

Class......6.3.9.7. 3
Number $\mathcal{N} 53$ \qquad
\qquad
Volume.... 1 cap. 2
Source. \qquad
\qquad
Received \qquad
\qquad
Cost. \qquad
Accession No...14101 \qquad

NEW HAMPSHIRE

AGRICULTURAL

EXPERIMENT STATION,

HANOVER N. H.,

BULLETIN NO. 10.

CO-OPERATIVE FERTILIZER EXPERIMENTS.

Comparison of Manure, Prepared Fertilizer; Ashes, and Chemicals.

MARCII, 1890.

() RGANIZATION

NEW HAMPSHIRE

Agrieal lural Experinanil Station.

BOARD OF CONTROL:

Hon. Warren Brown, President, . Hampton Falls.
Rev. S. C. Bartlett. LL.D., - - - Hanover. Hon. S. B. Whittemore, - - . . Colebrook.
Hon. G. A. Wason, - - - Nashua.
Prof. G. H. Whitcher, Secretary, - - Hanover.

OFFICERS:

G. H. Whitcher,

Director.
A. H. Wood, - - Supt. Dairy Dept.
H. H. Lamson, - - Microscopist and Photographer.
F. W. Morse, - - . . . Chemist.
C. L. Parsons, - - . . Asst. Chemist.
C. H. Pettee, - - - . Meteorologist.
J. M. Fuller, - - . . Station Farmer.
C. W. Whitcher,

Clerk.

CO-OPERATIVE FERTILIZER EXPERIMENTS.

It is commonly believed that experiments with fertilizers are of little use, except in the immediate locality in which they are made ; some even advocating the idea that no two parts of the same farm have the same needs, and that the use of fertilizing materials is, and must be, from the nature of the case, a hap-hazzard undertaking, upon which study and investigation can throw little if any light.

I do not believe, however, that the case is as hopeless!y involved in darkness as this view would lead us to conclude, and I am convinced that the feeding of plants will in time be placed on footing more nearly approaching that on which the feeding of animals now stands. It is not the purpose of this Bulletin to discuss this part of the subject but rather to present the results of a series of coöpera'ive experiments carried on by direction of the Station on farms in various parts of the State.

OBJECT OF THE EXPERIMENTS.
The object was to determine, by field tests, the relative proportion of Nitrogen, Phosphoric acid and Potash which should form the most perfect crop sation for the soils and crops experimented on, and in connection with this, as a means of comparison, four plots in each set were left with no fertilizer of any kind, to determine the natural capacity of the soil; one plot had one of the best commercial fertilizers found in our market, one plot had ashes and concerning one plot, No. 6, no suggestion was made, the intention being for each farmer to use whatever he might have, either in the way of manures or commercial goods on this.

COST OF FERTILIZER.

In each case, except plot 8 where manure was used, the fertilizer or chemicals cost 50 cents per plot or $\$ 10.00$ per acre; the manured plot had 30 bushels of farm yard manure, which is at the rate of about 7 cords per acre, the value of
which, on an average, may be placed at $\$ 20.00$ (that is about twice the cost of the fertilizer, chemicals and ashes.) This amount of manure was used because it was believed to be about what our farmers would call a full average application for corn.

PARTIES WHO UNDERTOOK THE WORK.

The thanks o! the Station and of the farmers of the State are due the following gentlemen who assisted in this undertaking : Hon. D. H. Goodell, Governor of the State, Antrim, N. H. ; Hon. Warren Brown, Pres't Board of Control, Hampton Falls, N. H.; Hon. S. B. Whittemore, Member of Board of Control and of Board of Agriculture, Colebrook, N. H.; Aionzo Towle, M. D., Member Board of Agriculture, Freedom, N. H.; Charles McDaniel, Esq., Master State Grange, West Springfield, N. H. ; F. T. Stanton, B. S., Strafford Corner, N. H. ; C. C. Beaman, Esq., Cornish, N. H. ; James Wood, Esq., Lebanon, N. H. ; J. L. Gerrish, Esq., Mast Yard, N. H.; J. E. Whitcher, Esq., Strafford, N. H.

The last mentioned experiment was a continuation of a series commenced in 1888, and ruined by the early frost of that year, it cannot be compared with the other results since the plan was materially modified the past year.

PLAN OF FIELD.

The outside dimensions of the plowed field were to be 185 feet by 28I feet, this enabled one to lay off 20 plots each 33 feet by 66 teet, leaving an outside blank space four (4) feet wide all around the field and a space three (3) feet wide between each plot. Each plot was to have ten (10) rows with twenty (20) hills in each row or at the rate of 4000 hills per acre.

Table 1 is so arranged that the number of the plot is shown across the top, the kind of fertilizer used is shown in the left hand column ; the number of pounds of any given substance used on a given plot will be found by looking opposite that substance, in the column marked at the top with the number of the plot, for example, if it is desired to know what the fertilizer on plot I_{3} was, we look in the column headed I_{3}, following down this we come to $161 / 2$ pounds and looking at the left of this we see that this was dissolved bone black; 5 pounds of muriate of potash and $31 / 2$ pounds of sulphate of ammonia, make up the total application on that plot.

The lower three lines of figures in the table show the chemical composition of the material used on the various plots,

thus No. 13 had a mixture which by analysis showed 10.5% of phosphoric acid, 10% of potash and 2.8% of nitrogen.

	$\begin{aligned} & \infty \\ & -\infty \\ & 00 \end{aligned}$		$\begin{aligned} & 0 \\ & 00 \\ & 00 \\ & 09 \end{aligned}$	$\stackrel{31}{ \pm}$	$\underset{A}{t}$	$\stackrel{\otimes}{\dot{\circ}}$	켓	$\begin{aligned} & 0 \\ & 0 \\ & 30 \\ & 30 \end{aligned}$	$$	露	$\underset{\text { N}}{\stackrel{\circ}{*}}$		$\begin{aligned} & 10 \\ & \underset{\theta}{x} \end{aligned}$	$\begin{aligned} & \hat{S} \\ & \text { S } \end{aligned}$	$\overrightarrow{\tilde{N}_{1}}$	${\underset{C}{6}}_{\infty}^{1}$	$\begin{aligned} & \mathcal{S} \\ & \underset{\sim}{\infty} \end{aligned}$	$\frac{10}{6}$

8

 Averag Corn．69.94
40.41
73.50
57.27
59.76
74.00
89.13侖 $\begin{array}{cc}0 & 0 \\ 10 & 2 \\ 10 & 0\end{array}$

 a

Wood．

 घ
号
范
In

The Station fut up the fertilizers except for , plots 8, 6, and 12, the farmer was to furnish use of land, was to lay out the plots, and plant according to directions, record certain observed facts on blanks furnished and to harvest and report weights. For this, no comfensation, other than the fertilizer was given.

RESULTS OBTAINED.

While the results cannot be regarded as perfect, in fact fall far short of that, nevertheless it is believed that they are valuable. Seven of the ten farmers worked on corn which was husked, (one of these by reason of sickness did not report on weight of fodder) one planted corn for ensilage, one sweet corn for a canning tactory, and one experimented on potatoes.

Table z gives the yield per acre of husked corn, 40 lbs . per bushel as husked, and ot todder, for each plot on each of the seven sets; plots ${ }^{17}, 18,19$ and 20, on Mr. Baker's acre, were destroyed by crows; the last two columns in the table give the average yield of corn and fodder from each plot, for the seven tests. In this table the three best yields are printed in black-faced type, the next three best in italics.

Taking this table as it stands and the best yield of corn is seen to be from manure, followed by plots 9 and 13, while the largest amount of fodder is found on plot 13 , followed by 9 and 5.

If we select and average the three best plots, not including the one with manure, in each set, we can then compare the results from chemicals with those from manure, prepared tertilizer, and ashes, and by averaging the four plots with no fertilizer we have the data for determming the relative efficiency of each method of supplying plant fooa. This method ot condensing results has been applied to table 2 and as a result we get table 3 , the upper half being tor huskea corn the lower for fodder.

Table 3 shows us that the average yield ot husked corn from manure was 89.69 bushels, from the best three combinations of chemicals 90.62 bushels, from prepared fertilizer 63.5^{8} bushels, frcm ashes 65.40 bushels, and from plots not fertilized 41.00 bushels.

To the farmer these figures mean a great deal, provided that they are representative results; now as the cost of chemi-
cals, ashes, and prepared fertlizer are the same, nny yain in product of one over the other represents profit, and we may

	Stanton.	Goodell,	Baker.	Gerrish.	Wood.	Brown.	Beaman.	Average.
Manure,	bu 62.5)	$\begin{gathered} \text { bu. } \\ 74 \end{gathered}$	bu. 89.75	$\begin{aligned} & \text { bu. } \\ & 108.5 \end{aligned}$	$\begin{aligned} & \text { bu. } \\ & 113.1 \end{aligned}$	bu. 67.5	$\begin{aligned} & \text { bu. } \\ & 112.5 \end{aligned}$	$\begin{aligned} & \text { bu. } \\ & \mathbf{8 !} .69 \end{aligned}$
Best three plots, $\{$	$\begin{aligned} & 115 \\ & 10375 \\ & 87.50 \end{aligned}$	$\begin{aligned} & 97.5 \\ & 93 \\ & 68 \end{aligned}$	$\begin{aligned} & 77.1 \\ & 7.75 \\ & 72.6 \end{aligned}$	$\begin{aligned} & 93 \\ & 9: \\ & 8925 \end{aligned}$	$\begin{array}{r} 101.75 \\ 92.50 \\ 86.25 \end{array}$	$\begin{aligned} & 82.5 \\ & 81 \\ & 77 \end{aligned}$	$\begin{aligned} & 110.5 \\ & 106 \\ & 103 \end{aligned}$	
Average.	$\begin{array}{r} 306.25 \\ 10908 \end{array}$	86.9	${ }^{2} 222.45$	$9{ }^{275.25}$	$\stackrel{280.50}{935}$	240.5 808	$\stackrel{319.5}{ }$	90.6\%
Prepared fertilizer,	70	36	58.25	910.75	50.0	67.8	85\%	(3)3.55
Aslies.	80	38.5	45.4	62	80.5	56	95.5	6.54
No fertilizer,	38.1	236	11.6	50.6	20.5	67.7	67.4	41
Fodder.								
		lbs.						
Manure,	5000	2020		3150	5764	2500	4000	37:39
	65500	3080		2790	4932	4480	5200	
Best three plots,	5200 5200	2180 2000		2635 2635	+298	3980 3700	5100 4800	
	56.5	2000 2420		2686	4503	405	5800 5033	4046
Prepared fertilizer,	- 4500	2440		2015	40.253	4050 3700	5 3000	2865
Ashes,	8200	1400		1705	3803	2560	2900	\%59\%
No fertilizer,	3050	1005		1325	1676	2845	3155	$\because 176$

well ask the question, Why do chemicals average a better yield than the prepared fertilizer?

The first step in answering this is to determine just what kind of plant food has been supplied in each case, and the proportion of the several kinds. If we take the fertilizers used on those plots which gave the three highest yields in each set, and average the per cent. of nitrogen, phosphoric acid and potash, we get the results given in table 4 .

Table 4. Composition of best Chemicals used.

The upper half of this table shows what kind of a fertilizer proved best for the production of corn on each of the seven farms, the last column averages all of these. The lower half of the table shows the same thing for the production of fodder, consequently these results may be regarded as applicable where the design is to raise ensilage; combining these averages and we may fairly claim, so far as the teachings of these experiments are concerned, that the best results come from a fertilizer, with the following chemical composition: (beside it is given the average analysis of 18 fertilizers sold in N. H. in 1889)

	Chemicals producing best results.	Average of ferilizers sold in N. H. in
Phosphoric acid	9.25	1.08
Potash	11.3	2.57
Nitrogen	3.5	2.45

The difference is very easily seen and we are forced to conclude that our prepared fertilizers are deficient in potash.

Or if we select from table 2 those three plots which yield highest in the average of all of the sets namely, 9, I3 and *6 the average composition is as below.

	Husked Corn.	Fodder,	Average of the two.
Phosphoric acid	10.7	7.	8.8
Potash	9.5	23.1	16.3
Nitrogen	2.	2.1	2.0

The best plots on fodder were $13,9,5$.

[^0]These results are in no wise unusual ; in our five years' work on the Station Farm, some of the results of which were reported in Bulletin No. 6, it has been found that the six combinations of chemicals which have given the highest income, on corn, per dollar invested have averaged:

Phosphoric acid	6.4
Potash	15.5
Nitrogen	2.5

EXPERIMENTS WITH ENSILAGE, SWEET CORN AND POTATOES.
The following are the results of experiments with the same combinations as for corn, on the crops above mentioned.

Table 5.				
	Towle. Sweet Corn value per acre.		Whittemore. Potatoes. bu. per acre.	McDaniel. Enslage. lbs. per acre.
1	\$68 60		172	9120
2	28.40		110	6480
3	57.40		180	11160
4	19.60		110	*5460
5	*30.50		115	7680
6	*41.8		160	12320
7	335.40		80	7720
8	*40.40		148	11520
9	57.80		150	13760
10	57.60		143.5	11000
11	31.60		70	6200
12	55.40		71.5	12400
13	5020		104	11920
14	60.20		128.5	10320
15	* +1.20		127.5	11200
16	* 42.60		90	10120
17	28.80		110	7000
18	32.60		16.3	7600
19	28.60		28	12800
20	45.20		98.5	9900
*A different variety of corn.				
		Towle. Sweet Corn Value of crop	Whittemore Potatoes bu.	McDaniel. Ensilage lbs.
Manure,			148	11520
Average of best $\}$		\$61.33	171	12986
3 plots of Chemicals, $\}$		\$60.20	$1281 / 2$	10320
Ashes,		\$55.40	$711 / 2$	12400
No fertilizer,		\$31.05	87	6850

*An accidental changing of seed puts this plot in another series.

The superiority of chemicals over prepared goods is again demonstrated in these trials. The composition of the fertilizers giving best three yields is as follows :

	Towle.	Whittemore.	McDaniel.
Phosphoric acid $\%$	I 0.8	11.6	4.0
Potash $\%$	I 1.0	7.1	24.1
Nitrogen $\%$	2.1	2.3	0.2

PLOT 6.
This plot, as before mentioned, had such fertilizers as each experimenter chose to apply.

Gov. Goodell applied $321 / 2$ pounds of Soluble Pacific Guano; unfortunately this was applied in the hill while all other fertilizers were broadcasted, comparison under this condition is impossible.

Mr. McDaniel used 4 bushels of her. manure on this plot; Mr. Gerrish 2 bushels of hen manure; Dr. Towle applied 28 lbs. of Quinnipiac fertilizer; Mr. Baker used 28 lbs . of Bradley's XL; Mr. Wood use $211 / 2$ pounds of ground bone and $1 / 2$ bushel of ashes, Mr. Whittemore applied 28 pounds of Stockbridge Potato Manure.

COMPARISON OF COST AND PRUDUCT.

CornCost of plant food per acre.		Value of increased yield	Value of increase per \$1 invested in plant food
Manure	\$15.00	\$16.00	\$1.07
Chemicals	10.00	17.08	1.7 I
Ashes	10.00	7.15	$.711 / 2$
Prepared fertilizer Sweet Corn	10.00	$7 \cdot 37$. 74
Chemicals	10.00	30.28	3.03
Ashes	10.00	24.35	$2.43{ }^{1 / 2}$
Prepared fertilizer Potatoes	10.00	29.15	2.91 1/2
Manure	15.00	30.50	2.03
Chemicals	10.00	42.00°	4.20
Ashes	10.00	Loss	
Prepared fertilizer	10.00	20.75	2.07 1/2

CONCLUSIONS.
rst. Chemicals when properlv mixed can fully take the place of farm yard manure as a source of plant food. this is shown by the averages of the best plots in each set (see table 3)
and. Chemicals when properly mixed can and do give greater increase of crop than Commercial fertilizers (see table 3 and page 7 .
$4^{\text {th }}$. The average chemical composition of fertilizers for New Hampshire should be Phosthoric acid, o to ir per cent., Potash, 9 to 15 por cent.. Nitrogen 2 to 4 ter cent., whereas the fertilizers offered to us in the market average Phosphoric acid, ${ }_{1} \mathrm{~F} \%$. Potash 2.5%, Nitrogen. 2.5%

To get such a fertilizer as the soil and plant demand farmers must buy crude chemicals and mix them in proportions which prove best by trial, until such time as the fertilizer manufacturers discard the present stereotyped $12-3-3$ formula which does not and never did rest upon any basis either of theory or practice.

With increased confidence in their value and adantation to New Hampshire conditions, I reprint a few of the combinations given in Bulletin No 6. The amounts are for one acre where no minure is used, and in all cases, with hoed crops, two-thirds of the mixture is to be sown broadcast and harrowed in, the remaining third to be put in the hill or drill.
I.

FOR CORN AND WHEAT.

Dissolved Bone black
Muriate of Potash
Sulphate of Ammonia
325 lbs. soo lbs. 75 lbs.

500
V.

OATS.
Dissolved Bone black 330
Muriate of Potash 105
Sulphate of Ammonia 65

500

VII.

HAY.
Dissolved Bone black 225
Muriate of Potash 254
Sulphate of Ammonia
21
500
IX.

POTATOES.
(a) or (b)

Dissolved Bone black 340300
Muriate of Potash $160 \quad 150$
Sulphate of Ammonia 50
$500 \quad 500$
It is hoped that this Bulletin will lead some of our farmers to test these combinations, using them side by side with Prepared fertilizers.

G: H. WHITCHER, Director.

The Bulletins of this Station are free to all farmers in the State who send a request for them to the Director.

$$
639.73 \quad \sqrt{53} \text { esp pi }
$$

nuw 7t ampshice
Bullitios $1-48$

[^0]: *6 received a variety of fertilizers among the different experimenters.

