, no one could venture to go down in order to stop the leak. The oil depot manager, however, was anxious to get that oil and get the ship away, so that he rose to the oceasion by offering $\$ 35\left(\mathbf{i f 7}_{7}\right)$ to anyone who could stop the leak. An engineer on the boat thereupon had a brain-wave and got those dollars as follows: (On the ship there happened to be a foothall for which there were two bladders. The engineer secured those two bladders and pumped them both full of ordinary air. He sied a piece of string round the cock of one bladder and held the other one in his mouth. He also provided himself with a clothes pin and secured this firmly to his nose. Previously to attending to his own personal appearance in this manner he had got a piece of canvas and smeared it thickly with white lead, and also a ball of marline. When all was ready he got some helpers to lower him quickly by means of a sling down to the bottom of the tank. The pump had been kept going so that the engineer soon guided himself in the dark to the place where he heard the whistling sound of the air being sucked into the pipe line. He now and then allowed himself to inhale the air from the football bladders and kept himself going long enough to fasten the canvas round the leak. When this was done he was quickly hauled up to the deck again, none the worse for going into the tank. Everybody on board, however, thought that he had earned that $\$ 35$ (i_{7}). The ship was soon puruped dry again after the leak had been stopped and was able to get away from the depot.

In the writer's opinion it ought to be compulsory for every vesel having holds in which foul gas can accumulate, especi-
aily such as in oil tank steamers, to carry a set of self-contained breathing appararus, such as are now made by several well-known firms. Anyone who has been "gassed," even slightly, will know that it is not a nice experience and can be easily carried too far. Some of these sess are quite light to wear and give enough oxygen to allow a man to work freely for an hour if necessary; and some of them are suitable for immersion under water, which is an adrantage of first-class importance under some circumstances in marine repair work.

Pennsylvania.
C. B. S.

Repairing a Broken Low-Pressure Cylinder at Sea.

Editor Intranational Marine Engineering:

We were on a voyage from Houtg Kong to Kobe, with abont 4.000 tons of general cargo for that port. The engines of the steamship "A--" were running at full speed, and all of a sudden a loud report was heard in the engine room, followed by the engines coming to a sudden stop. The engineers made an external cxamination, but could find no clue to the trouble; so we lifted the low-pressure cylinder cover, and then we discovered a hole in the side of the cylinder measuring nearly 4 feet square. We also found all the broken pieces of metal on the top of the piston.

As the cylinder was surrounded by an outer shell, forming a steam jacket, it was decided to altempt a temporary repair, and we made it in the following way:

Seven pieces of wood, 6 inches wide by 2 inches thick, were firmly wedged together; their faces were planed flush with the cylinder wall. The wood was drawn hard up with bolts to the jacket wall, and hard wood strips were fitted and screwed to the wood, so that they came in contact with the piston. We occupied eleven hours in making the repairs: we replaced the cover and set the engines away at slow speed. Everything about the repair proved very satisfactory and enabled the vessel to reach port without any further accident. When we reached port a new eylinder was fitted.

Camden, N. J.
F. J. S. N.

Indicator Cards from Triple-Expansion Engine.

Ebipor International Mazine Enginekring:

The accompanying reproduction of indicator diagrams and data relating to same came to me recently. As shese represent the average practice in triple-expansion engines in the mercantife marine, I thought they might interest your readers. A careful study of the diagrams taken in connection with the data given should prove of value to marine engineers in charge of similar work, and also to students of engineering who are taking special interest in steam distribution in multi-expansion engines. The name of ship, port of departure, etc., are immaterial to the abstract study of the diagrams, so I omit them.

I would like to have the opinion of those who may be interested in such matters conceraing the disuribution of power in the three eylinders. Should not the low-pressure eylinder, if any, develop a little more power than either of the two others? Is there any good reason why the high-pressure should develop more power shan the intermediate and lowpressure? Here is the log:
Boiler pressise . .. 58.1

Expansion adjustments:

[^48]Revolutions in 23 hours 42 minuses. 81,920
Distance run by the engine in knots..... 283
Distance run by observation in knots.... 245
Slip of propelifer, 18.4 percent ; fer hour. $\quad 10.34$ knots. Coal consumed in 23 hours 42 minutes.. 38 tons. Clinker and ash 137.31 cwt . Percentage 18.:

Engine dimensions:

High-pressure cylinders	28 inches.
Intermediate-pressure cylinders	46 inches.
Low-pressure eylinders	75 inches.
Stroke	48 inches.
M. E, P.	1. H. P.
High-pressure diagrams...... 80.5 lbs,	737.18
Int.-pressure diagrams........ 25.0 lbs.	584.35
Low-pressure diagrams...... 11.0 lbs .	68.44
Total indicated horsegower	2,006 +
Coal consumed per horsepower-hour....	1.69 prounds.
Mean immersion of ship.-	23 feet.
Sea	Smooth.
Time out of drydock.	Two months.

REVIEW OF MARINE ARTICLES IN THE ENGINEERING PRESS.

Abstract

Ships. Hudson Kiter Day line-A very brief description of some of the best-known ships of this fanmens line. from the Mary Potcell, built in 1Wh, to the Hendrick Hudson in 1000, the Robert Fultum in 1909, atud the I'ashingtun Iring now building In the general regard of the traveling public none has been more popular than the Mary Potvell. though the later hoats are larger and more elekant in appointments. Dllustrated: $1,3 \times 0$ words-The Dfarime Retiges, September.

The Electric .trc.-An experimental vessel built by Melaren Rros., of Dumbarton, to demoustrate the efficiency of electric eteduction sear for use between a fast-running engine and a slow-running propeller. The lonat is 50 feet between perpendiculars. 12 feet beam, with 4 feet 6 iwhes draft, with 6 -cylinder 45 -brake-horsepower Wolseley masoline (petrol) engine. driving a 3 -phase alternating-current dynamo. Current from this soes to motor comnected direct to propeller shaft. The exciter is direct current, and is driven by belt from main shaft. Peth motor and kenerator have two different sets of windings, giving different number of wales in their circuits. By varying the combination of these working together different speeds ate ohtained. Contrel is accomplished by necans of two simple switches. A series of trials has shown the equipment to be a succros both for ruming and for maneuvering: swith can be changed instantly from full ahead to full astern without danger of injury to the machinery. Article shows drawings of general arrangemem, wiring dagram of electric cisuits, and a photograph of the boat running: goo words-The Warine Reticts, September.
British and German Torpeda Cruft.-A discussion of military and tactical qualities rather than eneinesring eonsiderathons. Stater the relative strength of the British and German navies in torpedo eraft, and discusses whether the margin of safety for British interests is spfficient in this line. List, the more important classes of such craft in both navies: 2,800 wordx-The Enginere. September 8 .
The Argenting Ratheshir Rivedozia,-A brief detailed description of this interesting ship being buit at the yard of the Fore River Slajbuilding Company, and launchel there the $26 t h$ of August. With a length of hull of 585 fect ; beam, 93 feet, and normal draft 27 feet 6 inches, her displacement will be 26,500 tons. Propelling machiner) consits of turbinedriving triple screws, a separate engine room being provided for each set. The designed speed is 23 hioots. t.exos words.The Engineer. September 15 .

Naval Architecture.

The Rolling of Ships.-By Professor J. H. Biles. Address to the Enginecring Section of the British Assoctiation for Advancement of Science. An effort to account for the disappearance of ships at sea, of which no record is at hand for the cause of their loss, by a study of the known emoditions of stability of the ressels and their probable behavior meder different conditions of waves. The work is entirely analytical and follows the theory of Froude in his calculations of the angle of inclination produced by a train of waves. The results of experimental work ly Colvinel Rusen of the Italian navy shows that by chanking the intitial conditions an almos: infinite number of result mixht be oftained. $3, \% \% 0$ words.Finginecring. September 1.

Our Present Kinoutedge of the l'ibration Phenomena of Steamers.-By Dr. O. Schlich, M. I. N. A. Read at jubilee meeting Institution of Naval Architects. A brief review of the
complete suliject as investigated by Dr. Schlich in his fong experience with the vibratums of ship machinery. Beginning with the earliest forms of the problem, when torpede tuats, with reciproxating machinery. called thetr destgners to tahe aceunt of the osecilations produced by engines and propellers. the various plases of the question are dealt with up to and including the mure complicated ones which the turbine have introduced. The author explains vibrations of the first, second, third and fourih orders, and treats comprelensively of their causes and remedies. The analytikal side of the questhon is passed over. and the whole paper is one of practical leelp for the engineer who must overeame the ineonvenieness catued by unbalanced enkines or untrue pripeller blades. The latter cause is more cotumon than generally supposed, and very often the machining of a wheel canses a disagreeahle shaking to disappear. This remedy and care in placing machinery in a hull so that vibrations of bull and machinery may neutralize each othet are urged by Dr. Schlick as a remedy, 5 ,6o words,-Engincerinc. September t.

Marine Engineering.

 Sir Charles A. Parsons. Read before jubblee neeting Institution of Naval Architects, Gives the paper in full, which is a conglete detailed account of the vessels eugined by the Parsons turbine all over the world. Begmuing with the formation of the first turbine buildis: company in thyt, the author carrics ont each step in the development antil the Jatest contract. Attention is paid in detail to figures showing relative econony of turbine and reciprocating ensines under various conditwns, merchant ship typer best suikell to turbines and the resulas obtained, reduction gearing, its scope and results. The eypets of turbines are considered and eompared both in theory and in the results of triaks.

Article contains plots showing ectmony and diakrams of comparative size of war and merchant ships fited out and turbines invalled: 8,500 wards.-The Marine Retiow, Scptember.
Mesal Engines for Sea-Gomg V'essels.-By J. T. Milton, vice-president luthitution of Naval trehitects. The last instalment of a series which evidently gives the paper in full. In this part the author takes up the points of design to be considered for marine Diesel ensines. After a consideration of the effect different types of Diesel engines have upon the bending and twisting muntent, the design of crankshatts is taken up in sume detail. The question of air pamp design is considered from the standpoint of emergencics and providing for air compression in case one pump liecame disabled. 3.300 wurds.-The Steamshir. September.

The Stean Engiwe Contra the Internal Combustion Engine. - By 11. C. Vogkt States that while the great thermal econonaly of the internal combustion enxine is well known that the teant enkine is still the most casily noancuvered, and may still be made more efficient hy earrying out more carefully things that are already well known about its design. Mentions superheating and the scheme of tahigg steatn from lowpressure cylinder direct to superheates and thence into turbine before returning to boider. Then he considers points of briler design, mentioning a series of experiments performed in Copenlagen tupon model builers of different typues of the same size and under the same eonditione which lead him to think the locomative and small-tuhe express types the most efficient from the standpoint of thenretical design. Suggests improved puints in the design of both typers. 2, mon words.-The steoushit. Septemiler.

The Economics of Steantshif Propulsion.-By Andrew Hamiton, M. I. N. A. The title of this article indicates very accurately what it contains. Mr. Hamilton considers the design of the power plant of a ship for given requirements and gives the cost per indicated horsefrower for dinferent types of installation, considering in the orter named the engine, turhines, boilers, fuel oil burning, and producer gas engines. He takes up the tendency to design even tramp steamers of the present day with finer forms forward in order to sate a part of the first cost of larger power plant which wonld otterwise be required. Under each of the divisions considered fe states the weight generally required and the eost complete. 3,900 words.-7he Steanishif. September.

Diesel Sarine Engines.-By Herr Th. Saiuberlich. Read beiore Schiffloutechnische Gesellschaft. In this, an extract of the orikinal article, is given a review of the Diesel engine field at the present day, and then descriles and shows several drawings of the service lusat Frericles, built by J. Frerichs \& Co., for service on the North Sea. The lnat is abmut 35 feet tong, and is driven by a f-cylinder, 4 ceycle Diesel engine, direct connected to shaft and turning 3 (o) revolutions per minute. At this speed it develops 200 effective horsepower, which drives the berit about to knuts. Total weight of machinery atoout to,000 kilograbls. The operating nechanism is of the simplest and the engine is reversible. Suecial attelltion was paid in the design to cheapness of construction and simplicity of operation. 1,600 words,-The Sicamshif. September.

Iuternal Combustion Ensincs for Oicon-Going Ships.The first article of a scries in which the anthor will describe the ocean-going ships fitted with oil engines. In this is a list of such vessels now under coustruction and Jrawings, photographs and details of one from the list, the Toiler, built by Messrs. Swan, Hunter, and W'igham Richardson, for survice on the American Great Lakes, With dimensions of 248 feet by 42 feet 6 inches by to feet depth molded, she carries 2,600 tons deadweight on 14 feet drait, which is the timiting condition imposed by the Welland Canal. In outward appearance this vessel resembles the ustal type of lake freighter except that there is no funnel. Internally, everything is different. Propelling machinery consists of two Diesel engines of 180 brake-horsepower, each driving I win serews at 250 revolutions per minute. Weight of this plant is said to be only one-half that of stean giving same power and fuel consumption onefourth that required of coal-burning musive power. Articte also includes description of the Electric Afe. Both vessels ilhstrated with photographs and drawings. 3.300 words.The Shifbuilder, summer number.

Eight Hundrcd-Horsepower Diesel Marine Engine.-Built by Richardions, Weitgarth \& Company for a boat being built for Sir Raytton Dixon \& Company, Ltd. The eagines are of the two-cycle, single-acting type, with four cylinders 20 inches in diameter with 36 inches stroke. At 115 revolutions per minute they are expected to give \&oo brake-borsepower. In gencral appearance they are very much like steam marine engines of the sanse size, the usual marine design being followed as closely as may be, for case and reliability of operation. Auxiliary machinery is driven by steam. Carrying capacity of the vessel complete will be $3 . t 50$ tons. The owners bave several boats of same class and size with different types of power plant, and comparisons of this with them witl be itt teresting soo words-The Engineer. September 15.

Electric Drites for Sireze Propellers.-By H. A. Navor. A study of the principles of economic propeller design in combination with engines with high rotative sperds, showing the advantages of an electrical syetem of power transmission. The author holds patents covering a system of electrical transmis-
sion whereby power from several power mits may be used by one or more propellers. Deserihes in brief three vessels, desegned or building, in which these ideas are carried out.

Friedo, turlouelectric steamship for Americall owners: 300 feet fons, with deadweight capacity of 5,000 thas; speecd, 12 kntots. Turbo-electric set is for $t .500$ kibowatts, three-phase, zo cyeles, running at 3 soon revolutions per minute. Working pressure is 200 pounds per square inch, and vacuum 281/2 inches. Anxiliaries are motor drwen. Main shaft driven by three-phase motor, capable of 1.900 brake-horsepower at 84 revolntions per minnte. This equipment costs and weighs less than the normal equipment. The coal saving is 10 tons per day.

Oil-Electric Tanh Rarge for Camadian Sirrice. Dachinery for this boat consists of three Dienel non-reversible engines, each direct connected to an alternating-current generator. The current from these are fel to separate windings in a motor keyed to the single propeller shaft, which turns at a slow rate, By using one, two or three motors the advantage of full power economy is secured while running at less than full speed. The cust of this installation is ahout 10 percent more than normal, bat the carrying capacity of the barge is said to be greatly increased,

Electric Insfollation on 1 frited States Nas'y Collicr, a plamt, which is being installed in the collier being built at the Mare taland navy yard, consisting of a 5,000 -kibwatt stearn thrbo-alternatof. Current is ke l to two motors, one on each shaft. Steatm is supplied by Scotch boilers. Cost, weight and econonty are said to be levter than for normal reciprocating engite outfit. 1.700 words-Finginecring. September $\&$
Electrical Siecring.-Ky R. Parker liaikh. Read before 13. A. A S. Discusses the conditions under which a stecring kear works and what might be expected of a power gear. Classifies elentrical steering gear as follows:
A. Steering gears in which the motor is started and stopped for every motion of the rmbler.

1. The motor being supplical with current at variable voltage from a special senerator.
2. The notor being controlled by reversing switch and resintances.
B. Steering gears in which the motor is kept running contimuonsly, mechanical control being introduced in one of the following forms:
f. Friction clutches with gearing.
3. Hydranlic transmission with pumps
4. Magnetic frictim clutches on motor shaft.

The author regards the types tunder B heading to be the most practicable, and proceeds to consider questions of design for stech machines. He is the inventor of one type of magnetic clatch machine, and gives revults of tests on this gear. Illustrated; 3,000 words,-Fingineering. September \mathbb{X}.

Floating Crane for Cinlodding (Ore.-Built by John H. Witson \& Company, of Birminglam, for atnloading ore at Huelva, Spain. Designed to lift 7 tons at 4^{2} feet 6 inches radins. t^{3} ower is sutpplied by double-cylinder engine, 8 by 12 inchex, taking steam from a vertical eross-tube boiter workitg at too ponnds per sognare inct. Spect of lifts with full lead is 80 feet per minute, and with tight load ano feet ger minute. The barke on which crane is mounted is 90 feet over all, 4t feet extrente breadth, and 8 feet teep. The framing is 3 by $21 / 2$ by $6 / 20$ inch angle stexl, spaced 24 inches on centers. Keverse framing is $21 / 2$ by $21 / 2$ by $5 / 20$ inch angle. Bracing helow deck is fufnished by four athwartships and two fore-and-aft bulkheads. Design provides that with greatest load at greatest angle from center line the angle of cant is not over : desere. Freeboard not less than 3 feet. Shows photogragh and drawing of general arrangement ; 800 words.-The Marine Reties", September.

Published Monthly at

17 Battery Place
 New York by marine engineering, incorporated
 H. L. ALDRICH, President and Treasurer Assoc. Soc. N. A. and M. E. and at

Christopher St., Finsbury Square, London, E. C. E. J. P. BENN, Director and Publisher Assoc. I. N. A.
HOWARD H. BROWN, EAItor
Member Soe, N. A. and M. E; Assoc. I. N. A.

Circulation Manager, H. S. Dinamons, 37 Weat Tremletr St, Boston, Mase.
Branch Offices: Boatan, 643 Old South Building. S. I. Caerentice. Philadelphia, 624 Walnut St, Samtel S. Receevish

```
Entered at New York Post Ofice as second-elase matter. Copyright, 1012, by Marise Eaginetrisg, Iner, New York Inreamational Maxime Emgntraing is registered is the United Staten Paleat Office
Copyright is Great Britais, entered at Stationers' Hall, London.
```


Notice to Advertisera.

Changea to bo made is cepy, or in orders for advertisisg, nuat be in

 is to be rub

Chain Towage on German Rivers.
Conditions on German rivers are somewhat peculiar, because during certain parts of the year the depth of water becomes exceptionally low and at other times, when the water is higl, the speed of the current increases to such an extent that navigation up-stream by an ordinary type of shallow draft boat becomes somewhat difficult. In the early days of river navigation a system of chain and rope towage was devised to meet these conditions, so that steam tugs fitted with a mechanically operated drum, or wheels, would wind themselves and a tow of barges up the stream along a rope or chain that was permanently anchored in the river. This is an unusual kind of towage, and at the present time its use in Germany is decreasing. In fact, the method of rope towage was abolished several years ago, although the method of chain towage still exists, and continues to prove a profitable method of carrying on river traffic.

On rivers of other countries most of the towing is done by shallow-draft, side or stern-wheel paddle steamers or tugs fitted with screw propellers, and, where fuel is cheap and there is no immediate necessity of special refinements in the design of the propel-
ling machinery, this system of towage is very successful. The principal advantage of the chain towage, however, over that with the paddle or screw lies in the avoidance of slip, and where there are fast-flowing currents and small depths of water this matter becomes important. When using the chain method of towing, the propulsive efficiency of the tug is affected only by the ordinary resistances in the engine itself and the losses in connection with the transmission, together with certain losses due to the raising and stretching of the chain or to slipping. In this way the actual coal consumption of the chain tug becomes only about onethird that of a paddle tug when the tow is going upstream. On the other hand, there are disadvantages in the method of chain towage which at first seem difficult to overcome. The type of boat is unsuitable for any other use, and the heavy first cost of the propelling machinery, including the chain or rope and the maintenance of this equipment, offset, in a measure, its advantages.

Full details of this type of river towage are illustrated and described in this issue, and in the next issue the rope tug will be taken up. There is a marked difference between the tugs used for these two methods of towing, in that the rope tug is eqnipped with twin screws to enable it to make the down-stream trips independently of the rope, while on the up-stream journey the combined rope and screw propulsion can be used. On the chain tug, propulsion both up and downstream is obtained by winding the chain over the drums and wheels, special appliances being provided for detachment when an up-stream boat meets a down-stream boat. The chain is usually carried over the center line of the boat, and engine-driven water turbines are installed on each side to provide jets of water to assist in bringing the boat around sharp bends. The direction of the jets can be changed by an adjustable elbow, and they can be used for direct propulsion when necessary. The abandonment of rope-towing service on German rivers indicates that the chain towage will also be given up before long, chiefly on account of the increasing competition of the railways and the modern development of the paddle and screw tugs, combined with improvement of the rivers and the conditions for navigation. But wherever conditions are found similar to those which formerly existed on the German rivers this method of towing can undoubtedly be utilized for the cheap transportation of freight.

Inland Waterway Traffic.

Inland waterway traffic is a subject which is now being widely discussed in many countries. A hasty glance at the various types of shallow-draft boats presented in this issue, which are designed for service in various parts of the world, will give some idea of the great variety of conditions which affect the type of river boat to be built. Much of the expansion of river
traffic dates back to an early period before railroad transportation became a serious rival; this was particularly true in the United States, where the Western rivers at one time were practically the only means of transportation of freight from certain sections of the country to the sea coast. That this has not been maintained, however, is due to the rapid development of efficient railway traffic and to the lack of co-operation between the railroads and river steamboat companics.

Everyone recognizes the cheapness of freight transportation on open rivers, but if the river does not form a direct connection between some great proluctive center and the seacoast ports there is not much to stimulate water traffic unless the railways can be depended upon as feeders and the various river ports developed into efficient terminals adequately equipped for the storage and transsshipment of freight economically. 1. ith such conclitions, river ports would not be destinations for either railroad or water traffic, but the entire system of transportation would be a combined rail-and-water system. This system has been devcloped on the two great rivers in Germany, and from the results obtained there it is shown very plainly that success depends upon the maintenance of a clear, open channel in the rivers, the establishment of good terminals, with facilities for storing and handling freight, and the transmission of freight from rail to water. It is not necessary to provide a great depth of water for inland navigation, as boats can be designed for efficient work on very shallow draft. Most freight transportation on inland waterways is carried on by towage. On the Western rivers in the United States immense cargoes of coal are carricd in this way from Pittsburg to New Orleans in tows, which consist of from twenty to thirty barges fastened together four abreast and five or six fore-and-aft, with a single stern-wheel steamer at the stern to act as tug and rudder. In Germany much of the cargo is carried up the lower por* tions of the Rhine in small sea-going steamers and in barges and lighters from 600 to 1,500 tons, which are towed by single-screw tugs of the type described elsewhere in this issue. On the upper portions of the river express freighters of the side-wheel type carrying 6,000 tons of eargo are used, while through the rapids chain towage is in vogue.
Packet or express freight service is carried on in a variety of ways according to the volume of commerce and the natural conditions. On American rivers this traffic has been largely depleted in recent years by the competjiom from railways; but the old stern-wheelers, which were so numerous in ante-bellum days, still predominate. Freight is carried on the main deck of these boats and partly in the holds, the hurricane and texas decks being devoted to passenger accommolation. Part of the main deck space is occupied by the boilers, engines and fuel bunkers. Since the clannels in the rivers on which these boats operate are continually changing, and the depth of water varying so that
new obstacles are always met, the type of boat which originally proved most efficient for meeting these conditions will probably remain in use until clear, open channels can be maintained. Boats of this type always make their landings bow-on, and the cargo is loaded and unloaded by trucks over a long landing stage or gang plank. Since the freight is piled on the open levees, no opportunity is given for mechanical handing. On German rivers, however, the express freighters are similar to the tow boats, except that they are of higher speed. Deck hatches are accessible to cranes on shore, which handle the freight and transfer it to wagons or railway cars. There are many rivers in all parts of the world where a large volume of small shipments is carried by gasolene (petrol) motor buats. In America many of these boats are of the stern-wheel type, with horizontal engines of the stationary type connected to the paddle wheels by a combination belt and chain transmission for propulsion. Vessels of this type are also used for ferry work and as tramps where there is sufficient traffic. Many shallow-draft motor boats, with screw propulsion, are used for tow boats with small flats or barges which are suitable ior handling a considerable volume of bulk cargo. In the rapid improvement in mechanical features of this class of boats it is to be expected that more river traffic will be developed in the near future. Heavy oil engines, which are now being perfected, will add much to the possibilities of this traffic.
Besides the actual navigable rivers for shallow-draft navigation, the recent improvement of inner-coastal routes on the Atlantic Coast of the United States will open a new means of inland traffic. If the proposed improvements in these waterways are soon completed, there will be a complete through-line, which is navigable with safety the year round from Boston, Mass., to Riclmond, Va. Losses from sca transportation between these points in the last two decades indicate that the safety of such a service will easily repay the cost of new construction, and, on account of the savings resulting from its operation, increased waterborne transportation should rapidly ensue.

All inland waterway transportation depends upon the establishment of complete and economical terminal systems, designed and equipped so that bulk and package freight can be handled quickly and cheaply and with a minimum amonnt of damage to the goods. Individuals and corporations cannot accomplish this at once, but Federal, Statc and municipal aid must be obtained and the faith oi the people interested in commercial, industrial and transportation must be aroused to the economical advantages of a properly equipped inland waterway traffic where the terminals are controlled so that they can be used freely and impartially by all carriers, whether by rail or water. With this the advantages of improved waterways and of the improved designs of shallow-draft boats, which are illustrated in this issuc, can be utilized.

ENGINEERING SPECIALTIES.

Centralized Valve Gear for Stern Paddle-Wheel Engines.

Light-draft river boats, especially those of the stern-wheel type, when used in rivers where there are overlanging trees and considerable foliage on the hanks, freguently meet difficulties by entangling these obstructions with the eccentric or cam rods and causing breakdowns. Builders have attempted to correct this difficulty by using makeshifts, but a new type of valve gear has been placed on the market by the Marine

Iron Work\&, Chicago, Il1, which is designed to do away with this difficulty. As can be seen from the illustration, eccentric rods, cams and links have been eliminated, so that damake to the valve gear by obstructions is impossible. Also the length of the paddle wheels can be increased, as no space is refuired for the eccentrics or cams. The value gear itself is in sight of the engineer and is accessible. The valves have a variable cut-off, which enables greater economy when the engines are operated under normal load. and also admits increasing power when circumstances demand an overload.

The Lytton Steam Trap.

In the operation of a steamship the thorough draining of the water of condensation is fully as important as any other feature in the power plant, and unless it is thoroughly done danger to the engines, leaky joints in the piping, insufficient duty from the heating surface, when required for heating or drying, are some of the most important difficulties to contend with. The Lytton stean trap for draining condensed water, which is illustrated, is so bailt that all the working

EXTEMOR VITX.
parts, with the exception of the bucket float alone, are on the outside of the receptacle, and, therefore, in sight and readily accessible, so that any possible troubles, which may happen even in the best of apparatus, can lee immediately located and corrected without the necessity of pulling the trap to pieces. Also by this arrangement many of the automatic functions of the trap can be performed by hand from the outside, so that if any solid matter has kodged under the valve during discharge it can readily be removed by sulmerging the float and allowing the trap to flow through for a short time.

In operating the trap, when it is first installed, it is neces*ary to either fill the receptacie approximately one-half full of water or to hold the hand leser forward, which will raise the float D and allow the discharge valve L to remain closed until sufficient condensation has flowed from the cistern to the trap to support the float in the position shown in the sectional view. When this condition has lieen established, the water flowing through the trap in the inlet opening A will raise the float D until it strikes the outer casing. When the trap is filled, the water will flow into the flosat, cansing it to drop to the hottom. This will cause an upward novement of the lever K, which raises the auxiliary valve M, and admits

aFCTEOSAL YIKW.
the pressure in the trap to the under side of the piston top to the main valve L, which opens the main valve and the water flows out of the trap. The water will flow from the trap until it is level with the top of the float with the float at the lowest position, when, almost instantly, sufficient water will be drawn out to raise the float again, thus closing the discharge valve until the receptacle is again full and the float drops.

Besides the features already referred to, the manufacturers of this trap, the Lytton Manufacturing Corporation, Franklin, Va., call particular attention to the way in which the valve operates, since all the float has to do is to raise the nickel aluxiliary valve, admitting pressure to a piston having a larger area than the main valve, so that the pressure lifts it from its seat. Thus, since the discharge valve is practically balanced, its size is not limited by the pressure, and a larke valve opening is therefore ohtained with a consequently increased discharging capacity.

A Condenser Packlng Tool.

A leaky condenser is something which causes as much trouble and irritation on board a ship as any single mishap. The cause of leaking can be traced to many sources, but a very prevalent one is that the packing laces are not carefnilly laid in. It is a tedious job, and carelessness after hours of the work is almost pardonable.

Mr. Edward P. Strode, of Fortieth street and First aventie, New York, has invented a tool for inserting condenser tube packing which makes the work an actual pleasure. Ten to twelve tube ends can be readily packed per minute, and experts have packed more than twice this number in the same time. What is of the utmost importance is that each tube is packed precisely like its neighbor. Broadly speaking, the packing tool as shown by the illustration is a pistol. It is loaded with a lacing. which then shoots into the tube plate around the tube, and by a blow sets it there. The tool is simple in the extreme, and unless absolitely abused would last for years. It is actuated by compressed air at \&o pounds pressure.
Looking at the illustration at the left of the tool will be seen a tapered square, followed by a round portion, which is slotted from end to end. To the right is seen a trigger, very much in the same position as it would be in a pistol, and on the front and side of the handle is a second trigger. In the bottom of the butt is tapped a hole to receive a coupling for
the air tube, the handle, of course, being hollow. The tapered square is inserted in the condenser tube, which brings it to a eenter. If this portion was left round, the little burr often left by the eutting-off machine would prevent proper eentering. Just inside the slot. on the eylindrical portion, is a shaft, which, when the thumb trigker is pressed, admits air to a little turbine at the back, which causes it to revolve rapidly. A lacing is eitt to length and inserted at the end of the slot, where it is grasped by a spring clamp and is whisked out of the side in a second. The seeond trigger is then pressed, and a little plunger which envelops the rotary portion shoots for-

ward, sliding the coiled lacing off the rotating part and over the condenser tube, setting it firmly in place. The side trigger is then pressed again, giving a second blow, and the work is done.

The machine is simple. The little values are only ordinary bevel seated affair, which can be reground most advantageously, and the rebound of the plunger or hammer is accomplished by means of a coiled spring, which is only pressed a distance equal to the depth of the tap holder in the tube sheet.

Machine Versus Hand Method of Stoking.

One of the best features of the best mechanical stokers is that they do not throw any green coal upon the fire itself. Matters are so arranged that the coal is coked by the time it reaches the incandescent bed of coals. It is doubtiul whether a human stoker could properly take care of this matter. It

seems probable, on the other hand, that with the highest type of mechanical stoking grades of coal can be used which would otherwise have to be wasted. This has been proved in many instances on shore, and the same is undoubtedly true on board ship. In one instance a 6,000 -ton lake freighter, having two Niclausse watertube boilers, each eontaining 3.340 square feet of heating surface, was equipped with Jones stokers supplied by the Under-Feed Stoker Company of America, Chicago, III., as shown in the illustration. When these boilers were first installed they were stoked by hand, and the coal consumption for round trips between the head of the lakes and Lake Erie ports amounted to about $+c o$ tons of slack coal. The use of the mechanical stokers, however. resulted in a marked increase in economy, as with them the fuel consumption for the round trip was reduced to about 300 tons of slack eoal, or a gain in economy of 25 percent.

A Useful Freight Chute.

The illustration shows a freight ehute constructed by Mr_{r}. G. A. Swain, superintendent of delivery piers of the Southern Pacific Company, at their New York terminal, for use in the delivery of small freight from the warehouse lofts to the main floor of the piers. These piers were equipped with straight wood chutes, but their use demonstrated that the

straight chutes were too rapid for small bags, nannely, rice, beans, dried fruit. meal and lightly-construeted case freight, so the iron spiral staircases leading from the main floor to the lofts were utilized hy fitting galvanized iron ehutes onto the steps, with a landing platiorm at the foot of the staircases. These ehutes have been in operation for about six months, and are said to have proved of great advantage, eliminating damage to the various light commodities handled on the piers.

The Brush Electric Llghtling Set.

In our July number we made some mention of an installation of the Brush electric generating set in a vessel on the Pacific Coast, the outfit being used not only for lighting but running a wireless telegraph plant and other electrical conveniences. The capacity of the lighting set referred to was 4 kilowatts, and the makers (The Charles A. Strelinger Com-

pany, Detroit, Mich.) have since that time developed and placed upon the market a 2 -kilowatt lighting set, consisting of a 4 -horsepower engine direct connected to a a-kilowatt getterator, and which is illustrated herewith. Its capacity is sufficient for a maximum of 100 t6-candlepower tungsten lamps, or a lesser number of lamps may be used in connection with many other electrical devices. This outfit is extremely compact, requiring a space of but 40 inches in length and 22 inches in width, the total weight being about 680 pounds.

Corrections.-In the description of the A. C. generators and induction motors, manufactured by Messrs. T. W. Broadbent, Ltd., Huddersfield, which was published on page 292 of our July issue, the statement that these generators delivered from 6 kilowatts at 750 revolutions per minute, etc., should read "from 60 kilowates at 750 revolutions per minute, etc."

On page 388 of the October issue the caption for Fig. 2 should read 1,500 horsepower instead of 15,000 .

Ou page 403 the caption of the illustration should state that the lightship illustrated is off Cape May instead of Cape Ann.

On page 404, in the third paragraph and seventh line. "adherent limitations" should be changed to "inherent limitations."

On page 404, in the cost of bids from the Fore River Shipbuilding Company, $£ 164,000$ should be $\$ 159.500$.

On page 409 , the displacement of the Rochambeau should read 17,300 tons instead of 70,300 tons, and the length over all 547 feet 9 inches instead of 597 feet 9 inches.

On page 251 of the June issue, in the article "Holtrop Autonatic Lubricator," the end of the first sentence should read "cut in the box" instead of "cut in the shaft."

TECHNICAL PUBLICATIONS

The Gas Turbine. By Henry Harrison Suplee, B. Sc. Size, 6 by 9 inches. Pages, 262 . Illustrations, 93. J. B. Lippincott Company, Philadelphia, Pa . Price, $\$ 3$ net.

This work scems to us most timely, as the prime-moving world is tending most strongly to continuous-motion engines; and while the reciprocating motion of steam engines is coupled with certain inherent troubles, these are greatly augmented in the internal-combustion engine. Therefore, the rotary principle of a gas turbine is most alluring. In Mr. Suplee's book there is much which is of value, even if taken only as a collection of what has been attempted, let alone its admirable treatment of the subject educationally. The difficultics of a practical gas turbine are great, and we can agree with the author that the most promising road is that which leads towards the "mixed type," as he terms it.

The Design and Construction of Ships. By Prof. J. Harvard Biles. Two volumes. Size, $61 / 2$ by 9 inches. Pages, 846 . Illustrations, 56 . Plates, 40. J. B. Lippincott Company, Philadelphia; Charles Griffin Company, Lid.. London. Price, two volumes, $\$ 15$.
It would be utterly impossible to even briefly outline Prof. Biles' work and do it justice. While he lays no claim to originality, the information concerning old things is made to seem new by its clear and concise explanation, and throughout his book there is always that pleasant feeling to the reader that if he could only see Prof. Biles he would learn a great deal more. In other words, there seems to be a tremendous reserve force. The book grew out of lectures on the various topics delivered at Glasgow University. This, of course, would account for its clearness, and it is supposed to be especially adapted for students; but we venture to say that the practicing engineer finds himself often in as much need of clearness and conciseness as does the student, and to both the book of Prof. Biles is invaluable.

Cape Cod Canal. Size, $51 / 3$ by 8 inches. Pages, 64. Illustrations, 30. Maps, 2. Published by J. W. Dalton, Sandwich, Mass. Price, 25 cent \&

This booklet is called an "illustrated story of the new Maritime Highway," a project first conceived by the Pilgrims, the canal that will make Cape Cod an island. The information, coupled with the illustrations given, is instructive and pleasantly imparted. It draws attention to making Cape Cod an island, and also to the fact that a large part of the Cape was at one time an island.

Handbook for Iron Founders. Issued by the Frodair Iron \& Steel Company, Ltd. London. Size, 4 by $61 / 2$ inches. Pages, 126. Numerous tables. Price, 35.
The publishers of this little handbook are people who make a business of foundry work, or, more properly, of cast iron mixtures. They are, in fact, advisory engineers, and while they recognize the value of analysis of iron and understand thoroughly the effect of silicon, manganese, phosphorus, carbon, etc., they are frank enough to say that this knowledge does not of necessity make a successful foundryman, and that foundry work is not yet an exact science. We quote from them as follows: "Laboratory tests may be vastly helpful in a foundry and may insure it against wide and serious divergences of result. It could never be expected that, in the case of any particular casting, a specification based on chemical analysis and physical tests could be laid down which would yield the desired result with absolute certainty. All founders are painfully aware of this, for even the most successful will from time to time have a casting to make, the difficulties of which
yield to no scientifically established rules, and are not overcome until after many failures and a good many hot arguments between foundry foreman, draftsman, chemist and patternmaker." This refreshingly open and fair statement must inspire confidence. American and British authorities are quoted, and the information is so given that it is applicable in any country. The only criticism we have to make on the neat little volume is that owing to the use of gilt on the edge of the pages it would seem wise if the publishers would send an oyster knife with each volume in order to get at the valuable information contained therein.

Practical Marine Engineering. Third edition. Size, 6 by 9 inches. Pages, 794 . Illustrations, 350 . New York, 1912: International Marane Engineering. Price, \$s.
Previous editions of this book have been found so valuable to marine engineers and students that it was considered desirable to publish a third edition involving some additions to cover recent developments of marine engineering and bring the subject matter up to date. The book was originally written by Prof. W. F. Durand, formerly head of the Department of Naval Architecture, Cornell University. The additions, which include chapters on steam turbines, internal-combustion engines, producer-gas plants and oil fuel, have been contributed by recognized experts in these various fields. Few books written on engineering subjects are intended to give detailed information from a practical point of view. They usually deal with the theoretical part of the subject that can be thoroughly understood only by those who have made a scientific and technical study of engineering. In this case. however, it was the purpose of the author to provide help for the operative or practical engineer, either for the man who has already entered the profession or who may wish to perfect himself more fully in many branches of the subject, or for the applicant for the lowest round of the ladder, or for the young man whose attention has just turned to this field and who may wish some simple and fairly complete presentation of the subject from the practical standpoint. To do this it was, of course, necessary to simplify the work and omit much of the material which could be understood only by those who have had the advantage of higher mathematics and enginecring education. It is understood that the reader has some knowledge of the essential principles of marine engines, boilers, fuels, etc., not as a designer but as a user of the machinery.

The first part of the book contains an adequate treatment of the materials used in engineering construction, of the different kinds of fuels, and then goes on to describe the prominent types of marine boilers, with their accessories and relative performances. Following this, the principal discussion is of engines and auxiliaries, describing their individual parts, installation and uses. Operation, management and repair are treated in a single chapter, and this gives much valuable information to the man whose duties require the knowledge usually gained by wide experience on board ship. Valves and valve gears, steam engine indicators and indicator cards are treated in separate chapters. The principles of propulsion and powering are most important to the marine engineer, and can only be understood by a thorough study of the subject. In dealing with this the author has used many examples showing the methods of calculation for different types of propulsion and the means for computing the power for given types of ships. The first part of the book is concluded by chapters on refrigeration and electricity.
In Part 11., which is called "Computatione for Engineers," an elementary discussion is given of the mathematics necessary for this work. A general knowledge of the subject is presupposed, but the most essential points of this work are given and illustrated with many useful problems. This feature of the work is designed to be of help to those who wish to
qualify as licensed engineers. In connection with this an appendix is added containing a list of questions which would be asked in an examination for such a position. References are given for the pages in the book which give the information necessary to answer these questions.
Part III., which is the new part of the book, has not been intended to give an exhaustive discussion of the subjects involved, but to present the general principles and describe the details of the machinery. In the chapter on turbines the prominent types of marine turbines are given in detail and actual installations illustrated. The auxiliaries required for turbine installations are also described in full. Similarly, with internal-combustion engines, the prominent types are described and the engines illustrated by photographs and drawings. The advent of gasoline and heavy oil engines brings a comparatively new subject before the marine engineer, and one which requires careful study for efficient operation. Producer gas plants are described rather briefly. giving particularly the method of generating producer gas and the type of engine necessary for using this as a fuel. In closing, a chapter is devoted to the specifications, methods of burning and stowage of oil fucl.

SELECTED MARINE PATENTS.

The publication in this column of a patent specification does not necessarily imply editorial cummendation.
American patents compiled by Delbert H. Decker, Esq., registered patent attorney, Loan \& Trust Building, Washington, D. C.
989.688. DECK-PLATE FTLLER FOR VESSELS USTNG OIL FUEL ALEXANDER WINTON, OF CLEVELAND, OHIO,
Claim 1,-The combinatioo with the filling pipe of a feel tank, of a deck-plate surrounding the filliog end of the pipe, a cover for the deck-

plate, and a laek for the cover operated from the inside of the hull of the boat. Six claims.

1,000, 10 . OUTBOARD CONDENSER, CHARLES WARD AND CHARLES E WARD, OF CHARLESTON, W, VA.
Claim 4.-In an outboard cnoden ser, the combination with boal, of a header pecured to the side of the boat, the said header being divided into

compariments, pipes exiending a diatance from one compartment of the beader and relurning to anotber compaisment of the header, and means constructed and urvanged to be operated from the ioteriar of the boat for closing say number of the said pines. Five elaims.

1,0n0,198. ROWLOCK LEOPOLD ROTHIGERY, OF DETROIT, 31 CH .

Claim,-In a rowlock, in combination with a thole, a baod riog pivetally stcured thereto, a loom ring made in two parts adapted 10 en名ge larough asid band ring, the said iwa parts in the ir assembied condi halding member projecting toward from the band ring.

1,000.139, FLOATING DERRICK FRIEDRICH CORRELL, OF NFW YORK, N, Y,
Cloim 1.-In eombination: a pontoon or barke; a derrick carried thereby, and adapted to control a load; a number of communicating rompartments adapted to retain a lequid ballast; and meana to control the

flow of same in woch a manner that the pontoon is mantanned in a substantially level position under various posilions and conditions of the losd. Thirtecn elaims.

I,000.756, METAB.I.IC HO.IT. IFR.ASK II, D.IRROW, OF AL M1ON, M1C11.

Claim Is boat. sheet melal bottom and sules, and bottom and miden beng secured together at their outer cdges to form a fland-agh joint, wnet and outer end pasts, the nuter posts heiag kriangular in eross aectinn and arranged at the oppmate ends of the boat and allapted to receive between thenicivet the inwardly bent ends of the side pueces, said posts being bolted tomether to frmaly grap the ends of the sides, a series of ribs arranked in and secured to the hottnm and wiles of the boak, inner side rails secared to the upper edges of the ribs and to the inner enul post, outer side rails secured to the upper eleges of the sidee and to the ribs, said outer side preces leing secured at their mpposate ends to the onster cad posts, and sheet thetal hastening and protecting plates
adapted to lacuit anto engazement with the ouster end of the outer end pos and with the eusaging ensls of the outer side rails. (hae elam.

YOKK, 001 , 1 , IFE-IRESERVER, JACOR STROBEL, OF NEW
Clasm 1.-A life preserver, having an air chamber provided with an Inlet port, a valve controlling sand port, a retainer for holding kaid valve the exterior thereaf, for moving said retamer to inoperative position. Sis claims.
R. JONFS, OFSOPELLEFR OSC, NK A D.UNEI.SON IND I.YMAN R. JONFS, OF NFW YURK, N. V.

Clain 1.- The combination with a propeller and a shaft therefor, of means for cecuriag the shaft to the propelier consustung essentially of an eyelet engazing the end of the shaft and she folded part of the propellet

British patents compiled by G. E. Redfern \& Company, chartered patent agents and engineers, 15 South slreet, Finsbury, E. C., and 21 Southampton Building, W'. Cn London.
 HoN. C PAMSONS, OF SEW CASTLEGNTVEA ANO S. S COOK, WALLSEND.
In operation, prestare fuld is supplied to each reciprosatius engine; thence it pasmen by the pipen to the correspondong turhine, and the con: enker. Going askern the engine on each side of the shap is tircetly con

nected with its condenser, the turhines being idie. A reveraing turbine thus beconter unneccssary. For maneurering, the reciporocating engines an he ofrerated indeperniently either both ahead, both astern, or one ahcad and the other atern. The turhine on the sade of the engine ran. other side, when the entine on that side is rumaina, whead that on the
running and driving the center propeller ahead, and this by its wash on the rudder will assist in turming the vessel.

17,06א, HARINE: PROPHLSION, TIIE IION. C. A. PARSONS, KFWCASTLF, ANI) S. S. C(NOK HVALLSESD
This is for a marine turbine installation having additional or cruising turhine parts connected to a propeller shaft hy couplings such as shown

Bo that the adrled thrint prodnced by the power of the additional turbine parts may be balariced in these parts or transmitted to sutable absorbing means.
18.612, NPPAK,ITL'S FOK CONTKOLIING THF: IFITH OF
 FFMCASTLE. 6N.TVNE.
Kelates to submarines, etc. The depths are marked on a stem, and any maik is lirought to the pointer hy turning the hand wheel. If the craft is loelow this level water will enter and raise the float, causing the dise to complete an electricat circuit, includiug the electro-magaet, When the water from the balaniong chamber. When the corfect lewel is reached the water tends to leave the float, breakn the contact, and the ralve closes. If the boat is above the reytired depth the foat falls and is supportied by the dise on hooks which make a circuit causing an electromagnet to ofen a valve and allow arr to ewape from the balancing chamlier and water to enter. The apparatus may be operated by hand.
18,40H, MF..INS FOR IPRFVENTING THE KACING OF MNRINE FRIINFS. P DAVIS, CIESTER.
According to thin invension, two pipen with valves intercepting the steam valve and connected with a shide valve to turn off and on the steam at the sea exposes and covers the propelter, are hrought into initant operation hy a tube open at the bottom and sunk into the outer edge nf the rudder: this tube is carried up the rudder post and connected wish an instrument for changing the courme of currents of elce-

tricity called an electreveter, the wien from which are connected with a switch and second ciectrepeter to tath over from side to side by two motots and ecoentric whecl allacherd to a frame connected to the slide valve and runing in the groove of a foxed table over a continually coscillating har running in the same groove, two adjustable bolts on the bar meeting the eccestric wheel and carrying the frame with the lever of the shde valve to turn steam off and on as reguired to prevent racing.
ti:H1. FIFCTKICAI, ARKINGENENTS FOR PROTFCTING SHIP' JUTTHNS, ETE: J. E. JAMES, HELTON.
Electiodes or current discharge points are carried by insulating devices fixed in the plates and thene pieferably discharge highteasoon currents iuto the water from colls to produce a strong electrical held over collectule points, elc, being dispenard with. it is found that alternating current of high tellsion is most destructive to low forms of sanatic Infe.
11.13t. DEV'BCE FOR CAIMIVG ROH'Gil SF IS BY MFANS OF

A previnus tevice for thas purgose was a receiver filled with oil projeried hy a howitrer and upert during to fight, the oil lowige kept in by the air plestare. Thas mirthod deves not allow a pratly inelined recever is hept closed during projectiont, the ofenting leeing effected by tecelvet is arpt clowed during projectiont, the ofenting lacing effected by the same difficulty, as the shock would not the sufficient to open the receiver. These drawhacks are avoided hy this invention, whirl consists in retaining the cover by spring hooks at the instant of projection, these releasing the cover as soon as the device is expelled. The cover is a plug of wood, and is held in place during the flight through the air hy means of the air presaure, but floast on the water when the device strikes, thes releasing the vil. A modification is adapted for projection by hand.

International Marine Engineering

DECEMBER, 1911.

ITALY'S FIRST TURBINE-DRIVEN CRUISER, THE SAN MARCO.

EY Dacartion altilio.

The lirst talian turbine cruiser, the San Marco, has recently completed a series of very successful steaming trials at Spezia. She was launched at Castellamare, Italy, and engined by Messrs. Ansaldo, Armstrong \& Company, of Sampierdarena. She has the following dimensions:

Length over	461 feet.
Length betwee	42% feet.
Extreme beam	69feet.
Depth	39.9 feet.
Mean draft	23.6 feet

The machinery installation of the San Marco consists of steam turbines with the usual auxiliary machinery, electric lighting machinery, steam heating and evaporating plants, deck machinery and appurtenances for handling and maneuvering.

The turbines are of the Parsons type, designed for a steam pressure at the turhines of 210 pounds (age), and will make about 435 revolutions per minute, developing 20,000 shafthorsepower. There are four shafts, each fitted with one propeller. The installation comprises six ahead turbines, the high

TEREINK. BRIVEX CRVISER SAK MAECO.

ller armor consists of a belt, with a maximutu thickness amidships of 7.87 inches, decreased to 3.16 inches at the ends, and running from stem to stern with a width of 7 feet 3 inches, of which 4 feet $t 1$ inches is below the waterline. The protective deck has a thickness of $11 / 2$ inches. The batiery is an extremely powerful one, including four 10 -inch guns, 45 calibers long. mounted in pairs in turrets, forward and aft, with an arc of fire of 260 degrees. There are eight 7.5 -inch guns, 45 calibers long, in pairs in four turrets at the corners of the superstructure. They have an are of fire of 160 degrees. The secondary battery includes sixteen 3 -inch guns. eight 3 -pounders and four Maxims. There are three $t 8$-inch torpedo tubes, all submerged.
and intermediates are used with low-pressure for cruising in order to secure economy, and four backing turbines, two of which are high-pressure turbines coupled one with each of main high-pressure ahead turbines, and two low-pressure turbines are incorporated into the exhaust ends of each of the low-pressure turbines. The outboard shafts are operated entirely by main high-pressure turbines, the starboard inboard by the low-pressure (starboard) turbine and the intermediatepressure cruising turbine, and the port inboard by the lowpressure (port) turbine and the high-pressure cruising. In maneuvering the propellers work always in pairs at the same side. All four shafts turn outboard.

The turbine casings are parted horizontally. The lower half carries the box-shaped fore and aft bearings, thrust and adjusting block.

The following data of the turhines are interesting :

Number of tubes, 8,944
Diameter, outside, $5 / 6$ inch.
Thickness, $3 / 64$ inch.
Length of tubes between the plates, 7 feet $10 / 4$ inches.
Cooling surface, 11,840 square feet.
Fixhaust inlet (rectangular), $481 / 2$ inches by $805 / 8$ inches.
There is one auxiliary and one dynamo condenser, located

DATA OF BLADES OF THE. TLKHINFS.

The main condensers are located one in each engine room at the after end of the low-pressure turbines. They are oval and of the surface condenser type. The principal data of each main condenser are:
in the forward port engine and dynamo room, respectively. The dimensions of both are:
Number of tubes, 1,550 .
Cooling surface, $1,0,6$ square ieet.
Length between tube plates, $50 \% / 8$ inches.
The boiler equipment consists of fourteen units in four fircrooms. The total grate surface of all the boilers is 1.409 square feet, and the heating surface 48,201 square feet, the ratio is $34-4$ to 1 . The working pressure is 250 pounds. Forced draft system with closed fire-room is used, one blower being provided for each boiler, driven by a vertical inclosed self-lubricating steam engine.

