Q 11 N82X NH

STUDY AND CORRELATION OF THREE WELLS IN CHAUTAUQUA COUNTY, NEW YORK

by

IRVING H. TESMER

Howard Yonkers No. 1 Well drilled by E. Rolland Rich and Rolland T. Blodgett Chautauqua County, N. Y., Sheridan Township

Robert Bates No. 1 Well drilled by C. E. Bournique and others Chautauqua County, N. Y., Ellery Township

Kyle Morse No. 1 Well drilled by E. Glaros and N. Katras Chautauqua County, N. Y., Harmony Township

A Report from the New York State Geological Survey

NEW YORK STATE MUSEUM AND SCIENCE SERVICE BULLETIN NUMBER 362

BOLLETIN NOWDER 302

The University of the State of New York The State Education Department

Albany, N. Y.

November 1957

M433r-Je57-1200

THE UNIVERSITY OF THE STATE OF NEW YORK

Regents of the University With years when terms expire

196 9	JOHN F. BROSNAN, A. M., LL. B., J. D., LL. D., D. C. L.,	
	D. C. S., Chancellor	New York
196 8	EDGAR W. COUPER, A. B., LL. D., Vice Chancellor	Binghamton
1963	Mrs. Caroline Werner Gannett, L. H. D., LL. D	Rochester
1961	Dominick F. Maurillo, A. B., M. D., LL. D	Brooklyn
1962	JACOB L. HOLTZMANN, LL. B., LL. D., D. C. L., Litt. D	New York
1964	Alexander J. Allan, Jr., LL. D., Litt. D	Troy '
1967	THAD L. COLLUM, C. E	Syracuse
1966	George L. Hubbell, Jr., A. B., LL. B., LL. D	Garden City
1958	T. NORMAN HURD, B. S., Ph. D	Ithaca
1960	CHARLES W. MILLARD, JR., A. B	Buffalo
1965	CHESTER H. LANG, A. B., LL. D	Schenectady
19 70	Everett J. Penny, B. C. S	White Plains

President of the University and Commissioner of Education JAMES E. ALLEN, JR., Ed. M., Ed. D., LL. D., Litt. D.

> Deputy Commissioner of Education EWALD B. NYQUIST, B. S., LL. D., Pd. D.

Associate Commissioner for Higher and Professional Education

Assistant Commissioner for State Museum and Science Service WILLIAM N. FENTON, A. B., Ph. D.

> State Geologist, State Science Service JOHN G. BROUGHTON, M. S., Ph. D.

State Paleontogist, State Science Service DONALD W. FISHER, A. M., Ph. D.

SAMPLE STUDY AND CORRELATION OF THREE WELLS IN CHAUTAUQUA COUNTY, NEW YORK

by

IRVING H. TESMER

State University of New York College for Teachers at Buffalo

A Report from the New York State Geological Survey

Howard Yonkers No. 1 Well Dunkirk Quadrangle: 4,750 feet west of Longitude 79°15' W. 12,000 feet north of Latitude 42°25' N. Commenced: July 13, 1954 Completed: October 15, 1954 Elevation: 875 feet Total Depth: 1,447 feet Result: Salt water

Robert Bates No. 1 Well Chautauqua Quadrangle: 4,900 feet east of Longitude 79°20' W. 11,700 feet south of Latitude 42°10' N. Commenced: September 14, 1948 Completed: April 14, 1949 Elevation: 1393 feet Total Depth: 3,000 feet Result: Abandoned as dry hole

Kyle Morse No. 1 Well Chautauqua Quadrangle: 300 feet east of Longitude 79°25' W. 5,500 feet south of Latitude 42°05' N. Completed: 1956 Elevation: 1,572 feet Total Depth: 7,100 feet Result: 180 MCF of gas at 4,250-4,254 feet 90 MCF of gas at 6,880 feet

NEW YORK STATE MUSEUM AND SCIENCE SERVICE

BULLETIN NUMBER 362

The University of the State of New York The State Education Department

Albany, N. Y.

November 1957

This is the fourth in a series of reports inaugurated by the New York State Geological Survey on well sample studies and correlation of important New York wells. This paper has been compiled under the direction of William Lynn Kreidler, Senior Geologist.

