.

SMITHSONIAN
 INSTITUTION

MUSEUM
 0 F
 NATURAL
 HISTORY

Cetothere Skeletons from the

Miocene Choptank Formation of

Maryland and Virginia

REMINGTON KELLOGG

SMITHSONIAN INSTITUTION PRESS
CITY OF WASHINGTON
1969

Publications of the United States National Museum

The scientific publications of the United States National Musemm include two series, Proccedings of the I'nited States National Museum and I'nited States Vational Museum Bulletin.

In these series are published original articles and monographs dealing with the collections and work of the Musemm and setting forth newly acquired facts in the fields of anthropology, biology, geology, history, and techolory. Copies of each publication are distributed to libraries and scientific organizations and to specialists and others interested in the various subjects.

The Proceedings, begm in 1878, are intended for the publication, in separate form, of shorter papers. These are gathered in volumes, octavo in size, with the publi-
cation date of each paper recorded in the table of contents of the volume.

In the Bulletin series, the first of which was issued in 1875 , appear longer, separate publications consisting of monographs (occasionally in several parts) and volumes in which are collected works on related subjects. Bulletins are either octavo or quarto in size, depending on the needs of the presentation. Since 1902, papers relating to the botanical collections of the Musenm have heen prblished in the Bulletin series under the heading Contributions from the United States National Herbarium.

This work forms number 294 of the Bulletin series.

Frank A. Taylor
Director, United States National Museum

Contents

Page

1. The skeleton of a Miocene Choptank cetothere 1
Thinocetus, new genus 2
Thinocetus arthritus, new species 3
2. The vertebrae of a second Miocene Choptank cetothere 24
Halicetus, new genus 25
Halicetus ignotus, new species 25
Literature cited 40
Plates 41

Cetothere Skeletons From the Miocene Choptank Formation of Maryland and Virginia

\author{

1. THE SKELETON OF A MIOCENE CHOPTANK CETOTHERE
}

Discovery of additional mysticete skulls in Oligocene marine formations would furnish a much more authoritative basis for speculative opinions relative to their early geological history. The apically attenuated triangular supraoceipital shield of Cetotheriopsis lintianus (Brandt, 1873 , pl. 19), which was recovered near Linz, Austria, from the white quartz sands of the Oligocene Chattian stage, represents an adranced phase in the remodeling of the mysticete skull. The pronounced forward thrust of the posterior cranial bones of this skull clearly supports the conclusion that the remodeling of the cranial architecture of these Tertiary whalebone whales had progressed beyond the initial overriding of the intertemporal region by the supraoecipital prior to the Miocene.

Furthermore, three distinct types of posterior eranial remodeling represented by Morenocetus porvus (Cabrera, 1926, fig. 1), "Plesiocetus" dyticus (Cabrera, 1926, fig. 3), and Aglaocetus moreni (Kellogg, 1934), and for which no prior geological antecedents are as yet known, have been excarated in the lower Miocene Patagonian marine formation.

The skull of Aetiocctus cotylaleeus (Emlong, 1966), which was discovered in the upper Oligocene marine Yaquina formation of northwestern Oregon, and which has the horizontally divided posterior end of the maxillary projecting backward above and below the supraorbital process of the frontal, a typical mysticete interlocking structural relationship, camot be considered to be in the direct antecedent lineage of the mysticetes. but does suggest what may have been basic ancestral skull architecture. This Oligocene cetacean seems to have had the usual diphyodont mammalian dentition, the crowns of the cleek teeth having serrated edges. Vestigrial cheek teeth are present in the jaws of fetal Recent mysticetes. On all archaeocete skulls thus far described, including Protocetus, Prozeuglodon,

Baxilosammes. Mommon. and Zygorhizu, molar teetls are located on the hinder end of the maxillary, which projects backward beneath the supraorbital process of the frontal, and not anterior to this process as in Putriocetus, Microzeuglodon, and Aetiocetus, and probably also in Agorophius and Archaeodelphis.

The direction, elongation, and curvature of the upper and lower transverse processes of the sixth cervical rertebra indicate that the cervical extension of the thoracic retia mirabilia had been previously developed and acquired by this Oligocene Actiocetus.

On the Actiocetus skull the transversely narrowed posterior ends of the palatine bones, separated medially by the vertical plate of the vomer, are prolonged backward beyond the level of the anterior end of the pterygoid fossa, much farther backward than on the skull of any known Eocene archaeocete. This backward prolongation of the palatines increased the length of the internal chomae. The narial fossa in front of the elongated nasal bones is situated at the middle of the length of the skull. The conformation of the bones enclosing the internal choanae may not, however, possess any particular phylogenetic significance. The backward shift of the exteinal nares and the associated narial fossa in the mesorostral trough does not appear to have any cansal relationship with the prolongation of the internal choante on all skulls of Recent cetaceans. For instance, the palatines on the skull of the finback, Palacnoptera physulus, are not extended mackward beyond the level of the anterion end of the perveroid fossa although the relatively small hasall bones behind the narial fossa are situnted almost entirely posterior to the level of the anterior end of the orbit. Conversely on the skull of the bowhead, Balacna mystictuas, the palatines extend backward to the occipital condyles and the narial fossa is located far forward on the rostrum, approximately behind the middle of the length of the
skull. Among Recent oflontaretes the most pronounced backward extension of the palatines is observable on ziphoid skalls ledonging to the grenera berompits. Ziphims.and $1 /$ conplodom.

A gradual improvement in the stering function of the forelimb is evidenced in the trend toward shortening of the humerus acorreing to Meherllidze (196t, pp). to-16), a trem he thought appeared earlier in the geologeral history of the retotheres than in the Delphinoidea. The forelimbs are employed in turning, diving, and balancing.

Howell (1930, p. 231) mentioned the phenomenal shortening of the humerus of Recent retacens and also directed attention to the observable variability in the radial length. The humerus of many Recent odontocetes is shorter than the radius, but there are exceptions to this condition. The humerus of Physeter. Kogia, Pontoporia, and Platmista is defmitely longer than the radius, the length of the humerns of the Ganges river dolphin being twice the radial length. The sirnificame of this discordance in the relative lengths of the homerus and radius among living ofontocetes is not readily apparent. The lmmerns of at least four Calvert Miorene porpoises, Squatodon caliertensis. Eurhinodelphis bossi. Kentriodon pernix, and Detphinodon dividum. is longer than the radius; the radius of an adult S qualodon is about three-fourths of the length of the hamerns. The presmed original mobility of the rlbow joint of these four fowsil porpoises has been larerely lost. There are mquestionably several different factors, incluting the shifting of the origin and insertion of the intrinsie musculature, that have accelerated and/or retarded the shortening of the hmmerus in some cetareams.

The hmmerus of the North American archaeocetes Baxilowmms etoides and Zygorhizahochii is elongated, the length of the radius being equivalent, respectively, to one-half to seven-tenths of the length of the humerus. Both of these archaeocetes have retained the hall and socket character of the shoulder joint and the synovial "haracter of the ellow joint.

Conversely, the limmerus of the large ('alvert cetotheres is shorter than the radius, being equivalent to fic percent of the length of the radius of Pefocetue catrertensis. in contrast to a ratio of it pereent (ISNM
 large individuals from this formation, and at least 7 on perent for the balamopterid "E'sehrichtins" rephahus Cope. The lamerus of this ('hoptank cetothere is equivalent to $G \bar{t}$ perent of the length of the radias. These Miocene rototheres have retained the hall and socket
character of the shonlder joint, but have lost the synovial character of the elbow joint.

This shortening trend has not proceeded as far in the slow swimming Balaenidae as in the balaenopterine whales, the length of the hmmerus of both Balaena m:ysticetus and E'ubalacna glacialis being equivalent to or at least mine-tenths of the length of the radius. The pectoral flippers of these smooth-throated whales are wide and stubby, and are equivalent to 12 to 18 percent of lengtl of whale.

Shortening of the humerus seems umelated to swimming speed. The entire forelimb of the rather slow swimming hmmplrack (Megaptera novaeangliae) is excessively elongated, occasionally one third of the whale's length, and yet the relative lengths of the two upper arm bones are not materially different from those of a large-fin or furrow-throated whale (Bataenoptera), the length of whose humerus was equivalent to about 65 percent of the length of the radius.

An efficient steering organ would serve a more useful function for a rapid than for a slow swimmer. The sei whale (Balaenoptera borealis) is considered to be the fastest swimmer among living balaenopterids and is reputed to attain a speed of 35 knots an hour for several mimutes. The length of the pectoral flipper, tip to axilla, of the adult sei whale is equivalent to 8 to 11 percent of the total length of the whale, which compares favorably with 8 to 10 percent for the finback and 10 to $121 / 2$ percent for the blue whale. Blue and finbacks have been observed to mantain a speed of 18 to 20 knots for 10 or 15 minutes, their nomal cruising speed being 10 to 12 knots. The length ratio of the humerus to the radius of one 45 -foot adult sei male is 49 percent. For other living balaenopterid whales, however, especially Balaenoptera arutorostrata and B. physahus, this length ratio is as low as 58 and as high as 70 percent.

There is, thus, no evidence of a direct relationship between either the overall length of the pectoral flipper or the length ratio of humerus to radius and the crinising speed of the whale. Cutil skeletons of Oligocene or geologically older predecessors of the middle Miocene cetotheres are discovered, further speculation may not prove very informative.

Thinocetus, ${ }^{1}$ new genus

True-sperns.-Thimocetus arthritus, new species.
bhavosis.- Itas massive, thick; a short rugrose, transersely widened hyapophysial process present. Odontoid process of axis slember, unusually elongated.

[^0]Pedicles of neural arch of third to sixth cervicals short, widened; neural canal low, unusually wide; roof of neural canal slightly arched, almost horizontal. Neural spines of first to fourth dorsals short, nearly vertical, not noticeably slanting backward and their height equivalent to less than half vertical diameter of corresponding vertebra, in contrast to somewhat longer backward slanting neural spines of ninth to twelfth dorsals whose height is equivalent to or slightly more than half vertical diameter of corresponding vertebra. Neural canals of first to eighth dorsals low, very wide; roof of neural canal not arched, nearly horizontal: diapophyses stout, broad, dorsoventrally compressed. Elongrated, hackward slanting neural spines present on first to ninth lumbars; metapophyses rather slender. Transverse process of first to fourth caudals short and broad, not widened distally. Seapula wide, acromion broad, coracoid process short and stont, and preseapular fossa very narrow. Length of humerus about 67 percent of length of radius. Posterior process of periotic elongated, rather slender, increasing in diameter distally; anterior process compressed from side to side, deeply concave internally and convex externally; posterior profile from a ventral view deeply indented between pars cochlearis and posterior process.

Thinocetus arthritus, new species

Thpe-specimen.-USNM 23794. Posterior portion of cranium, incomplete: right and left tympanic bullae, right and left periotics, left mandible lacking section near anterior end, atlas, axis and 3 cervicals, 12 dorsals, 12 lumbars, 12 eaudals, 3 ehevrons, right scapula complete, left scapula lacking anterovertebral angle, right and left humerus, right and left uha, right radins, 7 carpals, 7 metaearpals, 3 phalanges, 22 rilis. Collectors, Albert C. Myrick, Jr., and Charles F. Buddewhagen, September 21-25, 1966.

Horizon and locality.-Low cliff east of Mud Cliffs on south shore of Potomac River ($\mathbf{~} / 10$ mile west of Haulover Point on Haulover Inlet), 1 s 0 feet west of Md. Va. Boundary Monument 24, Westmoreland Coumty, Virginia. In greenish sandy silt in transitional layer three feet ten inches below zone 17 shell bed containing Isornommen. Perten madisonius, Perten marylandia. Saxolucina D.P., Crassutella trrgiduter. and Eephora quadricostata. Choptank formation, middle Miocene.

Referrel spectmen.-One, as follows: I'SNM 22961 ; left mandible lacking portion of ramus hehind cormoid process, axis, third cervieal, lumbery, and a terminal caudal, coll. Thomas E. Stokel, November 1962, in zone 17 at Cape St. Marys, east of Hollywood
and on Patuxent River, St. Marys County, Md. Choptank formation, middle Miocene.

SKULL

Prior to excavation the entire rostrum and all of the braincase in front of the lateral protuberances of the basioccipital had been broken off and destroyed when the skull was exposed on the face of the cliff either during crosion by the Potomac River at flood time or subsequent slumping.

The vertical partition between the chomae, which seemingly diminished rapidly posteriorly, is continued lackward to within a few millimeters of the end of the horizontally flattened portion of the vomer which conceals the transverse contact between the basisphemoid and the basioceipital. No remmants of either pterygoid remain attached to this portion of the basicranium (p). 1 , fig. 1). The ventral suriace of the large descending knob-like protuberance on each side of the basioccipital is somewhat eroded. This protuberance does not, however, contribute the inner wall of the notch or incisure for the jugular leash, although it is contimuous posteriorly with the thin descending external border of the basioceipital which does limit this side of the posterior lacerated foramen. The external wall of this notch is formed by the exoccipital. The inner faces of these lateral protuberances are separated by an interval of 50 mm .

The greatest width of the tympanoperiotic recess did not exceed 50 or 60 mm . 1 n front of each tympanoperiotic recess the pterygoid bone that constitutes most of the osseous walls of the pterygoid fossa has been destroyed on this basicranium.
The right postglenoid process is broken otl at the base and the zygomatic process is also missing.

The left squamosal lacks the anterior face of the postglenoid process and all of the zygomatic process. This left postglenoid process is deflected obliquely backward and its thin anteroposteriorly compressed extremity is extended at least 50 mm . below the level of the lateral protuberances of the basioccipital. Viewed from hehind the acute profile of the rentrally prolonged posterlenoit process results from an ohlique extemal trmation and a shallowly concave intemal curvature. Between the posterior process of the periotic and the base of the concarely curved posterion face of the postglenond process is the deep transverse channel for the extemal anditory meatus: this chamel is narower extemally than internally. I broad shallow coneavity on the wentral surface of the right squamosal external to the pterygoid fossat extends halkward to its sharp-edged
posterior margin. The bifureated anterior end of the squanosal, which encloses the dorsomentrally compressed foramen ovale (length 21 mm.), is preserved on the right side.

The external angles of the exoccipitals project backward barely beyond the level of the posterior articular surfaces of the occipital condyles. A small cavity on the ventral edge of the exoccipital, limited internally by a sharp-edged ridge, marks the area for attachment of the stylohyoid.

The occipital condyles are large and the foramen magnm rather narrow. The articular surfaces of each condyle are more strongly convex from end to end than from side to side and they are separated ventrally by a deep narrow groove.

See table 1 for measurements of the sknll.
Table 1.-Measurements (in mm.) of the skull, USNM 23794

Exoccipital width $500 \pm$ Transverse distance between outside margins of zygo- matic processes	$670 \pm$
Transverse distance between outer margins of opposite occipital condyles	176
Greatest or oblique-vertical diameter of right occipital condyle	104
Greatest transverse diameter of right occipital condyle	67
Greatest transverse diameter of foramen magnum	

TYMPANIC BULLA

Both tympanic bullae (USNM 23794) were crushed against the corresponding periotic and consequently the anterior and posterior pedicles were completely demolished. The mallens, however, is attached to the outer lip of the right bulla; the three little inner ear bones were found in the matrix between the left bulla and the periotic. The bulla of this Choptank cetothere is larger and also strongly attenuated anteriorly in contrast to the bulla of the contemporary speeies (USNM 23636).

Except for the loss of the anterior and posterior perlicles, the type right bulla is essentially complete. Viewed from the dorsal aspect (pl. 2, fig. 7), the involuerm is creased transversely by thin grooves, commencing in front of the posterior pedicle and continuing as far forward as the level of or a little in advance of the fromt edge of the base of the anterior pedicle. The posterior pedicle seems to have projected chiefly from the in-
volucrum and was separated by a thin eleft from the blunt posterior conical apophysis. The eustachian outlet of the tympanic cavity is rather wide, but behind this ontlet searcely exceeds in width the gap between the overarching thin outer lip and the involucrum. The width of the involucrun is gradually diminished toward the eustachian outlet.

The distally romded and transversely twisted sigmoid process is fused along its anterointernal border with the stalk-like anterior process of the malleus and is separated posteriorly by a thin eleft from the posterior conieal apophysis.

Viewed from the ventral side (pl. 2, fig. 8) the posterior end of the bulla is noticeably wider than the anterior end ; this somewhat rugose ventral surface slopes from the internal to the external borler except posteriorly at the broad anteroposterior furrow which commences at the level of the posterior conical apophysis and is continued upward on the posterior face of the bulla.

Viewed from the external aspect (pl. 2, fig. 6), one observes that the rertical diameter of this bulla posteriorly is greater than anteriorly, and that the posterior profile is more nearly vertical in contrast to the rounded anterior profile.

See table 2 for measurements of the right tympanic bulla.

Table 2.-Measurements (in mm.) of right tympanic bulla, USNM 23794

Greatest length	74
Greatest width	47.5
Greatest depth of bulla on external side, ventral face to	
tip of sigmoid process	58

PERIOTIC

When the basicranium (USNM 23794) was excavated each periotic was firmly lodged in the broad groove between the exoccipital and the base of the postglenoid portion of the zygomatic process of the squamosal. Through a fortunate eircumstance of preservation it was possible to detach the periotics for examination and comparison.

When viewed from the ventral side (pl. 2, fig. 4), the most noticeable peculiarity of this periotic is the deep indentation of the posterior profile between the pars cochlearis and the internal end of the elongated posterior process. This modification is attributed to the enlargement of an extension of the air sac system (Fraser and Purves, 1960), which has resulted in the deep ex-
cavation of the internal end of the posterior process above the channel for the facial nerve and the development of a shallow depressed, smooth surface (vertical diameter, $15-21 \mathrm{~mm}$.) on the posterior face of the pars cochlearis above and behind the foramen rotunda as well as an outward extension of this smooth depression on the surface behind the fossa for the stapedial muscle.

On the internal third of the ventral surface of the posterior process the facial nerve on its outward course traverses a deep groove, which becomes indistinct beyond this region as the result of the rather marked flattening of this surface. Althongh somewhat triangular in cross-section, the vertical thickness of the posterior process decreases from the internal end to the external end. The basal portion of the posterior pedicle of the tympanic bulla remains ankylosed to the anterointernal angle of the posterior process of the periotic.

From a ventral or tympanic view (pl. 2, fig. 4) the fenestra ovalis is entirely concealed by the overhanging external face of the pars cochlearis and by its almost vertical position; it is separated from the orifice of the Fallopian aqueduct and the groove for the facial nerve by a thin rim. Behind the fenestra ovalis there is a small stapedial fossa which extends downwards also on the external face of the pars cochlearis. An ill-defined shallow concavity for the reception of the head of the malleus is located behind the basal portion of the attached slender anterior pedicle of the bulla and in front of the orifice of the Fallopian aqueduct. A small pit serves as the fossa incudis.
The pars cochlearis is relatively small; the internal half of its ventral surface is irregularly depressed below the narrower convex or inflated extermal half. On the cerebral face of the pars cochlearis (pl. 2, fig. 5) the centrally located circular internal acoustic meatus is actually smaller than the cerebral aperture of the Fallopian aqueduct. The vestibular aqueduct opens into a deep, narrow, elongated fossa behind and above the internal acoustic meatus. Ventral to this vestibular aperture is the small orifice of the cochlear aqueduct. The entire cerebral surface above the internal acoustic meatus, including the anterior process is unusually rugose, pitted and ornamented with short bony spicules. The short anterior process is compressed from side to side, somewhat convex and creased extermally, but flattened internally.

See table 3 for measurements of the periotic.

AUDITORY OSSICLES

Association of the three little inner ear bones with the tympanic bulla and periotic has rarely been observed

Table 3.-Measurements (in mm.) of the periotic, USNM 29794
Right Left

Greatest dorsoventral depth of periotic, from most inflated portion of tympanic face of pars cochlearis to most projecting point of cerebral face
Distance between epitympanic orifice of Fallopian aqueduct and extremity of anterior process
Length of posterior process, distance from external end to outer wall of groove for facial nerve
Distance from external end of posterior process to anterior end of anterior process (in a straight line)

168
173
among specimens recovered from Miocene geological deposits in Maryland and Virginia. The recovery of a detached malleus, an incus, and a stapes in close association with the left bulla and periotic, as well as a malleus attached to the right bulla of this Choptank cetothere does not, howerer, provide additional information relative to the functioning of these auditory ossicles.

Malleus.-The slender stalk-like anterior process (USNM 23794; pl.2, fig. 7) of the malleus is fused with the anterointernal border of the sigmoid process of the bulla. The nearly vertical large hemicircular facet (pl.2. fig. 1) meets the smaller horizontal facet at a right angle in the usual mamer of other mysticetes. At the internal end of the protuberant tubercle (processus muscularis) the little acmminate manubrium is bent outward and the scar for attachment of the ligamentary process of the tympanic membrance is located on the ventral surface. Two circular nodules similar in position to those on the malleus of Parietobalaena palmeri (Kellogg, 1968, p. 188) are present on the anterior face of the head of the malleus. The head of the left malleus measures 12 mm . in length and 9 mm . in width.

Inces.-The incus (USNM 23794 ; pl.2, fig. 2) exhibits a much closer resemblance to the form of Physeter catodon (Doran, 1878, pl.62, fig. 34) than to that of Metopocetus durinasus (Kellogg, 1968, pl.4s, fig. 1). which is characterized in part by its more robust crus longum. Two articular facets divided by a ridge, which comprise the surfaces by which the incus is fitted to the malleus, meet almost at a right angle. The largest and longest facet, which is subcrescentic in outline and shallowly concave, occupies the base of the boly of the incus. The smallest facet, which is rather deeply concave, is situated at the base of the body on the ventral side. The crus longum is relatively slender, rather abmptly incurved, and on its extremity it bears a slightly expanded
concave and ovoidal Sytrian apophysis, which articulates with the head of the stapes. Absorption of the crus longum has reduced the boly of the incus. The crus breve is short, conical and acminate, and is projected at a right angle to the crus longum. A small facet on the dorsal surface of the apical portion of the crus breve serves as the area of contact with the fossa incudis of the periotic.