The official mooring trial, the preliminary progressive trials, the six-hour forced draft full power irials, as well as the twenty-four-hour natural draft trials, were successfully made, and finally a ten-hour contracior's steaming radius trial was completed.
Experiments were made in using the turbines in three ways. rirst, for comparatively low speed with all six ahead turbines in operation; this combination resulted in a smaller quantity of steam being required than with either of the other 1 wo combinations. Steam was then admitted initially into the high-pressure cruising turbine, exhausting into the interme-diate-pressure eruising turbine, and from the latler through

separate ppes to each of the main high-pressure turbines. From these latter steam was exhausted into the low-pressure turbines and finally into the condensers. Second, for speed above 20 knots the five-turbine combination ean le used. Steam is admitted initially to the intermediate-pressure cruistink turtane, passing thence to the two main high-pressure turbines, and from each of them to the low-pressure turbine. The high-pressme cruising turline revolves idly in a vacuum. Third, for highest speed only the four main turbines were used, steam being admitted initially to each main high-pressure turbine, exhausted into the low-pressure and then into the condenser, both eruising turbines revolving idlly in a vacuum.

In any of these arrangements the power is governed by throttling, though in the six-turbine combination a by-pass valve is fitted, between the first and second expansion, which may be used, within limits, for this purpose. All matseovering is done with the four main turbines. Alt the turbmes are drained to the air pump. Cflands are bolted to the forward and after casing of each turbine. In order to prevent leakage a steam pressure of about t pound above the atmosphere is usually mantamed in the gland when eruising by means of a systen of piping.

A Cockinern's flexible throttle valve is firted in the main steam pipes, with an emergency governor gear.

The propellers are cast solid of mankanese brouze. Their dimensions are:

Diameter, 7 feet 65 ; incles.
Pitch, 6 feet $10.5 / 8$ inches.
Number of blades, 3 .
Total area oi blades, 27 square feet.
Shafting, outside diameter, 9^{3}, inches,
Shaiting, inside diameter, 456 inches.

Atraming nutius.
Wetled surfare 1.4 .20 squane Irri.
The coal consumption per shaft-horsepower during the steaming radius test was tug puunds, and with natural draft it was t.6o pounds. During the steaming radius test the exhaust of the auxiliary led into the main high-pressure turbines.

The toral seight of machinery installation, including propelling machinery and appendages. auxiliary machinery, piping. hoilers and fittings, smoke pipes and up-takes, lagging and covering. floorings, latders and grating, fittings and gears,
stores, tools and spare parts, carried on board is 1,284 tons, and with the water in the builers, $t, 3,0$ tons.

The trial requirements of the San Mario were based on the resules of lier stster ship San Giorgio, fitted with reciprocating engines, but the San Marco, when going at full power, was required to give a half knot more than the Sin Giorgiv; this condition was easily surpassect.

A MODEL TEST ON A STEAMER.

br a. a. nolenonk, a. a.
The work which is the basis of this article was performed by the author in the summer of tyog on Lake Dlinnetonka, Minnesota. The object of the experiments was to determme the relation between the actual power required to druce a sesvel and the power as determined by a series of model tests, by means of siniple and ine xpensise apparatus. The tests were made in open water, using a small gasoline (petrol) launch fur towing the model and weighing the pull with an ordinary equal arm scale balance. Although it is tot customary to carry on model tests in open water, it was desired to demonstrate that valuable mformation conld be obtained in this way with stich apparatus as could readily be obtained in any loratity. The concordance of the results from this test comfares favorably with mulel tests made in towing tanks, and seems to justify the procedure adonted.
The boat selected as a basis of this test was a 70 -foot wooden steamer owned by the Twin City Rapid Transit Company, of Minucapolis, Mints, and operating on Lake Minnetonka. The steamer was one of a fleet of six boats, exactly alike, constructed by the Rapid Transit Company from designs by R. C. Moore, of Wayzata, Minn. The boats were buit to convey passemgers from the terminals of the suburban trolley tine at Excelsior, a town on the shore of Lake Minnetonka, to different points on the lake. As the boats ran on schedule tine to meet the trolley cars, it was desirable that they should be able to operate in all kinds of weather, earry a large numlier of passengers, and be eapable of a fairly good speed. The ditumsions of the White Bear, the boat used, are as follows:

Length over alf.	zo feet 3 inches.
Beana, cxtreme.	1.5 feet.
Draft, exircme.	5 feet $51 / 2$ inches.
Displacement (light)	35.5 tons.
Weight of machinery	9.2 tons.
Carrying capacity	1.0 passengers.

The outboard protile and body plan of the boat are shown in Figs, 1 and 2. The boal is wide for her length, 10 give a large carrying capacity on small draft. The freeboard is rather low, but was sufficient for the protected waters where the boat was used, since the greatest sweep of unbroken water is about 10 miles.

The boat was powered with a three-cylinder, triple-expansion, reciprocating steam engine with the following dimensions: Diameters of eylinters, high, $5^{1 / 2}$ inches: intermediate, 0 inches; low, 15 inches. stroke, 9 inches. The engine was rated at 150 horsepower at 300 revolutions per minute, but at the maximun power developed in the boat gave an indicated horsepower of $1 t 5$ at $2 z^{8}$ revolutions per minute. The engine exlrausted into a jet condenser which maintained a vacumm of 22.5 inclies. The boiler was of the Roberts watertube type. with $2 t .7$ square fect of grate surface and 2,300 square fret of lieating surface. For maximum power, the boiler pressure was held at 2.10 pounds by the sake. The propeller was a four-bladed, cast-bronze wheel with a diameter of $43^{3 / 4}$ inehes

and a mean pitch of 7^{8} inches. The propeller was not well designed, the pitch varying, both axially and radially, and the blades being very thick. This rendered it very difficult to get a iair valne for the efliciency of the propeller.

A progressive speed trial was run on the White Bear after she had been pulled up on a marine railway, thoronghly serapied, painted and overlauled. In order to get aceurate data on the boat, measurements were taken on the hull and propeller while she was hauled out. The lines of the boat were afterwards faired up and the propeller laid down and the efficiency calculated, A course 3,035 feet long was laid off on Lake Minnetonka in 90 feet of water and earefully surveyed. The day of the trial was nearly ideal, with very little wind. Four runs were made at a speed of approximately 6 knots, two runs at 7 , two runs at 8 , two runs at $81 / 2$, two runs at 10 , and two ruiss at the maximum speed of 10.28 knots. Five indicator eards were taken on each run; the times were

FIO. ", -mpr man.
read with a stop watch and the boiler pressures and revolutions were recorded. The dratt was also taken before and after the test. The results of the speed trials are tabulated in Fig. 3.
The model used in this test was made one-eighth the size of the actual boat, or $81 / 4$ feet long. She was built from the original lines of the ship, which differed from those obtained by measurement by a small amonnt, easily corrected. The model was huilt of two thicknesses of thin eedar planking over solid molds, which were fastened to a rigid backbone, giving a very substantial and watertight construction. A short deck was fitted in the bow of the model, to keep the water from splashing in during the test, while the after part was left open to permit ballasting. As soon as the load line was determined by measurements in the actual boat, the same line was located on the model and she was ballasted to float on that waterline. The ballast consisted of bags of sand, weighing in all 8 o pounds. The model itself weighed 68.5 pounds, so the total displacement was 148.5 pounds. The center line of the propefler shaft was located on the model as shown in Fig. 4, and the towing eord attached to the bow in that line. This
rendered any change of trim occurring in towing the model virtually the same as caused in the actual boat by the thrust of the propeller.

Considerahle experimentation was necessary to devise a satisfactory towing arrangement for the model, for on its

RESULTS OF SPEED TRIAL						
SPEED KNOIS	6.37	712	285	8.40	989	10.28
REVS PERMIN	131.0	148.9	168.0	183.1	223.5	2380
RED. MER	334.9	4479	55.99	6669	10258	11393
H.M.P.	17.6	268	37.8	489	91.9	114.8

tic. 1.
efficiency depended the success of the entire undertaking. A sketch of the towing device is shown in Fig. \& A jo-foot gasoline (petrol) launch with a 14 -horsepower engine was used to provide the motive power. In order to have a steady foundation to support the scales for weighing the pull of the model, they were monnted on a temporary platform set up on the deek of the sailboat which was towed hy the launeh. The sailboat was a broad, shallow hoat of the skimming-dish type, was easily towed and afforded a very stable support for the scale. The sailboat was towed directly astern of the launch and comnected to it by a rigid strut, 12 feet long. If the engine of the launch missed an explosion, and so tended to make the speed irrekular, the momentum of the sailboat would be transmitted to the launch through the strut, and so would minimize any variation in speed. To give the sailboat greater stahility about 2,000 pounds of sand ballast were placed in the

ria. A. - POSistok of TOwivg colv joz modrt
hoat, almost doubling her displacement. This additoonal weight materially assisted in keeping the speed of the launch steady. It was desirable to get points on the resistanee curve of the model at as low a speed as possible. The problem arose, therefore, to slow the speed of the launch down to about $13 / 2$ miles an bour and get have the engine turning over fass enough to run steadily. This was accomplished by taking a plank, 8 feet tong and 2 feet wide, weighted on ane edge, and placing it athwartships under the sailboat directly in front of the bilge boards. The plank exposed a large area to the line of motion of the boat, and so greatly increased her resistance With this arrangement in place it was found that a speed of one and one-tenth miles an hour could be ohtained with the
engine running steadily at between 200 and 300 revolutions per minute.
After considerable investigation as to the best type of weighing apparatus, it was decided to use an ordinary equal arm scale balance. The scale arm was graduated in ounces and quarter ounces up to 1 pound, and additional weights, when needed, were placed in the scale pan. The scale was mounted on a platform on the port side of the mast of the
was regulated so that with no pull on the towing cord, and the sliding weight set at 8 ounces, the arm of the balance was horizontal. This brought the pointer over the zero mark on the scale. Other divisions were marked on the vertical scale, corresponding to the position of the pointer when the sliding weight was set at different points, 2 ounces apart. With this arrangement it was found that the rubber bands took up small, irregular variations in pull; and by a careful setting of the

Fig. b.-NTPEIMEKTAL TOWING PETVE
sailboat. The towing cord was conducted over bicycle wheels with the tires removed, as frictionless pulleys, from the model to the scale. One wheel was secured in a horizontal position on the end of a 12 -foot boom swung out to the side of the boat. The other wheel was placed vertically under the weighing platform and led the cord up to the scale. The model was towed about 4 fect aft of the outer end of the boom, in which position it could rest in quiet water, usually undisturbed by any waves from the launch. The towing cord consisted of strong fishing line which had enough elasticity to take up sudden shocks and jerks, yet when stretched out taut by a

शic. 6.
steady pull would transmat all variations of resistance large enough to be detected by the scale.
In the preliminary runs it was found that the pull varied incessantly, and to such a degree that it was impossible to balance up the scale. The horizontal arm would vibrate so violently as to hit the stops and prevent any possibility of accurate weighing. To surmount this difficulty the device illustrated in Fig. 6 was attached to the scale. Two rubber bands were looped over yokes, as shown. One yoke was fastened to the same ring which held the towing cord, and the other was fastened to the framework which supported the scale. The latter was secured so that the tension in the elastics could be adjusted to any desired amount. A pointer was fastened to the cross-bar of the balance, which moved up and down over a rertical scale. The tension in the elaatic
sliding weight the pointer could be made to vibrate over equa? distances on either side of the rero line. When this condition was obtained the weights balanced the average pull.
It was found that the model had a tendency to yaw occasionally from one side to the other when being towed. This yawing brought an increased pull on the scale and vitiated the results. To prevent this a long spike was placed in the bow of the model and a wire loop fastened to the end of a bamboo pole. This loop was then placed over the spike and the other end of the pole held in the sailboat. The distance from the loop to the boat was adjusted so that when the mode! was

F10. 7.
towing straight the loop did not touch the spike. If the model started to yaw, however, it would be ehecked by the spike striking the side of the loop and the model would again resume its true course. It was found that successful runs could only be made in very quiet water: a slight wind and its accompanying waves would spoil the runs, and at some speeds the bow waves of the launch interfered with the model *lightly. A piece of heary canvas was suspended on a horizontal pole and held on the port side of the launch. The position of the pole was adjusted so that the bottom edge of the canvas drageed over the water. This broke up the waves from the launch, so that they produced no effect on the actions of the model.

An important part of the test came in the laying out of a course for the model runs. This was done in a bay of Big

Island, Lake Minnetonka. The bay was well shetered irom the wind, and had water of sufficient depth for the test close to shore. A course approximately $\$ 00$ feet long was laid off, with range poles every 100 feet and a free zun of 200 feet at each end of the course. One row of range poles was driven into the bottom close to the shore, and another row, parallel to the first, was placed in about 5 feet of water. These poles were driven down so that 4 feet were left projecting out of the water. The course line was lecated parallel to the line of stakes and about 250 feet out from shore in to feet of water. The line of the course was defined by sight poles set up on shore, two at each end of the course, to enable the man steering the launch to get onto the course readily.

It may be well to give a brief description of the manner of running the tests and the positions of the observers. One man steered the launch and tended the engine. He had to use great care to get the launch and the sailboat squarely on the course and running steadily before coming to the first line of range poles. Another person was stationed in the launch to take the time readings in passing the successive marks on the course. A split-second stop watch was used, so the time over

510. 8.
the whole course was obtained independently of the summation of the individual readings. Another man recorded the time readings as called off by the timer and the pull as reported by the man in charge of the weighing apparatus. On the sailboat one man took the pull readings and kept the pointer as near the zero mark as possible by shifting the sliding weight. Another man steered the sailboat on the turns at the end of a run and kept her directly astern of the launch during each test. A third man held the pole which kept the model from yawing and disengaged any weeds or floating debris which the model ran afoul of during the run. A tender was towed from the sailboat for use in case it was necessary to make any adjustments to the model during the series of runs.
After the apparatus was all put into working order, sixty runs were made over the course at speeds from I to 5 miles an hour. The data from these runs was carefully faired up and unreliable runs discarded. The displacement of the steamer was calculated from the measured lines and found to be 79.635 pounds, or 35.75 tons. The wetted surface of the hull was calculated by Taylor's mean secant method and amounted to 967.75 square feet. The resistance curves of the model were drawn, as shown in the accompanying figure.

Average speeds in feet per second were used as abscissat and the corresponding average pull in pounds as ordinates. Each run was plotted and the best representation curve was drawn. It was necessary to sub-divide this resistance, as experimentally determined, into the frictional and residual or wavemaking resistances. The wetted surface of the model was

calculated from the wetted surface of the Doat by the theory of mechanical simultude, and was found to be 14.75 square feel. The frictional resistance of a ship, according to William Froude's formula, is $R_{t}=F S V^{\text {r }}$, where R_{r} is the frictional resistance in pounds, F is the coefficient of friction, S is the

wetted surface of the ship in square feet, and V is the velocity of the ship in knots. The value of F for the model was .O:153 and the exponent n 1.825, as determined from Froude's tables. By the use of this formula it was possible to compute the resistance of the model due to skin friction at different speeds. A curve through these points gave the curve of
irictional resistance. The residnal resistance, the other com"ponent of the total resistance, is composel of stream-tine resistance, eddy-making and wave-making resistances, and so forth. These resistances cannot be readily separated, so the curve plotted as wave-making resistance has ordinates equal to the difference of the total and frictional resistance ordinates.

The next step was the construction of curves for the steamer similar to those for the nodel. The frictional resistance was calculated directly from Froude's formula, using the value of F as .oogt and n as 1.825 . By the laws of the resistance of ships at corresponding speeds-that is, speeds which vary according to the square root of the length of the ships-the residual resistance is proportional to the displacements of the vessels. Applying this to the steamer and its model, the residual resistance of the boat is to the residual resistance of the model directly as the displacement at speeds which are proportional to $\frac{\sqrt{70.25}}{\sqrt{8.75}}$. This, however, assumes that the displacements of the boat and model are proportional to the cube of their lengths. Using the displacement of the (875)
stcamer as calculated, and multiplying thy the ratio $(10.25)^{2}$ it was found that the displacenent of the nodel should be 15.29 pounds. As tested, the model weiglted only 48.5 pounds, This discrepancy is due to the fact that the steamer was built somewhat fuller than the original design called for, and 80 , at a given load line, would have a proportionally greater displacement than the model. Before the residual resistance of the model could be used in calculating the residual resistance of the hoat it had to be raised to the proper value for a model with 153.9 pounds displacement. Using the theory of mechanical similitude, the residual resistance for boats of the same length and at the same speed varies as the two-thirds power of the displacement. Therefore, the corrected resistance of the model equaled the observed residual resistanec multiplied by
the ratio $\frac{(153.9)^{2 / 2}}{(148.5)^{2 / 2}}$. U'sing this corrected resistance, the re-
sidual resistance curve of the steamer was easily determined. The sum of the ordinates of the frictional and wave-making resistance curves at any point gave the ordinate for the curves of total resistance which was next drawn.
Next, the effective horsepower of the engine at different speeds-that is, the power utilized in actually propelling the troat-was determined. The total resistance of the steaner at a kiven speed, multiplied by that speed in feet per second and divided by 550 , gives the value of the effective horsepower at that sneed. The effective horsepower curve, whose ordinates are oltained as just described, was affected by a factor to reduce it to indicated horsepnwer, so that it could be compared with the indicated horsepower curve obtained from the speed trial. Indicated horsepower cquals effective horsepower divided by the product of the efficiency of the engine. the efficiency of the pronclier and the hull efficiency of the boat. The product of these last three factors is called the efficiency of propulsion. An engine efficiency of 87 percent was adopted as a fair value after comparison with other engines of the same type and power. The efficiency of the propeller was more difficul: to estimate, due to the irregularities in pitch and thick blades. The efficiency was calculated from data and curves worked out by D. W. Taylor and allowance made for the bad features of the wherl. The combined efficiency of the propeller and hull ranged from $581 / 2$ percent to 63 percent. The indicated horsepower curve was derived from the effective horsepower in the manner just rescribed, and was
plotted in the same diagram as the horsepower obtained from the speed trial. These horsepower curves check up very well, and since the curves cross and recross it would indicate that there is no very large constant error entering the work. The variance hetueen the curves is in most cases less than 2 percent. The itulicators used in obtaining the indicated horsepower on the speed trial are not accurate to leetter than 2 percent, so the results check within that allowalle deviation.

There is a means of comparison between model work and actual performance which has been found more satisfactory in practice than a direet comparison of indicated horsepower. This consists of finding the ratio of the effective horsepower from the model test to the indicated horsepower from the speed trial. In the accompanying table of results, Fig. 7, the value of this factor is given for the test under discussion. In Fig. 7 also are given the values of the resistances of the steamer and model in pounds and ounces and the effective and indicated horsepower.
The results obtained in this experiment in a great measure vindicate the use of the simple apparatus used in testing. They should also demonstrate the practicability of model testing in open water as a mearns of estimating the power necessary to drive a ship at a given speed.

STEEL STEAM COLLIER NEWTON.

The steanship Jicoton, which was launched at the yards of the Fore River Shipbuilding Company, Quincy, Mass., Sept. 25. I9tt, forms a notable addition to the fleet of the New England Coal \& Coke Company, of Boston. She is of the same general type as the Everett, Malden and Melrose, constructed for the above company about four years ago by the Fore River Shipbuilding Company, and has been especially designed for rapid and economical handling of bulk coal freight between the South and Roston.

The Newton is a single-screw steamer with the machinery located aft, constructed of steel with scantlings, in accordance with the Ancrican Bureau of Shipping and British Corporation for the highest class awarded by these societies. and the principal dimensions are as follows:
Length from fore side of stem to aft side
of rudder prost. 889 feet.

Load draft 2,3 feet.
Deadweight earried on this draft exclusive
of water and bunker coal
7.200 tons,

Genernl arks ngement.
The general arrangement of the vessel is such that she has a straight stem, semi-elliptical stern, one continuous complete steel deck, and a full poop, bridge and top-gallant forecastle. Accommodations are provided in the 'midship louse for the officers, with saloon, guest room, spare room, pantry, storereoms, baths and toilets: and on the bridge deck is a specially arranged suite for the captain, with a commodinus chart room and pilot honse over it. The long poop encloses quarters for the firemen, seamen, oilers and petty officers, and in the Liverpool house on the poop deck are arranged the quarters of the engineers, with officers' and ensineers' mess, baths and toilets. The erew of the Nezton enmprises forty three men.

The space allotted to the earrying of cargo has been subdivided by watertight bulkheads into five large holds, constructed on what is known as the self-trimming system. This consists in sloping the hatchways from their side coamings to the side of the ship at an angle of about 45 degrees, the triangular prism formed by this line with the topsides and the
spar deck being cut off and utilized as topside ballast tanks, to be filled with water when the vessel is running light. In addition to these ballast tankw a deep double bottom is provided right fore and aft for the carriage of water ballast besides the usual fore and after peak tanks. The great capacity for water ballast thus provided will insure a good immersion of the vessel when in light condition, thereby providing greater stability and guarding against emersion of the propeller in this condition.

The double bottom is divided longitudinally all fore and aft by a watertight center keelson with the compartments on each side of same handled by independent pumping systems, By filling or draining tanks on cither side the vessel may always be kept in upright position while loading. This condition, which is not obtainable in any other colliers on the American coast except the Eterell, Malden and Melrose, eliminates the necessity of trinuming cargo while loading, and the holds may be filled to their maximum capacity of 7,200 tons in less than six hours. This vessel, in fact, closely approaches the perfect self-trimmer-the inattainable ideal of all shipowners.
runs by gravity from a daily service tank supplied by the fresh water sanitary pump. The officers' lavatories are supplied with hot as well as cold water.
The electric light plant consists of one 25-kilowatt, directconnected General Electric Company marine generating set with a combined generating and distributing switchboard. The distribution is on the two-wire system, and supplies current for one 18 -inch searchlight, about 150 16-candlepower incandescent lamps and the required running and signal lights,

Living and public rooms throughout the vessel are provided with steam heat designed to maintain a temperature in zero weather of 65 degrees F. Cowl ventilators are fitted to all living quarters,

The life-saving outfit consists of two 24 -foot wooden lifeboats, one t6-foot woorten dinghy and one 20 -foot wooden gig, fitted with a gasoline (petrol) engine. The lifeboats are stowed on the navigating bridge and handled by ordinary round bar davits. The dinghy and gig are stowed on skid beams outboard oi the poop deck house, and handled by davits of the Mallory type.

Each bold is operated throngh two cargo hatches 30 feet in breadth by 15 feet in length. The hatch covers are of steel, and of special construction, to insure absolute watertightness and quick handling of the covers in opening and closing. The vessel is usually unloaded by means of grabs, but a set of kingposts and cargo booms will be supplied for use in emergency or when grabs are not available.

The vessel will be rigked with three pole masts, the fore and main masts being of steel and the mizzen mast of wood. A complete suit of sails will he provided, comprising fore and main sails and staysails.

The poop deck from the front of the house aft and the bridge deck are laid with 3 -inch by 5 -inch clear long-leaf yellow pinc, the holds are ceiled with two $21 / 2$-inch thicknesses of North Carolina pine and the flat of the coal bunker with 3 -inch North Carolina pine.

The joiner work and furniture in quarters is finished generally in oak. Transoms and seats are upholstered in dark green rep or pantasote. 'The floors in officers' and engineers' quarters are covered with heavy brown linoleum, in the pilothouse, chart room, captain's office and saloon with rubber tiling; the galley floor is laid in unfinished red tile and the bathrooms in ceramic tile.

The sanitary arrangements are very complete, running water being supplied to all fixtures. The salt water is kept under pressure by a salt water sanitary pump, while the fresh water

PRUPEHLING MACHINERY.
The propelling machinery, located in the stern of the ship, consists of a vertical inverted, three-cylinder, triple-expansion engine, with cylinders $25,41,68$ inches diameter, having a stroke of 4^{8} inches, supplied with steam at tgo pounds pressure by three single-ended Scotch boilers working under a heated forced draft system.

The bed-plate of the main engine is of the usual box section type of cast iron in three sections, having six main bearings of cast iron lined with white metal. The bearing caps are of forged steel. All lower lalves of main bearings may be removed while the crankshaft is in position. The crankshaft is of the built-up type, of forged steel throughout, in three interchangeable reversible sections. The diameter of the shaft at the bearings is $13^{1 / 4}$ inches. The crank pins are 14 inches diameter by t 4 inches long, the crank slabs 26 inches wide by $9^{1 / 2}$ inches thick, and all couplings are 26 inches diameter by $31 / 4$ incher thick, joined by six steel bolts.

The cylinders are supported by six cast iron columns of box section, three front and three back. All crosshead guides are fitted for water circulation. The cylinders are arranged, beginning at the forward end of the engine, high-pressure, inter-inediate-pressure and low-pressure. The high-pressure cylinder is fitted with a liner, and the valve is of piston type, $\mathbf{t} 3$ inclies diameter, taking steam in the middle and exhausting over the ends. The interntediate and low-pressure cylinders
are fitted with double-ported slide valves, wurking on cast iron false seats. All valves are fitted with balance cylinders for taking weight of valves and gear. In addition, the intermediate and low-pressure slide valves are fitted with balance rings on the back for relieving pressure on valve seat.

The pistons are of conical fornt, the high-pressure is of cast iron, while the intermediate and low-pressure are of cast steel. All pistons are fitted with Mudd's rings and cast iron followers. The piston rods are 6 inches diameter, the lowpressure being fitted with a tail rod 4 inches diameter. Piston rods and valve stems are packed with metallic packing. The forged steel crossheads are secured to the piston rods by steel nuts, the lower ends of the rods being tapered to fit the crossheads. Crosshead slippers are cast iron faced with white metal, and crosshead pins are 7 inches diameter and 71/2 inches long. The connecting rods are forged stcel, g feet between centers. The top and bottom end boxes are cast steel lined with white metal, the caps being secured by forged steel binders. The valve gear is of the usnal Stephenson double* bar link gear type.

An 8 -inch balanced throule valve worked by a hand-wheel. and a butterfly value worked by a hand lever, control the supply of steam to the high-pressure valve chest. The receivers are cast with the cylinders. The main exhaust pipe to the condenser is of copper, 21 inches diameter.

The reversing gear consists of a direct-acting steam cylinder, 12 inches diameter and 18 inches stroke, secured to the back of the intermediate-pressure cylinder. A reverse shaft, $60 / 2$ inches diameter, carried in bearings at the back of the engine, transmits motion from the reverse engine to the links. The cut-off of each valve may be adjusted separately by means of a sliding block worked in slotted reverse shaft arms. Smooth action of the reversing engine is secured by a 6 -inch diameter piston working in a hydraulic cylinder. A 6 -inch by 6 -inch single-cylinder reversible turning engine is fitted at after end of the main engine bed-plate on sliding adjustable foundation.

The thrust shaft is $13 y^{\prime}$ inches diameter, with nine collars 20 inches diameter, $17 / 1$ inches thick, forged solid with the shaft. The propeller shaft is $141 \mathrm{M} / 16$ inches diameter, protected throughout its entire length by composition sleeve shrunk in place. The propeller is secured to the tapered end of the shaft by a forged steel nut and feather. All shaft couplings are 26 inches diameter, $3^{1 / 4}$ inches thick, connected by six forged steel bolts $3^{1 / 3}$ inches diameter.

The thrust bearing is of the usual horseshoe type, having nine adjustable cast iron horseshoes faced with white metal. Fach shoe may be adjusted separately, while the entire bearing may be moved fore and aft by means of wedges. The bottom of the pedestal forms an oil chamber into which the eollars project. The stern tube bearings are of composition, lined with lignum vite.

The propeller is of the built-up type, 16 feet 9 inches diameter, 18 feet pitch, 92.3 square feet developed area, having four adjustable bronze blades secured to a cast iront hub by bronze studs and nuts. The pitch may be adjusted from 17 feet to io feet.
nothere
The boilers are 14 feet 2 inches mean diameter and 12 feet 6 inches long, arrangert in a single fire room. Each boiler has three Morison furnaces, 44 inches inside diameter, and three combustion chambers. The tubes are $2^{1 / 2}$ inches outside diameter. The total heating surface for the three boilers is $7,40 \%$ square feet, with 165 square feet of grate, giving a ratio of about 45 to I . The grates are about 5 feet long.

Air for the heated forced draft is delivered to the furnaces by a fan located in the engine roont and driven by a 6 -inch by 5 -inch vertical engine, working at a steam pressure of 125
pounds. The fan is 84 inches diameter, and at 3 t2 revolutions per minute delivers 24,000 cubic feet of air per minute at a pressure of 3 inches of water. On each up-take there is a heater hox containing 19835 -inch tubes 3 feet 6 inches long, around which the air passes before entering the furnaces.

The vessel is fitted with one double circular stack, 9 feet 6 inches outside diameter, about 80 feet high above the grates.

Avxiliakies.

The air pump is of the Edwards type, 24 inches diameter, 20 -inch stroke, driven by beams and links from the lowpressure crosshead. The body of the pump is cast iron, having a composition liner.

The condenser, placed on brackets at the back of the engine, has a cylindrical steel plate shell with east iron water chests and covers. There are $1,394 / 7 / 4$-inch brass tubes, 11 feet long between tube sheets, giving a cooling surface of 3.011 square feet. The tube ends are packed in the aswal manner with corset lace packing secured by brass glands serewed into rolled composition tube sheets. Circulating water for the condenser is taken from a centrifugal pump of the Fore River type, having 12 -inch suction and discharge. The pump, driven by an 8 -inch by 8 -inch vertical engine, has the following connections: Suction from sea and discharged overboard through condenser, also a small connection is fitted to the evaporator.

The following additional pumps are fitted: Two feed pumps, so inches by 7 inches by 10 inches vertical duplex Blake, Admiralty type, with suctions from sea, after tank, auxiliary condenser, feed tank and boilers. and discharge through the feed-water heater or direct to the boiler through the main or auxiliary feed line, or overboard. The connections are such that either pump can be used independently of the other. When acting as feed punus they are automatically controlled by a float in the feed tanks.
Two ballast pumps, 10 inches by 12 inches by 10 inches, vertical duplex, with suction from sea, bilge manifold, ballast manifolds, and from engine and fire-room bilges, and discharge to fire main, ballast manifolds and overboard.

Two bilge pumps, $4^{\frac{2}{3}}$ inches by 20 inches. plunger type, connected to the main air pump crosshead, have suction from the engiue and fire-room bilges and bilge manifolds, with discharge overboard.

One salt-water deck service and fire pump. 6 inches by 4 inches by 6 inches, horizontal duplex, with suction from sea and discharge to the sanitary system, fire main, deck-washing pipe and engine-water scrvice. This pump is interchangeable with the auxiliary condenser circulating pump.
One fresh-water pump, $31 / 2$ inches by 4 inches by 4 inches. horizontal simplex, with suction front fresh-water tanks and discharge to ship's fresh-water system.
One auxiliary condenser circulating pump, 6 inches by 4 inches by 6 inches, with suction from sea, discharge end of condenser and after tank, through the auxiliary condenser overboard or to the top-side tanks and deek service lines.
One z-inch Hancock injector is fitted, with suction from the reserve feed tank, auxiliary condenser and sea, discharge to the auxiliary feed line and hose connection.

An auxiliary condeuser containing 602 square feet of cooling surface is located in the engine room Circulating water for this condenser is taken from the deck service and fire pumps.

A feed-water heater of the Quiggins vertical type is located in the engine room on the discharge side of the feed pumps. The heater has a rated capacity of 2,700 horsepower.

One 25 -ton evaporator of the Blake type is installed in the after end of the engine room. Steam for operating is taken from the auxiliary steam line, and the vapor is discharged to the condenser, feed tank and after tank.

The refrigerating plant consists of a $1-t o n$ Brunswick am-
monia compressor driven directly by a vertical engive. Both fire-room ventilators are fitted with sheaves for hoisting ashes. A Hyde double-cylinder ash-hoist engine is fitted for raising ashes to the spar deck, where they are handled on trolley ways on each side of the ship. A hand ash-hoist gear is also fitted.

deck machineky,

The steering gear is of the Hyde steam and hand-gear type, with an 8 -inch by 8 -inch engine, operated by a telemotor, with steering stands located in pilot house, on flying bridges à:d on poop deck house aft. An emergency steering gear is fitted, consisting of a tackle leading from a spare tiller to winch on spar deck.

A No. ir Hyde steam-brake windlass is located on the forecastle deck, operated by a worm and spindle from a 12 -inch by 12 -inch vertical engine on deck below. The wildcats on the windlass are suitable for $21 / 4$-inch stild-link cable. Large quick operating warping ends are fitted on each side of the windlass. Ten double-cylinder 8 -inch by 8 -inch Hyde reversible steam winches are located on the spar deck for cargo and hatchhandling purposes. A Hyde steam, quick-warping capstan is fitted on the poop deck with the engine above the deck.

GAS ENGINES; THEIR DESIGN AND APPLICATION.

EY E, W, PRACY,

(Continued from page 459.)

EXPLOSIVE MIXTURES

Many things affect the pressure value of an explosion in a confined space. The principal features are ignition, proportions of mixtures and pressure under which they ignite. By means of many experiments and methods too complicated to detail here, it has been fairly well established that the explosion in an engine is about as follows: First, the mixture is ignited at a given point, and from this point a little ball of flame extends in all directions. The ignition and the forming of this little ball of flame occupy most of the time necessary for ignition, as after the ball bas attained a certain size the mixture seems to detonate and to burn so quickly that it is not possible to measure the time. The reason for this is that when the mixture is ignited, especially if there be a fat, hot spark or other certain means of ignition, eombustion spreads on all sides, increasing the temperature and pressure until the temperature and pressure of the entire mass has been so raised that it detonates or all takes fire at once from its own heat, irrespective of the combustion traveling out from the original point of ignition. This, of course, refers to modern engines of fairly high compression whose charge is mixed outside of the cylinder and introdueed en masse. In an oldfashioned engine of very low compression, or injection engines, the process would be very different to that of the engines in most general usc, which employ gas or carbureted mixtures.

The pressures obtainahle by different mixtures have been worked out in great detail by many experimenters, but most of these experiments have not been under gas-engite conditions, but rather with pure gases with atmospheric pressures undiluted with other gases. However, some practical and valuable experiments have been performed by Clerk and afterwards by Grover. Strong and weak gases show decidedly different characteristics in these experiments. Vapors of gasoline and distillates may be said to show practically the same characteristics as gas, but as there is no accurate way of measuring their volumes the only way of obtaining data relative to vaporous mixtures is to note the effect on the engine or on the experimental cylinder for a definite period of time in the different experiments and then check tho
amount of liquid used. In pressures and temperature they may be said to bear a general relation to strong gases in proportion to their respective calorific values. It is generally supposed that products of combustion when mixed with fresh charges cecrease the maxinum pressure and entirely reduce the efficiency of the clarge. This supposition is entirely nullified by experiment and by the statement of Grover (page 217 , third edition). The experiments carried out by Grover show that the greatest rise in pressure takes place when there are about 30 percent of particles of combustion present under a provided charge. This determines vetinitely that gasengine men need not carry scavenging devices to an extreme. While such devices have shown an increase of power it is rather due to the extra mixture admitted to the cylinder than to any increase in cfficiency. Making a general review of the experiments the following data may be synopsitized:
Mistures-When the proportion of gas to air is 1 to 15 the explosion is very weak.
When the proportion of volume is I to 16 the mixture can rarely be ignited.
When it is I to 4 , or 5 , the mixture is so rich that it can rarely be ignited.
The maximum point is, of course, purely a matter of eliemistry of the fuel, but in a general way it may be said that a mixture of \mathbf{I} to 10 and $\mathbf{1 2}$ is about right.
Relative to inert gases present about 55 percent of the products of combustion may be introduced without preventing the ignition; more than this is apt to so act.
In general, it may be said that the following is true of mixtures of all kinds:
With weak mixtures the maximum pressure is least and the excess of pure air is greatest.
The maximum pressure obtained from a given quantity of gas rises as the excess of air is diminished by the addition of particles of combustion, but this does not hold good when the volume of pure air to gas approaches the proportion of so to 1 .
The explosion becomes more rapid when excess of air is replaced by neutral gases.
The time limit in the exploding mixtures is an important item in most mixtures of maximum pressure, and is reached in one-eighth to one-quarter seconds; that is, with low compression, with cold cylinders and jump-spark ignition. Under ligh compression, hot cylinders and hot make-and-break spark, the time would be inconecivably short; at the same time, if the spark is unduly retarded or the mixture unduly rich, combustion will still be in process and the charge goes into the exhatst pipe. These things should be carefully taken into consideration in designing an engine, especially a highspeed engine, as the combustion takes an additional amount of time.
Carbureted mixtures may be taken at the volume of air because they consist primarily of fincly divided spray of a nominal volume carried in the air, but when the air beeomes heated this spray is vaporized, and occupies a volume approximately equal to that of gas of equal calorific value. No experiments are known which establish this fact, but general action of the engine valves, etc., seem to indicate that such is the case. Wben an engine, particularly a high-speed engine, persistently blazes in exhaust pipe it is important that the richness of the mixture be reduced or that the speed be reduced or the spark advanced if any economy is to be hoped for.
Temperatures-Maximum temperatures of explosion frequently go as high as 4,000 degrees, but this does not mean that any part of the engine must be made to withstand 4,000 degrees, because the maximum temperature varies almost directly with the maximum pressure and its duration is infinitestimally short. Hence the gas-engine man is not vitally concerned with the maximum temperatures of mixtures, even for purposes of design. If the mixture contains considerable
hydrogen, every provision should be made for cool gas and avoidance of heat.

With very high compression, i. e., I50 pounds upwards, in engines having gases high in the perventage of hydrogen, special provisions must be made for lieat and for a large difference in expansion between the cylinder walls and the jacket walls on account of their difference in temperature. The maximum pressure is found to vary almost exactly with the heat units present in the mixture.

The ignition temperature of the various gaseous mixtures is about as follows:

Hydrogen combines with oxygen at about 1,100 degrees F.
Producer gas combines with the oxygen of the air at about 3,700 degrees F . Hence it is easy to see that if a high compression is carried and the engine has good ignition, the combustion will not have to proceed very far before the pressure and temperature are such that the whole mass will detonate.
Pre-ignition should be most carefully guarded against. In small engines there is comparatively small danger of preignition on account of the large amount of cooling surface in proportion to the volume; but as the cooling surface increases as the square of the dimension of the engine wall, while the volume increases as the cube, it is easy to see that a point is reached in which the volume is so much greater in proportion to cooling surface that the center portion of the mixture can become very highly heated from compression and may preignite.

When one remembers that in large gas engines of 24 inches diameter or thereabouts, and with 300 pounds maximum explosion pressure, the total pressure would be about 132,000 pounds, or nearly zo tons, which would be very apt to wreck the strongest built engine. For this reason it is not advisable to build gas or oil engines of the carbureted type larger than 18 inches in diameter.

In connection with the exploding of mixtures on account of their already mentioned high temperature and small entropy or mass, it is probable that the introduction of water into the eylinder may become a very important factor of gas-engine design in the future, but it will not be done in the present haphazard manner. Among its nany advantages are that it raises the thermal efficiency, permits compounding, may dispense with jackets by injection on the suction stroke, and the exhaust may be handled in the same manner as the exhaust of the average steam engine is used to-day for the heating of houses, etc.
Carbwretion and Mirtures-The making of proper mixtures for the gas engine with fixed gas is a very simple proposition, simply requiring valves or orifices so arranged that the air and gas flow to the engine in certain fixed proportions in a continual stream. But with liquid fuels considerable complication is involved, because the fuel must first he vaporized and then mixed with air in suitable proportions for combustion and explosion.

The liquid fuels, so far as the gas engine is concerned, divide themselves into two classes-thore that vaporize at atmospheric temperatures and those that require higher temperatures. The first class includes gasoline (petrol), naphtha, benzine and lighter distillates; the second class includes the heavy distillates-kerosene (paraffin), alcohol, etc. There are many different carbureters for carbureting the first, and they include the many well-known types used on automobiles and marine and stationary engines.

All of those in common use depend upon the spraying of a jet of fuel drawn into a rapidly-moving current of air, and may be divided into three classes. They are the gravity feed, the float feed and the overflow. In the gravity feed the fuel is led to the jet directly from a source of supply by gravity. The objection to this type of carburetor is that the level of the fuel may be changelf and the pressure otherwise changed,
causing a difference in the amount of fuel discharged from the jet.

The float-feed type involves the use of a small needle valve, controlled by a float. This and the gravity feed are the most commonly-used types of carburetors because of their greater reliability, and they will submit to a fairly sudden change of conditions, but they are by no means perfect.
In the overflow type of carburetor the pressure at the jet is maintained constant by means of an overflow pipe, which in turn requires a pump to supply the fuel. This type of carburetor is liable to the same variations as the float feed, and has the additional complication of the pump, and the additional adrantage of allowing the fuel tank to be below the engine, or, as in the case of a stationary engine, to be buried in the ground, making this type of carburetor almost a necessity for installations in which the tank is required to be buried to meet underu riter specifications, etc.
In addition to these three general types of earburetors are a number of special carburetors which aim to deliver fuel in definite proportions to the amount of air used. Some of them make use of sulnall pump plungers, others fans, driven by the air current. In general, their mechanism has been found faulty as regards wearing qualities or reliability or as regards their inability to deliver definite quantities of fuel in the rapid succession required, yet it is quite possible that such a carburetor will be developed on a practical basis.
In making a carbureted mixture and planuing for same it is necessary to carefully distinguish between a mixture in which the particles of fuel are in suspension, seen in fine drops or spray, or in the later stage of the mixture in which it is in the form of vapor well mixed with air. During the first stage it is necessary that the air travel at the very highest velocity or the suspended fuel will condense on the sides of the pipe and run downwards or back to the carburetor, bat after the fuel has changed from suspended particles to properls nitixed vapor it can travel at a much lower velocity without condensation. In connection with this it should be noted that the velocity of gas in the inlet pipes is as many times greater than the piston velocity as the area of the piston is to the area of the pipe.
The cycles, or number of piston displacements per revolution, have no effect upon the gas velocity, provided there are less than four displacements of mixture per two revolutions, for the reason that when the inlet valve is open and the piston sucking the charge in, the charge must travel in proportion to the full piston velocity, irrespective of the fact that there may be only one piston displacement of mixture in two revolutions. This fact is somewhat modified if the chamber of the valves or the branch pipe lave a relatively large volume in whith to store mixture between strokes.
If a certain velocity through the carburetor, and for some distance beyond it, is not maimained, and the mixture lias its velocity reduced before the suspended particles are all vaporized, these particles will condense and run back into the carburetor, which accounts for the mixture growing weak and firing back when the engine is brougltt down to low speed, together with the fact that there is less vacuun to draw out the fuel through the nozzle, from which we gather that if it is desirable, as in a marine engine, to have the speed of the engine controllable over a wide range of volume, a very small pipe should be used which will maintain sufficient velocity for carburetion when the engine is running most slowly. It may be said that the proper velocity for the best results is from 5,000 to 7,000 feet per miuute; lower velocities than these are apt to deposit fuel on the sides of the pipe, but in the case of a marine engine, running at, say, 250 revolutions per minute, in which a maximum speed of 75 revolutions per minute is frequently desirable if the pipe be designed for the maximum speed, it is eacy to see that at maximum the mixture would have an immense velocity.

As a matter of fact, in some well-designed engines this velocity will exceed 25,000 feet per minute, but this limits the horsepower, because the amount of mixture which can be gotten in the cylinder is limited, also through rarefications it reduces the compression, which, in turn, reduces the economy and condemns the arrangement in general. Still, the ability to run a marine engine and hoisting engine and certain other types successfully and reliably at very slow speeds is a most valuable commercial attribute, but when designed with such small pipes, at high speeds it becomes necessary to readjust the fuel valve, because the mixture would become too rich. On the other hand, if the engine be slow with the valve at proper adjustment the mixture will become so rich that the engine will backfire. With large pipes it is almost impossible to run

THE WESTINGHOLSE MARINE TURBINE REDUCTION GEAR.

Until recently there have been but few attempts to construct gearing for the transmission of large powers at unusually high-tooth speeds. The importance of a system of noiseless gearing to be interposed between a high-speed turbine and the screwshaft of a vessel involving the transunission of many thousands of horsepower, has made the attainment of this object an exceedingly attractive field of investigation.
The most serious problem confronting the designer of such a system of gearing has been the development of a mechanism to insure an elastic, uniformly distributed tooth pressure between.gear and pinion to avoid the concentration of an ex-

the engine slowly, because the mixture becomes so weak through condensation that the engine misses or fails to explode; with the engine in such a condition, besides being covered with condensed fuel and the curve of the suction channel in the carburetor being filled with a small amount of fnel, it is natural that as soon as the engine is speeded up and the draft increased through these pipes, the mixture is heavily primed with this free fuel and becomes so rich as to fail to ignite and the engine misses fire.
(To be confinued.)

The thirty-seventh annual convention of the National Marine Engineers* Beneficial Association will be held in Detroit, beginning Jan. 15, 1912. The leeadquarters will be at the Hotel Tuller.
cessive tooth pressure at any single point of the working face, which would result in rapid deterioration and ultimate destruction of the teeth. This problem-which is by no means an easy one-it is claimed, has been effectively and interestingly solved in the Westinghouse marine turbine reduction gear.

Fig. 1 is a perspective view-partly in section-of one of the gears installed on the L'nited States ship Nepfone. Each gear transmits approximately \ddagger coo horsepower at a speed of 1,250 revolutions per mimite for the pinion shaft, and about r30 revolutions per minute for the low-speed or driven shaft. Naturally, double helical gears are used on account of the quiet running qualities of this type, and the fact that the opposing helices automatically balance the end thrust.

The low-5peed gear shaft rests in bearings seated in the main casing, and up to this point the design is fairly conventional.

The essential and distinctively novel feature of the design is the hydraulically-supported frame which carries the pinion shaft and its bearings, and by virtue of which the pinion shaif is self-alineing, responding instantly to the smallest unbalancing of the tooth pressure.
This method of suspending the pinion bearing irame, it is

FIG. L.-DIACRAM OF HyDRAULICALLY-SUPPOATED FRAME.
claimed, not only insures the perfect balancing of tooth pressures but the fluid cushion interposed between the pinion shaft and the main casing of the gear silences in a large measure the noise usually associated with the operation of high-speed toothed gearing, and prevents all shock or jar from the rapid contacting of the teeth. After a considerable period
the description refer to the same parts in all of the illustrations.

Reierring then to Fig. 2, At represents the frame carrying the bearings of the pinion shaft, D is a portion of the main casing, and E is a rixid strut or beam secured to the main casing by meatrs of a series of steel columns which are shown in Figs. 1 and 3- It will be noted that A does not fit closely between the parallel faces of D and E, but has freedom for a slight upward and downward movement.

On the upper and lower surfaces of A are three circular pads bored out to form shallow cylinders in which are fitted short pistons, \mathcal{C}; I indicates a passage or port, which communicates with the three shallow cylinders on the lower side of the frame A, and 2 indicates a similar port communicating with the corresponding cylinders on the top side of A.

When the gear is working, the reaction on the pinion teeth will tend to force the frame A against the casing D or the beam E, depending on the direction of rotation. If the reaction on the pinion teeth tends to force the frame A downwards against D, then $1 i$ oil or other suitable fluid under sufficient pressure be introducel at f , it will be readily seen that the frame A will be lifted clear of the casing, and will actually float on the fluid in the cylinders. Similarly, if the direction of rotation be reversed so that the tendency is to force the

of operation the gear tectl take on an excellent polish, and show no signs of pitting or other deterioration that usually accompanies lard and continuous service.

The action of this hydraulically-supported frame may be more easily understood by first inspecting Fig. 2, which is a purely diagrammatic section stripped of all mechanical detail that might be confusing, and which illustrates the simple elemental principles of the design. Fully elaborated detail sections are shown in lies. 3 and 4 , and the symbols used in
frame A against the beam E, the introduction of fluid under pressure at 2 will prevent the frame A from coming in actual metallic contact with E. Since all three cylinders of the set that may be in action are connected to the same source of fluid supply, the slightest difference in tooth pressure on either side of the middle point of the pinion shaft F will cause the frame A to yield at the point where the pressure is unduly high. In thus yielding the excess pressure is relieved, and automatically transferred to the point in the working face of
the pinion at which the tooth pressure was, at the instant, below normal.
The broad, underlying principle of the design is, therefore, the supporting of the pinion shaft in a frame which literally floats on oil, and which has no metallic or other rigid connection to the main easing. The practical application of this principle involves the accurate and automatic regulation of the fluid pressure in accurdance with the load on the gear. The means by which this is accomplislied will be understood from a study of the actual detail sections, ligs. 3 and 4 .
Fig. 3 is a section through the floating frame at the middle bearing. The frame is split in a horizontal plane for convenience in removing or inserting the shaft and bearings; t and 2 are the longitudinal oif passages conmunicating with the supporting cylinders, and 6 is a duct which conveys lubricating oil at low pressure throughout the length of the pinion frame

Fia. 6.-URETIOX THEOTGH जalva pox.
and distributes it by means of side outlets to the bearings and to the pinions. B is an arm which projects into the valve box G, and which contains passages communicating with 1 and 2. H is a link which hinges the frame A to the casing D, so that the slight vertical motion of the frame is multiplied at the end of the arm B which controls the oil valves.
For many years it has been known in a general way that if oil be fed to a rotating journal at the point of minimum pressure, it will be carried by the journal to the point oi maximum pressure, and if a means of egress is provided the oil may be discharged against a pressure substantially equal to the maximum bearing pressure. Heretofore, practically nothing has been known, however, regarding the quantity of oil that might be pumped through a properly-devigned bearing. In the development of this gear it was found that by suitably proportioning the bearings and supporting pistons the former could pump all of the oil required for flnatisg the pinion frame.
Referring to the section through the bearing as shown in Fig. 3, it will be seen that there are small pas*ages connecting the top and bottom of the bearing with the upper and lower cylinders respectively. The bearings draw in oil from the lubricating system, and discharge it through the check valves l. into the supporting cylinders, and were it not for the automatic regulating mechanism in the valve box G, would build
up a pressure considerably greater than is required to keep the pinion bearing frame floating in its normal position.
Fig. 4 is a cross section on a larger scale through the valve box G. If the direction of rotation of the pinion is such as to bring the lower set of balancing cylinders in action, the excess pressure will tend to raise the $\operatorname{arm} B$ stighty, and as the ring valve \mathcal{N} cannot follow it on account of coming up against a shoulder, the surplus oil will escape into the valve box.
Referring back to Fig. $3 . J$ is a floating packing, which prevents the overflow oil from spilling directly back into the main casing, and compels it to run off through the drain pipe K. This pipe discharges into an open funnel, and the constant overflow of oil is an unfailing indication that the gear is functioning properly. From this funnel the oil may be returned to the main casing to be circulated again through the lubricating system.

When starting, it may be desirable, though not absolutely necestary, to supply the oil to the supporting cylinders from an onssile pressure source until the gear attains the normal

speed and the pumping action of the bearings is fully established.