These reports are made possible by the cordial cooperation of the producing companies and individuals operating the wells. This bulletin is considered to be of interest in showing some of the facies changes which occur within the Devonian rocks of southwestern New York, along a north-south meridian.

The rock-color chart prepared by the National Research Council in 1948 was used as a standard for color comparison of well cuttings.

CONTENTS

PAGE
Summary of Yonkers No. 1 sample analysis 5
Summary of Bates No. 1 sample analysis
Summary of Morse No. 1 sample analysis 12
Tentative stratigraphic log of Yonkers No. 1 well 16
Tentative stratigraphic log of Bates No. 1 well 17
Tentative stratigraphic log of Morse No. 1 well
Comments 19
Percentage log and interpretative log of Bates No. 1 wellback
$\label{eq:percentage} \ensuremath{Percentage}\ \ensuremath{log}\ \ensuremath{and}\ \ensuremath{interpretative}\ \ensuremath{log}\ \ensuremath{of}\ \ensuremath{No.1}\ \ensuremath{well}\ \ensuremath{\ldots}\ \ensuremath{back}\ \ensuremath{back}\ \ensuremath{and}\ \ensuremath{back}\ \ensuremath{and}\ \ensuremat$
Percentage log and interpretative log of Yonkers No. 1 wellback
Tentative correlation of Morse No. 1, Bates No. 1 and Yonkers No. 1 wellsback

SAMPLE STUDY AND CORRELATION OF THE HOWARD YONKERS NO. 1 WELL*

SUMMARY OF SAMPLE ANALYSIS

DEVONIAN SYSTEM UPPER DEVONIAN (CHAUTAUQUAN) SERIES ARKWRIGHT GROUP

Dep	oth	
From	То	Description
0	20	Mantle
CANADAW	VAY FORM	MATION
Gowand	a member	
20	95	 65% Shale, light gray to medium gray 25% Shale, medium dark gray to dark gray 10% Siltstone, light gray to medium light gray; fresh water; shows of gas from 45 feet to 800 feet
95	130	60% Shale, light gray to medium gray 40% Shale, medium dark gray to dark gray
130	175	85% Shale, light gray to medium gray 15% Shale, medium dark gray
175	235	70% Shale, medium dark gray to dark gray 30% Shale, light gray to medium gray
South W	Vales membe	r
235	270	90% Shale, light gray to medium gray
		10% Shale, medium dark gray
270	320	70% Shale, medium dark gray to dark gray 30% Shale, light gray to medium gray
Dunkirk	member	
320	360	100% Shale, medium gray to grayish black
		SENECA GROUP
CHEMUNG	G FORMA	FION
Hanover	r member	
360	420	85% Shale, light gray to medium gray, w/some pyrite 15% Shale, medium dark gray to dark gray
420	440	100% Shale, medium light gray to medium gray
440	465	60% Shale, medium dark gray 40% Shale, light gray to medium gray
Pipe Cre	eek member	
465	470	100% Shale, medium gray to dark gray

^{*} The stratigraphic nomenclature employed herein follows the revisions suggested by Tesmer (1955) and has not yet been officially adopted by the Geological Survey, New York State Museum and Science Service.