From the apex of the crus longm to the base of the body, the ineus measures 7.4 mm ., and the greatest diameter of the base is 6 mm .

Stames.-The stapes (USNM $23794 ;$ pl. 2 , fig. 3) has the normal balaenopterine form; it is narower at the base and slightly more elongated than that of Metopocetus durimasus (Kellogg, 1968, pl. 48, fig. 2). The rircular intercrural aperture connecting elongated cavities on opposite sides is open and not partially obstructed. The crura are straight and less divergent than on the stapes of Balaenoptera acutorostrata (Doran, 1878, pl. 62, fig. 31). An oval concarity or umbo occupies the vestibular face of the footplate of the stapes. The footplate had been displaced from the fenestra ovalis prior to removal of the enveloping matrix. A well-defined scar on the posterointernal angle below the head marks the area of attachment of the stapedial muscle. An ovoidal facet on the head of the stapes marks the area of contact with the corresponding facet on the head of the crus longum of the incus.

The greatest length of the stapes is 7.8 mm ., and the greatest diameter of the footplate is 4 mm .

MANDIBLE

The left mandible of the type-specimen (USNM 23794) lacks a section approximately 290 mm . long near the anterior end. Slender branches of the roots of a tree growing in the earth immediately above this skeleton had penetiated into the mandibular canal through the external mental foramina and in the course of their enlargement during growth disrupted and disintegrated a lengthwise strip of bone in which the orifices of these foramina were located. Hence the number and position of these foramina cannot now be determined.

There is a noticeable flattening of the anterior twothirds of the internal surface of this mandible (fig. 1), in contrast to the dorsoventral convex curvature of the external surface. Ventrally the external surface of the horizontal ramus meets the internal surface to form a well-defined angular edge, but not comparable to the elevated dorsal ridge or rim which is quite thin posteriorly and extends forward about 400 mm . in front of the coronoid process and also progressively increases
in thickness. Below and internal to the base of this dorsal ridge, about 100 mm . anterior to the apex of the coronoid process, the orifice of the posteriormost small internal nutritive foramen is located. This lengthwise series of small foramina, separated by intervals that progressively lengthen from 15 to 60 mm ., rise to the dorsal edge of the mandibular ramus anteriorly, the terminal foramen opening into the long (140 mm .) anteriorly directed narrow and rather deep groove.

On the left mandible (USNM 22961) tentatively referred to this species, the posteriormost internal nutritive foramen is located 1100 mm . behind the anterior end of the mandibular ramus; the largest of these small internal foramina is located 9 mm . below the edge of the thin dorsal rim. There are nine mental foramina along the outside curvature of the anterior 860 mm . of this left mandible, each of which opens into an anteriorly directed groove of variable length. These mental foramina are located behind the anterior end of the mandibular ramus as follows: first 275 mm .; second 100 mm . behind the first; third 60 mm . behind the second; fourth 45 mm . behind the third; fifth 50 mm . behind the fourth; sixth 70 mm . behind the fifth; seventh 95 mm . behind the sixth; eighth 60 mm . behind the seventh; and ninth 90 mm . behind the eighth. A large terminal mental foramen is present below the long, narrow dorsal groove on this referred mandible, but is closed on the type mandible.

Above the ventral edge of the anterior end of the mandibular ramus and below the short longitudinal crease, the flattened lower border (measuring 35 mm . dorsoventrally on the type mandible) of the internal surface is depressed.

Although the apex of the small coronoid process is eroded, the curvature of the preserved portion shows that it was low, subtriangular and everted apically, concave internally and convex externally, and also located

Ficure 1.-Cross-sections of left mandible, USNM 23794, of Thinocetus arthritus. $a, 100 \mathrm{~mm}$. behind anterior end; $b, 1100 \mathrm{~mm}$. anterior to hinder articular surface of condyle; $c, 700 \mathrm{~mm}$. anterior to hinder articular surface of condyle; $d, 360 \mathrm{~mm}$. anterior to hinder articular surface of condyle.
above and in front of the anterointernal rim of the entrance to the mandibular canal.

The condyle ($106 \times 164 \mathrm{~mm}$.; fig. 2) of the type left mandible is large, expanded transversely in an oblique direction above the middle of its vertical diameter and is more convex from side to side than dorsoventrally. Above the protuberant and convex angle, the deep groove for the attachment of the internal pterygoid muscle tends to impart a contour to the internal edge similar to the external edge of the condylar articular surface. Dorsally the attenuated condylar articular surface merges anteriorly with the curved thin rim of the horizontal ramus behind the coronoid process, and although narrowed is actually more noticeably transversely thickened than on Calvert mandibles of similar length. The forward curving internal and external borders of the condyle project noticeably beyond the lateral surface of the adjacent portions of the ramus. One may assume that this condyle was enveloped by a thick fibrous pad, similar to that of Recent mysticetes (Turner, 1892, p. 69), which served as the means of attachment to the glenoid fossa of the zygomatic process.

Figure 2.-Posterior view of condyle of left mandible, USNM 23794, of Thinocetus arthritus. an, angle; cm., condyle of mandible; i.pt., groove for internal pterygoid muscle.

Of the several mysticete mandibles recovered during the excavations in the Antwerp basin, this Choptank mandible exhibits the closest resemblance to Mesocetus pinguis (Van Beneden, 1886, pl. 44, fig. 10; right condyle, $96.5 \times 164 \mathrm{~mm}$.), except that the angular portion of the condylar articular surface below the inner groove for attachment of the internal pterygoid muscle is narrower and prolonged farther downward. The vertical diameter (123 mm .) of the anterior end of the right mandible of M. pinguis (MHNB 13) is greater than the corresponding measurement (108 mm .) of this Choptank mandible, but is narrower (39.5 mm .) in this region than the latter (43 mm .). Proportional growth rates of portions of the mandimular ramus of these fossil mysticetes are not as yet definable.

See table 4 for measurements of the mandibles.

Table 4.-Measurements (in mm.) of left mandibles

USNM USNM
2979422961
$1575+1255+$

10899
Greatest vertical diameter 100 mm . behind anterior end of ramus
Greatest transverse diameter 100 mm . behind anterior end of ramus
Greatest vertical diameter 1350 mm . anterior to posterior face of condyle (300 mm . behind anterior end of ramus)
Greatest transverse diameter 1350 mm . anterior to posterior face of condyle $(300 \mathrm{~mm}$. behind anterior end of ramus)
$43 \quad 46$

Greatest vertical diameter 1150 mm . anterior to posterior face of condyle (500 mm . behind anterior end of ramus)
92
$-\quad 55$
$-\quad 93$

Greatest transverse diameter 1150 mm . anterior to posterior face of condyle (500 mm . behind anterior end of ramus)

-	64
95	97
63	72

Greatest vertical diameter 650 mm . anterior to posterior face of condyle $(1000 \mathrm{~mm}$. behind anterior end of ramus)
Greatest transverse diameter 650 mm . anterior to posterior face of condyle $(1000 \mathrm{~mm}$. behind anterior end of ramus)
Greatest vertical diameter through coronoid proeess
Horizontal distance from center of coronoid process to posterior face of condyle
Greatest vertical diameter of posterior end including condyle

165
Greatest transverse diameter of condyle 106

FORELIMB

The right forelimb is represented by the scapula, radius, ulna, six carpals, four metacarpals, and four phalanges. An incomplete seapula, hmerus, uha, one metacarpal and one phalange belong to the left forelimb. Assuming that the number of phatanges in the longest finger wat seven, similar to Bulaenopterit acutorostrata, the length of the mams would be approximately 400 mm , and the skeletal length of the fore flipper from head of humerus to distal end of terminal phatange about 1070 mm . (42 inches). The distance from the vertehral margin of the scapula to the distal end of the radius is 890 mm . (about 35 inches). The length of the humerus (258 mm .) is 64 percent of the length of the radins (385 mm .) . The length of the fore flipper, tip to axilla, is estimated to
hate bern about one-tifth (10.5 perent) of the entire lengeth of the skeleton of this (hoptank masticete.

The perdoral tipure of this Miocene ("hoptank retothere was moloubtedly capable of being elevated, drperessed or tilterd. Exrept for the ball and socket articulation of the surapula amd the head of the humerus, all ot her joints of the foredmb had lost their syovial charafter and were assuredly joined together and stiflened by tibrons interosseons tissue. This fibrons tissue did, howerer, give considerable elasticity to the nonjointed Hipper. The elbow had berome incapable of bending. Bending of the elhow seems not to have been needed dwing either propulsion or balancing.

The salpula of these Miocene mysticetes conforms in general structure to that of the Eocene Basilosmums. This fan-shaped shoulder blade has a prominent acromion, manally a somewhat smaller coracoid process, and the erista scapmace (opine) is limited to a vertical ridere. since the forelimh of the mysticete is employed as a steerimg oar, the nefessary surface for attachment of the muscles that provide the leverage for mampulation of this llipper are differently positioned than on the lumerus, ratius, and ulna of a land mammal. The ratius and ulna are compressed and lack obvions muscle erests as well as grooves for ligraments. In position, the radius is sitnated in front of the ulna, an arangement that existed huring the Eorene in both Fasilosammes and Kygorhiza. The distal trochlea on the archaeocete humerns, however, has been replaced by anterior and posterior contact surfaces on the exterointernally compressed distal end of the mysticete hmmerus, providin! a stiflened connertion with the radius and ulna. The metacarpals of Recent mysticetes, which are compressed in an extensor-flexor direction almost to the same extent as the phalanges, are reatily distinguishable by being thicker. more eylindrical and less flattened in the manns of this Choptank whale. The nmmber of phalanges have matonbedly increased bereduplications abowe the usual three in the fingers of land mammals, resulting in an elongation of the three middle digits.

Five of the six (alloal hones associated with the right forelimb were found lying in a nearly nomal position at the ext remities of the radius and ulat. These explat hones are ossified and have an irregulanly roughened cireumference which is inticative of attachment of fibrons tissue. The thattenef area of the inner (tlexor) surface of each (arpal is larger than the outer (extensor) face. I narow thipper, similar to that of the living bataenopterids is suge sted by the spacing of the radiale, intermedimm, and nlatre. Amemg Rerent mesticetes os-
sitication of these carpal bones has been retarded to such an extent that they are represented by relatively insignificant centers of ossification in the hyaline substance, althomgh in old infliviluals these hony centers are visible on the surface of the cartilage.

One of the four metacarpals of the right mames has a somewhat shorter shaft than the others, but unfortunately the proximal epiphyses of all except one were detached and missing. Flattening of the shaft has commenced but does not materially alter its slape. These metacapals are distinguishable from the more noticeably flattened phalanges. The number of digits is uncertain.

SCAPULA

The large fan-shaperl scapula (USNM 2399t; pl. 3, fig. 1) has a broad acromion, a short, stout coracoid process and a very narrow prescapular fossa which is progressively reduced below the anterovertebral angle toward the acromion; the ratio of height to the greatest width is about 3 to 5 . The spine is represented by a ridge that extends upward from the dorsal basal etge of the aromion and fates into the external surface about 40 mon. below the vertebral margin. No other extemal ridges are visible. The broad blade, which is thickened alomar the anterior border internal to the acromion and also aloner the posterior border becomes quite thin toward the curved vertebral edge. The posterior edge of the scapula above the articular end is nearly straight. The grleneid articular cavity is deeply concave, broader posteriorly than anteriorly.

The broad acromion is strongly compressed firom side to side, romoded at the extremity and directed forward lout not upwart. The stont coracoid process also projects forward, but obliquely inward.

See table 5 formeasurements of the scapula.

Table 5.-Measurements (in mm.) of the scapula, USNM 23794

	Right	Left
Graitest anturoposterior diameter of seapula	49^{2}	488 土
Gratest vertieal diameter, articular head to vertebral margin	310	$300 \pm$
Length of acromion	90	-
Posterior angle of htade to end of acromion	470	-
I.ength of coracoid process, dorsat margin at base to distal and	35	39
Fostarior faco of articutar hosad to distal end of coranooid process	162	160
Gireatest anteroposterior diametor of articular head	112	114
Greatest dransverse diameter of articular head	83	84

HUMERUS

Both humeri（USNM 23794）are well preserved and retain both epiphyses firmly ankylosed to the shaft． Although the length of the right humerns of this Chop－ tank mysticete is nearly equivalent to that of Pelocetus culuertensis（USNM $11976 ; 266.5 \mathrm{~mm}$ ．）it is less massive as regards other measurements．Anteriorly，the large， smooth，and convex head（ p 1.3 ，fig． 2 ）is elerated above the greater or radial tuberosity：on the right humerus the head is also separated from this tuberosity by a well－ defined groove in contrast to the humerns of I^{\prime} ．caleor－ tensis．The head projects outward and backward．In Recent mysticetes the rugose greater tuberosity，which projects internally，serves as the proximal area for the attachment of the deltoid muscle．There is a large，irreg－ ular nodular tulerosity centrally placed on the internal face below and between the head and the greater tuberosity．

The shaft is more noticeably compressed transversely than that of P ．coltertemex．An elongated welt－like en－ largment（length， $115 \mathrm{~mm} . ; \mathrm{pl} .3$ ，fig．2）continuous with the greater tuberosity is developed on the anterior or radial face of the shaft．A marower welt commencing at the distal ulnar facet extends upwawl along the inner border of the hinder or uluar face toward the head and coalesees proximally with the above－mentioned median proximal tuberosity on the right humerns；crushing has obliterated this welt on the dorsal portion of the shaft of the left humerus．The transversely flattened radial facet is set off by a ridge－like crest from the more convex transverse surface of the ulnar facet which is extended upward on the posterior face of the shaft．

See table f for measurements of the humerus．

Table 6．－Measurements（in mm．）of the humerus，ISNM dry9．t

	Right	Left
Greatest length of humerus	260	2.5
Greatest anteroposterior diameter of proximal rnd	141	147
Greatest anteropostericr diameter of head	12.9	$12:$
Greatest exterointernal（transverse）diameter of head	106	104
Least anteroposterior diameter of shafi	91	93
Least exterointernal（transvorse）diameter of shaft	$\therefore 1$	51
Greatest anteroposterior diameter of distal and	123	121
Greatest exterointernal（transwerse）diameter of distal end	62	60
Greatest anteroposterior diamester of radial facet．	7.5	71
Greatest anteroposterior diameter of ulnar facet （in a straight line）	7	7

RADIUS

 distal epiphysis detached from the shaft，but it was preserved with the associated carpal bones．This distal epiphysis measures $2 \times 45 \mathrm{~mm}$ ．and has a maximum thickness of 23 mm ．The right radius is slightly shorter than that of I＇．calvertensis（ C＇sNM 11976 ；length， 397 mm ．）．This forelimb bone of the Choptank mysticete is rather stout，slightly＂urved，and transversely com－ pressed，measuring 385 mm ．in length．The proximal facet，which articulated with the radial facet on the distal end of the humerns，is shallowly coneave：the articular surface of this facet rolls over on the intermal face of the proximal end of the shaft．The facet on the posterior face of the proximal end of the shaft for articulation with the olecranon of the ulua is semicir－ eular in outline，its transverse diameter being 49 mm ． and its dorsoventral diameter 82 mm ．

The outer surface of the shaft is slightly more convex than the internal face．The distal half of the posterion edge of the shaft is mote compressed than the anterior edge．The deeply concave distal end of the shaft is pit－ ted for attachment of the cartilaginous comection with the epiphysis．

See table 7 for measurements of the ratius．

Table 7 ．－Mcasurements（in mm．）of the right radius， ISNM 2．3\％94

> Greatest length (acking distal epiphysis)
> Greatest anteroposterior diametrr of proximal end
> Greatest transvers diancter of proximal and
> Least anteroposterior dianeter near midde of shaft
> Least transvers diameter near midde of shaft
> Greatest anteroposterior diameter of distal end
> Greatest transbers diamuter of distal emel

どN」

 Neleton：the distal ephiphysio wat detached from each shaft．The proximal ent of the mhal（ph．．3．fire 4）is expanded to form the some what hatchet－like olectanom process which has a pugose staight bertical pmaterion adere．The aticubar surface of the erveater sigmond cat－ it！．which limits movement of the dival mar facet of the humerus，is trumeatesl horizontally on its wevated

(transerse diameter, 48 mm .) at its anterior end. The vertical portion of this articular surface terminates about $\because(0)$ man. below the apex of the olectamon process. The vertical and the more or less horizontal portions of this greater sigmoid articular surface meet at an abrupt angle. Below its ventral anterior margin the articular surface of the greater sigmoid cavity mects at a right angle the hemicircular face for articulation with the opposing facet on the proximal ent of the radins; the vertical diameter of this facet is 30 mm . The curved shaft is compressed from side to side, more noticeably distally than below the radial facet, and is distinctly broader than that of I^{\prime}. culcertensis. Viewed from the side, the posterior protile is more curved tham the anterior protile of the shaft. The posterior edge is somewhat thimer than the anterior edge of the shaft and this condition persists at the rugose distal end which has the posterior angle extended backward. The distal epiphysis of the right una is quite narrow, attenuated toward its posterior ent and measures 84 mm . in length; its greatest thickness is 25 mm .

See table 8 for measurements of the utha.

Tible s.-Measurements (in mm.) of the ulna, USNM 23794

| Greatest length of ulna (lacking distal epiphysis) | Right | Lefl |
| :--- | :---: | :---: | :---: |
| Distance from dorsal to ventral end of greater | 400 | |
| sigmoid cavity (in at straight line) | 71 | 72 |
| Least anteroposterior diameter of shaft (near
 middle of shaft) | 5.7 | 53 |
| Least exterointernal (transwerse) diameter of
 shaft (near middle of shaft) | 23 | 23 |
| Greatest anteroposterior diameter of distal end
 of shaft | 95 | 99 |
| Greatest exterointernal (transverse) diameter of
 distal end of shaft | 32 | 37 |

MANUS

The bones of the right manus were lodged under the transverse processes of the second to fifth dorsal vertebrae. The carpals were in close contact with one another and with three metacarpals. The other finger bones were less elosely associated.

Campan--Five of the six carpal bones assoctiated with the right forelimb were preserved secmingly in more or less normal relationship at the extremities of the radins and nlaa. The irregular roughened circumference of these carpals clearly indicates that they were beld in position by interposed fibrous tissue. Tlife imer (flexor) surface of each carpal is considerably larger than the opposite (extensor) surface. The presence of
a smooth, curved surface on the anterior face of the radiale suggests a syovial joint, which may have permitted limited movements by the first metacarpal. The other carpal bones are thought to have been incapable of facilitating such movement by the corresponding metacarpals. It least six centers of ossification are represented by individual carpal bones in the right manus. There are cettanly three carpals-radiale, intermedimu, and uluare-in the first row which when exposed by the preparator were found to be nearly in contact with the detached ossified epiphysis on the distal ends of the right radius and ulna. This pisiform, if present, was not preserved.

The position and characteristics of these three carpals show that tentative identifications of carpals of Pelocetus calcertensis (Kellogg, 1965, pl. 17) were incorrect. On the basis of this Choptank manus the carpal figured as the radiale (ibid., pl. 17, fig. 9) is the intermedium, and the supposed second row carpal (ibid., pl. 17. fig. 7) corresponds to the radiale. The ulnare (ihid., pl. 17, fig. 8) seems to agree with that carpal in the Choptank earpus.

The radiale (pl. 4, fig. 13) is the smallest of the three carpals in the first row : a proximodistal compressed protuberance is present on the posterior portion of the roughly sculptured circumference. The smooth surface on the outer (extensor) face, which curves upward on the anterior face to the opposite inner (flexor) face of this carpal may indicate a direct articulation with the first metacarpal as in the mamus of Squalodon (USNM 22902). In the manus of Balaenoptera musculus and B. acutorostrate skeletons in the U.S. National Museum the radiale, however, is the largest carpal in the first row.

The intermedium (pl. t, fig. 14) is the largest of the carpals in the first row, the maximum dimensions of the imer (flexor) surface being 52 and 59 mm . The flattened immer face of this carpal is abont twice the opposite more convex outer (extensor) face. The circumference of the intermedium is unusually rugose and pitted.

The quadrangular flat inner (flexor) face of the ulnare (1 l. . 4, fig. 15) is about twice the size of the opposite oval extensor face; the irregular circmimference is likewise rugrose and pitted. The greatest diameter of the inner (tlexor) face is 46 mm .

I carpat (pl. 4. lig. 17) as large as the radiale, which is tentatively identified as the centrake, was located in the matrix alnost in contact with the distal face of the ulnare. The outer face is not quite as rugose as the circumlerence of this carpal ; the ovoidal inner (flexor) face is. however, Hat.

The carpal (pl. 4, fig. 16) tentatively identified as the trapezoid is elongated (length, 54 mm .) ; its width posteriorly (34 mm .) is equivalent to the outer-inner (ex-tensor-flexor) diameter. The elongated outer (extensor) face is noticeably flattened in contrast to the irregularly depressed imer (flexor) face. This carpal was present in the second row distal to the interval between the radiale and the intermedium.

An ovoidal ($38 \times 35 \mathrm{~mm}$.) carpal (pl. 4, fig. 18) that has smooth flattened imer and outer surfaces and a rugose circumference, whose maximum thickness (21 mm .) is less than half the corresponding measurement (44 mm .) of the intermedium, obviously was shifted behind the ulnare from its original position in the manus. It may have been either the unciform or the magnum.

Metacarpals.-Four metacarpals were associated with the right forelimb and one with the left. The two identified as the third and fourth lay distal to the carpal thought to be the centrale. The first metacarpal was found distal to the radiale. The second metacarpal was misplaced and lay on the adjoining ulna. The shafts of all the metacarpals are thicker, more cylindrical and less compressed in an extensor-flexor direction than those of Pelocetus calvertensis (Kellogg, 1965, pl. 18).

The shortest metacarpal (pl. 4, fig. 5 ; length, 63 mm .), which was embedded in the matrix distal to the radiale, is identified as the first. The triangular proximal end is about twice as large as the distal end; the shaft is somewhat narrowed distally and its anterior face is thicker than the compressed posterior face. Both ends are rather smooth and lack distinct rugosities for attaclment of cartilaginous connections.