In Fig. 4, oil from such an outside source of pressure may be introduced at 3. and led to the upper and lower valves as indicated. If the direction of rotation of the pinion is such as to depress the frame, the arm B depresses the ring valve N and the conical valve M, pushing the latter from its seat. The stem of the valve M is hollow, as shown in the section through the upper valve. When the valve M is opened the oil passes through the hollow stem, as is clearly shown, into the lower circular port in B, and thence to the passage 1 (Fig. 3), which connects with the lower set of cylinders, and is prevented by the eheck valves L from escaping into the bearings. When the balancing pressure has been attained, B rises to its neutral position, allowing M to seat and prevent further entrance of oil. 1f, by reason of a reduction of the load, the oil pressure in the supporting cylinders becomes excessive, B rises slightly above its neutral position, relieving the excess pressure in exactly the same way as when the oil is being pumped by the hearings. The total movement of B for adjusting over the entire range of load is only a few thousandths of an inch.

When the direction of rotation is reversed the operation is just the same, except that the necessary functions are performed by the upper valies instead of the lower ones.

From the foregoing description it will be readily seen that the oil pressure in the snpporting cylinders is always exactly in proportion to the torque that is being transmitted. By virtue of this fact a simple pressure gage connected inside of the value M will, if the speed in revolutions per minute be known, indicate the instantaneous load on the gear, so that the Westinghouse reduction gear is not only an efficient transmission device, but a most aceurate and sensitive dynamometer as well.

The connections to the pressure sages are indicated at 4 and 5 (Fig. 4). If recording gages are used instead of simple indicating gages, and a graphic speed recorder is commected to the gear, the charts from these instraments would constitute a continuous \log of the power transmitted.

The pressure gages may be located in any convenient position, and as far away from the gear itself as may be desired. The direction of rotation is always evident from an observation of which of the two gages is indicating pressure at the time.

If the gages were placed at any considerably height ahove the gear their indications would have to be corrected for the hydrostatic head of the oil column. Furthermore, if the gages were located at a great distance from the gear there might be sonie annoyance front leakage, solidification or air pockets in the oil piping For long-distance indications an ingenious little device has been worked out, which translates the oil pressure to a compressed air supply, which may be conducted

While the Westinghouse reduction gear was originally designed for marine propulsion, in order to harmonize the high speed which is the essential characseristic of an efficient steam turbine, with the comparatively moderate limiting speed for an efficient propeller, its adaptability for other purposes is opening up a field even broader than the one primarily contemplated. The design of direct-current dynamos of fairly large capacities, to operate at the ligh rotative speeds necessary for direct connection to efficient steam turbines, has always presented difficultics that were seemingly unsurmountable. These difficulties have all been eliminated by interposing the reduction gear between the turbine and the dynamo, so that each clement of the combination may operate at the speed for which it is best adapted. Similarly, centrifugal pumps for larye eapacities at moderate heads are not at all suitable for direct turbine drive, but turbine and pump may be connected through the reduction gear constituting a highly efficient and attractive unit. Naturally. for this sort of service

to the pressure gages wherever they may be located. This translating device is indicated by O (Fig-3).

Fig 5, a section through the tloating frasne and piuion, illustrates the simple way in which the lubrication of the gear teeth is accomplished. The frame encloses the pinion except for a portion of the circumference where the teeth engage with those of the larger gear. Fron the passage 6 , lubricating oil passes to the pocker in which the pmion is located. The shape of this pocket is sutch that the oil cannot run out, but mast be picked up by the tecth of the pinion. The oil, when picked up by the pinion, is thrown off again by centrifugal force, but owing to the construction of the irame it can escape only by being discharged directly into the teeth of the large gears just at the point of engagement.

In Fig. r, at the left of the casing. is shown a bracket, throught the upper end of which is a screw-adjusted strut bearing against the pinion frame. A similar bracket and strut (not shown in the illustration) are located at the other end of the casing. These struts are for adjusting and maintaining constant the depth of eugagenent of the gear teeth. They do not interfere with the movement of the pinion frame in a vertical plane.

In order to obtain a flexible drive between the turbine and the gear, and at the same time to kecp this gear in close proximity to the turbine, the pinion shaft is made hollow, and the driving shaft pasies freely through this bore and is comnected to the pinion slatit at the end furthest away from the turbine. This is an old and fairly well-known construction, which has been incorporated on account of its making the apparatus more compact, and not because any novelty is elaimed for it.

In which the direction of rotation is never seversed only one set of balancing eylinders and regulating valves is required. Thete are only two out of a large number of new opportunities for the steam turbine that will present themselves as stoon as it is realized that the ltandicap of inherent high rotative speed can be removed by a thoronghly reliable and durable system of gearing having an efficiency of over $981 / 3$ fercent, and that such a systern is now ant accomplished fact.

In addition to the two 4,000 -horsepower gears installed on the L'nited States ship Neptume, twelve 1,000 -horsepower and 2,000-horsepower sets have been sold for driving direct-eurrent generators and for other purposes, A number of these have already been in service for some montlis, running at speeds as bigh as 3 , roo revolutions per minute, with results that are most gratifyung in every particular.

The annual report for $1910-11$ of Lloyd's Register of Shippong states that during the past year classes were assigned by the commitsee to 616 new vessels whose registered gross tonnage amounted to $1,00^{8}, 4 \%$. Of these vessels 544 of $1,0^{2} 9,223$ tons were steamers and 72 of 9.353 were sailing ships. Of the total, 6538 percent were buitt for the United Kingdom. As compared with fugures for the preceding twelve months there was an increase of 165,420 tons in steamers and 3.110 tons in sailing vessels. Fifty-four of the steamers were over 5,000 tons and five of them over 10,000 tons. At the present date there are several vessels of over 10,000 tons being built. The slips now under construction to the socicties' classifications aggregate $1,10^{8}, 592$ tons gross, of which about 16 percent is being built abroad.

VENTILATION OF PASSENQER SHIPS.

> EY ANDERSON MACPAEE.

The efficient ventilation of ships where large numbers of people are congregated is of the very first importance. Looking back through the comparatively small stretch of twelve years, when the writer made his first voyage as a marine engineer, and comparing what was considered ventilation then with what is now demanded by a better educated people, one must concede that there has been a great improvement. In the old days when passengers went "below" they were greeted by odors of engine grease, cooking, etc., that sent all but the most inured hasily on deck again, and getting one's sea legs really should have been called getting one's sea nose.
by changing from supply to exhaust. At night the supply system may be used to heat and ventilate the compartments; then, during the day, the exhaust may be used for a time to more thoroughly clear out all impurities in the air. In numerous tests made under regular sailing conditions on the Ancona this proved to keep a very much purer atmosphere. the percentage of carbon dioxide and other impurities being much lower than when the supply was on day and night. Several times during the voyages, however, machines were found to be neither exhausting nor supplying air, but simply churning or drawing from the atmosphere and returning again. Difficulty was experienced at times also in maintaining a suitable temperature by the use of the two air-mixing dampers or by throttliug the steam at the valve under hand

When electricity became more common, fans were installed in the cabins and saloons, but, while imparting a sense of comfort, these only serve to stir the air up and do not ventilate. There is no longer any exeuse for these objectionable features, as, with the facilities now at our disposal, every passenger ship should be equipped with some system of supply and exhaust ventilation, combined in such a way as to eliminate all foul or vitiated air and, at the same time, maintain a comfortable temperature. This is easily accomplished by putting all kitchens, pantries, lavatories, etc., under exhaust, the latter being heated by the warm air drawn from their surroundingg.

The writer was privileged in his connection with "The Thermotank Ventilating Company," of Glasgow, to design, superintend the installation of, and test many such ventilating equipments for ships, among which are the well-known liners Mawretania and $L_{\text {wsitania. During the first two voyages }}$ of the Italian immigration steamer Ancona between Genoa, Naples, New York and Philadelphia he acted as guarantecengineer for the company, and instructed the ship's crew in the operation of the thermotank system, and it was in acting in this capacity that varions improvements suggested themselves. The system is designed to be used either as a plenum system when heating or as an exhanst system when no heating is required. In immigrant ships, transports or war vessels, where large numbers of people are congregated, there are many advantages in being able to reverse the air currents
cuntrol. At times the compartments were too cold and again too hot, the fluctuations often producing very uncomfortable conditions. These and many other actual experiences led to the design of the ventilating machine known as the thermofan, now put on the market by the Schutte \& Koerting Company of Philadelphia.
Fig. 1 shows a typical passenger ship arrangenient, illustrating the use of three types of thermofan. The open-deck type, awning-deck type, and 'tween-deck type, and showing the run of the air ducts to the various compartments. These ducts wherever possible should be run at or near to the floor level, not at the ceiling, as is so often done. The reason for this is that the prime object, after considering the ventilating end, is to heat to an even temperature the various compartments. Actual tests have shown that when the heated air enters at the top it remains at the top: in fact, a well-known captain informs the writer that he has found differences as high as 20 degrees F. between the top and the bottom of his room where the duct was at the top; this in mid-winter (Atlantic weather), even where outlets are provided at the bottom of the cabins to the alleyways. Best results are not obtained if the ducts are run at the ceiling.

A further point to be considered in the air distribution is the difference of temperature between inside and outside staterooms. There are two successful methods of dealing with this problem. One is to run separate ducts to inside and

outside rooms, each under separate control. The principal objection to this is that it complicates the construction of the thermofan, or multiplies the units. The better method is to equip the outer rooms with auxiliary electric heaters, the efficiency in heat being thus made up at will by the occupant, or thesc electric heaters may be put under thermostatic control so that they only operate when actually required, thus making a great saving in electric current without interfering with the supply of fresh air in any way.

The design of the ducts is a matter to which little, in the way of theory, can be applied, each individual case having to be treated from a different standpoint. Only experience can teach the engineer how to deal with that problem on shipboard. Speaking generally, velocitics up to 2,000 feet per minute are permissible, but only rarely above. The great difficulty is to strike the happy medium between the large ducts with low velocities and the increased horsepower required when the ducts are small and velocities high. In a welldesigned layout all the unsightly features of the exposed ducts can be taken care of in architectural features.
There is one more point in connection with the run of the ducts which must receive careful consideration, and that is the distribution and gradation of the louvers or air registers. Close to the source of supply they must be made small, and yet, if made too small, drafts will be set up owing to the high velocity of the air leaving the louver. The writer has found a range of from 8 square inches to 30 square inches in six sets all that is necessary to meet the varying eonditions. These louvers at the same time must he adjustable, so that on test they may be set to their correct position, otherwise one compartment is liable to have too much air to the detriment of some other. The question of humidity now arises. In most

heating systems, both on land and sea, this matter is left severely alone, to the great discomfort and loss of health of the occupants. Dealing with this question brings us to the actual description of the machine.
As already mentioned, there are three types designed so as to suit the varying locations available on shipboard. Fig. 2 illustrates the open-deck type, and this may be taken as typical of all three, the modifications in design for the awning and 'tween-deck types being illustrated in Figs. 3 and 4 . Referring to the letters: A is the heater which is cylindrical; steam is led into it through the stop valve and piping a; the condensed
water is taken off through the steam trap and exhaust valive b. The heater is surrounded by a sheet steel casing C. Air is drawn from the atmosphere through the intake duct I, is directed to the fan D by the damper K and discharged into she annular space E. It is heated by contact with the shell in its upward passage and further heated in its downward passage through the tubes B. The fan D is constructed with two-way disclarge controlled by the damper N. When N is
delivery, however, of each machine can be varied by regulating the speed of the fan motor, the motor in all cases being supplied with finely-divided regulating rheostats. The reason for making this rheostat in fite divisions is because a slight increase in the speed of the fan means a very considerable increase of the volume of air delivered, or a slight deerease in the speed of the fan means a considerable decrease in the volume of air delivered.

nG, 4.-'Twsex-pECK trpe theamovan.
in its lowest or horizontal position all the air is discharged through the heater. As N is gradually moved towards the vertical position, part of the air is discharged into the mixing chamber J without being heated; thus by adjusting the position of damper N any temperature of the air desired can be discharged through the distribution ducts $F F$. The damper is moved by a quadrant, which is geared to a small motor of about $1 / 8$ or $1 / 4$ borsepower. A reversing switch operated by the thermostat already referred to controls the motor. Any variation in the atmospheric temperature immediately puts the motor into operation and supplies more cold or more hot air as required. In place of the small electric motor a steam cylinder may be used to operate the damper, the movement of the piston being under control of two electric solesoids which open and close the steam ports.

The thermoians are designed in various sizes, delivering I,000 cubic feet of air per minute to 10,000 cubic feet; the

THE LARGEST NAVAL COLLIER IN THE WORLD.
BYK. C. Mantix.
Productions of the great Cramp ship-building yards are ever of interest to those who have aught to do with maritime affiairs, and therefore a tmique and most successful naval unit constructed in the face of predictions of disaster should be worthy of closest study by the individual, be he naval architect, mechanical engineer, one interested in the efficient and rapid handling of material, or one imbued only with the thought that here is another instance of American supremacy. When the United States government asked for bids on a collier of capacity exceeding that of any before constructed, the Cramp Company made their proposals together with competing companies who usually bid on government work. Proposals for the construction of smaller colliers had already been made to the United States government, but this was the Eirst one of so large a capacity. The Cramp Company then asked for bids from the various coal-handling apparatus concerns, and after careful and extended consideration selected the system specified in the tender of the Mead-Morrison Manufacturing Company, although this was by no means the lowest price quoted for the required installation. The selection of this system was no less a compliment to the Cramp Company than to the manufacturers, for it was unproven in naval work, and it was necessary for the ship constructors to foresee the possibility of successful application of the conveying mechanism to this gigantic floating coal mine.

The bid of the Cramp Company having, after due deliberation, been accepted by the government the construction of the ship was commenced, and in October, 1910, she was placed in commission. The fargest collier built up to this time had an tultimate capacity of 7.500 tons of coal, and as the Cyclops was
to carry 12,000 tons, one of the points recenving a great deal of attention was its ability for deep-sea work under adverse conditions. That the best possible distribution of weight to meet the varying conditions between full and no load, and that efficient methods of overcoming these variations are provided, was demonstrated by the exceptional beliavior of this vessel during a very rough passage to Denmark. Water ballast tanks are used, and by means of the fore and aft conveyor bucket, coal can be transferred from one end to the other, and thus trim the ship and relieve undue stresses.

The plsotograph of the entire ship shows the ample freeboard with a full load. The derrick polcs, hooms, ctc., which look so solid and heavy are actually very light, being modeled on the latest bridge and buiding box-girder types, possessing great stifiness and rigidity without superfluous metal. The over-all length of the Cyclops is 542 feet, the beam 65 feet, and the depth $39!/ 2$ feet, so the vessel can follow wherever the
were several times sent forward to him on the bridge in this bucket when he did not wish to leave his post and go aft. In quickly answering calls to different parts of the vessel the crew often make use of the same couveyance, and these points speak well for the steadiness and smoothuess of uperation of the apparatus. It may be from this idea that the new transports are being equipped with moving stairways between decks and with moving platforms or gangplanks at the sides for rapid handling of troops and their equipment.

All the buckets on the Cyclups have a capacity of 48 cubic feet, 1 t/5 tons of coal, and, operating simultancously, are kuaranteed to unload the 12,000 tons in ten hours; but this tigure is merely comparative, as onte unit delivered 76 tons in twenty minutes to governmeut specifications regarding handling, height of lift, distawe of travel, etc.; this being a record for such service. The cross-deck buckets usually handle from tco to 180 tons an hour, making three round

19 1.-WAFAL colsirm evclops.
battleships go and coal from any regular dock or wharf. Reciprocating engines of 7,200 indicated horsepower drive the collier at a normal speed of 14 knots, although this has been exceeded even when fully loaded with a total displacement of 19,360 tons.
The coal is distributed in six holds of $\mathbf{t}, 743$ tons eapacity each, and in bunkers of 2,042 tons eapacity, from which the ship takes such coal as she needs for her own steam. The forward hold is divided into four compartments, in which either oil fuel or special coal can be carried for the use of submarines or torpedo boats. Should the bunkers become exhausted, coal can be conveyed by the fore and aft trolley from the main cargo lolds to the bunkers. The handling apparatus comprises twelve units, identical in construction and capacity, eacls operating over a hatch to the hold, two hatches being fitted to each hold. Over the bulkheads separating the holds a mast is fitted, carrying at the sides a pair of booms, the opposite booms at each side, parallel to the beam of the ship constituting the unit. On the cableways between these booms travels a bucket of the clam-shell type, which may be made to discharge vertically at a distance of 22 feet from the side of the ship. Greater distance may be obtained by "shooting" the coal exactly as with a hand shovel and with approximately the same degree of accuracy. A fore and aft bucket is also employed to shift coal from hold to hold for trimming the ship or for supplying certain holds in case only one or two can be brought into use.

While not on the official records of the Navy Department it is of interest to note here that on the occasion of the rough voyage referred to above the captain's meals, including liquids,
trips a minute, the fore and aft bucket doing about half of this because its run is longer. All the hoist engines are steam operated, the hoist end being large and the trolley end smaller, a high efficiency in steam consumption thus being obtained. In steaming oriler the booms are drawn down and crossed lengthwise of the ship, and all cables are lashed fast, but so carcfully have details been handled that the vessel can be "cleared for action" in a very short space of time; in fact, this placidly puffing, caterpillar-looking affair has been transformed into a roaring, seensingly chaotic volcano, vomiting coal at the rate oi almost 8 tons a second, within the space of fifteen minutes. This rate, of course, can only be maintained as long as the buckets can drop into coal of sufficient depth to get a full load.

The complement for operating the ship itself consists of thirty officers and men, and the enaling end takes thirty more, while on a war footing the total amounts to 200 , including rescrves, marines, gunners, etc, Searchlights are always in position for night work, and provision is made for a light battery to be installed in the event of hostilities to repel boarding parties and torpedo attacks.

The steam winches for lifting and trolleying the buckets are each operated by one man at the present time, although it was successfully demonstrated that one man could handle both engines from a single point, and it may be that future colliers of this type will have one-man control. This has not heen possible on previous colliers owing to the lack of accurate control of the bueket, and consequent injury to its own men and equipment and those of the war vessel and scattering of coal. Some battleships of the older types can only coal by

PIG. 2.-DEC天 AHBANGEMENT OF TME COLLEF, LOOKING AFT, SHOWIXC THE COALHANDLING MACHINEEV.
bag, but the change from bucket to bags is made in less than Iwenty-five minutes. Thermometer readings of coal temperature in the holds can easily be taken through tubes located at the points of greatest heating.
Thus the Cyclops is prepared to accompany or meet a whole fleet and supply it with fuel, the capacity of the present-day
warship usually making up such a fleet being from 500 to 2,000 tons of coal, and in effect takes the coaling station to the fleet instead of the fleet having to ron to the station with added loss of fuel, the capacity of this collier being equal to many naval coaling yards.

It can also run in between a ship and barge or pile and

trausfer the load without affecting its own supply in the holds as well as to supply the ship direct when at sea.

That all this has been accomplished with the regular standard apparatus, except wherein the government called jor parts to be made to its special specifications, should be a matter of considerable satisfaction to the Mead-Morrison Company, and after a year in service is meeting with the approval of those severest and must able critics-the men who have to do with the actual handling of the ship.

Several English writers upon naval affairs liave questioned the advisability of constructing colliers of such large cagacity, pointing out that naval bases are being increased in size and number, and that oil-burning vescels must be looked forward to. Naval bases, however, have a way of being far off in time of need, and are discouragingly stationary. Nor do war vessels venture near them unless pressed very hard for fuel, as their movements are therchy more easify forecasted and their definite location for some time determined by the watchful agents of the opposing power. The oil burners may loom up for a time but the internal-combustion engine is more likely to be the next big step, and in either case the problem of handling liquids is a simpler matter. At the present time the dreadfolught can barcly make the run from England to China on her own bunkers; and suppose, then, that she cannot be met by a ship able to fully coal her in a short time, but has to go quickly into action with a carefully ambushed coahing station awaiting her as a choice? A collier can dodge, a coaling station can't. And perhaps as answering these critics officially the specifications now being drawn up by the government have been largely influenced by the behavior and capabilities of the Cyciops, constructed for $\$ 900,000(~ £ 185,000)$, as against $\$ 1,500,000$ ($\mathbf{f}, 008,000$) for previous smaller, inefficient colliers,

CHAIN AND ROPE TOWAGE ON GERMAN RIVERS.

or k, bietze.

(Continued from fage 439.)

The towing service on the Main is shared by two companies. On the short lower reach of the river the Actien-Gesellschaft Main-Kette has three chain steamers of about 130 indicated horsepower at work, which with this power attain a towing speed of about 3.5 miles per hour, while on the upper reach the Royal Bavarian goverument has carried on a chain towingservice since 1898 . The chain towing-steamers on the Main are almost the same as those on the Elbe, the similarity extending in particular to the establishment of turbine propulsive installations (g in Fig. S, page 436) for the down-stream journey, which are also applied to assist the up-stream work, as in the case of the Elbe steamers Baensch (Fig 5) and Zesner. The reason for this lay in the great improvement in the steering qualities of the ressels which the turbines effected, and which the very sharp bends in the river rendered necessary. Here, also, the engine room for the driving machmery of the winding machinery and turbines and the condensing installation are arranged in the middle of the vessel in eacli case. Forward of these are the boilers and bunkers, and abaft them, supported by a bulkhead, the turbines g. The foremost and aftermost spaces are utilized for the aecommodation of the crew (as in Fig. 5).

The gripping wheel m, designed by Bellingrath (Figs. 5, 6 and 7), is also made use of here. On acenunt of the severe and greatly fluctuatirig stresses which the leading-on sheave (b in Fig. 5 and b in Fig 6) in front of the gripping wheel has to withstand, it is supported by a stay b^{\prime} (Fig. 6) with a spring buffer and fork. Chain lockers, lined with wood, before and abaft the gripping wheel prevent any chaffing of the bight of the off-roing chain against the steel parts of the vessel. The axle of the drum, made of the best quality of stecl, rests in a
cast steel framework, which is attached to beavy-built girders at the bottom and at the deck of the vessel. At the top the whole is covered over by a plated hood. The towing hawser is led over a horizontal roller, and held fast by blocks which are attacled to spring buffers.

A double cast steel tooth-wheel gearing, with a ratio of t to 10 , connects the gripping wheel with the engine, on the crankshaft of which is mounted a brake-sheave operated from the deck. This enables the engine to be held in check in case of fracture of the chain or while the tug with the barge train is lying at anchor. The chain-engine is of the horizontal twin compound description, with the well-known tandem arrangement of the cylinders. The plummer blocks, guides and cylinders are attaclied to the bottom kirders of the vessel separately, and are well stayed to one another to enable them to take the stresses to which they are liable. The crankshaft, with the two. cranks set at go degrees with each other, rests in three bearings. The connection with the winding gear is formed by a flange at one end of the crankstaft, the other end taking the fly-wheel, which is provided with eccentric weights in order to. compensate mass action. With a $j 0$ percent admission of the high-pressure cylinder and a speed of tyo revolutions, the engine indicates about 130 horsepower. At a towing speed of from 3.5 to 5.5 feet per second it can exert a pull of 4 tons.

Fach cylinder has an ordinary flat slide valve. In addition each low-pressure cylinder is provided with an auxiliary slide valve, by means of which the engine can be started when subject to a heavy load. The admission at starting is for the same reason set at -8 percent, which is reduced to 50 percent after the desired speed has been attained. The Klug reversing geat is operated from the engine room by means of a separate hand-wheel with vertical screwed spindle.
Each of the main turbines (Figs, 5 and 8) is driven by an independent vertical compound engine of the ordinary pattern, with Klug reversing gear, which can be operated by means of a hand lever. Under ordinary conditions of working this engine is not reversed. Reversing is resorted to only when it refuses to start or when the water-supply channels c (Fig. 8) to the turbines are to be scoured out. On the steamer Baensch (Fig. 5) horizontal reciprocating engines are fitted for actuating the turbines. The condensing iustallation is for the three engines in common, a slow, even starting of the winding gear being thereby attained. The independent steam flooding pump is a two-cylinder, quadruple-acting Worthington.
Special interest attaches to the turbine installation g (Figs. 5 and 8) on the Zeurer principle, which, in order to improve the steering qualities of the vessel, is sub-divided into two independent aggregates arranged at the sides of the vessel. The principal dimensions of each turbine are as follows:
External diameter of the working wheel................... 34
Diameter of the nave of the working wheel............... 17.5
Number of blades of the working wheel a (see Fig. 8).. i5
Number of blades of the contractor b (see Fig. 8)...... 16
Viewed from aft the port engine turns in the direction of the hands of the clock, and the starboard engine in the opposite direction. The water enters the supply channels c (Fig. 8) through the rrated low-lying openings $c^{\prime \prime}$ (Fig. 8), and is led through a systern of guide plates d, which form a contintuation of the contractor blades b to the turbine blades a. Here it is accelerated and pressed through the blades of the contractor b, after which it is led back outboard through the exhaust channels e, and ejected in a direction parallel to the longitudinal axis of the vessel. The blades of the turbine and of the contractor are of steel, and are cast into the bronze bosses. The turbine shaft is taken at one end by the fixed contractor b, and at the other rests in a bushed bearing in the supply channel c.

To give sternward motion to the vessel the direction of the
outflowing jet of water is, by the aid of a rotating elbow piece f (see Fig, 8), reversed, the water being pressed through a reverse jet pipe h that is fixed to the vessel. The manipulation of this elbow piece can be effected from the deck for the two engines at once, or for each of these independently by means of hand-wheels and spindles w (see Fig, 5), by which the necessary good steering qualities are insured to the vessel. The jet pipes h are protected by considerable extensions of the breadth of the deck v (see Fig. 5). With the turbines the vessel attains a down-stream speed of 9.3 miles per hour with a $t .86$-mile current and a power development of the turbine engines of 65 indicated horsepower each, with from 225 to 250 revolutions per minute and a 50 percent admission of the high-pressure cylinder.

For all the engines of each of the Main vessels the steam, of
nost part claracterized the rope system as an improvement on that of chain towage. The above-mentioned company employed eight towing vessels (Tauer) with an aggregate of about 1,400 indicated horsepower. These make use of the rope only in up-stream work, at the end of which they release the rone and proceed down-5trearn with separate engines driving ordinary twin screws, which, on account of the considerable drafts of water possible in the Rhine, can work economically. These conditions give the rope towing-vessels (Fig. 9) a different outward appearance. The necessity for throwing off the rope entails the arrangement of the heavy winding gear at the side of the vessel, bringiug with it a number of unpleasant consequences, such as a strengthening of the hull, which is also subjected to lateral stressing, as also impairment of the steering qualities, etc. At any rate, rope towing-vessels with the rope

147 pounds working pressure, is supplied by ant ordinary cylindrical, direct-flame boiler, with a dome and two furnace tubes. The heating surface is 600 square feet and the grate surfiace ig square feet. The river water used for the feed is taken direct through the skin of the vessel by the aid of two injectors. An independent Worthington pump leads the condensed water from the air pump to the boiler, 50 that the main engine is free of all separate pumps.

The coal consumption amounts to about 55 pounds per mile run by the vessel per hour. The newer steamers for the Main work with superheated steam (300 to 320 degrees), and are fitted with Schmidt superheaters. The installation of the chain towage-service on the 125 -mile stretch of the Upper Main is stated to have cost $\$ 530,000(\$ 113,000)$, while the regulation of the river over the same distance cost $\$ 800,000(\$ 165,000)$.

Not very long after the introduction of chain towage the rope towage-system also made its appearance on the Rhine, where it was well suited to the peculiarities of the river and soon made its way. In 1871 the Central A. G. für Tatterei und Schleppschiffabrt took its rise in Cologne (at a later time in Ruhrort), with the intention of conducting a rope towageservice between Emnterich and Strassbarg. After several experimental trials marle on different reaches the service was confined to that between Bingen and Rungsdorf (75 miles), on which a number of rapids occur. In 1905, however, when the regulation of the river was becoming very far advanced, and the competition of the paddle and screw tugs had in consequence become insupportable, the service was finally abandoned.

The idea of rope towage arose in France, and was very quickly taken up. Except on the Rhine, however, it was never adopted in earnest in Germany: such services as were instjtuted were soon given up, although men of authority for the
led along thee center lines of their decks have trot proved satisfactory. Since, however, the disconnection of a rope is not nearly so simple a matter as that of a clain, the rope towingvessels wust be in a position to set themselves free for the down-5tream journey in order to pass each other. The institution oi a separate rope for the down-strearn journey would also, apart from these considerations, be undesirable, for the reason that, especially during the down-stream journcy of a vessel without train, the not very flexible rope would be subjected to very little stress, and, on account of the insufficient friction thereby set up, would be liable to spring off the wheels, and thus cause constant interruptions of the work. Like the elsain tug the rope tug also has a downward sheer forward so as to leave room for a considerable lateral movement of the rising rope. Wooden transverse bow pieces prevent the rope from fouling the deck fittings. The form and arrangement of the afterbody thereby is much the same as in other vessels. Good steering is ensured by the presence of two rudders-one 8.5 and the other 9.75 feet in breadth-which are worked from the bridge by means of rods and chains. The whole of the 'midship part of the vessel is taken up by the engines, boilers and bunkers, the spaces before and abaft these being utilized for the accommodation of the crew. The principal dintensions of the rope vessels are the following :

The wire rope passes first over a large reception guidewheel a (Fig. 9) of 9 feet in diameter, which can move
freely in a lateral direction. For this purpose the latter is mounted on a flap, which is free to turn round the axis bb. This axis is inclined in such a way that it tothes the periphery of the wheel a and that of the following guide-wheel c. In every lateral position of the whel a the leading of the rope into the plane of the wheel c is thus ensured. The wheel a then has the same functions to periorm as the outrigger in the ehain steamers. The axle of the wheel c has a fixed mounting on the hull. The diameter of the wheel c is also 9 feet. It is fixed in such a low position that the rope runs with a vertical lead onto the rope drum proper, d. Since the rope passes down to the end whecl e in the same manner, it girdles the upper thalf of the periphery of the rope drum d. The guiding end wheel e (7.5 feet in diameter) is mounted in such a low position that when the rudiler is put over and the course of the vessel lies inclined to the direction of the rope, the latter does not come in contact with the bottorn of the vessel. In like manner to the reception guide-wheel a, the off-leading guide-wheel e is supported by a flap, which, though in less degree than the wheel a, is free to move in the lateral direction round the $a x$ is f.
The rope drum d is one of the well-known Fowler flap drums, and works in the manner that pairs of opposing flaps in the hellow of the tire of the wheel lay hold of the rope with a grip corresponding with the tensile stress exerted. From this it will at once be seen that a large proportion of the section of the rope must be discounted for wear occasioned by these flaps, while on the other hand, the advantages attaching to the Bellingrath chain grip-wheel, that the rope drum is engirdled by the rope over only a part of its periphery, remains. Other methods of holding the rope have also been proposed, such, for instance, as the "Weruigh" device, which was applied to two rope tugs on the Oder. Somewhat as in the case of the chain, the rope was liere led over two driving drums, from which it had, by reason of its light weight and small flexibility, to be led away again by scparate mechanism. This latter apparatus consisted in a number of whecls, the tires of which were divided in a direction vertical to the axis. Much as in the ordinary chain grip-wheel, with indentations corresponding with the chain links, these Wernigh wheels were provided with projections and depressions, which corresponded with the strand windings of the rope made use of, and grasped the latter with these when the halves of the wheel were pressed together. The trials made with the Wernigh constructions are said to have given satisfactory results, although the apparatus was characterized as somewhat complicated. The same designer then brought out a new rope sheave with an undulating groove, by means of which, in partieular, the wear of the rope was considerably reduced. At the same time this new design brought the advantage that the ropecould he led along the center line of the vessel as in the ease of the chain. Information as to the manner in which the vessels made their down-stream journey has not been obtainame. but at any rate such vessels have been on service on the Lower Rhine with good results.
The flap drum that is principally in use on the Rhine has a diameter from center of rope to eenter of rope of to feet. It is mounted at the side of the vessel, and is actuated from the engine by a two-grade gearing with a refluction ratio of ahout

$$
\frac{51}{20} \times \frac{102}{22}
$$

The driving engine f (Fig. 9) for the drum is a twincylinder engine of tin to tio indicated horsepower (diameters of cylinders of each engine 2.5 .5 inches and stroke 24 inches), making ahout So to roo revolutions and working with jet condensation g. It differs, however, in arrangement from the engines of the chain tugs on the Main, in having one of itg cylinders at each end of the winding sear. Cylinders, slide-
ways and erankshaft bearings rest on a cast iron bed-plate in common, on which also the heavy seat for the drum axle is mounted (see Fig. 9). One of these half engines at the same time drives the punps, while the condenser air pump g is connected in tandem fashiun with the other. The engines are not provided with means of reversing, which also, in presence of the separate propulsive engines, is not absolutely necessary. The Toucr No. 3 can tow a train of 5.5 tons at a speed of 4.5 feet per second, thereby developing 245 indicated horsepower.

As already stated, two twin engines h each drive a screw 3.8 feet in diameter, with which a speed of 93 to $t 1$ miles per hour is attained on the down-stream run with a tow-train of four empty barges. An ordinary return-flame eylindrical marize boiler i, with tonc, supplies the steam ior the whole engire installation. The working pressure is about 100 pounds, and the consumphion oi coal about 3 to 3.3 pounds per indieated horsepower per hour. A funnel-shaped coal bunker t is built into the vessel in such a manner that it is possible to get past it from forward to aft at each side of the vessel.

The hull of the vessel herself is built of steel, and is similar in its general structure to that of a chain tug. It differ from that of the latter, however, in that its bilge is rounded off thronghout, and in certain structural alterations rendered necessary by the removal in this case of the winding gear with the larke cast metal rollers to the side of the vessel. In order to enable the high-lying receiving wheel a to be swung ont to a sufficient dekree the side of the hull had to be provided with a recess m. To this end the side was drawn "in up to a point a little below the wheel, and the deck cut out in a segment so as to form an open niche made watertight against the hull by plating. The hull has a further recess m for its full height abait the low-lying off-leading wheel e, so as to admit of a lateral motion of the latter. The recessing of the hull required for the extreme lateral movement is swept in an easy curve back into the normal form of the vessel. Specially worthy of note are two bilge keels of from 4.8 to 7.2 inches in height, which are worked under the vessel at a distance of 4.25 feet from each side of her center line and carried up forward. They serve the purpose of keeping the rope free from the bottom of the vessel in case of strong weed formation on the bed of the river, or of a very much inclined direction of the rope in relation to the vessel. The movable swinging axle of the wheel a is kept in its place by means of a very strong kallows-like structure \uparrow, consisting of three built girders, which in their turn are supported below by strong web frames. A similar structure, which, however, could be kept very much lighter, and which accordingly is attached directly to the protective plating of the flap drum, bears the axle of the off-leading wheel c. To facilitate the throwing off of the rope and their own eventual dismounting. the horizontal axles of all the rope-wheels have bearings at one end only, as a result of which, it is true, the transmission to the vessel of the components of the pull on the rope becomes very unfavorable. In view of the greatly varying direction of the lead of the rope to the flap drums these forces are in themselves very great, so that there can be no question but that the hull must hare be subjected to very considerable local strengihening. Even when the vessel is at rest the large dimensions of the flap drums and leading wheels render the whole winding year exceedingly heavy; the unsymmetrical distribution of the weights and the recessing of the vessel's side make it especially necessary to strengthen the hull, so that, as already observed, the tetal displacement, and therewith the draft, must when compared with those of a chain tug, be relatively very great, which again, of course, considerably adds to the cost of the installation. The cheapness of the rope, which is generally claimed as an advantage by the opponents of the chain, is herely in part made up for. Of

interest at this point is the method of leading the tow-rope over a large towing bar g (Fig. 9).
It wonld appear that it had not always been found possible in the designs to give due consideration to the effect exercised by the tension of the rope on the fore-and-aft and athwartship trims of the vessel, for we find in some of the steamers a ballast tank r with three longitudinal partitions arranged on the deck at the stern, the object of which is the subsequent correction of lists and improper forc-and-aft trims during the up-stream or the down-stream journey. In other respects the hull presents no peculiarities. The spacing of the frames is so inches throughout.
Special arrangements are made at the end points of the rope, in so far that a barge with a heary winch and a large drum is installed at each of them, for the purpose of regulating the tension of the rope when it is being thrown off or taken up by the tug.
For driving the winding gear of the rope-tessel for the Danabe (Vaskapu), which has already been mentioned, a compound engine oi 300 indicated horsepower is provided, which is coupled to the winding drum by a threefold wheel gearing. The revolutions of the rope drum (8.2 feet in diameter) were thereby reduced in the ratio of $30: 1$. The large toothed wheels and the rope drum were made of east steel. Special apparatus was provided for taking up the rope and for pressing it down as it ran off the last wheel, and another apparatus looked after its regular winding onto the winch. In contrast to the Rhine Tauers the rope was in this cate led along the center line of the deck. As in the case of the chain tug it could, for the sake of the steering, be swung laterally (Lombard Gévin Lyon system) by means of separate leading paths at the fore and after ends of the vessel, which were operated from the bridge. It had been found possible considerably to reduce the twist which occurs with special frequency in a wire rope by coiling it onto a drun in the makers' works with a tension of 24 tons by means of mectanical appliances.
A few further particulars of matters of general interest connected with the towing services on the German rivers may be given in conclusion. It is the practice for the towing hawsers for the up-stream journey to be provided by the tug, while for the downstream journey the towed vessel must herself carry suitable hawsers. On the Rhine, if the cargoes be less than 350 tons, additions are made to the rates of the towage tariff amounting to from 25 to 75 percent as the amount decreases from 350 to 250 tons or less. Wooden vessels must, in general, pay 75 percent more than others without regard to their size or cargo, while for lighters a lump sum or a special rate per ton of cargo-carrying eapacity is agreed upon. The permissible length of the tow-train varies very considerably on the different rivers, and it is often the case, for instance on the Rhine, that cach barge in the train is connected by a separate towing hawser with the fug herself. This arrangement offers many advantages in towage work, as, for instance, releasing separate barges and in steering. The abandonment of the rope towing-service is the typical fate of the towing companies on the German rivers. In view of the steadily increasing competition of the railways and the further development of the paddle and screw tugs, combined with the careful reculation of the rivers, the existence of the chain traffic will gradually lose its justification more and more, and as it ceases to pay its field of work will diminish in extent. In countries, however, in which still untamed waterways run through the ceuntry unutilized the Taverei represents an exceedingly cheap method of dealing with the transport of bulk goods.

The Bureau of Navigation reports 108 sail and steam vessels of 10.938 gross tons were built in the United States and officially numbered during the month of October. Seventythree percent were steamers.

IHE AMERICAN NAVAL REVIEW.

From every standard of comparison the most notable fleet ever assentbled by the Cinited States was that reviewed by President Taft and Secretary of the Navy Meyer at New York Nov. 2. It involved the greatest number of American vessels ever mobilized, with the greatest total displacement, and represented the maximum in fighting effectiveness probably ever gathered at one point by any sation.
As indicating something of the increased strength of the United States navy it is interesting to contrast the number of vessels and their total displacements which took part in the other inportant naval reviews of recent years. In the international naval review at New York in March, 1893, there were fourteen American naval vessels of all classes, with an aggregate displacement of 39,436 tons. President Roosevelt, in September, 1go6, reviewed, at Oyster Bay, the Atlantic fleet, then comprising forty-five vessels displacitg 279,612 tor: . During the Jamestown Exposition there was mobilized at Hampton Roads in June, 1907, a flect of thirty-three vessels displacing 285.251 tons. When the Atlantic and Pacific fleets met at San Francisco in May, 1908, they combined a total of forty-six vessels displacing 407,924 tons, and in September, 1009 . at the Hudson-Fulton celebration forty-three vessels were assembled with a total displacement of 316,762 tons. This latest seview at New York included 102 vessels of all elasses displacing about 577,285 tons, which does not include the eiglt submarines, of which no figures were available. Concurrently at Los Angeles a review was taking place of twentyiour vessels of 116,000 tons displacement, giving a grand total of 126 vessels displacing C94,000 tons. Perhaps the most striking evidence of progress is, that of all the vessels in the New York review the only ones that were a part of the navy at the time of the Spanish War were the battleships lowa, Indiana and Massachusetts, the gunboats Castine, Nashtille, Marietta and Petrel, a few of the small torpedo boats and some of the fleet anxiliaries.
The following table shows the number of vessels of each class in the Atlantic fleet and their total displacement:

Exclusive again of the submarines these vessels represent a total horsepower of 946,811 , for the supplying of which there are 567 boilers, with an aggregate of 46,360 square feet of grate surface and $2,062,000$ square fect of heating surface. All of the battleships, cruisers and torpedo boats except the battleship lowa have watertube boilers, This is an interesting reversal of the condition of affairs at the time of the SpanishAmerican War, when outside of the sorpedo boats there were only four warships then equipped with watertube brilers. Seventeen of the destroyers burn oil as fuel, and the four latest battleships-Delotoare, Nerth Dakota, Utah and Florida -burn oil in conjunction with coal. The fleet has attached to it a fuel oil tankship to earry the reserve fuel oil supply for these vessels, serving the corresponding function of the eight colliers carrying the coal supplies for the other vescels.

THE AMERICAK ATLASTIC TLEET AT ANCWOR IX THE HUDSON HEER

The aggregate coal bunker capacity of the fleet is 81.450 tons. Adding to this the coal cargo capacity of the colliers, 58,813 tons, the fleet can sail away with a total of 140,263 tons of coal. Propelled simultaneously at their full power all oi the vessels would consume coal at the rate of 20,000 tons a day.
With its foll complement the fleet would carry 27.34 men and $\mathbf{1 , 6 6 0}$ officers, a total of 29,004 , and it is safe to say the actual figure is in the neighborhood of 25,000 men.

The average speed of the vessels is $2 t .6$ knots. The fastest vessel is the destroyer Poulding, which is capable of a speed of 32.8 knots. Placed end to end, tonching, the vessels of the fleet wonld extend a total length of 29,912 feet, or over 3^{3} : miles. If passed in review in single file at an average distance apart of 300 yards the fleet would form a line extending nearly 23 miles, and at an average speed of to knots would take about two hours to pass a given point.
It is self-evident what such a fleet as this means to the shipbuilding and ordnance manufacturing industries, but there are also less intimately associated industries that played an important part in the equipment of this fleet. We are advised, for example, by the Blake \& Knowles Steam Punup Work, 115 Broadway, New York City, that it has installed pumping equipment on sixty-five of these vessels, which is a large percentage considering that nine of the remainder carry no steam pumps, including the submarines and one sailing vessel, and that eight of the others, principally colliers, were built abroad. The number of pumps this company has installed on the fleet exceeds 1,000 , and their cost represents nearly a million and a quarter dollars.

PERSONAL

Mr. De Cocrecy May, who has been president of the New York Shipbuilding Company for some years, has resigned the presidency lut remains chairman. Mr. Samuel M. Knox, formerly secretary and treasurer, becomes president.

Mr. Roarrt C. Montemile. for several years chief engineer of the Atlantic Works. East Boston, has been marle assistant manager and engineer of the Lockwood Manufaturing Company. East Boston, Mass.

Mr. C. D. Chastesey has resigned his position as sales manager of the De Laval Steam Turbine Company, Trenton. N. J., having acquired an interest in the Turbine Equipment Company, 30 Church street, New York, which company represents the De Laval Stean Turbine Company in New York State, parts of New Jersey and Connecticut. Mr. Chasteney was graduated from Stevens Institute of Technology in Inot. and has been with the De I-aval Steans Turbine Company since the organization of the American company over ten years ago.

A Shipbuilding Record.

The Great Lakes Engincering Works, Detroit, recently delivered in record time a fleet of eleven vessels. On March 17, 1911, contract for these vessels was signed. They comprised four steamers, the Penobscot, Scaconnet. F. J. Lisman and M. E. Harper, and seven barges, named Prosidence, Searsport, Bangor. Buston, L-ynn, Portsmowth and Salem.

The steamers are of a uniform size of the following dimensions:

Length over all.
261 feet.
Length between perpendiculars......... 253 feet.
Beam, molded
Depth, molded
43 feet 6 inches.
Depth water bottom. 26 feet 6 inches.

Capacity, gross tons 3 feet.

Engine, triple expansion, 21, $34^{1 / 2}, 57$ by 42 inches stroke.........................
Boilers. Sentch. 13 feet diameter, 12 feet 11/4 inches long. 175 pounds working pressure : positive heated draft....

2
The barges are:

Length over all	268 feet.
Beam, molded	36 feet.
Depth, molded	22 fect.
Capacity, gross t	2,650

All of these vessels were built in the yards of the Great Lakes Engineering Company; and delivered before the ist of October, so as to pass through the Great Lakes and St. Lawrence River in advance of navigation being closed by ice. The vessels were built for the Harper Transportation Company, of Boston.

In addition to this orler the company delivered in Norember for the Atlantic cuast two steamers which will trade to Southern ports, the West Indies, etc. These steamers are of the following dimensions:

Length over all	261 feet.
Length between perpendiculars.	233 feet 3 inches.
Ream, molded	43 feet 6 inches.
Depth, molded	28 feet 5 inches.
Depth of water bottom.	3 feet.
Enginc, triple expansion, 1,480 horsepower, $21^{1 / 2}, 35^{1 / 2}, 58$ by 42 inches stroke.	
Boilers, Scotch, 14 feet 2 inches diameter, 12 feet long over all, 180 pounds working pressure;	
positive heated draft...	2

Vanadium Raises the Useful Strength of Steel Castings 30\%

TAKE two ladles of steel for castings, both from the same melt, the same furnace, at the same time.

Pour a casting from one ladle and after annealing it you will get a yield point or elastic limit between 30,000 and $35,000 \mathrm{lbs}$. to the square inch; it will break under tension at about $70,000 \mathrm{lbs}$.

Add one-fifth of one per cent "Masvan" Vanadium to the other ladle and pour a similar casting and anneal it precisely the same. You will get a yield point around 45,000 lbs., or 30% better; and a tensile strength approaching 80,000 lbs., or over 10% better than the plain steel; the elongation and reduction also being improved by the small addition of Vanadium.

This means that you can cast locomotive frames, high pressure steam valve bodies, hydraulic and steam cylinders and other severe duty machine parts in Vanadium Steel and get Carbon Steel forging qualities-great toughness, strength, freedom from crystallization and fatigue, and remarkable durability.

Such things are being done every day-results uniformcastings invariably strong, tough and homogeneous. Vanadium Steel castings have been made for all kinds of hard services in sizes weighing from a quarter of an ounce up to 20
tons. Put your problems up to a good steel foundry and specify "Masvan" Ferro-Vana-dium-nothing else.

Stram Faitv hodies for 230 pownds Arrsure, madr for Gonvenmernt uverk. oy the Ohip Sterl Fewndry Compony, Jima. Ohin,

Company
318 Frick Building, Pittsburgh, Pa.
UNIVERSAL VANADIUM COMPANY, General Agents NEW YORK

LONDON PARIS

PITTSBURGH

VANADIUM METALS COMPANY

FRICK BUILDING, PITTSBURGH, PA., U.S.A.

CONGESTION OF FREIGHT TRAFFIC AT NEW YORK STEAMSHIP TERMINALS.

We present herewith three views which show some of the glaring defects of the present arrangement of steamship terminals at the port of New liork. The lack of mechanical appliances for handling freight is evident in Figs, 1 and 3. The present cost of transferring cargo could be cut down $\$ 0$ percent by the trse of mechanical cargo-handling appliances, and these would insure greater rapidity and eliminate the rehandling of freight by mamal labor. Such features are of great importanee when the necessity for overcoming the congestion of freight traffic at the steanship terminals is considered. Rapidity of freight movement, reduced handling costs and increased capacity of existing terminals can be obtained by the adoption of improved mechanical methods.

TRANSFERRING CARGOES FROM SEATTLE DOCKS.

Along the water front in Seattle, Wash., the wharves are constructed of pile piers with slips between them in which sea-going vessels are berthed. Railroad street extends along the water front and scparates the docks and piers from the large warehouses. The space provided on the docks is limited and numerous warchouses are provided across the street.

The equipment shown in Fig. I was installed for transferring the large volume of miscellaneous freight handled daily between the dock and the warehouses, It consists of an overhead bridge extending from the wharf across the strect to the warehouse, which contains an overhead freight conveyor (or flight conveyor, as it is called) traveling bo feet per minute. The conveyor is 250 feet long between centers.

Fig. 2 show a view of the wharf and the method of trans-

In Fig. 3 the congestion is very eviklent, and yet only a small part of the space in the pier shed is being used on account of the impossibility of tiering the freight to any greater levight by hand methods. The introduction of mechanical methods of handling freight would permit higher ticring and prace tically doukle the single-story pier capacity: The saving in the investment in port installations by high tiering are evident from the fact that nsually only about one-third of the floor space is available for storage, and that if the freight is handled by manual labor the tiering cannot lee carried above 5 feet, whereas with mechanical handling the tiering coull he carried to 20 feet and fincrease the cajacity of the pier in proportion. Congestion is also apparent on the street along the water front, a typical example of which is shown in Fig. 2. where the suhstitution of motor trucks for horse drays would greatly facilitate the rapidity of moving the freight to and from the piors, besides reducing the cost from 20 to to percent.
ferring the cargoes directly to the ensl of the conveyor line. Fig. 3 shows the other end of the conveyor line listributing the filled barrels on the second floor of the warehouse. Wooden conveyor flights, 3 inches thick, 12 inches wide and 36 inches loug, constructed of Puget Sound fir, are secured to two strands of tio Jeffrey steel thimble roller chain, forming practically a contintonns aprom, on which the freight, stuch as baled hay, cement in barrels, large packing boxes and the like is carried. At the warehouse end of the conveyor are sprocket wheels, which mesh with the two link chains, and placed on a shaft are geared to a line shaft that is lelted to a continnousspeed. alternatitg-current to-horsepower motor.

The illustrations show a cargo of cement being unloaded. The ship was docked within 15 feet of the receiving end of the conveywr. The harrels were placed in slings, containing six harrels in a load, and were hoisted from the hold by means of the vessel's derrick in comnection with an electric hoist on the dock, which landed the sling load at the foot of the con-

veyor, whence the barrels were rolled directly to the conveyor while it was in motion, the barreled cement weighing 400 pounds per barrel. Over three thonsand barrels were readily handled in eight hours, although the maximum capacity of this conveyor is about $\mathbf{1 , 2 0 0}$ barrels per hour. The handling of this cement required eighteen men at the rate of $27^{1 / 2}$ cents ($1 / 2$) per hour, including all the labor necessary. Under the old arrangement where this material was handled by means of trucks, no less than twenty-eight men were required, thus resulting in a saving of ten men hy the use of the conveyor,

P16. 2.-PIRE END of cosvevor.
this saving amounting to $\$ 22.00$ to $\$ 25.00(\$.5$ to $\$ 5 . t)$ per day on an eight-hour shift, or at the rate of $\$ \mathbf{5} .00$ to $\$ 75.00$
 each. The complete cost of the entire outfit, including the necestary alterations at the dock and warehouses, including a new roof, truss and several other incidentals, amounted to approximately $\$ 6,745$ ($\mathbf{6}, 380$), so that it is readily seen that the conveyor will pay for itself within a short period of time, The conveyor is built so that in addition to handling package
freight of any kind it can also be used to transport loose brick, pig iron, sacked sugar and miscellaneous freight.

This conveyor system was installed by the Pacific Engineering Company, of Seattle, and operated by the Galbraith \& Bacon Company. The machinery was built according to special desigus by the Jefirey Manufacturing Company, of Columbus, Ohio,
This departure from the old system of handling freight has enabled ships to be unloaded and reloaded more rapidly without delays from the congested traffic and blocked streets.