Dept	h	
From	То	Description
Angola m	ember	
470	615	95% Shale, light gray to medium gray 5% Shale, medium dark gray
615	625	70% Shale, medium dark gray to dark gray, w/some
(05	(0 5	30% Shale, medium light gray to medium gray
625	695	90% Shale, light gray to medium gray 10% Shale, medium dark gray
695	760	50% Shale, light gray to medium gray 50% Shale, medium dark gray to dark gray
Rhinestre	et member	
760	885	100% Shale, medium gray to dark gray, calcareous, con- cretions near top and bottom
NAPLES an	d GENES	SEE FORMATIONS
Casnaqua	member	
885	915	50% Shale, medium light gray to medium gray 50% Shale, medium dark gray
[·] Middlesez	k member	etc.
915	925	100% Shale, medium gray to dark gray
	MIDD	LE DEVONIAN (ERIAN) SERIES HAMILTON GROUP
MOSCOW-L	UDLOW	VILLE FORMATIONS
members	undifferen	tiated
92 5	945	50% Limestone, white to light gray, bryozoans,
		W/pyrite 30% Shale medium gray
		20% Shale medium dark grav
945	1,030	70% Shale, medium dark gray to dark gray, calcareous
		30% Shale, medium gray
1,030	1,070	85% Shale, medium dark gray, calcareous 15% Shale, medium gray
SKANFATE	TES FO	RMATION
Levanna	member	KWATTON .
1,07 0	1,120	100% Shale, dark gray, calcareous
MARCELLU Stafford	VS FORM member	IATION
1,120	1,135	80% Limestone, white to dark gray 20% Shale, dark gray, calcareous
Oatka Cr	eek memb	er
1,135	1,195	90% Shale, dark gray to black calcareous 10% Limestone, white to dark gray

Depth		
From	То	Description
ONONDAG.	A FOR M A	ATION
Mooreho	use member	•
1,195	1,335	100% Limestone, very light gray to medium gray, w/light gray to medium gray chert, w/calcite
Nedrow	member	
1,335	1,370	100% Limestone, very light gray to medium dark gray, w/light gray to medium dark gray chert, w/calcite
1,370	1,390	100% Limestone, light gray to medium dark gray, w/medium gray to medium dark gray chert, w/calcite
Edgecliff	member	
1,390	1,415	100% Limestone, very light gray to light gray, w/very light gray chert, w/calcite
1,415	1,425	60% Siltstone, very light gray to medium light gray, w/glauconite; Springvale sand horizon probably representing reworked Oriskany; salt water; show of oil
		40% Limestone, very light gray to light gray, w/very light gray chert, w/calcite
		SILURIAN SYSTEM
	UPPER	SILURIAN (CAYUGAN) SERIES

AKRON (?) FORMATION

1,425 1,447 100% Limestone, light gray to medium gray, dolomitic

SAMPLE STUDY AND CORRELATION OF THE ROBERT BATES NO. 1 WELL

SUMMARY OF SAMPLE ANALYSIS

DEVONIAN SYSTEM UPPER DEVONIAN (CHAUTAUQUAN) SERIES

Depth

From

Description

Τo rock units undifferentiated

0	237	No samples
237	261	100% Siltstone, light gray to medium light gray
261	342	No samples
342	3 48	100% Siltstone, light gray to medium light gray
348	397	No samples
397	407	100% Siltstone, light gray ; oil and gas
407	453	No samples
453	478	100% Siltstone, light gray; gas
478	518	90% Siltstone, light gray to medium light gray
		10% Shale, medium gray
518	525	No samples

ARKWRIGHT GROUP

CANADAWAY FORMATION

Northea	st member	
525	630	50% Shale, medium light gray to medium gray
		20% Shistone, light gray to medium light gray
((00	20% Shale, medium dark gray
630	680	90% Shale, medium light gray to medium gray
		10% Shale, medium dark gray
680	743	70% Shale, medium light gray to medium gray ; gas
		20% Shale, medium dark gray
		10% Siltstone, light gray
743	770	50% Shale, medium light gray to medium gray; good
		gas
		30% Siltstone, light gray
		20% Shale, medium dark gray
Shumla	member	
770	797	60% Siltstone, light grav to medium light grav
		30% Shale, medium dark gray
		10% Shale, medium gray
Westfiel	d member	
797	815	60% Shale, medium light gray to medium gray
		25% Shale, medium dark gray
		15% Siltstone, light gray
815	890	85% Shale, medium light gray to medium gray
	220	15% Shale medium dark gray
		To 70 Share, meetian dark gray