The metacarpal (pl.4, fig. 1; length, 95 mm . including epiphysis) tentatively identified as the second, has an ossified proximal epiphysis which was not fused with the shaft. Before being covered with sediments this bone had been dislolged and moved to the anterior side of

Table 9.-Measurements (in mm.) of the metacarpals, USNM 23794

	R.I R.II	R.III	R.LV	L.IV	
Greatest length	63	82	90	78	79
Minimum transverse diameter of shaft	27	28	30	27	29
Minimum thickness of shaft	19	22.5	23.5	22	21.5
Greatest transverse diameter of proximal end	37	41	39	35	-
Greatest transverse diameter of distal end	28	41	44	43.5	$43+$

the flipper. The distal end of the shaft is more compressed in an extensor-flexor direction than the proximal end and is pitted for attachment of cartilage.

The third metacarpal (pl. 4, fig. B; length, 90 mm .) and the fourth metacarpal (pl. 4 , fig. $:$; length, $i 8 \mathrm{~mm}$.) seem to have retained their normal position in the flipper distal to the intermedium and ulnare. The proximal end of the third is oval and that of the fourth almost quadrangular; their distal ands are wider and more compressed in an extensor-flexor direction tham their proximal ends. Both ends of each metacarpal are rugose.

See table 9 for measurements of the metacarpals.
Pimanges.-Four phalanges were associated with the right forelimb and only one with the left. Two (pl. t, figs. $9-10$) of these phatanges are rather slender and not flattened except distally; they seemingly represent the same bone in the first finger of opposite flippers. Attached to the proximal end of the phalange in the right flipper is a lump of ossified cartilage. The largest phalange (pl. 4, fig. 6; length, 62 mm .) is distinctly flattened in an extensor-flexor direction, expanded more transversely at the proximal than at the distal end, both ends being roughened for attachment of comecting cartilage. Both of the subterminal phalanges (pl. 4, figs. 7-8) are compressed in an extensor-flexor direction, the shortest bone (length, 46 mm .) being nearest the end of the finger.

Sce table 10 for measurements of the phalanges.

Table 10.-Measurements (in mm.) of the phalanges, USNM 23794

Greatest length
Minimum transverse diameter of shaft
Minimum thickness of shaft
Greatest transverse diameter of proximal end
Greatest transverse diameter of distal end

Plate 4

fig. 6	fig. 7	fig. 8	fig. 9	fig. 10
Right	Right	Right	Right	Left
62	53.5	46	63	62
31	22	22.5	17.5	16
16.5	14	16	15	13.5
45	32	29	27	24.5
36.5	31	25	25.5	23

VERTEBRAE

CERVICAI, VERTEBRAE

The atlas, axis, third, fourth, fifth, and sixth cerricals were excavated with this skeleton (I'SNM 23i94). On the right side of the axis and of the third cervical the
lateral prowenes are broken of at the hase. Pedicles of the nenald arth are preserved on the fourth, fifth, and sixth cervicals, hat all lateral processes exept for hasal portions are miswing on the rentral. Both epiphyses are timuly fused with the centra of all cervicals. Exeept for the fusion of the cent ra of the axis and the third cervical, the cervicals were free. The pedicles of the nemat arch of the third to sixth cervicats, inclusive, are low and wider transersely than anteromesteriorly. Shortening of the pedickes, as indicated on the third cervical, and thattening of the roof of the neural ardh has resulted in an mustally low nemal canal. (on the third cervical the upper tamsserse process is united distally with the extremity of the lower process to enclose the large cervical extension of the thoracie retia miratilia, which also pases through the forament transersurim on the transverse process of the axis. The athas and axis are massive. broad and thick. with a tow nemal spine which on the athas rises to a biunt apex. The athas has a short rugose hyapophysial process. The oflontoid process of the axis is slender and abmomally elongated. The total length of the corvicats, induding the catilaginous intervertebral disks, did not axceed 30.imu. (10 inches). See table 11 for measmements of the cervical vertebrae.

Athas.-This massive, broad and thick athas (UTENM $23: 94$) has a shor, laterally compressed nemal spine, a high nemral canal, and a nodutar remmant of an upper transerse prowes. The anterior facets (pl, b, thg. 1) for articulation with the oceipital condyles of the skull are deeply roncave, widest near the middle of their height and separated rentrally by a shallow groove. The vascular formmen which nomally pierces the nomad arch on each side is closed. The fower transverse process is short, thick, and projects gatward below the smaller, noduar upper remnant. I short, broad, rugose hyat pophysial process is present. An upard, forward stoping concare surface (pl. \boldsymbol{b}, figr. ex for reception of odon-
toid process of the axis separates ventrally the reniform articular surfaces for the axis.

Aditional measurements are as follows: greatest distance between outer margins of posterior articular facets, 17 th m. : greatest vertical diameter of right posterior articular facet, 8.3 mm .

Axis.- On the right side of this axis (USNM 23794) the thansverse process is broken off at the base. The complete left process (pl . 5. fig. 3) is elongated, bent barkward, and perforated by a large foramen transverssirim: the lower bar of this process is very thick (38 mm .) at the base and the upper is thin, anteroposteriony compressed. The small neural canal is low, wider (54 mm .) than high (37 mm .). The neural spine is reduced to a low thick anteroposterior ridge. The odontoid process is slender, unusually elongated and concave dorsally at its distal end. The rertical diameter (right, 94 mm .) of the deeply concave anterior articular facets exceeds the transverse diameter. The anterior median angle of the neural arch is not extended forward to articulate with the nemal arch of the atlas. The posterior face of the centrmm of the axis is fused with the opposite surface of the third cervical as also the pedicles of the neural arches of both cervicals. This fusion may represent the initiation of the subsequent coalescence of the cervical series of some mysticetes during later geological time.

Thind tervical.-The broadly eliptical posterior face of the thind cervical (USNM 23794) is concave. The pedicles of the neural arch are short, their minimmm width (39 mm .) greater than their anteroposterior diameter (23 mm .). I marked increase in the transverse diamoter (6 i mm .) of the neural canal (pl, 5, fig. 4) chamederizes this cervical. The slender upper transrerse process (diapophysis) on the left side projects ontward and downward from the pedicle of the nemal arch and is united distally with the curved upward and

Table: 11.-Measurements (in mm.) of the cervical vertebrae, USNM 23794

	Allas	Axis	${ }^{1} .3$	C'. 4	C. 5	C. 6
Greatest vertical diameter of vertebra, tip of neural spine to ventral face of emtrum	140	128	113	-	-	-
Greatest intoroposterior diameter of centrmm	$97^{\text {a }}$	95^{-6}	36	32	32	34
Circatest tranverse diameter of eontrum anteriorly	195	1N1	110°	108	$100+$	104
(irestest vertical diametor of centram anteriorly	-	-	S:3	8.5	86	85
Groatfost vertical diameter of neural canal antiriorly	54	37	21	-	-	-
Greatest tramiversf diameter of neural canald interiorly	6.3	. 34	67	66	$73+$	80
Greatest distance between outrr ends of diapophyses	-	-	$276 \pm$	-	-	-
Greatest distance bretwent onter conds of parapophyses	220	$323 \pm$	$232 \pm$	-	-	-
Least anferopostarior diamoter of right prediete of nomeral arch	50	34	23	17	16.5	16
(ireatest distance between outar margins of anterior artiendar facets	1バ	179	-	-	-	-

[^1]transversely widened lower process (parapophysis) to enclose the large cervieal extension of the thoracic retia mirabilia. This parapophysis is dorsoventrally compressed toward its base.

Fourti cervical.-All lateral processes as well as the pedicles of the newal areh are broken off near the base on this cervical (USNM 23794). The anteroposteriorly compressed upper transverse process (diapophysis) projected outward from the pedicle of the nemal areh; the parapophysis projected outward and downward. The anterior face of the centrum is more flattened than convex in contrast to the concave posterior face.

Fifyir cervical.-Except for a noticeable inerease in the width of the nemal camal, this cerrical (USNM 23794) does not differ materially from the preceding.

Sixth cervical-Minor alterations including a gradual decrease in the anteroposterior diameter of the pedicle of the neural arch, an inerease in the transverse diameter of the neural canal, and the vertical diameter of the centrum are observable from the third to the sixth cervical (USNM 23794). Uper as well as lower transverse processes were present.

DORSAL VERTEBRAE

All twelve dorsal vertelsae (TSNM 23794) were found at the time of exeavation in their origimal undisturbed sequence, although only the nemal arch and neural spine of the first dorsal was found. The centrum of this dorsal and its diapophyses had previonsly been broken off and removed by some visitor at the site. Both epiphyses are firmly ankylosed to the centrum of each of these eleven dorsals. Spondylitis deformans or osteo-
fhytosis presumahly limited the morement but did mot bind together the third to tenth dorsals, inclusive. which have bony outgrowthe protruding posteriorly on one or both sides from the rentral border of the centrum.
On each side of the centrum of the second to serenth dorsals, inclusive, the faret for the head of the following rib is located obliquely on a well-maned posterior tuberosity helow the level of the floor or the neural camal on the second but gradually becomes located higher on the lateral surface.

The pedicles of the neural arch on the seren anterior dorsals are very low and broader transversely than anteroposteriorly. Shortening of the pedicles and flattening of the roof of the newal canal had produced an unusually low neural camal, the vertical dianeter anteriorly being equivalent to less that one third (second, $78 \times 27 \mathrm{~mm}$.) to one fourth (sixth, $70 \times 17 \mathrm{~mm}$.) of the transverse diameter. A median longitudinal ridge on the floor of the neural canal increases in prominence behind the seventh dorsal. The total length of the twel ve dorsals, including the eartiaginous intervertebral disks, is about 960 mm . ($373 / 4$ inches). Nee table 12 for additional measurements of the dorsal vertebrae.

First morsil.-The neural spine of this dotsal (USNM 29794) was short, rising 35 mm . above the roof of the broad neural canal, and truncated obliquely from its anterobasal edge to its posterodorsal apex.

Second morsan.-Except for the left diajophysis this dorsal (CSNM $2939+$ pl. 6, fig. 1) is complete and shows no indication of osteophytosis. The stout right di:uphysis (Iength, 11.5 mm., pl. 7, fig. 1) projects outward, slightly downward and somewhat forward; the large, triangular terminal face for the tuberabum of

TABle 12.-Measurements (in mm.) of the dorsal vertebrae, USNM $23 \% 94$

	D. 2	D. 3	D. 4	D. $\overline{5}$	I. 6	I. ${ }^{\text {r }}$	D. 8	D. 9	D. 10	D.11	1).12
Anteroposterior diameter of centrum	54	60	67	68	72	76	83	93	99	103	106
Transverse diameter of centrum, anteriorly	11.4	120	121	115	112	113	124	117	114	11.5	112
Vertical diameter of centrum, anteriorly	80	78	84	80	79	79	82	87	ss	\checkmark	-
Minimum anteroposterior length of pedicle of neural arch	27	31	31	37	38	43	5	5	63	68	66
Transverse diameter of neural canal, anteriorly	78	88	77	72	70	67.5	12	49	43	11	3 ぶ
Vertical diameter of neural canal, anteriorly	27	23	20	22	22	18	22	33	$2!9$	29	$3!$
Distance between end of parapophyses	-	-			-	-		275	307	362	41.
Distance between ends of diapophyses	$27.5 \pm$	240	235	228	22.3	218	240	-			
Dorsal edge of metapophysis to ventral face of centrum, anteriorly	95	94	9.	107	111	10.\%	117	131	13.1	137	1.3
Tip of neural spine to ventral face of centrum posteriorly	154	1.06	112	17.	170	195	204	240	233	$2 \cdot 15$	246
Transverse diameter of centrum, posteriorly including posterior capitular facets	128	12.5	13.5	137	13.	140	132	123	117	117	11.1
Vertical diameter of centrum, posteriorly	79	80	82	7	1	82	89	86	3i	86. 5	n\%

the second ribs slopes obliquely downward and inward from dorsal to ventral margin. The strong pedicles of the neural areh are broad (right, minimum transerse diameter, 41 mm .) and very short; they support the roof of the neural camal as well as contributing a portion of the base of the diapophysis. The smatl oroidal prezygapophysial facets are limited extemally by a low ridge. The postzgrapophysial facets are elongated, much larger, and slope olliquely downward from external to internal margins. The distally attenmated noural spine (pl .8 , ligr. 1) rises 54 mm , above the roof of the nemal canal. The dorsorentrally elongated hemicircular and protnberant facet on the posteroextemal angle of the centrum for the head of the third rib seemingly does not share this function with a similar opposing surface on the anteroexternal angle of the centrum of the third dorsal. Viewed from in front the centrum is miformly elliptical.

Thimd dors.als.-A decrease in the length (98 mm .) of the diapophysis, a shift in the direction of the main axis of the terminal facet for the tuberculum of the third rib) from dorsoventral to anteroposterior and an increase in the thickness of the centrum characterize this vertebra (CSNM 23794). Very little if any alteration in the dimensions of the newal canal are observable. Each broad diapophysis (pl. 7, fig. 2) projects outward but more strongly forward than on the preceding dorsal. The wide pedicles (36 mm .) of the neural arch support the low roof of the neural camal as well as contributing a portion of the base of the diapophysis. An extemal sharp-edged ridge limits extermally the elongated (length, 60 mm .) shallowly concave preqygapophysial facet. Both postzygapophysial facets are pitted and partially deformed by osteophytosis. The short, distally attenuated neural spine (pl .8 , fig. 2) rises 62 mm , above the roof of the neural canal. The posteroexternal hemicireular facet for the capitulum of the fourth rib is smaller than, but is as protuberant as, the corresponding facet on the preceding dorsal. Viewed from in front the centrum (pl. 6, lig. 2) is elliptical, dorsoventrally compressed. A dorsoventrally compressed bony process projects backward for 20 mm . from the ventroexternal border of the centrum on the left side.

Focron bons.m.-Each broad (minimum width, 55 mm .) dorsoventrally compressed diapophysis (pl. 6, fig. 3) projects ontward from the short stont pedicle of the neural arch and extends forward beyond the anterior face of the centrum. The extremity of the diapophysis is horizontally widened to provide an elongated lacet (40 mm .) for the tuberculum of the fourth rib. Each elongate and concave prequapophysial facet (p). 7 , tig. 3) slopes obliquely downward from the external
sharp-edged ridge or crest to its inner thin edge. The distance between these external ridges anteriorly is 110 mm. The narrow elongate postzygapophysial facets slope obliquely downward from external to internal margins. The low roof of the neural canal is almost horizontal. No material change in either the transverse or vertical diameter of the neural canal is observable. The short distally rounded neural spine (pl. 8, fig. 3) rises 67 mm . above the roof of the neural canal. The protuberant posterior hemicircular facet for the capitulum of the fifth ril) is larger than that of the preceding dorsal. Viewed from in front the profile of the centrum (USNM 23794) is more quadrangular than elliptical. Ventrally the rims of the anterior and posterior epiphyses are extruded and irregular.

Fiftin dorsal.-An increase in the minimum anteroposterior diameter (37 mm .) of the right pedicle of the neural arch, a reduction in the transverse diameter (72 mm.) of the nenral canal (pl. 6, fig. 4), but no appreciable reduction of the distance (109 mm .) between the extemal crest-like margins of the opposite prezygapophysial facets anteriorly characterize this dorsal (USNM 23794). Both dorsoventrally compressed diapophyses (pl. 7, fig. 4) are a little broader (minimum width, 57 mm .) but shorter than those of the preceding dorsal; they project outward and extend forward well beyond the level of the anterior face of the centrum and have a more elongated (length, 45 mm .) ovoidal concave tubercular facet at the extremity. Prezygapophysial and postzygapophysial facets are similar to those of the preceding dorsal. The distally truncated neural spine (pl. 8, fig. 4) has increased in width and rises 82 mm . above the roof of the nueral canal. No increase or decrease in the size of the hemicirenlar protuberant posteroexternal facets for the capitulum of the following rib is observable. Dorsoventrally compressed bony excrescences project backward from the posteroventral edge of the centrum on each side.

Sixtif dorsal.-This dorsal (USNME 23794) has a large bony excrescence (pl. 8, fig. 5) projecting backward from the ventral border of the centrum on the right side which certainly limited freedom of movement of this vertebra. A less noticeable decrease in the transverse and vertical diameters of the centrim and of the neural canal (pl. 6, fig. 5) has occurred. The distance between the outer margins of the deeply concave prezygapophysial facets has been reduced to 95 mm . and the postzygagophysial facets have become somewhat narrower. The diapophyses (pl. 7, fig. 5) have been slightly shortened, but are extended forward beyond the level of the anterior face of the centrum; the terminal concave facet of the diapophysis for the capitulum of the
sixth rib extends farther inward on the rentral surface. The horizontally truncated neural spine rises 78 mm . above the roof of the neural canal. Protuberant posteroexternal facets for the capitulum of the serenth rib are developed on both sides of the centrum.

Seventh dorsal.-This dorsal (USNM 23794 ; pl. 8 , fig. 6) has a large nodular bony excreseence projecting forward from the rentral border of the centrum on the right side, which in conjunction with the backward projecting excrescence of the preceding dorsal increased the intervertebral space. An increase in the length (76 mm .) of the centrum, a reduction in the distance (214 mm .) between the ends of the diapophyses (pl. 6, fig. 6) and a marked increase in the height (100 mm .) of the neural spine above the roof of the neural eanal are the most obvious differential characteristics. The dorsoventrally compressed diapophysis projects horizontally outward from the stout pedicle of the neural arch and extends forward beyond the level of the anterior face of the centrum. At the extremity of the diapophysis the facet for the tuberculum of the seventh rib is divided horizontally into two articular surfaces. The prezygapophysial facets (pl. 7, fig. 6) are narrowed and separated anteriorly by an interval of 80 mm . The postzygapophysial facets are narrower than those of the preceding dorsal. No visible posteroesternal facet for the capitulum of the eighth rib is developed on the left side; a malformed protuberance is present on the right side. The height (18 mm .) is less than one third of the width (67.5 mm .) of the neural canal.

Eighti dorsal.-Malformation (pl. 6, fig. 7), possibly the result in part of downward pressure, has shortened the right pedicle of the neural areh and depressed the right diapophysis, so that this process is directed outward and obliquely downward. The left diapophysis is bent upward toward its extremity. Both diapophyses (USNM 23794) are dorsoventrally compressed and widened at the extremity (pl. 7, fig. 7), on which the facet for the tuberculum of the eighth rib is located mainly on the rentral surface. Each low metapophysis is thickened, projects forward beyond the anterobasal edge of the diapophysis, and contributes the external limit to the narrow prezygapophysial facet. The prezygapophysial facets are separated anteriorly by an interval of 47 mm . Postzygapophysial facets are not developed. A somewhat wider neural spine (pl. 8 , fig. 7) rises 104 mm . above the roof of the neural canal. No posteroexternal facets for the capituhm of the ninth rib are present. A similar, but somewhat smaller bony excrescence projects forward from the anterolateral border of the centrum. Viewed from in front the profile of the centrum is elliptical, but flattened dorsally. The
neural canal is fow (height, 22 mm .) , but is reduced in width (52 mm .). On the right side of the centrum a wide backward projecting excrescence is located below the usual position of the posteroesternal facet for the capitulum of the following rib.

Ninth imorsal.-The broad, dorsoventrally compressed and bent upward parapophysis projects out ward solely from the dorsoexternal surface of the centrum (CSNM 23794). The thin (right, 18 mm.) anteroposteriorty widened (83 mm .) extremity of this process is deeply exeavated on its ventral surface for attachment of the head of the ninth rib. The thick metapophyses (pl. 7, fig. 8) are separated :nteriorly by an interval of 38 mm ., project forward beyond the level of the anterior face of the centrum, and contribute the outer limit of the short, narrow, and concave prezygapophysial facets. The broad, backwardly inclined, and distally truneated nemral spine (pl. 8, fig. 8) rises 120 mm . above the roof of the neural canal ; the transverse diameter (49 mm .) exceeds the vertical diameter (33 mm .) of the neural canal. The elliptieal profiles of the anterior (pl. 6, fig. 8) and posterior ends of the centrum are quite similar as are atso their vertical and tramsverse diameters. A large laterally compressed bony excrescence projects forward from the anteroexternal edge on the left side of the centrum. On the posterior half of the right side of the centrum a nodular exereseence projects laterally but is not in contact with the low elongate malformation bordering the anterior epiphysis.

Textu norsal.-On the right side of the centrum (pl. 8. fig. 9) of this dorsal (TSNM 23794) a large laterally compressed bony excrescence projects forward from the anteroentemal edge and another of similar size extends hackward from the posteroexternal edge. The left side of the centrum is normal. Longer parapophyses. narower nemal canal (43 mm .), and longer centrm conform to the usual sequential modification of cetothere dorsal vertehrae. Each parapophysis (ph. त, fig. 9) projects almost horizontally outward from the upper portion of the external surface of the centrum and increases in width toward its extremity. On the extremity (right, leugth 94 mus.) a deep concave faret for the head of the tenth rib occupies the posterior half. hargely on the ventral surface. The thin perdicles tright, minimum length, $(: 3 \mathrm{~mm}$.) of the neural ard extem twothirds of the length (99 mm .) of the dorsal surface of the centrum. The profile of the anterior face of the rentrum (pl. 6, fig. 9) appoaches subordate, flattened dorsally: The backward slanting nemral opine rises 1 娄 mim. above the roof of the nemal (amal: the width ($4:$ mm.) exceeds the height (29 mm .) of the neural camal. Thickened metapophyses project forward beyond the
level of the anterior end of the centrum; distinct prezygrapophysial facets are not developed.

Elemexmimasat.-Wide, dorsoventrally compressed parapophyses, which project outwarl from near the middle of the exterial surface of the centrum, a broad distally tromeated backwardy slanting neural spine, (ph. S, fig. 10) which rises 137 mm . above the roof of the neural canal, and long (right, minimum length, 68 mm .) thin pedieles of the neural arch characterize this vertebra (CNNM 23T94). Wach parapophysis has a thick concavely curved posterior edge, a thin rommded anterior edge on distal half of its length, and anowoidal (right, length 50 mm .) facet for head of eleventh rib located posteriorly on extremity. The large metapophyses (pl. 7 , fig. 10), separated anteriorly by an interval of 38 mm ., project forward beyond the level of the anterior face of the centrum. The elliptical profiles of the anterior (pl. 6, fig. 10) and posterior ends of the centrum are quite similar as are also their vertical and transverse diameters. No protruding bony excrescences attributable to osteophytosis are present on this vertebra.

Twenrth donsal.-Rather wide (minimum diameter, 65 mm .) and dorsoventrally compressed parapophyses project outward from near the middle of the external surface of the centrum (USNM 23594) ; the anterior and posterior edges of this process are thin and the extremity is obliquely truncated from the anterior edge to the posterodistal angle, which is thiekened but not otherwise modified for attachment of the head of the twelfth rib. The large laterally compressed metapophyses (pl. 10, fig. 1) rise 60 mm . above the floor of the neural canal and are separated anteriorly by an interval of 10 mm ; they project forward noticeably beyond the level of the anterior face of the centrum. The distally truncated nemral spine (pl. 8. fig. 11) is inclined more strongly hackward and rises 125 mm. above the roof of the neural canal. This vertebra (pl. 6. fig. 11) has the narrowest (width, is mm.) and the highest (39 mm .) nemal canal of all the dorsal vertebrae. No protruding bony excrescences are present on this vertebra. A prominent longitudinal median ridge extends the length of the floor of the neural c:anal.

LUMBAR VERTEBRAE

The cervieals, the dorvals, and the nine anterior lumbars comprising the anterior portion of the vertehral column (1 SNM 23994), were found to lie in normal sequentia] contact with one another. Behind the ninth lumbar the tail portion of the skeleton, and at least two or possibly three of the lumbars, was broken off and presmably washed forward alongside the dorsal vertebrate, but re-
versed so that the terminal candal was almost on a line with the cervicals. Two of the posterior lumbars were displaced; one lay bet ween the rows of dorsal and caudal vertebrat and the other was almost in contact with the first of the twelve consecutive caudal vertebrac. Since twelve lumbar vertebrat normally comprise the lumbar series of the Calvert cetotheres, the disassociated vertebrae was either the tenth or the eleventh. On the basis of measurements, the displaced vertebra is regarded as the tenth, the lumbar almost in contact with the first caudal as the twelfth, and the eleventh as missing.

The epiphyses are firmly ankylosed to the centrum of all these lumbar vertebrae. Except on the posteriormost lumbar no protuberant bony excrescences are present. Arranged in serial sequence the centra of these lumbars increase in length, width and height from the anterior to the posterior end of the series. No median longitudinal ridge or keel is developed on the first lumbar; this ridge is rather faint on the second lumbar, but increases in prominence toward the posteriormost lumbar. The parapophyses decrease in length from the first to the twelfth lumbar. The thin pedicles of the neural arch attain their greatest anteroposterior diameter (minimum, 73 mm .) on the sixth lumbar. The transverse diameter of the neural canal and the length of the metapophyses diminishes from the anterior toward the posterior end of the series. Neither pre nor postzygapophysial facets are developed on these lumbars. Backward slanting neural spines increase in height from the first to the sixth lumbar and then become progressively shorter before a more abrupt decrease reduces their height to that of the first caudal.

Cireumstances of preservation including localized pressure from weight of overlying strata on sediments of unequal consisteney in which the vertebral column was embedded resulted in the tilting of the neural spine leftward and the partial collapse of the left pedicles of the neural arch and the sequential deformation of the neural eamal from the third, fourth, fifth, and to a lesser extent the sixth lumbar.

The total length of the consecutive series of twelve lumbar vertebrae. including the cartilaginons intervertehral disks, did not exceed 1375 mm . ($541 / \mathrm{s}$ inches). See table 13 for measurements of the lumbar vertebrae.

First lembar.-This vertebra (USNM 23794) was exarated in normal sequential contact with the t welfth of the consecutive dorsal vertebrae and hence is un(fuestionably the first lumbar. No rentral longitudinal ridge or keel is developed on the centrum and the outline of the anterior end (pl. 9, fig. 1) is more ovate than elliptical. An increase in the length of the parapophyses and in the height of the backward slanting nemral spine

Table 13.-Measurements (in mm.) of the lumbar vertebrae, USNM 23794

	L. 1	L. 2	L. 3	L. 4	L. 5	L. 6	L. 7	L. 8	L. 9	L. 10	L. 11	L. 12
Anteroposterior diameter of centrum	108	109	111	114	117	120	124	126	132	134	-	138
Transverse diameter of centrum, anteriorly	106	108	109	112	114	117	115	123	124	130	-	139
Vertical diameter of centrum, anteriorly	89	91	94	97	98	103	102	104	104	108	-	113
Minimum anteroposterior length of pedicle of neural arch	63	68	66	70	72	73	65	66	65	64	-	62
Transverse diameter of neural canal, anteriorly	35	35	-	34	30	29	34	28	24	23	-	18
Vertical diameter of neural canal, anteriorly	42	40	-	-	-	-	35	39	40	-	-	-
Distance between ends of parapophyses	425	415	$415 \pm$	$380 \pm$	$375 \pm$	$365 \pm$	$340 \pm$	$350 \pm$	$340 \pm$	$305 \pm$	-	295
Dorsal edge of metapophysis to ventral face of centrum, anteriorly	155	152	148	150	150	147	154	$151 \pm$	$169 \pm$	-	-	_
Tip of neural spine to ventral face of centrum posteriorly	265	268	246	285	305	310	$315 \pm$	$320 \pm$	320	$295 \pm$	-	280
Transverse diameter of centrum, posteriorly	114	113	110	116	118	117	114	123	127	136	-	135
Vertical diameter of centrum, posteriorly	91	94	96	97	100	99	97	106	107	117	-	120

(pl. 11, fig. 1), which rises 152 mm . above the roof of the neural canal, also mark the commencement of the lumbar series. The thin dorsoventrally compressed parapophyses otherwise do not differ materially in shape from those of the twelfth dorsal. The neural canal is higher (42 mm .) than wide (35 mm .) and a prominent longitudinal median ridge extends the length of the floor of the neural canal. Neither pre- nor postzygapophysial facets are present; both metapophyses (pl. 10, fig. 2) are compressed from side to side, slope obliquely downward from external to intemal edges and project forward beyond the level of the anterior face of the centrum. No protruding bony excrescences are present on this lumbar.

Second lumbar.-A reduction of the distance (415 mm .) between the extremities of the parapophyses and an increase in the minimum anteroposterior length (68 mm. .) of the thin pedicle of the neural arch are the most obvious features distinguishing this lumbar (USNM 23794) from the preceding vertebra. No increase in the height of the backward slanting distally truncated neural spine (pl .11 , fig. 2), which rises 145 mm . above the roof of the neural canal, is ohservable. Each dorsoventrally compressed. elongated, subspatulate, and narrow (minimum width, 60 mm .) parapophysis (pl .10 , fig. 3) tapers to its rounded extremity. The metapophyses (pl. 9, fig. 2) rise 60 mm . aloove the floor of the neural canal. A rudimentary median rentral longitudinal ridge is present on the centrum. A prominent median longitudinal ridge extends the length of the floor of the neural canal. No bony excrescence is developed on this vertebra.

Thind lumbar.- Downward pressure collapsed the
left pedicle of the neural arch (pl. 9, fig. 3), tilting the neural spine leftward, and deforming the neural canal. Except for the extremity of the thin left parapophysis (pl. 10, fig. 4) this vertebra (USNM 23794) is otherwise complete. The thin pedicles of the neural arch support the elongated metapophyses which project forward noticeably beyond the level of the anterior face of the centrum. The backward slanting neural spine (pl. 11, fig. 3) rises 138 mm . above the roof of the neural canal. A distinct median longitudinal ridge is developed on the dorsal and ventral surface of the centrum. The profile of the anterior end of the centrum is subcircular.
Fourtin lembar.-This lumbar (USNM 23794: pl. 10, fig. 5) lacks the distal end of both parapoplyyses, but is otherwise complete. No bony excrescences are present. The curvature of the anterior and posterior edges of the basal portions of these transverse processes show that they were shorter but similar in shape to those of the preceding lumbar. The high neural spine (pl. 11. fig. t), which rises 185 mm . above the roof of the neural canal, is bent leftward, deforming the neural canal, but not affecting the forward projection of the elongate metapophyses. The posterodistal angle of the neural spine as a result of this strong slant extends backward to less than 10 mm . from the level of the posterion face of the centrum of the lifth hmbar. The anteroposterior diameter (70 mm .) of the thin pedicle of the nemral arch has increased. An aceentnated median longitudinal ridge is developed on the rentral face of the cent rum.
Fifth lombsk.-As compared with the preceding lumbar, the width and vertical diameter of the centrum
 The elongated metapophyses, which rise 50 mm, above the floor of the nemral camal, project considerably beyoud the level of the anterior face of the centrum. The distal emd of the left parapophysis (pl. 10, licr. 6) is missingr the spatulate and dorsoventrally compressed right parapophysis is complete, projecting outward and downward from near the middle of the lateral surfare of the cont rom. The backward slanting ueural spine (pl. 11, lig. . 5) rises 200 mm . atove the roof of the nemral canal and is bent leftward, deforming the neural canal. The median longitudimal rifge is more strongly developed on the rentral surface of the centrum than on the thom of the neural canal. No bony excrescences are present.

Sintil Lombar.-The extremity of the left parapophysis (pl. 10, fig. i) is missing, but otherwise this vertelra (CNM 23794) is complete. On this lumbar the lackward slanting nemral spine (pl. 11, fig. 6) is not only wider (minimum anteroposterior diameter, Ts mm.) than those on the preceding lumbars, but is also longer, rising 208 mm . above the roof of the neural eanal. This nemral spine (pl. 9, hig. 6) is less noticeably bent leftward, although the neural camal is deformed in that direction. Very little reduction in the length of the dorsoventrally compressed subspatulate parapophysis or in the anteronosterior diameter of the thin perlicle of the neural areh is discernible. The median longitudinal ridge does not extend the length of the ventral surface of the centrum; no bony exerescences are present.

Seventil bumbir.- A marked reduetion in the size and forward projection of the metapophyses (pl. 11, fig. i) and in the length (minimum anteroposterior diameter, (iar mm.) of the thin pedieles of the neural arch, as well as a shortening of the parapophyses are the most obvions distinguishing features of this lmman (ITSNM 23694). Most of the right parapophysis (pl. 10, hig. 8) as well as the distal end of the nemal spine are lost. The transterse diameter ($i+4 \mathrm{~mm}$.) of the nemal canal (pl. 9, lig. 7) at the floor almost equals the vertical diameter (3.5 mm.) anteriorly. The nemal spine is essentially vertical, not hent leftward as on preceding lumbars. A medimm longitudinal ridge is present on the ventral and dorsal surfares of the centrm. No bony excrescences are present.

Eightif ldabin.-The convex curvature of the posterion edge of the thin ontward and downward projecting left parapophysis (pl. 10, fig. 9) accentuates its slight forward direction, although its rommed extremity does not extend forward beyond the level of the anterion face of the centrum (ISNM 29O94). The
extremity of the right parapophysis is missing and both metapophyses are incompete. The backward slanting neural spine (pl. 11, fig. S) is vertical and rises 197 mm . above the roof of the neural canal. The vertical diamcter (39 mm .) exceeds the transverse diameter (28 mm .) of the neural canal (pl. 9, fig. S). A median longitudinal ridge is present on the ventral and dorsal surface of the rentrim. No bony excrescences are present.

Nintil lumbar.-Measurements of the centrum (USNM 2379t) are not materially different from the eighth lumbar. The neural canal of this lumbar (pl. 9, fig. 9) has been reduced in width (24 mm.), the vertical but backward slanting neural spine (pl. 11, fig. 9), which rises 187 mm . above the roof of the neural canal, has been slightly shortened, and there is a slight inerease in the length (132 mm .) of the centrum. A sharp-edged median longitudinal ridge is present on the ventral face of the centrum; the corresponding ridge on the floor of the neural canal is low. Both metapophyses are incomplete and the extremity of the left parapophysis (pl. 10, fig. 10) is missing. The outward and downward projeeting parapophyses are inclined more strongly forward than on the preceding lumbar; these processes are also slightly shorter and wider than those on the eighth lumbar. No bony excrescences are present.

Tentif lumbin.-This lumbar (USNM $2379 t$; pl. 9 , fig. 10) lacks the roof of the neural arch, both metapophyses and the neural spine. The dorsovent rally compressed parapophyses (pl.11, fig. 10) are approximately as wide (55 mm .), but are slightly shorter than those of the preceding lumbar and are deflected less obliquely downward from horizontal. A portion of the extremity of the left parapophysis (pl. 10, fig. 11) is missing: the right process is complete. Decrease of the transverse diameter (23 mm .) has heen gradual. A sharp-edged median longitudinal ridge is present on the ventral surface of the centrum and a similar less elevated ridge extents the length of the floor of the neural eanal.

Eleventil lumbar.- This lumbar was dislodged from the vertehral column prior to the acemmulation of the protective overlying sediments and was not foumd associated with the skeleton.

Twelftil m‘amar.-This lumbar (USNM 23794; pl. 9, fig. 11) lacks the roof of the nenral arch, both metapophyses, the neural spine, and all except the basal portions of both the parapophyses. The length, width, and height of this limbar exceeds the corresponding dimensions of all the preceding limbars. Posteriorly on the right side of the centrum (pl. 11, fig. 11) thove the parapophysis, a rather large, bony excrescence projects batkward abont 30 mm . beyond the posterion epiphysis. I sharp-edged median longitudinal ridge
is present on the ventral surface of the centrum; a similar longitudinal ridge, however, is not developed on the floor of the neural canal.

CAUDAL VERTEBRAE

Thirteen caudal vertebrae (USNM 23794), lying consecutively in a row, that have their epiphyses firmly ankylosed to the centrum, were associated with this skeleton. At least one small terminal caudal is missing. The lengths of the three anterior caudals are approximately equal; the length of the centrum diminishes more abruptly behind the sixth caudal. The terminal caudals are more noticeably compressed anteroposteriorly.

The distance between the dorsoexternal edges of the metapophyses progressively diminishes from the first to the sixth. Behind the second caudal the height of the neural spine rapidly decreases. Shortening of the transverse process terminates in the short flange-like thickened condition present on the sixth caudal. This transrerse process is perforated at the base medially on the fourth, fifth, and sixth candals. A vertical aqueduct on the lateral portion of the centrum of the seventh, eighth, and ninth eaudals serves the same function for passage of the segmental blood vessels on their upward course.

On the first caudal a short remnant of the ventral keel on the posteriormost lumbar is retained in the median
ventral longitudinal haemal groove; posterior, but no anterior, haemal tubercles are present. Anterior and posterior pairs of haemal tubercles, separated by the median ventral longitudinal haemal groove, are present on the third, fourth, fifth, and sixth caudals. On each side of the centrum of the seventh and cighth caudal, the anterior and posterior haemal tubercle is comected by a thickened longitudinal bony comection which is perforated medially by a foramen for passage of the segmental blood vessels. Behind the eighth caudal, the lateral portion of the centrum is pierced vertically by an aequeduct for passage of these blood vessels. The seventh may be regarded as the transitional candal since it has a reduced but complete roof for the neural arch over the neural canal.

The total length of this consecutive series of thirteen caudals, inchding the cartilaginous intervertebral disks. did not exceed 1270 mm . (50 inches). See table 14 for measurements of the caudal vertebrae.

First caudal.-On this vertebra (USNM 2394) a pair of ventral posterior haemal tubercles contribute the lateral limits of the median longitudinal haemal depression which rather unusually is divided at the middle of its length by a longitudinal ridge. No anterior haemal tubercles are present. The broad neural spine (pl .11 . fig. 12) is broken off distally, but is inclined backward. Both metapophyses are missing. The thin pedicles of the

Table 14.-Measurements (in mm.) of the caudal vertebrae, L'SNM237.94

Anteroposterior diameter of eentrum
Transverse diameter of centrum anteriorly
Vertical diameter of centrum anteriorly
Minimum anteroposterior length of pediele of neural areh
Transverse diameter of neural canal, anteriorly
Vertical diameter of neural canal, anteriorly
Distance between ends of transverse processes
Dorsal edge of metapophysis to ventral face of centrum, anteriorly
Tip of neural spine to ventral face of centrum, posteriorly
Transverse diameter of centrum, posteriorly
Vertical diameter of centrum, posteriorly

[^2]nenral arch extend most of the length of the centrum. Both tramsverse processes (pl. 13, tig. 1), which lack their extremities, were obviously shorter than those of the twelfth hmbar. The nenal fanal (pl. 12, fig. 1) is quite narrow. Posteriorly on the right side, commencing at the level of the transerse process and extenting upward to the neural arch, a very large bony excrescence extends hackward more than to mom. heyond the posterior epiphysis.

Second catdal.-Distinct paired anterior haemal tubercles are not developed on the ventral surface of the centrum (TSNM 23794); the posterior pair of rather large tubercles are separated by a wide (30 mm .) haemal groore, but no remnant of the longitudinal ridge present on the preceding caudal persists. The left transverse process (10.13 , fig. 2) is short and hroad: the right process is broken ofl' at the base. 'The left metapophysis (pl. 12, fig. 2) which is complete, projects more outward than upwarl, and extends forward bevond the level of the anterior face of the centrum. The backward inclined neural spine (pl. 14, fig. 1) is shorter and the neural canal narrower than the preceding caudal.

Thime caupal.-The right metapophysis is broken off, but otherwise this caudal (TSNM 23794) is comphete. The elongrate posterior haemal tubercles are separated by the broad longitudinal open groove which also extends forward between the smaller anterior haemapophyses. As compared with the second eaudal, the transverse processes (pl. 13, fig. 3) are shorter, more expanded anteroposteriorly and truncatel distally. On their upward course from the ventral hamal groove. the segmental vascular ressels (p. 14 , fig. ${ }^{2}$) pass in front of the shallow not ch at the anterobasal angle of the transverse proeess and thence follow a broad shallow groove that extends ohliquely backward on the lateral surface of the centrum to the posterior end of the neural canal. The distally truncated backward slanting neural spine is reduced in height as is the narrow neural canal.

Foerti camble- Exeept for the missing apical portion of the neural spine this eaudal (USNM 23794) is well preservet. An aproximately equal development of the anterior and the posterior pair of haemal tubereles, and an increase in the width of the median vent ral longitudinal haemal groove oceurs first on this caudal. The separation on each site of the anterior from the posterior hamal tubercle by a long deep notch or gap proviles the pathway for the seqmental blood vessels on their mpard course on the lateral surface of the centrum through the foramen that pierees the base of the short, broal tramsverse process (pl. 13, fig. 4) methially amd thence olliquely to the posterior end of the nemal camal. The low pedieles of the neural arch (pl. 12, fig. 4) sup-
port the thickened metapophyses which do not project forward beyond the anterior face of the centrum. The neural spine (pl. 14, fig. 3) has diminished in height as well as in anteroposterior diameter.

Fifmi caudal.- The contour of both ends of the centrum (USNM 23794 ; pl. 12 fig. 5) is almost hexagonal. The ends of the short transverse processes (pl. 13, fig. 5) are obliquely truncated from the anteroexternal angle to the posteroexternal angle. Both of these processes are pierced medially at the hase for the passage of the segmental blood vessels (pl. 14, fig. 4) which on each side pass through the open notch between the anterior and the posterior haemal tubercles and dorsally reach the neural canal through the foramen in the pedicle of the neural arch. The median ventral longitudinal haemal groove is broad and deep. The neural canal is diminished to a transversely oval passage. The thick metapophyses are directed obliquely upward and outward ; the neural spine is low.

Sixtif caudal.-On this caudal (USNM 23794) the profile of the posterior end of the centrum is almost oroidal in contrast to the hexagonal anterior end (pl . 12, fig. 6) and also is somewhat narrower. The segmental blood ressels (pl. 14, fig. 5) follow the same upward course from the gap between the anterior and posterior haemal tubercles through the foramen at the base of the alhreviated transverse process (pl. 13, fig. 6) to the foramen in the pedicle of the neural arch. The median rentral longitudinal haemal groove is deep but narrower than on the preceding caudal.

Serentio caudal.-Ventrally (USNM 23794) on each side the anterior and posterior haemal tubercles (pl. 14, fig. 6) are united by a thickened osseous connection which is pierced loy a foramen for passage of the segmental blood vessels. Above this formmen these blood ressels on their upward course pass through a vertical aqueduct in the lateral portion of the centrum to reach on the left site the foramen in the pedicle of the neural arch. This dorsal foramen is obliterated in the right pedicle. The median ventral longitudinal haemal groove is deep. I thin and very low neural spine (pl. 13, fig. 7) extends almost the full length of the roof of the neural arch. This roof is lacking on the caudals behind this vertebra. A thick longitudinal ridge marks the position of the transverse process on the preceding caudals.

Eigmm cacbun--This caudal (USNM 29794; pl. 13, tig. 8) resmbles the seventh caudal in having the anterior and posterior hacmal tubercles mited by a thiek osseoms commection perforated medially for the passage of the segmental blood ressels from the deep rentral longitulinal haemal groove. These vessels continue their course upward throngh the vertical aqueduct in the
lateral portion of the centrum, and presumably reach the posterior end of the open neural canal. The metapophyses (pl. 12, fig. 8) are reduced to low, thickened elongate knobs. The neural canal is an open elongated groove. A reduced longitudinal ridge (pl. 14, fig. 7) marks the position of the transverse process on the preceding caudals.

Ninth caddal.-Absence of haemapophyses (USNM 23794; pl. 12, fig. 9) and a further shortening of the centrum characterize this caudal (pl. 13, fig. 9). Except for the elongated central orifice of the vertical aqueducts of the segmental blood vessels, the ventral longitudinal haemal groove is almost obliterated. One additional orifice on each side completes the normal three ventral orifices of the vertical aqueducts that pierce the centrum and enable the segmental blood vessels to emerge dorsally through two foramina in the deep open neural groove. On the small terminal caudals of Recent mysticetes, the neural canal is not covered by the roof of the neural arch and cherron bones are not attached; these anteroposteriorly compressed caudals serve as a hase for the attachment of the fibrous candal flukes.

Tenth caudal.-A depressed but flattened anterior end (pl. 12, fig. 10) and a convex posterior end of the anteroposteriorly compressed and somewhat circular centrum are the most obvious distinguishing features of this caudal (USNM 23794). The torsal pair of orifices (pl. 13, fig. 10) for the vertical rascular aqueducts, separated by an interval of 5 mm ., open into a short ovoidal cavity. Ventrally there are three smaller orifices for the segmental blood vessels, each lateral one being 24 mm . distant from the central orifice.

Eleventin caudal.- The centrum of this candal (pl. 12, fig. 11; USNM 23794) has become more quadrangular in ontline, the anterior end is depressed, and the posterior end convex. A rather broad longitudinal groove is present on each lateral surface. Dorsally, the two orifices of the vertical vascular aqueducts (pl. 13, fig. 11) are closely approximated in a small (width, 7 mm .) circular cavity. The usual three small ventral openings are present.

Twelftil caddal.- Tiewed from in front, the profile of this caudal (USNM 23794 : pl. 12, fig. 12) is definitely quadrangular, the lateral longitudinal groove (pl. $1 t$. fig. 11) is narrower, and both ends are depressed. The dorsal and ventral orifices of the vertical aqueducts for the segmental blood vessels are not materially different from those of the eleventh candal.

Timbteentif cacdal.-This anteroposteriorly compressed caudal (USNM 23794; pl. 14, fig. 12) differs from the preceding caudal in being smaller, but otherwise lacks distinguishing features.

At least one small terminal vertebra was not represented in this caudal series.

CHEVRONS

Three chevron bones were found intermingled with other skeletal elements of this mysticete, the largest of which was articulated with the third caudal (table 15). All three have strong haemal spines and large articular facets on the transversely widened dorsal ends of the lateral lamina. The hacmal canal of all three cherrons is smooth, without any indication of a median longitudinal ventral ridge.

Table 15.-Measurements (in mm.) of the chevrons, USNM 23794

	Ch. 3	Ch. 6	Ch. $\%$
Vertical diameter of ehevron Greatest anteroposterior diameter of haemal spine at extremity	117	75	58
	94	66	65
Anteroposterior diameter of articular facet on right lateral lamina	54	-	49
Least distance between internal (median) margins of opposite articular facets	13	-	none

The third cherron (CNND 23794; pl. 1. fig. 2) has a large elongated haemal spine, whose free rentral edge curves convexty downward from the anterior end of the haemal canal to its nearly straight vertical posterior edge. The right articular facet is shorter and wider than the left. which is more strongly attenuated as its anterior end.

The next largest cherron (C SNM 29794: pl. 1, fig. 3) is incomplete, the posterior half of the right lamina and most of the left lamina are broken oft'. This sherron has a short, broad haemal spine, truncated horizontally, ventrally and a small obtuse anterobasal projection. The vertical diameter of the haemal camal helow the edge of the articular facet is 22 mm . as cont rasted to the 41 mm . depth of the canal of the third chevron. The amerior half of the right articular facet is similar in shape to that of the third cherron. The measurements of the hamal canal suggest that this may le the sixt h cherron.

The smallest (INSM 2994: pl. 1. fig. 4) of these three cherrons has a some what shorter, ventrally thickened hatmal sime and a narrower anterohatal projection than the larger, more romded posterobasai projection. The small haemal (anal is higher (15 mm .) than wide (10 mm.). Above the haemal eanal the elongated woidal arti-ular facets are in contact medially. This. is tentatively identified as the serenth.

RIBS

dileren pairs of ribs were assoriated with this skeleton
 found at the site of exaration. The lack of a roughemed area on the beveled obliquely truncated extremity of the transerere process of the twelfth dorsal vertehat semingly suggests but does not necessari]y confirm the absence of a twelfth pair of ribs.

The capitulum at the vertebral end of the first to elghth pair of ribs, inclusive, is lodged manly in the protuherant posterior face on the dorsoxtemal face of the contrum of the preceding vertebra. The tuberenlum of wach of the eight anterior pairs of ribs articulates with the facet at the extremity of the diapophysis. The rather robust neck of the ribs in the eight anterior pairs procressively diminishes in length from the second (the longest) to the eighth. On the first rib, the vertebral end is strongly compressed anderposteriong ant the distance between the vertebral margin of the tuberonlum and the external margin of the capitulum is short (right, 20 mm.). The single head of the ninth, tenth, and eleventh ribs is asymmetrical, and articulates solely with the fiser at the extremity of the transverse process (parapophysis).

Is a result of curvature the anterior face of the shaft near the vertebral end imperceptibly beromes the external face toward the distal end on all the ribs behind the first pair; this face is more convex than the posterointernal face.

The first ril, is the shortest and most strongly compressed anteroposteriorly, and alsomost abruptly curved inward at the ventral or stemal end of all the ribs. This rib most certainly had a ligamentary attachment to the starmm. Behind the first pair the ribs progressively increase in length (in a straight lime) to the fifth and sixth pairs and then decrease to the eleventl pair. The distal or stemal ends of the secomd, third, and fourth ribs on the right side, and the second, third, fourth. lifth, and sixth on the left side are truncated
and rugose, possibly for attachment of some ligamentary comection with sternal ribs. The manbrime is much too small to provide a lase for attachment of so many ribs. All other ribs are attenuated toward the ventral or distal end and presumably terminated freely in the mass of abtominal moscles. See table 16 for mensurements of the ribs.

First mus.--The distal end of the shaft is broken off on both the right and left ribs (USNM 2379t; pl. 15, lig. 1). On the right rib the small ovoidal capitular facet is separated from the much larger tubercular facet by a short interval (20 mm .). Both of these facets are malformed on the left rib. The shaft of these ribs is markedly compressed anteroposteriorly from the vertebral to the stemal eme, and also strongly curved. Since the seventh rervical and the diapophysis of the first dorsal were not recovered with this skeleton, the articular relations of this first rib are uncertain.

SEcond mas.- On the right side, this long rib (USNM 23794 ; pl. 15, lig. 2) is complete; the vertebral end of the left rib is broken off. This rib is considerably larger than the first rib; its rugose sternal end is compressed but not reduced in width and presumably was attached to the stemum ly a ligament. The flattened capitular facet is located at the end of the anteroposteriorly compressed neck and is separated by an interval of 55 mm . from the concave articular surface of the tuberculum. No angle is developed on the shaft external to the tuberenlum; the curvature is regular, the external edge being thicker than the internal.

Tumed rib.-The third pair of ribs (USNM 23794; pl. 15, fig. 3) are more curved and longer than the second, the right and left measuring, respectively, 637 and 636 mm . ; the shaft is strongly compressed toward the sternal end. The stermal end of the shaft is rugose and pitted, and not appreciably narrower than the widest portion of the shaft. At the vertebral end of the neck, the distance between the large ovoidal capitular facet and the narrow elongated tuberenlar facet (left, length, 60 mm .) is refluced to 18 mm ., although

Table 16.-Measurements (in mm.) of ribs, USNM 2379 4

the distance between the capitulum and the extermal margin of the tuberculum is very slightly less than on the second rib.

Fountin rib.-The length of the ribs of the fourth pair (USNM 23794 ; pl. 15, fig. 4) has increased (right, $698 \mathrm{~mm} . ;$ left, 705 mm .) ; the width of the curved shaft has lecome more uniform from end to end, and the articular area of the tuberculum has been reduced. Although the distance (30 mm .) from the capitular facet to the inner (vertebral) margin of the tubercular facet has increased, this end of the rib is actually shorter than on the third rib. Athough longer, the shaft of this rib is actually narrower than the third; its compressed sternal end is likewise rugose and pitted. As compared with the external edge the internal edge of the shaft is less noticeably compressed.
Fiftia rib.-No indication of an angle external to the tuberculum is present on the outer surface of the shaft of either rib (USNM $23794 ; \mathrm{pl}$. 15, fig. 5). The end-to-end curvature of the shaft is about the same as that of the preceding ril). At the vertebral end of the shaft the tulerculum is a saddle-like depression separated from the more nearly circular capitular facet by an interval of 15 mm . Shortening of the neck and a narrowing of the shaft have accompanied elongation of this rib (right, $i 28 \mathrm{~mm}$.: left, 725 mm .). The attenmated stemal end of the right rib is deeply pitted, presumably for attachment of a ligament; this end of the shaft of the left rib is attennated but otherwise normal.

Sistu rib.- 1 slight indication of an angle 120 mm . external to the tuberculum is present on the outer surface of the shaft of the left rib: (USNNI 23794 ; pl. 15. fig. 6). Each of these ribs is slightly shorter (right, $70{ }^{2}$ mm .; left, 715 mm .) than the preceding, although the end-to-end curvature is about the same. The attenuated sternal end of the left rib is decply pitted, hut the stemal end of the left is normal. The saddle-like tubercular facet is separated by an interval of not more than 15 mm . from the convex capitular facet. The length of the neck is approximately equal to that of the preceding rib. The outer surface of this rib is slightly convex and the intermal is flattened.

Seventhi rib.-The ribs of the seventh pair (USNM 23794; pl. 15, fig. 7) are slightly shorter than the sixth. the right and left ribs measuring, respectively, 6.67 am 706 mm .; the curvature of the shaft is quite similar. A definite angle is developed 140 mm . external to the tuberculum on the left but not on the right rib. On this left rib the oral articular face of the knoh-like capitulum is located at the extremity of the more noticably constricted and shortened neek; the capitulum of the right rib is much smaller and lacks projecting edges.

The tuberculum on both ribs is an ill-defined irregularly depressed surface. A slight enlargement attributable to osteophytosis has deformed the left rib ahout 315 mm . distant from the articular face of the capitulum. The sternal ends of both ribs are compressed and gradually attenuated.
Eighth rib.-A definite angle is present 240 mm . external to the articular face of the capitulum on the outer surface of the left but not on the right rib (USNM 23794 ; pl. 15, fig. 8). The rertebral end of each rib in this pair is quite unlike any of the preceding ribs: the neck is dorsoventrally compressed and attenuated to the small terminal capitulum. The ill-defined tuberculum is located on an elevation at the commencement of the neck. The shaft of the eighth rib is also more slender and much less compressed than that of the serenth rib, but is attenmated at the sternal end.
Nintil reb.-The right and left ribs of the ninth pair (USNM 23794: pl. 15, fig. 9) measure, respectively, 650 and 662 mm . in a straight line; the shaft of each rib is less curved, particularly near the rertebral end, than the eighth rib. The articular area on the vertebral end of the rib is exceedingly nodular and irregularly excavated.
Tentir rib.-Both rilos of the tenth pair (USNM 23794 ; pl. 15, fig. 10) have their distal ends broken off and lost. Both ribs have the vertebral end dorsorentrally compressed and widened for the elongated articular surface. The shafts of these ribs are slightly curved and are less compressed than the preceding ribs.
Eleventil rib.-The narrow articular head of each of the eleventh ribs (TSNM 23794: pl. 15, fig. 11) is ovoidal in outline, pitted, and ronghened for the ligament that serves for attachment to the extremity of the transverse process of the eleventh dorsal. The left rib, which measures 588 mm . in a straight line, may either have been fractured 190 mm . above the compressed distal end or malformed by osteophytosis.

STERNUM

Recent Mysticeti possess a sternum consisting of a broad flattened presternum, which is extended posteriorly into a xiphinid process in some species: but no mesosternal segments have been observed and, consequently, only the first pair of rits are attached to the presternum. The sternum of these Recent mysticetes varies from heart-shaped, longitudinally owal, to trilohate. Although it is generally accepted that the stermum does not provide a satisfactory basis for discriminating closely allied speries of Rerent Mysticeti, eridence now exists that two Miocene genera have a sternum of almost identical shape.

The thin sternum (1 SNM 23704 ; jl. 1, fig. 5) of this Choptank eetothere is defintely cordiform in outline, measuring 99 mm 。 in width ant 91 mm . in length, and the apparent downward bowing when viewed from below is attributable to the convex fore and aft curvature of the rentral surface of this bone. The entire bone is rugose, the texture of the exposed surface being grannlated. The indentation of each side may represent the area of attachment of the sternal and of the first rib.

The heart-shaped stermm of the Miocene Cetotherium Flinderi tigured by Brandt (1873, pl. b, figs. 13A, 13B) differs from this Choptank sternum in having an acute posterior end and in lacking the lateral indentation. True (1904, p. 258 , fig. 85) has figured a heart-shaped sternum of a North Atlantic Balaena glacialis, but observes that a lack of miformity among the several recorded specimens is not surprising.

2. THE VERTEBRAE OF A SECOND MIOCENE CHOPTANK CETOTHERE

A subsequent tendency toward a rather grathal shortening of the neck seems to be indicated by a comparison of the relative cervical lengths of Miocene cetotheres with Recent balaenopterid mysticetes. The cervical length of this Miocene Choptank cetothere constituted about 5.6 percent of the total skeletal length. Reduction of the cervical length attributed to the mechanical squeezing of the neck between the head and the thorax by water pressure from in front while swimming as adrocated hy Winge (1918, pp. fie-63: 1921. p. 5) requires further consideration. On a purely mechanical basis it wonld appear more probahle that such pressure would have tended to narrow the skull and possibly to elongate the neek.

Among these (alvert and Choptank cetotheres fusion of the cervial vertelsae, involving the coalescence of the opposing centra and the peticles of the neural arches, owurs first between the axis and the third cervieal (CSNM 11976, 29704). Reduction in the length of the centra is manifested first on the third cervical. Incrase in the lengrth of the centra behind the axis is gradual to and inchuding the first dorsal and on some cetothere skeletons the seond dorsal as well. The chief dorsal neek muscles are regarded as an integral part of the musculature of the trunk, and function as such during swimming.

Among Recent balaenopterids, the anterior pairs of ribs have reduced or lost their art icular comections with the centrat of eorresponding dorsal vertebrate; and the neck, between the tuberexum and the capitulam of the ril), has been shortened. Wight anterior pairs of ribs of theser retotheres have definite artioular relations with these anterior dorsals. On these dorsals a well-detined articular facot, located at the posterodorsal ancrle of the external diae of the centrum below the floor of the newral canal, artiondates with the rapitulam of the following rib, and the end of the diapoplissis (upper transverse process) atioulates with the tulowoulum. Wach
lateral transterse process (parapophysis) projecting horizontally outward from the centrum on the posterior dorsal vertebrae has a single headed rib attached by ligaments to its extremity. On the posteriormost dorsal the transverse processes rival in size and length the corresponding processes of the lumbars and are regarded as serially homologous. The neural spines increase in height and width (in an anteroposterior direction) toward the posterior end of the dorsal series; these neural spines are longer and often broader in the lumbar region.

Atrophy of the hind limb and the accompanying degeneration of the pelvis had been effected in some at least of the cetotheres lefore the close of the Miocene. Retrogressive remodeling of the innominate bones of the middle Miocene (Astoria fm.) Cophocetus oregonensis (Packard and Kellogg, 1934, pp. 58-59, figs. $22-24$) had proceeded so far that the acetabulum was obliterated, yet the elongated ilium resembled the balaenopterid type. There is no visible indieation that the pelvic bone retained a functional contact with any vertehra. Sacral vertebrae that normally in land mammals possess flattened areas on their transrerse processes for a ligamentous attachment of the pelvis are not recognizable as such and they (the sacrals) have assmmed the shape and characteristics of vertebrae either in front or behint.
'Ihe candal rertehrae are distinguished by a ventral articulation with a eherron bone which serves to proteet the candal anterial and venons trimks that follow the haemal irroove on the under side of each centrum. Four or tive molified terminal candals are embedded in the cantal thakes of Recent mysticetes and the corresponding cetothere candals are similarly degenerate. The anterior comdals have robust centra, diminishing in size toward the more obvionsly anteroposteriorly compressed centra of the terminal vertebrae and of these the first sid or seven have strong nemral arches that support neu-
ral spines and metapophyses. Nenral spines progressively reduced in height and width (in an anteroposterior direction), large metapophyses spreading obliquely upward and outward, but not interlocking with the vertebra in front, and diminishing neural canals also characterize the anterior caudals. Shortening of the transverse processes terminates in the flange-like condition of the sixth candal. On the small anteroposteriorly compressed terminal candals, the neural canal is not covered by the roof of the neural areh and cherrons are not attached ventrally.

Comparison with skeletons of Recent balaenopterids shows that the caudal vertebrae of these cetotheres possess the requisite structural features to support the musculature and tendons required to manipulate effectively a terminal organ of propulsion. The cetothere tail obviously was strongly muscled and employed as a propelling organ by up-and-down or side-to-side strokes, or possibly with a sculling motion. The strongly muscled cetothere tail with a terminal flattened horizontal fluke would function as the primary speeialized organ to propel the whale forward, upward or downward in a nearly straight line. The pectoral flippers serve in steering and balancing.

The cordiform shape of the small sternmm (pl. 1, fig. 5) of a Choptank cetothere indicates that it had become reduced or atrophied and consequently has lost most of its functional relationship, with the ribs in the thoras.

Halicetus, ${ }^{2}$ new genus

Type-species.-Halicetus ignotus, new species.
Diagnosis.-Atlas not umsually thickened and a restigial hyapophysial process present. Odontoid process of axis short, acutely pointed. Pedieles of neural arch of third to seventh cervieals short and rather wide: neural canal relatively high, not musually widened: roof of neural canal arehed. Neural spines of dorsals progressively increasing in anteroposterior width and height toward posterior end of series, almost vertical on anterior dorsals in contrast to slight backward inclination of posterior dorsals. Neural spine of eleventh lumbar shorter but broader than on first lumbar: metapophyses of lumbars and posterior dorsals thin, deep vertically. Tramserse processes of first to fourth candals anteroposteriorly widened toward extremity. Posterios process of periotic greatly enlarged anteroposteriorly: bulbous anterior process rugose and porous internally. elsewhere irregularly ereased or wrinkled longitudinally; dorsal rim of cireular internal acoustic meatus projects internally (cerebrally) beyond slit-like depres-

[^3]sion for aperture of vestibular aqueduct and the cochlear aqueduct orifice; transverse and vertieal diameters of exeavation behind stapedial fossa for extension of air sac system approximately equivalent.

Halicetus ignotus, new speries

Type-spechmen-CSNM 23636. Skull when exasated badly fractured and indiridual bones detached: both tympanie bullae; both perioties: seven cervical vertebrae: 12 dorsal vertebrae; 3 lumbar vertebrae; 12 caudal vertebrae; rib fragments. Collector, Richard Warren, April 1964.

Horizon and locality.-In shell layer of sandy zone 19, about 14 feet above beach level, 1.9 miles (10,000 feet) south of ('alvert Beach Run (C.S.G.S. Cove Point sheet, 1943), Calvert Countr, Maryland. Choptank formation, middle Miocene.

SKULL TYMPANIC BULLA

Both tympanic bullae (CSNM 23636) were associated with the periotics attached to the squamosal portions of the type skull. The left bulla is the best preserved although both lack the anterior and posterior pedicles. Except for a more accentuated roughening of the dorsal surface of the involuerum by development of wider transverse ridges as well as the greater width of the anterior eustachian outlet of the tympanic carity, the bulla of this mysticete resembles in several respects the corresponding auditory bone of Pelocetus colleertensis (Kellogg, 1965, fig. 4, p. 12), not only in size. Yiewed from the extermal side, the ventral profile of this bulla (pl. 16, fig. i) is slightly arched, the posterior end heing markedly convex and the anterior end obliquely trimcated in a dorsorentral direction. The large elongated sigmoid process is twisted at a right angle to the lonir axis of the bulla, its bluntly rounded extremity being bent backward.

See table 16 for measurements of the left tympmic bulla.

The basal portion of the slender promessus gracilis: (anterion process of Ridewool, 192. j, 241, tig. 10) of the mallens remams fused to this bulla in the groove

Tible 17.-Measurements (in mm.) of lefl tumpanic bulla. ISNM 236.3n
(ireatest length
(ireatest width
(ircotest depth of buha on external side, ventral face to
tib of sigmoid process
in from of the sigmoid preeses the anterior pedicle has been broken oft at the level of the free onter edge of the oreatraing outer lip. I deep narow groove intervenes betwen the sigmoit process and Beamegariss conieal apophysis: the latter is a short bhatly romded process separated by a noth from the thin external portion of the pesterior petide. The major hasal puntion of this posterior pedicle projected from the involucmm.

The involucrum attans its maximum witth (ρ l. 16, fig. 4) behind the projecting sigmoid process and becomes abruptly narowed in front of the level of the attachment of the processus gratilis. Viewed from the rentral side (pl. afi, fig. :3) this bulla is characterized by an oblique trumation at both ends: the anterior widening of the tympanic cavity is reflected in the increased width of the anterior end of the bulla which is also greater than the pesterion ent.

PERIOTIC

The type-skul] was so batly crushed and broken up prior to excaration that reconstruction has not been attempted. Disintegration of the bone has destroyed the original contact surfaces of the larger pieces of the basicranium.

The posterion process of the right periotic (ISNM 23636) was limly lodged between the exoccipital and the base of the postglenoid process of the squamosal before the periotic was detached. This pesterior process (pl. 16, fig. 1) is elongate and markedly entarged toward its distal end, the greatest vertical diameter (84 mm .) exceeding the anteroposterior diameter (5 m mon.) near the teminal end, although the posterior surface of this process seems to have been abraded before the exoceipital was detached. A well-defined deep and curved groove for the facial nerve traverses the ventral surface of this process from its base to its extremity. The pars cochlearis is extended into the barge recess behind the pterygoid fossat.

The extermal denser pars labyrinthiea and its forware continuation, the anterior process, are hoth creased extermally and lofged as manal in the cavity on the intermal face of the spmamosal. A rentrontemal projection or lip from the pars labrinthica overlaps the adjacent smrfare of the squamosal and is possibly abnomal atthough developed on both periotics. The transvere diameter of the thick anterion process is rapidly diminished from the level of the pars cochlearis to its bhant anterior end.

The pars cochlearis (pl. 1f, fig. 1) is intlated and its external face werhangs the fenestra ovalis. Viewed from the ventral side, its cerelnal profile is motilied by the projecting dorsal rim of the internal aronstic
meatus: its convex posterion face descends abruptly below the fenestra rotmela in contrast to the pronounced lattening of the ventral surface anteriorly.

Behind the epitympanic orifice of the Fallopian aqueduct, a narrow raised rim separates the fenestra ovalis from the groove for the facial nerve. The small fossa for the stapedial muscle is rugose. Between the base of the anterior pedicle of the bulla, which is fused to the anterior process, and the epitympanic orifice of the Fallop iam aqueduct is a shallow depression for lodging the head of the malleus. The small fossa inculis is located on a narrow ledge projecting inward below the groove for the facial nerve.

The circular internal aconstic meatus (pl, 16, fig. 2) is relatively small, and the upper portion of its rim projects inward at least 15 mm . beyond the level of the cerebral orifice of the restibular aqueduct located in a deep slit-like depression. The cerebral orifice of the corhlear aqueduct is small. A thin osseous partition separates the large orifice of the Fallopian aqueduct, located at the anterointernal edge of the pars cochlearis, from the centrally located internal acoustic meatus. The cerebral face of the pars labyrinthica above and in front of the internal aconstic meatus is depressed, rugose and somewhat nodular.

Dorsal to the thin shelf projecting ontward above the fenestrat rotunda and behind the stapedial fossa, a smooth surfaced excavation, presumably for lodging an extension of the air sac system, extends across the posterior face of the pars cochlearis.
See talle 18 for measurements of the right periotic.
Table 1s.-Measurements (in mm.) of right periotic, USNM 23636

Greatest dorsoventral depth of periotic, from most inflated portion of tympanic face of pars cochlearis to most projecting point of cerebral face

63
Distaned between rpitympanie orifice of Fallopian aqueduct and extremity of anterior process
Length of posterior process, distance from external end to outer wall of groove for facial nerve
Distanee from external end of posterior process to anterior end of anterior process (in a straight line)

VERTEBRAE

All the vertebrat of this skeleton (USNM 23636) have the epiphyses firmly ankylosed to the centra and with few exceptions all have their processes preserved. Relatively minor distortion resulting from erushing is observalble on a few vertebrae. This skeleton is represented by 7 cervicals, 12 dorsals, 3 lumbars, and 12
candals, each series being arranged when found in close natural contact with the preceding and succeeding rertebrae. The lumbar series comprised at least 12 lumbars of which the first and the two at the hinder end were excavated in their natural sequence with the adjacent part of the vertebral colomn.
The total length of this skeleton, including the skull (estimated length, 1525 mm .; 60 inches), from extremity of the rostrum to and including the terminal caudal did not exceed 19 or 20 feet.

CERVICAL VERTEBRAE

All cervical vertebrae are free and the epiphyses are firmly ankylosed to their centra. Atlas not musually thickened with short neural spine: short, blunt transverse processes: and almost restigial hyapophysial process. Axis has a short threesided neural spine: oflontoid process is short, acutely pointed ; the broad transverse processes are elongated, attenuated distally, tumed downward and bent backward; and the foramen transversarium is reduced to a small opening. Tpper and lower transverse processes of third cervical elongated and united externally to enclose a barge cervical extension of the thoracic retia mirabilia: anterior face of centrum is broadly elliptical, bluntly rounded laterally: and neural spine short. Extremities of upper and lower transverse processes of fourth cervical are not mited distally to completely enclose the formen transversarium; neural spine short, compressed from side to side. and triangular in outline. Extremities of upper and lower transverse processes of fifth cervical are separated by a rather wide gap; neural spine short, similar in configuration to that of fourth cervical. Contour of anterion face of centrum of sixth cervical nearly subcordate: upper slender transverse process is curved downward and
backward to its attemated extremity: no restige per sists of lower transerse proces: nemal spine is higher. attenuated distally. The diapophysis of the seventh cervical terminates distally in an elongated facet for articulation with the head of the anterior limb of the as sumed bifureated first rib: mo restige of the lower transverse process persists.

The lower transverse processes (parapophyses) are not developed on either side of the sixth and serenth cervical vertebrae. The presence of an articular facet at the extremity of each upper transverse process (diapophysis) of the seventh cervical vertebra points either to the persistence of a separate cervical rib, or to a cerrical rib ankylosed to the first rib, the head of the latter articulating with the diapophysis of the first dorsal vertebra.

When the first rib is subdivided at its rertebral end by a deep cleft into two distinct heads, the anterior limb, of this double-headed rib articulated with the end of the upper transserse process (diapophysis) of the serenth cervical vertebra and the posterior limb articulated only with the diapophysis of the first dorsal vertebra. The presence of a bifid first rib seems to be normal in oceurrence in the Recent Balaenoptera boreatis. This forked or bifureated condition of the vertebral end of the first rib has been reported also for other Recent Mysticeti. The cervical rib may enther persist free or be ankylosed with the first rib, and in the latter condition the vertebral end of the first rib is bifurcated by a cleft of varying depth. Turner (1871), however, concluded that the presence of a double-headed first rib has not necessarily any specific importance.
The total length of the seven cervical vertebrat comprising the neck, including cartilaginous intervertebral diske, is 365 mm . ($141 / 2$ inches). See table 19 for measurements of the cervical vertebrae.

Tible 19.-Measurements (in mm.) of the certical vertebrae, L"SJM 23635

[^4]| Allas | Aris | C. 3 | C. 4 | C. 5 | C. ${ }^{\text {c }}$ | c.is |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 73 | $7 \mathrm{O} \mathrm{O}^{\text {d }}$ | 40 | 43 | 45 | 44 | 45 |
| 196.5 | - | 104 | 96 | 96.5 | 96 | 97 |
| | | 76.5 | \because | - | $\checkmark 3$ | 50. 5 |
| 13.5 | 166 | 1.11 | 150 | 1.4 | 15 | 169 |
| 71 | 42 | 3 | 35 | 3.5 | 3.7 | 34 |
| 45 | .16 | 49 | 30 | 56 | \therefore | 53 |
| 196.5 | | 225 | 204 | 216 | 245 | 239 |
| | 23.5 | 243 | -3, | 167 | | |
| 61) | 34 | 24.5 | 20.5 | 23 | 23 | 19.is |
| | 107 | 100 | 97 | 16 | 97 | ! |
| | 73 | -1 | - | -3 | \because | 7-3 |

[^5]Athas-Not musually thick, with broad (anteroposteriorly) neural arch : anterior facets (pl. 17, fig. 1) for articulation with occipital candyles of skull deeply concave, widest near middle of height and slanting obliquely outward from internal to external margins, the two facets separated rentrally by a narrow shallow groove (trough). On each side, the neural arch (nemapophysis) is piereed ventrally near its anterior border by a vertehra-arterial foramen (pl 18, fig. 1) which opens externally into a ventrally directed groove. Neural spine thick and short, with allacent surface of areh rngrose and pitted. Transverse process on each side short, blunt, almost three-sided in shape. Neural camal large. The 1 wo opposite posterior facets (p. 17, fig. 2) for articulation with the axis are broad, their external margins set ofl from the lateral surface of the centrum. The byapophysial facet helow the neural canal is short, acuminate, and vestigial. Between opposite posterior facets and below the neural canal is the broad upward and forward sloping surface for articulation with the odontoid process of the axis. A broad downward and backward slanting articular surface, for the reception of the forward projecting angle of the nenral areh of the axis, occupies the posterior border of the neural arch medially.

Additional measurements of USNM 23636 are as follows: Greatest distance between outer margins of anterior articular facets, 150 mm .; greatest distance between outer margins of posterior articular facets, 151 mm.; greatest vertical diameter of right anterior articular facet, 101 mm .; greatest vertical diameter of right posterior articular facet, 79 mm .

Axis.-Characterized in part by large rngose threesided neural spine (pl. 17, lig. 3) arising from top of neural arch. Transwerse processes elongated, dorsoventrally widened on basal half, attemated distally, directed downward but strongly bent backward. Foramen transversarimm on transverse process for cervieal extension of thoracic retia mirabilia reduced to a small opening (passige) less than the diameter of a pencil: a rather decp cavity or depression on the posterior face (pl. 17, fig. 4) of each process occupies the area where a larger opening originally was located. The width of the neural canal exceeds its height. The rather rugose anterior facets for articulation with the atlas are somewhat flattened, the vertical diameter of each exreeding its transverse diameter. The odontoid process is short, acmminate. The anterior median angle of the nenral arch is extended forward noticeably heyond the level of the anterior facets to articulate with or rest on an opposing surface on the posterior median border of the nemral arch of the atlas. The neural areh is massive,
its lateral surfaces musually rugose and sculptured. The floor of the neural canal is shallowly concave; the wide ventral surface of the centrum is roughened by a number of irregrlar small excrescences. The broadly elliptic:al posterior face of the centrum is flattened, shallowly concave medially. The greatest distance (USNM 236;6) between outer margins of anterior articular facets is 153 mm .
Tmind cervical.-The anterior face of the centrum is broadly elliptical, bluntly rounded laterally, wider than those of the following cervicals and shallowly depressed medially, but the anteroposterior diameter of the centrum (pl. 18, fig. 3) is less. The transverse diameter of the nemral canal (${ }^{1}$ l. 17, fig. 5) exceeds its vertical diameter. The pedicles of the neural arch are short and thick (minimum transverse diameter, 37 m .), and support the prezrgapophysial facets which are largely destroyed. The postzygapophysial facets are elongated, almost flat and project at least 10 mm . beyond the level of the posterrior face of the centrum. The neural areh is lightly constructed and is very rugose dorsally; the neural spine is short. The upper rather slender transverse process (diapophysis) projects outward and backward and is united distally with the end of the stronger parapopyhysis, enclosing the large transverse foramen for the cerrical extension of the thoracic retia mirabilia. The lower transverse process or parapophysis is broader near the base than the upper process, its posterior surface being rounded: it projects outward with a twist, the distal end being bent nearly vertieal, almost at right angles to its basal portion and is likewise bent backward.

Focrth cervical.-The broadly elliptical anterior face of the centrum is flattened and its posterior face is shallowy depressed medially. The width of the neural canal exceeds the rertical diameter. The pedicles of the neural areh (pl. 17, fig. 7) are very short and support ovoidal prezygapophysial facets which project forward beyond the level of the anterior face of the centrum. 'The oblique postzygapophysial facets are elongated and also project backward beyond the level of the posterior face of the centrum. A short triangular neural spine (pl. 18, fig. 4) rises from the top of the neural arch. The extremities of the diapophyses and parapophyses are not mited distally to completely enclose the foramen transversarium for accommodation of the cervical extension of the thoracic retia mirabilia. Each thin diapophysis is dorsoventrally compressed on the basal half of its length but is bent downward and attennated distally, the extremity of the right process being separated from the end of the corresponding parapophysis by a gap of at least 7 mm , and by 17 mm . on the left side.

The distal ends of the thicker parapophyses are curved upward and backward.

Fiftir cervical.-As contrasted with the fourth cervical, the vertical diameter of the anterior face of the centrum has increased, the neural canal is wider, and the opening for the cervical extension (pl. 17, fig. (i) of the thoracic retia mirabilia is less completely closed. The pedicles (right, minimum transverse diameter, 38 mm .) of the nemral arch are short, but occupy more of the dorsoexternal face of the centrum. Each pedicle supports a wide (right, maximum width, 23 m .) concave prezygapophysial facet, which projects forward beyond the level of the anterior face of the centrum. The postzygapophysial farets are also wide and slope obliquely downward from extemal to internal margins. A short neural spine (pl. 18, fig. 5) rises from the top of the neural arch. The slender diapophyses which project outward. but curve downward and backward, arise partly from the pedicle of the neural arch and partly from the dorsoexternal portion of the centrum anteriorly. The left diapophysis is longer than the right. Each short parapophysis or lower transverse process projects outward and curves upward and backward; the increase in width is gradual on the basal two-thirds of its length, but the distal end is attenuated. The extremities of the upper and lower transverse processes are separated by a gap, and thus do not completely enclose the foramen transversarium. The rentral surface of the centrum is depressed on each side of the low longitudinal median ridge.

Sixth cerital.-The contour of the anterior fate of the centrum (pl. 17, fig. 8) has become more nearly subcordate and the transverse cliameter continues to exceed the vertical. The pedicles (right, minimum transverse diameter, 40 mm .) of the neural arch are short and wide but the major support to each diapophysis is contributed by the dorsoexternal portion of the centrum anteriorly. Each pedicle supports an elongate concave prezygapophysial facet which projects forward beyond the level of the anterior fare of the centrum. The postzygapophysial facets are ovoidal hut slope less noticeably down ward from external to internal margins: they project backward heyond the level of the posterior face of the centrim. The neural spine (pl l. 18, tig. fi) is short. The dimensions of the newral canal do not differ materially from those of the fifth cervical. Each slender diapophysis projects out ward and eurves down ward and backward to its attemated extremity. No restige of the parapophysis or lower transrerse process persists. On each side of the low median longitudinal ridge the comcavely depressed ventral surface merges with the similarly depressed lateral face.

Seventil cenvical.-The anterin face of the centmm (pl. 17, fig. 9) is subcordate. The median longitudinal ridge on the rentral face of the centrum is much narrower and more prominent than the corresjonding broad ridge on the preceding cervical. The pedicles of the neural arch are low and support the forward projecting elongated concave prezygapophysial facets which are not symmetrical. The inward slanting postzygapophysial facets are elongated. The neural spine (pl .18, fig. 7) is slenter, triangular in outline, with subacuminate apex. The diapophyses are dorsoventrally willened at the lase and project outward from the dorsoexternal portion of the centrum anteriorly. Each diapophysis terminates distally in an elongated facet ($40 \times 15 \mathrm{~mm}$.) for articulation with the head of the anterior or cervical limb of the bifureated first rib. Each diapophysis is compressed in an anteroposterior direction and slopes. obliquely downward from upper to lower margin. No vestige of the ventral transverse process is present.

DORSAL VERTEBRAE

All of the epiplyyses on the cervical, dorsal, humbar, and caudal vertebrae associated with these skeletal remains were firmly ankylosed to their respective centra, an indication of physical maturity. All of the dorsal vertelarae were found during excavation in their original undisturbet sequence. The centra increase in length from the first to the twelfth and on all the transverse diameter exceeds the vertical diameter of the anterior end. The profiles of both ends of consecutive dorsal centra are moditied from a transversely widened subcordate anteriorly to a less noticeally dorsoventrally compressed subcordate posteriorly. On each side of the centrom of the first to eighth dorsals inclusive, below the level of the floor of the neural camal and adjacent exterially to or on the edge of the posterior epiphysis of the centrum, there is an articular facet for reception of the capitulum of the following rib. On the :unterior border of the next following centrom adjacent to this postereexternal facet a narrower articular surface is formed for the hinder berder of the head of the same rib.

The nemral camal decreases in width from the first to twelfth dorsals. On the anterior eight dorsals the pedicles of the neural arch are massive and wide. The diapophyses progrescively increase in width on the eight anterion dorsals and, on all, thesp processes arise in part from the pedicle of the neural arch and in part from The dorsoexternal portion of the cent man anteriorly. The parapophyses of the ninth to twelfth forsals, inclusive. project out watel from the lateral surface of the cent rum. The nemral spines increase in height from the first to
the twelfth dorsals. The width of the grap het ween the proygapophysial facets decreases from the anterior to the posterior end of the dorsal series.

On the lirst to seventh dorsal vertebrae, the articular facet on each metapophysis is horizontal and flat, althourh an anteroposterior asest delimiting the outer odge of the prezygapophysial facet progressively increases in prominence. On the eighth dorsal this crest like develepment culminates in the shift in the inclination of each metapophysis from horizontal to vertical. From this dorsal rertebra to the hinder cond of the lumbar series these side to side compressed metapophyses progressively increase in size and rise higher alove the level of the floor of the neural camat.

The total length of the consecutive series of twelse dorsal wertebrae, inchuting the cartilaginous intervertehral disks, did not exceed 1015 mm . (40 inches). See table 20 for measurements of the dorsal vertebrae.

Finst domsin.- In dimensions the centrum of the first dorsal is not materially untike the seventh cervical. The tip of the subtriangular neural spine (pl . 18 , fig. S) rises 5.3 mm . above the roof of the nemral canal ; the width (47 mm .) of this canal exceeds its leeight (35 mm .) . The short pedicles of the neural arch support the prezygapophysial facets, whicla are elongated and extended forward beyond the level of the anterior face of the centrum. A gap of $6= \pm m m$. separates the prezygapophysial facets anteriorly. The postzygapophysial facets are large and are concavely curved from side to side. The diapophyses (pl .20, tig. 1) are dorsoventrally widened,
concalvely depressed on anterior face and convex on posterior face, and slope obliquely backward from upper to lower edge. Each diapophysis, which projects outward and slightly forward, arises in part from the pedicle (right, minimum transverse diameter, 49 mm .) of the neural areh and in part from the dorsoexternal portion of the centrom anteriorly. The ristal end of pach process is expanded dorsoventrally (vertical, $39 \times$ transverse, 12 mm .) to form the elongated facet for articulation with the tuberculum of the posterior limb of the hifid tirst rib. A large half-mom-shaped and deeply concave facet with markedly elevated margins for reception of the capitulum of the second rib) is located on the posteroexternal angle of the centrum. On each side of the rather broad median longitudinal ridge the roncavely depressed ventral surface of the centrum merges with the similarly depressed lateral face.

Second donsal.-The base of the rather broad diapophysis (pl. 20 , fig. 2) arises in part from the pedicle of the neural areh and in part from the dorsoexternal angle of the centrum anteriorly, and projects outward and slightly forward. In cross-section this upper transverse process is compressed in a dorsoventral direction and the obliquely directed ovoidal facet (length, 42×25 mm .) on its extremity for reception of the tuberculum of the second rib is roughened by the presence of many irregularly spaced pits, presumably for attachment of a cartilaginous comection. The pedicles of the nemral arch are low and broad; the minimum transrerse diameter of the right pedicle is 45 mm . The tip of the at-

Table 20.-Measurements (in mm.) of the dorsal vertebrae, USNM 23636

Anteroposterior diameter of centrum	47.5	51	61	65.5	71	74	80	s9	96	100	104	107
Transcerse diameter of efntrum, anteriorly	95	99	110	101.5	104	106	108	10S. 5	103	102.5	101	98
S'ertieal diameter of entrum, anteriorly	75	75.	74	74.5	73.5	73	74.8	75. 5	81	44. 5	85	90. 5
Minimum anteroposterior length of pedicle of amural areh	20	24	27.5	31	35	46	54	60	6.5	67	69	$71 \pm$
Transwerse diameter of noural canal, anteriorly	16	17	4	50	47	46	45	44	40	40	39	36
Viretical dimmeter of nemral canal, anteriorly	39	34	39	40	36	33	$2 N$	34	35	36	35	37
Distance betwern ends of transwers processes	215	197	14.5	1×7	180	164土	$164 \pm$	174.5	193	234	$312 \pm$	$350 \pm$
Dorsal edge of metapophysis to wentral fate of centrum, anteriorly	8.3	$\bigcirc 9$	90	9.5	9.5	100	105	112	133	141	145	150
Tip of neural wine to ventral face of (antrum, botariorly	166	150	20.5	$\because 19$	23.5	234	$25.5 \pm$	271	265	298	$323 \pm$	33.)
Transvere diamber of emermm, posteriorly	$106{ }^{1}$	$112{ }^{\prime}$	$114{ }^{4}$	1198	122^{4}	$123{ }^{4}$	119	108. $5^{\text {t }}$	10.5	102	101	101. 5
Verteal diameter of eentrum, posteriorly	7.5	73	71	72	74	73	75	79	83	85	s9	93

[^6]tenuated neural spine (pl .18 , fig. 9) rises 85 mm . above the roof of the neural canal. Both prezygapophysial facets are incomplete internally but were obviously elongated and extended formard beyond the level of the anterior face of the centrum. A narrow half-moonshaped articular surface on the anterior border of the lateral face of the centrum represents an enlargement of the capitular facet on the posteroexternal angle of the centrum of the first dorsal. The large deep capitular facet on the posteroexternal angle of the centrum for reception of the capitnhum of the third rib is similar in shape and size to the corresponding facet on the first dorsal. The median longitudinal ridge is broad; the rentral and lateral surfaces of the centrum resemble closely the first dorsal. The anterior and posterior faces of the centrum are transversely widened and broadly subcordate.

Thimd dorsal,-The transverse processes (diapophyses) are slightly broader, shorter and directed less forward than those of the second dorsal, expanded at the extremity to provide a large facet (length, 47 mm .; rertical diameter, 28 mm ., greatest on anterior half of its length and also attenuated posteriorly), and are extended forward noticeably beyond the level of the anterior face of the centrum. The thickened basal portion of this diapophysis (p. 20, fig. 3) arises from the transversely widened pedicle of the neural arch (right, minimum width, 41 mm .) and the dorsoexternal portion of the centrum anteriorly. The pedicle of the nemral arch is robust and rather short. Prezygapophysial and postzygapophysial facets are largely destroyed. Neural spine is (pl. 18, fig. 10) wider than that of the second dorsal, and rises 99 mm . above the roof of the neural canal. Anterior face of the centrum is transversely widnened but more subcordate in outline. A more crest-like med lian ventral longitudinal ridge separates shallower depressed ventral and lateral surfaces. A large posteroexternal facet for capitulum of the fourth rib and a reduced narrow demifaret on the anteroexternal border adjacent to the capitular facet on the second dorsal are present.

Fourtin dors.an.-A slight increase in the length (60.5) mm .) of the centrom as well as in the height (110 mm .) of the neural spine ($p l .18$, fig. 11) abore the roof of the neural canal characterizes this vertebra. The robust transverse processes (diapophyses) do not ditler materially from those of the third dorsal, each being projected outward, but less extended forward heyond the level of the anterior face of the centrum. The extremity of each diapophysis (pl. 20 . fig. 4) is expanded to provite a large enncave pitted facet (length, 50 mm .; rertical diameter, 31 mm ., greatest on anterior half of its length
and attenuated posteriorly) for the tuberculum of the fourth rib. The main axis of this facet is almost horizontal. The broad basal portion of each diapophysis arises from the tramsversely widened pedicle of the neural arch (right, minimum width, 40 mm .) and from the dorsoexternal portion of the centrum anteriorly. The prezygapophysial facets are almost flat and are located on the low, bluntly pointed metapophyses. I gap of 90 mm . separates the prezygapophysial facets anterionly. The postzygapophysial facets are elongated. rather broad and slope obliquely from internal to external margins. The neural spine is materially broader at the base than that of the third dorsal and more narrowed distally; it rises 110 mm . above the roof of the neural canal. The subcordate anterior face of the centrum is transversely widened but flattened dorsally. A narrow median rentral longitudinal ridge separates the concavely excavated rentral and lateral surfaces of the centrum. A large protuberant posteroexternal facet for the capitulum of the fifth rib and a much narrower demifacet on the anteroexternal border adjacent to the capitular facet on the third dorsal are well dereloped.

Fifth dorsil.-The fifth dorsal is characterized by rather widely separated prezygapophysial facets (95 mm . anteriorly), which are elongated ($40 \pm \mathrm{mm}$.) and shallowly concave. The robust transverse processes (thapophyses) are essentially similar to those of the fourth and each projects formard beyond the level of the anterior face of the centrum. The rugnse facet (length, 48 mm .; vertical diameter anteriorly, 29 mm .) for the tuberculum of the fifth rith on the expanded extremity of each diapophysis is concarely excavated in a horizontal direction and slopes downward and inward from the dorsal to rentral margins. As on the fourth dorsad, the broad hasal portion of each diapophysis arises from the transversely widened pedicle of the nentral arth (right, minimm width, 3.5 mm.) and from the dorsoexternal portion of the centrum anterionly. The low hluntly pointed metapophyses project noticeably beyont the level of the anterior face of the centrim. The elongated postzygapophosial facets are very narrow and project lackward beyond the level of the posterior face of the centrom the width of the neural spine (ph. 18, fig. 12) has increased. The contour of the anterior face of the eentrum (p). 20, fige is) does mot difler materially from that of the fourth dorsal. but the median rentral lomgitudinal ridee is lese prominemt althomgh it separates the decply examated lateral sumfaces of the centrum. The posteroextemal faret for the capitulum of the sixth rib is as st mong protuberant as on the preceding dorsal, although the anteroexternal domifaret is barely discernible.
sixpu mons.n.-The marrowing of the gap (8.5 mm.) anterionly letween the prezygupoplysial facets is continued on this dorsal. This dorsal has a slightly wider memral spine (pl. 19, fig. 1) which rises at least 130 mm . above the roof of the neural canal. The robust transverse processes (diapophyses) are as wide as on the preceding dorsal, although slightly shorter and each projects forwand beyont the level of the anterior face of the centrum. The rugose ovoidal facet on the extremity of each diapophysis (length, 47 mm . vertical diameter anteriorly, 96 mm .) for the tuberculum of the sixth rib is concare horizontally and slopes ohliquely downwand and inward from the dorsal to ventral margins. The basal portion of each diapophysis arises from the thickened perlicle (minimum transverse width, 32 mm .) and from the dorsoesternal portion of the centrum anteriorly. The low blunt metapophyses project strongly beyond the level of the anterior face of the centrum: each is traversed anteroposteriorly by a rounded ridge which delimits externally the prezygapolysial facet. The narrow elongated prezyapophysial facets are deeply concave from side to side. The postzygapophysial facets are very narrow and project strongly backward beyond the level of the posterion face of the centrum. The contour of the anterior face of the centrom (pl. 20, fig. 6) is similar to that of the fifth, but the median rentral longitudinal ridge on the centrum is less prominently developed, although the lateral surfaces contime to he deeply excarated. The posteroexternal facet for the capitulum of the seventh rib is quite protuberant and the anteroexternal demifacet persists.
sementir mos.al.-The vertical diameter (27 mm .) of the nemal camal anteriorly on this dorsal is less than that of any other dorsal. An increase in the length (81 mim.) of the centrum as well as in its width anteriorly (108 mm .) is not musual in this portion of the dorsal series. Thick pedicles (right, minimum transverse (liameter, 34 mm .) of the neural areh give origin to the (ransverse processes (diapophyses) which projeet outward horizontally and extend forward beyond the kevel of the anterior face of the centrum. The rugose face on the extremity of each diapophysis for the tubercolum of the seventh rib is elongated (length, mam. vertical (liameter medially, et mm.), shallowly concare from cond to end, and its articular face is more nearly bertical. The low, flattened, anteriorly rounded and forwarl projecting metapophyses are tracersed anteroposteriorly by a prominent crest which delimits externally each prezygapophysial facet. Wach prezygapophysial facet is rery harow anteriorly but increases in width and concareness toward the base of the neural spine. The postzygapophysial facets are very
narrow and extend backward beyond the level of the posterior face of the centrum. The neural spine (pl. 19, fig. 2) is broader than that of the preceding dorsal and rises $150 \pm m m$ above the roof of the neural canal. The contour of the anterior face of the centrum (pl. 20, fig. 7) is similar to that of the sixth, but the median ventral longitudinal ridge on the centra of the anterior dorsals is not developed. The lateral surfaces of the centrum are deeply excavated. The posteroexternal facet for the capitulum of the eighth rib is situated mainly on the posterior face of the prominent protuberance. The anteroexternal demifacet is larger than on the sixth.

Eigitim dorsal.-On this dorsal one observes the accentuation of the previously developing anteroposterior erest which has now culminated in the shift of each metapophysis from horizontal to vertical. This development permits the pair of metapophyses to limit the side to side movement of the postzygapophyses of the preceding dorsal. Each broad transverse process (diapophysis) projects outward from the transversely widened (40 mm .) robust pedicle of the neural areh and from the dorsoexternal portion of the centrom anteriorly and is hent upward, extending very slightly beyond the level of the anterior face of the centrum. The rugose facet for the tuberculum of the eighth rib on the extremity of each diapophysis is elongated (length, 54 mm .; rertical diameter anteriorly, 21 mm .), suberescentic in outline and deeply excavated medially. The backward projecting postzygapophysial facets are quite narrow and closely approximated. The neural spine (minimum width, 74 mm .) is broader (pl. 19, fig. 3) than that of the preceding dorsal, abruptly trumeated at the extremity, and rises 160 mm . above the roof of the nenral camal. The contour and width of the anterior face (pl. 20, fig. 8) of the centrum are similar to the seventh dorsal. No vestige of the median ventral longitudinal ridge is discernible on the centrum and the lateral surfaces are even more strongly excavated. The posteroexternal protuberance for articulation with the capitulum of the ninth rib is reduced in size as contrasted with that of the seventh, and the anteroexternal demifacet is similar to that of the seventh dorsal.

Nintil moksar.-In contrast to those on the eighth dorsal, the greatly enlarged metapophyses now rise 48 mm . above the floor of the neural canal, and the gap between them is it mm. Each metapophysis is compressed from side to side, obtusely pointed anterodorsally, extended forward beyond the level of the anterior face of the centrm, and contributes the outer wall of the rather narrow prezegapoplysial facet. On the first (o) eighth dorsals, inclusive, the transverse process (diapophysis) projects outward mainly from the more
or less massive pedicle of the neural areh and maintains its elevation above the dorsal face of the centrum. On the ninth dorsal, however, the bent upward transverse process (parapophysis) projects outward solely from the dorsoexternal surface of the centrum. At the extremity of each parapophysis is an elongated facet (length, 47 mm . vertical diameter, 16 mm .), strongly concave from end to end for the head of the ninth rib. The distance between the ends of the parapophyses is 194 mm . and this distance progressively increases to the end of the dorsal series. The narrow backward projecting postzygapophyses are markedly reduced in extent. The nemral spine (pl. 19, fig. 4) has increased in width (minimum is mm.) and projerts more upward than backward; it rises 176 mm . above the roof of the neural canal and its distal extremity is horizontally trumeated. The pedicles of the neural arch are quite thin (minimum transverse width, ! mm.) ; the minimum length of each is 65 mm . A noticable change in the contom (p . 21 , fig. 1) and dimensions of the anterior face of the centrum occurs on the ninth dorsal (vertical diameter, 81 mm. ; transverse diameter, 103 mm .). No vestige of the median ventral longitudinal ridge is present on this centrum, the lateral and ventral surfaces being equally depressed.

Tentil donsal.-This dorsal has a higher and wider neural spine (minimm width, st mm, pl. 19, fig. 5) and it rises 186 mm . above the roof of the neural canal. Longer, horizontally widened and dorsoventrally compressed transverse processes (parapophyses), longer centrum, and a narrower (36 mm .) neural canal also distinguish this dorsal from the ninth dorsal. Each parapophysis (pl. 21, fig. 2) projects ontward and obliquely upward from the upper portion of the lateral surface of the centrum, but the bifurcated or deeply indented distal end is probably abormal. The posterior end of this distal facet for the lead of the tenth ril) is roughened, although the head of this rib may most probably have been attached for the most part in the anterior indenture. The thin pedicles of the nemma arch lave a slightly greater anteroposterior length than on the ninth. The large motapophyses project obliquely upward and extend forwand beyond the level of the anterior end of the centrum: they rise it mm. above the floor of the neural canal. The prezyapophysial facets are almost vestigial. The pontzyapophysial facets, although damaged, were obrionsly very namow. The contour and dimensions of the sulnordate anterior face of the centrum is similar to the ninth.

Elevextia morsal.-Rather slender, dorsoventrally compressed and backwardly curved parapophyses (pl. 21, fig. 3) which project outward from near the middle
of the height of the lateral surface of the centrum characterize this vertebra. The left transwerse process is missing. The anterion edge of the right parapophysis is thim, the posterior edge thickened and rounded, and the relatively small ovoidal (length, $3 \pm \mathrm{mm}$, vertical diameter, 15 mm .) distal facet for the head of the eleventh rib is located posteriorly on the distal end, The thin pedicles of the neural arch slightly exceed in anteroposterior diameter (69 mm .) those on the tenth dorsal. The metapophyses are larger and less widely separated than on the tenth dorsal. Neither prezygapophysial nor postzygapophysial facets are discemible. The neural spine (minimum width, $8 t$ mm., pl. 19 , fig. 6) is horizontally truncated at the distal end, is slanted slightly backward, and rises 208 mm. above the roof of the neural canal.

Twelfin misal. - The roughened rounded end of the right parapophysis indicates that the head of the twelfth rib was attached there. This right parapophysis lacks portions of the anterior border, but sufficient remains to suggest the original contour of this dorsoventrally compressed trimsverse process. The left transverse process is not preserved. The large laterally compressed metapophyses rise 55 mm . above the floor of the neural canal and were separated by a 38 mm . gap; they project forward noticeably beyond the level of the anterior end of the centrum. Portions of the broad neural spine (pl. 19, fig. 7) are missing and hence the original height is uncertain. The extremity, howerer, was slightly convex. The length of the centrum (108 mm .) exceeds that $(10 t \mathrm{~mm}$.) of the eleventhas does the rertical diampter (90.5 mm .) of the anterior end. The transverse diameter of the nemal canal (pl. 21. fig. t) diminishes toward the first limbar on most of the dorsal vertebrae.

LUMBAR YERTEBRAE

Assuming that the hmbar series eomprised twelve vertebrae, an estimate based on progressive inerease in the length of the centra from the first to twelfth indicates a total length of 10.50 mm . (61 inches).

The bowed ontward portion of the vertebral column between the first and clevernth lombars fell to the base of the slope faring (hesabeake bay at some time during the process of continned weathering ind arosion. Tidal action resulted in disintegration and dispersal of the fallen bone framents prode to diseovery of the remainder of the partially exposed skelaton. It the time of excaration the first hombar was found in contact with the t welfth dorsal amd the last two lumbars in a similar relation with respent the thest in the consechtive series of caudals.

An imeipient development of the median longitudimal keed is observable on the ventral surface of the centrman of the first hambar and on the elewenth and twelththes ked is low, bombled, and not prominent. 'The nemand spines dereatse in height fom tirst to last amd presumably wede ts wide on thome missing bet ween the first and cheventh as on the latter. Lame chongated and laterally "ompressed metapophyses were developed on the lumbatr:. The nemral camal diminished in height from the first to the last hambar. 'The conliguration of the transreve process was altered from the elongated and relative marow procese of the first lumbar to the broad subspatulate form on the last lumbar and the length reduced about one third. see table \because for foratirements of the lambar sertebrate.

Fher \quad dembar.-This vertebrat was fomm in mormal secfucntial contart with the himbermost vertehra in the fonsentive serien of twelve dorsal vertehate. Thus there can be den donbt as to its prsition in the vertehnal series. It was damaged when found and a nabow atp exists between the upper portions of the pedieles of the neural arch and their bases. The right metapoplysis was detarhed and the left transverse proress was missing. The most olvions alteration in this first hmbar is the backward inclination of the nembal spine (p l. 19, fig. S) which rises 212 mm . above the roof of the neural ramal and is horizontally truncated distally. The anterior border of the nemad spine is, however, eroded; its extremity: maty poseity have been slightly expanded. The batck-

Tisble 21.-Measurements (in mm.) of the lumbar vertebraf, C.SNM 23636

Anteropostarior diameter of centrum Tramsverse diander of contrum, anteriorly
Vertical diameter of eentrum, anteriorly
Minimumanteroposterior length of pedicle of nemral arch
Tramsurer diameter of nemral canal. anteriorly
Vornieal diammer of nemal canal, antroriorly
bistance betwren ends of transwres proceras
borsal rflen of metapophysis to vemeal face of eontrum, anteriorly
Tip of mental spine to vemral face of antrum, powriorly
Traneverse dianctor of centrum, posileriorly
Virtieal diamener of emtrum, postoriorly:

L. 1	I. 11	L.t.
111	18.5	138
101	11.5	117
92.5	10.0	108
$70 \pm$	67	69
3.3	21	19
38	28	28
$115 \pm$	$345 \pm$	335
1.33	$169+$	170
3.10	$31 . \%$	29.5
101	113	119
93	105	11.1

ward projecting portion of the nemral arch extended beyond the level of the posterior face of the centrum.

The cent rum is approximately the same length (110 mom.) as that of the twelfth dorsal and the eontour of the anterior end (\quad pl. 21, fig. 5) is quite similar. The lateral and rentral surfaces of the centrum are deeply eoncave. No distinct median longitudinal ventral keel is developed on the centrum and no visible longitudinal ridge is discernible on the depressed floor of the nemral eanal.

The dorsoventrally compressed transverse process, which projects ontward from the external face of the centrum at essentially the same level as that of the twelfth dorsal, is constricted near the base, widened beFond the middle of its length, and then the anterior border is obliquely truncated toward its narrowed extremity. It exhibits a tongue-like enlargement on its anterior horder. The left transverse process is essentially complet except for the outer edge.

The base of each thin (compressed from side to side) pedicle of the neural arch oceupies approximately twothinds of the length of the dorsal face of the centrum. They support the lare metapophyses which rise at least 60 mm . above the dorsal rim of the anterior epiphysis and are separated anteriorly by a gap of 37 mm . ; they also extend well beyond the level of the anterior face of the centrum. The metapophyses are compressed from side to side and project upward and forward from the neural arch beyond the level of the anterior face of the centrum. Neither pre-nor post-zygapophysial facets are present. The transverse diameter (35 mm .) of the neural canal anteriorly is approximately equivalent to that of the twelfth dorsal.

Eleyenth lombar.-This lumbar was found immediately preceding the twelfth lumbar which was itself in contact with the first eaudal, when this portion of the skeleton was excavated. The outer half of the right dorsoventrally compressed transverse process was missing, but the left process (pl .22 , fig. 3) is sufficiently complete to indicate the original shape. This process projects ontward almost horizontally and is inelined slightly forward; its distal half is widened anteroposteriorly. The broad (minimum width, 96 mm .) nemal spine (p) $\because \because$, tig. 1) rises 170 mm, aloove the roof of the neural canal and is trmoated distally. The backward projecting dorsal portion of the nemal areh extends heyond the level of the postorion fare of the centrom.

The hase of eath pedicle of the nemral areh occupies about form-seronths of the length of the dorsal face of the centrim. These thin pedicles support the large side-to-side compressed metapophyses whieh rise 63 mm . above the dorsal rim of the anterior epiphyses, and barely project forward beyond the level of the anterior
face of the centrum. Neither pro- nor post-zygapophysial facets are present. The vertical diameter (27 mm .) of the neural canal (pl. 22, fig. 5) anteriorly exceeds its transverse diameter (21 mm .).

The centra of the last two hmbars are larger and longer than that of the first lumbar which appears to be normal for these Miocene cetotheres. The length of this lumbar is 136 mm . The contour of the anterior ent of the centrum tends to approach that of the first caudal, including an increase in the transverse (115 mm .) and vertical (105 mm .) diameters. A low ventral longitudinal keel is present between the concare depressions on the ventral surface.

Twelfth lumbar.-The dimensions of the centrum have increased very slightly over those of the eleventh. The metapophyses, however, are more noticeably obliquely inclined upward and outward, the nemral spine is shorter, and the width of the transverse process is increased. These broad transverse processes (pl. 22, fig. 4) project outward, slightly downward and are inclined a little forward.

The width of the neural spine (pl. 22, fig. 2) has decreased; it rises 153 mm . above the roof of the neural canal and the backward projecting dorsal portion of the neural arch contimues to extend beyond the level of the posterior face of the centrum. The length (69 mm .) of the thin pedicle of the neural arch exceeds that (6ir mm .) of the pedicle of the eleventh lumbar. These pedicles support rather long (length, 76 mm . at dorsal edge) metapophyses which are more noticeably spread apart (distance between dorsoexternal edges, 72 mm .) than on preceding lumbar, project forward beyond level of anterior face of centrum, and rise 61 mm . above the dorsal rim of the anterior epiphyses. Neither prenor postzygapophysial facets are present. The vertical diameter (27 mm .) of the nemal canal (pl .22 , fig. fi) anteriorly exceeds its transrerse diameter ($1: \mathrm{mm}$.).

The end profiles of the centrum are not subcordate; the dimensions of the posterior end are approximately the same as those of the anterior end of the first caudal. A prominent longitndinal keel separates the opposite portions of the central surface of the centrum.

CAUDAL VERTEBRAE

All twelve of these caudal vertebrae (USNM 29636) have the epiphyses firmly ankylosed to the centra. In so far as our present knowledge goes, it would appear that two and possibly three of the terminal candals are not represented in this series. Sixteen camblal vertebrae were present in the skeleton of the midflle Mincene (Helvetian) Mesocetrex hungaricus (Kadic, 1907, p. in).

At least one (USNM 16667) of the ('alsert cetotheres possessed 14 candals. The centrum of the first candal is slightly longer than the twelfth lumbar behind the first the centra progressively derrease in length toward the terminal end of this series. The interval bet ween the dorsal edges of the opposite metapophyses progressively diminishes behind the third caudal. Behind the second candal the height of the nemal spine raphdy diminishes. The shortening of the transurse process terminates in the short flange-like condition present on the sixth caudal.

On the first candal a pair of rentral posterior haemal tubercles (hacmapophyses) replace the ventral keel of the lumbar vertebrae and constitute the lateral limits of the haemal groove which on succeeding caudals becomes more excarated with the increased development of these paired tubercles. The anterior pair of haemal tubercles are ill defined and weakly developed on the three anterior candals; the posterior pair of haemal tubercles increase in size from the first to the third caudal. On the fifth, sisth, serenth, and eighth candals on each side of the longitudinal haemal groore, the anterior and posterior haemal tubercle are united by a continuous osseous connection through which the vascular branches emerge laterally in a medially located orifice. These segmental blood vessels pass through a perforation at the base of the transerse process on each side on their upward course. Behind this caudal the centra of the terminal caudals are pierced dorsoventrally on each side by a vertical aqueduct for the passage of these segmental blood vessels.
lucluding a 4 mm . allowance for the cartilaginous intervertebral disks, this consecutive series of twelve caudals and two additional terminal candats provide a fairly accurate estimated length of 1870 mm . (5t inches) for the tail. See table $2 \underline{2}$ for measuremente of the candal vertebrae.

Finst cadpal.-The nemal spine of the first caudal is considerably shorter than that of the posteriomost lumbar rising $1+2$ mm, above the dorsal rim of anterior epiphysis and the length of the centrum is slightly greater. The centrum (pl. $\because 3$, tig. 1) is deeplly hollowed out laterally, both above amblow the transerse processes. Hacmal tuberdes (haemapophyses) separated lyy a broad longitudinal open groove or chamel are developed at the posterior end of the ventral surface of the centrum for articulation with the cherron bone. The anterior haemal tulereles are rudimentary, if present. Relatively minor widening (12. num.) modities the circular contom of the posterion end of the centrum. Both ends are somewhat flattened. The transverse processes (pl. 24, tig. 1) are broal (minimum anteroposteri-
T.sB1. 2..-Measurements (in mm.) of the caudal vertebrae, CSNM 23636

> Anteroposterior diameter of centrum
> Transwerse diameter of centrum, anteriorly Vertical diameter of centrum, anteriorly
> Minimum anteroposterior Imgth of pediele of neural arch
> Transverse diameter of newral eamal, anteriorly Sertical diameter of neural eanal, anteriorly Distance between ends of transwerse proeesses Dorsal edge of metapophysis to ventral face of centrum, anteriorly
> Tip of neural spine to ventral face of centrum posteriorly
> Transworse diameter of eentrum, posteriorly Vertical diameter of centrum, posteriorly

Ca. 1	Ca.z	Cas	Ca. 4	Ca. 5	Ca. 6	Ca. ${ }^{\text {r }}$	Ca. 8	Ca. 9	Ca. 10	Ca. 11	Ca. 12
142	13.9	139	135	130	120	112	101	87	57	48	45
116	12:3	116	114	120	116	135	102	90	77	78	63
113	115	116	113	116	115	310	105	96	74	63	53
76	65	66	66	67	71	69	43	27	-	-	-
19	20	20	17	15	14	9	7	4	-	-	-
26	24	20	12	7	7	5	5	-	-	-	-
32.5	310	270	216	148	117	115	-	-	-	-	-
165	173	170	165	165	14.5	131	114	-	-	-	-
290	$2 \cdot 15$	299	186	134	136		-	-	-	-	-
12.5	120	120	121	121	104	103	95	si	75	72	61
12.3	119	118	13 x	117	114	107	102	87	72	62	48

or diameter, 69 mm .), expanded distally and abruptly trumated, dorsoventrally. flattened, and directed outward and slightly forward. The nemral canal, (pl. 25, fig. 1) is narrow (19 mm.) anteriorly, and also reduced in height (26 mm .). The outer half of the right transverse process is broken oft. The thin pedicles of the neural arch have increased in length (66 mom.), but decreased in height. The low, hut loug (SS mm.) metapophyses are directed more out ward than upward (distance between dorsoexternal edges, 92 mm .) and rise 53 mm . alove the floor of the neural canal.

Serond camas.-The paired posterior haemal tubercles are not strongly developed on the ventral face of the centrum and are, however, separatod by a broad shallow open groove or chamel for the caudal artery. The anterior haemapophyses are slightly developed. The transverse processes are not iceably widened distally and irregularly truncated: the anterior and posterior edges of these processes are thin (minimum anteroposterior diameter, 70 mm .).

The lateral surfaces of the centrim (p . 23 , fig. 2) abue and below the transverse processes are deeply hollowed ont, and the posterior end is slightly more convex than the more flattened anterior end. The transverse and vertical diameters of the neural canal (pl. 2n, fig. 2) are reducet. The perdicles of the neural arch (length, (is mm.) suppert the large metapopheses (length dorsoextemal edge of right, 86 mm .) which are more upthrmed distally than those of the first caudal, and rise is mon. above the dorsal rim of anterior epiphesis: the distance between the dorsoextermal edges is 107 mm .

The nemral spine (pl. 24 , fig. 2) has derreased in width and height, hut rises 10 m mon. above the roof of the nenmal canal: this spine is obliquely trmeated distally.

Tmbe camal.-This caudal is characterized by elongate transversely compressed posterior haemal tubercules, separated by a deep open groove or channel for the caudal artery, and rather small, low anterior haemal tubercules. The sides of the centrum, both above and below the transverse processes are deeply hollowed out, and the posterior end of the centrum is slightly more convex than the anterior end. As compared to those of the second caudal, the transverse processes (pl. 24, fig. 3) are shorter, more noticeably expanded distally and abruptly trumeated (minimum anteroposterior diameter, 70 mm .). The neural canal is narrow and rather long.

The pedicles of the neural arch (length, 66 mm.) support large metapophyses (length dorsoexternal edge of left, 78 mm .) which are strongly uptumed distally, and rise 58 mm , alove the dorsal rim of anterior epiphysis; the distance bet ween the opposite dorsoexternal edges is 111 mm .

The neural spine (pl .23 , fig. 3) has decreased noticeably in height, but rises 82 mm , above the roof of the neural canal and is obliquely trumeated distally. The reduction of the neural camal is continued.

Focrin caldah.-The relatively long, laterally compressed pair of posterior haemal tubercules are separated by a deep open groove or channel for the caudal artery. The anterior pair of haemal tubercules are rather thick and less elongated. The lateral surfaces of the cent rum are deeply hollowed out, both above and below the transverse processes. Both ends of the centrum are somewhat convex. The transverse processes (pl. 24, fig. t) are shomened, obliquely trmeated distally (minimmm anteroposterior dianeter, 69 mm .), and directed outward and slightly forward. Neither process is perforated.

The rather thick pedicles of the neural arch (length, 67 mm .) support transversely thickened metapophyses (length dorsoexternal edge of right, 74 mm .) which are strongly upturned distally and rise 50 mm . aloore the dorsal rim of anterior epiphysis; the distance between the dorsoextemal edges is 102 mm .

The neural spine (pl. 23, fig. 4) is broader (84 mm .) but shorter than that of the third caudal, and rises io mm . above the roof of the neural camal.

Fiftir caudal.-Yentrally on each side of the centrum, the anterior and posterior haemal tubercles are mnited by a continuous osseons strip which borders completely the open groove or chamel for the candal artery, an ascending branch of which emerges laterally through a rather large orifice (width, 19 mm .) and contimes upward on the external face of the centrum in front of the anterior notch at the base of the transverse process. The lateral surfaces (pl .23 , fig. 5), both above and below the transverse processes, are deeply hollowed out; both ends of the centrum are slightly convex. The transverse processes (pl. 24, fig. 万) are short, obliquely truncated distally, the anterior angle projecting outward farther than the posterior angle. The thick metapophyses (length right, 62 mm .) are directed upward and outward, but cannot clasp the posterior median angle of the neural arel of the preceding candal. These metapophyses rise 44 mm . abore the dorsal rim of the anterior epiphysis; the distance between the dorsoextemal edges is 92 mm . The thick pedicle (length, 66 mm .) of the neural arch is approximately the same length as that of the fourth caudal. The thin nemal spine is restigial, reduced to a thin longitudinal ridge, and the nemal canal small (pl. $2 . \overline{5}$, fig. 5).

Sixth caudal.-Ventrally on each side the anterior and posterior haemal tubercles are united by a somewhat thickened osseous connection and as on the preceding caudal a branel of the caudal artery emerges laterally through a large foramen. (on its upward course, however, this arterial branch passes through the perforation in the greatly shortened transverse process (pl. 23 , fig. 6). The lateral surfaces of the centrum are deeply hollowed out above and below the transerse process; the anterior end of the centrum is flattened ant the posterior end is slightly convex. The transverse processes (pl. 24, fig. 6) are very short, obliquely truncated distally and perforated at the base. Each thickened pedicle of the nemral areh is low, and the tramsrerse diameter of the neural camal (pl. 25, fig. 5) exceeds the vertical. The left pedicle is perforated near the posterior end of the roof of the neural areh. The
thich metapophyses (length, 48 mm .) rise 31 mm . above the dorsal rim of the anterior epiphysis: the distance between the dorsoextemal edges is 75 mm . The thin and very low neural spine extends irregularly the length of the roof of the neural arch.

Seventil cacdal.-On each side the transversely widened anterior and posterior haemal tubercles are united by a much thicker osseous connection (pl. $2: 3$, fig. 7), each of which is perforated medially to permit the passage of a branch of the caudal artery which on its upward course passes through a foramen in the base of the ridge-like thickened trimsverse process. The ventral open groove or channel for the caudal artery is deep. The lateral surfaces of the centrm above and below the transverse processes are hollowed out: both ends of the centrum are more flattened than convex. Each low pedicle of the neural arch extends most of the length of the dorsal surface of the centrum, and is pierced medially at the base by a small formmen. The oval neural canal (${ }^{1}$ I. 25 , fig. 7) is very small and the neural spine is low. The markedly reduced oral knoblike metapophyses (length, 36 mm .) rise 29 mm . above the dorsal rim of the anterior epiphysis: the distance between the dorsoexternal edges is 59 mm .

Eightil catdal.-This eaudal resembles the serenth in having the anterior and posterior hatemal tubercles (pl. 23, fig. 8) united by a thick osseous comection, perforated medially for the passage of a branch of the caudal artery. This rascular branch likewise continues its upward course through the prerforation in the very low and thick basal remnant of the transerse process. The lateral surfaces of the centrum are less noticeably. hollowed out: the posterior end of the centrum is slightly more convex tham the anterior end. The metapophyses (pl. 25, fig. 8) are reduced to small, low. oral knobs. A low, thin neural spine (length, 36 mm .) persists on the short (length, t2 mm.) rof of the neural ardh. The roof of the neural areh completely encloses the small neural camal. no larger tham the diameter of a pencil.

Nintil caedal.-The anterior end (14 . 2r. fig. 9) of this caudal is higher than wide: the lateral surfaces of the centrim are much less hollowed out and the posterior end is slightly conves and the anterior end is flattened. A tendency exists for the posterior end of these terminal catudals to become smaller than the anterion end as well as more convex. The sentrum is piereed dorsoventrally hy a large vasoblar aqueduct on each side extermal to the low, thickened pedicle of the neural arch: their closely approximated ventral orifices are located in a deep, elongated haemal groove or chamel.

Non vestige of either transterse process persists. The roof of the rery small nemral arch, although short (27 mm .) , is complete, and the low lateral pedicles are broad. A small foramen at the base of the right pedicle (ρ]. 23 , fig. 9) about halfway of its length provides a vascular passage to the neural camal from the lateral vertical aqueduct.

Tentu caddal.-This vertebra is characterized by the marked foreshortening (pl. 23, lig. 10) of the centrum (length, it mm.) and the reduction of the lateral ridges bounding the rentral haemal chamel for the caudal artery. A very short bone isthmms (length, a mm.) bridges the very narrow nemral camal. The centrum is piered dorsoventrally by two vascular aqueducts, the two large orifices of which are located in an oral depression on the rentral face of the centrum. Dorsally, earh of these aqueduets has wo or more orifices located on each side of the narrow partially roofed-over neural canal. The anterior end of (pl .25 , fig. 10) of the centrum is flattened and the posterior end is convex. The dorsal and rentral surfaces of this caudal have deep seratches made by shark teeth.

Elenevth cacpal.-The anterior end (pl. er., fig. 11) of the centrum although depressed medially is somewhat flattened, and the posterior end is convex. The centrum of this caudal is smaller and shorter (pl. 23, fig. 11) than that of the tenth and no remmant persists of the neural arch. The vertical rascular arpeducts that pieree the centrum medially have two dorsal orifices and three rentral orifices. The pair of vertical vascular apueducts, separated by a 14 mm. interval, open dorsally into a shallow oral cavity. Ventrally a wider interval (31 mm .) separates the two lagest orifices and about halfway between them is a much smaller orifice.

The ventral and dorsal surfaces are deeply incised or seratched by shark teeth.

Twebretu cardal.-The smallest of these terminal caudals also has the anterior end of the centrum (pl. 23, fig. 12) strongly depressed medially and the posterior end convex. On the flattened dorsal face of the centrum two orifices of the vertical vascular aqueducts are semrated by an interval of 10 mm . and ventrally by an interval of 23 mm . Viewed from in front the outline of this caudal is quadrangular: its lateral surfaces being grooved longitudinally about the middle of their height. The posterion amd ventral surfaces are deeply indised and mutilated by shark teeth; pieces have been bitten out of the right and dorsal sides of the vertebra. A split tooth of a tiger shark (Gretcocerdo) is cmbedded in the grashed dorsal surface of this caudal.

CHEVRONS

Six chevron bones (USNM 23636) were excavated beneath the consecutive cantal vertebrae, seemingly at their normal location. The largest cherron lay beneath the fourth caudal and the smallest, apparently the terminal chevron, below the ninth caudal.

Inferentially one or two anterior chevrons may have excepted the size of the cherron found beneath the fourth caudal. Anterior to the origin of the horizontal candal flukes, the cherrons are attached on the skeletons of Recent mysticetes below the intervertebral space between two caudials. Assuming a similar method of attachment on this cetothere skeleton, not more than nine chevrons were present. Five of these chevrons lave a definite haemal spine, whose anteroposterior diameter decreased toward the last one. All six cherrons have a " Y " profile when riewed from in front and have large articular fircets on the horizontally widened dorsal ends of the lateral lamina. The minimum interval between these articular facets is decreased almost imperceptibly between the fourth and the seventh chevrons and althongh in the same direction the transverse diameter is diminished, no obvious shortening is observable in the length of the articular surface. The haemal canal of these chevrons is smooth without trace of a median ventral ridge, but it decreases in diameter toward the terminal chevron. See table 23 for measurements of the cherrons.

Table 23.-Mcasurements (in mm.) of chevron bones, USNM 23636

	$4 t h$	5th	6th	7th	Sth	$9 t h$
Vertical diameter of chevron	108	78	73	61	40	29
Greatest anteroposterior diameter of haemal spine at extremity	$92+$	106	91	84	66°	43
Anteroposterior diameter of combined articular facets on base of right lateral lamina	57	60	63	58	52	31
Least distance betwcen internal margins of articular facets	13	9	11	11	7	7

Focktil cievron.--This chevron (pl. 20, fig. 9) is the bargest of the six, but lacks the posterior end of the hamal spine, whose vertical diameter (70 mm .) exceeds the ol hers. The bluntly pointed anterior projection probably was shorter than the more slender posterior end. The oroidal tramsversely widened (28 mm .) articular facets are large (length, 57 mm .) attennated anteriorly and rounded posteriorly.

Fiftif cinevron.-The anterior projection of the hatmal spine on this chevron (pl. 20, fig. 10) is short and acmminate; the posterior projection is considerably elongated ant there is a median indentation on the ventra] edge. The wide (31 mm .) articular facets (length, 60 mm.) are attemuated anteriorly and romaled posteriorly.

Sintir ciferron.- A median indentation on the ventral edge of the haemal spine as well as a short anterior projection and a rather deep posterior projection are the most obvious protile alterations (pl. 20, fig. 11). The articular facets (length, 63 mm .) are attemuated at both ends and somewhat narower (28 mm .) than on the preceding cherron. Deep scratches by shark teeth, especially on the left side, are present on the haemal spine.

Seventh (herion.-Elongated (is mm.) bat narrower (24 mm .) articular facets, strongly attemated at both ends, shorter anterior and posterior projections of
the hacmal epine and a math narower hatmal camal "haracterize this cherom (pl. 20). fig. f2).
 about half the size of the preceding. the hatemal spine heing markedly reduced: the postrion projection is short and distinet. 'The elongated (52 mm .) , anteriorly and posteriorly attennated, and transersely narowed (20 mmo.) articular facets enclose an eren smaller hamal camal than that of the precedimer cherron.

Ninth cherron.-This is the smallest (pl. 20). (ige. 1t) (hevorn of the six associated with this akeleton. The thick haemal spine lacks a projection at either end. Warh articular face is elongated ($3 \pm$ mom.) , more noticeably attemated at the anterior end than posteriorly, and separated form the opposite facet ley aminimum interval of 7 mm .

Literature Cited

Brandt, Johins Friedrifh
1s73. G'ntersuchungen ubur dia fossilen und subfossilen Cetaceen Europa's. Ném. Acad. Imp. Sci.

Carbera, Angel
1926. Cetacros fósiles dd Mnseo du La Plata. Revista Mus. La Plata; Buenos Aires, vol. 29, pp. 369-370, figs.
Doran, Albin Henty Grifytus
1878. Morphology of the mammation ossieula auditus. Trans. Limnean Noc. London, ser. 2 (Zool.), vol. 1, pi. 7, pe. 371-197, 11s. 58-64.
Bmbong, Douglas
1966. A new arehace eetactan from the Oligocene of northwest Oregon. Bull. Mis. Nat. Hist. Univ. Orrgon, Lugene, no. 3, pp. 51, 15 figs. October 1966.
Fhaser, Frincis Chames, ahd Purves, Jeter Ernest
1960. Learing in cotacmans: Evohtion of the accessory air sacs and the structure of the outer and middle ear in reecent entaceans. Bull. British Mus. (Nat. Hist.), Zoology, London, vol. 7, no. $1,14 \mathrm{~s}$ pp., 31 fig*. 53 pls. Soptember 1960.
Howell, Alfred Brazier
1930. Aquatic mammals, their adaptation to life in the water. Springfield, Ill., xii +338 pp ., 53 figs.

Kadic, Otrokan
1907. Mesoctus hungaricus Kadic, eme neue Balaenopteridenart aus dem Niozän von Borbolya in I'ngarn. Mitteil. Jahrbuche Kigl. Ungarischen Anstalt, Budapest, vol. 16, no. 2, pp. 21-91, 70 tigs., 3 pls .
Kehiogg, Remington
1934. The Patagonian fossil whalebone whale, Cetotherium moreni (Lydekker). Contr. Palacont., Carnegie Inst. Washington, publ. 447, pp. 63-81, 2 figs, 4 pls. January 10, 1934.
196.. Fossil marine mammals from the Miocene Calvert formation of Maryland and Virginia, Pt. 1: A new whalebone whale from the Miocene Calvert formation. Bull. 247, UT.S. Nat. Mus., 1p. 1-45, figs. 1-2x, jls. 1-21. October 15, 1965.
1968. Fossil marine mammals from the Niocene Calvert formation of Maryland and Virginia, Pt. 8: Supplement to deseription of Parietobalaena palmeri. Bull. 247, U.S. Nat. Mus., pp. 175197, figs. 77-98, 11s. 64-67. Jun4 12, 1968.
Nchedlidze, Guram A.
1964. Nekotorye yoprosy biologii i ievolutsii Ketoobraziych Trelichnye Mlekopitaivsehie. Doklady Sovetskich Paleontologov, \& Problema [bnternat. Geol. Congress, XXII Session, Report of Soviet Pateontologists, Problem 8, Tertiary mammals, 1964, pp. 37-46, figs. 9], Moscow.
Packard, Eabl La, and Kellogg, Remington
1934. A new retothere from the Niocene Astoria formation of Newport, Oregon. Carnegie Inst., Washington, publ. 447, pp. 1-62, 24 figs., 3 pls. January 10, 1934.
Ridewood, Walter George
1922. Observations on the skull in foetal specimens of whates of the genera Megaptera and Balaenoptera. Philos. Trans. Roy, soe. Jondon, ser. B., vol. 211, pp. 209-272, 16 figs. May 8, 1922.
True, Frederick Wilhiam
1904. The whatehone whates of the western North Atfantie, compared with those occurring in European waters with some olservations on the species of the North Pacific. Smithsonian Contr. Knowl., vol. 33 , publ. 1414, vii +331 pp., 97 figs., 30 pls. June 1904.
Turner, William
1871. On the so-ealled two-headed ribe in whates and in man. Journ. Anat. and Physiol., vol. 5, 1p. 318-362.
1892. The lesser rorqual (Imelarnoptera rostrata) in the Seot iish seas, with observations on its anatomy. Proce Ros. Sore. lidimburgh, vol 19, pp. 36-75, 4 figs.
Vin Bexeden, Pieme Joseph
1886. Description dus ossments fossiles des environs d'Anvers, Part 5: Cétacés. Genres: Amphicetus, Hethrocetus, Mesoctus, Idivetus \& Isoceths. Amm. Mus. roy. d'Hist. nat. Belgigue, Bruxfless, ser. Patóontologique, vol. 13, 139 ppo, $7 \bar{n}$ pls.
Winge, Herlefe
1921. A review of the interrelationships of the Cetacea. Smithson. Nise. Coll., vol. 72, no. 8, publ. 26.0 , 1p. 1-97. Juty : 3, 1921. (A translation of Tdsigt owr llvalernes indbyrdes Slacgtskab. Vidensk. Meddel. fra den naturh. Foren, i Kijubenhavn, vol 70 , pp, i9-I42, by Gerrit 5 . Milter, Jr., August 29, 1918).

3

4

Basicranium, Chevrons, and Sternnm, (ISNM 23794, Thimocetus arthritus
1, ventral view of basicranium; 2 , lateral view of third hev:

Luditory Ossicles, tympanic bulla, and periotic, USNM 23794, Thinocetus arthritus
,) 3 , , dich, ris l.1.lla.

4

$34-$ \qquad 13

External View of Right
1, ixht

Detacarpals, Phalanges and Carpals, USNM 23794, Thinocetus arthritus

1. ean d wht metacarpal; 2, third right metacarpal; 3, fourth right metacarpal; 4 , fourth left metacarpal; 5 , first right metacarpal; h^{\prime}, that phalance; 7 . ikht phalange; 8 , right phalange; 9 , right phalange, first digit; 10 , left phalange, first digit; 11, iotal copuphysis of tirht radius; 12, distal epiphysis of right ulna; 13, right radiale; 14, right intermedium; 15 ,

2

都

Dorsal Views of Dorsal Vertebrae，USNM 23794，Thinocetus arthritus
econd
dorsal； 9 ，tenth dorsal；10，eleventh dorsal

Lateral Views of Dorsal Vertebrae, USNM 23794, Thinocetus arthritus

1. wont dorsal; 2, third dursal; 3 , fourth dorsal; 4 , fifth dorsal; 5 , sixth dursal; 6 , seventh dorsal; 7 , eighth dorsal; 8 , niath dorsal; 9 , enth dussal; 10 , eleventh dorsal; 11 , iwelfth dorsal.

Interior Views of l.umbar Vertebrae, (SSNM 2.3794, Thinocetus arthritus

Anterior Views of Caudal Vertebrae, USNM 23794, Thinocetus arthritus

Dorsal Views of Catudal Vertebrae, LSNM 23794, Thinocetus afthorus

1. ere mid andul; 2. whind candit; 3, wuth caudal; 4 , fifth caudat; 5 , sixth caudal; f, seventh caudal; 7 , eighth caudal;

Anterior Views of Ribs, USNM 23794, Thinocetus arthritus

Lateral Views of Dorsal 1 ertebrate ISVM 2.36.36. Halicerus ignofus

Dorsal Views of Caudal Vertebrae, USNM 23636, Halicetus ignotus

回

[^0]: ${ }^{1}$ Thinos, shore, in allusion to the presumed stranding of this mysticete on the shore.

[^1]: * Dorsally ; ' Plus adontoid process; " Posteriorly.

[^2]: b-including haemapophyses.

[^3]: ${ }^{2}$ Halos, sea, in allusion to life in the sea.

[^4]: Anteroposterior diameter of the centrum
 Transverse diameter of centrum anteriorly
 Vertical diameter of centrum, anteriorly
 Tip of neural spine to wentral face of centrum, anteriorty
 Greatest vertical diameter of neural camal, anteriorly
 Greatest transverse diameter of neural canal, anteriorly.
 Greatest distance between outer ends of diapophyses
 Greatest distance between outer ends of parapophyses
 Least anteroposterior diameter of right pedield of neural arch
 Greatest transverse diameter of eentrum, posteriorly
 Greatest vertical diameter of centrum, posteriorly

[^5]: od Including odontoid process.

[^6]: ${ }^{1}$ Including posterior capitular facet.