TG. 3.-Waiknetse ExD of cowveyos.

That the purchase of coal on specifications needs to be followed up with analyses of the deliveries has been amusingly demonstrated by a recent incident. A certain board had for some time been buying coal on specification, but only recently did it take any steps to see whether it was actually getting the quality it was paying for. Lately it had made the first analysis of the coal delivered, and discovered that the coal was below the stipulated quality. As a recnlt of this analysis, costing $\$ 10$ (L_{2}), the coal dealer pairl a relnate of $\$ 873.0$ ($\$ 174 \mathbf{t 2 5}$).

AN IMPROVED CRANE.

One of the simplest mechanical appliances which has been used in engineering work for many centuries is the ordinary jib crane or derrick, consisting of an upriglit or mast with a boom or gaff for hoisting and moving weights. Although the jib crane is universally used in engineeriug and industrial work as well as in factories and transportation terminals, yet practically the only features of this crane which up to this time have been improved are the methods of manipulation or the application of power for operating the crane. There have been numerous improved winches, steam and electric, but, as a rule, this part of the equipment requires separate foundations and anchorage removed from those on which the cranes or derricks themselves are mounted. It is very seldom that the motive power is located practically on the same level and
permanently fixed to a point on the inboard end of the frame, runs over a sheave at the top of the crane and is fixed to the top block of the tackle proper. From the illustration it is evident that this block automatically drups in relation to the top of the beam, as the latter is swung lack by means of the screw. The actual reduction in the bending moment on the beam is thus reduced in a 4 -ton crane from 120 -fout tons to 51 -foot tons, or nearly 60 percent, and therefore permits building a very much lighter crane than would otherwise be possible if the crane were operated from a fixed pisot and required the excessive power which is usually needed in topping an ordinary jib crane. To top an ordinary jib crane with its maximnm load requires approximately 50 to 100 percent more power than is necessary in hoisting the load itself, whereas in the quadrant crane the combination of moving fulcrum and compensation of the falls makes it necessary to use for topping

within the area occupied by the derrick or crane itself. As a result of experience with the Welin quadrant davit, which in itself performs some of the functions of an ordinary jib crane or derrick, there has been developed by Capt. A. P. Lundin, of New York, and Axel Welin, of London, a quadrant cranc having all the advantages of a self-contained machine, in which the crane and operating devices are mounted together in such a manner that a single operator can handle the crane for hoisting and lowering the load and moving it in a horizontal plane, so that the crane will serve with rapidity and precision every cubic foot of space within its reach.
The crane is mounted on quadrants, and is moved back and forth by a screw, which, on account of the movement of the quadrants and the method of compensating the load, is subjected only to a thrust in a true axial direction, and therefore can work without undue friction. The quadrant arrangement, with its traveling fulcrum aloug the base of the frame. not only reduces the length of the beam but also reduces the bending moment on the heam and cases the manipulation of the load after it has been hoisted. By the compensating arrangement of the hoisting tackle a stout wire rope or chain,
the beam only one-sixtieth of the power required for hoisting the load. Of course, to hoist the load requires practically the same power as any other crane.

The crane can be operated by electricity, steam or compressed air, as the case demands. In the d-ton crane illustrated a 35 -horsepower motor would be used for hoisting the load, a $1: / 2$-horsepower motor for swinging the crane, and only a $1 / 2$-horsepower motor for operating the screw which tops the cranc. The horizontal swinging motion is, of course, done by the usual method used in a crane, but it has the advantage that a full, unobstriscted swing of 360 degrees can be obtained.

As to the the of such a crane on board ship for handling cargo, aside from the rapidity of manipulation and precision which can be obtained with this crane, it is interesting to note how easily the movements of the weights can be controlled. That is, they can be landed exactly as desired, and all landings can be marle perpendicularly, which is acknowledyed to be a kreat waving in labor and other expenses in handling cargo on board ship. In other words, it is not necessary to drop the load each time in one and the same place in the hatch. Where this is done it requires a great number of men to remove the
load just dropped in time to make room for the next, while with the improved quadrant crane the load can be dropped at different points in the hatch, giving the handlers more time to stow away and naturally increases the speed of loading and discharging the ship.

With a portable quadrant erane of a capacity of $2^{1 / 2}$ tons and an outreach of elose on to 20 feet, the entire weight, including drams, motors, etc., will barely amount to 4 tons. If this is compared with the $2^{1 / 2}$-ton electric cranes now used on board transatlantic ships, which weigh something like 8 tons each, the advantage of weight saving with the quadrant system is clearly demonstrated, not to mention the space saving, which is also considerable, particularly if the cranes are port-
that kind, where the advantages of the lightweight self-eontained machine are obvious. In some shipyards ordinary jib cranes are still used alongside the building berths, and frequently in such cases topping of the eranes is dispensed with onl account of the large power required and the danger attending this operation. In such instanees the usefulness of the eranes would be greatly augniented by utilizing the quadrant system of cranes and enabling the operator to have perfect control of the crane under all conditions. Also a light quadrant crane could be used to advantage in handling the work at heavy slipyard tools, enabling one man to have complete control of heasy plates, bars and forgings at such work as punching, shearing, rolling and machining.

able and can be dismantled and stowed away when not in use. On board ship the quadrant crane has the inestimable advantage of doing away with what is often a veritable forest of masts, booms and spars, necessary for expeditiously handling of eargo, coaling, etc. Considering all the winches necessary to operate this elaborate apparatus, and the many hundred feet of steam pipe necessary for conducting steam to the winches; the frequent leaks in the joints of the steam piping, which bends under the strain of the ship in a heasy sea, and has to be gone over by a whole staff of engineers before the ship arrives in port, the allvantages of the selfcontainel quadrant crane become apparent.

If a ship is equipped with a number of gradrant cranes conveniently located for handling eargo and baggage and for coaling. not only ean the total weight of the equipment be considerably decreased, as compared with the usual equipment of masts and booms and the time of loading and discharging of the ship and the consequent expense decreased, int after the loading and discharging have been done in port all of the cranes except one forward and one aft can lie dismantled and placed either on deck or stowed in the hold.

Athough these cranes may prove to be exceedingly useful for cargo ships in particular, and, in smaller sizes, for handling coal and haggage, ete., on passenger carriers, yet perhaps their greatest field is on land as wrecking crants on railrcaik, eranes on docks and wharves, and cranes on building sites, bevides cranes for steam shovel and varions other plants of

THE OTIS DOCK ELEVATOR.

The dock elevator illustrated has been installed at a number of steamship docks along the Atlantic coast, one of the most recent installations being at the docks of the Metropolitan Steamship Line in Boston, where three of these machines were installed simultaneously, replacing the old form of moving platform, which has been discarded. The Ot is Elevator Company; of New York, manufacturers of this device, are now installing two large machines for the Roston \& Maine Railroad Company at their Mystic Wharf in Boston. The mechanical construction of the Otis dock elevator is quite cimple. It consists of an endless chain provided with projecting steel lugs. This chain is supported, and slides in a lubrieated steel channel located ahout 6 inches above the floor. The chain prasses over a sprosket wheel at each end of the ineline, the upper sprocket wheel being keyed to a driving thait, which in turn is journaled under the floor. This driving chaft is in line with the hinges which support the inclined Hoor or "drop." These hinges are of heavy cast steel construction, provided with a large hollow forged shaft through the f-inch diameter hole of which passes the driving shaft of the elevator. In this way the mechanism is always at the proper level, notwithstanding the different positions which the inclined platform may take. At one end of the main driving -haft is keyed a large gear wheel, which is driven by a steel pinion jonrnaled ahont ifont above the flow line of the dock.

The pinion is carried on a countershaft, which is provided with a brake pulley. On the other end of the countershaft is a large belt pulley; írom which a beit leads to a 10 -horsepower electric motor contained in a housing. In this way all important mechanism is placed on the floor and can be easily looked after. At convenient position to the operation of the machine is provided a starting, stopping and reversing switch. There is also a special starting box provided, which enables the operator to change the speed of the elcrator from slow to high speed. This control device is quite important, as frequently there are special truck loads of great weight to be handled, and at such times the machine is slowed down so that the men are able to handle it with facility. The operation of the dock elevator is as follows:
A man with a loaded truck walks onto the inclined hinged platform or "drop," and the axle of the truck drops in the resess between the steet lugs on the moving chain, and it is thus drawn up the incline without any manual effort on the part of the truckman. It will be seen that the truckman walks up the incline with his feet on opposite sides of the narrow partition along the top of which the chain slides. By this
means there is no chance for the feet of the workman to be caught, as is the case with the moring platiorm which this type of machine seems to be replacing. The men are, as a matter of fact, assisted up the incline, becanse they lean back upon the truck handles and the truck really pushes them up. There is absolutely no possibility of the truck slipping backward, which was frequently the case with the old-fashioned moting platform. The men therefore feel a confidence in this machine which was lacking in the old-style moving platiorm.
This machine is almost as valnable for carrying loads down the incline as it is for carrying them up, and it works in either direction with equal facility. In the Boston \& Maine installation two of these dock elevators are to be located on one platform and are to be run in opposite directions, and carh machine is to be independent of the other. By this means it will be possible to carry loads in both directions simuttaneously; or, if desired, the speed of unloading can be duabled by rnnning both machines in the same direction. As there is a tidal drop at this dock of ahout 20 feet these machincs are tikely to save a large amount of time and labor in handling freight.

REVIEW OF MARINE ARTICLES IN THE ENGINEERING PRESS.

Porucrful Dredge for Panama Canal.-This sessel, named Corosal, and built by William Simons \& Company, at Renfrew, is an extremely powerful bucket hopper dredger for use on the Panama Canal. It is of twin-serew type, driven by triple-expansion engines working at 180 pounds preisure, and steam is snpplied by two Scotch boilers. All anxiliaty machinery is independent of main engines. Dredging gear can be operated by either propelling engine, and is arranged to give three speeds, depending on kind of material to be dealt with. Two sets of buckets are provided, one for soft clay and one for hard. The bucket ladder is a steel ladder, which, with its equipment, weighs over 240 tons. The ship has a hopper capacity for 1,200 tons, 450 words and photographs,-The Engincer, Octolier 20.

Three Ferry Steamers.-Hulls built by Nüscke \& Company and machinery by the Austalt Akt.-Ges., Stettin. Leugth over the deck, $98+$ feet ; length between perpendiculars, 80.2 feet ; breadth, 35.1 feet; depth at side, 12 feet, and loaled draft, 8.9 feet. Machinery consists of compound engine 11.4, 23 by 15.7 inches, and a two-furnace single-ended Scotch boiler, working at 150 pounds pressure. There is a propeller at each end of the vessel, which turns at 210 revolutions per minute. The rudder at each end works within a well formed by double stern post. Engine is designed to indicate 280 horsepower. Although the article is not long it is aceompanied by a conplete set of detail drawings for hull and machinery, 1,800 words, 5 large plates and several smaller-sizel drawings and two photographs. - Schiffitow, October.

French Battieshifs Jean Bart and Cowrbet.-The most powerful ships ever built for the French navy were launched Sept. 22 and 23. Their keels were laid about the 10th of last November, and they were launched with abont one-third of their completed weight in place. When completed their primcipal features will be as follows: Displacement, fully loaded, 23.457 tons; Iength between perpendiculars, 541 feet 4 inehes; breadth, 88 feet 7 inches; mean draft, fully loaded, 29 fect 1 inch; horsepower, $2 \mathrm{~K}, 000$; speed, 20 knots. The double bottom is carried up to the lower protective deck, and above this are two others, making three in all. This is the first time such a plan has been tried. The upper, main and lower protective deeks are, respectively, 1.18, 1.9 and 2.76 inches thick. For the first time since $18 y y$ the protection of the fore part of the ship
has not been completely carried out. The armament consists of twelte 12 -inch gins and twenty-two 5.3 -inch quick-firing gums and four 45 -millimeter guns and four underwater torpedo tuber. The Courbet is furnished with Niclausse and the Jean Bart with Belleville boilers. Each ship has twenty-four bwiters 4rouped in four boiker rooms and served by three smokestacks. The normal canal capacity is goo tons and the maximum 2,700 tons, kiving a steaming radius of 8,500 miles at to knots, of 2,300 miles at 20 knots. The vesel is driven by two sets of Parsons turbines on four shafts, with a working pressure of 236 pounds per square ineh. The enkines are designed for 28,000 shaft horsepower. 2,500 words and phatograph of latuching of Jean Bart -The Enginecr. October 20.
H. M. S. Medino--The Peninsular and Oriental liner chartered for the conveyance of their Majesties the King and Queen to India. For this rrip accommodations have been very largely refitted, and a special crew will have charge for the voyage. The ship is 570 feet lenk, 62 feet 9 melhes beam, and 20,000 tons loaded displacement. There are seven decks and passenger accommodation for 450 first class, 220 second class, besides a crew of 160 . The machinery consist of two quadruple expansion engines, $301 / 2,44,63,89$ by 54 inches stroke. Steam is furnisled by four donble-ended and four single-end boilers, working at 215 pounds pressure. 550 words.-Engineering, October 27 .
Italian Dreadnoaght Conte di Cavour.-This is Italy's second dreadnought, and has the distinction of mounting the most numerous all-big-gun battery yet put into a modern warship. The main battery consists of thineen 12 -inch guns, six of which are mounted three in a turret, forward and aft. All can be trained abeam and five ahead and astern. Seconlary battery consists of eighteen 4,7 -inch guns placed on the broadsides and fourteen 1.-pounders. Designed displacement of the ship is 21,500 tons, and speed 22.5 knots. Steam is to be supplied by watertube boilers to turbines. Further details of machinery are lacking. Article is accompanied by plotographs of ship before launching and as she will appear at sea, and sketch showing general arrangement of armament, also a table comparing this with other recent dreadnoughts of the other nations. 1,300 words.- The Marine Enginecr and Fiatal Architect, Octoher.

A Stean Launch,-Messrs. Simpson, Stricklatd \& Company, of Dartmonth, specialists in the bnilding of high-class steam launches, have recently turned out a boat embodying somewhat unusual features. Of 42 feet length over all, with 9 feet beam and 4 feet 6 inches depth, and carvcl built of mahogany, the boat postesses a degree of comfort and scaworthiness unusual in so small a craít. Propelling machinery eonsists of a triple-expansion engine, $4 \frac{1}{4}, 644,10$ by 5 inches, which, running at 600 revolutions per minute, with 250 pounds boiler pressure, indicates 62 horsepower, and drives the boat 12 miles per hour. Besides plotograph of the boat article contains drawings of boiler and engine. 900 words.-The Euginecr, ()ctober 20.

Koiser Franz Josef 1.-On Sept. 9 this vessel, the largest liner constracted in Austria, was launched from the shipyard of Messrs. Cosulich Bros, at Monialcone. The ship is $\mathbf{j 0 0}$ feet long, of 62 feet breadth, and 42 feet 9 inches depth to shelter deck, and is expected to attain a speed of tg knots. Displacement 16,500 tons at 26 ieet draft, gross registered tonnage 12,500 tons, and deadweight carrying capacity 7,500 tons. Passenger accommodations are provided for 160 first class, 480 second class and i, 400 third class. Propelling machinery was desigued and constructed by Messrs. David Rowan \& Company, of Glasgow, and consists of twin-screw quadruple expansion engines, balanced on the Yarrow-Schlick-Tweedy system, capahle of indicating 13,000 horsepower. Steam is supplied by six double-ended and one single-ended boiler fitted with Howden forced draft. The auxiliary machinery thronghout is of the best. The tessel has been buitt to Lloyd's highest class. 940 words and photograph of vessel after lannching.-The Marine Engineer and Naval Architect, October.

Marine Engineering.

fet Propulsion.-An editorial discussion of this subject which presents some facts little thonght on, which, taken by thenselves, would indicate a higher efficiency to be possible than is actually oltained in practice. The other side of the question is treated later, and effectually sels aside the too sauguine hopes of jet proptlsion entustiasts. For while it is unquestioned that the jet itself is higher in etficiency than any serew propeller, yet the diffeuties encountered in taking into a ship the water to be used as the jet and imparting to it velocity that can be efficiently used for the proputsion of the vessel more than offset any theoretieal advantages, $t, 500$ words-Enginecring. October 2%.

The Progerss of the Parsons Marins Turbinc.-Being a review of the fourteentl anmual report of the Parsons Marine Stean Turbine Company: L.te.. which gives a list of new ships just completed or builditg propelled by this type of mathinery. Among others are mentioneal the following: Warthip--For France, six battleships of the Danton class, two larger battleships recently launched, and two other battleships recently authorized. For Germany, armored eruiser Moltke completed, three bauleships and four cruisers ordered. Enited States, hattleship Vtah completed, three battleships authorized and seven deveroyers now building. For Austria, Russia. Spain and Turkey, each a batteship building For Japan, four armored cruivers now building. Mcrehant ShipsNew Cunard steamslip dquitania at John Brown \& Company; two new steanships for the Hamburg-American Lime; new hish-speed French liwer La France; two new passenger ships for the Canalian Pacific service in British Colmonbia 1,300 words,-Finguncering: Otoloce 13 .

Care in Using I.iquid Fucl.-A billetin has just been issued ly the Navy Department dealing with this interesting and very importan subject. Althomgh fuel nil as supplied to ships is the residue of petroleum after distillation, and is not itself
explosive, yet gases from it when mixed with air are liable to be dangerous if exposed to any flame or spark. Hence the value of these rules to all who have to do with the loading or using in any way of fuel oil. As given in this article the rules are too numerous to be kiven here, bit are well worth looking up by those usiug oil fuel. 1,000 words.-Mariuc Revieur, October.

Mcasurcment of Shaft Horsipuzwer.-A resume of the diffienlties inherent in the measurement of shaft horsepower under conditions ustally found in marine engineering, followed by a description of a type of torsion meter, the Detuny-Edgecomb, which is said to fultill every requirement for accurate, precise and easy reading of shaft horsepower for turbines, reciprocating steam engines or internal-combustion engines. The meters are purely mechanical in type. Connections are fitted for taking readings directly and simultaneously in engine room. chief engincer's room and captain's cabin. 3.500 words and photographs of the meter.-The Enyiveer, October 20.

Miscellaneous.

The Auschuts Gyro-Compass.-This instrument has the advantage to the navigator that it points to the true north and is unaffected by the presence of steel. It depends on the principle enunciated by Foucault that a gyrostat with only two degrees of freedom will at any point on the earth's surface except the poles tend to set itself with its axis of rotation parallel to the earth's axis. As used with a ship's compass the gyrostat is suspended beneath the compass card with its center directly in line with the north and south line. The kyrostat is electric driven and rotates about 20,000 times per minste. It is ealeulated that the directive force on the card is about fifteen times greater than in the case of a good liquid compass. 400 words,-The Stramship, October.
First f'rinciples of Nuty Siard Management.-By Assistant Naval Constructor Richard D. Gatewood, U. S. N. A comparison of staff and line orgatization as applied to industrial plants, navy yards in particular. Shows the weakness of the strictly military type discipline in the construction and repair of government ships. 2,500 words.-The Marine Reciese, October.

Autonatic Cowling of Ships.-At 1Iolyhead there has been in service for about a year a coaling barge that has attracted considerable attention. Of about 154 feet over all and 27 feet breadth, the strituture of the barge is divided into eighteen coal bins, nitue on each side of a longitudinal well which extends the length of the boat given up to cargo. In this well are earried and operated two elevators, whicle hoist coal from the bins into chutes which lead to the vesiel to be coaled. The elevators are operated by the npper drum, driven by gears from a double-cylinder, direct-acting engine. The barge is propelled by twin-screws driven by two sets of compound engines, $61 / 4.12 \frac{1}{2}$ by $81 / 2$ inches, working at 90 pounds pressure. The elevators are moved forward or aft by a chain lead driven by a donkey engine in the stern. Steam is fornished by a Blake patent vertical cylindrical boiler. It is placed in the stern and steam is conveyed by flexible tubing. The system is one which admits of much flexibility, both in design of the harges and in the actual opcration. The number, size and arrangement of the bins and elevators may be made to suit conditions, while propelting machitery nray be tnade anything convenient. In actual work the elevators may be moved or the ponition of the harge clanged while the coal already loaded is stowed and trimmed. Chtres may be turned to get a good rarlius of action. Elcvating mechanism is said to operate econornically. The barge can enal a ship at the rate of 300 tons per hour. Sketches showing general arrangentents and 'midship section, together with photograyh of barge in operation. given with deacription torw words-7he Enginerr, Sept. 20.

NINETEENTH ANNUAL MEETING OF THE SOCIETY OF NAVAL ARCHITECTS AND MARINE ENGINEERS.

The nineteenth annual meeting of the American Society of Naval Architects and Marine Engineers was held Nov, 16 and 17 at the Engineering Societies building. New York. The meetings were opened by a very interesting address on current progress in shipbuilding and marine engineering by Mr . Stevenson Taylor, president of the society. Following this the report of the secretary-treasurer was read, showing an increase in membership of seventeen during the year, fifty-one new members were elected, eight deaths occurred, and twentyone resignations and five suspensions were recorded. The financial condition of the society was very satisfactory. The resignation of Capt. W. J. Baxter as secretary-treasurer on account of ill health was sincerely regretted by every member of the society. To fill his place the society elected Mr. D. H. Cox, a selection which was unanimously approved. Seventeen papers were read and discussed, abseracts of which follow:

```
No. 1-On the Maximum Dimensions of Ships.
et at Wallian F. Whate, E. C. B., F. A. A., D. AC., LL. D., B. ENG, ABSTEACP.
```

The subject has an interest for naval architects, shipowners, dock and harbor authorities, travelers and all classes of engineers. What seem to be chiefly needed are reasoned replies to certain questions: I. Is it probable that the dimensions of ships will comtinue to grow at the rapid rate which has prevailed in recent years? 2. Will an upper limit to the sizes of ships be reached? 3. What considerations, if any, are likely to determine such a limit, for either merchant ships or warships? Probably the most useful procedure will be to make a detailed statement of facts and principles which will, for the most part, command general assent; and in doing so it may not be out of place for me to state my own conclusions on points of controversy:
I. It will be agreed that the law of growth in dimensions has operated hitherto on all classes of ships, and that its action has on the whole been beneficial. Members of this society treat as axiomatic the statement that economy in propulsion and over-sea transport has been, and always will be, promoted by increased dimensions. Stronger materials of construction have been made available; more efficient types of machinery and propellers have been devised: higher steam pressures have led to greater fuel economy, and higher rates of revolution have favored relatively lighter propelling apparatus. But after each such improvement has been Introduced and utilized, the law of growth in dimensions has inevitably reasserted its claims on naval architects, and been again brought into operation in order to secure still further adsantage in respect of speed, carrying power, or other features of ship design. Snccessive vexsels helonging to each and every class have been made larger than their predecessors.
II. It must be noted, howerer, that-notwithstanding the remarkable developments of the last ten years-the number of ships of extremely large dimensions is relatively few. Whatever may be the future growth in size of the largest ships built for special services, the bulk of the maritime business of the world will always be done by ships of relatively moderate dimensions, and they will contimue to be the largest contributors to the revenues of port and harbor authorities.
III. Naval architects will agree that, provided the money is forthooming for building still larger ships, their construction will be possible; and that considerably increased dimensions will present no scrious difficulty even if the materials for shiphuilding already avallable were not improved upm. The margin of possibility indeed appears to go far beyond any probable demand.
IV. Existing physical conditions in the seaports, hariors and docks of the world, necessarily impose limits on the draft of water of ships. Much has been done, at great cost, to insprove accommodation and to provide increased depthy of water; but it is well recognized that the increase in dimensions of shiigs above described has been chiefly in lengths, breadths and molded depths; the increase in drafts of water when fully laden has been relatively small. The earning powers of ships are thus lessened, and in these circumstarces it is natural that a demand should have arisen, and should still continue, for greater depths of water and better accommodation for ships of the largest size.
V. Up to the present time the response made to the appeal from shipowners for increased accommodation for larger ships by authorities of the great seaports of the world has been neither niggardly nor unsatisfactory. Extensive and costly works are in progress which will provide accommodation for the largest ships now building, and leave some inargin for further developments.
VI. The marvelous gronth of the world's commerce in modern times has enabled these great engineering works to be undertaken hitherto under conditions which have, in most cases, either yielded fair returns to investors in dock and harbor securities, or which have been considered hy governments beneficial to the whole nation and worthy of adoption irrespective of the return upon capital expenditure. The growth of traffic in most of the great seaports has also enabled earlier docks to he fully utilized by vessels of smaller dimensions than those for which the latest docks have been constructed. But while this has hitherto happened it seems not improbable that a point may be reached beyond which dock and harbor authorities will not care to go into expenditure in order to meet further increase in dimensions and drafts in a relatively small number of the largest ships; and it is well understood that this consideration particularly applies to increase in draft of water, since the cost of dredging grows rapidly with inerease of depth.
VII. A brief summary of facts relating to the dimensions of locks and dock entrances recently constructed or now in process of construction is given as indicating the outcome of inquiries set afoot by responsible authorities in regard to the provision of snitable accommodation for the largest ships likely to be built.
VIII. When the particulars for locks, docks and approach channels are considered in the light of dimensions of ships it will be seen that the margins provided in most of the recent engineering works are not very great in regard to length and brealth, although they are expected to prove sufficient for many years to come, because of commercial considerations.
IX. It is a fact worth noting that ships of the maximum dimensions now built or building are not easily accommodated or moved in the largest docks and harbors. The vessels are wonderiully liandy, but they necessarily require large spaces for their maneuvers, hecause they are so long and heavy, and in the busy waters of their terminal ports cantion is reguired. Even in the terminal ports of the transatlautic steamers diffoculties are necessarily experienced, and althongh they have been overcome so far they' must be accentuated by any further increase of size.
X. For cargo steamers and warships to such fixed conditions or terminal ports exist. The former class are built to seek cargoes everywhere and to deliver them wherever desired. Consequently experience has led to the adoption of relatively moderate dimensions and draft of water, in order that their possible field of operations may be extended widely Moderate straft of water is an important fcature of warship design: and the tendency in recent years to a considerable increase in the deep load-draits of warships is, from this point of vicw, objectionable. For warships as well as for
merchant ships expenditure on ships and armanents must be considered concurrently with that on harbors and doeks.

X1. Fnlarged dmmensions, of course, enable certain advantages to be obtained outside the fundamental gains of economy in sea transport or increased speed, stwh as maintenance of speed at sea in rough weather and itwreasesl uniformity of service between terminal ports; greater steadiness and good behavior in rongh water and increased eomfort for passengers; better and more spacious accommotation for larger numbers of passengers: the attraction which many passengers have toward the "biggest ships afloat." Further inerease in the dinensions of ships will have little or no effect upon regularity of performance of service belween terminal ports, and large dimensions are nut necessary to secure moderate rolling and easy motion.
XII. It would appear that the main determining fator in regard to maximum dimensions for future mercantile vessels must be found on the eommercial side and not on the technical. li ships cannot be made to pay dividends on the eapital stms mvested in them-after meeting working expenses and cost of up-keep, and making due allowance for insurance and de-preciation-they are not likely to be built.
XIII. For warships other comsilerations than those of Grst $\cos t$ and cost of maintename must determine the maximum dimessions which shotsld be adopted. As outlined by Sir William in a paper before the society last year his conclusion. based upon long-continted study of the problem, is that the wiser course in warship building would be found in a return to more moderate dimensions and a reduced unit cost for capital ships.

No, 2-Dock Facilitles In New York City-Present Facllitles, Proposed Improvements and Enlargements.

BY WHLLAM J. BAKNEV.
Absteact.
Attention is called to four broad divisions of freight handled in the port of Sew York as aikls in considering the present facilities, their disalvantages and the proposed improvements and extensions: First, "Irans-shipuents," which include the freight that enters and leaves New York merely as a port of entry for trans-shipment on its way between foreign countries and other parts of our own cnentry; second, "city imports," comprising the foreign freight coming into the port of Sew York for direct consumption in the city of New York, especially on the Island of Manhattan for retail distribution therefrom; third, "passengers," preferably to be landed in Matthattan becanse of the hotels, theaters, shops and railroad stations, and, fourth. "railroad city" trattic, or goods from the hinterland, for consumption in the boroughs of New York, and their awn exports thereto, which must of necessity pass over the bulkheads and piers of these island boroughs. The logical plan for handing these four elasses of freight would be to reatere the water front and the immediately aljacent upland for the maritime eommerce; that is, for the "transshipments." "city imports" and "passengers": on the other hand, to receive the "railroad eity" freight and supplies for the city at dequts and freicht yarils so far removed from the water front as not to curtail the mayitime development and the cheap handling of maritime freight. For handling "trans* shigments," and also for "city imports," there is today ote great terminal in New York developed and managed by private interesty, and two other fecight terminals of importance. A sike from these terminal a little las been dure in an organized manner for "trans-shitments." but the port authorities have in siew the installation by the municipality of terminais for "trans-shigments" and "city imports" in Srouth Erooklyn, on the east shore of Staten Island and at Jamaica Bay:

In eonnection with this presentation of the present water front freight terminals in the larloor and their proposed extensions, the prexent lack of mechanical equipment is worthy of note. Practically no piers in New York harbor, asikle from the "Chelsea Piers," are equipped with crancs and other mechanical freight-handling devices.

On the North River, the upper sections of Manhattan, where developed and not oceupied by parkways, are at present largely oceupied by river lines, small erafts and harges handling building materials and coarse freight. The lower Manhattan water front on the Norsh River is a natural location for the large passetuger and packet express steamers, since their passengers and cargoes are destined particularly for Manhattan. There is one large transatlantic passenger and packet freight installation in the port of New York-the Chelsea Section, beiseen Twelfth street and Twenty-third street. Of ninety-fise piers on the North River below Sixtieth strect, forty-one piers, or nearly one-half, are occupied by the railroad companies or the "city railroad" freight. Excepting the New L'ork Central. the great trans-continental railroads reaching this port terminate on the Jersey shore, and the freight cars are carried on ear flouts over from the Jersey sille to the various piers of the different railroads in Manhattan. This methed of handling the "railroad-to-the-city" freikht reaults in a floating freight yard from the Battery north to Twenty-third strect, a part of the water front uhich is imperatively required by the growing maritime intereste in the port. Therefore, to proside properly for the steamship lines and yet to conserve the railroad facilities of the city, freight cars nust be given a common point of entry to the city upland in a less congested district of Manhattan with track connections into the downtown wholesale and business districts. It is therefore proposed to install a series of ear float transfer bridges between Thirtieth and Forticth streets on the North River, and there to concentrate the delivery of all car floats now occupying the water front in lower Manhattan, and by means of ramps or inclined planes to bring these cars from thesse ear floats up onto an clevated railroad to rim wouth from Twenty-fifth street along the mar. ginal way. It is further proposed, by means of elevated sidings from this elevated railroad, to place these cars into the second story of large freight terminals or warehouses, etc., on the east or inshore side of West street. The freight is there to be unloaded onto receiving platforms either by storage or for delivery at the street level to trucks, etc., by chutes, elevators, or other mechanical devices. The reverse procelure will haudle outbound shipusents. By practically douhling the maritime caspacity of the central part of New York harlor it is believed by the department that such an installation and reorganization of the port facilities will more than landle the prospective growth of maritime commerce for many years to come, and also meet and solve the dificulties presented by the increasing length of transatlantic steamers.

No. 3-some Model Basin Investigations of the Influence of Form of ships upon their Resistance.

IV MAVAL, CONstevctor D. W, TAVLOB, E. A. N.

ABSTRACT.

In a paper three years ago before the socicty upon the influence of the shape of the 'inidship section upon resistance I showed that within the range of a limited number of experiments the influence of the shape of the 'midship section upon resistance, while appreciable, was not great, and for the variations practicable in a given case would usually be almost nuglikible. The present paper gives the results of some experimental investigations of the effect of shape toward the extremities. The field is a very broad one, and the experi-
ments are far from completion. The results now given, trowever, are complete in themselves, and it is believed throw a light on the portion of the field they cover. Two scries of models, namely, Serics Nos. 29 and 32, were used. The dis. plaeement in fresh water was in every case 2,250 pounds, and the length of each model 20 feet. The 'midship section coefficient was in each case 0.96 and the ratio of beam to dratt 25. The longitudinal coetinetut of Series No. 29 was 0.60 , and Scries No. 32, o.f4 Hence the beam and drait in Series No. 32 were slightly less than in Series No, 22. It will be observed that each series consists of sixteen models. This resulted from the fact that in each ease four different curves of sectional area were used and four different waterlines. The waterlines were largely the same for the two series. Each curve of sectional area being combined with each waterline resulted in sixteen models. In addition the models of each series, which all had the same 'midship section, were made in halves, so that each bow could be combined with each stern, resulting in $2 \xi 6$ prossible combinations for each series. As will be explained later there were a number of different combinations made during the experiments, but not 256 . For convenience and simplicity the stern profites are rectangular, The bow profiles are practically rectangular. The eurves, of sectional area, have a value at the bow, or, in other words, the bow below water is of a simple bulbous form. In each case half of the displacement was forward of the center and half of the displacement abaft of the center. The waterline, however, had a greater area abait the center; the coefficient of the after half of the waterline of Scries No. 29 being always five points greater than that of the forward half of the waterline. In each case of Series No, 32 the after waterline coefficient was ten points larger than the forward waterline coeficient. This was done to make the waterlines approach more closely average practice.

The resistance being due partly to the surface and partly to the disturbance created, the first question to be investigated is the relative suriaces of the varions mumbles. It is found that the variation of wetted surface is not great. Bearing this in mind we may safely say that the effect of pratticable variations of shape of sectional area eurves ansl waterline fineness upon wetted surface are comparatively sunall. Fine ended curves of sectional area result in somewhat greater wetted surface, but the difference is not more than 2 persent or so for very great variations of sectional area.

Let us take up now the experimental results. Bearing in mind that comparatively few vessels are driven at speeds greatly above that corresponding to 4 knots for the 20 -foot model, it is found that the variation of resistance corresponding to very radical variations of form of the three models in each ease are after all not great. It is interesting to note the critical speed, a little above 4 knots, at which the models change place materially. Models which are of the extreme type, comhining full ended sectional areas and fine ended waterlines, are the worst below 4 knots, while between 4 and 5 knots they show themselves the best. This is a typical result and shows that the features of a model shonld be adapted to strit the speed.

Taking up now the question of residuary resistance rather than the total resistance, a study of the restults shows the tendency to straighten out or change relative positions beginning, roughly; at or a little below the speed length ratio of o.g, corresponding closely to a 4 -knot speced for a $20-\mathrm{foot}$ model.

For Series No, 29, where the longitudinal coefficient was o. \%o, in every ease the fine bow appears to be the best at low speeds. Moreover, the fine how in combination with the full stern appears better than the fise bow in combination with the fine stern. At higher speeds the fine bow with the full stern loses its superiority. Considering Series 32 (longitudinal eocfficient 0.64), while the fine bow appears to be a little the
beat at low speeds, it does not show as much superiority as it does for the Series No, 29, and at the higher speeds, too, the fine bow is relatively worse. Broadly speaking, the tine ended conrves of sectional area have the better of it at and below a speed length ratio of about 0.0, while at the high speeds they are the worst in every case. It was difficult to separate the effect of the bow from the stern. Utudoubterlly the resistance of a given stern will be different as it is combined with varying bows, and vice versa. It was not practicable to test all hows with all sterns, as this wonld involve testing 256 models for each series. Some investigation was made, however, of the stern effect by combining a single bow with all sixteen sterns in each case. The common bow used was one where a rather full waterline was eombined sitlt a rather fine ended type sectional area curve. The results where the curves are grouged by waterlines show retharkahly small variation for all speeds, indicating that we may materially vary strape of curves of sectional area aft without material effect upon resistance. With the same curves grouped by curses of sectional area for moderate speeds these again show eomparatively small variations, but at high speeds the variations, while not great, are appreciable, and the results unwelcome. W. Froude many years ago laid down the dictum that, broadly speaking, the U-bow and V-stern were favorable to speed. Now the fuller the waterline aft and the finer ended the curve of sectional area the more the stern approaches the V-type. The first group of curves indicate clearly that for usual speeds the V-type of stern is stuperior, but the second group shows at about a speed length eoefficient of 0.95 a change in relative positions of the eurves, and in every ease the fine waterline aft is the best at high speeds. Careful consideration of these results will, it is believed, warrant the conclusion that the primary factor involved here is waterline fineness, the variations with changes in curves of sectional area being subsidiary: There is not much to ehoose between the sterns with fine ended and full ended curves of sectional ared. Of course, in practice we would wish to use with a fune waterline aft a fine ended eurve of sectional area to avoid a bulbous stern.

There remain two questions to be considered, namely; what is the best combination of coefficients in the case oi each series, and how much ean we affect the resistance by adopting this best combination? For the minimum resistance at the high speeds we need to materially fine the ship at the waterline and all it out befow water. The broad conclusion to be drawn from the results I have oltained are confirmed by other experiments which agree in indicating that the type of form suitable for low and moderate apeed length ratio below o.g is not at all adapted for high-speed length ratios of t and above. The reason is, I think, to be songht in the relative dimensions of the ships and the waves which it makes. At the low speeds only the ends of the ship, and more particularly the forward end, materially affect the resulting waves, which. after all, are small and ofter but comparatively small resistance. At the high speeds, however, the whole fore-bndy has to do with the creation of the waves, and we decrease resistance by making the waterline as fine as possible and putting as much as possible of the displacement well below water, where the pressures, due to its thrusting itself into the undisturbed water, will be as much as possible abeorbed in doing the necessary pumping aft of the water and not in raising the surface into waves.

It will he found upon studying the contours and lines that while for medium speed work lines of the U-type are excellent, there is material decrease in resistance for high speeds by approaching the type of the bulhous bow. It is true that the latter models indicate also a bulbous stern, but we have found that the main factor licre is the fine waterline aft for high speed, and not the full ended curve of sectional areas. As pointed out already the models of Series Nos. 29 and 32 are
not oi high-speed type, and I would not feel warranted in drawing any conclusions from them as to high-speed work did not results so far from high-speed mudels appear to agree with those from Series Nos. 29 and 32 . I think, then, there is little doubt that for high-speed work up in the region where $\frac{V}{-}$ is irom 1 to 1.2 , the bulbous type of bow is dis$\sqrt{1}$
tinctly superior as regards resistance. While there are some practical objections to it, they do not seem to be very serious, and I see no reason why in many cases some approach to the bulbous type could not be made to advantage. The extreme U-type of bow, where the fore fuot is carried as far forward as possible and the sides are practically vertical, the waterline being marle as fine as possihle, is the nearest approach to the bulhous type of bow that can be made without departing from conventional ileas, and where adopted this type of bow will give less resistance for high-speed work than bows of less prowounced U or V -type.

No. 4-The Resistance of Some Merchant Ship Types in Shallow Water.

AByThact.

During the past two years a number of models of various merchant ship types have been tested in water of varying depth in the "tank" at the University of Michigan. The characteristics of each form are given in the paper with the curves. They range from fine to full types. Some of the broader types of from five to six beams to the length and one with V-shaped sections have also been added. In each case the curves represent the residuary resistance in ponnds per ton of displacement. The false bottom was fixed at definite depths, and all models were testevl at these depths of water. As many of the models represented actual ressels, and were not of the same length, they were loaded in each case to their respective load-drafts, hence the depth-length or depth-draft ratio varied in most cases.

In commection with the above it may be of interest to note that various "humps" in the resistance eurves oceurred at practically the same speed irrespective of the length of the model, which indicates that the speed at which the maximum resistance occurs is a function of depth of water rather than size of ship.

Cross curves representing the variation of resistance in terms of depth of water are given on each diagram; also curves showing the approximate speed-length ratio at which the residuary resistance begins to increase as compared with deep water.

Results were obtained for a typical set of merchant ship forms varying in prismatic eoefficient from about 0.5 to 0.85 , where the first "hump" in the curve for a given depth occurs at nearly the same speed for all types. There is, however, a tendeney for the maximum to oceur at a higher speed as the form of the vessel becomes finer.

With curses for two vessels of the same dimensions and practically the same prismatic coefficient or curve of sectional areas, but differing only in area of 'midship section, and hence block coefficient, the carves of residnary resistance per tom of displacement in shallow water have the same characteristics as those of deep water; but as the humps occur at earlier speeds and are much more pronnunced in the shallow water. the form with the finer 'midship section appears to hase an advantage over the fuller type, particularly at what may be termed the "practical" speeds for this form.

In similar sets of curves for a slightly fuller vessel than
the previous one, the same general characteristics appear to hold in both cases.

Curves were obtained for a broad vessel with practically V-slraped sections throughout. In this case the vessel was tried at two drafts. The "humps" occur at the same speeds for each draft; also these are not so pronounced as in the types with fuller 'midship sections. This is probably due to the fact that the mean draft of the "midship section is much less in this than in the previous cases.

It is often of interest to know at about what speed the first "hump" is likely to occur for a given depth of water. The speed-length ratios at which this maximum resistance may be expected have been plotted on a depth-length ratio base. In this case the total resistance of the model has been taken. Other published results have been added for comparison, and from these, which are mostly for torpedo boat destroyers and vessels of a somewlat similar type, it appears as if the "hump" for a given depth of water occurs at slightly higher speeds in the fuller forms. Observations of the wave formation at the critical speeds confirm thosc already given by previous writers. At or near these speeds the vessel tends to form a train of waves at the stern, which extends for some distance from each side of the ship and at right angles to the same. After pass * ing this poist the flormal type of bow and stern wave gradually reappears. It is possible, therefore, with the limited dimensions of the tank, that the sides may have some influence upon the results at these speeds. As. however, the first critical speed, especially at the smaller depth-length ratios, would be practically impossible of attainment in the types given, any slight error involved does not have much weight.

No. 5-Panama Canal and American Commerce.

av 1ewhs maxos.

ABSTRACT.

That commerce will be stimulated by the opening of the Panama Canal is generally admitted, but that its advantage will be uniform to all countries is, of course, impossible. The men who framed our Constitution and who in Congress later carried out its inteutions and ideals in laws, thoroughly understood that the three pillars of national greatness and prosperity were conmerce, agriculture and manufacturing. We neglect the commercial pillar, although the proportion of exports which consists of foolstuffs and staples that foreigu comntries must have to feed their people and their factories is falling, while the proportion of manufacturing commodities in which we have to meet the competition of the world is increasing. What this socicty probably wants to know is, Are there meaus by which the vast sum spent for the Panama Canal can be of help to the varied interests of this country instead of furnishing issues of bonds with which to aid the continuance of our present currency system, the existence of which is as much a tax uron as as is the non-existence of a merchant marine? This caral is a thoroughfare throush our territory and should be free to our vessels. A rehate to our own vessels wonld be a cowarilly compromise. Mexico, Central America, the West Indies and the northern shores of South America are at the door of the Panama Canal. As trade and transportation focus to the Isthmus, and the governments surfounding it become stable and safe fields for investment, so that their vast protential resources may contribute to the world's commerce, 1 lowk to see in a few years the Carithean Sea and the Gulf of Mexico girdled by prosperous eities, with trade rivaling in activity and prosperity the cities of the Great Lake basin. By freaties with these countries we shoukl extend our coasting laws to them, with the understanding that all vessels owned and operating under the flags of either party to the treaty, say on Jan, t, 1912, shall
enjoy reciprocal liberty of commerce in the ports of either party, after that date ressels constructed in either country to have the same privilege. My earnest conviction is that we must return to our early policy of discriminating duties and tonnage taxes if we are to revive our merchant marine in the foreign trade. As to the establishnent of mail lines to South Ameriean ports there are two points needing attention. We must not gage our service by comparison with existing ships running from the United States to South America, but by comparison with ships running from European ports, and the question of renewals should be carefully eonsidered. Pernonally, I think thirty years the absolute minimum for such contracts. In this way, as needed, new and better vessels will be added, and the older vessels will go into the freight or the accommodation and reserve service so essential to a growing line.

No. 6-Experiments on the Froude.

sy Piofzssoik C. II. PLaboov. Abstract,
The paper dencriles experiments made on the resistance and propulsion of ships by the aid of navigable models made at the Institute of Technology. The prototype chosen for the investigation was the revenue cutter Manning, which was tested by the writer in 1899 . The model was made one-fifth of the length of the Manning, and, although properly called a model, the craft, which was named the Froude, is a miniature steamer of considerable size and displacement, which handles and behaves like a ship and not at all like a steam launch. The Froude is indirectly propelled by a gasoline (petrol) electrie generating set and an electric motor with a chain drive to the propeller shaft. Measurements of the friction of the propelling machinery were made first by aid of a friction hrake attached behind the propeller when the boat was hauled up, and later by a friction brake installed within the hull, when brake tests were made with the propeller removed but otherwise with the boat under service conditions. The experiments with the Froude consisted in making a series of progressive speed trials over a measured course, uswally an eighth of a knot long. A continuous recording device was installed for recording the data from the progressive speed trials. A model of the Manning was also made and tested in the model basin at Washington for results to be compared with the progressive speed trials of the Mansing itself and also of the Froude. A propeller for the Froude, planed according to the working drawing of the Manning's propeller, was installed after being tested at the model basin. These investigations were carried on in 1910 and 1911. The work in 1910 was to install, adjust and rate the machinery and instruments and learn the limitations of the experiments, and alno to make tests with the propeller. Tests were marle with the propeller hub successively $3,6,18$ and 30 inches ahaft the stern post. The emmarison of the thrust and power curves obrained showed that the incation of the propeller with regard to the stern of the hoat and the broad stern post had a large effect on thrust and power required to drive the boat. The results led to the eonclusion that a large waste of power is due to setting the propeller in the eddy astern of the rurlder post, and that when the propeller is once free from that eddy there is only the normal and regular gain that may be expected from carrying the propeller well away from the stern.

Considering all the elements that entered into these investigations, the author feels justified in claimink an error of precision of 1 percent for results of tests at full power and speed; at slower speeds and smaller powers the errors are liable to be larger, perhaps as much as 2 percent. There are certain anomalies, eapecially at low powers and speets, for which no explanation is offered. They are too well marked
to be attributed to errors or uncertainties on observation or reduction. Among these are the curious variations of wake, and especially the indication of negative thrust deductions. To the author's mind it appears possible that the degree of precision of the work may be sufficient to reveal real anomalics in the accepted convention concerning the intersection of hull and propeller. He considers the most noticeable feature to be the sinall wake computed for the normal setting of the propeller I inch from the stern post, more especially as the wake for the 3 -inch setting while the propeller is still affected by the eddy behind the stern post is what may be reasonably expected. The gain in propulsive efficiency for the latter setting. as indicated by a comparison of the shaft horsepowers, is only 3 percent.

One of the most interesting and important results of these investigations is the eomparison with the progressive speed trials of the Manning reported by the writer to this socicty. The question of direct interest to the shipbuilder and the naval architect is the power which should be given to a certain ship to give a desired speed. As a contribution to the answering of this question the comparison was made of the actual observed power of the Manning with an estimation of power from the resistance of the 23.3 -foot model, as determined in the model basin, together with an estimate of the wake and the thrust deduction from the tests of the Froude. He shows that an estimate of the power for the Manning from the 23.5 -foot model would be in excess, apparently, $151 / 2$ percent. This discrepancy is considered by the author as normal instead of exceptional, since, in the case in hand, the speed length ratio is 1.17 , which indicates an ahnormally high speed for a ship of the type of the Manning, and the power probably increases as the fourth power of the speed, if not more rapidly, instead of the cube of the speed, as the power of a ship is commonly assumed to vary. If the fourth power be taken in this case then an over-estimate of 16 percent in the power would give only 4 percent excess in speed. The author enumerates several elements which enter into an analysis of this discrepancy, and concludes that an estimate could be made of the influence of each element which would be plausible, if not probable, in such a way that the entire discrepancy eould be explained away if necessary.
Since the investigation in 1910 showed such an exceptional influence from the broad stern post, it was decided to tit a fair-water to give conditions more nearly like those of ordinary practice for steamships. The main object of the investigations in igit was the determination of the influence of the pitch and area of the propeller on propulsion. Three propellers were made, each 2 feet in diameter, with a projected area ratio of about 6 of the disk area. Three pitch ratios were chosen, one normal and the other two abnormal, one being much less and the other moth greater than obtains in practice. Variations of both pitch and width of blades in these two experiments were much greater than are likely to be assigned to any given design, even by engineers who differ widely in practice; consequently the conclusion is that the practical efficiency of well-designed propellers is wery little affected by ordinary variations of pitch and width of blades. To this conclusion may be added that all propellers having ovoid forms of blades are sensibly equal in efficiencs

No. 7-The Effect of Waves upon a Taffrall Log.
 BY PROFESSOR HAEOMDA, EVEETT ABSTR.NCT.

The canses of the erratic behavior of taffran logs have been variously ascribed to poor mechanical construction, wake and torsional elasticity of the log line. Some years ago the Institute purchased a \log intended to eliminate the first and last sonrces of error, and in order to do away with the second it
was proposed to tow this log from a long spar projecting from the side of the ship. The results of those trials showed such an erratic behavior of the log constant that it led the author to suspect that another source of trouble than any of those previously mentioned was the real cause, namely, the effect of the waves which the ship earries along with herself. Considering only the stern wave system we should expect to find a los which was towed behind a ship alternately over-runining and under-tunning as the ship gradually increated in speed. These variations would correspond to the successive traveling of hollow and crest past the \log as the transverse waves behind the ship gradually lengthened with the increasing speed. As the ship is propelied through the water at gradually increasing speed the bow-wave system when it reaches the stern alternately increates and decreases the height of the transverse waves of the resultant stern system. If the bow waves were of equal height to the stern waves at the time of their reaching the stern system, the resultant waves would be twice as high as the individual saves when the two systems came crest to crest, and would be nil when they came crest to hollow. The speeds of the ship at which these two events occur ean be figured with reasonable exactness. They, of course, correspond to the speeds of maximum and minimum wave interference, and the theoretical conception of these speeds has been verified by experimental work in towing basins and elsewhere. The anthor show's how to construct a curve showing the variations of the log factor due to this effect of the waves apon a \log towed at a constant distance from the ship during progressive speed trials, taking into account the calibration curve for a \log towed in still water. Ou progressive speed trials of two steamships a recording log was towed, obtaining the ratios of the speed enrve to the log enrse, and these ratios were plotted on the speeds of the ship as abacisse. Superimposing this plot upon the curve for variation of the log factor for successive specels, it was found that the points determined coincided with the curve of log factor variations, thus bearing out the author's theory of the effect of waves upon the log. The resuhts of these trials show definitely; (1) That any taffrail log is seriously affected by the wase system carried along liy the ship. 12) That in order to be available for measurement of diotances at different speeds it must be calibrated by obtaining many points at elosely adjacent speeds and in some manner that takes account of the wave action. (3) The length of the log line must be unchanged thronghout catibration and subsequent running: and (4) that a taffrail log as a close meaverer of speeds is a questionable instrument.

No, 8-The Raising of the Drydock Dewey.
 ABSTKACT.