study of three wells in chautauqua county 9

$D\epsilon$	epth	
From	То	Description
890	990	70% Shale, medium light gray to medium gray 30% Shale, medium dark gray
990	1,045	75% Shale, medium light gray to medium gray
		15% Shale, medium dark gray
		10% Siltstone, medium light gray to medium gray
Laona	member	
1,045	1,070	40% Siltstone, light gray to medium light gray
		40% Shale, medium light gray to medium gray
		20% Shale, medium dark gray
Gowan	da-South Wa	les members
1,070	1,112	70% Shale, light gray to medium gray
		20% Shale, medium dark gray
		10% Siltstone, light gray to medium light gray
1,112	1,203	75% Shale, light gray to medium gray
		25% Shale, medium dark gray
1,203	1,278	65% Shale, medium light gray to medium gray
		30% Shale, medium dark gray
1.050		5% Siltstone, medium light gray
1,278	1,410	50% Shale, medium dark gray to dark gray
		45% Shale, light gray to medium gray
1 410	1 450	5% Shitstone, light gray to medium light gray
1,410	1,450	25% Shale, medium dark gray to dark gray
1 450	1 522	55% Shale medium light gray to medium gray
1,100	1,000	45% Shale, medium dark gray to dark gray
5 41		
Dunkir	k member	
1,522	1,564	100% Shale, medium gray to dark gray
		SENECA GROUP
CHEMUN	G FORMA	TION
Hanov	er member	
1,564	1,633	85% Shale, light gray to medium gray
	4 6 19 4	15% Shale, medium dark gray to dark gray
1,633	1,671	100% Shale, medium light gray to medium gray
Pipe C	reek member	
1,671	1,685	100% Shale, dark gray
Angola	member	
1,685	1,735	100% Shale, medium light grav to medium grav
1,735	1,798	75% Shale, light gray to medium gray
		25% Shale, medium dark gray to dark gray
1,798	1,880	95% Shale, medium light gray to medium gray
		5% Shale, medium dark gray
1,880	1,903	55% Shale, medium dark gray to dark gray
		45% Shale, medium light gray to medium gray

Dep	th	
From	То	Description
1,903	1,938	40% Siltstone, light gray to medium light gray 35% Shale, medium dark gray to dark gray 25% Shale, medium gray
1,938	2,000	55% Shale, medium light gray to medium gray 45% Shale, medium dark gray to dark gray
2,000	2,048	90% Shale, light gray to medium gray 10% Shale, medium dark gray
2,048	2,122	70% Shale, medium dark gray to dark gray, calcareous at bottom30% Shale, light gray to medium gray
Rhinestr	eet member	
2,122	2,266	100% Shale, medium gray to grayish black, calcareous, concretions near middle and bottom, w/some pyrite
NAPLES an Cashagu	nd GENES a member	EE FORMATIONS
2,266	2,292	50% Shale, medium gray 50% Shale, medium dark gray
Middlese	ex member (etc.
2,292	2,313	95% Shale, medium dark gray 5% Shale, medium gray
	MIDD	LE DEVONIAN (ERIAN) SERIES HAMILTON GROUP
MOSCOW-	LUDLOW	VILLE FORMATIONS tiated
2,313	2,352	70% Shale, medium dark gray, calcareous, w/some pyrite 30% Shale, medium gray
2,352	2,375	70% Shale, medium gray, calcareous 30% Shale, medium dark gray
2,375	2,403	100% Limestone, white to medium dark gray; "Tully" of drillers*
2,403 2,442	2,442 2,508	100% Shale, medium gray, calcareous 65% Shale, medium dark gray, calcareous 35% Shale, medium gray
SKANEAT	ELES FO	RMATION
Levanna 2,508	1 member 2,555	90% Shale, medium dark gray to dark gray, calcareous 10% Shale, medium gray
MARCELL	US FORM	IATION
Stafford	l member	•

2,555 2,567 60% Limestone, white to dark gray 40% Shale, medium dark gray to dark gray, calcareous

^{* &}quot;Tully" of drillers is not the true Tully but it is one of several limestone members found in the Hamilton Group of Chautauqua County. See comment 7, page 19.

De	pth	
From	То	Description
Oatka (Creek membe	er 100% Shala madium dark grav ta gravish blask asl
2,507	2,022	100% Shale, medium dark gray to grayish black, car-
		careous
ONONDA	GA FORMA	ATION
Mooreh	ouse membe	r
2,622	2,703	100% Limestone, very light gray to medium gray, w/light gray to medium gray chert, w/calcite
2,703	2,720	100% Limestone, very light gray to medium dark gray, w/light gray to medium dark gray chert, w/calcite
2,720	2,731	100% Limestone, very light gray to medium gray, w/light gray to medium gray chert, w/calcite
Nedrow	member	
2,731	2,796	100% Limestone, light gray to medium dark gray, w/medium gray to medium dark gray chert, w/cal- cite
Edgecli	ff member	
2,796	2,816	100% Limestone, very light gray to light gray, w/very light gray chert, w/calcite
2,816	2,822	 50% Siltstone, very light gray to medium light gray, w/glauconite; Springvale sand horizon probably representing reworked Oriskany 50% Limestone, very light gray to light gray, w/very light gray chert, w/calcite

LOWER DEVONIAN (ULSTERIAN) SERIES

ORISKANY FORMATION

2,822 · 2,827 100% Sandstone, white to medium light gray, coarse grained, w/glauconite

SILURIAN SYSTEM UPPER SILURIAN (CAYUGAN) SERIES

AKRON (?) FORMATION

2,827 100% Limestone, light gray to medium gray, dolomitic; good show oil at 2,830-41 feet

Total Depth: 3,000 feet

NEW YORK STATE MUSEUM AND SCIENCE SERVICE

SAMPLE STUDY AND CORRELATION OF THE KYLE MORSE NO. 1 WELL

SUMMARY OF SAMPLE ANALYSIS

DEVONIAN SYSTEM UPPER DEVONIAN (CHAUTAUQUAN) SERIES

Description

Depth

From To

rock uni	ts undiffere	entiated
0	450	No samples
450	515	80% Siltstone, light gray to medium gray
		20% Shale, medium gray

515	548	100% Siltstone, light gray to medium gray
548	645	70% Siltstone, light gray to medium gray
		30% Shale, medium gray

ARKWRIGHT GROUP

CANADAWAY FORMATION

Northe	ast member	
645	801	70% Shale, light gray to medium gray
		30% Siltstone, light gray to medium light gray
801	971	75% Siltstone, light gray to medium light gray
		20% Shale, medium light gray to medium gray
		5% Shale, medium dark gray
971	1,094	80% Shale, medium light gray to medium gray
		10% Siltstone, light gray to medium light gray
		10% Shale, medium dark gray
1,094	1,107	45% Siltstone, light gray to medium light gray
		35% Shale, medium gray
		20% Shale, medium dark gray
Shuml	a member	
1,107	1,139	60% Siltstone, light gray to medium light gray
		25% Shale, medium dark gray
		15% Shale, medium gray
Westfi	eld member	
1,139	1,221	55% Shale, medium light gray to medium gray
		30% Shale, medium dark gray
		15% Siltstone, light gray
1,221	1,308	90% Shale, medium light gray to medium gray
		10% Shale, medium dark gray
1,308	1,423	75% Shale, medium light gray to medium gray
		15% Shale, medium dark gray
		10% Siltstone, light grav to medium light grav

STUDY OF THREE WELLS IN CHAUTAUQUA COUNTY 13

Dept	h	
From .	То	Description
Laona me	ember	
1,423	1,466	50% Siltstone, light gray 30% Shale, medium light gray to medium gray 20% Shale, medium dark gray
Gowanda	-South Wa	ales members
1,466	1,730	70% Shale, medium light gray to medium gray 15% Shale, medium dark gray to dark gray 15% Siltstone, light gray to medium light gray
1,730	1,790	70% Shale, medium gray 30% Shale, medium dark gray
1,790	1,816	50% Shale, medium dark gray to dark gray 50% Shale, light gray to medium gray
Dunkirk	member	
1,816	1,866	100% Shale, medium dark gray to grayish black
		SENECA GROUP
CHEMUNG	FORMA	TION
Hanover	member	
1,866	1,971	75% Shale, light gray to medium gray, sl/calcareous25% Shale, medium dark gray to dark gray
Pipe Cree	ek member	
1,971	1,983	100% Shale, dark gray to grayish black
Angola m	nember	· · · ·
1,983	2,057	95% Shale, medium light gray to medium gray 5% Shale, medium dark gray
2,057	2,097	70% Shale, medium light gray to medium gray 20% Shale, medium dark gray 10% Siltstone, light gray to medium light gray
2,097	2,217	75% Shale, medium light gray to medium gray 25% Shale, medium dark gray to dark gray
2,217	2,251	80% Shale, medium light gray to medium gray 10% Shale, medium dark gray 10% Siltstone light gray to medium light gray
2,251	2,320	85% Shale, medium light gray to medium gray 15% Shale, medium dark gray to dark gray
2,320	2,355	65% Shale, light gray to medium gray 35% Shale, medium dark gray to dark gray 5% Siltstone medium light gray
2,355	2,431	70% Shale, medium light gray to medium gray 30% Shale, medium dark gray to dark gray
Rhinestre	et member	
2,431	2,550	100% Shale, medium gray to grayish black, calcareous
NAPLES and	d GENES	EEE FORMATIONS
2.550	2 575	50% Shale medium gray
-,000	2,070	50% Shale, medium dark gray

Deţ	oth	
From	То	Description
Middle	sex member	etc.
2,575	2,600	85% Shale, medium dark gray, w/some pyrite 15% Shale, medium gray
	MIDDL	E DEVONIAN (ERIAN) SERIES HAMILTON GROUP
MOSCOW-	LUDLOW	VILLE FORMATIONS
member	s undifferen	tiated
2,600	2,626	60% Shale, medium dark gray to dark gray, calcareous 30% Shale, medium light gray to medium gray 10% Limestone, very light gray to light gray, w/some pyrite
2,626	2,659	100% Limestone, white to dark gray; top of "Tully" of drillers*
2,659	2,701	75% Shale, medium dark gray to dark gray, calcareous 15% Shale, medium gray 10% Limestone very light gray to dark gray
2,701	2,720	85% Limestone, white to dark gray; base of "Tully" of drillers
		10% Shale, medium dark gray to dark gray, calcareous 5% Shale, medium gray
2,720	2,767	90% Shale, medium gray, calcareous
2 767	2014	10% Shale, medium dark gray
2,707	2,014	35% Shale, medium dark gray, calcareous
SKANEAT	ELES FO	RMATION
Levanna	a member	
2,814	2,835	100% Shale, medium dark gray to dark gray, calcareous
MARCELL Stafford	US FORM 1 member	ATION
2,835	2,841	50% Limestone, white to dark gray 50% Shale, medium dark gray to dark gray, calcareous
Oatka (Creek membe	er
2,841	2,904	100% Shale, medium gray to grayish black, calcareous

ONONDAGA FORMATION

Moore	house member	
2,904	2,969	100% Limestone, very light gray to medium gray,
		w/light gray to medium gray chert, w/calcite
2,969	2,985	100% Limestone, very light gray to medium dark gray,
		w/light gray to medium dark gray chert, w/calcite

^{* &}quot;Tully" of drillers is not the true Tully but it is one of several limestone members found in the Hamilton Group of Chautauqua County. See comment 7, page 19.

STUDY OF THREE WELLS IN CHAUTAUQUA COUNTY

Dep	oth	
From	То	Description
2,985	2,992	100% Limestone, very light gray to medium gray, w/light gray to medium gray chert, w/calcite
Nedrow	member	
2,992	3,070	100% Limestone, light gray to medium dark gray, w/medium gray to medium dark gray chert, w/cal- cite
Edgeclif	f member	
3,070	3,100	100% Limestone, very light gray to light gray, w/very light gray chert, w/calcite
3,100	3,135	 80% Siltstone, very light gray to medium light gray, w/glauconite; Springvale sand horizon probably representing reworked Oriskany 20% Limestone, very light gray to dark gray, w/very light gray to medium gray chert, w/calcite, w/some
		gypsum

SILURIAN SYSTEM UPPER SILURIAN (CAYUGAN) SERIES

AKRON (?) FORMATION 3,135 100%

100% Limestone, light gray to medium gray, dolomitic, w/gypsum

Total Depth: 7,100 feet

<i>Series</i> Chautauquan Erian	TENTATIVE S <i>Group</i> Arkwright Seneca Hamilton	TRATIGRAPHIC LC DEVONIAN 5 <i>Formation</i> Canadaway Chemung Chemung Maples and Genesee Moscow-Ludlowville Skaneateles Marcellus Onondaga	DG OF YONKERS NO SYSTEM Member Gowanda South Wales Dumkirk Hanover Pipe Creek Angola Rhinestreet Cashaqua Rhinestreet Cashaqua Middlesex etc. Levanna Stafford Oatka Creek Moorehouse Nedrow Fdgecliff). 1 WEL $P_{rom} D_e$ $F_{rom} D_e$ $P_{rom} D$	L P_{Pth}^{Pth} T_{o} T_{o} T_{o} 1,070 1,135 1,070 1,120 1,135 1,020 1,135 1,200 1,120 1,200	Thickness 85 40 105 290 125 125 125 125 125 140 140 150 140 150 35 35 35
		SILURIAN S	SYSTEM			
Cayugan		Akron (?)		1,425	(¿)	

	TENTATIVE ST	RATIGRAPHIC L	OG OF BATES NO. 1	WELL		
		DEVONIAN S	SYSTEM		1	
Series	Group	Formation	Member	From	T_{O}	Thickness
Chautauquan	Arkwright	Canadaway	Northeast	(2)	770	
		•	Shumla	770	797	27
			Westfield	161	1,045	248
			Laona	1,045	1,070	25
			Gowanda-South Wales	1,070	1,522	452
	c		Dunkirk	1,522	1,564	42
	Seneca	Chemung	Hanover	1,564	1,671	107
			Pipe Creek	1,671	1,685	14
			Angola	1,685	2,122	437
			Rhinestreet	2,122	2,266	144
		Naples and Genesee	Cashaqua	2,266	2,292	26
			Middlesex etc.	2,292	2,313	21
Erian	Hamilton	Moscow-Ludlowville		2,313	2,508	195
		Skaneateles	Levanna	2,508	2,555	37
		Marcellus	Stafford	2,555	2,567	12
			Oatka Creek	2,567	2,622	55
		Onondaga	Moorehouse	2,622	2,731	109
			Nedrow	2,731	2,796	65
			Edgecliff	2,796	2,822	26
Ulsterian		Oriskany	· · · · · ·	2,822	2,827	ŝ
		SILUKIAN S	YSTEM			
Cayugan		Akron (?)		2,827	(;)	

ODI OI I

		DEVONIAN S	SYSTEM			
Series	Group	Formation	Member	From.	pth_{T_O}	Thickness
Chautauquan	Arkwright	Canadawav	Northeast	(2)	1.107	11111111111
	D		Shumla	1.107	1.139	32
			Westfield	1.139	1.423	284
			Laona	1,423	1,466	43
			Gowanda-South Wales	1,466	1.816	350
			Dunkirk	1,816	1,866	50
	Seneca	Chemung	Hanover	1,866	1,971	105
)	Pipe Creek	1,971	1.983	12
			Angola	1,983	2,431	448
			Rhinestreet	2,431	2,550	119
		Naples and Genesee	Cashadila	2,550	2,222	5
			Middlesex etc.	2.575	2,600	25
Erian	Hamilton	Moscow-Ludlowville		2,600	2.814	214
		Skaneateles	Levanna	2,814	2,835	21
		Marcellus	Stafford	2,835	2,841	9
			Oatka Creek	2,841	2,904	63
		Onondaga	Moorehouse	2,904	2,992	8
		I	Nedrow	2,992	3,070	78
			Edgecliff	3,070	3,135	65
		SILURIAN ST	YSTEM			
Cayugan		Akron (?)		3,135	(¿)	

TENTATIVE STRATIGRAPHIC LOG OF MORSE NO. 1 WELL

COMMENTS

- 1. The upper contact of the Northeast member of the Canadaway formation was not determined in the Bates and Morse wells because of incomplete well cuttings and lack of faunal evidence.
- 2. The black shale band which marks the base of the Gowanda member of the Canadaway formation in surface exposures and in the Yonkers well is not recognized in the other two wells. Hence, the Gowanda and South Wales members of the Canadaway formation are not separated in the Bates and Morse wells.
- 3. Considerable variation in the thickness of the combined Gowanda-South Wales members between the Bates and Morse wells may indicate a disconformity at the base of the overlying Laona siltstone member of the Canadaway formation.
- 4. The rather rapid increase in thickness of the Angola member of the Chemung formation from the Yonkers well to the Bates well is accompanied by an increase in siltstone content. The presence of this siltstone may indicate a rather rapid local accumulation of sediments at the site of the Bates well during a portion of Angola time.
- 5. The boundary between the Chemung and Naples formations is redrawn at the Rhinestreet-Cashaqua contact as the latter is distinct across western New York. (Pepper, de Witt & Colton, 1956)
- 6. The rock unit designated Middlesex etc. probably includes two or more thin subdivisions but these cannot be differentiated in the well cuttings. They may include the West River, Genundewa and/or Geneseo, hence the combined term Naples and Genesee formations.
- 7. Variations in lithology do not permit easy subdivision of the Moscow and Ludlowville formations which are not separated in this report. Pyrite or marcasite occurs at the top of the Moscow which may be represented by gray shale or by interbedded shale and limestone as in the Yonkers well. This is at or near the horizon of the Tully pyrite of western New York, renamed the Leicester marcasite by Sutton (1951). The limestone beds which occur at greater depth within the Moscow-Ludlowville formations are relatively free of pyrite or marcasite. These beds occur in the Bates and Morse wells and are called "Tully" limestone by drillers. This seems improper for the limestone lies within shales, possibly near the contact between the Moscow and Ludlowville. Thus the

"Tully" limestone is not Tully in age but may actually be the Tichenor limestone or represent some unit not exposed at the surface.

- 8. The members of the Onondaga limestone are determined largely on the basis of the color of the limestone and accompanying chert. The Nedrow member contains relatively dark limestone and chert whereas the Moorehouse and Edgecliff members are composed of relatively light-colored limestone and chert. These members may be interbedded locally. The youngest Seneca member of the Onondaga, characterized by a thin layer of bentonite, is not recognized in any of the well cuttings.
- 9. The basal portion of the Edgecliff member of the Onondaga limestone usually contains an abundance of siltstone with glauconite, called the Springvale sand horizon. This is believed to represent reworked Oriskany sandstone.
- 10. The true Oriskany sandstone is noted only in the Bates well where it consists of about five feet of coarse grains of transparent to translucent sand containing considerable amounts of glauconite.

REFERENCES CITED

Pepper, J. F., de Witt, W. & Colton, G. W.

1956. Stratigraphy of the West Falls formation of late Devonian age in western and west-central New York. U.S. Geol. Surv. Oil and Gas Investigations Chart OC 55

Sutton, Robert G.

1951. Stratigraphy and structure of the Batavia quadrangle. Rochester Acad. Sci. Proc., 9:348-408

Tesmer, Irving H.

1955. Restudy of Upper Devonian (Chautauquan) stratigraphy and paleontology in southwestern New York State. N. Y. State Mus. Cir. 42. 22p.

LEGEND		
INTERPRE- TATIVE TATIVE	• • • • • • • • €	
MEMBER		
FORM AT ION		
ERIES D STEM D STEM		

PERCENTAGE LOG AND INTERPRETATIVE LOG OF ROBERT BATES NUMBER I WELL

PERCENTAGE LOG AND INTERPRETATIVE LOG OF HOWARD YONKERS NUMBER I WELL

LEGEND

Limestane

Limestane, Dalamitic

Shale, medium dark gray ta black

Shale, Calcareaus

ν

Δ

Shale, light gray ta medium gray

Silt

Siltstane

🗗 Calcite

Glaucanite

Chert, light gray ta medium gray

Chert, medium dark gray

a Pyrite

Elevati
1600.
000
1400
1300
1200
1100
000
900
00
700
600. ^k
500
400
00 -
00
00
si -
00
00
00
00
00
700
100
900
000
100
200
1000
400
500
00 -