The drydock Deswry nank at Olongapo, Subic Bay, Philippine 1slands, May, toto. The eause for the sinking was at the time unknown, and three nethods were proposed for atempting to raise the dock. The author gives a detailed description of the dock and its pusition after sinking, and then describes the work carried out in raising the dock. All three methods were tried. The first two failed and had to be abandoned, while the third was carricd out successfully. The first method consisted of introducing compressed air into certain of the botton tanks on the port side, which was most deeply immersed. It was found that after installing the manhole doors and plugging all vent pipes the compressed air which was introduced leaked through the bulkheask, which proved to be non-watertight at the tops, allowing the air to pass through them from one tank to another. The second method involved clearing the comparturent, which contains the forward centrifugal pump for operating the dock, of water
and operating the dock's own pump by stean furnished from a tug. Clearing this compartment of water necessitated building a stecl cofferdam and installing pumps. The end bulkheads of this compartment were not watertight, and were inadequately stiffened, requiring extensive shoring and calking. Due to defective stop valves the pump tonk water from the high tanks before removing any from the low tanks. Considerable progress was made th this direetion, but after some time it was found that the dock's own pump was in such bad condition, due to having been working in mud and salt water and from excessive inclination, and also due to the breaking of the oiling sear, it needed overhauling. This method was then abandoned. In the third method the whole top and bottom decks and the side walls and machinery space on the sunken side were made watertight. Then by clearing this whole space of water, which woukl provide nearly 3,000 tons of bnoyancy, and then by utilizing the dock's own pump to raise her, or by mounting pumps below, the dock could be raised. This was successfully accomplished. As soon as the dock was raised a careful examination showed that the cause of the sinking of the dock was due to the fact that the vent pipes from the tanks were badly corroded and had given way in places, thereby leaving large areas open to the sea. When the dork was np these vent pipes were atwaya above the surface of the water, but when the dock had been lowered for docking these vent pipes were mostly under water, and the water entered them and kradually filled the ballast compartments of the dock, which caused the sinking. The work, and those whe accomplished this gigantic task, deserve the highest praise and commendation.

No, 9-The Best Arrangement for Comblned Reciprocathg and Turbine Englnes on Steamships.

ABSTK ICT.

It so happens that both types of steam engine have an economical and a wasteful end In the turbine the steam begims its work in the wasteful end and finjsies in the economical end, while in the reciprocating enxine this is reversed. I helieve that the hest result in steam consumption could be gained from having the terminal pressure for the reciprocating part of the ensine power at or about zo pounds absolute, or a little above the usual low-pressure receiver pressure in triple-expansion engines. Notwithstanding the important advantages claimed for the arrangement of two reciprocatiug engines and one turbinc, as used on the White Star liners, I believe that better result, with installations up to 20,000 horsepower, can be secured by having one reciprocating engine on the center line delivering steath to a turbinc on each side at about 30 pounds absolute. This would admit of the centerline engine developing about to percent of the total power, and, when exhausting straight to the condenser, at least 60 perient of the full power. The larger and most effective propeller would be on the center line, where its efficiency would have the best propelling effect The smaller side promellers would not require so wide projections from the side of the ship, and would thus catse less disturbance to the water in the after run, With the large propeller in the ecnter, the side propellers could be run at a higher number of revolutions than would be advisable for the center propeller were it turbinedriven. This would permit of the turbine rotors and casings being of a moderate diameter. In a 20,000 -horsepower set of engines, with the center-line shatt making, say, -8 revolutions, I would have the side shafts ruming ahout 4×0 revolutions, which would give a diameter of about $\&$ feet to the rotor, This would enable the turbines to be placed alongside the reciprocating engine in any merchant ship having that amount
of power. With the reciprocating engine closing its work with a terminal pressure of 30 ponads ahsolute,-a simple compound engine would give satisfactory resnlts. The wet and dry air pumps could be operated through levers worked from the crossheads of the low-pressure cylinders, and the feed pumps independently. This arrangement admits of a cooler engine room than can be obtained where the hottest parts of the machinery are in the wings and, in most cases, under deck. In the arrangement proposed by the writer the hottest parts of the machinery are directly under the casing that leads up through all the decks to the open air above. Two objections to this arrangement should be considered, via, the sacrifice of the maneavering power of two propellers on reversing engines for that of one, and the loss of backing power if a breakdown should occur. In reply to this it is clained that the advantage of a simpler and cheaper arraneenent with the most effective propeller on the center live of the ship and the promise of tetter economy should outweigh any possible advantage for maneuvering that the twin screw has over the single-screw ship, and the possibilities of breakdowns with the simple type of reciprocating engine proposed are very remote.

No. 10-The Parsons Marine Steam Turbine and its Application to Various Classes of Vessels.
 MY I. F. B. ANDEASOM.
 ABSTRACT.

The object of this paper is to put befure the members of this society some of the various arrangements of turbine machinery in past and present vessels which are fitted with Parsons turbines. In torpedo boats and small fast steam yachts the pioneer three-shaft arrangement of machinery is still installed. In the earliest turhine destroyers forr shafts were fitted. This design was followed in the next destroyers by the standard threeshaft arrangement, to which was added two cruising turbincs in series, arranged at forward end of each low-pressure turline. For small fast cruisers the three-shaft arrangement has been found very satisfactory. Among the smaller cruisers and scout cruisers the four-shaft arrangement has been adopted largely. In battleships and cruisers of the Dreadnought type, four shafts are fitted. In the latest ships of this type, cruising turbines have been dispensed with. and althongh it was recognized that the addition of cruising turbines improved the economy to a large extent, the-complication, together with the fact that such turbines are often running idly, decided against installing them in ships of this type, especially where cruising turbines are fitted in parallel. The main difference in the machinery layont of American battleships conyared with those of the Dreadnowght type, is that the cruising turhinex are arranged in series instead of in parallel. In the mercantile marine the three-shaft arrangement of terhine machinery similar to that installed in the first ship, the King Edruord, is still used in almost all ships excent those of very large jower. In 1905 a two-shaft arrangenient of machinery was installed in the steam yacht Narcissws. The Lusitania and Mouretania have four-shaft arrangements of turbines, which consist of two independent sets, A modified arrangement of turlines has teen adopted in the French liner Fronce, now nearing completion, which will further improve the economy, as the turbines are arranged in series similar to the Spanish batteships. A similar arrangement of machinery is being adopted in the new Cunard liner Aquitania, now under construction on the Clyde, and also for several other ships. The combination arrangement of turbines and reciproeating engines has also given geoot results, as instanced by the Otaki, Laurentic and Otympic. and notable other installations are now being made.
The first application of a geared turbine was made by the Parsons Marine Steam Turbine Company in I897, and later,
ill 1910, the steamship I'espasian was fitted with a geared installation of turbines. At the present time two fast destroyers are nearing completion in England having geared turbine machinery driving two shafts. Two Channel steamers for the London \& South Western Railway Company are also under construction. With regard to the question of multiple shafts, the present tendency among certain naval auhorities is to cut down the number of shafts and turbines in vessels of the destroyer classes. A difference of opinion appears to exist as to whether two, three or four shafts are most suitable from an economical and a practical point of view. The arrangements of the engine-room bulkheads and the sub-division of the machinery space are also discussed.
As regards the steam consumption of turhine machinery, in the Twrbinia the measurements tikure out giving a water rate of alont is pounds per llorsepower, all purpoues at full power. In H. M. S. Amethyst the water rate in pounds per horsepower for all purposes at full power averaged 13.60 pounds. This agrees very closely with a figure of 140 pounds per shaft-horsepower which was obtained with United States destroyers. In battleships of the Dreadnought type the water consumption in terms of shaft-horsepower of main engines averages about 13.0 pounds for turbines only. In large eruisers of the Indomitable type the consumption for turlines only averages about 12.0 pounds per shaft-horsepower. In ships of the mereantile marine the steam consumption of the turbine machinery for all purposes in terms of shaft-horsepower of main engines averages about 15 pounds, and in large installations, such as the Mauretania, about is pounds. In vessels fitted with a combination systent of reciprocating engines and low-pressure turbines, a saving in coal consumption of about 12 percent is made, compared with similar ships having quadruple-expansion reciprocating engines only. In a hattleship or eruiser installation an arrangement of geared cruising turbines would effert a saving of at least 20 percent at a cruising speed of 12 knots, this eomparison being made with an installation having direct-coupled cruising turbines. A further increase in economy can be obtained by increasing the coefficients of the turbines. This would improve the results without any increase of machinery weight, due to a saving in the boiler-room installation. A further economy of steam consumption is realized by arranging to pass all available auxiliary exhaust steam at suitable stages into the turbines instead of passing this direct to the main condensers.
In ryos the total amount of Parsons turbine machinery of the marine type completed amounted to about 270,000 horsepower. At the present time the total horsepower completed and under construction amounts to approximately $6,400,000$, of which about $5,300,000$ is to he fitted in warships: of this total $1,900,000$ horsepower has been ordered during this year. In the German naval programme of this year a total shafthorsepower amounting to $2 \$_{1,000}$ is heing installed in ships fitted with Parsons turbine machinery, being ξ^{8} percent of the total ordered this year.

Papers 11-17.
The other papers read and discussed at the meeting were: "Ship Calculations, Derivation and Analysis of Methods," by Naval Constructor T. G. Roberts. U. S. N.; "Economy of the Use of Oil as Fuel for Harbor Vessels," by Engineer-in-Chief C. A. McAllister: "The Marine Terminal of the Grand Trumk Pacific Railway, Prince Rupert, British Columbia," by Frank E. Kirby and Willian T. Donnelly; "Cargo Transference at Steanship Terminals," by H. Mcl_ Harding: "Heavy Oil Engines for Marine Propulsion," by G. C. Davison: "Auromatic Record of Propeller Action in an Electrically-Propelled Vessel," hy W. I. R. Emmet; and "Some Applications of the Principles of Naval Architecture to Aeronautics," by Naval Constructor William McEntee, U. S. N. Abstracts of these articles will appear in the January issue.

Published Monthly at
17 Battery Place New York By MARINE ENQINEERING, INCORPORATED
H. L. ALDRICH, President and Treasurer

Assoc. Soc. N. A. and M. E.
and at
Christopher St., Finsbury Square, London, E. C. E. J. P. BENN, Director and Publisher

Assoc. I. N. A.
HOWARD H. BROWN, Editor
Member Soe. N. A. and M. E; Assoc. I. N. A.

OEOROE ELATE, Vier-Premidept
E. L. SUMNER, Becretary

Circulation Manager, H. N. Dinsmoze, 37 Went Ticmiell St, Boston, Masa.
Branch Offees: Boaton, 663 Old South Buildang, S. 1. Caberwise. Philadelphia, 624 Walaut St_{-4} Samiec S. Reckerts.

Entered al New York Post Office as second-class matter.
Copyrighe, 1211. hy Marine Engineeriag, Inc, New York

Copyright in Great Britain, entered at Stationers' Hall, Londen.

Notice to Advertisers.

Changes to be made in copy, or in orders for advertivisg, mast be in our hands nof later than she igih of the month, to inswre the carrging out of swoh instrwationg in the issue of the wowih foiloosing. If freof the month.

Naval Architects' Meeting.

After the period of depression which has existed during the last few years in the shiphuilding industry it is gratifying to note the progress which las been made in naval architecture and marine engineering and in the improvement of terminals and harbors to meet the rapidly increasing demands of present conditions for a larger and more efficient merchant marine and a stronger naval power. At the nineteenth annual meeting of the Society of Naval Architects and Marine Engineers recently held in New York papers were presented containing some valuable investigations regarding the resistance of ships, discussions of the recent remarkable developenents in propelling machinery, and descriptions of modern methods of handling freight at steamship terminals and proposed improvements in existing terminals to promote maritime commerce. These subjects formed the basis of one of the most interesting and instructive meetings that the society has ever held.
Three papers were read dealing with various problems regarding the resistance of ships. They presented the results obtained from towing models in basins at the Government station in Washington and at the University of Michigan, and also from progres-
sive speed trials of a navigable model at the Massachusetts Institute of Teclnology. Investigations in such a field, where current practice in the design of vessels varying widely in form and conditions of service depends largely upon speculation and deduction from theory and practice without definite information as to the actual effect of various factors influencing the resistance, are of inestimable value, and the presentation of the results of these researches to the engineering profession is most praiseworthy. The investigations by Naval Constructor Taylor at Washington were upon the effect of the shape of the bow and stern of a vessel upon the resistance. At an carlier date he had shown that the effect of the shape of the 'midship section of a ship upon resistance, while appreciable, was not great, and for the variations permissible in a given design would usually be almost negligible. The number of variations, however, that can be made in the shape of the hull toward the extremities is so great that it is not to be expected that the present investigations could cover the whole field. As far as they extend, however, they furnish a source of valuable information upon a hitherto debatable subject, and a careful study of the work will be very useful to designers. l'rofessor Sadler's investigations upon the resistance of some types of merchant ships in shallow water are another example of the value of modelbasin experiments for obtaining necessary data which ordinarily cannot be obtained in complete form from the performance of ships at sca. Experiments with navigable molels for the solution of problems relating to the resistance and propulsion of ships are a somewhat new departure from former methots of doing such work, althongh they liave been carried out in one or two instances in the design of a large, fast steamship, the results of which, however, have not been available to the public. The value of this means of investigation was clearly demonstrated before the society by Professor l'eabody in a paper describing the results of a long series of experiments on such a model, the prototype of which was a revenue cutter tested by the author of the paper several years ago. In addition, a noolel of the ship was malle and tested in the model hasin at Washington, giving an exceptional opportunity to compare the actual observed power to drive the ship at certain speeds with the estimation of power from the resistance of the towing model, together with an estimate of the wake and thrust deduction from the navigable morlel. Important investigations of the effect of the pitch and area of the propeller on propulsion and the effect of a broad stern post and the loeation of the propeller with regard to the stern on the thrust and power required to drive the boat were made, and the results are a most welcome addition to the present knowledge of naval architecture. It is to be hoped that this experimental work will be continued in the future.

Besides the group of papers dealing with experi-
nemtal work on resistance and propulsion, several papers of interest were read regarding the recent developments in propelling machinery, inchucling turbines, combination machinery, oil fuel and heavy oil engines. The possibilities of the different forms of propelling machinery were well set forth, and in some cases sune very valuable data from actial practice were given showing the gain in fuel economy that can be made under certain conditions. It is usually difficult to obtain accurate data covering the performance of propelling machinery in merchant marize practice, becanse there is seldom an opportunity to make a complete series of tests, or, if such tests are made, the results are withheld for private use. The advent of the heavy oil engine as a prime mover in vessels requiring several hundred horsepower for propulsion has heen too recent to furnish much indisputable data regarding its performance. The actvantages claimed for the heavy oil engine are well known, but few have had sufficient experience with their use to give us much light on their divarlvantages ant the probable methorls of overcoming them. In the paper presented on this subject the author goes into the mechanical problems connected with this type of engine in some detail, taking up the materials, piston speeds, lubrication, piston packing and stuffing-boxes. In sumuning up, he states that the only problems which lave liad to be solved are those due to the high pressures and temperatures in the cylinders. Whether the present solution of these problems lias resulted in reliable action of the engine and immonity from frequent and extensive repairs remains to be proved.

While the naval architect is chiefly concerned with the problems of hulls and propelling machinery, there are some correlative subjects which have an important bearing upon lis work. One of these, the question of marine terminal facilities, was bromght before the saciety in a very comprehensive manner by papers dealing with the arrangement and equipment of a new marine terminal at I'rince Rupert. British Columbia: the proposed improvements in dock facilities in New York, and the improvement of cargo transference at steathship terminals. These problems are constantly confrouting those interested in shipping at nearly every seaport, and, while improvements have been carried out in some instances, greatly increasing the capacity of the port and redncing the cost of trans-shipments. in many others practically nothing has been done except minor clanges by private interests which control only a small part of the dockage facilities, and, as a result, congestion in the moventent of freight occurs.
Some light was thrown on this matter by the paper dealing with cargo transierence, in which is shown the feasibility of increasing the rapidity of freight movements, of reducing the handling costs and of increasing the capacity of existing terminals by the adaptation of improved mechanical methods. Only the question of miscellaneons package freight was discussel, as
methouls ior laudling bulk freight have, as a rule, already leen ntilized to much greater advantage.

Another subject which has great influence on the design of ships, particularly those of the largest size, is the plysical properties of seaports and harbors where limits on the draft of water of ships are necessarily inposed. As peinted ont by Sir William White, the natural growth of the size of ships to meet the rapidly increasing development of maritine conmerce lias been accompanied by extensive and costly engiueering work in deepening harbors and approach channels. Is the cost of this work increases very rapidly with the depth. the main increase in dimensions of ships has been in lengths, breadths and mokled depths; increase in drafts of water when fully laden having been relatively small. Further considerations of the maximum dimensions of ships by Sir William White in his paper on the subject are most timely, especially as the Latest designs of transathantic vessels are surpassing in size by a considerable margin the splendid achievewents in the Cusitaria and Mouretania. Current reports indicate that the arlvances made in dimensions by the Olympic. Titanic.-Aquitanid and /mperator are to be exceeded by a new White Star liner, which will probably be about loo feet longer than the Olympic. This continnons growth in the size of vessels which must be accommodated in New York harbor emphasizes the importance of increasing the dock facilities in the port and adapting the harbor accommodations for maneuvering this class of ships, which, for commercial considerations, seem likely to maintain the transatlantic scrvice in the future.

Dlany of those who were able to attend the meetinge regretted that there was not more time to discus. some of the papers more fully. No matter how complete and valnable the papers presented before the society may be, there is much to be gained (and mon this a large share of the value of the society lies) from a thorongh discussion of the subjects by those who have been associated with similar work in a variety of ways, and who are best fitted by their professional and practical experience to ath much valuable information needed for the future progress of the work. Ore of the principal objects of the organization is for the interchange of proiessional ideas and opinions, making it possible to combine the results of research and experience in the many lines of work commected with naval architecture and marine engineering. Much discussion of the prapers takes place ontside the professional sessions, which, if there were more time, wothl take place in the meetings themselves. All this has aronsed a general feeling that the annual meeting should extend over three days insteat of two, as has been the custom. The contimal growth of the societ? and its increasing importance in the enginecring workd are good reasons for extencling the time allotted to its professional sessions for a more thorough discussion of the papers presented.

ENGINEERING SPECIALTIES.

The Kind Marine DieselyEngine.

Ing. P. Kind \& Company, Turin, Italy, manufacture heavy oil internal-combustion engines for stationary plants, locomotives or for marine work. What is of most interest to-day is the reversible marine engine which is now being developed in
penses and endurance of the engine are the most important points under consideration, the number of revolutions in the normal type of Diesel engines is reduced to 150 per minute in the large sizes and to about 350 to 400 in the smaller engines By using bronze and the .best qualities of steel the weight of the high-speed engines for naval purposes is reduced to 33 pounds per horsepower, while the weight of the normal light engines ranges from 44 to 66 pounds per horsepower.

n1. 1.
two types-a heavy slow-speed engine for merchant marine work and light ligh-speed engines for fast ships and for warships. In the smallest reversible four-cylinder high-speed marine engines of to to so effective horsepower the number of revolutions vary from sco to 650 , while in the light ligh-speed engines of 3.000 effective horsepower the number of revolutions is reduced to 350 per minute. When the running ex-

rta. 2.

These engines are of the two-stroke type, and have either scavenging valves set in the cylinder head or scavenging ports, which the working piston opens after opening the exhaust ports. According to the type of the engine the scavenging air is furnished either by a special pump set attached to the engine, by an independent pump or by step pistons connected with each working piston.
Figs. 1,2 and 3 show a roo-horsepower engine designed to run at 375 revolutions per minute. The cylinders are mounted on strong iron columns, and the crankshaft chamber is completely closed in by removable walls and is well ventilated. Each working piston in which the piston pin is fixed is furnished with a separable ring, which gives the necessary scavenging air for one cylinder. The scavenging flaps, which in engines of greater horsepower are substituted by piston valves, are set in the cylinder itself. In order to obtain a perfect combustion space and perfect scavenging, the scavenging valves are inclined. The scavenging cylinder is also separable from the working eylinder.
The distributing system and the maneuvering of the engine is quite different from any other type. In Fig. 3, which represents the fuel oil and air-starting distributing system, it is easy to see that through the displacement of the sliding piece b in a plane perpendicular to the cam shaft, the entire lifting diameter, corresponding to the profile of the cam, will be displaced at the corresponding angle, and that it is also possible to obtain the whole displacement corresponding to the reversing of the engine. During the same time, according to the form given to the curved piece e, and to the profile of the cam, the lifting corresponding to the cain is over the different positions of the sliding pieces b, totally, partly or not at all. transmitted to the valves. On account of the special form of the curved piece E, which receives the movement, and of the cam, it is possible to have any desired tinte for the beginning
and duration of the lifting, which is claimed to be a great advantage for running ships where great variations in the number of revolutions and in the power required must be taken into consideration.

While reversing of the scavenging valves is obtained by turning the cam shaft, the starting and fuel valves are reversed as explained above. The common displacement of the

Fia 2
sliding pieces of both the starting and fuel valves' distributing system takes place through a rotative eccentric or a cam disk shaft, or through a removable curved ruler. This displacement, which is obtained through the movement of a single lever or hand-wheel, causes the starting, reversing and overloading and any desirable speed changes in the engine. This same maneuvering device controls at the same time the distribution of oil fuel in the oil fuel pump and the control of the starting air when necessary, and causes the turning of the cam shaft in order to reverse the scavenging valves when necessary. When reversing the engine there is a speed device which prevents the introduction of fuel oil while the engine is still running in the opposite direction. In the engine shown in the illustration the circulating water is furnished by a centrifugal pump, and the filtered lubricating oil for lubricating the crankslaft and connecting rods and for cooling the working and scavenging piston is furnished by a wheel pump. The air injection pump is a two-stage pump. with suction directly to the atmosphere.

An Electric Punkah.

Messrs. Hogan \& Wardrop, of 2 Gresham buildings, Basinghall street, London. E. C., have recently put on the market a new form of electric fan, which is a directly-driven punkah. The essential "flick" at the end of the stroke, which long experience has enabled the India punkah wallah to develop into an art, is exactly reproduced in this present fan, and occupying littie head room it is especially suitable for marine use, but
can, of course, be arranged to suit any height of ceilings. A general view of the punkah is shown herewith, and, as will be seen, it comprises a motor working horizontally, and by means of worm reducing gear the speed is brought down to about forty strokes a minute; the rotary motion of the motor is mechanically converted to a rectilinear action by the connecting rod secured directly to the rigid frame of the punkah.

Another point in the use of this type of fan which will appeal to the thoughtful reader is that on account of the inter-

mittent character of the wavelike disturtance of air given by the motion of the fan there is not the objectionable draft produced by the steady blast of air which is characteristic of the ordinary rotating fan blade.

SELECTED MARINE PATENTS.

The publication in this column of a pafent specification does not necessarily imply editorial cummendation.

American palents compiled by Delbert HI. Decker, Esq., registered palent attorney, Loan \& Trust Building. Washington, D. C.
 OF'PIS, ITALY゙.

Claim 1.-A propeller adapted for water or merial navigation com pionng a driving buh and a blade rigilly and immovalhy connerted

thereto and having a slinninishang thickneas in a lirection from its root to its periphery on tip and from its leadng calge to its fallowing edge the influence of the medium upon which the blade acts. Two efaims.
 JCNEIDI B. SERKES, UF HOLITONVTLLE, LA.

Cloim 1.-A pontoon, upper and lower conduite in said pontoon, a valve eontrolling each of sand condutits, the valve of said lower conduit being provided with a rod extending within said puntoon, and a float
pivotally moanted within said pontoon, and connected with said rod. pivotally moa
Three elaims.

 CHAPPELI~ OF RITTSHERG, $1^{\prime}:$.
Claim 2 -In a life-saving device for veswels, the combination with a vessel having the shell thereof provided with an onening. of casiag suspended from the edges of sand oterinime. a life bowt fitsed in wati, otrenimg and haviug the tow thercal clamell, ancloning nctewa carried by satd life boat for retainius said life boat int said cawny, teleaving sclews carried by and life bent and abpptrd to clrvate wand life hoat refarvel to Raid casang. Noing formed thercin. and trap doors normally elosing said manmoles. Two slaiunh.
 N. 1 .

Claine 1.-In a davit apparatus, the combination of frames adapted for attachurent to a vemel or suppoet. davits fukcamed on horiznntal pivots st appirosimately the lower and outer timit of said frames, the upper es tremitien of sad davits extending both inhoard and foward ench olher,
wherehy the initial ousboard mavement of the duvits tends to raise the

Lanat from its chuck and wherely fir enils of the lonat may readily swing laat the davit, toothed sectors in fiaed relation to said davits re. spectively and extending upward and inhoard from the pivas therenf. amel graving enpaking said sector! for swinging the kaid davits ouf. hovel. Two claims.

British palents compiled by G. E. Redfern \& Company, chartered palemi agenis and engineers, is Souste street, Finsbury, E. C. ${ }_{s}$ and 21 Soushamptos Building, W. C., London.

21,250. StIIP'S IDECK CRHNE., J. BATTEKSUN, GLASGON.
The invention relatea to that tyve of slewing crane for shaps' dexks in which. while the jub in slewahle athout a fined pust, the gearing and motor operating it are stationary. The invention provides an improwed arrangement of the lower far lead pulley in that, while slewing in a com-

plete circle, the whole may be arranged above the onle plate. The jib is pisoted on a collaritike memher maske th halvers and fualted together ahout a cylmatrical part formed near the liowrr end of the pmat. This memier heara a toothed whel lyy wheth is of operated from the fued motor, Hy the inventint the hate bs enlarfed and uapjed im the sidc bext the winding harrel anil op a wondic withun this hase it a fair lead pubter sapabn axially to the fised ponf. from a pulley cartient upon a collar, to which are attached the jib suys and which is thim constrained to mave with the jib and the collar-like member.
2*,34日, IISTCIIWAY FASTENFR M MU'J.IHMLLANI, CLEVE t. N11, (ग111), 1T, S. A.

With this fastener a clamp-arm is alipped over a brachet attached to the cobraing so as to press arrainst the baticns and strips which lic outside the

canvan. The keeper is then swung on its pivot so that its weilge head is interposed betwren the screw and the clamp-arm to instansly force the latter down the incline nown the batten, and howimontall/ againat the strips, while locking it th place.
 STKNNDEM OK SUNKEN VESNEI.S. S MCHIl.I. OF NEW.

Kelates to a tube to be inserted through the decks and eatending to

the seat of the injury, where it in provided with a petticoat part for rurrounding the injured part. Throuph this tube workmen may deacend supply being arranged

NEW YORK, 17 Battery Place
LONDON, 31 Christopher Street, E. C. SUBSCRIPTION PRICE; Domestic, $\$ 2.00$; Foreign, $\$ 2.50$.

PATENT QUADRANT CRANES AND DERRICKS

For Land and Marine Uses

Simple, strong, efficient, using a minimum power for maximum loads; thoroughly balanced and compensated without guys or stays; to be operated by hand, electricity or other motive power. The self-contained features of this crane make it easy for one man to operate in any position. By reducing the load lever to a minimum it insures a greater out-reach for a given length of arm than any other crane or derrick ever manufactured.

By utilizing maximum leverage and full compensation of the falls, its load is handled in a horizontal plane, regardless of the position of the arm.

The Quadrant Crane will pick up and deliver its load at any point within 360 degrees radius of operation with less power and in less time than any other crane on the market.

For further particulars and specifications apply to

WELIN DAVIT AND LANE \& DE TROT CO. CONSOLIDATED

305 Vernon Avenue, Long Island City, N. Y.

LIDGERWOOD

Ship's Winches and Steering Engines

Improved Deslens Built en Ouplicate Part \$yblem
Improved Metallic Slip Friction Winch

More Than 34,000 Enginet fuill and in Use
LIDGERW00D MFG. C0., 96 Lberty SL. New York ${ }_{2}$

The Battleship "TEXAS," now under construction for the United States Navy, will be equipped with

Steam Windlass, Steam Steering Engine and Screw Gear, Steam Coaling Winches, Electric Capstan, Electric Winch and Ash Hoist Engines

MANUFACTURED BY

HYDE WINDLASS COMPANY, Bath, Me.

This Company is also furnishing Windlasses, Steering Gears and other Auxiliaries for the Battleships "MORENO" and "RIVADAVIA," now under construction in this country for the Argentine Republic.

International Marine Engineering

DECEMBER, 1919

CONTENTS

page
ITALY'S FIRST TURBINE-DRIVEN CRUISER, THE SAN MARCO, Illustrated...... DAGNINO ATTILIO.......... 477
A MODEL TEST OF A STEAMER. Illustrated G. HOLBROOK, S. B 480
STEEL STEAM COLLUER NEWTON. Illustrated. 484

THE WESTINGHOUSE MARINE TURBINE REDUCTION GEAR. Ilustrated... 48 .

CONGESTION OF EREIGHT TRAFEIC AT NEW YORK STEAMSHIP TERM-

A DOCK ELEVATOR. Hlustrated. 510
REVIEN OF MARINR ARTICLES IN THE ENGLSEERING PRESS, 1
NINETEENTH ANNUAL MEETING OF THE AMERICAN SOCIETY OF NAYAL
ARCHITECTS AND MARISE ENGINEERS.
EDITORLAL COMMENT 520
ENGINEERING SPECIALTIES, Hustrated, ... 522

LONDON:

CHRISTOPHER STREET
FINSBURY SQUARE, E. C.

NEW YORK, WHITEHALK BUILDING 17 BATTERY PLACE

USE COLUMBIAN MANILA ROPE A Real Rope for Real Work

COLUMBIAN ROPE CO. AUBURN. N. Y.

Heavy Oil Marine Engine

THE MOST ECONOMICAL MOTIVE POWER

Adopted by the U.S. Navy and Foreign Navies
Sold under positive guarantee as regards fuel consumption, which averages less than one-half pound per H.P. hour. Fuel costs only 2 to 3 cents per gallon.

The ideal motive power for power boats-tug boats-yachts-barges-fishing and sailing vessels-cargo vessels and fast passenger vessels.

Built in units of from 50 H.P. to 2500 H.P. Two types, heavy of about 80 lbs. per H.P.-light of 40 lbs . per H.P. Reversible and self-starting.

TRADE PUBLICATIONS. america

Hydraulic jacks and tools of all sorts are described in catahosues published by the Watson-Stillman Company, 188 Fulton street, New York. 'I his company's types and stzes of jacks cover a wide range of capacity and permit one man without severe effort to move any weight up to 500 tons. "WatsonStillman hydraulic jacks being heavy for their rating have a greater safety factor and handle a large overload safely. Ihoughtless workmen often put a pipe on the handle of a hydraulic jack to increase the power. We provide liberally for just such emergencies."
"American Vanadium Facta," published by the American Vanadium Company, Frick luilding, Pittsburg, states under its Trade Facts columut that "Where tools are used under conditions that admit of danger to the operator, the integrity of the tool for the purpose of insuring the workman from injury is a matter of first importance. The use of vanadium steel parts in the Vulcan chain pipe wrenches, made by J. H. Williams \& Company, Brooklyn, not only gives a decided increase in strength, but a larger factor of satety that is ample protection to the operator. The Bourne-Fuller Company, Cleveland, Ohio, announces that 75 percent of its trade is buying Scott's unique high-speed steel (chrome-vanadium) for pneumatic and other chisels with the best results."
Milling Cutters.- Milling cutters have become an everyday tool and have been improved constantly, and can be obtained now in almost any size and form. Catalogue 18-A of the Standard Tool Company, Cleveland, Ohio, gives prices and descriptions and sizes of an endless number of most admirably designed milling machine cutters, The skill required to make high-grade milling cutters is not appreciated, as the machine world has got used to almost perfection in this line. Yet the selection ot proper stecls, its hardening and treatment, the form of the cutter, etc., demand study and close attention and a very long purse to carry out experiments and get proofs which alone finally carry conviction to the cusstomer and a pleasant sensation to the manufacturer that his product will not only sell but stay sold. The company named above aims to produce only cutters of the very highest grade, and their catalogue gives every information concerning them, and it is certainly a pleasure to look over.
"Steam Turbine Centrifugal Pumpa and Other Centrifugal Machinery" is the title of a 32-page booklet, of album, issured by the De Laval Steam Turbine Company, of Trenton, N. J., illustrating and describing brictly the several lines of machinery, mantlactured by that concern, including singlestage turbines for driving machinery of all kinds and for rope and belt transmission; turbine-driven centrifugal pumps for watcr-works, for general water service in industrial plants, and for boiler feeding, hydraulic pressure work, etc.; velocitystaged turbines without gears for direct connection to highpressure blowers, ceutrifugal pumps, etc.; multi-stage impulse turlmines with gears for driving large direct-current generators, fans, centrifugal pumps and other noderate or low-speed machinery; multi-stage impulse turbines without gears in large sizes for direct comnection to high-speed alternators: motor and belt-lifiven centrifugal pumps for all services and heads ; mnlti-stage centrifugal air compressors and De Laval speed reduction gears for various services. Copies of this booklet will be sent upon request to those interested.
"File Filosophy" is the title of a booklet published hy the Nicholson File Company, Provialence, R. 1. This is a complete work on different styles of files and their uses, and a copy will be sent free to any of our readers upon application.

Heavy oil marine enginea are described in a pamplilet of 22 pages published by the New London Ship \& Engine Company, Groton, Conn. These engines are sold under a positive guarantee as regards freel constumption, which is stated to average less than $1 / 2$ pound per horsepower-hour. Fitel costs 2 to 3 cents a gallon. This is stated to he the ideal motive power for power boats, tugboats, yaclits, barges, fishing and sailing vessels, cargo vessels and fast passenger vessels. It is built in units of from 50 to 2,500 horsepower. Two types, heavy, of abont so pounds per horsepower, light, of 40 potunds per horsepower. They are reversible and self-starting.

The Lyle line-carrying gun for stcamships and towhoats is deseribed in a cataloguc published hy William Read \& Sons, 107 Washington street, Boston, Mass. This company also makes a breachloading line-carrying shoukder gun, which is stated to be small and compact, readily carried by hand, and invaluable for lifebonats, large yachts and towboats in picking up a wreck at sea and in allowing one boat to approach another in a heavy sea at a safe distance. Projectiles are of the Lyle type as used hy the government life-saving stations, and will carry the line from 200 to 400 feet. William Read \& Sons state that about thirty of these guns are in use on board United States revenue cutters. All interested should write for a copy of this catalogue and mention Intranational Marine Encineeaing.

Monel metal propellers are described in circulars issued by the Ruggle-Coles Engineering Company, 50 Church street. New York. The Únited States torpedo hoat destroyers Fanning. Perkins. Roc. Stcrett. Terry and Walke are cach equipped with three-bladed Monel metal propellers made by the Bayonne Casting Company, of which the Ruggles-Coles Engincering Company is the general agent. The statement is made that Monel metal propellers stand up to the terrific high speeds of torpedo loat destroyers with a minimum distortion; that they withstand the shocks hetter than man ganese lironze and retain their polish longer, their finish being similar to pure nickel. Merchant ships as well as naval ships are equipped with these propellers, and the Ruggles-Coles Fingineering Company is prepared to make guntations on any size up to 27.000 pounds weight in one piece.

Oil fuel burners for marine, stationary and lscomotive furnaces are described in circulars puhlished by the Ingram Oil Fuel Burner Company, Box zot, Newport News, Va. "This burner is equally effective with cither steam or air as the atomizing agent, and is not affected by a reasonable amount of water in the oil. It is highly efficient with very low-prestare on both the oil and the atomizer, and the hest results are ohtained with 70 pounds on the steam and 50 prunds on the oil. Preheating the oil is umnecessafy, and by its usc the danger and the worry due to leaky joints in pipe lincs conveying oil at a high temperature and under heavy pressure are obviated. We do not handicap the users of our lurners with a multitude of don'ts to confuse the operator, as they are sis simply con. strticted that the minimum of skill and intelligence is necessary for their successful operation. Should you still be doubtful as to our claims we invite you give them a practical test at our expense."

Over 1,000 Blake marine pumps sailed out of New York harbor Nov. 2 on the Atlantic fleet. Of the 102 warships of this fleet sixty-five are equipped with Blake pumps, and of the remaining thirty-seven nine carry no steam pumps and eight were built abroad. Send for Catalogue BK $106-43$, published by the Blake \& Knowles Steam Pump Works, 115 Broadway, New York.

A complete tool catalogue is published by the Billings \& Spencer Company, Hartford, Conn. Among the large number of tools descrilied in this catalogue are four sizes of combination pliers, which the Billings \& Spencer Company states are the original pliers first ntarketed by the company thirty years ago, and standard to-day. Like all this company's tools they are guaranteed.

Gages for pressure and vacuum are described in Catalogue M-1 published by the Schaffer \& Budenberg Manufacturing Company, Brooklyn, N. Y. This company makes a gage for every conceivable purpose and is also prepared to do repair work of every description on any instrument, whether it is of its own manufacture or not. Owing to the company's extensive facilities its charges are stated to be extremely moderate.

Blow-off valves are the subject of an illustrated catalogue published by the Nelson Valve Company, Philadelphia, Pa. These valves are made of iron for 300 pounds working pressure, and steel for extreme service. "We guarantee the Nelson blow-off valve. It is patented. Its name is trademarked. We couldn't afford to put our name on it if it was not right. If after sixty days of use yout are not satisfied send back the valve and we will refund the price you paid for it."

A combined jaw and friction clutch is descrihed in a folder published by the Positive Clutch \& Pulley Works, so Lansing street, Buffalo, N. Y. "The combined jaw and friction clutch combines the advantage of a friction clutch, to gradually pick up the speed of a driven shaft or pulley, etc., under load, with the positive drive of a jaw clutch. The frictions are not obliged to earry the load, but are used only for the purpose of operating the jaws."
"Why spend $\$ 8.00$ for gasoline or $\$ 3.00$ for steam when you can get the sance power for $\$ 1,00$?" is the question asked in a catalogue published by the Marine Producer Gas Power Company, 2 Rector street. New York, manufacturer of pro-ducer-gas plants. The company makes these plants in sizes from 25 to 5,000 horsepower, and states that they can be used with almost any gasoline engine. The catalogue gives full information on how to install and operate a producer-gas plant.

What Kerr turbines are doing in United States government service is the subject of a catalogue published by the Kerr Turbine Company, Wellsville, N. Y. "Government officials make no purchases foolishly, The investigations and specifications are rigid, and final acceptance is based upon tests that are thorough even to minute details. It is therefore significant that Kerr turbines have met every government requirement for efficiency, regulation, steam consumption, temperature, etc. and that thirty-five Kerr turbines averaging over 150 horsepower each are now kiving satisfactory service in government lighthouses, public buildings, training schools, navy yards, arsenals and on the shipz of the Enited States navy.
"Plymouth Products" is the title of a series of booklets published by the Plymouth Cordage Company, North Ply mouth, Mass. Plymouth strength is made by certain tests, as all Plymouth rope is said to go through rigid inspection. An illustration in one of this company's catalogues shows one of these inspections, in which a $45, \mathrm{coo}$-puund pull failed to snap a $71 / 2$-incls rope, although it was only expected to hold 43,000 pounds. Plymouth rope is especially recommended for tug hawsers, which get the hartest kind of usage. Rope used in this work generally goes to pieces quickly, making wearing power a question of vital importance.
Just what you have been looking fur in a Scotch boilerrapid circulation-is found in the Robh-Brady type, according to Bulletin No. 3, just issued by the Robb Engineering Company, Ltd., South Framington, Mass, "Positive circulation without a pump or other device. The circulating passage around the boiler empties below the furnace. Hot water and steam must flow up between the furnaces and pass to the steam drum througly the rear neck. The combustion chamber is cylindrical-no flat top, no girder or crown-bar stays. No longitudinal stays. Special hand holes for cleaning rear tube sheet. Built in sizes from 50 to 300 horsepower. Working pressure up to 225 pounds."

THE SIMPLE ADJUSTMENT

of the Starrett Micrometers is a leeture that enthuses all mechanica. It takea up asy wear quickly and accarately-not by the trial hit-and-mise way of the movable aovil. This is obtaised by placing over the barrel a this, graduated sleeve, which carrie, the base or aero line, inatead of having it marked oo the barrel itself. II, at any tiae, on accoant of excessive wear, the zero line in not correct, a small turs of this sleeve with a amall apaseer wrench will remedy the error. A wrench is aent with each micrometer.

Catalog 19L is free.

THE L. S. STARRETT CO. ATHOL, MASS., U.S.A.

NEW YORK, iso Chambers St CHICA00, tLL . 17 Ne. Jeflersen SL LONDON, 36 and 37 Upper Thames Se., E.C.

You Can't Blow Off the Bonnet Ridging of the Powell Union Composite Disc Valve

The patent ground joint connection between "A" and " N " and bexagon s wivel nut "a" prevents that. The higher the pressure the tighter the grip-plenty of streagth and metal where the bouly might be weak. You doa't need red lead to make it steam tight after you have taken it apart for inspection or repairs, the steam doesn't reach the threads

These are only a couple of the good points in the Powell Union Dise Valve, our booklet tells them all-want it?

Specify Powell to your jobber, and insist on getting what you specify.
Look for the Name-

The Wm . Powell Co. y/tion otpendable Enginezrimg Sprecialties.
 CINCINNATI

Engineers Recommend

Dixon's Flake Graphite

Your fellow marine engineers know and recommend the use of Dixon's Flake Graphite. Our booklet, "Graphite on Shipboard" tells how. Write for free copy 75-C.

vsi WILFORD CLOTH
 Matchlese Brand

For Lighter Covers, Hatch Covers, Tarpaulins
ED. A. BUNKER, Did, Proagee

When in need of Marine Machinery built right for economy and power, write-

> Marine Iron Works
> 2036 Dominick St. CHICACO Marine Machinery Specialists

New folder on "Diamond" front end soot blowers. A lot of sound, hard-headed logic on fuel economy has been worked into the new 12-page folder just issued by the "Diamond" Power Specialty Company, Detroit, Mich., on its front end soot blower for marine work. Anyone connected with the marine trade and interested in saving fuel should send for a copy of this two-colored illustrated folder.
The simple adjustment of the micrometers made by the L. S. Starrett Company, Athol, Mass, is a feature that is stated to be especially appreciated by all mechanics. It takes up any wear quickly and accurately, "not by the trial hit-andmiss way of the movahle anvil." Micrometers are only a few of the large number of instruments of precision described and illustrated in Catalogue 19-1, which will be sent free upon application to any of our readers.
"Keystone Grease" is the title of an illustrated booklet published by the Keystone Lubricating Company, Department V. Philadelphia, Pa "This booklet comprises a general treatise on the several densities or consistencies of Keystone grease. It outlines and describes the difference between their general make-up as well as thoroughly designating the general class of machinery which each one is physically appropriate to lubricate. There is also described the proper, correct method by which each density shoukd be used and applied to the various classes of machinery bearings. Correct application contributes very considerably to the achievement of maximum good results from the use of Keystone grease; so we. therefore, earnestly impress upon the engineer or person intending to test or use Keystone grease the importance of reading over, thoroughly, this booklet and applying the grease according to instructions.,
Another edition of the "Smooth-On Instruction Book" has just been issued hy the Smooth-On Manufacturing Company, 572 Communipaw avenue, Jersey City, N. J. This book tells all about Smooth-On iron cements, sheet packings, corrugated metal gaskets, and shows when, where and how to use them. "The great value of Smooth-On to the manufacturer and user is because of its peculiar chemical properties, namely, of metalizing and of expanding when metalizing. and it can be prepared to act quickly or slowly, according to the requirements of particular uses. These properties make Smooth-On a valuable substance in the making of chemical iron cements. To this subject the chemist of the Smooth-On Manufacturing Company has given careful study for fifteen years, and has succeeded in compounding the valualie iron cements known so generally throughout the world as SmoothOn iron cements. These cements are made each for a special purpose: they are carefully prepared by a chemist, and when correctly used they make permanent repairs. The different Smooth-On cements are explained in the following pages: a careful study of them will prove interesting and profiahle. The illustrations are made from photographs of actual snbjects, and show some of the many ways in which the SmoothOn cements have heen used and the results obtained."

The uae of the triplex chain block in the lifting of loads is the subject of a booklet published by the Yale \& Towne Manufacturing Company. 9 Murray strèet, New York. A free copy of this booklet will be sent to anyone mentioning this magazine. "The lifting of loads is a universal need-a vital factor in every man's business. The triplex block is the simplest, safest. most efficient and most economical load lifter in the world. It lifts loads muler all conditions, in all places, from a palace to a sawmill, a garage to a warship. When one man pulls on the band chain of the triplex hock he can lift any load from soo pounds to 20 tons-two men can lift 40 tons. The load is always automatically held at any point during the lift. You can go away and let it hang ten seconds or a year It will not come down until you are ready. Then you lower it by pulling lishtly on the reverse side of the hand chain. The triplex block has the strongest, simplest, smonthest-running. wear-resisting system of gears ever devised to multiply lifting power. It so multiplies the strength of one man as to make him master of every lifting prohlem. Many loads must also be transported-moved horizontally. The trinlex block not only lifts its load easily, and holds it suspended safely, hut when hung from a trolley running on an overhead track the load may he moved easily wherever the overhead track goes. One man can push the load as easily as he lifts it. In foundries, machine shops, factories. sawmills, mines, quarrics, warehonses in power loouses and boiler rooms, on railways, ships and docks, thousands of triplex blocks are daily lifting and transporting thousands of tons, at a saving in lahor which frequently repays the whole cost of installation in six months Everyone who has lifting and transporting to do should write for the book about triplex blocks. A postal brings it."

Oil engines of 2 to 600 horsepower are described in a catalogue published by A. Mietz, 1,30 Mott street, New York. These engines use kerosene, fuel oil, crude oil and alcohol, and Mr. Mietz states that t50,000 horsepower are in operation.
"Be Ready for the Long Dark Nights" is the title of Bulletin No, 22 just issued by Kerr Turbine Company, Wellsville, N. Y., describing and illustrating installations of their turbo-generator sets for lighting. This folder is well worth reading by any one who is figuring on ant independent lighting plant. A copy will be sent upon request.

The new "Buffalo Book" is now on the press, and every one of our readers who is interested in gasoline motors of any size and for any purpose should write to the Buffalo Gasolene Motor Company, 1200-21 Niagara street, Buffalo, N. Y., for a copy. This books tells all about the new models and the refinements of design which mark the 1912 "Buffalos."
"Ready-to-Run" ventilating sets are described in Bnoklet MC=9 published by the B. F. Sturtevant Company, IIyde Park, Mass. "Originally designed for ventilation their development for other uses has been nothing short of wonderful. They require no installation work, simply unpack; plug the corl into the light receptacle and turn the switch. They are built in five sizes, with capacities from 35 to 1,250 cubic feet per ininute."

The Whitney portable hand metal punch No. I is described in circulars issued by the W. A. Whitney Manufacturing Company, Rockford, III. This punch is especially constructed for hoiler, tank and stack work and structural builders' requirements. The weight is 21 pminds. It has detachable pipe handles, and the capacity is a $9 / 16$-inch hole through $1 / 4$-inch hoiler plate.
"The Whole Kewanee Family" is the title of a booklet published by the National Tule Company, Frick luilding, Pittsburg, Pa. Among the advantages claimed for the Kewance union are: Brass to iron thread connection-no corrosion; brass to iron ball joint seat-mo gasket; 125 pounds compressed air test under water-no defective fittings; solid three-piece construction-no inserted parts: easily discon-nected-no force required.

Every engineer and ship and engine builder should send to the Lunkenheimer Company, Cincinnati, Ohio, for a free copy of its new catalogue of engineering specialties. This is a booklet of several hundred pages profusely illustrated, and describing a very complete line of enkineering specialties, such as valves, coeks, whistles, oil cups, etc.

Sirocco Bulletin No. 284-ME has just been published by the American Blower Company, Detroit, Mich. It describes and illustrates fans for mechanical drive and slip ventilation. These fans are claimed to have enormons volumetric capacities for small space reyuirements, and being small the cost of installation is brought down to the minimum,

TRADE PUBLICATIONS
 GREAT BRITAIN

The Falcon Iron Works, Ltd., Oldham Lanes, have issued a number of pamphlets containing illustrations and details of winding or haaling engines of different patterns from 5 brakehorsepower to $t, 000$ brake-horsepower, including the ordinary geared engine, worm geared capstan engines, endless rope haulage gear and long-type of engine. Electrically-driven haulage gears are made in sizes from 5 brake-horsepower to soo brake-horsepower. Details are also given of the "Falcon" friction elutch, the automatic tub axle greaser, and a patent rope haulage clip.

Feed Heater Heaters are described and illustrated in a new List (No, 2tt) issued by Ilolden \& Brooke, Lid., of Sirius Work 4 . West Corton, Manchester. These are made on Brooke's patent "High Velocity" system. It is claimed by the firm that "by virtue of this system alone, as has been proved by quite independent investigations, the maximum heat extracting capacity of metal surfaces is obtained, and consequently the highest temperature of feed water." The principle of this system is based upon the fact, not kenerally appreciated, that heat transmission is dependent upon maintainmg the greatest possible degree of difference in temperature on the two sides of the heating mellium; and it is urged that. in practice, by the "lligh Velocity" system feed-water can be delivered 20 percent hotter than by ordinary heaters.

Reilly Multicoil Heaters
 and Evaporators are in stock at the shops, Pier B, Jersey City, awaiting

 your rush orders. Coiled, flexible copper tubes, ground union joints (no expanded ends), and the Reilly manhole door, giving access to all interior parts, give the marine engineer an auxiliary which saves coal, increases Condenser capacity, and needs no repairs.

Send your vessel to our pier for her next repalrs; and Install the auxiliaries at the same time.

Do you want to know? THE GRISCOM-SPENCER COMPANY

90 WEST STREET, NEW YORK.

FORMERLY THE JAMES REILLY REPAIR AND SUPPLY COMPANY.

Night signaling at sea by flash lamp is described on a circular published by the Signaling Specialties Supply Company, 59 Fenchurch street, London, E. C. "Endall's Morse code lanip is the only signaling apparatus which, in addition to making an "all-round' or gencral signal, enables the operator to direct a message to any desired quarter, thus giving an 'individual' or private signal."

The Cooper roller bearing, made by the Unbreakable Pulley \& Sill Gearing Company, I-td., 56 Cannon street. London, is described in circulars the manufacturer has just issurd. "As specialists in the mechanical transmission of power we have carefully watched the performance of the various types which have appeared-and for the most part disappeared. First came the solid roller of mild steel running directly on the journal-result, matual destruction with anything but comparatively light loads. In the hope to preserving the surfaces, rollers of the 'flexible' type were introduced, made either of rolled plate or spirally-wound spring steel. The former were lialle to fracture, which meant stoppage of rollers and immediate or subsequent trouble. Under heavy loads the other 'flexible' type require to be closely watched, because of the liahility of the rollers to elongate, in which ease sufficient end pressure on the cages and housings is set up to interfere with their free running. Unless this is immediately detected and the hearing dismantled, and the spiral rollers shortened, the complete bearing and the shaft will be damaged. if not ruined. To protect the shaft journal and confine the damage to the parts less costly to renew, thin sheet steel liners are sometimes provided. With this type, whatever may be the saving claimed or effected, there is unduubtedly grave risk of damage, and, what is worse, of stoppage. It is only roller bearings in which all bearing surfaces are hardened and ground that have in our experience proved their durability in heavy service. The majority of these, however, have been fitted with rollers of small diameter and considerable length. and, heing hardened right through, these are apt to fracture. Further, owing to the annular space available for the cage being narrow, and the cage itself relatively long, it cannot be made sufficiently stiff to maintain the rollers in true alignment."

The Perco patent power hammer is descrihed in the literature published by Perkin \& Company, Ltd-, Junction Works,

Leeds. "The hammer head will accommodate dies for a great variety of work. The length of stroke can be adjusted. It is strongly built of best cast steel and iron, and, having no complicated parts, it is easily repaired should anything get out of order. All working parts are at the top, in full view of the workman. The hammer head, anvil, guides, glands on the crank plate and crank pin with nut, also friction coupling and strap pulley, are turned or planed. There are flanges on the crosshead against the outer side of the guides, to hold them in position, and on the one side of the crosshead there are set screws to regulate the position of the guides when worn. All wearing parts are large and carefully made. The four columns carry the top plate with driving shaft, pulley and friction coupling. The friction clutch is fitted with a brake, working automatically when the coupling is disengaged, and the hammer stops instantly, with the ram always at a certain distance from the anvil. The coupling is easily operated by the treadle, and the blow can be better controlled by the foot than in any other way. The hammer head runs in planed guides, always maintaining a true vertical position at every point, and is thus capable of doing accurate and rapid work. The guides, which are of steel, are adjustable and casily renewed. The motion is applied to the head or ram by means of a connecting rod (sliding in a sleeve or collar, and fastened by a set screw) and a strong bow spring with iron straps. The spring is of best open-hearth steel, carefully hardened, and the straps of wrouglit iron. By means of the spring and the connecting straps the strength of the hlow is much increased, as the ram from the rebound of its blow on the material being forged, and from the action of the connecting rod, is quickly drawn up, thereby contracting the spring. This accumulated power is then released in the next fall."

BUSINESS NOTES

AMERICA

The steameas Seaconncf. Penobscof. F. J. Lisman and Mary E. Harfer, owned by the Harper Transportation Company. Boston, Mass, have all been recently equipped with "Diamond" front end soot blowers, made by "Diamond" Power Specialty Company, Detroit, Mich.

COBBS HIGH PRESSURE SPIRAL PISTON And VALVE STEM PACKING

IT IS THE MOST ECONOMICAL AND GREATEST LABOR SAVER

Because it is the only one constructed on correct principles. The rubber core is made of a special oil and heat resisting compound covered with duck, the outer covering being fine asbestos. It will not score the rod or blow out under the highest pressure.

NEW YORK BELTING AND PACKING CO.

91 and 93 Chambers Street, NEW YORK
LONDON, E. C., ENGLAND, 11 Southampton Row

ChICAOO, ILL., 130 Weet Lare Btmest
ST. LOUtS, MO., 218-220 Onentwut Btwert
PHILADELPHIA, PA., 82s-b23 Ancw stnest
SAN FRANCISCO, CAL., i20-131 Fimet 8t., Daxlano

The United States government's mepresentative at the Turin Exposition has notized the International Acheson Graphite Company, Niagara Falls, N. Y., through the Department of the Interior, Bureau of Mines, in Washington, that the Jury of Awards of that Exposition has awarded that company a grand prize on the exhibit of its products.
Recently a Teury tirbene centrifugal pump set was installed on the Únited States battleship Arkansas, and it is said that this is the first time a steam turbine has been adapted to this use on any naval or mercantile vessel. On land turbo-pump sets have been extensively used for a variety of purposes with the most satisfactory results, and it is anticipated that they will fulfill all expectations in marine work.
The steam yacht Carmina, owned by Mr. F. S. Smithers, is being laid up for the winter at Tebo's yacht basin. We understand that the boilers which were installed in the spring by the Roberts-Safety Water Tube Boiler Company, Red Bank, N. J., made ample steam without the aid of the blowers that were used with the watertube boilers that were removed. The Carmina cruised more this season than last year, and was capable of making 2 miles better speed under natural draft over and above that done by the former boilers with forced draft, and at the same time her total coal bill for the past season was less than formerly.
"TuE TLRBINE-DRIVEN fan for forctil playt is now the accepted standard in the United States navy, taking the place of the former forced draft sets consistiag of fan driven by highspeed engine. These engine-driven sets on the older boats of the navy were a source of much trouble and occasioned frequent breakdowns. The new turbine sets deliver 28,000 cubic feet of free air per minute against 5 -inch static pressure water gage in the stokehold. Two sets are placed in each stokehold, and the turhine is hung from girders directly beneath the ventilator cowls. Of the eight United States destroyers recently contracted for, seven will have four Terry turbinedriven forced, draft sets, These destroyers are the largest and nost powerfal ever built in this country, and are equipped for hurning oil fusel. Of the twenty-one oil-hurning destroyers previonslv ordered by the government seventeen are equipped with Terry turbines. The uniform success of these destroyers is in a measure due to the very satisfactory operation of the turbine-driven hlowers."

Among the poretgn orders recently received by the Terry Steam Turbine Company, liartford, Conn., are three turbine driven blowers for Chinese cruisers and a 15 -kilowatt turbogenerator set for Russia.

The Pusey \& Jones Company, Wilmington, Del., has just placed an order with Ruggles-Coles Engineering Company 50 Church street, New Iork City, general agents for the Hayonne Casting Company, Bayonne, N. J., for two 66 -inch propellers to be cast of "Monel" metal for a large private yacht which they are building.

The main ofrices of A. Eugene Michel and staff, advertising engincers, have been moved into the Park Row building, 21 Park Row, New York, where larger space Has been secured, as necessitated by constantly increasing business. Temporarily the photo retouching and illustrating department will remain in the Hudson Terminal buildings, but all business will be managed from the new offices.

The Busch-Sulzer Bros. Difsel Encine Company, South Side Bank building, St. Louis, Mo., announces that by virtue of purchase and agreements with Mr. Adolphus Busch. purchaser of the American Diesel Engine Company, Messrs. Sulzer Bros., Winterthur, Switzerland, and Dr. Rudolph Diescl, Munich, Germany, the company is the exclusive owner of patents, manufacturing and selling rights for the United States and Canada. Parties interested in this type of engine. either for marine or stationary work, are invited to correspond with the company. The Fastern sales office is it Broadway. New York, Mr. W. R. Haynie manager.

Mr. C. R, Vincent, for many years president of the Ball \& Wood Company, lias assumed the managership of the "Monel" metal department of the Ruggles-Coles Engineering Company, 50 Church street. New York City, general agents for the Bayonne Casting Company. At its foundry in Bayonne, N. J, the latter company has for some years been making with sluccess castings of this remarkable alloy, that is said to be stronger than steel and less corrodible than bronze. Some of these castings range over 25,000 pounds in weight. Sheets, rods, wire and screens of the same metal will also lie handled by the company with which Mr. Vincent is associated.

WELIN DAVIT AND LANE \& DE GROOT CO.

305 Vernont Ave., Long Island City, N. Y.
Manufacturers of Welfn Quadrant Davits, the only nellable boaf-launching appapatus on the market; manufactured in taventy distinct types and sires.

Over 4000 Davits nobe in use.

Steamships "OLYMPiC and "TiFANBC" Hited throwahout with Welin Qandrant Davita
The Lane 6 Also builders of bronse, steel and wooden launches and other marine appliances. The famous A-B-C Life Preservers. One-fhind lightep and smaller than any othep belt made. All our appliances approved by U. S. Inspectors. London, E.C.

Gauges

The S. \& B. line of Gauges for pressure and vacuum is complete. We have an instrument for every conceivable purpose. Moderate-priced instruments of highest quality. They are all described "in"our Catalog M-1. Obtain a copy.

Repair Work

We are prepared to do repair work of every description on any instruments, whether they be of our own manufacture or not. And owing to our extensive facilities our charges are moderate. Try us.

> The Schaeffer \& Badenberg MIg.Co.

> BR00KIYN, N. Y. Chicago

Pitiaburgh (35) Washington

Körting Marine Sewage Ejector

This, Water-jet Eductor is used extensively

ON BOARD SHIPS

for discharging waste water from baths, lavatories, etc., which are situate near or below the water line.

It is absolutely reliable and requires no attention whatever. There are no moving parts to wear out and be replaced.

Further information, prices, etc., on application.
SCHUTTE \& KÖRTING COMPANY
PRILALIEIPIILA. PA., U, No A.

We understand that several orders have been secured by Alex. Chaplin \& Company, Letd, of Govan, for cranes, and about twenty, steam and electric, and of varying type and power, are in hand for hone and abroad. The firm recently supplied three overhead electric eranes of 6o-ton capacity. These were builr and installed within sixteen weeks in the new engineering shops of the London \& Glasgow Shipbuilding \& Engineering Company, Lid, Govan. Two of them are of 47 feet and the third of 42 feet 6 inches span. They are threemotor cranes, the speeds for the several operations of lifting, cross-travel and long-travel being: Lift, 60 tons at 5 feet a minute, 25 tons at 11 feet 6 inches a minute, and lighter loads up to a speed of 15 feet a minute : cross-travel, 60 feet to 90 feet a minute; long-travel, 200 feet to 240 feet a minute. All the motors are wound for direct current at 500 volts.

Undek the heabing of "Naval Shipbuilding Expenditure" the Mechanical World recently said: "It is doubtless correct to characterize expenditure on armaments as economic waste, but it is a waste which is recognized throughout the whole world. The money devoled to military and naval objects might be applied to better purposes in any country, but so long as any one nation continues to arm itself for offensive or de fensive action, the, other civilized nations seem compelled to follow the example for the sake of self-protection. Although the expenditure on naval armaments in the United Kingdom is enormous, it requires only a little consideration to show that the outlay confers great benefits upon a large number of workmen who are employed in the various departments which, combined, produce warships complete. The stoppage of a shipbuilding programme for a single year would throw many thousands of workers out of employment, and from this point of view the cessation of naval shipbnilding would be exceed ingly disastrous to many thousands of other persons who would be directly affected by it. But there is no prospect either now or in the future of any such slate of affairs being brought about in this or any other country. The First Lord of the Admiralty, who recenily referred to the question of economic waste of expenditure on armaments, again expressed the hope that it may be possible to reduce the naval estimates for 1912-13. It is, however, quite clear that the First Lord is not so confident of the realization of this hope as he was six months ago, as he declared that our expenditure must depend upon the scale adopted in other countries. It therefore remains for the near future to decide what the shipbuilding programmes of other countries will prove to be for the next financial year; but we shall be much surprised if the international situation will permit of any reduction in the British expenditure in 1912-13."

One of the most powerful lathes ever constructed is in use at the Darlington Forge Company, Ltd. Its massive double-slide bed, 61 feet 6 inches long, 16 feet wide and 27 inches deep, is built up in two lengths jointed down the center, with five longitudinal and several transverse box girders, and is so arranged that an additional length can be easily added later. The lathe, which was built by Hulse \& Co., Lid., of Salford, will admit work 40 feet 6 inches long and is feel 4 inches diameter between centers. The fast headstock has two changes of double and two of quadruple machine-cut forged steel gearing, the changes being readily effected by means of racks and pinious. The spindle is 19 inches in diameter by 27 inches in length in the front bearing, and 15 inches diameter by $22^{1 / 2}$ inches in the back bearing. A large hall bearing is fitted to take the end thrust. The machine is driven direct through machine-cut double-helical forged steel gearing by a 100 -brake-horsepower motor, having a speed variation of 3 to 1. mounted on the foundation plate at the front of the headstock. The keys on the shafts in the fast headstock are forged solid with the shaft, and all the sliding wheels are fitted with two keys. The face plate chuck is 12 feet in diameter, cast in one piece, bolted to a large collar forged on the spindle nose. The movable headstock has a forged steel spindle 12 inches in diameter. Four isdependent sliding carriages are provided two at the front and two at the back, with transverse slide and extra holding-down strip. Fach is fitted with a rotating nut and reversing gear, swing frame and machine-cut steel change wheels, these latter not only imparting the various rates of feed longitudinally for sliding or serew-cutting, but transversely for surfacing. Rotary motion is transmitted hy means of longitudinal shafts driven from one of the quick-running shafts on the fast headstock through two changes of spur gearing, means of hand adjustment being also provided. The sliding carriages have a quick-transverse motion in both directions, driven direct from a 20-brake-horsepower constant-speed motor self-contained with the lathe. The range of spindle speeds is from 0.4 to 30 revolutions per minute.

A NEW DEStGN of crane panel lias been introduced by the Electric \& Ordnance Accessories Company, Ltd, of Aston, Birmingham. Although these panels are of particularly substantial construction, both electrically and mechanically, they are considerably smaller and lighter than panels of the usual construction, The panels consist of a double-pole, quick-break main switch, with three or four double-pole branch fuses, enclosed in a cast iron case, which is provided with lugs for fixing. The main fuses are mounted on the movable switch arm, so that they can only be renewed when the switch is in the "off" position. Pilot lamps are mounted on the top of the case to indicate when the motors are entirely disconnected from the mains; connections for an inspection lamp are also provided. The panels are supplied to control one, three or four motor circnits, dealing with currents ranging from 50 to 400 amperes at pressures up to 600 volts.

An apparatus which has been hrought to Great Britain by Mr. Victor Nightingall, an Australian inventor, is designed to enable communication to be established by night between ship and shore or ship and ship by means of light signals according to the Morse code, even though those working it are not adepts in that code. For this purpose the ship is provided with a number of metal plates, each representing a letter of the alphabet, which can be fixed to a wheel forming part of the apparatus, and which, when the wheel is rotated, by means of suitable projections close the circuit through an electric lamp, and thus cause it to flash out the dots and dashes corresponding to the letters. To use the apparatus the sailor consults the international signal book, picks out the letters which stand for the message he wishes to send, fixes the corresponding plates on the wheel, and pulls a lever which both sets the wheel in rotation and switches on the current to the lamp, either from the ship's dynamo or from a battery. The apparatus then continnes to send the desired message automatically without further attention until it is stopped. As the signals are shown comparatively slowly, and are repeated at each revolution of the wheel-or oftener if duplicate sets of plates have been fastened to the circumference-any one on another ship ought to be able to decipher them by reference to a Morse alphabet; and then, having made out the letters, whatever his nationality, he has only to consult his international signal hook to discover the meaning of the message.

Jno, IIr. Aninew \& Company, Lte., of Toledo Steel Works, Sheffield, recently appointed Bernard Holland \& Company, of 17 Victoria street, S. W., to act for them in London and district so far as the British government departments, railway companies, engincers, shipbuilders, contractors, etc., are concerned.
()al enaines which have been recently constructed by William Beardmore \& Company, of Glasgow, include a 45horsepower crude-oil engine for a steel fishing vessel which has just been constructed at Amsterdam; a 3 -horsepower auxiliary paraffin engine for a schooner trading in Australian waters, and a crude-oil engine of 45 horsepower for the Crown Agents for the Colonies. In addition they have built for the Irish Congested Districts Board two motors-a 6ohofsenower crude-oil engitte and a 38 -horsepower paraffin engine. They have also supplied a 120 -horsepower crude-oil engine for a new yacht to the order of the Marquess of Graliam.
The British Oxygen Company, Lid., state that they have decided to erect an oxygen factory in Sheffield, where they consider the growing demand for oxygen in connection with metal cutting warrauts this extension. When the Sheffield plant is completed the company, which in 1908 had only three factories (London, Birmingham and Manchester), will possess eight factories in the United Kingdom, all situated in centers where the demand for oxygen is important-at London (Westminster and Greenwich), Birmingham, Cardiff, Manchester, Shetield, Neweastle and Glasgow. These extensions are entirely due to the demand for cheap oxygen in connection with oxy-acetylene welding and oxygen metal cutting. In view of the heavy freight charges on gas cylinders conveyed by rail, it is obvious that local sources of supply must tend to reduce the price of oxygen to the consumer. All the company's plants are of the modern liguid air type, producing oxygen of a high degree of purity, and when the Sheffield plant is in operation their total output will be about 300,000 cubic feet a day. This supply is largely in excess of the present demand, hut it is anticipated that this quantity may ultimately be reqnired if the use of oxygen for metal cutting extends. The present average price of oxygen, supplied in cylinders, for industrial purposes is about $/ 2$ per 1,000 cubic feet, but reductions are expected if the demand increases.

"Dlamond" Front End Marine Soot Blower
With Smuke Bux Doors Opra and Showing Ilow the Entire Mechamism is Withdrawa from Smoke Chamber.

It Costs Money
 to Force Heat Through Soot

A one-tenth inch coating of soot on your boiler flues resists heat to a greater degree than a full inch of asbestos. You would not think of running your boiler with the tubes wrapped in asbestos. And yet a slight coating of soot causes the loss of more heat-and the waste of more fuel-than does asbestos.

This "Diamond" Soot Blower

Keeps the Tubes Free of Soot-Cuts Down Your Fuel Bills Doubles the Efficiency of Your Boiler

Send for copy of New Cincular Jast lasued "Diamond" Power Specialty Co.

58 First Street, Detrolt, Mich.

THE DIAMOND BLOWER COMPANY 75 b Oueen Victoria St.. Loadon, E.C.. England

MARINE SOCIETIES.
AMERICA
AMERICAN SOCIETY OF NAVAL ENGINEERS.
Navy Department, Washington, D. C.

SOCIETY OF NAVAL ARCHITECTS AND MARINE ENGINEERS 5 Weat sich Street. New York

NATIONAL ASSOCLATION OF ENGINE AND BOAT MANUFACTURERS.
14 Madimos Avenue, New York Clity.
UNITED STATES NAVAL INSTITUTE
Navel Academy, Aunapolia, Md.
OREAT BRITAIN
INSTITUTION OF NAVAL ARCHITECTS.
6 Adelphi Terrace, Londen, W. C.
INSTITUTION OF ENGINEERS AND SHIPBUILDERS IN SCOTLAND.
as Elubank Crescent, Glasgow.
NORTHEAST COAST INSTITUTION OF ENGINEERS AND SHIPGUILDERS.
Bolbec Hall, Wentgate Roed, Newcertie-on-Tyne.

INSTITUTE OF MARINE ENGINEERS, INCORP
s8 Romford Roed, Stratford, Loedon, E.

germany.

SCRIFFBAUTECHNISCHE GESELLSCHAPT. Technisebe Hechochule, Charlotienburg.

MARINE ENOINEERS' BENEFICIAL ASSOCIATION NATIONAL OFFICERS.

Preadent-We, F. Yates, 21 Stale St New York City.
Firtit Yice-Preaident-Art $1 t y d e$, 9116 Willard Ave., N. Wreveland, Ohice
Second Vice.President-Gea, H. Bowen, Port Huron, Mich.
Thard Vice-Presidest-Charles N. Vosburgh, 6393 Patton St. New
Secretary-Geo. A. Grubb 1040 Dakin St., Chicago, IIL.
Treasurer-A. LL. Jones, 38 Avery Ave., Detroil, Mich.
ADVISORY BOARD.
W. B. Hayden, Waekington, D. C,

Frank J. Houghton, Fort Rictmoed, S. I., N. Y.

DIRECTORY OF AR AND COUNCIL, N. A. OF M. E. OF CANADA, FOR I9It. GRAND OFFICERS.
Grand President-Thes. J. S. Milne, sos University Ave., Kingoton,
Grand Vice.President-Thos. Theriault, Levis, P. 8 .
Grand Secretary-Treasurer-Neil J. Morrison, P. ©. Box 238, St. John,
Grand Conductor-John A. Murphy, Midland, Ont.
Grand Doorkeeper-D. J. Mnrray, Victoria Rd., Da
Grand Doorkeeper-D. J. Marray, Victoria Rd., Dartmonth N, S. Grand Audilors-A. J. Woodward, Toronto, One: E. J. kiley, Owen Sound, Ont.

american association of masters, mates and pilots. NATIONAL EXECUTIVE COMMITTEE

National President-John H. Pruett, ses Forty-Ninth St., Brooklyn, N. Y.
tional Pirat Vice-President-Wm. A. Weatcoth, 1 Perry Bullding. San Francisea, Cal
National Second Vice-President-A. R. Mackey, Wood Sc, Pittationgt Third Vice-President-Charles Davis, St. Loulk, Mo.
National Treasurer-A. B. Devina, $\frac{1}{2}$ Stale St, New Yerk. Also secre-
National Treagurer
tary pro tem.
National Counset-L B. Dow, il State St., New York.

An intranational exhimition of non-ferrous metals is in course of arrangement by Mr. Fired. W. Bridges (organizing manazer), under the presidency of Sir Gerard A. Muntz (president, Institute of Metals). The Royal Agriculture Hall, Islington, has been booked from May 6 to 18, 19t2. Judging from the experience which the organizing manager has gained in previous exhibitions he has been connected with, and the results achieved, the success of the exhibition now being organized is assured.

Tine works and business of the Société Escaut et Meuse at Val Benoit, near Liege, have been transferred to a new company formed with the co-operation of the Société Cockerill and the Société d'Ougrée-Marihaye, under the name of Société des Usines à Tubes de la Meuse. This company, with a capital of $5,500,000$ francs, will engage in the manufacture of iron and steel tubes and accessories of various kinds.

Foa several yenas now, says the London correspondent of the Manchester Guardian. Norwegian companies have monopolized the whaling industry in the Southern Ocean largely by means of second-hand British steamers adapted for the purpose. Their efforts off the southeast African coast and in the vicinity of the South Shetlands have, I hear, been so successful that one or two British firms are about to embark in the business. A fleet of five vessels will leave the Tyne for Kergulen Island towards the end of next month, and all of them will be equipped with wireless telegraphy, while three will have Diesel engines as the ir motive power. One of these is the old Clyde-built barquentine Sound of Juro. which has been fitted with tanks for storing the oil. I hear also that a Liverpool firm is having three vessels built for the sealing industry off the Newfoundland coast, and they are to be supplied with internal-combustion engines.
A Barlow combespondent of the Newcastle Daily Chronicle states: "There are very bright prospects for the shipbuilding and engincering trades at Barrow, as it has been agreed upon that one of the two Turkish dreadnoughts shall be built by Vickers, Ltd., and the Admiralty Commission of Chili has recommended that the two Chilian dreadnoughts shall be built in this country by Armstrong's and Vickers, who in both the Turkish and Chilian negotiations have been working in combination. The Turkish warships are to be of 23,000 tons displacement, and the Chilian of 28,000 tons displacement. No British battleship has yet reached these dimensions. The guns with which these vessels will be mounted are of 14 -inch and 15 -inch calibre, respectively. Similar guns will be placed on modern warships now in course of construction. There is building at Barrow a Japanese battleship cruiser, which will be a better equipped vessel than even our battleship cruisers. There is also in course of building at Barrow a Chinese cruiser and other craft of up-to-date characteristics. The prospects are that shipbuilding and engineering at the Barrow yard of Vickers, Ltd., will be very busy for some years."
The taials or the Diesel, entine of 1,000 horsepower for a vessel of the Woermann Line were completed recently at the Nurnberg works of the Maschinenfabrik Augsburg-Nurnterg. It is of the two-cycle double-acting type, running at 125 revolutions per minute normally. There are three working cylinders and three separate scavenger puinps in line with the working cylinders, and driven direct by an extension of the crankshaft. Air pumps for mancuvering and starting are driven by a separate motor. The floor space occupied by the scavenger pumps is very nearly equal to that taken by the working cylinders, and at first the engine appears to be somewhat larger than would have been expected; the over-all space occupied by the bedplate is about 25 feet by 9 feet, and the height from the bottom of the bedplate to the top of the working cylinders is about 14 feet or 15 fect . The arrangement for reversing, although complicated by the fact that the engine is double-acting, is comparatively simple. The cam shaft itself is turned through an angle of about 30 degrees, by which motion all the cams are set in their proper positions for running in the reverse direction. So easy is the manipulation that the engine is changed over from full speed ahead to full speed astern in less than ten seconds, which is rapid enough for all requirements. The scavenging air before passing into the working cylinders is cooled by being taken through a copper cylindrical vessel. The pistons and rods are oil cooled, the oil being itself cooled by circulating throurh a special cooler. The cytinders are cooled in the usital way by water. The Numberg firm have lately built a very large shop for the construction of Diesel marine engines, which is already well filled. Several 850 -horsepower high-speed Diesel marine engines, running at ahout 400 revolutions per minute, are under construction or are completed for use in submarines. These have eight working cylinders and two air pumps on the same shaft in line. The seavenger cylinders are arranged directly underneath the working cylinders, and they lave a stepped piston, the piston of the scavenger pump forming in reality the crossheal of the engine. These submarine engines are all of the two-cycle single-acting type, and are of very light construction, The frame and bedplate are built of manganese bronze. Fingines are on order for the Dutch, German, Italian and the Austrian navies.

PATENTED AND MANUFACTURED EXCLUSIVELY BY PEERLESSS RLBBER MANUFACTURNGG COMPAMY I6 WARREN ST., NEW YORK

DET ROIT. MICH:1624 WOODWARD AVE. CHICAGOILL- 200-208 SO WATER ST. PITTSQURGHPA= 425-427 FIRST AVE. SAN IRANCISCO;-39-31 STEVENSON ST. SPOKANE. WASH-RAILROAD \& STEVENS STS. SALT LAKE CITY, UTAH: $45-52 \mathrm{~W} 2=$ SOUTH ST. ATLANTA.GA: $64-70$ MARIETTA ST. NEW ORLE ANSLA. COR COMMONS TCHOUPTTOULAS STS LONDON E.C.ENGL ANO-II QUEEN VICTOMA ST.

SEAT TLE. WASH- FIRST \& KING STREE TS CHAT TANOOGA TENN-HOG-IIZO MARKET ST. INDIANAPOLIS, IND:38-42 SO CAPITOL AVE DENVER.COL $=1550$ WAZEE STREET. HELENA. MONTT: 113-117 MAIN ST. PORTLAND. ORE: 69.75 N. 12 LS ST. PHILADELPHIA PA: 19 NORTH SEVENTH ST

SYRACUSE.NY-212-214 SO.CLINTON ST. ROCHESTER,NY-24EXCMANGE ST. ST. LOUIS. MO-454 PIERCE BL'DG. LOS ANGELES, CAL-3 35 NORTH MAN ST BUFFALQNY- 379-383 WASHINGTON ST BOSTON.MASS-HO FEDERAL ST. BALTIMORE.MD-37HOPKINS PLACE FOREIGN DEPOTS LOUISVILL KY, MORTHLAST COR SLCOHD SWASHINGIONSTS papis frakce. 76 ave. DE La pepublioue

Sturlevant
 READY-TO-RUN VENTILATING SETS

Ready for operation by simply connecting to the electric circuit. Note the comparative size
Sturtevant Ready-to-Run Ventilating Sets are general utility, blowers in the broadest sense of the term. Originally designed for ventilation, their development for other uses has been nothing short of wonderful. In the factory, the office, and the home, the applications to which these may be put are without number.
In industrial enterprises they are used for drying, cooling and ventilating, and many other applications. They shorten processes, improve and increase output, and make comfortable working conditions.

In the home and office they ventilate, cool and purify the atmosphere, or furnish draft to the furnace.
They are, as their name implies, Ready-to-Run when received. They require no installation work. Simply unpack, plug the cord into the light receptacle and turn the switch.

They are built in five sizes, with capacities from 35 to 1,250 cubic feet per minute.

Our booklets, MC-9, A.O., describe these sets in detail. MC-9, B.O. contains letters from users showing a few of the many applications to which they have been put. These booklets are yours for the asking.

The Parsons Marine Steam Turbine Co., Ltd.

TUREINIA WORKS Wallsend-on-Tyne England

Total Horsepower of Parsons Marlne Steam Turbines, bullt and under constructlon, Is approximately $5,700,000$.

OFFICE: 97 Cedar Street, New York

17

OVER 1000 BLAKE MARINE PUMPS

Salled out of New York Harbor, Nov. 2, ON THE ATLANTIC FLEET

Of the 102 warships mobilized for the inspection and review by the President and Secretary of the Navy, 65 are equipped with Blake pumps, and of the remaining 37, nine carry no steam pumpe and eight were buift abroad.

Pumps that not only meet the Government speciffications, but when instalied so satisfactorily fulfill the requirements that repeat orders continue to be received, musi be and are the best pumps for any marine service. Moreover they must and do represent the beat value at any price, for Uncle Sam is a very careful buyer.

Send for Catalogve BK 106-43

The BlakeaKnowles ${ }^{\text {spunin }}$ Works

Marine Department 115 Broadway, Naw York Clty

MORISOM SUSPENSIOM FURMACES

FOR MARINE AND LAND BOILERS

UNIFORM THICKNESS
EASILY CLEANED
UNEXCELLED STRENGTH

MADE TO UNITED STATES, LLOYDS BUREAU VERITAS
OR ANY OTHER REQUIREMENTS

JUST WHAT YOU HAVE BEEN LOOKING FOR IN A.SCOTCH BOILER-

 RAPID CIRCULATION IS FOUND IN THE ROBB-BRADY TYPEPositive Circulation without a pump or other device. The circulating passage around the boiler empties below the furnace. Hot water and steam must flow up between the furnaces and pass to the steam drum through the rear neck.

The Combustion Chamber is cylindrical -no flat top-no girder or crown bar stays. No longitudinal stays. Special hand holes for cleaning rear tube sheet. Built in sizes from 50 to $\mathbf{3 0 0}$ horsepower. Working pressure up to 225 pounds.

Our Bulletin No. 3 shows the small floor
 space per horse power. Send for it

ROBB ENGINEERING CO. LIMITED

 South Framingham, Mass.Robb Engineering Co., Ltd., 131 State St., Boaton S. A. Tolman, Robb Eng. Co, Led., 90 Went St, New York Geo. H. Conner, Robh Eng. Co, Led., 49 North 7th St., Philadelphia
Robt. B. Orr Eng. Con, 1205 Commeree Bldg, Kansas City, Mo.
Walter R. Robb, 2405 Tolegraph Ave., Berkoloy, Cal.
Canadian Works, Amherst, N. S.

The "No-Inserted-Parts" Union

- No engineer should tolerate a leaky union on any line. Most engineers will not, for information about the "Kowanee" Union is always ready for even the casual glance.
I There are numerous instances of leaking unions in plants throughout the country-perhaps you have some of them.
9 "Kewanee" Union advantages require little technical knowledge to understand, and at first reading appeal to the practical man:
(a) Brass to iron thread connection-No corrosion.
(b) Brass to iron ball joint seat-No gakket.
(c) 125 pounds compressed air test under water-No defective fittings.
(d) Solid, three piece construction-No inserted parts.
(e) Easily disconnected-No force required.

I This sounds good to the engineer troubled with leaky unions, and be frequently orders a few at once for trial. After the trial there is no other union for him than the "Kowanee" Union.

- There is absolutely no reason for leaky unions-no engineer needs to have such a nuisance.
I Just follow the lead of engincers who read about "Kewanee" Unions, try a few, then you will use no other than the "Kewanee" Union.
If The new booklet, "The Whole Kewanee Family," is interesting. It's free, but you must ask for it!

National Tube Company

Detail Drawings

of a
Four Furnace Single End Scotch Boiler
together with
Diagrammatic Pipe and Auxiliary Plan
used in connection with a
1250 H.P. TRIPLE EXPANSION ENGINE
WITH KEY
Namiag and Describing Every Part of the Eagiac.

Price, $\$ 1.00$ Postpald

InTERNATIONAL MARINE ENGineering
17 Battery Place, NEW YORK CITY
31 Chriatopher Street, Fiesbury Squarv, London, E. C.

in the business center

It Will Pay You to be Represented

. . The Exhibition Department of the BOURSE presents an opportunity to Marine Engine and Boat Builders to maintain a permanent exhibit in the business center of the city, where they will come in contact with Buyers from all over the country. Address . . .

THE BOURSE, Phila.

WE MAKE THE BEST

DUVAL METALLIC PACKIIG

is a woven packing made of fine white alloy wire accurately plaited in square form. It is especially adapted for superheated steam and high pressure steam and water.

Easily first among packings, as are
FOSTER SUPERHEATERS among superheaters.

POWER SPECIALTY COMPANY mew york boston philadellphia san francisco

Do you have trouble with your Packing?

If so, write our factory explaining conditions and get the opinion of an experienced man who has spent years of study along this particular line of business. No charge for his service.

We manufacture the highest grade of packing, and prices are surprisingly low. Send us a trial order and be convinced we can save you money.

Grandall Packing Company

Factory and General Offices, PALMYRA, N. Y.

THE BABCOCK \& WILCOX CO new roan amp ionoon Forged Steel Water Tube Marine Boilers and Marine Superheaters
 STRAIGHT TUBES
 accessible
 EXPANDED JOINTS
 leading Water Tube Boiler for Naval and Merchant Marine Service DURAELE
 works:
 BAYONNE, NEW JERBEY, U 8. a
 RENPREW, SCOTLANA
 PAR S. PRANC:
 ostanauser cenmant

U. S. S. MAYFLOWER

MOSHER WATER TUBE BOILERS

THE SIMPLEST AND MOST COM. PACT BOILER MADE
More than 100,000 Horsepower installed in U. S. Naval Vessels alone

MOSHER WATER TUBE BOILER CO.
 30 Church Street, New Yerk
 E. P. JAWISON a CO, Facile Coan Repronetation
 Saattis Teseme Spakens Pertiand San Franelaes Vanesuvar. B. C.

STEAMER "IROOUOIS" which made the trip from Lake Superior to Paget Sound via Strait of Migrellen and reported ready for aervice, and has continued that aervice for abx yearis aince. Her siater ship made the aame trip sbout a month later and is ctill siving good service on the samerua. The Steamship Company owning both of the above boate bulle another one called the "Kulshan ${ }^{4 *}$ about a year meo and inatalled Roberis Boilers which are even a greater succese than those la the boets first acentioned.

Ask the man who has used all the other types of Water Tube Boilers, as well as the "Roberts," and be guided by his advice.

He knows.
The man who has only used one type does not know, but may be prejudiced.
If there is no one among your acquaintances who has used more than one type to whom you can apply for advice, write us for a list of customers who have used many makes, including the "Roberts," to whom we will be glad to refer you.

AUTOMATIC
THE WORLD'S STANDARD BOILER FEEDER FOR OVER A QUARTER OF A CENTURY WRITE FOR CATALOG AND SAMPLE COPY OF OUR BOPAGE MAGAZINE
PENBERTHY INJECTOR COMPANY, Detroit, Mich., U. S. A.

POSITIVE AND RAPID BOILER CIRCULATION

Maintained by our System in either Scotch or Locomotive Types of Boilers For particulars address
ROSS-SCHOFIELD COMPANY,
39 Cortlandt Street, Now York

The Charles Ward Engineering Works CHARLESTON, WVEST VIRGINIA

WATER TUBE BOILERS, MARINE ENGINES LIGHT DRAFT RIVER STEAMERS YACHTS

Steel Boats for Export, "Knock-Down" or Sectional

WE BUILD-light-compact-durable-accessible-sectional-BOILERS-for all marine purposes. II Our new catalogue describes them, tells who has them, shows cuts of more than 280 vessels we have equipped. Let us mall you one ALMY WATER-TUBE BOILER CO. PROVIDENCE, R. I.

McNAB \& HARLIN MANUFACTURING COMPANY
WE wish to call the attention of buyers of Valves for Marine Work, to the HIGH CLASS JENKINS DISC VALVES
we manufacture. They are second to none on the market to-day. Every valve is thoroughly tested, is made of the best of materials by skilled mechanics with the latest up-to-date machinery.

We carry a large stock of all sizes, Globe, Angle and Check types, thus enabling us to make prompt shipments of all orders.

Prices and samples submitted upon request.
50-56 John Street : :
Factory, PatERSON, N. J.
New York

Engines

Propeller Wheels
h.G. TROUTC0. Kinglron

Woriks
226 Ohio Street, BUFYALO. N. \mathbf{Y}.

Tho ALLEN DENSE-AIR ICE MACHINE

contains no chemicals, only air at easy pressure (65 lbs.), in pipes. It is placed in the engine room and attended by the regular engineers, while meat room and ice-making box and galley and pantry refrigerators are at their usual places.

Steam Yachts

Electra, Nourmahal, May, Josephine, Virginia, Thespia, Dorothea, Felicia, Aloha, Attaquin, Nydia, Alcedo, Enterprise, Alvena, Margaret, Kenawha, Pantooset, Rheclair, Aztec, Lorena, Constant, Riviera, Czarina, Rambler, Apache, Dreamer, Emrose, Sultana, Visitor II.
More than 250 are in active service on U. S. and foreign men-ofwar, steam yachts and merchant steamers in the tropics.

H. B. ROELKER 41 Maidon Lane, New York

BALDT STOCKLESS ANOAR Made of the finest qual- ity of open hearth steel, better than forgings. Used extensively by the United States Navy on their battleships and cruisers.
 BALDT ANCHOR CO., chESTER, PA.

SELIG SOMMEMTHAL CO.
35 Queen Victoria Street London, Eng.

STOW MFG. CO., $\xlongequal{\text { BNGHAMTON, N. . } .}$ Extabllished 1875
 TNVENTORS AND LAROEST MFRA IN THE WORLD OF THE

Our Comblation of FLEXIBLE SHAFT and MULTISPEED ELECTRIC MOTOR is almost Indispensabie on any vessel having an Electric Current, for portable DRILLING, TAPPING, REAMING, etc. It can be eaally transported to any part of the same, and repairs made in a fraction of the time required by hand. Correspondence soltctited

WRITE FOR OATALOQUE AND PRIOE LIST

ALLAN'S PATENT

 couprealesve WOOD WORKER

IS BEST because
Simplest, Handiest, and most powerful. Patterns, and general work.
Grooving at any angle, half-lapping, oth.

Saves $80-90 \%$ cont and labour.

Aceurate
and
Finished
Work.

> OUR NEW MAN SPEED
> REDUCE Hack Saw Machine COSTS .

> Cuts 15 in. Square Steel Bars in $1 \frac{7}{8}$ minutes.
> Capacity $7 \frac{1}{3} \mathrm{in} . \times 6 \frac{1}{2} \mathrm{In}$. Auto. Stop. Auto. Pump Auto Trip.
> - ALL HANDLES IN FRONT. 6 OTHER PATTERNS MADE.
> PERKIN \& Co., Ltd., Whitehall Works, LEEDS, ENGLANB.

NOW READY \qquad 3rd EDITION

'THE MARINE STEAM TURBINE’ By J. W. SOTHERN, M.I.ES.

Centalna compreheneive Illuetrated deeeriptions of the Parsens and Curils type Msrins Turbines, together with censtruelive and general practical dafia.
z00 ILLUSTRATIONS
Price $12 / 6$ net.

7th Eaition.

"VERBAL" NOTES \& SKETCHES for marine enginetrs.
640 Pages.
515 Illeatrations.
By J. W. SOTHFRN. M I.E: S. A whther, "Marine Imiducatop Cards," alc.

Acknowledged to be the most practical bork publishod on V'erlal and Filementary Questions; is alvo invaluable as a keneral refecence work for Marnue Engineers of all grades.

CALLENDER'S BITUMINOUS SOLUTION A natural mineral rubber palnt. Unaffected by sea water. Best for Yachts. Stands vibration and exposure to sea spray. Protects steel of ships, piers, pontoons, etc. GEORGE M. CALLENDER \& CO., LTD., 25, Victorla St., Westminster, S.W. Talegrame: "guarelagle LOMDON "	
agencies at all. THE PRINCIPAL PORTS AT HOME AND ABROAD.	CONTRACTORS TO the admiralty, h.M. WAR OFFICE, H.M. OFFICE OF WORKS.

SO EASILY APPLIED! SO EXACTLY ACCURATE!

We are successful in selling S.E.A. rings in all countries simply because S.E.A. rings are successful in fulfilling labour saving-friction saving rod saving-and packing saving claims! There's logic as well as good mechanics at the back of this state of affairs!

We specialise in rod and ram packings. Isn't it worth your while to utilise our services? We find it pays us to go to specialists and not buy old-fashioned goods or devices. That's our policy, and it leads to economical results.

have made profits and effected savings from waste friction for other firms-why not accept our offer to make a profit for you? We can do it-that is our special study-and also a tributary reason why the sale of S.E.A. rings increases.

Send trial order for a set of S.E.A. rings to exactly fit your rod. RONALD TRIST \mathcal{E} Co., Ltd.

Coronation House, 4 Lloyd's Avenue, E.C. And 62, Robertson Street, Glasgow.

TLLCenas: "VELO, LYEAPOOL"

Aspinall's patent "Marine" Engine Governor

 PREVENTS RAOING AND BROKEN SHAFTS.Adopted by all the Leading Limes, indinding-
P. © O. Co. Padfos. M, Oo. Compasnle Genopale Austrian Loyd.
 Cunard. White star. HamburE-Amarioan. North German Lloyd. Compasnie cenorsie Italiana. Southern Paalina Co. Nippon Yuean Kaieha,

Fitted to over 2,000 Modern Steamers.
inoluding the NEW WHITE STAR LEVIATHANE-
"OLYMPIC" and "TITANIC."
FOR PARTICULARS APPL: TO
GOVERNOR CO., 7, Strand Street, LIVERPOOL. 313. st. Vincent St.; NEWCASTLE-ON-TYNE-H. M. WILsON. Bettic Chambera, Quayside L.ONDON and SOUTHAMPTON-C. CLIFFORDE PERKINS ILater \& Perkine;, $\dot{6}$, Buiter St., Londen, E.C.

Third Edition of
 Practical Marine Engineering

with additional chapters on
Internal Combustion Engines
Steam Turbines Oil Fuels Marine Producer Gas Plants

This book is written for

Marine Engineers and Students

I^{T}is devoted exclusively to the practical side of Marine Engineering and is especially intended for operative engineers and students of the subject generally, and particularly for those who are preparing for examinations for Marine Engincers' licenses for any and all grades.

 thet is in much plim, smplic langunge that ans, man with an arctinary edication con eavily undertand in. Price, $\$ 5.00$ (21/-) FOR SALE BY
INTERNATIONAL MARINE ENGINEERING 17 Battery Plece, New York $\quad 31$ Christopher St, Fisibury Square, E. Cn, Loedon

L. SMIT 8^{8} Co's.

 SLEEPDIENST, Ltd. (Tug and Salvage Company),Telegrean:

Towage of Dredgers, Docks, Ships, etc., to any port of the world.

11 OCEAMGOIMG TUGS RANGIMG FROM 1,500 TO 400 I.K.P.

Patent
"Herzamith" Biaocwiars.
 CRAYFORD, LONDON. ЕвтавLIsнео 1845.

Cables and Telegrams Polanis, Losmon. Heath, Chatyond.	Codes: ABC Bin Ed. " Hezzanith.
catalogues free	plication.

" Hezzazich" mark I.
Patent Bimencte:
" Hezzantit" Marli II.
Compasset.

Sianacles A Compaswen of every description.

"' Mineria"
Atmesplieric Soneding Machise.
Please specify "HEZZANITH" Instmuments in Outfits and Replacements.

DREDGING PLANT,

 FLOATING CRANES, COAL BUNKERING VESSELS.

Apply to ...
WERF GUSTO
Firma A. F. Smulders, SCHIEDAM (Holuavo.)

Isherwood System of Ship Construction

MERNE
INGREASED STRENGTH
INGREASED CAPACITY FOR BALE GOODS
INGREASED D.W. CARRYING CAPACITY
IMPROVED VENTILATION
REDUCED COST OF MAINTENANGE
REDUGED VIBRATION.

SUITABLE FOR ALL TYPES OF VESSELS.

RREUTRES TO DATE-
9 VESSELS, REPRESENTING ABOUT 3B1,00O GROSS REGISTER TONS, BUILT OR BUILDING
BY 32 SHIPBUILDERS FOR 63 SHIPOWNERS.

ZETIRND EUIKDINGE, NIDDLEBEROUGIM, ENGEAND.
Or to S. C. CHAMBERS \& CO., 3, King Street, LIVERPOOL, ENG.

Motor Boats

By Dr. W. F. DURAND

THIS is the only book which covers the subject of motor boats from a scientific and engineering point of view. It is written in such simple language that any man who knows anything about motor boats can understand every word of it.

It deals with the following subjects:
Eeneral Protilem of the motop Boat
The Linternal Combustion Engine. Gensral Princloiet
The Internal Combustion Enelse. Applicallion to Mariae servios
Carturelion and lonition
The Desion of Form
Practical Boal Condiruction
Layline Down ond Ansembling
Power and Speed
Propeller Deston
Endurance and Radive of Aetion
Froubles, and Hew to Locate Them
Aacing Rutes and Itme Allowance
APPENDIX
Use of Alcohol as Fuet for Gas Engines
Kerosene Engines as Developed Up to Date
210 Pages, $6 \times 81 / 2$ Iaches. Price, $\$ 150.6 / 5$
Internalional Marine Engineering
Christopher St., Finsbury Sq. Whitehall Bldg, 17 Battery Pl. LONDON, E. C. NEW YORK CITY

"STANDARD" MOTORS
 Tue Petrolis No, 2. Owned by Standard On Co.

For Commercial Service
Are now being used in Coastwise Schooners, Fishing Schooners, Tow Boats, Oyster Dredge Boats, Freight and Passenger Service.
Built in sizes from 12 to $2,000 \mathrm{H}$. P.
We invite correspondence as to your requirements; are always pleased to submit estimates, etc.

THE STANDARD MOTOR CONSTRUCTION CO.
No. 180 wHITON ST., JERSEY CITY, N. J., V. S. A.

MIETZ \& WEISS MARINE OIL ENGINES 2 to 600 H. P.

Simplest, Safést and Most Reliable and Economical Marine Engines on the Market
Use Kerosene, Fuel Oil, Crude Oil and Alcohol $150,000 \mathrm{H} . \mathrm{P}$. IN OPERATION
OIL ENGINES FOR STATIONARY POWER PURPOSES SEND FOR CATALOGUE

A. MIETZ,
130 Mott Street, New York

Announcement

The new bufpalo book is now on the press.

It contains something of interest to you.

Write for it at once, otherwise you may neglect it.

We want you to have this book because it will make you long to be a buffalo owner.

You need it even though you have no immediate intention of buying an engize.

It tells all about the new models, and the refinements of design which mark the 1912 burfalos.

It tells the whole story of the most efficient engines on earth.
"The Engine of Contant Servire"
BUFFALO GASOLENE MOTOR CO.
1209-21 Nlagara St. - Buffalo, N. Y.

PATENT

That Inventlon
For information how to do it inquire of Delbert II. Decker, 900 F St., Washington, D. C. 24 years' experience in Patent and Trade Maker Matters.

THE BRIDGEPORT

New York: Whtehall Belliling, 17 Battery Piace

The Proneller is the Most Important Part of Your Boat THE BEST IS NONE TOO GOOD

 adjustable pitch and removable blade propellers WILLIAM T. DONNELLY, 17 Battery Place, New York WRITE FOR CATALOGUE
Only Dry Dock on Atlantic Coast south or mewport niws 4800 TONS LIFTING CAPACITY
 Two Marine Raliwaye-One 1200 Tonm, One soo Tons
 All kiades of Repairs done with deapetelt Conestent morkind force of 300 mell

MERRILL-STEVENS COMPANY, Jacksonvile, Fla.

Newport News Shipbuilding \& Dry Dock Co. WORKS AT NEWPORT NEWS, VA. (ou Mampron Roadn)

Marine Work of Any Magnitude

The Moran Company's large shipbuilding plant is devoted to the design, construction and repair of all classes of steel ships, barges and boats.

> THE MORAN COMPANY SEATTLE, U. S. A.

FORE RIVER Shipbuilding Co. Established 1884. Incorporated $\mathbf{1 9 0 4}$ Shipbuilders and Engineers War and Merchant Vessels Curtis Marine Turbines Holland Submarine Boats

Office and Works: QUINCY, MASS., U.S.A.

TIETJEN \& LANG DRY DOCK CO. HOBOKEN, N. J.

Nine Dry Docks: 600, 800, 1,000, 1,200, 1,400, 1,800, 2,000, 6,000, 10,000 Tons
General Repairs on Wooden and Iron Vessels
17th STREET \& PARK AVENUE
Telephone 700 Hoboken
HOBOKEN, N. J.

Bath Iron Works LIMITED
 BATH, MAINE
 Shipbuilders and Engineers

LICENSEE FOR
Parsons Marine Turbines Normand Express Water Tube Boilers

Partioular attontion given to high apeed reguirements Estimates furnished

Turaine Stramaitif Yals and Harvazo
W. \& A. FLETCHER CO.

PATEON'S MARINE TURBINICS
Marine Engines, Bollers and Machinery of all Kinda Contractors for Vemels Complete. HOBOKEN, N. J.

"Morse"

"Morse

Twist Drills and Tools
Battleship Engines require high class tools in their construction. "Morse" Tools are in every way adequate.

Morse Twist Drill and Machine Co. new bedford, mass.

ITOEY
 MARINE ENGINE DESIGN
 Includiag the Design of Turning and Reversing Eagines By E. M. BRAGG
 Assistant Prolessor of Marine Enginerring and Noval Architedurre, Univerrily of Michigan CONTENTS

 REERDYThe Heat Engine. Calculations for Cylinder Diameters and Stroke. Strength of Naterials and Factors of Safety. Cylinders. Pistons. Cylinder Covers. Calculations for Cylinders and Pistons. Maximum Load on Reciprocating Parts. Piston Rods. Allowable Pressyre on Bearing Surfaces. Crosshend Blocks, Stipper. Calculations for Piston Rod, Crossman and Slipper. Connecting Rod. Crank Shaft Formula. Lloyds' Rules for Shafting. Burcau Veritas Rules for Shafting. American Bureau of Shipping Rules for Shafting. Crank Shaft Proportions. Maximum Loads on Main Bearing. Engine Bed. Main Bearing Caps. Engine Frame. Calculations for Crank Shaft and Main Bearings. Steam Speeds and Valve Diagrams. Location of Center Links of Cylinders. Calculations for Steam Speeds, Valves, Receiver Pipes and Distance between Cylinder Centers. Piston Valve, Slide Valves and Valve Gear. Calculations for Drag Rods, Eccentric Rods, Links, Eccentrics, Eccentric Straps and Reverse Shafts, Turning Engine Design. Reversing Engine Design.

175 Pages. 4X $\mathbf{x}^{\mathbf{9}} 8$. Itlustrated. Cloth, NET, $\mathbf{\$ 2 . 0 0}$

Cold Storage, Heating and Ventilating on Board Ship

By S. F. WALKER CONTENTS

Cold Stonncr. The Cold Storage Problem. Methods of Cooling the Cold Chambers. Methods of Cooling the Air. Leading the Cooled Air into the Cold Chambers. How the Low Temperature of the Brine or Refrigerant is Produced. The Condenser. Lubrication and Stuffing Boxes of Compressors. Absorption Machines. Circulating Pumps. How Refrigerating Apparatus is Measured. Power Required for Refrigerating Apparalus. Cooling Water. Form of Apparatus for Use on Board Ship. Other Applications of Refrigeration on Board Ship. Cooling Magazines and 'Officers' and Mens Quarters. Faults. Heativa. Special Requirenients on Board Ship. Difficulties. Methods of Heating Available. Hot Water, Steam, Air, Combined Air and Steam Radiator. The Thermotank System. The System Applied to the S.S. Lusitanis. Heating by Electricity. Regulating Heal Delivered by Electric Heaters. Vkntilating. Ventilation by Heating and Cooling. Ventilation of Laboratories and Cattle Spaces. Fans, Size and Power Required. Testing Air Current. Estimating Heat Required. Apparatus Estimated to be Required for Heating the Different Saloons, State Cabins, etc. Cost of Furnishing Heat Required.

275 Pages. $51 / 2 \times 8$. Hlustrated. Cloth, NET, $\$ 2.00$

> D. VAN NOSTRAND COMPANY, Publishers and Booksellers 23 MURRAY and 27 WARREN STREETS

Third Edition

of

PRACTICAL MARINE ENGINEERING

Contains additional chapters on
Oil Fuel
Steam Turbines
Internal Combustion Engines
Marine Producer Gas Plants

This book is written for

MARINE ENGINEERS AND STUDENTS

I^{T}T is devoted exclusively to the practical side of Marine Engineering and is especially intended for engineers and students, and for those who are preparing for examinations for Marine Engineers' licenses for all grades.

PART I.-Covers the practical side of the subject, giving a great deal of detail regarding marine engines and all that appertains to them, together with much information regarding auxiliaries.

PART II.-Covers the general subject of calculations for marine engineers, and furnishes assistance in mathematics to those who may require such aid.

PART III.-Covers the latest and best practice in Internal Combustion Engines, Steam Turbines, Oil Fuel and Marine Producer Gas Plants.

The book is illustrated with nearly four hundred and fifty diagrams and cuts made especially for the purpose, and showing the most approved practice in the different branches of the subject. The text is in such plain, simple language that any man with an ordinary education can easily understand it.

PRICE, $\$ 5.00$ (21/-)

FOR SALE BY

INTERNATIONAL MARINE ENGINEERING

MARINE ENGINE DESIGN

Including the Design of Turning and Reversing Engines

By E. M. BRAGG

Asalstant Profeasor of Marine Engineering and Naval Architecture, Univeralty of Michigan

CONTENTS

The Heat Engine, Calculations for Cylinder Diameters and Stroke. Strength of Materials and Factors of Safety. Cylinders. Pistons. Cylinder Covers. Calculations for Cylinders and Pistons. Maximum Load on Reciprocating Parts. Piston Rods. Allowable Pressure on Bearing Surfaces. Crosshead Blocks. Slipper. Calculations for Piston Rod, Crossman and Slipper. Connecting Rod. Crank Shaft Formula. IJoyds' Rules for Shafting. Bureau Veritas Rules for Shafting. American Bureau of Shipping Rules for Shafting. Crank Shaft Proportions. Maximum Loads on Main Bearing. Engine Bed. Main Bearing Caps, Engine Frame. Calculations for Crank Shaft and Main Bearings. Steam Speeds and Valve Diagrams. Location of Center Links of Cylinders. Calculations for Steam Speeds, Valves, Receiver Pipes and Distance between Cylinder Centers. Piston Valve, Slide Valves and Valve Gear. Calculations for Drag Rods, Eccentric Rods, Links, Eccentrics, Eccentric Straps and Reverse Shafts. Tuming Engine Design. Reversing Engine Design.
175 Pages. $4 \% \times 7 \%$. Illustrated. Cloth, NET, $\$ 2.00$
FOR SALE BY
Internaional Marine Engineering
Whitehall Btdg. 17 Battery PL. Christophar St. Finsbury Sq. NEW YORK CITY LONDON, E. C.

This will identify our representative Mr. H. N. DINSMORE who is authorized to take subscriptions in any part of the United States and Canada, to collect the money due for new subscriptions and renewals, and to receipt for same in our name. His mail should be sent to 37 West Tremlett Street, Boston, Mass.

International Marine Engineering

U. S. TORPEDO BOAT DESTROYERS

"FANNING"	"STERRETT"
"PERKINS"	"TERRY"
"ROE"	"WALKE"

are each equipped with three-bladed

Metal PROPELLERS

Monel Metal Propellers stand up to the terrific high speeds of Torpedo Boat Destroyers with minimum distortion. They withstand the shocks better than manganese bronze, and retain their polish longer, their finish being similar to pure nickel. Merchant ships as well as naval ships are equipped with Monel Metal propellers. Quotations are made on any size up to $27,000 \mathrm{lbs}$. weight in one piece.
50 Church RUGGLES-COLES ENGINEERING CO. New York Street

General Agents for The Bayonne Casting Co.
 Chicago Office, McCormick Building

BUYERS' DIRECTORY

ACCESSORIES, BOAT-See BOAT ACCESSORIES.
ACCUMULATORS, HYDRAULIC
Niles-Bement-Pond Co.g New York
AIR AND CIRCULATING PUMPS (Combleed).
Davideon, M. T., Co., New Yark.
Wheeler Condenser and Eagineerige Con, Carteret, N. J.
AIR COMPRESSORS.
Independent Pneumatic Tool Ca, Chicago and New York. Norwalk Iron Works, South Norwalk, Cenn.
Alr coolers.
Power Specialty, Ca, New York.
Schuhte \& Körting Co., Philadelphia, Pa.
AIR COUPLINGS.
Independent Pneumatic Tool Ca., Chicago and New York
Independent $\mathrm{P}_{\text {neumat }}$ National Tube Con Pittoburg. Pa.
AIR DRILLS
Pdependeot Pneumatic Tool Co., Chicago and New York.
Wheeler Condenser and Engineering Ca. Carteret, N. J.
aIr HAMMERS-See PNEUMATIC TOOLS.
Alk HoISTS.
Independent Pneumatie Tool Cob, Chicage and New Yurk AIR HOSE

Independent Paeumatic Tool Ca, Chicago and New Yark.
AIR MOTORS.
Independent Pneumatic Tool Co., Chicage and New York.
AIR PUMPS.
Davideon, M, T., Co., New York.
Wheeler Condenser and Engineering Co., Carteret, N. J.
ALARMS-See WATER GAUGES AND ALARMS.
ALCOROL ENGINES.
Mets, A., New York
ALLOYS, VANADIUM.
Ameriean Vanadium Co., Pitaburg, Pa
ALUMINUM CASTINGS.
Lunkenheimer Co. Cincinati, Ohio.
Vanadium Metala Company, Pittsburg. Pa.

ALUMINO VANADIUM.
American Vansdium Con, Pittabarg, $\mathbf{P a}$.
AMMETERS-See ELECTRICAL INSTRUMENTS.
AMMONIA PACKING.
Ferdinand, L. W., a Co., Boaton, Mem.
AMMONIA PROOF HELMETS.
Hayward. S. F.s ${ }^{2}$ Co, New York
ANCHORS.
American Ship Windlass Co., Philadelphia, Pa.
Baldt Anchor Ca , Chester, P2
ANCHOR TRIPPERS
American Ship Windlam Ca., Philadelphia, Pa.
ANTI-FRICTION METAL
Hyde Windlass Ca Bath, Maine.
Katrensteis, Le, Co., New York
Phosphor-Bronie Smelting Co., Philadelphia, Pa.
Kugries Coles Eogineeting Co., New York.
ANTI-RUST COATINGS.
Ferdinand, L. W., \& Co., Bontos, Masa,
APPARATUS (MARINE GLUE MELTING).
Ferdinand, Le W., e Co.s Baston, Mase.
ASBESTOS-See NON-CONDUCTING COVERING; ale see PACKING,
ASBESTOS.
ASBESTOS PACKING-See PACKING, ASBESTOS.
ASH HOISTS.
Chase Machine Co., Clevelasd, Oblo.
Davidson, M. T. Co. New York.

ATTORNEYS-PATENT.
Decker, Delbert H., Waabington, D. C.
AUTOMATIC INJECTORS.
Jankenheimer Ca , Cincinnati, Ohlo.
Pepberthy Injector Co., Detroit, Mich.
aUTOMATIC TOWING MACHINES-See TOWING MACHINES.
automatic water gauges-See water gauges.
BABBITT METAL-See ANTI-FRICTION METAL
BALI BEARINGS-See THRUST BEARINGS.
BARGES-See SHIPBUILDERS.

American Gasaccumulator Company pourn hase Philadelphia v.a.

 Manufacturers of AGA Lighthouse Apparatus (Dalén Patents)

The United Statea Lightbouse Bureau has installed the
AGA SYSTEM
at many of their most important light stations, among which are these well known lights: Scotland Lightship, Frying Pan Shoals Lightship, Cornfield Lightship, Northeast End Lightship, etc.

The New Ambrose Chanael New York Harhor is Highted by
 AGA BUOYS

Other AGA Buoys are established at Nantucket Shoals, Point Judith, Montauk Point, Brigantine Shoals, Winter Quarter Shoals, Fenwick IsLand Shoals, Chesapeake Bay Charleston Harbor, Hetzel Shoals, etc., etc.
AGABEACONS and Buoys are in Use All Over the Werld

BATH TUBS-ENAMELED IRON, PORCELAIN.
Sanda, A. B., \& Son Ca., New'York
BEARINGS-See ANTI-FRICTION METAL; alo THRUST BEARINGS. BELLS.

National Tube Co, Pittsborg, Pa
Vanadium Metals Compeny, Pitaburg. Pa.
BELTING-See RUBEER BELTING.
BENCH TOOLS.
Billinge E Spencer Co., Hartford Conn.
Pratt a Whitney Co., New York.
Starrett, Le Se, Co. Athol, Mass.
Willime it Co., J. H., Brooklyn, N. Y.
BENDING MACHINES, KEEL PLATE OR GARBOARD.
Nilet- Bement Poad Co., Now York
BENDING ROLLS-See ROLLS.
BILGE PUMPS-See PUMPS.
BITTS
American Ship Windlase Co. Philadelphia, Pa.
Hyde Windlase Co., Bath, Maine.
BLACK PRINT PAPER.
Frey, Louis, \& Co., Now York.
BLOWERS.
American Blower Co., Detroit, Mlch.
General Electric Co. Schenectady Treaton, N. J.
Kerr Turbine CO, Welliville, N. Y.
Siroceo Enguneering Co-See American Blower Ca.
Sturtevant Co. B. F.. Hyde Park, Mas.
Terry Steam Turbine Co. Hartiord, Cona.
BLOW-OFF VALVES-See VALVES.
BLOWERS, SOOT-Siee SOOT RLOWERS.
BOAT ACCESSORIES.
Ferdinand, W, Wo., Bonton, Mase.
International Acheson Graphite Ca, Niagara Falla, N. Y.
Welin Davit and Lane a DeGroot Co., Consol., Long Ialand City, N.Y.
BOAT BUILDERS-See LAUNCHES AND YACHTS.
BOAT DAVITS-See DAVITs.
BOAT FITTINGS.
Fordiaand. L W... A Co., Booton, Masa,
Rugries Coles Engineering Co. New York
Welin Davit and Lane a DeGroot Co, Consol., Long Island City, N, Y.

BOATS-See LIFE BOATS; almo LAUNCHES AND YACHTS.
BOILERS-Also mee ENGINE BUILDERS-also SHIP BUILDERS. Almy Water Tube Boiler Coy Providence, R. 1.
Baboock \& Wilcox Co., New York
Bath Iron Works Bath, Maine.
Griscom-Spencer Co., New York,
Hyde Windlase Co., Bafh, Maino:
Kingstord Foundry a Machine Works, Owweso, N. Y.
Moran Co., The Seatrie Wash.
Mooher Water Tube Boiler Ca, Now York
Kobb Engineering Co., South Framingham, Mass.
Rober ta Safety Water Tube Boiler Co, Red Bank, N. J.
BOILER CIRCULATORS.
Ress Schofield Co., New York.
Ross Schotield Co., New York.
Schutte $\&$ KOrting Co., Philadelphia, P2
BOILER COMPOUNDS.
Johns-Manville, H. W., Ca., New York.
BOILER COVERING-See NON-CONDUCTING COVERING.
BOILER FEEDERS-See FEED-WATER REGULATORS.
BOILER-FLUE AND TUBE CLEANERS.
Diamond Fower Specialty Co., Detroit, Mich.
Gritcom-Spencer Cow New York.
Independent Pneumatic Tool Co., Chicago and New York
Jobss-Manville, H. W., Co.9 New York.
BOILER FLUE AND TUBE CUTTERS.
Faeasler, J., Mfg. Co., Moberiy, Mo.
Griscom.Spencer Ca, New York
Independent Preumatic Tool Co., Chicazo and New Yark.
JohntManville. H. W., Co., Now York
BOILER FLUE AND TUBE EXPANDERS.
Faenaler, J., Mfg. Co., Moberly, Ma.
BOILER AND PIPE COVERINGS-See NON-CONDUCTING CUVER-
NG.
BOILER RIVETS-Also see RIVETS.
Champion Rivet Co., Cleveland, Ohio.
BOILER ROOM FITTINGS.
American Blower Co, Detroit, Mick.
Ashton Valve Co. Boston, Mase
Dlamond Power Specialy, Co, Detrolt, Mich.
Griscom-Spencer Co New York
Griscom-Spencer Co, New York
Jotmumon Gage à Valve Co., Boaton, Masa.
Lunkenhelmer Co. Cincinnati, OMia
National Tube Co., Pittshar
Sational Wube Co., Cittsharg, Wa.
Schaeffer \& Budenberi Mig. Co., Brooklyn, N. Y.

WESTON INSTRUMENTS

A. C. SWITCHBOARD
AMMETERS VOLTMETERS
A. C. PORTABLE
AMMETERS
MILLI-AMMETERS VOLTMETERS
D. C. ECLIPSE SWITCHBOARD
\section*{AMMETERS}
MILLI-AMMETERS VOLTMETERS

These new instruments are absolutely Dead-Beat; Extremely Sensitive.
Remarkably Accurate. They require very little power for operation and are very low in price.
Tbe Alternating Current Instruments are practically free from Temperature Error and their indications are practically independent of frequency and also of wave form.
Correspondence regarding these and other of our many types of Electrical Measuring Instruments is solicited.

WESTON ELECTRICAL INSTRUMENT COMPANX

New York Office, 114 Liberty St. SAN FRANCISCO, $683-484$ Mintioa Street

PARIS, FRANCE: E. H. Cadiot, i2 Rwe St, Oeorges

LONDON BRANCH: Audrey Heus Ely Place, Holbora

BOILER STAYBOLTS-See STAYBOLTS.
BOILER TUBES.
National Tube Ca., Pittsbarg, Pa.
BOILER TUBE CUTTERS-Se BOILER FLUE AND TUBE CUTTERS
BOILER TUAE RETARDERS.
Griscom-Spencer Ca, New York
BOLTS AND NUTS,
National Tube Co., Pittoburg, Pa.
BOOKS.
Van Noatrand Co., D., New York.
BORING BARS-See CYLINDER BOKING BARS.
BORING MACHINES-METAL WORKING.
Nites-Bement-Pond Co., New York.
BORING MACHINES-WOOD.
Independent Poeumatic Tool Co. Claicage aed New York.
GORING AND TURNING MILLS.
Niles-Hement-Poad Co. New York.
BRASS AND COPPER-Also see YELLOW METAL; slso MUNTZ
METAL
Rugglet-Calea Engineering Ca_{1} New York.
Vanadium
Vanedium Metals Company, Pittsborg, Pa.
BRASS CASTINGS.
Griscom-Spencer Ca New York
Hyde Wiodlase Co., Bath, Maine,
Vanadium Metals Company. Pitteourg, Pa.
BRASS FITTINGS.
Lunkenheimer Co. Cincinnati, Ohia,
MaNab Harlin INfe Co., New York
Rugsies-Coles Engineering Co., New York.
BRAZING MATERIALS.
Smooth-Oa Mfi. Co., Jerbey City, N. J.
BRONZE.
Lunkenheimer Ca. Cincionati, Ohio.
Phosphor-Bronte Smeltiog Co.. Philadelpbis, Pa.
Rugstes-Colea Engineering Co., New York.
BRONZE CASTINGS-See CASTINGS, BRONZE.
aRONZEVANADIUM.
American Vanadium Co. Pittobure Pa
Vanadium Netals Co., Pittuburg. Ps.

BUOYS.
Amerlean Gasaccumulator Co., Philadelphia, Ia.
Sande, A. B., \& Son Co., New Yerk.
BUOYS, LIGHT-Sce LIGHT BUOYS.
BUOYS, RING.
Ferdinand, L. W., a Co., Bostoo, Masa.
BURNERS, FUEL OIL-See FUEL OIL BURNERS.
BUSHINGS.
National Tube Ca, Pittsburg, Pa.
BUTTERFLY VALVES-See VALVES.
BY-PASS VALVES-See VALVES.
CABLEWAYS-See MARINE CABLEWAYS.
CALORIMETERS-SEPARATING, THROTTLING, COAL
Schaeffer \& Budenherg Mfg. Co., Brooklyo, N. Y.
Schutte \& Körting Co, Philadeiphin
Schutte \& Körting Ca, Philadelphia, Pa.
CANOE GLUE
Ferdioand, L. W., \& Co., Boston, Mass.
CANVAS-FOR LIGHTER COVERS, HATCII COVERS, TAR-
PAULINS.
Bunker, E. A., New York,
CAPSTANS—STEAM-ELECTRIC-HAND.
American Ship Wimdlass Coy Phaladelphia, Pa
Hyde Windlass Co., Bath, Maioe.
CARGO BLOCKS-See BLOCKS.
CASTINGS-BRONZE-Also wee STEEL CASTINGS.
Griscom.Spencer Co., New York.
Hyde Windlass Co. Heth, Maine,
Lankenbermer Ca, Cincinnati, Ohio.
Phosphor-Bromze Smeltung Co, Philidelplia, Pa.
Rugglea Coles Engineering Co., Ne York.
Vanadium Metals Co., Pitsburg. Pa
CAST-IRON VANADIUM.
American Vseadium Co., Pittsburg, Pa .
CAST-STEEL VANADIUM.
American Vanadium Co., Pittiburg, Pa
CEMENT-ASBESTOS
Johns Manville, H. W., Con, New York.
CEMENT-LINOLEUM.
Ferdinand, L. W., \& Co., Boston, Mass.
CENTRIFUGAL PUMPS-See PUMPS.

Fans
For Mechanical Draft and Ship Ventilation have eoormons volumetric capscitien for small space requirements,

Berng small, the cost of inatallation is brought down to the tuinumum.

Ships all over the world are equipped with "Sirocco" Fans. Write fof "Siruces" Bellesin No. 264 ME
AmERICAN BLOWER COMPANY DETROIT. MICH
U. S. A.

CHAIN PIPE WRENCHES-See WRENCHES.
CIIAIN STOPPERS.
American Ship Windlases Con, Philadelphia, Pa.
CHANDLERY STORES
Ferdinand, L. Wra Ca , Boston, Mata
Griscom-Spencer Co., New York
CHECK VALVES-See VALVES.
CHRONOMETERS-See CLOCKS.
CHOCKS.
Arnerican Shis Windlass Co., Philadelphia, Pa.
CHUCKS.
Merse Twist Drill \& Machine Co., New Bedford, Masa.
CIRCULATING PUMPS-See PUMPS,
CIRCULATORS.
Rom Schofield Ca. New York.
CLASSIFICATION ASSOCIATION.
American Bureau of Shipping. New York
CLOCKS.
Ashton Valve Co., Boston, Mass.
CLOTH-FOR LIGHTER COVERS. HATCH COVERS AND TARPAULINS.

Bunker, E. A., New York.
COATINGS, ANTI-RUST-See ANTI-RUST COATINGS.
COCKS-See GAUGE COCKS.
COAL HANDLING MACHINERY.
Lidgerwood Mf. Co. New York.
COLLECTORS-PNEUMATIC
Startevant Co., B. F., Hyde Park, Mas.
COMPANION FLANGES,
Lunkenbeimer Co., Cincinaati, Ohio.
COMPOUNDS-See BOILER COMPOUNDS.
CONDEXSERS.
Davideon, M. T., Co. New York.
Griscom-Spracer Corg, New York
il herte ofer Kdorsung Co. Plutadelphia, Pa.
Wheeler Condenser and fnyinering Co., Carteret. N. J.
Williamson Bros. Co., Philadelpha, Pa.
CONSULTING ENGINEERS-See ENGINEERS-Alao PROFESSIONAL CARDS.

CONVEYING MACHINERY.
Lidgerwood Mfg. Co- New York
Sturievant Co., B. Fs, Ilyde Park, Masa.
COOLERS, AIR-See AIR COOLERS,
COOLERS FOR OIL *
Schutte á Körturg Co., I'hiladelphas, Pa.
COPPER-See BRASS AND COPPER.
CORDAGE_Also see ROPE and WIRE ROPE-Also TWINE
Columbuan Kope Co., Auburn, N. Y.
Durable Wire Rope Co., Boston, Mase.
Plymouth Cordage Co, North Plymouth, Masa
CORK CEMENT, FENDERS, JACKETS, RINGS.
Armatrong Cork Co., Pittsaurg, Pa,
Ferdinand, L. W.s. \& Co., Botion, Mase.
CORRUGATED FURNACES.
Continental Iron Works, Brooklgn, N. Y.
COTTON DUCK-See CIIANDLERY STORES.
COTTON RUBBER-LINED HOSE-See HOSE.
COUNTERS-See REVOLUTION COUNTERS.
COVERING, STEAM-See NON-CONDUCTING COVERING.
CRANES.
Nileo-Bemeat-Pond Co., New York.
Welin Davit nad Lane 2 DeGroot Ca, Consol., Long Island City, N.Y.
Williamsos Broe. Co., Philadelphia, Pa.
CRANK SHAFTS-See FORGINGS.
CUPROVANADIUM.
American Vanadium Co., Pittsburg, Pa.
CUTTERS.
Mrat Twist DriII \& Machine Co., New Bedford, Mats,
Pratt Whitney Co. New Yurk.
CYLINDER BORING BARS.
Kiles-Bement-Pond Co., New York.
CYLINDER RELIEF VALVES-See VALVES.
CYLINDERS FOR COMPRESSED AIR, GAS, ETC.
National Tube Co., Pittsburg, Pa.
CYLINDERS, VANADIUM.
American Vanadium Co., Pittsborg. Pa.

DAVITS.

Wella Davit and Lane $\frac{1}{2}$ DeGroot Co, Consol., Long Ialand City, N.Y. DECK HOISTS-See HOISTING ENGINES.

DECK PLATES.
Sands, A. B. ${ }^{\text {an }}$ Son Co., New York.
DECK PUMPS-See PUMPS.
DIAPHRAGM PUMPS-See PUMPS.
Hyde Windlaso Ca., Bath, Maine.
DIES.
Morse Twist Drill a Machine Co, New Bedford, Mass.
Pratt a Whitaey Cong New York.
DIRECT-CONNECTED SETS-See ELECTRICAL PLANTS,
DISENGAGING GEARS.
Welin Davit and Line \& DeGroot Ca, Consol., Long Istand City, N.Y.
DISTILLERS-See EVAPORATORS.
DIVING APPARATUS.
Morse, Andrew J., \& Soa, Inc., Boaton, Mase.
DRAFT, MECHANICAL-See MECHANICAL DRAFT.
DRAIN VALVES-See VALVES.
DRAWING PAPER.
Frey, Lous, \& Co., New York
DREDGING MACHINERY.
Williamson Brok Co, Pbiladelphia, Pa.
DRILLING MACHINES, VERTICAL HORIZONTAL AND RADIAL, Niles Bement. Pond Co.- New York
Pratt \& Whitney Co., New York.
DRILIS
Morse Twist Drill \& Machiae Co., New Bedford, Mase.
Pratt \& Whitacy Ca, New York.
DRILLS, ELECTRIC-See ELECTRIC DRILLS.
DRILLS, PNEUMATIC-See PNEUMATIC TOOLS-Also AIR DRILLS.
DRILLS, PORTABLE-See PORTABLE DRILLS.
DROP FORGINGS-EYE BOLTS, HOOKS, ROPE SOCKETS,

Williams a Co., J. H., Broeklyn, N. Y.
DROP HAMMERS.
Billings is Spencer Co., Hartiod, Ca.
Bilings En Speneer Co., Hartiod Co
DRY DOCKS AND MARINE RAILWAYS.
Merrill-Stevens Co, Jacksonville Fia.
Moran Co, The Seattie, Wash,
Newport Newn Shiphuilding \& Dry Dock Co, Newport News, Va
Tietjen as Lang Dry Dock Co., Hoboken, N, J.
DRYING APPARATUS.
American Blower Co., Detroit, Mich
American Biower Co., Detroib, Mich
DYNAMOS-See ELECTRIC PLANTS; alm STEAM TURBINE DYNAMOS

ECONOMIZERS, FUEL-Se FUEL, ECONOMIZERS.
EJECTORS.
Lunkenheimer Co., Cincinnati, Ohio.
Penberthy Injector Ca, Detroif, Mich.
Schute Ki Körting Co., Phuladelphia, I'a.
ELECTRIC DRILLS.
General Electric Co., Schenectady, N. Y.
Independeat Paeumantic Tool Ca, Chicago and New York.
JohntManville, H. W., Co., New York.

ELECTRIC HEATERS.

Gemeral Electric Co., Scbenectady. N. Y.
Sienplex Electric Ileating Con Cambridgeport, Masa.
ELECTRIC HOISTS.
Ametican Ship Windlass Co., Philadelplia. Pa.
Geaeral Electric Co. Schenectady, N. Y.
Hyde Windlass Cor Bath, Maine,
Lider - Bement-Pond Co. New York.
Willismon Brow Co., Philindelphia, Pa.

Can be used in closer quar: ters than any other air drill made.

SENT ON TRIAL
We pay express charges both ways if not satisfactory. W'rite for catalog

CLOSE QUARTER

 PISTON AIR DRILLS

INDEPENDENT PNEUMATIC TOOL CO. ONICACO NEW YORK PITTSBURG SAN FRANCISCO

THE ONLY STANDARD AMERICAN CLASSIFICATION OF SHIPPING

Has authorized agents in all the Principal Ports of the world to protect the interests of its patrons. Vessels built under its rules or holding certificates of class or seaworthiness in this Record of Shipping will, with their cargoes, insure at the lowest rates.

Office, 66-68 Beaver Street, New York

Try the Nicholson next time you buy

Nicholson File Co.
U.S.A.

Providence, R. I.

ELECTRIC LIGIITS,
General Electric Co., Schenectady, N. Y.
ELECTRIC PLANTS.
General Electric Co, Schenectady, N. Y.
Startevant Co.i, B. F., Hyde Park, Masa.
Terry Stean Turbine Co., Hartford, Coan.
ELECTRICAL FITTINGS AND SUPPLIES-Aloo see ELECTRIC
PLANTS.
General Electric Ca, Sebenectady, N. Y.
Griscom-Spencer Ca. New York
Johot-Maoville, H. W., Co., New York.
ELECTRICAL INSTRUMENTS.
General Electric Co., Scheoectady, N. Y.
Weatoo Electrical Instrument Co., Waverly Park, Newark, N. J
ELEVATORS FREIGHT-See FREIGHT ELEVATORS, also IN. CLINED ELEVATORS.
ENGINE PACKING-See PACKING.
ENGINE-ROOM SUPPLIES-See STEAM SPECIALTIES.
ENGINEERS, CONSULTING AND CONTRACTORS.
Donnelly, W. T., New York.
(inscom Spener Co., New York
Williaman in Bron. Co., r'kiladelphia, Pa
ENGINES FOR AUXILIARIES.
American Blower Co., Detroit, Mich.
American Ship Wiodias Co., Philadelphis, I'a
Chase Maehine Co.; Cleveliod, Trent

Kerr Turbioe Co. Whelleville, S , Y
Marine Irao Wnrike Chicaso, ili, Y
New London Ship \& Engine Co., Groton, Conn.
Sturtevant Co., B, F. Hyde Park, Mam,
Terry Stean Turhise Co.. Hartford, Coon.
Whecler Coodenser and Eogineering Co., Carteret, N. J.
ENGINES, GASOLINE-Se* GASOLINE ENGINES.
ENGINES, HOISTING-See HOISTING ENGINES.
ENGINES, KEROSENE-See KEROSENE ENGINES.
ENGINES-OIL
Husch-bulzer Bros. [hesel Engine Co., St. Lovis, Mo.
New Loodoo Shop \& Engine Co., Groton, Cona.
ENGINES-PROPELLING.
Bath Iron Works, Bath, Maine.
Busch-Sulzer Hros. Diesel Engioe Co., St. Louis, Ma.
Kiogsford Foundry \& Machine Worka, Oswego N. Y.
Marine Iron, Worke, Chicago, 111.
Miets. A.. New York Ship of Fingine Co., Groton. Conn.
Parsons Marine Stearn Turbine Co., New York.

Sheriff, Mfg. Co., Milwaukee, Wis.
Treat, H. G., Co, Heflalo, N. Y.
Ward, Chas., Eogineering Works, Charleston, W. Va.
ENGINE REGISTERS
Schaeffer \& Budenberg Mig. Co., Brooklyn, N, Y.
ENGINE-ROOM CLOCKS-See CLOCKS.
ESCALATORS.
Otin Elevator Co, New York
EVAPORATORS.
Davidsoo, M. T., Co., New York
Sriacom \& peocer Co. Cow York.
Wheeler Coodenser and Engineering Co., Carteret, N. J.
Willismson Bros. Co., Philadelphia, Ps.
EXCESS PUMP GOVERNORS-See PUMP GOVERNORS.
EXHAUST FANS-See BLOWERS.
EXHAUST HEADS.
Sturtevant Co., B. F.. Hyde Park, Mass,
EXPANDERS-See BOILER FLUE AND TU日E EXPANDERS.
EXPANSION IOINTS.
Griscoms pencer Co., New York.
Power Specialty Co.s New York.
FANS-See BLOWERS.
FEED. CHECK VAlves-See Valves.
FEED-WATER HEATERS AND PURIFIERS.
Griscom-Spencer Ca, New York.
Schutte \& Korting Co. Phladelphia, Pa. Carteret, N. J.
Williamson Bros. Co., Philadelphia, Pa .
FEED-WATER REGULATORS,
Jerauson Gage \& Valve Co., Boston, Mase.
FERROVANADIUM.
American Vanadium Co., Pittahurg. Pa.
FERRY BOAT LAMPS-See LAMPS.
FILES.
Niebolson File Co., Providence, R. I.
FILTERS.
Schutte $\$$ KJrting Co., Philadelphia, Pa.
FIRE DEPARTMENT SUPPLIES.
Hayward, S. F., 年 Co. New York.
Morse, Andrew J., \& Soo, Inc, Boston, Mase.
FIRE EXTINGUISHERS.
Hayward S. F., * Co., New York.
Morse, Aedrew J., Son, loc., Boston, Mas

FIRE HOSE-See HOSE.
FIREPROOF CONSTRUCTION.
Jobas-Masvilie, H. W, Co., New York
MREPROOF LUMBER-See LUMBER, FIREPROOF.
FIRE PUMPS-See PUMPS.
FLANGES.
Dart E M., Mfa. Co., Providence, R. 1.
Lunkenheimer Coor Cincinnati, Ohio.
McNsb ${ }^{\text {a }}$ Harlia Mafin. Co., Nem York.
National Tube Co., Pittaburg. Pa.
FLANGING PRESSES.
Nilet-Bement-Pond Co , New York.
Watson-Stillman Co., New York
FLEXIBLE SHAPTING.
Stow Mig. Co., Binghamton, N. Y.
FLOATING DRY DOCKS-See DRY DOCKS.
flue cleaners-See boiler flue cleaners.
FLUE CUTTERS-See BOILER FLUE AND TUBE CUTTERS.
FORCED DRAFT-See also BLOWERS.
American Blower Ca, and Siroceo Engineering Co., Detroit, Mich
De Laval Stean Tarbine Ca, Trentons N. J.

FORGES
Sturtevant Cor, B. Fr, Hyde Park, Mase.
FORGINGS BRONZE-See almo DROP FORGINGS.
Erie Porge Co.. Erie, Fa.
Hyde Windlass Co. Rath, Me.
Vanadium Metala Co., Pitusborg. Pa
FORGINGS OPEN HEARTH STEEL.
Erie Forge Co., Erie, Pa.
FORGINGS, VANADIUM.
American Vanadium Ca, Pitoburg. Pa.
FREIGHT ELEVATORS FOR DOCKS AND WHARVES.
Oiil Elevator Co., New Yark.
FROSTPROOF COVERINGS.
Ferdinand, I. W., is Co., Boston, Mash.
FUEL ECONOMIZERS.
Gritcom-Spencer Co., New York
Power Specialty Ca.. New York,
Sturtevant Co., B. F. Hyde Park, Masa.
FUEL OAL BURNERS.
Schutte a Körling Co., Philadelphia, Pa,
FURNACES-Also see CORRUGATED FURNACES.
Continenlal Iron Works, New York.
FUSIBLE PLUGS,
Griscom-Spencer Ca., New York.
GALLEYS-See RANGES.
GAS BLOWERS AND EXHAUSTERS.
American Blower Co, Detroit, Mich. Scbatte \& KOrting Co. Phijadelphis. Pa.
Storterant Con, B. F., Hyde Parli, Mase.
GASKETS-Aleo see PACKING,
Crasdall Packing Con Palmyra, N. Y.
Griscom.Spencer Co. New Yurk.
Johne-Manville, H. W, Ca., New York.
Katsenstein 鱼 Co, Wor Mork
New York Belting A Packing Ca, Led, New York.
Peerless Rubber Mfg, Co., New York.
Power Specialty Co . New Yurt
Power Specialty Ca. New'Yark,
Smootb Co, Me. Co. Jerseg City, N. J.
GASOLINE ENGINES-Also see LAUNCHES AND YACHTS; aleo
KEROSENE ENGINES-Als OIL ENGINES,
Bridgepert Motor Co, Bridgeport Cona.
Bufislo Gesoline Motor Co, Bofalo,
Mietr, A. New York.
Mietr, A. New York. Motor Construction Co., Jersey City, N. J.
GAS ENGINE SPECIALTIES,
Lunkenhelmer Co., Cincinnati, Ohio.
Powell, Wm., Co., Ciocingati, Ohio.
GAS PRODUCERS-Soe MARINE GAS PRODUCERS.
GATE VALVES-See VALVES.
GAUGE COCES.
Jerguson Gage a Valve Co., Boston, Masa.
ergusonh Gage a Vave Ca., Rosion,
McKab Haflin Mfgeca, New York.
National Tube Co, Pitusbarg. Pa.
Powell, Wm., Co, Clincinnati, Ohio
GAUGES-See STEAM GAUGES.

"Sands" Sanitary Fixtures dISTINGUISEED BY THEIR MANY SUPERIOR QUALITIES

PLATE \$157

The "Arlington" Folding Lavatory, designed for use with pressure sysitem, without revervoir, woodwork highly polished, adjustable French plate glass oval mirror, utility drawer, N. P. copper lining, VitroAdamant deep basin with splash rim, china soap dishes, N. P. brass self-closing faucet, N. P. brass waste coupling, N. P. brass carafe and tumbler holders, N. P. brass trimmings, writing desk drop with pantasote covering.
Polished mahogany, $\mathbf{8 6 0 . 0 0}$
" quartered oak, 55.00
Cut glass carafe and
inmbler
4.00

DIMENSIONS: Height, 66 in.; width over all, 20 in ; depth (closed) 8 in. i depth (open), 23 in .; mirror, $131 \times 191 \mathrm{in}$.

Send for CATALOBUE "EF" showing larke assortment of Marive Plemolog speejaftles, free spon application.
A. B. SANDS \& SON COMPANY
1.89
"Ploseens for Over 60 Years"
Largent Manufactures in the World of MARINE PLUMBING SPECIALTIES
22-24 Vesey St.,
New York, U.S.A.

A TYPICAL KERR TURBO-PUMP FOR BOILER FEEDING

The giz-atage Keer Turbine and two-stage puing chowe ohom feed boiler againat 163 ibs. prewere is the pleat of the Denver (Cai.) lee and Cold Sorruge Ce. Mi. Geo. L Vail, Supt, wrowe abost thia and asother Kerr Turbo-Pomp as fallow:
"The the Kirr Turbo-Pumps heve more than fulfilled our expectations.
"Wr installed these nine mouthy apo and they have beon in abvolutely contimuows operation since that time. runnimg 24 hours a day wilthowt a ceufs worth of repairs and with pracIically wo attowrion
Thy are rimple in con corywar as poed af the day fley fartes.
Thy aro rimple in construction, neat of, apprarancs.
Tell as your seeds and aet the free edvioe of oner anginemers. Ask fer bulletina.
KERR TURBINE COMPANY

Agonla in all large eltios

RAILWAY DRY DOCKS

Designed and Built for

All Classes and Types of Vessels

Timber and Steel Construction

H.I.CRANDALL\& SONCO.

EAST BOSTON, MASS.

GAUGE GLASSES.
Jerguson Gage ${ }^{4}$ Valve Co., Bonton, Masa.
Lunkenbeimer Co. Cincinati, Obia,
McNab \& Harlin Mifg. Co., New York.
Schaeffer \& Budenberg Mfg. Co., Itrooklyn, N. Y.
GEARS, VANADIUM,
American Vanadium Co., Pittoburg, Pa.
GENERATORS-See ELECTRIC PL-ANTS.
GLOBE VALVES-See VALVES.
GLUE-LINOLEUM MARINE SHIP, YACHT, WATEKPKOOF
Ferdinand, L. W., \& Co., Boaton, Mase. GONGS.

National Tube Cone, Pitteburg, Pa.
Vanadium Metals Co, Pitteburg. Pa. GOVERNORS-See PUMP GOVERNORS. GRABS-See DREDGING MACHINES.
GRAPHITE.
Dixon, Jos, Crucible Ca, Jersey Clity, N. J.
International Acticeon Graphite Co., Niakara Falls, N. Y.
GRATE BARS.
Griscom-Spencer Co., New York.
GREASE-See LUBRICANTS.
GREASE CUPS-See LUBMCATORS.
Griscom-Spencer Co. New York.
MeNab \& Harlin Mf. Co, New. York.
GREASE EXTRACTORS.
Griscom-Spencer Co, New York.
GYPSEYS.
Smerican Ship Windlass Ca. Philadelphia, Ia.
Chave Machise Co., Cleveland, Ohio.
HAMMERS, PNEUMATIC-See PNEUMATIC TOOLS. HARDWARE-Se CHANDLERY STORES.
HAWSERS-See WIRE ROPE.
HEATERS-BATH, LAVATORY, SHOWER.
Sands, A. B, a Son Co., New York.
Schutte of Korting Co., rhiladelphia, Pa.
HEATING AND VENTILATING APPARATUS.
American Blower Co., Detroit, Nich.
Schutte at KOrting Co., Thiladelplia, I'a.
Sturtevant Co, B. F., Hyde Park, Mass.
HELMETS, SMOKE AND AMMONIA,
Hayward, S. F., \& Co., New York.

HEMP-See TWINE.
HOISTING ENGINES.
American shap Wundlam Co., Mhiladelphia, Pa.
Chave Machipe Co., Cleveland, Uhio.
Lideerwood Mfk. Co Bath, Maine.
Williamaon Bros. Co., Phaladelphia, Pa.
HOISTS, ELECTRIC-See ELECTRIC HOISTS.
HOSE-See AIR HOSE,
Eureka Fire Howe Mig. Co., New York.
Hayward, S . $\mathrm{F} \rightarrow$ \& Ca. New York
Independent Pneumatie Tool Co., Chicago and New York.
HOSE COUPLING.
Eareka Fire Hone Ca. New York
llayward S. F., A Co, New York
Independent Pneumatic Tool Co., Chieago and New York
National Tube Co Pitusbirs Pa York.
Vational Tube Co, Cirtsbarzi Pitabure, Pa.
HOSE NOZZLES.
Hayward, Fit Co., New York.
McNab Itarlin Mfg. Co., New York
Morse, Aadrew Jo, Son Ine, Boston, Mase.
HOSE REELS AND RACKS.
Hayward, S. F., Co., New York
HYDRAULIC FITTINGS.
MLNab \& ITarlin Mg. Co., New York.
Powell, Wm., Co., Cincinnati, Ohio
Schutte \&
Watson-Stillman Co., New York.
HYDRAULIC JACKS.
Watson-Stillman Co., New Yerk.
HYDRAULIC MACHINERY-RIVETERS, PUNCHES, SHEARS.
Niled-Bement-Pond Co. New York.
Watson-Stilman Co., New York.
ICE MACIINES-See REFRIGERATING PLANTS.
INCLINED ELEV'ATORS FOR DOCKS AND WHARVES.
Otis Elevator Co.. New York.
INDICATOR CONNECTIONS.
Lunkenheimer Co., Ciacinnati, Ohio.
INDICATORS-STEAM AND GAS ENGINE.
Luokenheimer Co. Clocinoati, Otio.
Powell Co. The. Wen. Cincinnati, Otho.
Schaeffer \& Budenberg Mfí. Co., Brooklyn, N. Y.
INDUCED DRAFT.
American Blower Ca, Detrolt, Mieh.
Stortevant Co., B. F., Hyde Park, Masa,

INJECTORS.

Lunkenheimer Co , Cincinnati, Ohio.
Penherthy Injector, Co., Detroit, Mich.
Powell Ca, The, Wm, Clincinnati, Ohio
Schurte \& Körting Co., Philadriphis, Ps.
LNTERLOCKING RUBBER TILING.
New York Belting \& Packing Co., Lid., New York.
IRON CEMENT.
Smooth-On Mfe. Co. Jeriey Cliy. N. J.
JACKS-PNEUMATIC.
Sodependent Paeumatie Tool Co, Chicago and New York.
JACKS FOR UNCOUPLING SHAFTS.
Watson-Stillman Coa, New Yoric.
JOURNAL BEARINGS-See THRUST BEARINGS.
JUTE.
Columbian Rope Co., Auburn and New York.
KEROSENE ENGINES.
Mietz, A. New York.
LATHES, CRANK SHAFT.
Niles-Hement-Pond Ca, New York.
LAMPS, SIGNALS, AND FIXTURES.
Carlisle \& Finch Co., Cincianati, Ohlo.
General Electric Co., Schenectady, N. Y.
Johns- Manville, H. W., Co., New York.
LATHES, ENGINE,
Niles-Bement-Pond Co. New York.
Pratt \& Whitury Ca, New York.
LATHES, TURRET.
Niles-Bement-Pond Ca. New York.
LAUNCIES AND YACHTS-See aiso SHIPBUILDERS AND DRY
DOCK COMPANIES.
Bridgeport Motor Ca, Bridgegort, Conn.
Marine Iron Works, Chicago, IIL
Standard Motor Construction Co. Jerney City, N. I.
Ward, Chas. Engineering Works, Charleston, W. Va,
Welin Davit and Lane ${ }^{3}$ DeGroot Co., Consolo, Bong Ialand City, N.Y.
LAVATORIES-FOLDING, STATIONARY, STATEROOM.
Sanda A. Be, \& Son Co., New York.
LAVATURY AND BATH HEATERS
Griecom-spencer Co., New York.
Schutte \& Korting Co, Philadelphia, Pa.
LIFE BOATS AND RAFTS.
Welin Davit and Lane a DeGroot Co., Consol, Long Island City, N. Y,
LIFE GUNS.
GUNS. $\mathrm{Hayward}, \mathrm{S} .\mathrm{Fap} \mathrm{A} \mathrm{Con}$,
LIFE PRESERVERS.
Armstrong Cork, Co., Pittsburg, Pa
Ferdinand,
Ferdin Davit and Lane B DeGroot Cas, Consol, Long Ialand City, N.Y. LIFE-SAVING DEVICES.
 LIGHTS.

American Ganaccutnulator Co, Philadelphia, Pa.
LGHT BUUYS.
American Ganaccumulator Co., Pailadelphia, Pa.
LGHTHOUSE APPARATUS.
American Ganaccumulator Co., Philadelphia, Pa.
LINOLEUM CEMENT.
Ferdinand, L. W., a Co. Boaton, Mase.
LQUID GLUE, WATERPROOF,
Ferdinand, L. W.p Co. Boston, Mase.
LOG REGISTERS,
Nicholsons Ship Lot Co, Cleveland, Ohio,
Schartte Recording Compata Cous Manitewor, Wie
Welin Davit and Lane \& DeGroot Ca. Consol, Long Islond City, N.Y. LUBRICANTS.

Cook's Sans, Adam, New York.
Dixon, Jos., Crucihie Co. Jersey City N. J.
International Acheson Graphite Co-, Niagara Falls, N.. Y.
Power Specially Co. New York.
LUBRICATING COMPOUND.
Cook's Sons, Adam, New York. Co., Niagara Falls, N. Y.
LUBRICATORS.
Cook's Spas, Adan, New York,
Griscom-Spencer Coy New York
Lunkenheimer Co. Cincinnati, Ohio.
MeNab E Harlig Mif Co New York.
Powell, Wha, Co. Cincinasti, Ohio.
Schutte K Korting Co., P'haladelpha, Pa.
MACHINE TOOLS-See TOOLS, MACHINE
MANGANESE BRONZE CASTINGS-Also see BRONZE
Griscom-Spencer Con New York.
Hyde Windlasas Co, Bath, Maine.
Phosenheimer Co. It Cincinnati, Ohia, Smeiting Co. Philedelpaia, Pa.
Phosphor-Bronze Smeiting Co., Philadelphia,
Rugglen-Coles Enginering Co, New York.

J-M SEA RINGS

An Automatic Piston Rod Packing

J-M Sen Rings are contrmporary with all advanced iteas on power
plant efficiency and econonatal plant effaciency and
operation of machitiery.
operation of machithery;
Every pump of engine packed with ordinary packing is continually operating against a brake, on account of friction betwera rod and parking.

Al! packings other than Sea Kings depend solely upongland or expansion pressure, presures that are continual in their operation and eflect.
J-M Sea Rings exert pressure on a rod or plumger only when necessary - when there is a tentency of leakage past them. They are ubsolutely automatic-the escaping gas ur tuin operates this packing.

They eliminate unnecensary wrar on themselves and on the rod, and the power formerly required to overcome the friction between solt and metallic packings and the piston rods can be either saved or utilized for other jurposes.

Put up in sets for any and all conditions.
Write our nearest Branch for Booklet
H. W. JOHNS-MANVILLE CO.
 and Magrevis Prolness

Balkinove Botion

Botion

ALEAT

Eiencrial Sopplime the.

Minoevepol
San Franciece
Kicego Ketronts Ciry
For Canada-THE CamadiaM M. W. Jowns-Manville co., Limited
Torsato, Ont ${ }_{4}$ Mantreal, Que. Wianipeg. Man, Vascousver, B, C

THE COMPOUND SPUR GEARS

 OP TERE

give twice the

 power of any worm-geared machine on the same amount of steam.AMERICAN SHIP WINDLASS CO. WILLIAMSON BROS. CO., Philadelphia, Pa.

Try ALBANY GREASE

At Our Expense

 And See For Yourselfthat our claim that "Albasy" is the world's greatent lubricant, no matter on what muchine or engiae, or on what purt used, in an aboolute fors. A liberaf sample of Albuny Grease, an Albany Grease Cup, add a valuable book, "Eronomic Latarication,", will be sent you free of charge on recelpe of your same and address.
This offer is meant for you. Write us toduy.
Albany Lubricating Co., Sole Makero
Adam Cook's Sons, Props. 708-710 Washington Street, New York

\section*{ARMSTRONG SOLID BLOCK LIFE PRESERVERS
 STANDARD FOR MATERLAL AND WORKMANSHIP Each Prowerver inmpented and stamped by U. S. hapector YACHT FENDERS-BUOYS
 ARMSTRONG CORK COMPANY

JEFFERY'SJMARINE YACHT GLUE

Has no equal for paying seams of yachts' decks Scnd for circulars, samples, rete.
L. W. FERDINAND ${ }^{\circ} \&^{\prime} C C_{0}$, 201 South St. Boston, Mass., U. S. A.

EUREKA FIRE HOSE

Absanted Gold Medal af ebs Sv. Leals Emparivion for Superiorioy of Oar Gaeds

SAFEST AND BEST
FULLY TESTED AND MADE TO LAST

- A word to the wise manerient ${ }^{-1}$

Seamiess Woven and Rubber-Lined EUREKA FIRE HOSE
"Paragon" brand Hes No Equal SEND FOR SAMPLE
EUREKA FIRE HOSE MFG. CO.

 Kanas Cly, Mai Detrout Mure; Umane Net.; San Franclace, Cal.

POINTS THAT GIVE FAESSLER BOILER TOOLS PREFERENCE

Their construction is steel throughout and better than any other on the market.

The machine is so accurate that our tools and parts are perfectly interchangeable; this gives confidence.

Our heat treatment enables Faessler tools to do first class work and at the same time withstand the severest usage throughout an extremely long life.

We allow thirty day, competitive trial, and offer conclusive guarantee to indicate our own faith.

We make standard sizes of all types for ordinary locomotive and boiler work. We also make special tools to order in a short time and at low cont. On receipt of gauges, templates, or blue prints, we will furnish estimate.

Get our literature and quotations.

J. FAESSLER MFG. CO.

MOBERLY, MO.

MAGNESIA COVERINGS.
Jobnt Manville, H. W., Co., Ne= York.
MANILA AND SISAL ROPE-See ROPE; also CORDAGE. MARINE BOILER COMFOUNDS-See BOILER COMPOUNDS.
MARINE CABLEWAYS.
Lidrerwood Mf. Co., New York
MakINE ENGINES-See ENGINES, PROPELLING.
MARINE FORGINGS-See FORGINGS.
MARINE GAS PRODUCERS.
Marine Producer Gas Power Co., New York
MARINE GLUE
Ferdmand, Lo W., \& Co., Boston, Masa
MARINE HARDWARE
Ferdunand, L. W., \& Ca., Bonton, Masa
MARINE LAMPS-See LAMPS.
MARINE RAILWAY BUILDERS—Se RAILWAY DRY DOCKS
Crandall, H. In, \& Son Co., East Bostoa Masa
MARINE RANGES-See RANGES.
MARINE SIGNALS-See SIGNALS.
MARINE SUPPLIES
Ferdinand, Lo W., a Co., Benton, Mana.
MASTS STEEL
Welin Davit aod Lane $\|_{\text {DeGroot } \mathrm{Ca} \text {, Consol, Long Ialand City, N.Y. }}^{\text {. }}$ MECHANICAL DRAFT.

American Blower Co., Detroit, Mich.
Sturtevast Co., B. F, Hyde Park, Masa.
MEGAPHONES-Se CHANDLERY STORES.
METAL POLISH.
Hofiman, George W., Indianapolia, Ind.
METAL WORKING TOOLS-See TOOLS, MACHINE
METALLIC PACKING-Also see PACKING.
Katpentitin, L, \& Ca. New York
Prer specialny co, .acw york.
United States Metailic Packing C 0 . Philedelphia, P2
METRES, ELECTRIC.
Wearal Electric Ca, Schenectady, N, Y.
MILLING MACHINES.
Nilet Beneot Pond Ca. New York
Pratt a Whitney Ca, New York
MINERAL WOOL-See NON-CONDUCTING COVERING.
MONEL METAL
Ruggles Coles Engiseering Ca, New York
MONITOR NOZZLES-See HOSE NOZZLES. MOORING ENGINES

American Shap Windlass Co., Philadelphia, Pa.
Chase Machine Co. Cleveland Ohia.
Hyde Windlans Co. Bath, Maine.
Williamson Bros. Co., Pbiladelphis, Pa.
MOTOR BOATS-See LAUNCHES AND YACHTS.
MOTOR BOAT SUPPLIES
Ferdinand, L. W., \& Ca. Bonten, Mash.
MOTORS, ELECTRIC
General Electric Co., Schenectady, N. Y.
MOTORS, GASOLINE-See GASOLINE ENGINES.
LUMBER.
Maran Ca, The, Seattle, Waek
MULTIPLE DRILIS.
Nilet Bement-Pend Ca. New York.
Pratt \& Whitacy Ce., Nev York.
MULTI.SPEED MOTORS.
Stow Mfe. Ca, Binghantoe, N. Y.
NAVAL ARCHITECTS-See PROFESSIONAL CARDS.
NEEDLE VALVES-See VALVES
NON-CONDUCTING COVERING.
Jelat-Manville, H. W., Ca, Kew York.
NOZZLES-See HOSE NOZZLES.
NUTS-See BOLTS AND NUTS.
OAKUM
Baltimore Oakum Ca, Baltimorec Md.
 OIL-See LUBRICANTS.
OIL BURNERS, FUEL-See FUEL OIL BURNERS.
OIL CUPS-See LUBRICATORS.
OIL Ft'EL APPARATUS
Schatie © NOrtang Ca., Philadelphia, Pa.
OILDAG.
International Achesoa Graphite Ca, Niagara Falia N. Y.
OIL ENGINES-See ENGINES, OIL.
OIL GAUGES
Lunkenheimer Ca. Cinctmand Oblo.
McNah \& Harlin Mfe Co. Now Yerk
Powell Ca, The Wiz. Cincinnotio Ohio.
OIL POLISH-See METAL POLISH.
OIL PUMPS.
Lankenbeimer Ca, Cincianati, Otia.
OILING SYSTEMS-Ale se LUBRICATORS.
Powell Ca, Wm. Cincimati, Otia.
Scbatte \& Kurting Cos, Pmiodelphia Pa.

PACKING-Also see METALLIC PACKING.
Crandall Packiay Co. Falmyra, N. Y.
Johas Manville, H. W., CO, New York.
New York Belling if Packing Co. Lid, New York.
Peerlest Rubber Alig. Co. New York
Power Specialiy Ca, New York.
Vanda Co. New York.
PACKING, ASBESTOS.
Crandall Packing Co, Palmyra, N. Y,
PAINT-Also see GRAPHITE; also MARINE PAINT. Dixon, Jos., Crucible Ca, Jerecy City N. J. Interoational Acbeson Graphite Co., Niagara Falls, N. Y.
PATENT ATTORNEYS-See ATTORNEYS, PATENT.
PETROL ENGINES-See GASOLINE ENGINES.
PHOSPHOR BRONZE CASTINGS.
Griscom-Spencer Ca , New York
Hyde Whedlaes Co.s Bath, Maine
Lunkenbeimer Con
rhoaphor-Broaze Smelting Co, Philadelphis, Pa
PIPE COVERING-See NON-CONDUCTING COVERING.
PIPE CUTTING AND THREADING MACHINES.
Niles-Bement-Poad Cos, New York.
PIPE FLANGES-See FLANGES.
PIPE UNIONS.
Dart, E. M., Mfg. Ca, Providence, R. 1.
Lunkeabeumer Co. Cincinnati, Ohio.
McNab a Harlin Mfo. Ca, New York.
Potional Tube Con Pouthburg, Pa. Co, The, Wm., Cincinnati, Ohio.
PIPE WRENCHES,
Billings os Spencer Co., Hartford Coan.
McNab \& Harlin Mig. Co., New York
Willama \& Co., J. H., Brooklyn, N. Y.
PLANERS, STANDARD METAL WORKING AND ROTARY. Nilet-Bemest-Pond Ca, New York.
PLANEES, SHIP PLATE
Nilet-Hemeat-Poad Co., New York.
PLATEBENDING ROLLS.
Niles-Bement-Pond Co., New York
PLUMBAGO-Also see GRAPHITE.
Dixen, Jos, Crucible Co, Jersey City, N. J.
Internatuonal Acheten Gisplate Co, Niagara Falls, N. Y.
PLUMBING-Also we CHANDLERY STORES.
Davidson, M. T., Co., New York, York.
PNEUMATIC SEPARATORS.
Sturtevent Co, H. F, Hyde Park, Masa.
PNEUMATIC TOOLS-Also wee AIR COMPRESSORS.
Independent Preumatic Tool Co-, Chicago and Now York.
POLISH-See METAL POLISH.
POPPET VALVES-See VALVES.
PORTABLE CYLINDER BORING BARS-See CYLINDER BORING BARS.
PORTABLE DRILLS.
General Electric $\mathrm{Co}_{\rightarrow-9}$ Schenectady, N. Y.
Stow Mfg Co., Blighemton, N. Y.
POWER PUNCHES AND SHEARS-See TOOLS, MACHINE
PRODUCERS-See MARINE GAS PRODUCERS.
PROFESSIONAL CARDS.
Cox \& Stevese New York
Decker, Delbert H., Washington, D. C.
Donnelly W. To, New York
Stearna, W. B., Boston, Mas.
PROJECTORS-See SEARCHLIGHTS.
PROPELLER WHEELS.
Donne! WY. T New York
Hyde Windlass Co., Hath, Me.
Ruggles:Colea Engineering $C a$, New York
Sberill. Mf. Co., Mitwauke, Wis.
Trouts H, G, Co, Bullale, N. Y.
Vanadiam Metale Co, Pitisburg, Pa
PROPELLING ENGINES-See ENGINES, PROPELLING.
PUMPS.
Biake Knowles Steam Pump Worka, New York.
Davidson, M. Trs, Ca. New York.
De Laval Steam' Surbine Co., Trentos, N. J.
Griscoun-Spencer Coun New York.
Hyde Windlass Co. Bath, Maine.
Kingaford Foundry'a Machine Works, Oswego, N. Y.
Sands, A. B., it Som Co., New York,
Terry, Steam Turtine Co. Hartiord, Cona.
Whecler Condenser and Eagineering Coa, Casteret, N. J.

PRODUCER PLANT COMPLETE-WE BLILD EM 25 TO 5.000 H. P. Built in sizes from 25 to 5,000 H.P. Can be used with almost any gasolene engine. Our booklet gives full information on how to install and operate a producer gas plant. By mail free. we cuarantec arsultst

Marine Producer Gas Power Company
 No. A RECTOR ETREET, NEW TORK

 Cameroan \& Barkity $\mathrm{C}_{0} \rightarrow$ Tampi, Flortia.

PROFESSIONAL CARDS

WILLIAM T. DONNELLY Consulting Engineer ano Raval Ercbitect 17 BATTERY PLACE, NEW YORK
paggazer of FLOATING DRY DOCKS aIEEL AND wOOD PLANS ON HAND FOR DOCRS FROM 1.000 TO 10,000 TON3 Write for inlormation on Mechanial Lit Dock for Small Vemels

W. B. STEARNS, M. I. N. A.

Flaval Ircbitect, Consulting Engineer

HEAVY OIL AND PRODUCER GAS VESSELS DESIGNRD AND CONSTRUCTION SUPERVISED,
ECONOMY AND PERFORMANCE GUARANTEED SEVENTEEN YEARS' EXPERIENCE
15 CUSTOMHOUSE STREET, BOSTON, U.S.A.

MACHINE TOOLS for SHIPYARDS and MARINE ARSENALS

Marine Engineers and Shlpyard Officiala furnished on request with our book "Ship and Navy Yard Equipments"

NILES-BEMENT-POND CO.

III BROADWAY, NEW YORK 25 VICTORIA STREET, LONDON

Wheelep Condenser \& fingineering CO.

Surface Condensers, Feed Water Healers, C'eatrifugal Pumps Hotative IPry Vgeuuta Pumps, "E:DW AKDs* Afr Pumps
Supplles and Bepairs Ior Marine Machinery al Short Notice
Abk for LAterature
Carteret, N. J.

OAKUM

BALTIMORE OAKUM CO. BALTIMORE, MD. Manntecteress of the Bent
MARINE AND PLUMBERS' OARUM UERIGUSON

Engineering Specialties

REFLEX WATER GAGES

Used on all types of bollers by all the Principal Navies of the World

"THE WATER SHOWS BLACK"

ADVANTAGES :

Quick and reliable observation of the water level. Safe, sure and durable at high pressures Not affected by coid air drafts. Most effective protection against injuries to boilers and workmen. Easily applied to all types of gsuge glass fittings.
When flled with WATER the Reflex Gage always appears BLACK. When empty it instantly shows WHITE. No mistake possible. This teature alone is worth many times the cost of the Reflex.
Send for catalog of Water Gage Apparatus.
MANUFAOTURED BY THE
ERGUSON GAGE \& VALVE CO. 504 Broad Building, BOSTOM, MASS.

PUMPS, MARINE GLUE
Ferdinand, L Wr, \& Co., Bosten, Mase.
PUNCIHING MACHINES AND SHEARING MACHINES, HYDRAULIC POWER AND HAND.
Nilew Bement-Pond Co. New York.
Watson-Stillman Co, New York.
PYKOMETERS.
Schaefer $\&$ Budenberg Mfg. Con, Brooklym, N. Y.
QUADRANT DAVITS-See DAVITS.
RAFTS-See LIFE BOATS AND RAFTS.
RAILWAY DRY DOCKS.
Crandall, H1. 1., \& Son Co., East Boston, Mas.
RANGE FINDERS.
Nicholson Ship Log Co., Cleveland, Ohia.
Schuette Recording Compas Co, Manitowoc. Wia.
RANGES
Sands, A. Br, a Son Co., New York.
RASPS.
Nicholson File Co., Providence, R. 1.
REAMERS.
Morse Twist Drill a Machine Ca., New Bedford, Mass.
Pratt \& Whitney Co., New York.
REAMERS-PNEUMATIC
Indepeadeat Pneumatic Tool Co., Chicago and New York.
RECORDING COMPASSES.
Nicholson Ship Log Co., Cleveland Ohio.
Schuette Recording Compass Ca., Manitowoc, Wis.
REFLEX WATER GAUGES
Jerguson Gage \& Valve Co., Boston, Masa
REFRIGERATING ENGINEERS-See ENGINEERS, CONSULTING.
REFRIGERATING PLANTS.
Roelker, H, B., New York
REGRINDING VALVES-See VALVES.
RELEASING GEAR.
Welin Davit and Lane \& DeGroot Cor, Consol, Long Ialand City, N.Y.
RELIEF VALVES-See VALVES.
REVERSING ENGINES,
Chase Machine Co., Cleveland, Obio.
HEVOLUTION COUNTERS.
Ashton Valve Co., Botron, Mass.
Schaeffer thudenberg Sig. Cong Brooklyn, X. Y.
RHEOSTATS.
General Electric Co. Schenectady, N. Y.
Simplex Electric Ileating Ca., Cambridge, Mana
RIGGING-See WIRE ROPE.
HIVER BOATS-Also see SHIPBUILDERS AND DRY DOCK COS.
Marine Iroa Worlas, Chicaga, III.
Mertill-Stevent Co.- Jacrsoavilie, Fla.
Moran Co., The, Seattle, Wash.
Ward, Chas., Engineering Works, Charleston, W. Va.
RIVETS.
(nampion Rivet C'o., Cleveland, Ohia
RIVETING MACHINES, HYDRAULIC AND STEAM POWER
Independent Pneumatic Tool Co., Chicago and New York
Nilep-Betent-Pond Cos, New York.
R1VETERS, PNEUMATIC
Independent Pntumatic Tool Co., Chicaso and New York
ROLLER BEARINGS-See TIIRUST BEARINGS.
ROLLS, BENDING AND STRAIGIITENING
Niles-Bement-Pond Ca. New York.
ROOFING PAINTS.
Ferdinand, $\mathrm{L}_{0} \mathrm{~W}_{-4}$ \& Co., Boston, Mam.
ROPE-Also tee WIRE ROPE, TRANSMISSION ROPE, and MANILA
Columbian Rope Co., Aubura and New York
Duralile Wire Kope Ca, Lloston, Mass.
Griscom-Spencer Co., New Yark.
Phosphor-Bronse Smelting Co. Ltd. Philadeliphia, Pa.
Plymouth Cordage Cos, North Mymouth, Mass
ROTAHY BLOWERS--See BLOWERS.
ROWBOATS-See LAUNCHES AND InCHTS.
RUEBER BELTING.

RUBBER GOODS_Also se Packiag-Als see INTERLOCKING
RUBBER TILING.
Griacom-Spencer Co.t New York,
New York Belting Packing Co.l. Lid. New York
Peeries Rember Mfg. Con, New Lork.

RUBBER MATTING CEMENT.
Herdinand, L. W., \& Co, Bostes, Mase.
RUBBER TILING-See INTERLOCKING RUBBER TILING.
RUBBER VALVES-See VALVES, RUBBEK.
SAFETY VALVES-See VALVES.
SANITAKY FITTINGS-Se PLUMBING.
SANITARY PUMPS-See PLUMBING.
SEARCHLIGHTS.
Carlible ${ }^{2}$ Finch Co. Cincinnati, Obio.
General Electric Co., Scbeneclady, N. Y.
SENTINEL VALVES-See VALVES.
SEPARATORS-PNEUMATIC-Set PNEUMATIC SEPARATORS .
SHAFTING-HOLLOW, SEAMLESS STEEL
National Tube Con Yitubura, Pa.
SHAFT STEEL-See STEEL SHAFTING.
SHALLOW-DRAFT RIVER BOATS-See HIVER BOATS. Also
SHIPBUILDEHS AND DKY DUCK COMPANIES.
SHEARING MACHINES, HYDRAULIC, STEAM POWER AND HAND, Niles Bemeat-Fond Co. New Yor
Watson-Stillman Con, New York
SHEATHING METAL-See YELLOW METAL; aleo BRASS AND CUHPEK.

SHEETING, ASBESTOS.
Johnt-Manville, H, W., Con, New Yerk.
SHEET IRON.
Tolede Staipbuilding Ca. Toledo, Ohla.
SHIPBUILDERS AND DRY DOCK COMPANIES-See also RIVER
BUATS.
Hath Iron Werks, Bath, Maine.
Fletcher, W. A A. Co, Hoboken, N. J.
Fore Kiver Shipbuilding Co., Ouincy, Masa
Maribe Lrea, Worka Chicago, Ill. Newburg, N. Y.
Merrill'Sterens Co, Jackeopille, Yik
Moran Co., The, Seattle, Wasb.
Newport News Shiptuilding \& Dry Dock Co, Newport News, Va.
Tietjen â Lang Dry Dock Co, Hobolven, N. J.
Toledo Shipbuildiag Co Toledo, Ohia
Ward, Chat, Easineering Worhe, Charlenton, W. Va.
SHIP CHANDLERS-See CHANDLERY STORES.
SHIP ELEVATORS-See MARINE ELEVATORS,
SHIP FITTINGS.
Ferdinand, L. W. ${ }^{\text {a }}$ Con, Boston, Mass.
Griscom-Spencer Co., New York:
SHIP GLUE-See MARINE GLUE.
SHIP LOGS AND SPEED INDICATORS.
Niebolson Ship Log Co., Cleveland, Ohia.
Schuette Recording Compass Co., Manitowoc, Wia
SHIP STORES-See CHANDLERY STORES.
SHIPYARDS-See SHIPBUILDERS.
SHOWER BATHS-See PLUMBING.
SIGNALS-MARINE
United States Marine Signal Co., New York
SLOTTING MACHINES.
Nile-Bement-Pond Co., New York
SMOOTH-ON.
Smoeth-On Mfg. Co.n Jersey City, N. J.
SOOT BLOWERS.
Diamond Power Specialty Co., Detroit, Mich.
SOOT ERADICATORS.
Diamond Power Specialty Ca, Detroit, Mich.
SPEED INDICATORS FOR SHIPS, YACHTS AND MOTOR BOATS.
Nicholsoo Ship Log Co., Cleveland Uhio. Wis, Wia.
SPRINGS, VANADIUM.
American Vanadium Co., Pittaburg, Pa
STEAM ENGINE INDICATORS-See INDICATORS.
STEAM ENGINES-See ENGINES.
STEAM GAUGES.
Alaton Valve Co. Boaton, Masa
Lunkenheimer Ca, Cincinnatio Ohia,
Powell Ca, Wm, Cincinnati, OMia
Schaeffer \&\& Budenberg Mig. Co, Brooklyn, N. Y.

STEAM HAMMERS.

Nile-Bement-Pond Ca, New York.
STEAM AND HOT-BLAST APPARATUS.
American Blower Co., Detrolt, Nleh.
Sturtevat Cose, B. F., Hyde Park, Masa.

1 Send for Free Models

Maximum Service Maximum Speed Minimum Expense

You know the time-saving action and convenience of a ratchet tool.

Do you know that the Williams "Ratcho" Wrench will serve in the same way though it does not have a whit of mechanism about it?

That's sol On the return movement an ingenious form of milling releases the tool automatically from the sides of nut or screw and instantly re-grips them when handle of Wrench is drawn toward you. To reverse conditions, tool is simply turned over.

In the "Ratcho" set of 6 wrenches you get service of 15 wrench dimensions- 7 most important bolt sizes ($\frac{1}{4}$ to $\frac{子}{4}$) and 8 most important cap screw sizes (f to 1^{1}).

If you are "taking down" or "setting up" frequently, try this business surprise. Model free!

J. B. wiluams

 \& CO., Saperior Drop-Forgings 63 Rlchards St., BROOKLYN, N.Y.
53
 TERRY TURBINES
 IN THE RECENT
 NAVAL REVIEW
 (New York Harbor)
 The Flagship "CONNECTICUT"
 and twenty other vessels were equipped with
 TERRY SETS
 TURBO.GENERATORS FORCED DRAFT BLOWERS PUMPS
 THE TERRY STEAM TURBINE CO.
 Home Otfice and Worke Hartford, Conn. 90 West St., New York

Nicholson Ship Log

Fir la advance of all of her types of

 Nastical Measurias InstrumentsAbsoletely Acerrate ?
Mg My Ethelena!
It giva tho MILEAGE mfol, and show TEE EXACT
 FOR EVERY MNCTS OF THE TRIP.

 As s ferndation for yor lovertiontion we rit my that
 Cand Ruates Kavy: thet foridra wanl/ra, eteals horeng and piviti galtse cerry thrm, noil shat perthally all
 eot LNVBTICATE

STEAM PUMPS-See PUMPS.
STEAM SEPARATORS.
Griacom-Spencer Con, New York
STEAM SPECIALTIES.
Asbion Yalve Co., Bonton, Mass.
Duasond Power Specialty Co., Wetroit, Mich.
Griacom-Spencer Co, New York.
Lerguson Gage \& A ve Cop, Boaton, Masa.
McNab a Harits Miscinash, Ohio
McNab \& Harlis Mf. Cay New York
National Tube Con, Pittaburg, In
Yenberthy lajector Ce. Detroit, Mich.
Power Specisity Co. New York
Schutte Korting Co., Philedelplaia, Fa
STEAM SUPERHEATERS.
Power Specialty Co-New York.
STEAM TRAPS
American Blower Co. Detroit, Mich
Lankenbeimer Co.s Cincinaati, Ohia
Schutte \& Körting Co. Pluladelphay Pa.
STEAM TURBINES.
Bath Iron Worlct Bath, Maine.
De Laval Stean Turbiae Co., Trenton, N. J
Fotcher, W. \& A. Co, Hobeken, N.
General Electric Co. Schesectady, N . Y.
Kert Turbectric Co. Wellsville, \mathbf{N}. Y.
Partons Marine Steam Turbine Co. New Yerk
Terry Stean Turbine Co, Hartierd, Coas.
STEAM TURBINE DYNAMOS.
De Laval Stearm Turbine Con, Trenton N. J.
Generna Electic Cer, Scienectady, N. Y.
STEAMERS, LIGHT-DRAFT, RIVER-See RIVER BOATS.
STEEL BALLS.
Dantan Anti-Friction Con, Bentam, Coen
STEEL VANADIUM.
American Vanadium Con Pirtaburg, Pa
STEERING GEARS

Williaman Bros. Con, Philadeiphera, Pa.
STEERING ENGINES
Chane Machine Co. Cleveland Ohia.
Hyde Wiediass Ca , Beth, Maise.
Lideerwood Mf. Co New York,
Williamsen Bros. Co, Philadelphia, Pa
STEERING WHEELS.
Hyde Windlass Co., Bath Maine
Williameon Bros. Ca, Philadelghia, Pa
STOP COCKS-See VALVES.
STOVES-See RANGES.
STRAIGHTENING ROLLS-See ROLLS
SUPERHEATERS-See STEAM SUPERHEATERS.
SURFACE CONDENSERS-See CONDENSERS,
SWITCHBOARDS-See ELECTRICAL INSTRUMENTS.
TACHOMETERS-HAND AND STATIONARY. N. Y.
TACKLE BLOCKS-See BLOCKS
TANKS_COPPER, GALVANIZED IRON.
Griscom-Spencer Ca, New York
TEERMOMETERS-FOR EVERY PURPOSE
Schacfier Budenberis Mis. Ca. Brookirn, N. Y.
THREADING AND CUTTING MACHINES-See PIPE CUTTING AND THREADING MACHINES.
THROTTLE VALVES-See VALVES.
THRUST BEARINGS.
Bantam Anti-Friction Cor Bontang Cona.
Vanadium Metals Ce. Pituburg. Pa.
TILING-See INTERLOCKING RUBEER TILING.
TOILET ACCESSORIES,
Sanda, A. B., \& Son Co. New York.
TOOLS, MACHINE
Nilet-Bement-Pond Ca, New York.
Frett Mig. Ca, Binghamion, M. Y.
TOOLS, MACHINISTS' AND CARPENTERS-Se HENCA TOOLS.
TOWING HOOKS AND CHOCKS.
American Ship Wiadlass Co., Philadelphia, Pa.
American ship Windlass Co.d, Philadel
TOWING MACHINES.
Amerkan Ship Windlass Coy Philadelphis, Pa
Chase Machise Ce., Cleveland, Ohio.
TRANSMISSION ROPE-See ROFE.
TRAPS-See STEAM TRAPS.
TUPES-See BOILER TUBES; also BRASS AND COPPER.
TUBE CLEANERS-See BOILER-FLUE CLEANERS.
TUBE CUTTERS-Se BOILER TUBE CUTIERS.
TUBE EXPANDERS,
Pratt Whitney Co. New York
Watmon-Stillmag Ce, New York.

TUGS-See SHIPBUILDERS.
TURBINES-See STEAM TURBINES,
TURNING ENGINES
American Ship Windlass Co. Philadelphia, Pa
Clase Machine Co., Cleveland, Ohio.
TURRET LATHES-See LATHES, TURRET.
TWENTIETH CENTURY LINOLEUM GLUECEMENT.
Ferdinand, L We, W_{2} Ca, Bonton, Mask
TWINE-See ROPE-Also CORDAGE.
Columbian Kope Co. Auburn, N. Y.
Plymouth Cordage Co, North Plymouth, Masa.
TWIST DRILLS.
Morse Twist Drill \& Machine Ca, New Bedford, Masa
Pratt \& Whitney Con, New York
UNIONS-See PIPE UNIONS.
VACUUM GAUGES-See STEAM GAUGES.
VALVES-Aleo see RUBBER VALVES AND WATER VALVES.
Asarton Valve Ca., Hoaton, Mase.
Jerguton Gage 告, Valve Co., Hoston, Mam.
Lunkenheimer Co Ciscinnati, Ohio.
MeNab \& Harlin Mif. Co, New York.
National Tube Co, Pittsburg, Pa
Powell, Wm. Co, Cincianati, Obio
Power'Specialty Co. New York,
Schatte Korting Co., Philodelphia, Pa
VALVES - BALANCED THROTTLE VALVES AND gUADRANT
VALVES FOR SHIP ENGINES.
Schutte $\stackrel{y}{\&}$ Korting Co., Philadelphia, Pa
VALVES, RUBBER.
Crandall Packiag Co., Palmyra, N, Y.
VALVES, WATER.
Continental Iroe Works, Brooklyn, N. Y.
Jerguspn Gage a Valve Co, Boaton, Mais
VANADIUM.
American Vanadium Co, Pittsburg, Pa.
VANADIUM STEEL
American Vanadium Co., Pittaburg, Pa.
VARNISH-See PAINT.
VENTILATING FANS-See BLOWERS.
VENTILATORS
Sands, A, B, ${ }^{2}$ Son Con, New York.
VERTICAL PUMPS-See PUMPS.
VOLTMETERS-See ELECTRICAL INSTRUMENTS.
WATER CLOSETS-PUMP WATER CLOSETS-See PLUMBING.
WATER COLUMNS.
jerguson Gige ${ }^{2}$ Valve Co, Boatog, Masa
MeNab \& Harlin Mfer Co., New York.
Lankenheimer Co. Cincinnati, Ohio.
National Tube Co, Pittaburg, Pa.
WATER GAUGES AND ALARMS.
Jerguen Gage $\%$ Valve Co, Bonton, Masa.
Lunkenbeimer Co Cincinasti, Ohio-
WeNab \& Harlin Mig. Co., New York.
Walworth Mfg. Coc, Boston, Masa
WATERPROOF LIQUID CEMENT.
Ferdinand, L W. \& Co., Boston, Maen
WATERPROOF LIQUID GLUE
Ferdinand, L. W., \& Co., Benton, Masa
WATERPROOF PAINT.
Dixos, Joseph, Crucible Co., Jersey City, N. J.
WATERTUBE, L. W., a Co., Boaton, Mas
WATER VALVES-See VALVES, WATER.
WHARF DROPS.
American Ship Windlass Co., Philadelphia, Pa.
WHISTLES.
Aahton Valve Co., Hoston, Masa
Lunkentermer Co., Cincinnati, Ohio.
MeNeb of Harrin Mfg. Co., New York
Powell Co.s The Wm., Cincinnati, Ohia
WHITE METAL
Griscom'Spencer Ca, New York.
Phosphor-Bronse Smelting Coa, Philadelphis, Pa.
Vanadium Metals Co., Pittaburg, Pa.
WINDLASSES.
American Ship Windlass Co.r Philadelphia, Pa.
Chase Machius Co., Cleveland, Ohia.
Hyle Windiasa Co., Bath, Me.
Lidgerwood Mfg. Co., New York.
Williamson Bros Cor, Philadelphia, Pa.
WINCHES-See WINDLASSES.
WIRE ROPE
American Ship. Windlana Co., Philadelphia, Pa.
Durable Wire Rope Co, Bonton, Masa.
Phosphor-Bronze Smelting Co., Ltd., Philadelphia, Pa.
WIRE VANADIUM.
American Vanadium $\mathrm{Co}_{\text {., }}$ Pittoburg, Pa .
WOOD SAWS-PNEUMATIC
Independent Preumatic Tool Co., Chicago and New York.
WRENCIIES-Also see PIPE WRENCHES.
Billings a Spencer Co., Hartford Conan
Williams \& Ca, J. H., Brooklyn, N. Y.
Yacht glue-see marine glue.
YACHTS-See LAUNCHES AND YACHTS; also SHIPBUILDERS.
YELLOW METAL
Vans dium Metals Co., Pittobure. Pa.

The Invincible Nozzle Fire Depariment Supplies

ANDREW J. MORSE \& SON inconponareo
221 HICN sT, Boston, mass.
DIVIMG APPARATUS

3-ox, Box for 10 Cents, $5-1 b$. Pall $\$ 1,00$. Liquid $\$ 1,00$ per Gallons. GEO. W. HOFFMAN, Hagert Muly Kaker, 295 E. Washimpton St.e Indlanapolls, Ind.

UNTED STATES METALLIC PACXIHGS

For Plston Rods and Valve Slams of Mala and Auxillary Englaes
THE UNITED STATES METALLIC PACKING COMPANY PHILADELPHIA AND CHICAGO

T. S. MARVEL SHIPBUILDIMG CO. SHIP andENGINE BUILDERS

NEWBURG, N. Y.

Simplex means quality, the quality that has stood the test, the "customers test," the test that meanshard work well done.
SIMPLEX ELECTRIC HEATING CO.
CAMBRIDGE, MASS.
MONADNOCK BLOCK
CHICAGO

Sleam Capstans Steam Winches Docking Engines Towing Machines Deck Hois/. The Chase Machine Co. Cleveland.0.

Hydraulic Jacks

Offer the best means of shifting heavy objects. Our types and sizes cover a wide range of capacities and permit one man
 without severe effort to move any weight up to 500 tons.
Watson-Stillman Hydraulic Jacks being heavy for their rating have a greater safety factor and handle a large overload safely. Thoughtess workmen often put a pipe on the handle of an hydraulic jack to increase the power. We provided liberally for just such emergencies.
Tell us what i jacks or other hydraulic tools you need and we will send literature.

THE WATSON-STILLMAM COMPAMY

 Sheara, Valves, Fiting. Eic., Machuine Tevir aed Tatioe Pumpe 188 FULTON STREET, NEW YORK

We use HEMP ROPE exolusively

 In the manufacture of our

It spins a thread of greater length.
It drives better.
It is more economical.
It lasts longer than other Oakum on the market.

You can demonstrate these facts by a trial.
white for prices
W. O. Davey \& Sons

170 Laidlaw Ave. Jersey City, N. J.

INDEX TO ADVERTISERS

ALBANY LUBRICATING CO., New York.. 45
ALLAN, R. S., \& CO., Geteshead-on-Tybe. England........................ 26
ALMY WATER TUBE BOILER CO., Providence, R, I................... 23
AMERICAN BLOWER CO., Detroit. Mich.................................... 40
AMERICAN BUREAU OF SHIPPING. New York......................... 41
AMERICAN OASACCUMULATOR CO., Pbiladelphia, Pa,................. 38
AMERICAN SHIP WINDLASS CO., Phildriphia, Pa,................... 48
AMERICAN VANADIUM CO., Fittsburgh, Pa.......... Editorial Page 504
ARMSTRONG CORK CO., Pittaburgh, Pu.................................. 46
ASPINALL'S PATENT GOVERNOR CO.. Liverpoot. Eagland. 28

ASHTON VALVE CO., Boston, Mass........................Inside Front Cover

BABCOCK \& WILCOX CO., New York...................................... 22
BALDT ANCHOR CO., Chester, Pa,.. 24
BALTIMORE OAXUM CO., Baltimore, Md.................................... 48
BANTAM ANTH-FRICTION CO.. Bantam, Conn............................. 21
BATH IRON WORKS, Bath. Maine ... 34
BILLINGS \& SPENCER CO. Hartford. Conn................................ 53
BLAEE \& KNOWLESS STEAM PUMP WORKS. New York............. is
BOURSE, THR. Philadelphia. PA.. 20
BRIDOEPORT MOTOR CO., Brideeport. Cons........................... 33
BRITISHYMANNESMAN TUBE CO., LTD., Londoa, England......... 31
BROWN, ARTHUR R., London, England.................................... -
BUPFALO GASOLENE MOTOR CO., Buffalo. N. Y....................... 32
BUNKER. E.A., New York.,... 9
BUSCH-SULZER BROS..-DIESEL ENGINH CO.. St. Loais, Mo.
Outside Faek Cover
BUTTERFIELD, W. P., LTD., Shipley, England..................... . .

CALLENDER \& CO.. G. M.. LTD., Londoe. Eagland.................... 26
CAMMELL, LAIRD \& CO.. LTD., Birkthhead. Enaland 25
CARLISLE \& FINCR CO., Cincineati. Oblo................................... 50
CEDERVALL \& SONER, F. R.. Gothenburg. Sweden...................... 30
CHAMPION RIVET CO., Cleveland, Ohio.................................. 7
CHASE MACHINE CO., Cleveland, Otio.. 51
COLUMBIAN ROPE CO., Aubura and New York
Below Table of Contents, in Yront of Magazine
CONTINENTAL IRON WORKS, Brooklyn, N. Y.......................... 18
coor's sons. ADAM, New York.. 45
COX \& STEVENS. New York... 47
CRANDALL. H. I., te. SON CO.. East Bostoo, Mass....................... 44
CRANDALL PACKINO CO., Paimyra, N. V.................................... 21

DART MFG. CO., E. M., Providence, R. 1.................................... 34
DAVEY, W. O., \& SONS, Jersey City, N. J................................... $\mathbf{~} \mathbf{5 2}$
DAVIDSON, M. T, CO.. New Yerk.. it
DECKER, DELBERT H., Washington, D. C................................... $\boldsymbol{8 2}$
de Laval steam turbine co.. Tremton, \mathbf{N}. J........................ ss
DIAMOND POWER SPECLALTY CO.. Detroit, Mich...................... 14
DIXON CRUCIBLE CO.. JOS., Jeney City, N. J..........................
DONNELLY. W. T. New York. 38 and $\mathbf{4 7}$
DURABLE WIRE ROPE CO, Bostob, Mam,............................ 40

EKIR FOROE:CO. Ene. Pn 42
EUREKA FIRE HOSE MFG. CO., New York......................... 46

Pabssler. J. MFa. Co., Moberly, Ma. $\mathbf{4 6}$
FERDINAND \& CO. L. W., Boeton, Mas................................. . . 46
FLETCHER CO., W. \& A., Hoboken, N. J...................................... 34
FORE RIVER SHIPBUILDING CO., Quincy. Mas....................... 33
FREY. LOUIS \& CO.. New York 47
GENERAL ELECTRIC CO., Schemectady, N, Y.
Paczs
GOODINQ, W, H. Lomdon, Eneland.-
GREENWOOD \& BATLEY, LTD \quad Leeds, England. 28
GRIBCOM-SPENCER CO. New York 10
HAYWARD \& CO. S. F., New York. 82
HBATH \& CO., LTD., Londen, England. 2
HOFPMAN, GEO. W., Indianapotis, Ind. 81
HYDE WINDLASS CO., Bath, Me. Indide Front Cover
1NDEEPENDENT PNEUMATIC TOOL CO.. Chicago and New Vork.... 41INTERNATIONAL ACHESON GRAPHITE CO. Niagara Falls, N. Y. B383
ISHERWOOD, J, W, Middlesbrough, Engiand 30
JRRGUSON GAG\& \& VALVE CO.. Bostoo. Mas 48
JOHNS MANVILIE CO. H. H. Wew Vark. $^{\text {W }}$ 45
RATZENSTEIN \& CO. L. New York. 24
KERR TURBINE CO., Wellaville, N. Y' 43
KINGSFORD FOUNDRY \& MACHINE WORKS, Oswega, N. E*. 18
LDGERWOOD MFG. CO. New York Inside Front Cover
LUNKENHEIMER CO. THE, Cincianati, Ohio Indide Front Cover
McNAB \& HARLIN MFG. CO. New Vork. 23
MARINE IRON WORKS, Chicago, 1H. 9
MARINE PRODUCER GAS POWER CO.. New Vork 47
MARVEL, T. S., SHIPBUILDING CO. Newburgb, N. Y゙ $\$ 1$
MERRIL,LSTEVENS CO. Jacksonville, Fia. 33
MIETZ. A., New York. 31
MORAN CO., THE., Seattle, Wash. 33
MORSE, ANDREW J., \& SON. INC., Boeton, Mass. 51
MORSE TWIST DRILL, MACHINE CO., New Bedford. Mass. 34
MOSHER WATER TUBE BOILER CO., New York. 22
NATIONAL TUBE CO., Fitsburgh, Fa 20
NEW LONDON SHEP E ENOINE CO. Oroton, Cunn
Page freing leading article in front
NEWPORT NEWS SHIPBUILDING \& DRY DOCK CO. Newport
News, Va.NEW YORK BELTING \& PACKING CO. New York.33NICHOLSON FILE CO. Providence, R. I11
NICHOLSON SHIP LOG CO. Cleveland, Othio. 50
NILES-BEMENT-POND CO. New York. 48
NORWALE IRON WORKS. South Norwalk, Comn. 61
OTtS ELEVATOR CO., New Yurk. Inside thack Cover
PARK \& PATERSON, Glansow, Scothad $\overline{17}$
PEERLESS RUBBER MFG. CO., New York 16
PENBERTHY INJECTOR CO., Detroit, Mich 23
26

The Why of Steam Turbine Types

This bouklet explains the problem involwed in selecting types of steam turbines, ing a compromise bet ween the iremendous velisity of spodting steam and the comparatively moulerate speeds demanded in the driven machinery, such as direet. curreat generators, oxntrifugal pumpa and bbwers. atod for belt sud fope driv. the. Several suethods of compthe several methods of comppromuse whach have been and velocity staging and combinatinters of the two, and describes a fourth method. which perinits the turbine to be buift with the number of stages best adapted for the capecity and to scure wubstantis and reluable construction and to run at the hagh efficiency, while the driven machunery may run at any sperel, required. Thas is the greatest advanee in strum turbines made for many years and sins shruld be fanaitiar with t1, Nok for Pamphlet " D46."

DE LAVAL STEAM TURBINE CO. TRENTON, N. J.

OILDAG

Will Do This:

Redece Filction Prevent Weap Save Oll

Make any goed lubricating ofl worth thres limes its original value
It is the only oil Jubricant that contains Deflocculated Graphite, and is put up in condensed form for charging $1,5,10$ or 50 gallons of oil.
Send $\$ 1$ and we will send you enough Oildag. prepaid, to charge
 five (5) gallons of oil. Ask for Booktel F-458.

INTERMATIONAL ACHESON GRAPHITE CO.

NIAGARA FALLS, N. Y.
Oanergl Agants for Oilday and Aquadag. medo by Aaheeon Oildeg Co.

All Plymouth Kope Groes Through Rigid Inspection． Ahough it is only expected to bold 43 iseo pounda．

is made certain by tests
If you buy rope at a low price you may expect to get low working power．Since this follows the law of compensation，when you want economy in rope don＇t let a price mislead you．Remember－service is the measure of rope value．

PIYMOUTH ROPE ＂The Rope You Can Trust＂

is world－famed for wear，because only durable Manila fiber is used．It is tested to give assurance of uniform strength－ you＇ll find it always does the work．
Tug hawsers get the hardest kind of usage． Rope goes to pieces quickly in this kind of work，making wearing－power here a ques－ tion of vital importance．PLYMOUTH hawsers are specialties－as is every PLY－ MOUTH rope－they are made to last．

A few dollars more，invested in PLYMOUT11，is bound to be a big saving in the end．Old seamen always ask for PLYMOUTH－they know it＇s a saving．Buyers of long experience have aloo proved this．There are many reasons why PLYMOUTH rope is the best invertment Let us tell you of them．Send for our free booklets， ＂Plymouth Products．＂

the mank of
LEADERSHIP

PLYMOUTH CORIDAGE COMPANY

NORTH PLYMOUTH，MASS． Distributing Agents in All Big Portt
PHOSPHOR BRONZR SMELTING CO．，Philadelphia，Pa 51
PLYMOUTH CORDAGE CO．，North Plymouth，Mase 6
POWELI，WILLIAM．CO．．THE，Claelanati，Oblo 8
POWER SPECTAL，TY CO．．New York． 21
ROBB ENOINEERINO CO．．LTD．．South Praminghang Man 19
ROBERTS SAFELY WATER TUBE BOILER CO．，Red Bank，N．J．． 22
ROELKER，II．B．，New York． 21
ROSS SCHOFTELD CO，New York 2
RUGOLES－COLES ENOINEERINO CO．，New York 32
SANDS \＆SON CO．A．U．New York 4
SCHAEPPER \＆BUDENBERG MPG．CO．Brooklyn，N．Y 12
SCHUETTE TRECORDING cOMPASS CO，Manitowoc，Wis． 36
SCHUTTE E KÖRTINO CO．，Phlladelphia，Pa． 18
SEAMLEESS STEEL．BOAT CO ．LTD－。 Wakefield．Eegland． －
SHELBY STEEL，TUBE CO．，Pittsburgh（See National Tube Co）， －
SHERIPPS MPG．CO，Milwakee，Wis． 24
SIMPLEX ELECTRIC HEATINO CO．，Cambridgeport，Maw 81
SIROCCO 弓ENGINRIERING CO．（See American Blower Ca）． －
SISSON，W．，\＆CO．，L，TD．，Gloucenter，England －
SMIT，Le，\＆CO．，Rotterdam，Hotland 28
SMOOTH－ON MPG．CO．Jerwey City，N．J 39
sMULDERS，P．A．，Schiedam，Holland 24
SOTHERN．J．W．，Loadon，Begland 造
STANDARD＂MOTOR CONSTRUCTION CO．．Jersey City．N．J 31
STARRETT CO．．L．S．，Athol，Mams 8
stradins，W，He Boston，Maso， 47
STOW IMFG．CO．，Binghamton，N．Y． 24
Sturtevant co．，B．F．，Hyde Park，Mam 12
SULZERJBROS．，Winterthur．Smlazeland －
TERRY STEAM TURBINE CO，Hertford．Conn 50
TIETJENGAILANO DRY DOCK CO．，Hoboken，N．J 33
Trout．H．G．，CO．，Bulfalo，N．Y． 24
TRIST，RONALD \＆CO．，LTD 4 ，London，England． 27
UNITED STATES，MARINE SIGNAL CO．，New York 32
UNITED STATES METALLIC PACKING CO．，Philadelphia．Pa 81
Vanadium metals co．，Pittaburgh，PVANDA CO．，Nem York12
Van Nostrand CO ${ }_{4} \mathrm{D}_{\mathbf{4}}$ New York a
WALKER，W．O．，a SONS．Edinburgh．Scotiand． 23
WARD，CHAS．，ENGINERRING WORKS，Chapleston，W．Va 23
Watsonstiliman co．，New Vork 52
WRLIN DAVIT \＆HANE B DE OROOT CO．Long Island City，N．Y． Outade Front Cover and 12
WERF GUSTO，Schiedam，Holland 22
WESTON \＆BLECTRICAL INSTRUMENT CO．，Waverly Park，Newark． N．J． 30
WHEELBR CONDENSER \＆ENOINEERINO CO．，Carteret，N．J．．．．． 48
WHITFIELDS BEDSTEADS，LTD．，Dirmingham，England， －
WILLIAMS \＆CO．．J．H．Brooklyn，N．Y 49
WILlitamson bros．CO．．Philadelphia，Pa 48
witson＊soNs，R．，South Shields．England

Dilatory Methods Today are Intolerable,-Time is Money -and

Time Saved in Freight Handling is of the

 Utmost Importance

Not only does it mean MORE from a dividend standpoint, but it creates that quicker service insistently demanded by both Shipper and Consignee.

Take the matter of freigh handling from vessels to the dock, and vice-versa. II delivery levels were constant, the movement of freight to and from vesels and the dock might be maintained by the old, time-honored method of transerer comprehended by a husky longshoreman and his truck, but-when the water is high or low, instead of one man, behold! from two to four to a truck; -from ONE to THREE men's extra effort to move what ONE man might EAS, LY move if the gangquays were equipped loblth the

OTIS INCLINED DOCK ELEVATOR

wheh we manuficture under Reno Patents?
and the Freight Handled in 60\% to $\mathbf{8 0} \%$ LESS Time than Ordinarily Required, thereby SAVING $\mathbf{6 0 \%}$ to $\mathbf{8 0} \%$ of the Old-Method Cost

For example: Above is a typical view of one of the gangways at the Metropolitan Steamathp Dock. Boston, Mast, using the Otis Inclined Dock Elevator. Thiree have been installed on this dock, and two on the Merchanti and Minera' Transportation Dock at Savannah. Ga. and many others elsewhere.

No matter what the load on the truck may be, the weight of same, or the grade of the gangway. ONE man handlea the land. This elevator will deliver 1960 lowded trucks (with men) per hour at a speed of 200 It. per masute. It is operated by a 5 M. P. electric motor at a current cont of dix centa per hour. There can mever becongetion at the gangway, the man and truck comes to the elevator, eogages, ant moves: no batks. no slowp-downs. There un nothing to break, nothir to get out of order; the operation is positive and continuous and absalutely sale lor the workers. In capacity is humiten. It cannot be overloaded.
We make similar Elevatore adapted to every condition of Freight Handling Service. The cost of an equipment of this kind is trifling. resulta cossidered, and such apparatus should be on every dock and pier.

Without anv olligatein whatsoever, ost Esidecrine Department will apply you full informabos, show the way to beot meet your
 lor boch pasproder and
inviled. Write to an.

Otis Elevator Company

17 Battery Place, New York City
ontcen tn all prtactpal ctite ta the wopld

[^49]
Diesel Oil Engines

By virtue of the union of strength in one Company of
The only Concern which has actually built and installed Diesel Engines in this Country,
(American Diesel Engine Co.)
One of the Greatest Manufacturers of High-Class Machinery and Builders of the most advanced types of Diesel Engines in Europe,
(Sulzer Bros., Winterthur, Switzerland)
The Inventor of the Diesel Engine, who has devoted the last fifteen years to its development and perfection, (Dr. Rudolf Diesel, Munich. Germany)

This Company is able to offer the best and most recent results in design, manufacture and

Experience

in Diesel Engines and has the exclusive co-operation in the United States and Canada of

> Messrs. SULZER BROS. and Dr. RUDOLF DIESEL

Parties interested in this type of Engine are invited to correspond with us.

Busch-Sulzer Bros.-Diesel Engine Co.

GENERAL OFFICES: South Side Bank Building, St. Louis, Mo. EASTERN SALES OFFICE: 30 Church Street, New York.

[^0]: - Concluiled from the Thecember isatue.

[^1]: *Absiract of a lecture detivered at the Naval War College at Newport, R. 1.. Jusust, 1910.

[^2]: - Copyraght, 1v11, by Chas. S. Root.

[^3]: ${ }^{1}$ Sice September, 1910, issue, page ats.

[^4]: * Coppright. 1911. by Chas S. Kewl.

 The mechanical cquivalent of hest accordang to Marks and Davis.

[^5]: Bee page 380, Sepicutoer, 191日, ikFle, Fig. 04.

 * Cubic feet per persul.

[^6]: ${ }^{6}$ Tables of Mark+ anel llayie,

[^7]: - For any kiven anit of weighs superhested steam containg more heat and will give out mepre work.

[^8]: - Paper read before the North Fave Coast Institution of Enginerra and shipbuilders, Newcastie-upon-Tyne. November, tv10. Appendices to the fayer will the published in the Mareh iswac.

[^9]: * A paper read befare the Sociely of Navat Archisects and Marine Engineera, New York, November, zolo.

[^10]: - Cinctuded frosa the Vebruary issue.

 1 Communicated by Prof A. t. Mellanby, 1). Sc., of the Ginagow and Weat of Scotland Technical Coltege.

[^11]: *Connmmicatat ty Meusrs, W. Explen of Sona, consulting engineers, 3t James atreet, tiverpool.

[^12]: ©Commumicated by Mr, R. J. Quelch, M. tnat. C. F., (Ateksta. Lawther.
 Latha Co.)

[^13]: Coal used was of a tairly good ateaming quality, ratber faut burning and dirsy. Aboat 30 par cent. small. Clinker easily removed from bars and did not seem dentractive to bara. The amall cokes very well and does not rum through the bars. Ashand dirt aboent 21 pef deat.

[^14]: \& Co.) Cemmonicated by Mr. A. Walker, M. I. N, A. of Mecura F. Syrick

[^15]: Copgripht. 1ヵ11, by Charles S. Root
 ${ }^{4}$ Seplomber, t9to, issue.

[^16]: *The E'nilted Stares Naval Inatitute Proceedingt, No. 130,

[^17]: * R-an at the eishtecnth mecling of the Sorlety of Naval Arrbitret and Marine Enginerg,

[^18]:

[^19]: * Nerember, 1910, isaue.

[^20]: * Abstract from Gencral Electric Review, January, 1911.

[^21]: *See lasue of December, toto, for farther description of the Otympic.

[^22]: - Frem scalea.

[^23]: -Terminat Envineer, 20 Broad street, New York.

[^24]: * Abmpact, Journal, American Sockety of Natel Enginemb.

[^25]: - Welin davils are fitted throvghoul.

[^26]: a sunken vesacl. The lifting ropes along one side are suspended from pulleyn carned in beghts in a common rope which panea over palley along the lop of the foat and is hauled in by winches for rassing the along the Thop of the noins and all the lifting ropes are eguahaed. Separately, the foats can be used for dockung ships
 6.636. ASIt EJECTOR SLItIES OR VALUES. W. C. KEENE, LIVFRPOWL.
 Lifikpool. $\begin{gathered}\text { aluce } \\ \text { valve } \\ \text { ash ejectors comprises a plate working within a }\end{gathered}$ casung. having jackingervoves arranged across the working surfaces

[^27]: a network through which said eyes project, rods passing through said eyes over matit metwork, and a cement cover arranged over nand net. wurh and rods.

[^28]: - Terminal eдzineer.

[^29]: *Read al the Jubilee Meetinge of she Instifution of Naval Archiecte, July 6, 1811.
 +Trans. 1. N. A., Vol, XXXIX., p. 139.
 t Marine Pripprllers, fifth edition. p. BN,

[^30]: - The asumptions mede are 10 percent walee and 10 percent thrust dedaction, be percent propulaive coefficient, 85 tercent blade correction: proj area $==$ if disc area; thrust 18 pounde per byare inch.
 t Naval constructor, U.S. N.

[^31]: Name
 Company.

[^32]:

[^33]: - The firn experiments made in consection wilh these iovestigations were conducted by myself al the Irial trip of the Altantic liver Dewtseh casd. I taid these hefore ithe Institution of Naval Arehitects in June, Liner Dewtschland" "On Some Experiments Made on Doard the Allantic the method was malerially improved,

[^34]: Juiy Kead at the Jubilee Mretlog of the Inalitution of Naval Arebitects,

[^35]: - Trans. I. N. A. Vol. XLVt. pe 26s.

[^36]: - This is exactly what bappews in the Raveau land furhines compound tyof, a geal bumber of wbich are winding is fachorzes.

[^37]:

[^38]: page 222.

[^39]: Entered at New York Poat Ofice as secend-clase matter. Copyright, 1211, by Marine Engineering. Ine., New York. Iwtennational. Mazma Emonneaime is registered in the Uaited Staten Patent Office.
 Copyright in Greal Britain, entered at Stationers' Hell, Londoa.

[^40]: "The Automatic Smokeless Furnace" is the subject of an illustrated 48 -page catalogue, published by the Model Stoker Company, Dayton, Ohio. "The model automatic smokeless furnace has now been in use seven years. We fiave not hesitated to make installations alongside of any of the other makes of stoker furnaces, and have tested it out alongside in the same boiler room with each of the other two makes of the same type as well as all other types, and its superior utility is fully demonstrated and established. The model automatic is the only furnace in use that fully and efficiently keeps the fire clean. Numerous installations have been made covering a wide range of territory. It uses with marked success any soft coal of feedable size mined between the Atlantic coast and the Pacific, readily adapting itself to the various coals of differing characteristics. Its superior adjustaliility enables the attendant to promptly mect all the requirements, whether due to difference in quality or character of coal or to variations of load. Its superior self-cleaning produces better ecenomy, larger sustained capacity, quicker response to sudden increased demands, and also provides better protection to the grates and all parts exposed to the heat of the fire, and thereby insures greater durability, and by reason of its superior neechanical dekign and conxtraction, when repairs are required they can be more readily made and with less cost than repairs can be made on any other stoker furnace. We do not hesitate to place the Model automatic alongside of any other, and guarantee superior utility and smokeless comhustion. We wish to express our appreciation of the kindly interest shown by the many purchasers, managers, engineers and firemen who have used, explained, shown or recommended the Moxlel automatic. We have within the past two years made some improvements which add to the utility value of the Model antomatic, and we shall maintain its pre-eminent ntility and increasing prestige by leading all others in smokeless combustion, cconomy, capacity. adaptability, durability, and utility in general.for all kinds of conditions and service."

[^41]: - Of 1,000 ktliogrammes.

[^42]: . Abstract of paper read at the Jubilec Meeting of the Institution of Naval Archilects.

[^43]: - Terminal Eagineer, 20 Brogd streel. New York.

[^44]: - Write ont in words.

[^45]: When writing to advertieers, pleare mention Imtenational Mazine Ewaimeraing.

[^46]: -Charlattenburg Bertin

[^47]: * From The Gas Engine.

[^48]: - No cut-ofl other itan lap of valves.

[^49]:

