-'.Vi. .5': " ■■.■'.■■, i ■ 111111 IHI jflB '.* '■ •' ' ' >'■ ■ '■<-'i ^ "■'•'•■"' ■ Don giSSr! SCHOOL . CALIF. 93940 0 -^ NAVAL POSTGRADUATE SCHOOL Monterey, California THESIS CALCULATION OF HYDROGRAPHIC POSITION DATA BY LEAST SQUARES ADJUSTMENT by Francisco Castro e Silva June 198 2 Thesis Advisor: Dudley Leath Approved for public release; distribution unlimited T2 *1 ® UNCLASSIFIED SECURITY CLASSIFICATION OF THIS RAOE (Whma D«i J Sntsra«j REPORT DOCUMENTATION PAGE READ INSTRUCTIONS BEFORE COMPLETING FORM 1 «l»0»T NUMIIR 2. GOVT ACCESSION NO. 1 RECIPIENT'S CAT tLoc NUMBER 4. TITLE f«»« Submit) Calculation of Hydrographic Position Data by Least Squares Adjustment S. TYPE OF REPORT A PERtOO COVERED Master's Thesis June 198 2 «. PERFORMING ORG ReRORT NUMBER " 7. *uThO»,'l| Francisco Castro e Silva S. CONTRACT OR GRANT NLMBERf.j " • PERFORMING ORGANIZATION NAME ANO AOORESS Naval Postgraduate School Monterey, CA 93940 10. RROGRAM ELEMENT project task AREA 4 WORK UNIT NUMBERS II CONTROLLING OFFICE NAME ANO AOORESS Naval Postgraduate School Monterey, CA 93 940 12. REPORT DATE June 1982 II. NUMBER OF PAGES 190 14 MONITORING AGENCY NAME * AOORESSYJf alltmrwnt tram Controlling Olllem) IS. SECURITY CLASS, lot HMa rmponi It*. DECLASSIFICATION/ OOWNGRAOlNG SCHEDULE l«. DISTRIBUTION STATEMENT at Ihlt Kepott) Approved for public release; distribution unlimited 17 DISTRIBUTION STATEMENT (at tho mmmtrbd mtlormd In Slock 10, II dllUrortl from Roport) IS SUPPLEMENTARY notes IS. KEY WORDS Caniinum oft rmwrmo t,ic»TioM 00 Twit xaifiw analytical solutions, and respective computer programs implement- ing them, are developed for the following hydrographic positioning methods: a) fix by N azimuths, b) fix by N sextant angles, c) fix by two range distances and one azimuth. For each method, an illustrative application of the respective computer program is presented. The least squares adjustment method not only yields the most likely values for the fix coordinates but also statistically quantifies position accuracy. Relative accuracy achieved with conventional survey methods is elevated to absolute accuracy , when redundant observations are made and adjusted using the method of least squares. DD ForTfl 1473 " an < 3 . 102-014-6601 ucuntv ciAMi'iCAfiOM d' r*i* **o«r**«« o« "" J Jm .3 UNCLASSIFIED Approved for public release; distribution unlimited Calculation of Hydrographic Position Data by Least Squares Adjustment by Francisco Castro e Silva Lieutenant Commander, Portuguese Navy Portuguese Naval Academy , 1967 Submitted in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE IN OCEANOGRAPHY (HYDROGRAPHY) from the NAVAL POSTGRADUATE SCHOOL June 1982 MONTErtEir, CALIF. 93340 ABSTRACT When redundant observations are available, hydrographic positioning problems require the application of a data adjust- ment method so that all information may be used for obtaining the most reliable "fix". One of the oldest and best engineering techniques developed for the purpose is based on the least squares principle. The theoretical background is provided to explain that principle and the technique for its application. Also, the analytical solutions, and respective computer programs implementing them, are developed for the following hydrographic positioning methods: a) fix by N azimuths b) fix by N sextant angles c) fix by two range distances and one azimuth For each method, an illustrative application of the respective computer program is presented. The least squares adjustment method not only yields the most likely values for the fix coordinates but also statistically quantifies position accuracy. Relative accuracy achieved with conventional survey methods is elevated to absolute accuracy when redundant observations are made and adjusted using the method of least squares. TABLE OF CONTENTS I. LEAST SQUARES ADJUSTMENT THEORY 10 A. INTRODUCTION 1]- B. LEAST SQUARES PRINCIPLE FOR UNWEIGHTED OBSERVATIONS 12 C. LEAST SQUARES PRINCIPLE FOR WEIGHTED OBSERVATIONS 12 D. OBSERVATION EQUATIONS E. LEAST SQUARES ADJUSTMENT METHOD 15 F. PRECISION OF OBSERVATIONS 18 G. PRECISION OF ADJUSTED VALUES 20 H. THE ERROR ELLIPSE 22 II. APPLICATION OF LEAST SQUARES ADJUSTMENT 24 A. FIX DETERMINATION BY AZIMUTHS 26 1. Solution for Azimuths from 3 Stations 26 a. Determination of Adjusted Coordinates ° b. Precision of Observations and Adjusted Values " c. Error Ellipse 30 2. Numerical Example a. Determination of Adjusted Coordinates b. Precision of Observations and Adjusted Values 38 c. Error Ellipse 4 0 3. Solution for the General Case a. Determination of Adjusted 41 Coordinates b. Precision of Observations 46 B. FIX DETERMINATION BY SEXTANT ANGLES 48 1. Solution for 3 Sextant Angles (between 4 Stations) 48 2. Numerical Example 51 3. Solution for the General Case 58 C. FIX DETERMINATION BY TWO RANGE DISTANCES AND ONE AZIMUTH 72 1. Solution for Two Range Distances and One Azimuth from 3 Different Stations 72 2. Numerical Example 78 3. Solution for the General Case °^ III. RESULTS AND CONCLUSIONS 97 A. RESULTS 97 B. CONCLUSIONS " APPENDIX A LEAST SQUARES PRINCIPLE AND NORMAL DISTRIBUTION 102 APPENDIX B LEAST SQUARES PRINCIPLE FOR WEIGHTED OBSERVATIONS 107 APPENDIX C NORMAL EQUATIONS IN ALGEBRAIC NOTATION 109 APPENDIX D NORMAL EQUATIONS IN MATRIX NOTATION 111 APPENDIX E A COMPUTATIONAL CHECK FOR THE LEAST SQUARES ADJUSTMENT TECHNIQUE 113 APPENDIX F THE CONTROVERSIAL CRITERION FOR ASSIGNING WEIGHTS 114 APPENDIX G PRECISION OF ADJUSTED VALUES 117 APPENDIX H ERROR ELLIPSE 12° APPENDIX I ALGORITHMS 126 COMPUTER OUTPUTS 148 COMPUTER PROGRAMS 151 LIST OF REFERENCES 183 BIBLIOGRAPHY 184 INITIAL DISTRIBUTION LIST 185 LIST OF FIGURES Figure 1-1 Error Ellipse 22 II-l Fix by 3 Azimuths 25 II-2 Error Ellipse 40 II-3 Fix by 3 Sextant Angles 47 II-4 Undetermined Fix by 2 Sextant Angles 60 II-5 Converting Angular Residual into Metrical Residual 74 II-6 Converting Angular Standard Deviation into Metrical Standard Deviation 7 7 II-7 Fix by Two Range Distances and One Azimuth 79 II-8 Fix from 3 Stations 85 II-9 Fix from 2 Stations 86 11-10 Range Distances Not Intersecting 88 11-11 Undetermined Fix by 2 Range Distances and 1 Azimuth 91 A-l Normal Distribution 103 A-2 Fix by 3 Range Distances 104 A- 3 Residuals 104 A-4 Residuals and Normal Distribution 105 H-l Two-dimensional Normal Distribution 120 H-2 Error Ellipse 124 ACKNOWLEDGMENT For those that producing more than consuming, allowed me, during two years at least, to consume more than produce, my best thanks. Monterey, the 6th of September 1981 LCDR Francisco Castro e Silva Portuguese Navy I. LEAST SQUARES ADJUSTMENT THEORY In hydrographic surveying, the determination of position is as important as the measurement of depth. Conventional survey methods rely primarily on two lines of position (LOP) to establish a fix. These LOP ' s are obtained by measuring angles and distances directly. Alternately, electronic positioning systems are used to establish a pattern of LOP f s (an electronic lattice) based on the propagation of electro- magnetic energy. Until recently it has been logistically unfeasable to obtain redundant observations in hydrographic surveying. However, with the advent of computers and miniaturized electronic positioning systems, redundant observations are now being made in order to increase fix accuracy and prevent delays due to equipment malfunction. Mathematical adjustment methods must be applied to the redundant data sets in order to maximize the accuracy of each fix. One such adjustment method is based on the principle of least squares. It assumes that blunders and systematic errors have been removed from the data so that only random errors remain. This method yields not only the best estimate of position for a given set of redundant LOP ' s , but also assesses the absolute accuracy associated with each fix determination. 10 A. INTRODUCTION In general, the redundant observations of any variables in a physical system (such as in hydrographic position determination) do not precisely satisfy the mathematical model developed to represent that system. However, the derivation of every mathematical model is based on the assumption that the true values of the variables will satisfy the model. The difference between the true and observed value for any physical variable is called the residual; residual = true value- observed value. (I-i) In making physical measurements, true values can never be determined. Considering the observed values as values assumed by random variables following normal distributions, every true value can be represented as the mean of a random variable. Therefore, eq. (1-1) can be rewritten as res idua I =• mea* of random van' a b(e- obs. value . (1-2) The least squares principle establishes a criterion for obtaining the best estimates of the true values. It states that the true values will be such that the sum of squared residuals is a minimum. For a further discussion of this principle, see Appendix A. 11 B. LEAST SQUARES PRINCIPLE FOR UNWEIGHTED OBSERVATIONS Measuring different parameters of a mathematical or functional model, we associate with each parameter a random variable, y^ . Designating by VV the value assumed by the random variable (the observed value) and by u£ its mean (the adjusted value) , the residual V£ is given by vi »jh- ]f i. (i- a) For Jl observed parameters, the least squares fundamental condition is expressed as U a V V'" f ^h " minimum or, in matrix form where V? > [ V, V% ... V^ ] C. LEAST SQUARES PRINCIPLE FOR WEIGHTED OBSERVATIONS If the n observations are unequally weighted, then the least squares fundamental condition is expressed as H 12 or, in matrix form V WV = minimum ( J-5) where Wis the f? * *? weight matrix. See Appendix B for a more complete discussion on the concept of weighted observations. D. OBSERVATION EQUATIONS In the expression for the residual, fr is a known value (the observed value) and ji-i represents (from a deterministic point of view) the true value, thus satisfying the relation- ship between the variables as expressed in the functional model. The model must define an analytical expression relating the unknown values with the known ones. In general, U^ may be expressed as a function of the unknowns; where *i > **2 j • ♦ • > X»n are the unknowns. Therefore, eq. (1-3) can be rewritten as The above expression is referred to as an observation equation 13 If U is a linear function, the observation equation may be written as Si * Zlo * 3ii *i + ■ • • * *Lm *m ~JC ( l' 7) where 3{o 7 <3ti ; • • • j ^Cm are coefficients. The least squares method does not require that the observation equations be expressed in linear form. However, the compu- tations to determine the values of the unknowns are greatly simplified if the observation equations are linearized. If r^ is nonlinear, a Taylor's series expansion may be applied to linearize the function. Since it is not practical to work with all the terms of the expansion, only the zero and first order terms are used. Thus, the linear- ized form is an approximate analytical expression for £^ ; Since the function Cj and its partial derivatives may be evaluated given approximate "initial values" for the unknowns, the observation equations can be expressed as linear functions of the increments j?£ • 3i0 + d£i .A*, + . . . + 2 l,n AX m 14 where Bio - ft I and 3* la dtfm Therefore, the residual V^ will be stated as V|> aio + au a^ +.. . + aL-^ ^xw- ^ , (1-8) It must be emphasized that, using the approximate expression for \£ , the least squares method will yield adjustments ( ^^j »•-• ■> A^m ) which must then be applied to the "initial approximations". Therefore, an iterative solution is required to solve for the final values of the unknowns. The first adjusted results are used as the new initial values, and the obser- vation equations must be formulated again. This process is continued until the increments become vanishingly small or, from a practical point of view, converge to within a specified tolerance. E. LEAST SQUARES ADJUSTMENT METHOD Considering eq. (1-7), and combining the constant terms, a new expression for the observation equation is obtained 15 VL- = ^iX, +...4 a^ym - Li [1-9} where ii. - yi - 3to . Then, the n observation equations can be presented as the following system of h equations with tn unknowns, where /7>/n f or the case of redundant observations: Yi ; en /i * .. . "** 3 i m *m - L, v»7 s 3 ni ><, -»• . . . +■ ah4, x^ - in (I-70J or, in matrix notation, as V-AX - L (Ml J where V- v, lV*j A- 3« &\x ••« <3 1 3*, <3ni • »• 3 t1/7» L> I, i. 16 Equations (1-10) and (1-11) express the general form of the observation equations. By imposing the least squares prin- ciple that V W V* minimum , a set of equations are obtained which can be solved to find the best estimate of the unknown values. These expressions are known as the normal equations. For the observation equations as expressed in eq. (1-10) , they form a set of m equations and m unknowns : • ^ (1-12) [u>;a:*ac,]x,*... * [u>< aim*] Xm- [u*a;„, Ltjso where the brackets have the usual meaning of sum ( L - lj Lj. . . n) t In matrix notation, the normal equations are expressed as (ATW A) X - /WL. (1-13) The normal equations are used to solve for the values of .X ; X=(ArWA)' (4TWL) (I- 14) where J\ is the vector whose elements are the adjusted values for the unknowns. For a more complete development of the normal equations see Appendix C and Appendix D. 17 F. PRECISION OF OBSERVATIONS When observing an unknown variable a finite number of times f n , the value of W) represents the observed values and X the average value, for a set of equally weighted observa- tions . Similarly, if m unknowns are (indirectly) observed h times, the best estimator for (J is the sample standard deviation, -S , represented by the expression iREF . lj 5: U * I n-m J4 W* \ !4 assuming all observations are equally weighted. The value r = n-m in the equation is known as the "degrees of freedom" . 18 A set of ft observations with assigned weights n u>. ...j u>n is equivalent to a set of 5" *»UL observations L-i which are all equally weighted. Thus, an artificial set of observed values is created in which UJj observations are equal to the 1st actual observed value, u)^ observations are equal to the 2nd real observation, and so on for the remaining weighted observations. Given an arbitrary set of weights, the set may be scaled so that the smallest weight has a value of ONE. This c2 scale factor is known as the variance of unit weight, o0 . For a more complete discussion of this topic, see Appendix F Therefore, in the case of weighted observations, the best estimate for the value of the standard deviation of unit weight is given by 7 Vl s. 2 ">i*i te l H (£>i)-»71 1= I 11-15] where Yn is the number of unknowns. In matrix notation, eq. (1-15) is written as 50, [Zk£ V h-m (1-16) 19 where h , the number of unit weight observations, is given by the trace of weight matrix h= trace (, W) * £ ^ • t *- '7j The standard deviation of the L observation (with weight ^u) is given by SiM uj. H {1-13) G. PRECISION OF ADJUSTED VALUES The elements of vector /C ( x, . . . *„, ) given by X- (ATWfi)" (ATU I) represent the adjusted values of the unknowns. The matrix ( A W A J is known as the variance-covariance matrix Q, and individual elements are identified by the term Q^j . The standard deviation of each adjusted value X£ is given by Svi - Sa fw (X- 19) where J - i , so that the Pt'j terms are diagonal elements of the matrix (/4 W H ) 20 The covariance between adjusted values xt' and Vj is given by c-i - S -V; v: — *-'< '*L *j 1y ( 1-20; For hydrographic position determination problems, the adjusted coordinates x and y correspond respectively to elements Xj and X^ of vector ^C (^1,^1). Therefore, the standard deviation of adjusted coordi- nates x and y is given as I (r-2i) The covariance between adjusted coordinates x and y is given by S - s 1'* (I-22 ; where factors Q(< ^a^j and <3 - are elements of the symmetric square matrix Q-. (/fWA)" = 21 For a more complete discussion of precision of adjusted values, see Appendix G. H. THE ERROR ELLIPSE Position errors are two dimensional and must be evaluated in terms of the errors along the x and y axes. Since the maximum and minimum errors do not necessarily occur along these axes, the orientation of these maximum and minimum errors must also be considered. Positioning errors may be evaluated in terms of the error ellipse (See Fig 1-1) . y /^\ ^T X Xs* FIG 1-1 ERROR ELLIPSE 22 The greater errors occur along a line making an angle Vp with the x-axis (measured anticlockwise) such that CO t 2.y0 -- li» " 1*2 (1-23) 2- T.z The respective standard deviation is given by the semi- major axis length of the error ellipse Sa. 5, 2 ■?., gtj CX-24J where The smaller errors occur along a line perpendicular to $3 , and the respective standard deviation is given by the semi- minor axis length of the error ellipse 5b. 5 z <*«, 1 22 ^ * ^2 D % C I- 25) The derivation of these equations is presented in Appendix H 23 II. APPLICATION OF LEAST SQUARES ADJUSTMENT The determination of a vessel's position at sea is a typical hydrographic problem for which the least squares adjustment is particularly well adapted. Various methods can be used for fix determinations. In this thesis, the following three methods will be presented: a) fix by N azimuth angles b) fix by N sextant angles c) fix by two range distances and one azimuth angle. For each method, the least squares adjustment is applied in the following manner: 1st: solution of the problem for particular conditions 2nd: numerical example 3rd: solution of the problem for general conditions 4th: formulation of an algorithm for the general conditions case 5th: implementation of the algorithm in Fortran language 24 ( Mo**t h in 3 J - A P C *,j > / N 47.965[^ X (.Basttncj) FIG II-l: FIX BY 3 AZIMUTHS 25 A. FIX DETERMINATION BY AZIMUTHS 1. Solution for Azimuths from 3 stations a. Determination of Adjusted Coordinates Given a positioning problem as diagramed in FIG II-l, where: fl^p — is the observed azimuth from station 1 to vessel position i Ajp " is the observed azimuth from station 2 to vessel position IT $3p - is the observed azimuth from station 3 to vessel position Y and (*i#i ) - are the grid coordinates of station 1 tXi.^t) • are the 9rid coordinates of station 2 (*3,^3 ) - are the grid coordinates of station 3 the grid coordinates (xy) of vessel position P will be determined. Step 1) Formulation of observation equations The analytical expression for the azimuth from station C (Xt,2ft ) to P (*,*f) is given by At i. Cra4ia»*>. \in' *~*£. _- P(x.y). 3 - 3 i The function F(xy) must be expressed in a Taylor's series around an "initial position", Vq , whose coordinates 26 are defined as xa and y^ . Evaluating the zero and first order terms of the series, the following expression is obtained: Designating the distance and azimuth from station L ( X{, Yc ) to the "initial point" r0 i^o}Yo) by 5^0 and A? i0 respectively, then Si0 = [(*<,- xl)1 + Ly0- yLi'1 \ and Az,- = fan 1 *o - *L ' ' *" LO Y° - Yt Therefore, AtLS a ^■,o +- lo- - Yt ax . y* : Xd Ay and the observation equations will be (for i=l,2,3) V; = V°-y- 4X _ x° - Xi _ ( Aip-Aiio ) i^,)1 (5L0)2 27 where fl^p is the observed azimuth. In the matrix form /\X""l-* * f the °bs« equations will be yd-2» (5,*)* yo-y-i. C$2o)Z yo-y$ CS3*); ax . A- to v, V. V, The angles must be expressed in radians. Step 2) Normal equations Forming the normal equations, the adjusted values for & X* and Ay will be given by X-- (A7W A)'' (fiTvJL ) where X •». Step 3) With the values 4 X and £y a new "initial point" ?e> C*^;^*) will be obtained; ^0 r *o * & * and the procedure may be repeated in an iterative way until the increments £y and £N become vanishingly small. Then, the most probable values for the coordinates x and y will coincide with the coordinates of the last "initial point" obtained 28 b. Precision of Observations and Adjusted Values Step 1) From observation equations A X'-'U = V , where JXT has been obtained by the least squares method, the residuals are obtained, i.e., the differences between the "true" and observed values of the parameters. t Then, the standard deviation of unit weight is given by O * 1 2 Z to, ♦ uu»^ + UJ3 - m Yx where n*» is the number of unknowns observed. For that problem, the unknowns observed (indirectly) are x and y (m=2) . Therefore, in matrix notation, the above equation is expressed as O r vTw v Mi ~^ i^ MM ■MHMHP trace ( W J - 1 where trace ( W ) = uj, -r uj^ * cu^ # Step 2) The standard deviation of each observation (with weight uJ^ ) is given by L 2 5/ U»u L Cs 1,1,3 } 29 Step 3) The standard deviations of adjusted values are given by $} = So >/lw . The covariance is given by <; ^ z Step 4) The correlation coefficient P between x and y is given by p_ Ox^ 12, s* sy \|^"- *?«* • c. Error Ellipse Given the matrix Q,carw4j -: /til *** . and the standard deviation Sa of a unit weight observation, the error ellipse parameters will be determined. Step 1) Obtaining the value D, X 1m \ /% 30 Step 2) Semi-major axis, 5 a s 1 %* q •2.X ^••+ 00 , then ^ , # b) if p* < p* , then ^ = 3" + ^ ' 2 • 2 . Numerical Example a. Determination of Adjusted Coordinates The U.T.M. grid coordinates of shore stations, in FIG II-l, are: COORDINATES LUCES (#1) MUSSEL (#2) MB4 (#3) x (EASTING) y (northing; 595,794.5 4,055,042.7 597,967.3 4,053,453.2 603,425.2 4,053,917.2 For illustrative purposes, the standard errors for azimuth observations made at each station were assigned the following values: /(/• - y* )] = 76° 0 17, A?z0 » U»[k*9 -x3)/ (Yo -Vs; ]="5I3° 195. Then, evaluating the elements of the L matrix: Ajg . /^2td x 0*060 - 0.0 rad^ ^ae - ^^10 a- of. 00 1 ^ -0.000 017 5 ra<4, ^3f^^^3o s -O*. ISO =-0,003 141 6 f a«i. 3.3) Determining squared distances between stations and "initial point" £q , t5{0) - (/„- x,)1^. (y0. y, ;2 - 27,438,895, lS%o )2 r (*o- **)*♦ (%-YOx ^ 1^,^/8,511, (S3o )* = (*o -^3)l+ (y*-^3 >* a \lf 103,613. 3.4) Then, evaluating the elements of the A matrix, (y0-7.)/5lo -0.0000^61 -(*o-*)/5jd --0.0OO1952. tYo-Y*)/5i0 s 0.000 171 9 -L*6-*2)/Su *-Aoaol7SJ l*-1%)/5si 3o.fl«o 195^ -(*o-*3)/S30 * 0,000 203 7 ^ 34 3.5) Therefore, in matrix form, the observation equations are written as 0.000 0^6 J 0.000 8710 0.000 1^53 Step 4) Solution of normal equations 4.1) Determining the weight matrix , •a O.OOOlQS 1 ["ax] 0.000 1751 0.0001097 u O.OOO O06 "v, ■ d, ooo on 5 X. ^ 0,©O3 14 16 v3 d I / 07 a 2Sdo i / ff* * » 1736 0", 5 o. o I o — » 000 000 \0 0.000 000 03 0. oooHlQ 0. 0003^67 ~o,ooo 115 t 0.000111 5 | 0. 066 000 Co 0.000 000 10 35 T -I 4.2.3) obtaining matrix Q = (A >• A ) Q. <;57o, 68i 5, 235, 601 4.2.4) obtaining matrix A V L .- 0. 0 0O 0O\ \ OsCoo oo\ X -* » 4.2.5) finally, vector X is evaluated by solving the normal equations : X, -S.6 -4.6 1 Step 5) First adjusted values of x and y With the increments Ax" and ^V a new "initial point" is obtained: [ Xo = 6oo, 877-5 - 3.6 = 600,367.3 Step 6) With the new values, for the "initial point", the procedure indicated in steps 3.2, 3.3, 3.4, 3.5, 4.2 and 5 is repeated, and with the values now computed for &X and A^j a "closer" initial point is obtained. 36 Step 7) This procedure must be repeated, in an iterative way, until the increments A* and ^^/ become vanishingly small, or, in practical terms, converging to within a specified tolerance. Then, the last "initial point" obtained will coincide with the most probable position for P(x,y). b. Precision of Observations and Adjusted Values Step 1) The residuals are obtained introducing £>X= -3.6 and Ay =. — 4.6 into the observation equations. Therefore, V- v, V, 0.0 co A oe 4 -o.ooo 0 26 3 o.ooo 'boo 5 Step 2) Obtaining scalar y W V, V W V - 0. ooo oo\ O&S . Therefore, SQ = 0.000 6992 radians . Step 3) Obtaining standard deviation of each observation, 5 u - 3, <-o i Then, 6, . o.ooo 58*2 7 TaA S^ - o.ooo 6331 r^<£ ^ <3 °0 3 3 - 0,040 37 Step 4) Standard deviation and covariance of adjusted values x and y , 5* r S0^77 = 2.26 5 y = S0^l =, \.6o Sxy = Sj- «j,i a -0.768 . Note, S and Sy are expressed in the same units as the grid coordinates. Step 5) Correlation coefficient , f= *:> Sx • S - . 0.21 Given c. Error Ellipse So z o. ooo & 98 Z ^M r f^; ^7fj 2<3« . the error ellipse parameters will be obtained Step 1) Determining D, D- . (In - ,.., A/ J from stations D^ to vessel's position P ( x,^ ) c) and the standard deviations (J~u ( l? | | ...,AJ) of observed azimuths, the adjusted coordinates for P(xv) will be determined, Step 1) Weight matrix ^v 1.1) Squaring the inverse of standard deviations *X~^ , U)C . J ( t . 1,2 ,..- , N ) , 1.2) Designating by a>|^ the least uj£ , the weights UJJ will be obtained; u>« 1.3) The elements of square matrix fy7 will be such that ^J * i ° , P" ^ J (!•', j « 1,2,..., A/) 41 Step 2) Observation equations 2.1) Determination of first "initial point" 2.1.1) Designate by Aj^p an observed azimuth Al? (i=2, 3, . . . ,N) such that tan AKP £ tan A \p . If no such azimuth is available, then the vessel's position is undetermined. 2.1.2) The intersection of the azimuth line /4 \$ p from station K (X- y* ) with the azimuth line Aip from station 1 (*i,jy.i) determines the first "initial point" P0 (Xp,7o ) . Therefore, a) if AxpznV (n=0/l) , then Va will be given by Vim*** **« (££• ~ \e )- (*-**>, by b) if /\$p x d TT (nso, L) i then ^> will be given ( X,* Xk >» yi+ i^n 2 -Aip ). (**-*i) , c) otherwise, *o will be given by A0 >a 31+ mt (, x between stations SliXirfi) and "initial point" Pd 2.2.1) Two angles, A? ^Q and (fitl^^) satisfy the equation Also, r& 10 must be a positive angle between 0 and 2T. Since, in general, calculators give a solution between (*• TT/2) and (+TT/2 ) , a criterion will be estab- lished for selecting the valid solution. 2.2.2) Criterion : a) if >--}/ and *o>*i , then At 'L0= 7* t*L b) if J* s^f C and yo<^i > then A I ^0 = 317/2 c) if Yo = X<; and ^o»l r then y4?^0 = 0 d) if XosXt. and ^o<^c , then /4?^0='17 For X^ ^ *i and ^ ^ ^c* , designate by p^ the solution, given by a calculator, of 43 Therefore, e) if «/t'o>° and ^e>Xu , then A2^Q = oi'LC f) if <*Co<° and *o>*L * then ^io=^o^ g) if &lo>° and V© V , then A* La = ^*21T 2.3) Determination of elements u£ of matrix JU : U = Aig- ^io U"s 1,1,..., N ). 2.4) Determination of squared distances between 3 £ (/£, JtJ and P<> (**>): *2. 1 1, 2.5) Determination of elements 2£j (Ls l;...; ^ : J-- \,1 ' of matrix A • Step 3) Normal equations 3.1) Determine matrix A W (a matrix 2 x N) , 3.2) Determine matrix A WA (a matrix 2x2). 3.3) Determine matrix i^W Ay (a matrix 2x2). 44 Since yAv/4 is a symmetric matrix, then its inverse matrix will be Q = (A WA) , also symmetric, such that /mi ^h nil Ai% C3,» Q«* 1 O O 1 It can be shown that On* - Ait 1 ( A* - An. A^) t?n .- Qj. * An/ (Asi - A, 1 . ^2zJ 3.4) Determine matrix <4 W L (a matrix 2x1). 3.5) Finally, determine X, r* "t 4} -» = C/fWAf (A' W L). Step 4) First adjusted values With the values Jb * and £ N the coordinates of the new "initial point" Po ( *o , 3 '& ) are obtained: Step 5) 2nd iteration For obtaining a "closer" initial point repeat the steps 2.2, 2.3, 2.4, 2.5, 3, and 4. 45 Step 6) Next iterations Repeat Step 5 until £x and 6j become vanishingly small, or, in practical terms, converging to within a speci- fied tolerance. Then, the adjusted values for x and y will coincide with the coordinates of the last "initial point" obtained, b. Precision of Observations Given N (number of stations) and the matrices A, X, W and L determine : Step 1) Matrix of residuals V (a matrix Nxl) Y.-4Y- L Step 2) standard deviation $0 of the unit weight observation 2.1) Obtain VTW V (a scalar). 2.2) Obtain trace of weight matrix W; trace ( W ) s "£ U^ u-« where t-^££ is a diagonal element of weight matrix W . 2.3) Finally, $0 (in radians) will be given by 5,, /vTw V Step 3) Standard deviation S t- of each observation (with weight Oi^ ) , S £ x . 5° _- C i - I, 2 , • • • , N ) where 5^ is expressed in radians. 46 -j ( tfor t bung ) Luce 5 ? (.X,? ) *JP4 »**»*> V-^ / I / I I I use \ \ > MB4 (ill) X ^(rastfns ) FIG II-3: FIX BY 3 SEXTANT ANGLES 47 B. FIX DETERMINATION BY SEXTANT ANGLES 1. Solution for 3 Sextant Angles (Between 4 Stations) Given a positioning problem as diagramed in Fig II-3 in which: ct , a * - is the observed sextant angle from P between stations 1 and 2 &2£3 "" -"-s t^le °kserve(3 sextant angle f rom F between stations 2 and 3 0C^„. - is the observed sextant angle f rom .P between Oik stations 3 and 4 and (xi/^» ) "" are grid coordinates of station 1 C*x 2z1 "~ are 9r^ coordinates of station 2 (X3 2a \ "* are 9rid coordinates of station 3 (*4Jki) - are grid coordinates of station 4 the grid coordinates (xy) of a vessel's position P will be determined. Step 1) Formulation of observation equations The analytical expression for the sextant angle o(Lp (uH) ' from tne vessel's position Z (x,y) , between stations L (X£ty£) and L-H ( V^*- t 2V+ ■ ' is 9iven bv 48 The function F(x,y) must be expressed in a Taylor's series around an "initial position", »© , whose coordinates are defined as X Q and y0 . Evaluating the zero and first order terms of the series, the following expression is obtained: -~(*3 ) =: At f (U,J - A**i ~ tan'' v"' - y« - tan Jc + i - 2/ o ^o - 3 t ♦ I „l 3C - 3* }*~ 3 J O- 2fi+»)* + (^-^♦.)1 (y.-^J1-* l** -x*)* x* - Xc' X© — XJ ri 4* ^y Designating by 5;^©j and stations L ( Xi N i} and t-fi ( Vjf( ^^» ) ^ respectively, then •Soft*!; ^ [lx\:*.« -**)% c ^^i *>•'*' 1 /t?0[; - tan"' [ {*: -xo) / ^t - >) J 49 and, [lx.-«)/(5,c )l- (%- ^■♦•)/(s.a«.)),]i -A*o <*.i where o( £ 9 C&fO ^s t^ie observed sextant angle. In matrix form, the above equation is expressed as V - A X - L where A m Vo- 7i *•-:*• Xa -Xl *© -X2 (S62)' l£«>* (So,)11 CS^iJ V*-73 C502)1 j a new "initial point" » o (Xo Vo) is obtained, '■ 3« r Jo*-*? , and the procedure will be repeated in an iterative way until the increments /l* and Ay become vanishingly small. Then, the most probable values for the coordinates x and y will coincide with the coordinates of the last "initial point" obtained. 2 . Numerical Example Referring to FIG II-3, the U.T.M. grid coordinates 51 of shore station are ; Coordinates MB4 (#1) USE (#2) MUSSEL (#3) LUCES (#4) x (EASTING) y (NORTHING) 600,425.2 4,053,917,2 600,372.0 4,051,216.9 597. 967.8 4,053,453.2 595,794,5 4,055,042,7 The observed sextant angles are equally precise; thus, the weights will be and the weight matrix W is the identity matrix W> I o o o I o o c I The following sextant angles were measured: MB4 - P - USE = d jp2 = 49°. 927 USE - P - MUSSEL = ot2? 3 = 33*.130 MUSSEL - P - LUCES = ^3P^ = 30*. 396 Step 1) Formulation of observation equations 1.1) Determination of first "initial point" vQ (X0i^t 1.1.1) The first "initial point" Pa will be the point determined by the two sextant angles o((?l and <*iP3 such that X7- *< tan P2 ■ t*i(*Lt-Ai#-), _I«i* 3.- 1* 52 and *3 - >o yz-^o tat, 4in..U«{fy*ot 42ot), *L±* ?i^* I* 1.1.2) After some algebraic manipulation, it will be obtained that 3# • C *« *- £> where lull _ lilS * x, - x3 ■ — » - ■■■ ■ - J < T J3 and ^_ tanot,p^ tan »^iP V2 - X3 X. - X2 - J 1 + j 3 "id* olxt% tan oi ig 2 1.1.3) The value Xd will be a solution of equation U ** + R *> * S .- o ( IT - i ) 53 and where 7 r 4. Z U = Lan siipi . (C H) R - iah - D [^.o*) tx, ** +>f, 2ft J - 1.1.4) Two solution sets, (JC#J , 3*1 ) a^d (x0j(j^) satisfy eq. (II-l) . The valid solution corresponds to the solution set that, introduced into the following expression, yields the value that best approaches tan 0(^2. • 1.1.5) Using the numerical values tan Q£\p2 = 1.1887 tan ^^^3 = 0.7850 y, = 603,425.2 ^,= 4,053,917.2 Xz= 600,372.0 ^= 4,051,216.9 y5= 597,967.8 ^= 4,053,453.2 it will be obtained C - 11.109096 D = -2,613,387.9 U = 147.885 403 R = -1.776434 x 108 S = 5.334 734 3 x 1013 . 54 The two solution sets satisfying eq (II-l) are )(0, = 600,833 J0{ = 4,056,325 and #oz = 600,390 L ^2.= 4,051,405 Introducing the first solution set (X0{ yff ) into expression (II-2) the value 1.2923 will be obtained. Introducing (^, ^dl) into the same expression , the value -0.9944 is obtained. Since the first set is the one that best approaches the value of "tan o^ = 1.1887, the coordinates of first "initial point" are Xt> = Xa = 600,833 Jo = >t - 4,056,325 . 1.2) Determination of azimuths between "initial point" ("^(X*^) and stations Si (x't^t) > (i=l,2,3,4) • A?0 I A? At 03 0U = tan' [(*■-**>/ (},-:/•) ] = I32°609 tan""1 [ix2-kp; /[ y%-y.) J - (B5?i5? tan"1 [(**-*•) I (*-*) ]* 224*934 tan"' [(*-*•)/{**->) ] --255° 721 55 Then, - O. 04* 075" * ^3^ - O. $2$ JUS 6 fa* + (j**-?*)* =26,305,207 ( 603 1 = (^-y»)2 + (yj-^o)1 = 16,456,606 [5oA ) = (*H-**f + (**-*»>* " 27,030,776. 1.4) then, f° - *** _ Vj« . 0. 000 ool 8 *°'x' m X9-*x m _ ^).^o 22 U 6 (S^)1 {S6,)z (So.)* LSaX)z' jfr^jfe - -d.odoo/9 7 >£-/? Xo -^ __ o, 000 oil. 3 1.5) Therefore, in matrix form, the observation equations will be expressed as ♦ 0. 000 001 8 - 0. 000 0J - i -8 J . Q. 6I;^8,1"78 -3,<»72>o"?a 2.4) obtaining matrix A W (— , ATWL: . /.3 77 v Id -6 1 -5 2.5) finally, vector X it will be obtained X: 35.8 181.3 Step 3) First adjusted values of x and y With the increments AX and AN a new "initial point" is obtained; j y0-6oo;833 «■ 3S.9 * 6ao;869.8 1 y0 = ^os6;325 + /8I-3 = UjOS 6;5o6. 3 . 57 Step 4) With the new values for the "initial point", the procedure indicated in steps 1.2, 1.3, 1.4, 1.5, 2 and 3 is repeated, and with the values now obtained for ^Jx and &y a "closer" initial point is obtained. Step 5) That procedure must be repeated, in an iterative way, until the increments AX and /w become vanishingly small, or, in practical terms, converging to within a specified tolerance. Then, the last "initial point" obtained will coincide with the most probable position for P(xy). These computations may be compared with those shown in the computer output section on page 149 . Differences in the results are due to the fact that the calculations illustrated on the preceeding pages were only carried out for one iteration. 3 . Solution for the General Case The solution will be presented in such a way that easily can be implemented by an algorithm satisfying a modular design. Given: a) the grid coordinates of M=N+1 stations S^ ( *t,Jt) , ordered in a clockwise sense around vessel's position , b) the N sextant angles O^lPCi.*!) between stations 5(1 (Xi,y£) and Si4i (*k, r}U, )f 58 c) and the standard deviations 0^ (i-1,2, . . . ,N) of observed sextant angles, the adjusted coordinates for P(x,y) will be determined. Step 1) Weight matrix W Obtained as indicated on Step 1 of subsection II. A. 3. a Step 2) Observed equations 2.1) Determination of first "initial point" F£ (>*,^o) 2.1.1) The first "initial point" fj ( Yo,Jo) will be the point determined by the two sextant angles oA»* an^ Q^2f3 such that Vz- *o tan oL[Pn s tatj(4aLM- Aiol ) s 3*- J< IP2L z a ' ^"'"Ol ■ + ^^ x.- Xo ^. - > x\- ■ yQ 32- 3* :>.- 3< and Xa - .Xa tah ciU3s tah (/Uo3- 4?02; .. ^-^ ^J. Xj - .Xo x^ - xc I + ?3 - % ^Z - X 2.1.2) Test for undetermined initial position See FIG II-4) . 59 FIG II-4: UNDETERMINED FIX BY 2 SEXTANT ANGLES If To rSx, 5j». an<3 S3 belong to the same circumference, then /a - iso°- c c s B C>*}3 +***3 ~:?»7l - >fXl.> 4-Xz. }3 - X3 }z , a) If F = 0 , then 3„ * £ / £ r p . Let K=r - t*i + Xa.) Then , from P obtain 0 2 -Rt Vft^Ts From solution sets (.y Na ) and (y«« sA) choose the one that best satisfies tano*ir3 - jx^^ig^.Jt)- (yi.-/#) Os-^) fix -4) b) If E = 0 , then X* - - <9/F = H . 64 Let Then , from ^o + R 3o t S ■ o obtain ^ 0 = _ -Rt \/r^5 From solution sets Cx*;^*« ) and (^, ^0l) choose the one that best satisfies equation (II-4) . c) If E ? 0 and F ^ 0 , then Let "Us C -M 3= D - P t3|-0*}+ ^»^2+ * *** . Then, from Xfx0 + R X© + S - O obtain 1 _ — — -,M, , , , | T — 2. O *c_- From solution sets Cx^, ,^a<) and (X0)>^}) choose the one that best satisfies equation (II-4) . 65 2.1,3.3) 3rd case: ^2j?3 =^° and °^/F2. * 90" Let A - taw ol,g2 F» A (X3-X1; + ». -3t a) If F = 0 , then Let R-- c *- 4 x* ; Then, from X/d +• R *© -f S - o obtain V* * - R± \/Ra- 4 S From solution sets {Xo\ >^o) and (X01m,^o) choose the one that best satisfies equation (II-3). b) If E = 0 , then Yo^ -6/F-- H . Let 5 r H*- H(^^3)-»^^^i^. 66 Then, from Jo + R ^0 + ^ = * obtain yOJS -R± >/g2- ^S From solution sets (X* / "}o\ ) and ( x0 , j02 ) choose the one that best satisfies equation (II-3). c) If E ? 0 and F ? 0 , then Ja; (F/e)y* + [ ^/E) = CXctD, Let 5r P*- P ( ;>*+ 33) + *z*3 + ^i^? . Then, from U *0 + P> yo+ S s o obtain xg, -Rt n/R*- ^US 2 \J From solution sets (>d( ,^d<) and (yol , ^t) choose the one that best satisfies equation (II-3). 2.1.3.4) 4th case: ^ipl= 90° and ^wC ^°° Let F = **- *> 6 ^ X. Xi + 3« ^i. -"^a.^3 - *z *3 . 67 Let a) If F = 0 , then b) If E = 0 , then c) If E ^ 0 and F ^ 0 , then Then, from Ux^+Rx^f S-- obtain V* - - R+ V R*_ ^ u S 1 U From solution sets (Xpt ry0l ) and i^ot,t^t,) choose the one that best satisfies C}i-:W (3i-:W + (x2-^; (x,- x*) = o . (31-5 ) 2.2) Determination of azimuths Alt qI between "initial point" Pf (Xo'jo) and stations Si (XlJC) 2.2.1) Two angles, A^0i and H^ ^ + 180 / satisfy 68 the equation Alois tan' *:-*«, (i-.i;2r.;A/*«). Also, '♦^ftt, must be a positive angle between 0 and iTf . Since, in general, computers give a solution for the above equation between (-TT/21) and (+V/i.) r then a criterion will be established for selecting the valid solution. 2.2.2) Criterion : a) If y0=yC and Xt>> XL' , then 4^0^= 3tf/Z j b) If Jo=yi and y*< vL' ,then A*oi= **/* - For ^jo 7* ^l designate by 0^o£ the solution given by a computer of ^L = tahJ .x^'-**. (L= i,t;...; AJ+«) . Then : c) If #0,;^' D and Xey^C, then d) If ^oi^° and ^o 4 Xl » then e) If ^^ X C s then f) If O^OL ^° and ** ^ **•' , then A*oLz oiOL -i rr. 69 2.3) Determination of elements Le* of matrix L, ; Note, Ujl must be expressed in radians. 2.4) Determination of squared distances between ?Q (* f«j0) and St (yt', tf) : 2.5) Determination of elements 3 £ j (i=l , 2 , . . . ,N; j=l,2) of matrix A: Step 3) Normal equations f 3.1) Determine matrix AW (a matrix 2 x N). 3.2) Determine matrix AWA (a matrix 2 x 2). 3.3) Determine matrix (flW<*)" (a matrix 2x2) as indicated in Step 3.3 of subsection II. A. 3. a, 3.4) Determine matrix /I WL (a matrix 2x1). 3.5) Finally, determine X- (ATW fiT1 ( fi1 W L ). Step 4) First adjusted values As indicated in Step 4 of subsection II.A.3.a. 70 Step 5) 2nd iteration As indicated on Step 5 of subsection II. A. 3. a Step 6) Next iterations As indicated on Step 6 of subsection II. A. 3. a 71 C. FIX DETERMINATION BY TWO RANGE DISTANCES AND ONE AZIMUTH This problem illustrates how to deal with observations of different kinds (distances and angles) . The procedures for obtaining the residuals and the weight matrix are more complex. 1. Solution for Two Range Distances and One Azimuth from 3 Different Stations. Given a positioning problem as diagramed in FIG II-7, in which: R, — is the observed range distance from station #1 ^2 - is the observed range distance from station #2 /\ - is the observed azimuth from station #3 (Xi3i) ~ are the grid coordinates of station #1 (*i St) " are the 9rid coordinates of station #2 t**,t)3) " are tne grid coordinates of station #3 07 - is the standard error of R, (in meters) (T^ - is the standard error of Rx (in meters) OT - is the standard error of A (in degrees) the grid coordinates of vessel's position l (x,y) will be determined. Step 1) Formulation of observation equations 1.1) The analytical expression for the range distance between station i (i— 1,2) and vessel's position P (xy) is given by rL (meters) = [(X-*i)*+ C^-IK)1] = F (*») [C* [,!) 72 The function F(xy) must be expressed in a Taylor's series around an "initial position" , P , whose coordinates are defined as x and yQ . Evaluating the zero and first order terms of the series, the following expression is obtained: ?C s [(Yo- Xc)% (>-3t)lI^ + Then, designating by sio the distance from station i (i=l,2) to "initial point" P0 (X0'Y0^ ' t*ie following expression is obtained: The observation equations are given by 5 to ^^° where R-j_ is the observed range distance. In this result it should be noted that the residuals, v-j_ (i=l,2), are expressed in meters. 1.2) The analytical expression for the azimuth between station 3 and P(x,y) is given by AB (radians) ■ tan x~ ** 73 Therefore, the observation equation is expressed as tan - 1 2 - 23 where A is the observed azimuth angle. In that result, it should be noted that 1/3 is expressed in radians. Therefore, it will be necessary to obtain V3 expressed in meters. (See FIG II-5) . w. >A/*rfcb .'> ^3 (*3 2&> FIG II-5: CONVERTING ANGULAR RESIDUAL INTO METRICAL RESIDUAL From the FIG II-5 is concluded that Vx(meters) = sin V* (radians) x distance between P and 5 3 or V3 (m*t*rs) - sin UV £2 - A 30i t*-*s) * (3-35) 54 74 Expressing the function V3 (xy) as a Taylor's series around the "initial point" Sq ( to^y* ) / and taking only the zero and first order terms, the following is obtained V5- sin! W x«-x> „ A ?0- ^5 CO 5 taiT *» : y* _ A 3* -33 ^0-^3) * c >-?*>' ^o-^ + r 1 * 7 y^ 0 + 5it7 .1 tan" jfe-niS. J«03 .Sm tan' *»-» -/\ -/* -A Xa-X* J ft*.-**)** C3» -3 ft/] 4X + "^-Vo [ (X0-^J? *(3o-33)_ IT" * it-ys [t*i-i4),W3.-j»)T m ^ Designating by -^30 and r^^o the distance and azimuth between station S-x (Xj/Jj) and "initial point" r© (yo >2 then a / 1 SO r l*©-*3) + l]0 - ^3)2 1 and A*,., tan - » 3o: Xo-X* 3. -7* 75 Therefore, the observation equation may be written as \43 Sin {A-itz0-A)% S50 + 53o 330 .AX + [ ^3o 5 3o 1.3) Finally, the observation equations in matrix notation are expressed as AX- L - V where the elements 3^ '. and (,£ of matrices A and L are given by a „ - (Xo-*o/ S i, «3»2L= (J0-J1) / -S \c a 4, a (*o-*2)/s2o «3iZ*fo»-Oi) 7^20 a»lje C05 (A*3*-A). ^'^ * *'« t/4^3^-^)' ^"^ 53 S3 a32 = cos (Az3o - A). %dl!L+s'*« lA*3a-A). h^L S30 S 3c L, -. R, - 5 10 12 s R2 - 5 20 L-. - 5«n ( A\3o- A) . S3 76 Step 2) Determination of weight matrix W The standard errors #7 and Oz of range observations are expressed in meters; the standard error (f$ of the ob- served azimuth angle is expressed in degrees. Therefore, it will be necessary to obtain (J3 expressed in meters. (See FIG II-6) . FIG II-6: CONVERTING ANGULAR STANDARD DEVIATION INTO METRICAL STANDARD DEVIATION From FIG II-6 is concluded that ($3 (meters) - SinQ*3 ( m degrees) *- S3o t Having obtained £Jg expressed in meters, the pro- cedure for obtaining the weight matrix W is as indicated in Step 1 of subsection II. A. 3. a. 77 Step 3) Normal equations Forming the normal equations, the adjusted values for /$•< and Ay are given by - J X = UTW A f UTW L) . Step 4) With the values Ax, and A^/ a new "initial point" Ol I < Xo ( *o,ya) is obtained; Step 5) For the new coordinates ( X © ^J o ) of "initial point", the value of ^Tz - \0 m A r 45*5 4 i ^rj5 o?oz4 Step 2) Formulation of observation equations 2.1) Determination of first "initial point" The first "initial point" will be the point determined by range distances R< and Kg, (for which the azimuth from station 3 is closer to A). Therefore, the point Yq {Xo,2)o) will satisfy the following system of equations: \ 30 Introducing numerical values, the following solution sets for the above equations are obtained '• X9I: 6oo} $67. 1 and Jv0? s 6oo?2&c.\ The azimuth from station #3 to (V^, ^jol ) and ^oi ,^oz^ ' respectively, are obtained: n^^0{ - 45. 24 and A^ 30Z - 115 .5 . Therefore, the valid solution is the one corres- ponding to At^oi , i.e., j *= * + O,- Jo1) J ^ 5U3-0 -52o s [(yx- y*)% (3l - j<>>z ]* r 35u5. a 81 2.4) Therefore, the elements 3u.' A and L will be and Ll of matrices 3u - (Xo-x.) / 5l0 z 0.16 3 3 68 a21 s Lj0-3,)/Slo = o.2 - * L5r -Sin (b*3o-fi). S30- 2/' '** 2.5) The observation equations in matrix notation may be written as -0.127 138 0.1 00 lj o o » 0. U±5 6 14 4x r 0 v, oMs 861 A} ■» 0 s v2 -0.1(1 75 5 _ I /2U6S\ . v3 J 32 Step 3) Normal equations 3.1) Determination of weight matrix W: <37s 10 m Then => ^3* (meters)* Sjo . 5in(o!e^) ^ 1.7IO m Setting the least weight equal to one, it will be obtained that 1 ujz s i or ~W = U)3 = 34 I 0 O O I o by 3.2) The solution of normal equations is given Xs 5.1 23.$ J . Step 4) First adjusted values With the values <£X =5.1 and ZV^ = - 2 3.8 a new "initial point" is obtained: Xo = 600,867,2 + 5.1 - 600,872.3 ^o = 4,056,328.0 - 23.8 = 4,056,304.2 Step 5) With the new values for the "initial point" the procedure indicated in steps 2.2, 2.3, 2.4, 2.5, 3 and 4 is repeated and a "closer" initial point is obtained. 84 Step 6) That procedure must be repeated, in an iterative way, until the increments ^X and Ay become vanishingly small, or, in practical terms, converge to within a specified tolerance. Then, the last "initial point" obtained will coincide with the most probable position for P. These computations may be compared with those shown in the computer output section on page 150. Differences in the results are due to the fact that the calculations illustrated on the preceeding pages were only carried out for one iteration. 3. Solution for the General Case The solution will be presented in such a way that easily can be implemented by an algorithm satisfying a modular design. a. Two cases will be considered: 1st case) Two range distances and one azimuth from three stations (See FIG. II-8) >J i\ ' f V\ 0 V \Rl / \H \ / \ J i &. Sj -*\ A / \ 1 t / \ \ \ **J FIG II-8: FIX FROM 3 STATIONS 35 Designate by S ( and S^ the stations from which range distances are observed; the station from which an azimuth is observed will be designated by Sj. 2nd case) Two range distances and one azimuth from just two stations. (See FIG II-9) FIG II-9 FIX FROM 2 STATIONS Designate by St tne station from whch an azimuth and a range distance were measured ( S]_concides with Sa ) ; the remaining station will be designated by 5«. b. Given (xl,Yj_) - grid coordinates of station S-j_ (X2'Y2) - grid coordinates of station S2 (X3/Y3) - grid coordinates of station S3 (in the 2nd case, they coincide with the coordinates (xl,Yl) of SX) Rj_ - range distance from station Si 1*2 - range distance from station S2 A - azimuth from station S-> 86 and Ui - standard error of R]_ (in meters) C12. - standard error of R2 (in meters) (13 - standard error of A (in degrees) the coordinates of vessel's position P(x,y) will be determined. Step 1) Formulation of observation equations 1.1) Determination of first "initial point" iQ (X0jy0\ The first "initial point" will be: a) one of the intersection points of circum- ferences centered at Z>\ and $2. with radius ranges of R| and R2 respectively . b) the intersection point which lies closer to the azimuth line through Z)-x . Therefore, the following equations must be satisfied: (x,- to) f ( },- ^ - R (X2-x«) «■ (3,. - jo? - &i Let E * *i - Rx * 3a - J. + ** - *■ Then, X* s 2 Cx-2- x,) 87 1.1.1) For X-2. ^ X\ proceed as follows: Let 7_ E.wJlirJ!!. ) * I 2(x2-Xi) ' x2-x, EA= ( e«)*- 4(£.) • Then, o = 1 E , a) If E^M **- *l c) If E4 > o , then the two circumferences intersect at 2 points; therefore, the following intersection points are obtained : ( 3*i [- Fa + VE4 ] /2 E, 2 ( *2 - y, ) , 111 ^ -i x, - yt >i = < 01 [- lx - /IT ] /z £ £ 3 1- 3z 4- ^Jol 2(X7-y, ) y7 . x, and 89 and 3o*= [- Ft - v/T^ ]/iE. *oz = Er/[tCxz-x.)]+[(^l-^)/(xa.^l^]^z b c.l) If X3 = **% , then II) If Jtf^ =^3 and xai <; X3 ,then ^*3*c = 31T /2. . For ^„l 7^ ^3 designate by o< 3 c the solution given by a computer of 90 Then: III) If 0^3t >,o and XolZ x3 , let IV) If ot^i<° and Xai < X3 ,let V) Otherwise, A 23o|_= ^3^ + TT . Having determined azimuths Z^^, and n^j^^' check which one is closer to the observed azimuth A . I) If ^?30,= ^23<91 = A , then the solution will be undetermined (See FIG 11-11) . \ ' >N — • / FIG 11-11: UNDETERMINED FIX BY 2 RANGE DISTANCES AND 1 AZIMUTH 91 1 -L II) If (A\t-A) = (-4 23tfl-/») , then choose III) if (A^i6,-/A) > (Af3ox-/4 ) , then choose Xo = Xoi } = E/ j> ( Ik-JM ] . Let Then , t /f 92 a) If F ^ o , the two circumferences do not intersect or are tangent; then Xa - *\ . b) If r 'J o , the two circumferences intersect at points {xaf ,^0\) and (*aa.#2aiJ t tnen x0[ - x, h- v F and / -WF b.l) if *3 =X^, and ^3 = ^01 , then Xo - X01. b.2) If X3 = X02- and ^3=^ tf-2- 1 then X«r X o 1 b.3) Otherwise, determine azimuths /n"2 3^, and /A"S 3^2 between station S3 (X3, 2>3 ) and (Xot ,^«»t ) (i=l/2) using criterion presented in step 1.1.1 Having determined ^i^oi, and ^^307. . determine which one is closer to A . I) If A^3oi - /^23o2 = Ajthen the solution is undetermined. 93 2. II) If (fal0x-A) = (/**3«,x-d)* then choose in) if (A^3oi-A) > lA*Soz-A)Z^ then choose iv) if tAt^-A)' < (AHj^-^)1, then choose XU a Xc, | 1.2) Determining the azimuth n 2»c between station $3 (^3^3) and (X^o) Criterion: I ) If "jo = ^3 and X* > x3 , then A*3o, IT/ Z . II) If 20=^3 and Xd3 jthen /te;?o = v3 * * tr. V) Otherwise, • Al-$0= <*3 + **** . 1.3) Determining distances between stations and Xo 5 |0 i C Ui«*a> 4 {****•?}'* 1.4) Determining elements of matrix A , 33|J mCA«9»-4>. 3£i*5 4 *•*(*>.-*). *!&. 1.5) Determining elements of matrix L , l3: si* ( A- A?3*) • 53<, Step 2) Solution of normal equations 2.1) Obtain weight matrix W. 2.1.1) Determine standard error of observed azimuth angle expressed in meters, (C (meters) = sin O3 (radians) x S33 95 2.1.2) With (J3 expressed in meters, the procedure for obtaining the weight matrix W is as indicated in Step 1 of subsection II. A. 3. a 2.1.3) Finally, (T~$ is again expressed in radians; (HCra^ians) =: Si'tf' (V3 (meters) / Szo\ 2.2) Determine matrix /n W . 2.3) Determine matrix /\ V*A. 2.4) Determine matrix (A WA) 2.5) Determine matrix /♦ r L • 2.6) Finally, determine X = ( /\T V /0~ ( ATW L ) ( Step 3) First adjusted values With the values AX and A-^) obtain new "initial point" Pq (tf'o So) 5 3d - ^0+ *} - Step 4) 2nd iteration For obtaining a "closer" initial point, repeat steps 1.2, 1.3, 1.4, 1.5, 2 and 3. Step 5) Next iterations Repeat step 4 until AX and ^^ become vanishingly small, or, in practical terms, converge to within a specified tolerance. Then, the adjusted values for x and y will coincide with the coordinates of the last "initial point" obtained. 96 Ill . RESULTS AND CONCLUSIONS A. RESULTS From the general case solutions developed for the selected positioning methods, algorithms were written in a structured programming format. All algorithms are presented in appendix I. These modular algorithms were translated into Fortran language for implementation on the NPS computer, an IBM 303 3. Program listings are provided in the Computer Programs Section beginning on page 151. Data sets given in each Numerical Example section were input into the corresponding computer program, and the output of each run is given in the Computer Output Section starting on page 14 8. Additionally, the programs were tested using several fic- titious data sets to insure their performance in handling the various initial conditions which were modeled for each fix- ing method. In applying these programs to real positioning data the following points should be considered: 1. The presence of blunders and systematic errors in the observations will be reflected in the dimensions of the error ellipse. If all blunders are removed by careful editing and all systematic errors are eliminated by modeling or calibration, then the size of the error ellipse will 97 represent the positioning error due to net geometry and random errors. 2. When the information about the standard errors of the observations is reliable (for example, determined by field calibration procedures) , then the estimates obtained for the standard deviations of the observed values will be close to the a priori values (see example of fix by 3 azimuth angles in Computer Output section on page 148). 3. When no a priori values are given for the standard deviations of the observations (it is assumed that the observations are equally weighted) , then the application of the least squares method will provide estimates of instrument (or observation) accuracy (see example in computer output section, on page 149). 4. When the correlation coefficient is close to one, the error ellipse becomes flatter approaching a straight line (see example of fix by two range distances and one azimuth angle in the Computer Output section on page 150). 5. When the correlation coefficient is negative, the major axis of the error ellipse runs through the 2nd and 4th quadrants. Thus, the angle from the x-axis to the major axis measured counterclockwise lies between 90° and 180°. If the correlation coefficient is positive, the major axis runs through the 1st and 3rd quadrants, and the angle from x-axis to the major axis measured counterclockwise is between 0° and 90°. 98 B. The most significant result of this thesis is that well documented programs are now available which can be used for the analysis of hydrographic positioning data. These programs may be employed to process and analyze hydrographic survey data that have been collected using one of the three position- ing methods discussed. Ideally, such software should be adapted to run in a mini computer aboard a survey vessel or launch. This capability would allow "real time" analysis of positioning accuracy. In addition to processing actual survey data, the programs may assist in survey planning. By scaling observations from existing charts of a survey area, sample data sets may be formed to test net geometry. This information can be used to establish the best location for shore control stations. The programs are written in modular form so that they may be adapted for use by other types of positioning systems. The significant differences between all the programs lie in the modules dealing with the computation of the "initial point" and formulation of the observation equations. It should be noted that the accuracy of the geodetic control stations has not been specifically considered in these formulations. However, any survey error in the station coordinates will be reflected in the dimensions of the error ellipse of the adjusted hydrographic position. 99 All of the programs were developed using a plane coordinate system model. Thus, they are primarily applicable to nearshore hydrographic positioning problems. Application to offshore hydrography would require a geodetic coordinate system model based on a selected spheroidal datum surface. Obviously j the use of a geodetic coordinate system would yield more complex analytical expressions relating the unknowns. But, once these were obtained and linearized, then the pro- cedures for computing adjusted survey coordinates and the statistical values defining their precision are identical to those developed in this thesis. Whether the existing programs are used in their current form or modified to accomodate other variables, one final point should be made. The most significant contribution of the least squares method to hydrographic position adjustment is its ability to quantify errors statistically. When programs are operated aboard the survey vessel in "real time ", relative accuracy achieved with conventional survey methods is elevated to absolute accuracy if redundant observations are made and adjusted using least squares. Monitoring the size and orientation of the error ellipse alerts the user to the presence of gross blunders and inord- inately large systematic errors. The need for electronic positioning system calibration can be realistically evaluated, and calibration may be performed on an as needed basis. With 100 sufficient redundant observations, electronic positioning systems can, in fact, become self calibrating. As the trends in electronic and computer technology continue to decrease the cost of collecting and processing redundant observations, conventional two LOP ' s survey positioning will be relegated to the historical equivalent of lead line hydrography. 101 APPENDIX A. LEAST SQUARES PRINCIPLE AND NORMAL DISTRIBUTION When measuring a parameter, the outcomes of that experi- ment can be considered as values assumed by a random variable following a normal distribution. For a random variable X following a normal distribution, the value most likely to occur is its mean U*. . The true value, from a deterministic point of view, of an observed parameter is, in a stocastical sense the mean of the random variable associated with the experiment. Therefore, when using the least squares technique for the adjustment of a redundant number of obser- vations, not only a set of "consistent" values are ob- tained but also the most probable values for the means of the random variables considered. Therefore, the adjusted values are also the best estimates for the "true" values of the parameters considered. 1. Normal distribution The density function associated with a random variable X following a normal distribution is expressed by (see FIG A-l) . f X _ [(*-/>x) /i ll ^^••te* -S 2AX FIG A-l: NORMAL DISTRIBUTION Then, the probability of occurrence of values between Xp-AX and 3f0+ A/ will be given by V*" <0-d«* i^r q*> ax Therefore, it can be concluded that the probability of occurrence of values "around" %0 is proportional to the density function value at that point, i.e., ? { x,-a* 4 X 4 7C-+ &X. } ,« f ix.) _ (A- I) 2. Probability of occurrence of a set of values assumed by independent random variables 103 FIG A-2: FIX BY 3 RANGE DISTANCES Suppose that the distances between a vessel and stations A, B and C are measured and the results are, respectively, x, y, and z (see FIG A-2). FIG A-3 RESIDUALS If the vessel is situated at 0, then the means of the random variables X, Y and Z, associated with the range distances AO, BO and CO, are at distances V ,1^, and V^ from, respec- tively, observed values x, y and z. (See FIGS A-3 and A-4). 104 FIG A-4: RESIDUALS AND NORMAL DISTRIBUTION The probability of occurrence of a set of observed values ■{x y zA is given by If the observations are equally weighted then the standard deviations ^ , U ,. and D -j are values such that the observed values x, y and z have a probability as high as can be 105 expected to occur. Therefore, from (A-3) it will be concluded that the residual values maximizing the probability of occurrence of event j X ^ 2 \ will be the set of values minimizing the 2. 'Z. 2 expression ( Vt + Yz + Y3 ) , i.e., those that minimize the sum of the squared residuals. That is the reason why the least squares technique yields the most probable values for the means of the random variables considered, i.e., the best estimates for the "true" values of parameters being observed 106 APPENDIX B. LEAST SQUARES PRINCIPLE FOR WEIGHTED OBSERVATIONS 1. If an observed value XL' has the weight uJ , then the observed value ~Xi is worth as much as , , u^ , . . . , u)n , is equal to a set of W]_ values equal to xt , UJj values equal to X^ , . . . , and u>„ values equal to xh / all with unity weight. Therefore, the sum of the squared residuals will be given by and the basic least squares principle will be expressed as n n L W / Lai 107 or, in matrix form, as where V W V - mi'nimiin O ^2 O ' O I o o oj3 : ; o o U> 1C8 APPENDIX C. NORMAL EQUATION IN ALGEBRAIC NOTATION Below are the observation equations in algebraic notation V, * afl x, t atl t± + .. . +almxm-L,= o Vnran, *, * an2 xa * . . . * a„m xm - Ln =° The unknown values X, ,*t ,» -• i^m that satisfy the basic least squares principle n t -2 t-vjti V^ s, mincmun are those that satisfy the following expression: u\ (a» «i +afi xx+... +aimxtn- L, ) + ^a CaZ( *,+ 3u Xx+ ... -*3^m xm- l*)S ^nUn, *,-*<3nz S. + •' 43^xm-U) = F (x, «»••• «tn ) - = mLnCrnun . The values xi,*?,... x^ minimizing P (x^ , X2 » • • • %) are those such that J F ■ = O ( j » •; 2 ; ' ' • IG9 Considering that dXr the following normal equations are obtained : l«i 3u. aCl J X, ♦ . . . +[uLaLi acmivm - L^^ul L 1 - O < to,; a^ai tJx, ♦ - • - *M a^ i** -LwiaLmUjs 110 APPENDIX D. NORMAL EQUATIONS IN MATRIX NOTATION Taking the observation equations in its matrix notation, AX-L= V, the unknown vector X satisfying the basic least squares principle , V W V = rniLnunvjn , is the one such that (AX- l)T W IAX- L) = X1 AJVJ AX-Z XTATWL + LT W L = minim un . The vector X satisfying the above expression will be such that <5 ( XVWAX-2XVWL t LTW L.\ =o . (Q-1) 2>X Considering that JL (XTATWAX) = 1 XT AT VJ A ax 1_ (XT/\TW L). LT Vi^A it- ( C W L ) -. 0 , a* it will be obtained from (D-l) that 1 XVWA - 2 L' WTA * o . in Therefore, the normal equations are of the form (ArW A) X - ATW L, and the solution will be given by X • iaVa)"' i/\tw L ). 112 APPENDIX E. A COMPUTATIONAL CHECK FOR THE LEAST SQUARES Adjustment Technique By taking the normal equations (ATVI A) X = ATW L ( E - 1) and recalling that A X - V+ L, then the following can be obtained: (flTV/A)^ATWV* AtWL. (E-2) Therefore, from (E-l) and (E-2) it is obtained that ATWV=o. fe-3] Equation (E-3) provides a check on the computations for least squares adjustment. 113 APPENDIX F. THE CONTROVERSIAL CRITERION FOR ASSIGNING WEIGHTS 1. The usual criterion for assigning weights is stated as: a) the weights are inversely proportional to the squared standard deviations, i.e., r L ojl 5C = K (F-1J where K is an arbitrary constant; b) the least precise observation has the unity weight, i.e. , or u0o S/ = K => K= O) , 5/ tC= 5, IF-!} where Sd is the standard deviation of least precise obser- vation. 2. For the moment, consider only equation (F-l) . The influence of the value assigned to k on the computations for obtaining the adjusted values and standard deviations of adjusted values will be determined. From eq (F-l) it will be obtained that U0L = K I Si . Then, the weight matrix W will be W* x/s,-1 kr/s, K/S = K •/S,1 Vsl VsZ :KW r ' 114 and the trace TR (W) - X / $? t . . . + * I 5 «* s K TR (W') . a) Computing adjusted values, X -- ( a7\ja)-' (ATWL) * M'/K)(ATW*A)"! K(ATW'L)= IATW'A)"' (aVl). Therefore, it is concluded that, for the adjusted values X, the value assigned to K is, in fact, arbitrary. b) Computing standard deviations of adjusted values, --^. = "50 * III where Q^i is an element of matrix Q Recalling that Q. (ATW/w"'= W«) MTw'Af '= (l/IOQ1, then Next, by considering 50, /vTwv s yfc . / vrwv it follows that KTR(W')-m ' Therefore, as should be expected, the standard deviations of adjusted values are affected by the value assigned to K. 115 3. In fact, eq (F-2) imposes a constraint on the K value: K - S0Z . To illustrate the consequences of accepting that kind of constraint, suppose that, given 100 observations, 99 are equally precise and one is less precise, say, with a standard deviation 40 0 times greater than the standard deviation of the remaining 99 observations. Then, according to the usual criterion, the least precise observation has the unity weight and the other 99 observations have the weight 20. That dis- tribution of weights does not seem "good," and it is the author's opinion that there should be a better constraint minimizing the disturbances introduced by the assignment of different weights. 116 APPENDIX G. DECISION OF ADJUSTED VALUES Given the observation equations I - I, = V, a, * + b, ^ - lj - v, the standard deviations of adjusted values (by least squares method) for x and y will be determined |^REF.2j. 1. Assuming the observations were equally weighted, and solving the normal equations, the following is obtained: y z 3« £»»]CbL]-(yn>L3 [ab3a- MO] [ab]*-[a*][b*] te-n where the brackets have the usual meaning of sum, Rearranging (G-l) , X = <*. Li * oi2 Lz «■ <*3 L3 3 s^, L, ♦ /4a L2 + /i3 L3 where 0(. Q]a, -fab] k [a»ir^] -D»bl* L = A- [av] K -[ab] bl L" [*][»] -Ob]* 117 Consider L\ , *-2. and L3 as values assumed, respectively, by independent random variables Lj , L^ and |_ 3 • Since the observations were equally weighted, then L,jLi and L3 present the same standard deviation, say, SQ . Then. 3 r i i L - I 3 < VAR(Y) -- £ AN/»R ( Li) = \P\b? (6-2) 1= I 3 coWR(x,y) - H <*LA w*( Lt) = [<*& I 5* . L * J T -1 2. Determining the matrix Q - (A W A ) , the result is Q= Cb*] [»*JM -Cab]* -fab] -Cab] [a*] 0*3- ■ [a b]» [a*] [a«] [bM - [a b] * MM -&" J 3. Since [«i«]._I*2 [a«]Cb*]-[ab] <=| „ 02L_M [a-lCb^-Lab] = 1 21 [a/S]._^±1 t~ .12. G>l)[tl]-[ab] - ^ 12. it may be concluded from eq. (G-2) that 5„- Is-,. 50 . /«! „ 5a ■ Ri* 4. Finally, the correlation coefficient Q between random variables x and y is given by P- x y i% S* • S* Q<=u -^]^ LI 9 APPENDIX H. ERROR ELIPSE 1. The position i (x y) of a vessel at sea is a two- dimensional random variable; its density function is the joint density function of the random variables x and y ; (Tx gy ^x--2 Z.(Gx / sy o A PC**) 2ax (*«#>) Sx * FIG H-l: TWO-DIMENSIONAL NORMAL DISTRIBUTION 120 Then, the probability of occurrence of the vessel's position in a small area (2d*. 16"}) aroundP(x,y) will be given by (see FIG H-l) P ( x= ~t**, Y=*±A3)* J ) £ uv a? <** 2. Now, it will be determined in what kind of line points with equal probability of occurrence are situated. These points will present the same value f for the density function. Therefore, letting |fa.[. Ln (2*7^ f }(2 fc>] / (5^2^^ and K-3= - *^2 ^2<57^ p then (Ty2 x1- 2„ (7^ s, X ^ + IQ vj* 4- fr3 - o ( H - 1 J That quadratic equation in x and y represents a conic; the existence of the xy-term indicates that the conic is rotated out of its standard position. a. Before determining what kind of conic equation (H-l) represents, check if points (0^ © ) and (o}Gy) are both over the same contour line for a constant density function . Inserting point (T^o ) into (H-l) results in Inserting point {c}(Ty) into (H-l) results in K-3 - - fr* &* *. Therefore, the points (Oy;a) and (0,(Jy) are over the mtour line (corresponding to K3 = -(F* (7j ) . same coi 121 b. The analytical expression for the specific contour line containing points «J^;0 ) and (0}G~y ) is T. _2 0^ x - z (J^ xj +(Hi J - (Ji (PJ =0 Considering 3 = -z(f^ C^ (Tic p - o E = o I it is concluded that the discriminant is less than or equal to zero, i.e., Bz- 4 Ac ~^Ac = o then it will represent a straight line (a degenerate ellipse corresponding to a perfect correlation between random variables x and y) . 3. The equation of the error ellipse in standard position: Consider (ATWA)"-. Q - Recalling that and 13 ^3 122 then equation (H-2) is equivalent to <\**- * «,, v;, ♦ <,, «,z _«,1v 123 where D = t^i -q«)*+ 4 =|3 /« (H-7J 4. If the positive value of D satisfying eq. (H-7) is choosen, then the semi-major axis of the error ellipse is positioned along the "new" x-axis. Therefore, from the a two solutions C^ = d. and 0^ - o<-+ 90 satisfying eq. (H-4) the valid one must be choosen (considering o( as the smallest positive angle satisfying (H-4) ) . FIG H-2: ERROR ELLIPSE The only way to solve that ambiguity is to test either with 0(1 or o<2- For that purpose, it is recommended to a) obtain the point of intersection (either P, or t\ ) 124 of the line y ■ xtanoi with the ellipse before rotation (expressed by eq (H-3)); b) determine the distance _d between the origin and P. (orf^); c) if d = semi-major axis a , then the major axis makes an angle )£q =oi{ (measured counterclockwise) with the "old" x-axis; if not, then the angle will be J o = °^2. = ol\ + 90 , that is, the major axis runs through 2nd and 4th quadrant. 125 APPENDIX I - ALGORITHMS MODULE 1 ALGORITHM FIX-BY-N-AZIMUTHS INPUT N PI-3. 141592653589793 OUTPUT' NUMBER OF STATIONS =',N DO FOR I*- 1 TO N INPUT TABLE-INPUT(I,1),TABLE-INPUT(I,2),TABLE-INPUT(I,4) OUTPUT ' ST# ' , I , ' EAST= ' , TABLE-INPUT (1,1),' NORT= * , TABLE-INPUT ( 1 , 2 ) , ' ST ERROR= * , TABLE-INPUT (1,4) END DO DO FOR I - 1 TO N INPUT TABLE-INPUT (I, 3) END DO DO WHILE TABLE-INPUT (1 ,3)7*400.0 OUTPUT' OBSERVED AZIMUTHS' DO FOR I «*■ 1 TO N OUTPUT 'AZIMUTH FROM STATION# ' , I , ' = ' , TABLE-INPUT (I , 3 ) , 'DEGREES* ALGORITHM CONVERSION-DEGREES-RADIANS (TABLE-INPUT (1,3)) TABLE-INPUT (1,3 )*TABLE-INPUT ( 1 , 3 )* (PI / 180 . 0 ) END CONVERSION-DEGREES-RADIANS (TABLE-INPUT (1,3)) END DO MODULES 2,3,4,5,6,7 DO FOR I*-l TO N INPUT TABLE-INPUT (I, 3) END DO END DO END FIX-BY-N-AZIMUTHS MODULE 2 ALGORITHM WEIGHT-MATRIX (N , TABLE-INPUT (I , 4) ) ALGORITHM ZERO (TABLE-WEIGHT) DO FOR I— 1 TO 10 DO FOR J —1 TO 10 TABLE-WEIGHT ( I , J ) — 0 . 000 END DO END DO END ZERO (TABLE-WEIGHT) ALGORITHM SQUARE (N .TABLE-INPUT(I , 4) , TABLE-WEIGHT) DO FOR I*- 1 TO N TABLE-WEIGHT (1,1)— TABLE-INPUT ( I , 4)**2 END DO END SQUARE (TABLE-WEIGHT) ALGORITHM NORMALIZE (TABLE-WEIGHT) GREATEST - TABLE-WEIGHT (1,1) DO FOR 1-2 TO N IF TABLE-WEIGHT (I, I) > GREATEST THEN GREATEST <- TABLE-WEIGHT (1,1) END IF END DO 126 DO FOR I«-l TO N TABLE-WEIGHT (I, I )«-GREATEST /TABLE-WEIGHT (I, I) END DO END NORMALIZE (TABLE-WEIGHT) END WEIGHT-MATRIX (TABLE-WEIGHT) MODULE 3 ALGORITHM FIRST-INITIAL-POINT (TABLE-INPUT ,N) ALGORITHM SELECT-AZIMUTHS (TABLE-INPUT(I , 3) ,N) I«-2 DO WHILE TANGENT(TABLE-INPUT(I,3))=TANGENT(TABLE- INPUT(1,3)) I«-I+l IF 1 >N THEN OUTPUT* POSITION IS UNDETERMINED FOR THAT DATA SET' PICK UP ANOTHER DATA SET END IF END DO END SELECT-AZIMUTH(I) ALGORITHM INITIAL-COORDINATES (TABLE-INPUT, I) IF TABLE-INPUT (1,3) =0.0 OR TABLE-INPUT(1 ,3 )=PI THEN MK *- TANGENT ( ( 5 . /2 . )*PI-TABLE-INPUT (1,3)) XO *- TABLE-INPUT (1,1) YO 4- TABLE-INPUT (1,2) +MK* (XO-TABLE-INPUT (1,1)) ELSE IF TABLE-INPUT(I,3)=0.0 OR TABLE-INPUT(I , 3)=PI THEN MI *- TANGENT ( ( 5 . / 2 . )*PI-TABLE-INPUT (1,3)) XO«-TABLE-INPUT (1,1) YO «•- TABLE-INPUT (1,2) +MI* (XO-TABLE-INPUT (1,1)) ELSE MI *• TANGENT ( ( 5 . /2 . )*PI-TABLE-INPUT (1,3)) MK «- TANGENT ( ( 5 . / 2 . )*PI-TABLE-INPUT (1,3)) XO *• (TABLE-INPUT (1,2) -TABLE-INPUT (1,2) +MI*TABLE- INPUT ( 1 , 1 )-MK*TABLE-INPUT (1,1))/ (MI-MK) YO +-TABLE-INPUT (1,2) +MI* (XO-TABLE-INPUT (1,1)) END IF END INITIAL-COORDINATES (XO,YO) END FIRST-INITIAL-POINT(XO,YO) MODULE 4 ALGORITHM ITERATIONS (TOLERANCE) DO UNTIL TOLERANCE < 1.0 MODULES 8,9,10,11,12,13,14 END DO END ITERATIONS (XO,YO) MODULE 5 ALGORITHM FINAL-ADJUSTED-POSITION (XO,YO) OUTPUT* ADJUSTED COORDINATES X= ' ,XO , ' Y= ' ,YO END FINAL-ADJUSTED-POSITION (X,Y) 127 MODULE 6 ALGORITHM PRECISION (TABLE-A, TABLE-WEIGHT ,TABLE-Q,LIST-L , DELTAX,DELTAY,N) MODULES 15,16,17,18,19 END PRECISION (SU,SX,SY,SXY,RO) MODULE 7 ALGORITHM ERROR-ELIPSE (TABLE-Q , SU ) OUTPUT 'ERROR ELIPSE SEMI-AXIS AND ORIENTATION' MODULES 20, 21, 22, 23, 24, 25, 26 END ERRO-ELIPSE(SA,SB,GAMAO) MODULE 8 ALGORITHM INITIAL-AZIMUTHS (XO , YO , TABLE-INPUT ,N) DO FOR I«-l TO N IF Y0=TABLE-INPUT(I,2) AND XO > TABLE-INPUT (I , 1 ) THEN LIST-A0(I)«-PI/2. ELSE IF Y0=TABLE-INPUT(I,2) AND XO < TABLE-INPUT (I , 1 ) THEN LIST-AO(I)«-(3.0*PI)/2. ELSE IF X0=TABLE-INPUT(I,1) AND YO > TABLE-INPUT (I , 2 ) THEN LIST-AO(I) 4-0.0 ELSE IF X0=TABLE-INPUT(I,1) AND YO 0.0 AND XO > TABLE-INPUT (I , 1 ) THEN LIST-AO(I)*-ALFA(I) ELSE IF ALFA(I)>0.0 AND XO < TABLE-INPUT (1,1) THEN LIST-AO(I)<- ALFA(I)+PI ELSE IF ALFA(I)<0.0 AND XO > TABLE-INPUT (I , 1 ) THEN LI ST-AO ( I ) /M THEN OUTPUT' SOLUTION UNDETERMINED FOR THAT DATA SET' PICK UP ANOTHER DATA SET END IF IW-1 K+-J+1 ANGUL «- TABLE-INPUT (1,3) +TABLE-INPUT ( J , 3 ) FRAC 1 «- COSINE (ANGUL )*SQRT(( (TABLE-INPUT (I ,1 )- TABLE-INPUT (J, 1))**2+ (TABLE-INPUT(I , 2 )-TABLE- INPUT (J , 2 ) )**2 )* ( (TABLE-INPUT (K , 1 ) -TABLE-INPUT (J , 1 ) )**2+ (TABLE-INPUT (K , 2 )-TABLE-INPUT ( J , 2 ) )**2) ) FRAC 2 —(TABLE-INPUT (1 , 1 )-TABLE-INPUT( J , 1 ) )* (TABLE- INPUT ( J , 1 ) -TABLE-INPUT (K , 1 ) ) + (TABLE-INPUT (1,2) -TABLE-INPUT (J , 2 ) )* (TABLE-INPUT (J , 2 )-TABLE-INPUT (K , 2 ) ) END DO END SELECT-SEXTANT-ANGLES (I, J, K) MODULE 34 ALGORITHM INTERCHANGE-DATA(TABLE-INPUT , I , J ,K ) STORE ( 1 ) *■ TABLE-INPUT (1,1) STORE (2)*- TABLE-INPUT (1,2) STORE ( 3 ) — TABLE-INPUT (1,3) STORE (4) ♦- TABLE-INPUT (2,1) STORE ( 5 ) — TABLE-INPUT (2,2) STORE ( 6 ) ^-TABLE-INPUT (2,3) STORE ( 7 )*— TABLE-INPUT ( 3 , 1 ) STORE ( 8 )*- TABLE-INPUT (3, 2) STORE ( 9 ) —TABLE-INPUT (1,1) STORE ( 10)+- TABLE-INPUT (1,2) STORE( 11)*- TABLE-INPUT (1, 3) STORE ( 12 )«- TABLE-INPUT ( J, 1) STORE (13)— TABLE-INPUT (J, 2) STORE (14)— TABLE-INPUT (J, 3) STORE (15)— TABLE-INPUT (K,l) STORE (16)— TABLE-INPUT (K, 2) TABLE-INPUT (1,1) -STORE(9) TABLE-INPUT (1,2) — STORE ( 10 ) TABLE-INPUT (1, 3 )— STORE ( 11) TABLE-INPUT (2,1) — STORE (12) TABLE-INPUT (2, 2)*- STORE (13) TABLE-INPUT (2, 3)— STORE (14) TABLE-INPUT (3,1)*- STORE (15) TABLE-INPUT (3, 2)— STORE (16) END INTSRCHANGE-DATA(TABLE-INPUT, STORE) 135 MODULE 35 ALGORITHM INITIAL-COORDINATES (TABLE-INPUT) IF TABLE-INPUT (1 ,3)^(PI/2 . 0) AND TABLE-INPUT(2 ,3)?fc(PI/ (2 .0 ) THEN AB *- TANGENT (TABLE-INPUT (1,3)) BA *- TANGENT (TABLE-INPUT (2,3)) E *-(TABLE-INPUT(2,l)-TABLE-INPUT(l,l))/AB+(TABLE- INPUT (2,1) -TABLE-INPUT (3,1)) /BA+TABLE-INPUT (3,2)- TABLE, INPUT (1,2) F «- (TABLE-INPUT ( 2,2 ))-TABLE-INPUT(l, 2) )/AB+ (TABLE-INPUT (2. 2)- TABLE-INPUT (3,2))/ BA+TABLE-INPUT (1,1)- TABLE-INPUT(3,1) G *- (TABLE-INPUT ( 1 , 2 )*TABLE-INPUT (2,1) -TABLE-INPUT (2,2)* TABLE-INPUT (1,1)) /AB+ (TABLE-INPUT (2,1 )*TABLE-INPUT (3,2)- TABLE-INPUT(3,1)-TABLE-INPUT(2, 2)) /BA+TABLE- INPUT (2,1 )*TABLE-INPUT (3,1) +TABLE-INPUT ( 2 , 2 ^TABLE- INPUT (3,2) -TABLE-INPUT (1,1 )*TABLE-INPUT (2,1)- TABLE-INPUT ( 1 , 2 )*TABLE-INPUT (2,2) IF F=0.0 THEN DAO«-G/E Y01«-DAO Y02 *-DAO U+-AB R +- TABLE-INPUT ( 1 , 2 )-TABLE-INPUT (2,2) -AB* (TABLE-INPUT (1,1) + TABLE-INPUT(2,1)) SAL*- AB* (DAO** 2 -DAO* (TABLE- INPUT (1,2) +TABLE- INPUT (2,2)) + TABLE-INPUT (1,1 )*TABLE-INPUT (2,1) +TABLE-INPUT (1,2)* TABLE-INPUT (2,2)) +DAO* (TABLE-INPUT (2,1) -TABLE-INPUT (1,1))+ TABLE-INPUT (1,1 )*TABLE-INPUT (2,2) -TABLE-INPUT (2,1)* TABLE-INPUT (1,2) DISC *-SQRT(R**2-4 . 0*U*SAL) X01 *-(-R+DISC)/(2.0*U) X02 *-(-R-DISC)/(2.0*U) ELSE IF E=0.0 THEN H*-(-G/F) X01«-H X02*-H U ♦- AB R «- TABLE-INPUT(2,1)-TABLE-INPUT(1,1)-A3*(TABLE-INPUT(1,2)+ TABLE-INPUT(2,2)) SAL*- AB* (H**2-H* (TABLE-INPUT ( 1 , 1 ) +TABLE-INPUT ( 2 , 1 )) + TABLE-INPUT ( 1 , 1 )*TABLE-INPUT (2,1) +TABLE-INPUT (1,2)* TABLE-INPUT (2,2)) +H* ( TABLE-INPUT (1,2) -TABLE-INPUT (2,2))+ TABLE-INPUT (1,1 )*TABLE-INPUT (2,2) -TABLE-INPUT (2,1 )* TABLE-INPUT (1,2) DISC*-SQRT(R**2-4.0*U*SAL) Y01 — (-R+DISC)/(2.0*U) Y02 *- (-R-DISC)/(2.0*U) ELSE C--F/E 136 DAO— G/E U «- AB*(C**2+1.0) R <- AB* ( 2 . 0*C*DAC~C* (TABLE-INPUT (1,2) +TABLE-INPUT (2,2)) -TABLE-INPUT (1,1) -TABLE-INPUT (2,1)) +C* (TABLE- INPUT (2,1) -TABLE-INPUT (1,1)) +TABLE-INPUT (1,2)- TABLE-INPUT(2,2) SAL— AB* (DA0**2-DA0* (TABLE-INPUT (1,2) +TABLE-INPUT (2,2))+ TABLE-INPUT (1,1 )*TABLE-INPUT (2,1) +TABLE-INPUT (1,2)* TABLE-INPUT (2,2)) +DAO* (TABLE-INPUT (2,1) -TABLE- INPUT (1,1)) +TABLE-INPUT ( 1 , 1 )*TABLE-INPUT (2,2)- TABLE-INPUT (2,1) *TABLE-INPUT (1,2) DISC— SQRT(R** 2-4. 0*U* SAL) XOl— (-R+DISC)/(2.0*U) X02 — (-R-DISC)/(2.0*U) YOl — C*X01+DAO Y02— C*X02+DAO END IF ELSE IF TABLE-INPUT(l,3) = (PI/2.0) AND TABLE-INPUT(2 , 3 )t£ (PI/2.0) THEN BA — TANGENT ( TABLE-INPUT (2,3)) E — BA*(TABLE-INPUT(3,2)-TABLE-INPUT(1,2))+ TABLE-INPUT (2,1) -TABLE-INPUT (3,1) F -r- BA*(TABLE-INPUT(1,1)-TABLE-INPUT(3,1))+TABLE-INPUT(2,2)- TABLE-INPUT (3, 2) G — BA* (TABLE-INPUT ( 2 , 2 )*TABLE-INPUT (3,2) +TABLE-INPUT (2,1)* TABLE-INPUT (3,1) -TABLE-INPUT (1,2) *TABLE-INPUT (2,2)- TABLE-INPUT ( 1 , 1 )*TABLE-INPUT (2,1))+ TABLE-INPUT ( 2 , 1 )*TABLE-INPUT (3,2) -TABLE-INPUT (3,1)* TABLE-INPUT (2, 2) IF F=0.0 THEN DAO+-G/E YOl-DAO Y02 — DAO R *- -TABLE-INPUT(1,1)-TABLE-INPUT(2,1) SAL *-DAO**2-DAO* (TABLE-INPUT ( 1 , 2 ) +TABLE-INPUT ( 2 , 2 )) + TABLE-INPUT ( 1 , 2 )*TABLE-INPUT (2,2) +TABLE- INPUT(1 , 1 )*TABLE-INPUT(2 , 1) DISC — SQRT(R**2-4.0*SAL) X01*-(-R+DISC)/2.0 X02— (-R-DISC)/2.0 ELSE IF E=0.0 THEN H-(-G/F) X01-H X02 *-H R *- -TABLE-INPUT (1,2) -TABLE- INPUT (2,2) SAL «- H**2-H* (TABLE-INPUT (1.1) +TABLE-INPUT (2.1) + TABLE-INPUT (1,1) )*TABLE-INPUT (2,1) +TABLE- INPUT ( 1 , 2 )*TABLE- INPUT (2,2) DISC-SQRT(R**2-4.0*SAL) YOl— (-R+DISC)/2.0 Y02 «-(-R-DISC)/2.0 137 ELSE C — F/E DAO *-G/E U*-C**2+1.0 R«-2.0*C*DAO-C*( TABLE-INPUT (1, 2) +TABLE-INPUT (2, 2)) -TABLE-INPUT (1,1) -TABLE-INPUT (2,1) SAL *- DAO**2-DAO* (TABLE-INPUT (1,2) +TABLE-INPUT (2,2)) + TABLE-INPUT ( 1 , 2 ) +TABLE-INPUT (2,2) +TABLE-INPUT (1,1) * TABLE-INPUT (2,1) DISC*- SORT (R**2-4.0*U*SAL) XO 1 *- ( -R+DISC ) / ( 2 . 0*U ) X02*-(-R-DISC)/(2.0*U) Y01*-C*X01+DAO Y02*-C*X02+DAO END IF ELSE IF TABLE-INPUT(1,3)t£(PI/2.0)AND TABLE-INPUT(2 , 3 ) = (PI/2.0) THEN AB «- TANGENT (TABLE-INPUT (1,3)) E — AB* (TABLE-INPUT (1,2) -TABLE-INPUT (3,2)) +TABLE- INPUT( 1,1) -TABLE-INPUT (3,1) F — AB* (TABLE-INPUT (3 , 1 ) -TABLE-INPUT ( 1 , 1 ) +TABLE- INPUT (1,2) -TABLE-INPUT (2,2) G *-AB* (TABLE-INPUT (1 , 1 )*TABLE-INPUT( 2, 1 )+TABLE-INPUT( 1,2)* TABLE-INPUT (2,2) -TABLE-INPUT (2,1 )*TABLE-INPUT (3,1)- TABLE-INPUT (2,2 )*TABLE-INPUT (3,2)) +TABLE-INPUT (1,1) * TABLE-INPUT (2,2) -TABLE-INPUT ( 2 , 1 )*TABLE-INPUT (1,2) IF F=0.0 THEN DAO*-G/E Y01*-DAO Y02 — DAO R — -TABLE-INPUT (2,1) -TABLE-INPUT (3,1) SAL — DAO**2-DAO*(TABLE-INPUT(2 , 2)+TABLE-INPUT(3 , 2) ) + TABLE-INPUT ( 2 , 2 )*TABLE-INPUT (3,2) +TABLE-INPUT (2,1)* TABLE-INPUT(3,1) DISC *- SQRT (R**2-4 . 0*SAL) X01*-(-R+DISC)/2.0 X02*-(-R-DISC)/2.0 ELSE IF E=0.0 THEM H*-(-G/F) X01- H X02*-H R«- -TABLE-INPUT (2,2) -TABLE-INPUT (3,2) SAL*- H**2-H* (TABLE-INPUT (2,1) +TABLE- INPUT (3,1)) + TABLE-INPUT ( 2 , 1 )*TABLE-INPUT (3,1) +TABLE-INPUT (2,2) * TABLE-INPUT (3, 2) DISC 4- SQRT(R**2-4 . 0*SAL) YOl^-(-R+DISC)/2.0 YO2*-(-R-DISC)/2.0 ELSE C*-F/E DAO*-G/E U*-C**2+1.0 R «- 2 . 0*C*DAO-C* (TABLE-INPUT (2,2) +TABLE-INPUT (3,2))- TABLE-INPUT (2,1) -TABLE-INPUT (3,1) SAL «- DA0**2-DA0* ( TABLE-INPUT (2,2) +TABLE-INPUT (3,2)) +TABLE- INPUT ( 2 , 1 )*TABLE-INPUT (3,1) +TABLE-INPUT (2,2 )* TABLE- INPUT(3,2) DISC*-SQRT(R**2-4.0*U*SAL) X01*-(-R+DISC)/(2.0*U) X02 — (-R-DISC)/(2.0*U) Y01*-(C*X01+DAO Y02 «-C*X02+DA0 END IF ELSE E*- TABLE-INPUT (1,2) -TABLE-INPUT (3, 2) F <-TABLE-INPUT (3,1) -TABLE-INPUT (1,1) G <~ TABLE-INPUT ( 1 , 1 )*TABLE-INPUT( 2 , 1 ) +TABLE- INPUT ( 1 , 2 ) STABLE- INPUT (2,2) -TABLE-INPUT ( 2 , 2 ) *TA3LE- INPUT (3,2) -TABLE-INPUT (2,1 )*TABLE-INPUT (3,1) IF F=0.0 THEN DAO«-G/E Y01«-DAO Y02*-DAO X01 4- TABLE-INPUT (1,1) X02 «- TABLE-INPUT (1,1) ELSE IF E=0.0 THEN H*-(-G/F) X01*-H X02*-H YOl +- TABLE-INPUT (1,2) Y02 ^-TABLE-INPUT (1,2) ELSE C^F/E DAO *-G/E U«- C**2+1.0 R — 2 . 0*C*DAO-C* (TABLE-INPUT (2,2) +TABLE-INPUT (3,2))- TABLE-INPUT( 2,1) -TABLE-INPUT (3,1) SAL *-DA0**2-DA0* (TABLE-INPUT (2, 2 +TABLE- INPUT (3,2)) +TA3LE-INPUT ( 2 , 2 ) -TABLE- INPUT (3 , 2 ) +TA3LE-INPUT (2,1 )*TABLE-INPUT (3,1) DISC *-SQRT (R**2-4 . 0*U*SAL) X01*-(-R+DISC)/(2.0*U) X02*-(-R-DISC)/(2.0*U) YOl «-C*X01+DAO Y02«-C*X02+DAO END IF END IF ALGORITHM SELECTION (TABLE-INPUT ,X01 ,X02 , YOl ,Y02 ) IF TABLE-INPUT(l,3)?i(PI/2.0) THEN VALOR 1*-((TABLE-INPUT(2,1)-X01)*(TABLE-INPUT(1,2)- Y01)-(TABLE-INPUT(1,1)-X01)*(TABLE-INPUT(2,2)- 139 Y01 ) ) / ( (TABLE-INPUT (2,2) -YOl )* (TABLE-INPUT (1,2)- Y01)+(TABLE-INPUT( 2, 1)-X01)* (TABLE-INPUT (1,1)- X01)) VALOR 2 *-((TABLE-INPUT(2,l)-X02)*(TABLE-INPUT(l,2)- Y02 )- (TABLE-INPUT (1,1 )-X02)* (TABLE-INPUT (2,2)- Y02 ) ) / ( (TABLE-INPUT (2,2) -Y02 )* (TABLE-INPUT (1,2)- Y02 )+ (TABLE-INPUT ( 2, 1)-X02)* (TABLE-INPUT (1,1) -X02)) MODUL 1*-ABS (TANGENT (TABLE-INPUT (1, 3 ))-VALOR 1) MODUL 2 <^ABS (TANGENT (TABLE-INPUT (1, 3 )) -VALOR 2) IF MODUL 1 < MODUL 2 THEN XO<-X01 YO<-Y01 ELSE XO «-X02 YO *-Y02 END IF ELSE IF TABLE-INPUT(2,3)^(PI/2.0) THEN VALOR 1 «-((TABLE-INPUT(3,l)-X01)*(TABLE-INPUT(2,2)- YO 1)- (TABLE-INPUT (2,1 )-X01)* (TABLE-INPUT (3,2)- YO 1 ) ) / ( (TABLE-INPUT ( 3 , 2 ) -YO 1 )* (TABLE-INPUT (2,2)- YO 1 ) + (TABLE-INPUT ( 3 , 1 ) -XO 1 )*TABLE-INPUT ( 2 , 1 ) -XO 1 ) ) VALOR 2 «- ((TABLE-INPUT(3,1)-X02)*(TABLE-INPUT(2,2)- Y02 )- (TABLE-INPUT (2,1 )-X02)* (TABLE-INPUT (3,2)- Y02 ) ) / ( (TABLE-INPUT ( 3 , 2 ) -Y02 )* (TABLE-INPUT (2,2)- Y02 ) + (TABLE-INPUT (3,1) -X02 )* (TABLE-INPUT ( 2 , 1 )-X02 ) ) MODUL 1 *-ABS (TANGENT (TABLE-INPUT (2, 3 )) -VALOR 1) MODUL 2 *-ABS (TANGENT (TABLE-INPUT (2,3) )-VALOR 2) IF MODUL 1 < MODUL 2 THEN XO+-X01 YO «-Y01 ELSE XO *-X02 YO «-Y02 END IF ELSE VALOR 1 *-(TABLE-INPUT(2,2)-Y01)*(TABLE-INPUT(l,2)- YO 1 ) + (TABLE-INPUT (2,1) -XO 1 )* (TABLE-INPUT (1,1) -XO 1 ) VALOR 2 *-(TABLE-INPUT(2,2)-Y02)*(TABLE-INPUT(l,2)- Y02)+ (TABLE-INPUT ( 2, 1)-X02)* (TABLE-INPUT (1,1)-X02) MODUL l*-ABSr VALOR 1) MODUL 2 *-ABS (VALOR 2) IF MODUL 1 < MODUL 2 THEN X0*-X01 YO^YOl ELSE XO *-X02 YO *-Y02 END IF END IF 140 END SELECTION (XO,YO) END INITIAL-COORDINATES (XO,YO) MODULE 36 ALGORITHM TABLE-INPUT (1 TABLE-INPUT(1 TABLE-INPUT (1 TABLE-INPUT (2 TABLE-INPUT (2 TABLE-INPUT (2 TABLE-INPUT (3 TABLE-INPUT (3 TABLE-INPUT (I TABLE-INPUT(I TABLE-INPUT (I TABLE-INPUT (J TABLE-INPUT (J TABLE-INPUT (J TABLE-INPUT (K TABLE-INPUT (K RESTORE-INITIAL-DATA(TABLE-INPUT, STORE) STORE(l) STORE(2) TABLE- INPUT(I ,1 ) THEN LIST-AZ(I) <-(3.0*PI)/2.0 ELSE IF YO=TABLE-INPUT(I,2) AND XO < TABLE-INPUT (I , 1 ) THEN LIST-AZ (I )<*- PI /2.0 ELSE LIST-ALFA(I)*-ARC TANGENT ( (TABLE-INPUT(I , 1 )-XO) / (TABLE-INPUT (1,2) -YO ) ) IF LIST-ALFA(I) ^0.0 AND XO < TABLE-INPUT(I , 1 ) THEN LIST-AZ(I)<-LIST-ALFA(I) ELSE IF LIST-ALFA(I) < 0.0 AND XO > TABLE-INPUT(I . 1 ) THEN LIST-AZ(I)*-LIST-ALFA(I)+2.0*PI ELSE LIST-AZ(I) «-LIST-ALFA(I)+PI END IF END IF END DO END INITIAL-AZIMUTHS (LIST-AZ) MODULE 38 ALGORITHM MATRIX-L (TABLE-INPUT (1,3), LIST-AZ , N ) ALGORITHM ZERO(LIST-L) DO FOR I*-l TO 10 LIST-L(I) 4-0.0 END DO 141 END ZERO(LIST-L) DO FOR J«-l TO N J*-I+l LIST-L ( I ) ^-TABLE-INPUT (1,3) +LIST-AZ ( I ) -LIST-AZ (J ) END DO END MATRIX-L(LIST-L) MODULE 39 ALGORITHM SQUARED-DISTANCES (TABLE-INPUT , XO , YO ) DO FOR I*-l TO M LIST-SO(I) «-(TABLE-INPUT(I,l)-XO)**2+(TABLE-INPUT(I,2) YO)**2 END DO END SQUARED-DISTANCES (LIST-SO) MODULE 40 ALGORITHM MATRIX-A(N , TABLE-INPUT ,XO ,YO , LIST-SO ) ALGORITHM ZERO(TABLE-A) DO FOR I«-l TO 10 DO FOR J*-l TO 2 TABLE-A(I,J)«-0.0 END DO END DO END ZERO(TABLE-A) DO FOR I *-l TO N J*-I+l TABLE-A(I,1) - ( (A302-TABLE-INPUT (3,3) )**2) THEN XO *-X02 YO *Y02 144 ELSE IF ((A30l-TABLE-INPUT(3,3))**2) < ((A302-TABLE-INPUT(3,3))**2) THEN XO+-X01 YO «-Y01 END IF END IF END IF ELSE YO *- E / ( 2 . 0* (TABLE-INPUT (2,2) -TABLE-INPUT (1,2))) F *-TABLE-INPUT(l,3)**2-(TABLE-INPUT(l,2)-YO)**2 IF F $0.0 THEN XO <- TABLE-INPUT (1,1) ELSE X01 «-TABLE-INPUT(l , 1)+SQRT(F) Y01 «^Y0 X02 *-TABLE-INPUT (1,1) -SQRT (F ) Y02 *-Y0 IF TABLE-INPUT(3,1)=X01 AND TABLE-INPUT (3 , 2)=Y01 THEN XO *-X02 ELSE IF TABLE-INPUT ( 3, 1)=X02 AND TABLE-INPUT(3 , 2 )= Y02 THEN XO^-XOl ELSE CALL CRITERIUM(TABLE-INPUT(3,1) ,TABLE-INPUT(3 , 2) , X01,Y01,A301) CALL CRITERIUM(TABLE-INPUT(3,1) ,TABLE-INPUT(3 , 2) , X02,YO2,A302) IF A301=TABLE-INPUT(3,3) AND A301=A302 THEN OUTPUT' SOLUTION IS UNDETERMINED FOR THAT DATA SET PICK UP ANOTHER DATA SET ELSE IF ((A301-TABLE-INPUT(3,3))**2)= ( ( A302-TABLE-INPUT (3,3) )**2) THEN XO«r-XOl ELSE IF ((A301-TABLE-INPUT(3,3))**2) > ((A302-TABLE-INPUT(3,3))**2)THEN X0*-X02 ELSE IF ((A301-TABLE-INPUT(3,3))** 2) < ( (A302-TABLE-INPUT (3,3) )**2 ) THEN X0<-X01 END IF END IF END IF END IF END FIRST INITIAL-POINT(XO,YO) MODULE 52 ALGORITHM ITERATIONS (TOLERANCE) DO UNTIL TOLERANCE < 1.0 MODULES 54,55,56,5 7,58,2,59,12,13,14 END DO END ITERATIONS (XO.YO) 145 MODULE 53 ALGORITHM PRECISION (TABLE-A, TABLE-WEIGHT, TABLE-Q,LIST-L,DELTA-X, DELTA Y,N,S30) MODULES 18,19,60,21,22 END PRECISION (SU , SX , SY , SXY ,RO) MODULE 54 ALGORITHM A30 (TABLE-INPUT, XO,YO) CALL CRITERIUM (TABLE-INPUT (3,1), TABLE-INPUT ( 3 , 2 ) , XO , YO , A30 ) END A30(A30) MODULE 55 ALGORITHM DISTANCES (TABLE-INPUT ,X0 ,Y0) S 10 *-SQRT ( (TABLE-INPUT (1,1) -XO )** 2 + (TABLE-INPUT (1,2)- Y0)**2) S20 *-SQRT((TABLE-INPUT(2,l)-XO)**2+(TABLE-INPUT(2,2)- Y0)**2) S30 «- SQRT ( ( TABLE-INPUT (3,1) -XO )**2 + (TABLE-INPUT (3,2)- Y0)**2) END DISTANCES MODULE 56 ALGORITHM MATRIX-A (TABLE-INPUT ,X0 , YO , S10 , S20 , S30 ,A30) TABLE-A (1,1)*- (XO-TABLE-INPUT ( 1 , 1 ) ) / S 10 TABLE-A( 1 , 2 ) <- ( YO-TABLE-INPUT ( 1 , 2 ) ) / S 10 TABLE-A (2,1)*- (XO-TABLE-INPUT ( 2 , 1 ) ) / S20 TABLE-A( 2 , 2 ) —(YO-TABLE-INPUT ( 2 , 2 ) ) /S20 TABLE-A(3, 1 ) *- COSINE(A30-TABLE-INPUT(3 , 3))* (YO- TABLE-INPUT (3 , 2 ) ) /S30+SINE (A30-TABLE-INPUT (3 , 3 ) )* (XO-TABLE-INPUT (3 , 1 ) ) /S30 TABLE-A( 3,2) -r-COSINE(A30-TABLE-INPUT(3 , 3))* (TABLE- INPUT (3,1) -X0)/S30+SINE (A30-TABLE-INPUT( 3,3))* (YO- TABLE-INPUT (3 , 2 ) ) ) /S30 END MATRIX-A(TABLE-A) MODULE 57 ALGORITHM LIST-L(TABLE-INPUT , S10 , S20 , S30 , A30 ) LIST-L(l)*- TABLE-INPUT (1, 3 )-SlO LIST-L(2)<-TABLE-INPUT(2,3)-S20 LIST-L(3)*~SINE(TABLE-INPUT(3,3)-A30)*S30 END LIST-L(LIST-L) MODULE 58 ALGORITHM BEFORE-WEIGHT-MATRIX(TABLE-INPUT (3 , 4) ,S30) TABLE-INPUT (3, 4) *-S30*SINE (TABLE-INPUT (3, 4)) END BEFORE-WEIGHT-MATRIX(TABLE-INPUT(3,4)) 146 MODULE 59 ALGORITHM AFTER-WEIGHT-MATRIX (TABLE-INPUT (3 , 4) , S30) TABLE-INPUT (3, 4)*" ARC SINE (TABLE-INPUT (3 ,4) /S30) END AFTER-WEIGHT-MATRIX(TABLE-INPUT(3,4)) MODULE 60 ALGORITHM ST-DEVIATION-OF-EACH-OBS ( SU , TABLE-WEIGHT , S30 ) OUTPUT' PRECISION OF OBSERVATIONS' DO FOR I«-l TO 2 S*-(SU/SQRT (TABLE-WEIGHT (I, J))) OUTPUT' ST DEVIATION OF OBS ', I ,'=', S , 'METERS ' END DO S *- ARC SINE ( SU/ ( SQRT (TABLE-WEIGHT (3,3) )*S30 ) )* ( 180 . 0/PI ) OUTPUT 'ST DEVIATION OF OBS 3= ' , S , ' DEGREES ' END ST-DEVIATION-OF-EACH-OBS MODULE 70 SUBROUTINE CRITERIUM(XS ,YS,XP,YP,ASP) PI -3. 14159 26535 89793 IF YP=YS AND XP > XS THEN ASP*- PI/2.0 ELSE IF YP=YS AND XP < XS THEN ASP*-3.0*PI/2.0 ELSE ALFA «- ARC TANGENT ( (XP-XS) /YP-YS) ) IF ALFA > 0.0 AND XP >/ XS THEN ASP*- ALFA ELSE IF ALFA < 0.0 AND XP < XS THEN ASP«-ALFA+2.0*PI ELSE ASP«e-ALFA+PI END IF END IF RETURN END CRITERIUM 147 LIBER OF STATIONS= 3 V- 1 EAST = 595794.50 It 2 EAST= 597967.30 \i 3 EAST= 603425.20 NORT= 4055042.70 ST ERROR= 0.020C NCRT= -♦053453.20 ST ERRQR= 0.0240 NORT= 4053917.20 ST £RROR= 0.0180 JIRVED AZIMUTHS JMUTH FRGM STATION* 1 = 76.017 DEGREES i.MUTH FRCM STATION* 2 = 45.541 DEGREES ZjMUTH FRCM STATION* 3 =313.005 DEGREES JSTED COORDINATES X= o00363.306 Y = 4056302.731 VISION OF OBSERVATIONS I DEVIATION OF OBS 1 =0.031 DEGREES {DEVIATION OF CBS 2 =0.038 DEGREES "DEVIATION OF OSS 3 =0.023 DEGREES != 2.13 SY= 1.70 SXY= -0.362 ■tRELATICN COEFFICIENT RC=-.24 13 R ELIPSE SEMI-AXIS AND ORIENTATION II-MAJCR AXIS SA= 2.283 Il-MINCR AXIS SB= 1.636 LE FRCM X-AXIS TO SA ANT ICLOCKW ISE = 157 . ODEG 148 HBER CF SEXTANT ANGLES= 3 '4 1 EAST= 603425.20 N0RT= 4053917.20 ST ERR0R= i.0000 \t 2 EAST= 600372.00 NORT= 4051216.90 ST ERROR* 1.0000 t 3 EAST= 597967.30 NORT= 4053453.20 ST ERROR= 1.0000 '4 4 EAST= 595794.50 NORT= 4055042.70 SRVED SEXTANT ANGLES KTANT ANGLE BETWEEN ST# 1 AND ST# 2 = 49.927 DEGREES IKTANT ANGLE BETWEEN ST# 2 AND ST# 3 = 38.130 DEGREES KTANT ANGLE 8ETWEEN ST# 3 AND ST# 4 = 30.396 DEGREES JSTED CCCRDINATES X= 600864.536 Y = 4056512.323 "ISION CF G8SERVATIQNS DEVIATION CF CBS 1 =0.007 DEGREES DEVIATION CF CBS 2 =0.007 DEGREES DEVIATION CF CJBS 3 =0.007 DEGREES = 1.02 SY= 0.48 SXY= -0.097 RRELATICN CCEFFICIENT RQ=-.20 bft ELIPSE SEMI-AXIS AND ORIENTATION il-MAJCP AXIS SA= 1.050 II-MINOR AXIS S3= 0.430 LE FRCM X-AXIS TO SA ANT ICLOC KW I S E = 173 . 3DEG 149 t 1 EAST = 595794.50 NORT= 4055042.70 i 2 EAST = 603425.20 .MORT = 4053917.20 i 3 EAST = 597967.80 N0RT= 4053453.20 ST £RR0R= 10. 000 METERS ST ERROR= 10.000 METERS ST ERROR* 0.024 DEGREES iRVED RANGE DISTANCES AND AZIMUTH ANGLE • 5233.00 METERS • 3515. CO METERS 45.54 DEGREES JSTED CCGRDINATES X= 600672.166 Y= 4056304.120 VISION CF CBSERVATIONS DEVIATION CF OBS 1 = 3.45 METERS DEVIATICN CF OBS 2 = 3.^5 METERS DEVIATION OF CBS 3 = 0.008 DEGREES = 2.86 SY= 2.88 SXY= 7.911 IRRELATICN CCEFFICIENT RC= 0.96 ROR ELIFSE SEMI-AXIS AND ORIENTATION MI-MAJOP AXIS SA=14.265 MI-MINOF AXIS S3= 2.051 GLE FRCM X-AXIS TO SA ANTICLOCKW I SE= 45.2DEG 150 OO z c 1—1 1— K < ooq t— -JCt H- LU z OoO LU ZcO C£ ~«o LU 00 u. Da. LL ► O t— • —1 Q LUZ • OOOLU Z 00>-iOO o LUOOQ. CL >~>- u_ O-J Li- LULU 00 Co: X ClCC 1— oo o X LU|-Qi Z I— ZZa. >— i <0 >-H nsz O Lua:"-« i— n » Z OOLLoO o x^v- »— < "0»i_J 1— Q x < 00>Qi z LUi— i a: ZOO LU >-« LU 1— Zr> LU acoox Q LU_lO. >-z C£o0I 00< CLUt— O *CL cXX tut- '3 './><-?• xa:o _^_ LUOCC X 3^ luo. h-—i i— i -<\j — » - ro — » O Q C£Z 2 Z ~0< •- LU cC lu Q - LL LU — -ro o lui— oo o2 »•» y- » a: - —i - <»lO» »i — -o uj- o z • cm o I O>2oot- < Z<©ae: oo II lu C in • X r-t »i— 'OCX I— •< »n-< •» >- Q— » >— • i±. (NJ H— .!/)Oa < (_—«—> <« - m t— - -* h- ZO^OIZ X QOXX h- •> » • < -LL -x Z a£<-< -~*- k-olu » - O • •> * Oro rsiu. z uj « m z Z3J-X <^> > >*N — > * •» *-^lu 00 II • <->oc si^hqz 7" -.-.rvjooac' f— m ^- f\ii— » -* k- *- o « xm lO>n3"C ^. C * Oct <-«Ql— 'Q-^ •■<: «»oo.< I— ~» — U.XLL O Z ■ ►—LU zujr>iz< - ^ ►—i » •> lu- -oo -o Q - II I— ^i— <-a: •• x«. rr,oioo i— •• cnj q ^-(Q>l- C^D ».r-KC2fO — C I— - •* >-.— >— > Z r\l •-• xz C£ CC X LU LU Q_ LU — .%-.(— 00— * rMLUoO1-i »X-* OZ LU LLOLLXCO ~-^-<<< Zl— QOO II LLOO || It I — II XI— LU< LUC-" — LU I— OOJX CDOO_J(_) » .— .OCLLLL00LULU0000o — o »oo - h- zz~>< ►hm'-'< - s: ii •— • XLUI— Ow <^ -* •~-(MUJ>- ►-.uji-tt-. «OLU<»-<<r oc: ►-■o Oc^LU h- lu< x *• — 3tiX OnOM>ou_— IC^-JZCsi-J-'-'^- 001— < — I— I— ZLLIZW • X Z-<< ■< LU|— CiuCoJ -LUo:<>-0 CQ»- i— cuoduoa: luo •— co<<3lu zoo-- ii a:- i i Luu-^fc- - •-< oo< r^- OOZ<«->LULUoONi- iv) I— LUI— V-Z XO •■ -♦— XO ->-"-i_l -I— || -ivl ZZ CT> •-.a oz 0 za.xxoooooxzZco(Mooar x< a*-' eo 00LU ZLUC^O »QiO'M^ - -^"V. ■ •• "NXXXN - U.S » "OOO— -OkT\ Ql'COoO<«-'0— «OLU »— Q.<0>o0'^- - S\» « - •s.-v.V.V.— 4- - —4^- • o -—'•- * 00XX — 35v-'< 00 LUC0 H— h— I — 1^>— »— • — I — »— I — I — I — I — I — H-(— i— I— Ct OLT\— t ZZOON> CLU ZO* <<<<<<<<<<<<<< <«x x>-oo>z< «zlu cooocccoooocoa o 000x00 '-u— - CLOlt— Qi*-lCt LULULULULU J. LULL LULU LULU LULU LLLLLLU.Z < CL O. c^ZCatrzcxiiUX O — irgm-r H 11 lu Lu«-*LLOa;cL oo2_j o o-^^o-Ovf Ln^t^Too^orjxtr o-jrjrnz'— 00 1 1 ZX l co l -J _i OOO^fnfnm-oTi^>^vs -oc?cocc~- »OOOOOOOoOO(_)0'_)0000 00 15 m o 4- —> h- — * •» O. — . xt"-* 2 — 0 ••*— » HI (T) 0 m-O. CO m — 2 H- M — . CL— < ■>— •— • -~ — » 2c0 00 Q_ 2 m —.1— 2 2 — . •* •» CO «. < m H-l «ta —4 1— — . •—•—.CO •• rn —• »— Q. — -<f 1— 3D CO 2 2C0 H c£a.< Qt •» < l-l— < •— •» — — O^a: 2 t—t UJ «^-— 1- CO * O rnuu* 1 l-H _ Q£ — 1— 00 Q 1— — •»Q— .00 ca a. ~h — » — . Irouj 1— 2 * 2 —. n — 1— UJ ^■» •» — » O — 2 ►Lb •> 0 w * CO h- <—» cx 2 1 11 1 rO • o-O—cx: 2 0 CO —. 1— < ~- Q.Z • N» «k O 2—"^-0 _, 0 1— -J" <_» UJ 2 k— M co — C02 h-H 0 UJ a _l 1— 1— cocoi— 1— M 1— — »h- >— 1 LLI •"-•21— O < — 0 a: 2 — <-~ 0 _J 2 OO —» ,^«— 2 — m-^ •CO T>C£ 1— UJ— 1 « II 2C72I- l-O-i 2-. 20 >s|— 1 UJ M ~o -^COO^ ►O »oo — 1— «2 »LU XM * 1— 1— » COOO • 11 *-2 — » •> - II M^I-OO CO 2 ^^ 0 -r-r- '-HCO ^m II »x>— > 0 ^ II -3LU 1— - M»» UJ 3(M— 1 .— <— . jh-00 1— • ~ _ •—*•— <•— r- 4 II — 1 -— •* i-i^OI— «-2UJ— «X II "9 •»-)LU— • 2! 1 — 'Luarrcco II —j 11 — .uj<UJ «— < »ujQ- -O —— 'COXLUX — 1 -ZDOIh - 32 vO"— .m^ox tfV ^2 — — iL|jM«rO«— »— «0— '1— ^J-l — hi in—. -Cl- — > >- + — J— 1— UJOQUJi-i vJ-Q. — CO 1— _iq ozjq uzjoc oq _j2.jj— u h — o 2Q 2uQ o— • a:< uj< uj< uj2ac<— • O o c O O^O (NJO Mm m .f \T\ 00 O CO — < -4-Ln '.n_j — <— * — • —< — ' 2_i — * — < $• in so Is- f\i-Hf\i o. oaoa 1-00 a o z h» j— i- h >-t- — — cd o o o o — o a o ~ — h- O O O O O O »-< >-t ^ — -» — -«. c\j— — . — . Q. Q. ^ — . « « — . _^ -^ _ • • 2: — — ^ — >-._< -* -» LU UJ I ^— • • I— t •— • ►— < ►— < 1—1 z*"- *■< I— < — m m -h a. a. a. a. coz c a. ►-«•» - — — 2! Z 2! Z !-•-• 2! 2 •>«-h 1—1 CL 2T •— • •— 1 »— 1 ■_■ 1 -33 t— • •— ■ Q.— — 2T ••CO COO CO CQ OH- 33 CO za — ql — «->— cl 1— t— o t— h- > • t— t— m2 — 2! ""■" cO — 2 • »0 • • — LU • • CO»-i— • — 4 ►-«- — * — — >H- — < •— I '-LI LUO LU LU *^_J LU LU I— CO — •• CO— •• — .— » - CO _l OO — I 'D — ' • O _ I —I— rO •■ « !—<■<"> — • rOro-^»-^ — I— • »0 • • — »C • • 00— ► — — « — * »s— a ► a ao o a -*x a o lu ••"-• a. •— 4 a. ~t«-«+a. >- ox xo > > •— x x h-Qw 2: a— z — 2: •• > — ■— o — — >-• . — — 4ZQ. ■— < 2TO- •— " a.Q.(M>— « O— » » • • • • • — aC • • 2!<2T co <2T CO ZZ -co xO O al ct:r\j cC cC o.a a: a: >— < •»— • 1— ••— t \— ►_«►_!— <)__ _>. x 0 ns 00 ^ • o o Q— •co 1 —»co 1 coco.»» 1 (/I •» — » • t— • • >-»-^ t * — OCOl— O Oh- O h-H-CLO LUO 00 — O — •-« — — COO — — wO • I X • I X II 2TX H-X— x — o — a. — — 1—0 o o -CO« — -0 O -O »0 ~0 •• O • »^-. .Q. X PJ# iti UU# -• *-i».(_^ »-iZ|- 3! -"O '-'O i-"© ~« XO OCL 0 + 1— _jz— 2: 2:-* 3: — 1 2: o«-iw « — o —o — o — — • •+ ♦— • 0«»— <(\i co^^rvi -^v. »r\i o 10 1 >—© <—o ►—O ►-« ••»«. •,•««. • •■— > •> O-Jt— " «J CD • COO COO CO >—- -(LO— •'-' LOLO— -— ) Kh < h-(Ni h-O I— O h- <>-«U_ >-.u_ — • _) ►-<>-»—«_»—' _<_^«— ^.-^a.^» _ji—.< ^-2: •^ • • »0 • Q— _j — _j — < C^ I— Q.— 'Q.Q. Q. — Q.CLf\l ~-^-'2!D. "J< II '-*LUUS:2:2:2!2:(M2:Z2:2r(\iLu2!2:>->2!LU'^<«-iLJ «- 153 a. X ~ * CD ♦ CM a 1-1 •» a. a -5 OX oo • X <-• • * — co -» a — •-■ -» oo ^ O > 3 Q_ X LUloo .. _ -» CQ * • <.^ a ~~ - q ^ _ ^^ i_ o o x > ao x — -i3 * o < < — > v> ► o o » ►- + —•. a i/) O — ■ 01 (M 00O 2 >v O "<"> m # LUX i-t — O •» Q * <_> «• cO — O — i — — • ZH I- (^ O — i .— ■ Q — IQ^OO i-> _J CO cC t£ O UJ I LL XXt-U-^O — — - •»*— X— - ii duj uj Z-Z^LU KX— i Otf II COiU_jX II— UJ |-• Z3QI— »Z>— — Z>LU— •«— i ii x>_ixh-— • -j—x^i— -iz Oi-ii— 1 1-< 2 ct. CO rn i— 2 H-fvlCt: -4- >-i I— vTi-iH- i— XXm-^3 H- zi- OComoo -f moo ^ooo cr^co o —4 doc '-n-r n <\ir<-ic\ix_ m m.x_j mx-i rom -j- 4" X_i-i «t>r UJ< UJ< JJ< UJ<< ^J<^i^3 i_) OO OOO OO OUioO 0 •*CQ -^ O0 31- — 1 v» •» «h m — » << ^. 0 "— »-^» «_• X 003 O < 1 XC3 O + — Cl- O — .— 1 -«* O -> •» 1 O 1— 1 << O — 1 — — . D — O — O- < OUJ O 3 2j M UJ00 OOh 1— 1 00 10 CO-"< CO h- _ICL — 1 • ► I 15 4 • <\1 — CM < «-» ♦ < — 3 — id I- id •. < — *-• * -J — — * 3 — < — I- id -^ < _. < o + — "-• O — ' <<< < — I w ~3 O ~i 3 3H< 1—2 3 2H O * h- »— LUH- LU I— O I— h-< O *-• <<<\i— *v -» _i o — 33 O 2 <3*r\J— iH 3 O <-. COI— C h- 21—* *<\J * 1— o — ' I— < 00< 1— <—C\l * -< — < O -J h-O* * UJOl— CU+-0 »QColCj * I «^ II < |c\j»-.^«~war | 002 w*a »x i—ci/ira -'OX> ^-Cd *^-5 || »uj 2aJ«-(-3^K2a: « • -* II 3Z5-*Z> I— I— — z>LLi3-3i— '-•zx < 1— -oj-zx x>i — i + +z lu<-ih- «-o qq 1-21* i-COZi-ctI< • ■ » ►LUX-^-3 l-ZI-ciIi-i-n?:ix> LT n lui— a:Xi-2XT Z— 'Lu*-—»-»^-2»-«aZ^*-H'-"-iQi:2-J(l^xX CD O O O Q O "3 Q < m H- — .— X . — . —>'— f\l(\| < o LUZ MW — > Q •• ~_I_J>- -1 •h ► > J22< LU a X< 2J-I— 1 Q X <>- ^<<_l> •• — » — 1 1 <*♦ LU<0 > z -JLU * Q»-> < o LUQ Orvirvj »»_j * >— >— < Q ► — •• »XLUO —j i— ► X LO^r\jar-i LU+ + LUx* Q. m "LU ac-.—Of-»- •<* a 1 X3Q LU-*^~- _JC OI-> >— Q — CD - CC — — 00LUC1. X_l< LU Z!l-_l 0_J_J>-Q 1 — .LUI- a 1— o •* * 222Z 1 hQJ o- — W>C)—i>w-— — «<*s-z«-i •-•LUC 0>~5 i «-Z!00 155 2 CO oo o I h- X o 1—1 LU "2 I I- -i Z — X ~ X I -» »-i — * U. 1-4 ^- •-< — c— »>>-»•> -» *"J IZ M « # 2 i-4 2 ► 2 » —. 3 — COO ~» » O •-' —Cj-X 3 1--.-. l-O 2 X O «•« — • >i-< •« CO >o — »-0 CO •» o < — — -*»—:> i— — o 3 luo i— < O * 2 *- < — * >0 I— — OO + w O "* •» — I i/)m2 — 20 > ><0 LU X 0-i —I I J>K2w — H-OZ + 3DCOZO •■— 3>C *> H-KO -< •O^x —x ~— oo — »> t— 0^3 > O-^ai 2-*oiis:o II H- LU— so II ♦— L XII »"-5 II OlU<^- II XLU— —>h- Ih«3- 'IO«>3>I •—• II X-■ II — ZO — >— •< O>o0o0t— •— 221— • II Z3>— i lu Z a£ *-• uj o— *-. oo >0 ■— '\-^'- ooOOO —i -^mM2x ii z*— lu — 'in— '-**— <-» ii sO>'-'h-— •Lur-o—'i— cr:_iooo> «— oluz> #*oo o£-*M1-,ir\«~i— •— j--^»-«>a:2:Qc:m3H->ac:>Ln2>->a:oLr>OQOI- C>OQ'J^Ol-OZJlDQ »->-> lia.2 * — H il > — IQOZZ-'JQ OZ- 1>0 OZ—lh-O OLU<0^2H-— iC£Oo033l- — X>X *■ o tn so r*- oo xao LOia _l LT\ _i r> in LO 2—1 -A2-J < < JJ< LU«I O Oc_) OOUO 'OO OO <^Ji-i oou oo o 00 •— . > 1 1 o 2 — . o XX — « o -.o Oo ~^ o LUO !-•< * 00 1 oo LULU —» OQ < • 3 1 -» 02 0C<\| lu_ — . W t- 1 h-a 1— 1 X 1 •>LU •- i — ooo— ■ - >o 22 *■* <2 —3<~ OO w LUO-^<\l<\l LUI— c£LU h-H 3o0 i— < •>•>•■ 0>l 1 LLh- CO ► U_l— — "Mr-4 <^~-a: o< h-»— c< ■ a;Os< H ~- — hOOO H-oo>i Z> — ►-LO 2> * — 30 OLU>r2airr) ■ZJLUI-H- — LUZh- ^•"-•Qm »o-^ i-CocalM oxx-c DH- l—i. — (OO •• H- IOO* 156 Q 1 Q + «• «• ^ — . CM CM CM • m * CM (M * •mm -— • *• a O CNJ + + 3 * CM * * < > <\j » » 2: X * CM CM — < CO * ~ — ~ O » — . GT O — » —' > CM + + CM 2 CO •> — *~ •» < •• H i-H p-t CM t— X — •■ » ■— Q oo Of — i •— • O* — >--» ■» nr ar -» — . 0- O — — -• < ax o >■» n, » s: 2v> o — » «-» — i < < * o cm cm — to O- o •• •> o* *- xco o (M eg — 2 I » o ~ — >v < lux o or o* ~ h- OcO O * * cm O tw • ~ — O ajt— ^ — • ■-< O — ii— • O oz — + «■>»<■»• in wso o Zlu q-» cm c?^h ar-^ or o <—> ceo * •— — O *ao o ~>LJi *—cC~. * 3^2f DO I— Oh- o o a^H-i w »0 — co# CO* O O O O cO — —O —O OO OOO • >>UL LUX •• (M LOO COO OO Od^ (M XOtU »-«LOO "> ►—O "-'O — o o-~o >v cOOO O ■ — - CM Xo «XO ■» — o OOO — . » I I ,-'>lu —» Q2 LLCOCO Of O CO O LO »0 OOO 0. cozrc lu •>o_ i ceo — o£o '— cmo • • • + »<*•— lilXM -» OO i/lOO CO *— O CMOCM < X &- — >OOi^J ^ -5 •<»-«Z .cQ^-i 0*0 «— »"^ o coco<>-a:o »lu •» -tCMcox-» »o zt— < lu — .2_jco— . io H» *h s — ~<2:— -~t h- »UJ o rn»-iof:xmQ— o«i» a »-i at: ro cc "-«c£^ cc < »^ <<3*.cmlu«-.lu — i ^»-a:co-<»-«2a:^afw ^o— ioiohq?- »-• ujcoa>o3iiD »<0»» ►h-Oa: «-^— LUCO »->LUcO »2<-ia03 il LU ll 2!<2LU3:2* ►XZU>vi«-lJJ-*• ■0-*UVO<>-«UJvOCl- cOQvO— O •> II >0^->^._iomD — >> >~-_joo *-> oc; * >— 3: * "-3: ^< -*oo2:i-hn>— II •— 211— O OO1-' OU UZJh O^ II II h-»— LULUI— || »*0 ocH-—«CDQf:orr:,--«a:>--' 11 ^-,'— •— -*-*-*—* 'Z~-*~>>~ •— *u_ a 3cooiQf:20Q.ai3a:OC)Qico3cooc;co2coQf:'--i o oOa:xxx>»—a:< 0<_) OO OO LJO OO 0 — *• < ^ CM s: cm * »» < » • r-* CJ>~-H M > ••CM^- 0 •* O -3 0 1— 1 ►CM* 0 X m X5— O -• 0 •» vO COOO X —0 cc — *o ♦ —coo LU 0 z~o — ^HCOO > h- OhO CM> "O < — . ~o * ►< • — C3 >— — 2T LUCM— — ^0«->QC: + >LU << h-*rg^^— h-cu<<_j • 0 157 oo < LU X H- UJ -J CQ < < > < oo r LU cua Qh s: _i o -^ o< o i— i -Z.S o a. a o >* LL.LU o o -» •— « o o a • <•> o o < l-X o o x — » LU>— o o < m oors o o o •■ 2: o o •» < — • <•-• • o as «-• t— t-j CM •o GO a. + — OS — 1— LU< 2: < ♦ — ,- <~> S •"* C lu o o£ •— i uj in Q i—a^c |*4(2) 1— -t LU ZZh ZX3Q a t 3<OOU_LOLU m • -r QQCO -4 o»q -o o Z2 cr> LT\ a>^ lUUJO^ f\l 0~LU 00 00 15: o X UJ H- X -H I- IS oO — ZK] nzc»-< 2 OLU i-«w (/i LU 200 • 2>— LUI— U.' hhCOLU 3_h»_<|— 3 OOOOO 2IoOooa: -""oo i luc*: 2 .-a: oo>-cco < U.OLU h-lu ► u. OLU <> — Q *- a:o 2" Olui- 2 oOQ.2 OiQZX < lu >-h oz'-'ari I— I— (— O LLOl— LUI— X -«<0 2 <_J LUO0»-i<-< •-• QtD _J Q O LUOCOO OLUC£t— V- >— OLU 200O2< 2 oollo: <«-"0<2: O -32 2UHQC ft -}*-*& t-x. I XQQOcl xoou-202: jhO 2! UJi—S LU O.O'-'Q.CtQ^OLUH- QC ZOO 00<2 0020LU200 ^ lu »-i o '-•a:o»-- i— xlugo >u_< olu Olu»-.(— a:x oo luoTlu ; ) i— zu a£co*-ooLua> ( > 2 O <— <>-XXLUct:>Z i ccmy- (— cXujooi— XLua: 2 I Q.LU2 <^OLU >|— O0LU2 I CC< • Q.QDCQQJ LUOOLU—I » oo — LUSlJO •00 OC0 CC coo-* o*-«z- <*+~ |_ Q^200<< LU II O 21 5! ► H-aC o —00 c£LuOa.u_ — OX20 <~. < -JLU O • 20D2LU • Q ►< 2 *o— •— < r-*T,— t-J »>0 O ••— HLUO •" XNJwQOO.— *qCO •> *0 OOOO— UJ * 0<-»w<>-. ••>o— \cc ••^o »^w t— »Xw LLQ^_l ~LU •O •■ *s<LUh- 01-uj »5:oo ►ao »"0 *oo CD> — ~^<0 < ~— .(M— -So ••0-4 »^— (Ml— O •• < •»^-«-.> »«<\J LUO^O •■CQO oc: ••< »—(/)< OX — O »0C •» *— r\j^ •"-• ■ »<<— *< 0^11.3000: HO-JH— OiU. wX<<— » » 3 •• • »X>-J CQOI— — < ^" ••OtNJ-— O0 •> ► 2 **-X *Q^ -^<003 »XLU — H— C0»-_J005» ~o<- Q~ •— - - m 1— » » ♦ >4-c p4"U.XU. u_» «*oo ».o •00- • - 2 - 2 II •• II < 11 a xo xm. ma:oo o LU o X m • (\l LO • U_ (\| II LU 00 II oo<— y—ai •» ~«< 00-. -3LU> cq:lu u_ 00 LULU - OoO lilH-S\XXX\ :i— ooi-ct: •»•-''><»>*, •• •• **% » «.o:Oph_j-« •c^-ujX'-^x Q-OZ— i,n — CCCLSlCi — 4" OOO — t>-N — 'LL.LU « »U_ 2:2: cQh-- • I I LUSIU-"*- ^hj;) h- II 2: 2: 02 t\j 00 a: LULU2- •- O o0O0< »CC — i^jm ftrv o I— H-l— »— I— ^-»— »— I — I — ►— I— I— I— I— I— <<<<<<<<<<<<< <<< -^^"5:2: 7:2:2:2: 2: 2: 2: 2: 2: 2:2:2: c£.a:c£c£cCixccaLct:a:cccccc cccc.ee acocaocoacooo coo U.Li.U.ULLLLLU.U.LL.LLLLLk.LL — . ) — ' o^NJmromrornmNf-fsraoco cocc-"0 159 o II .— 1 i— .LU -I XX m II Hf- LU — • 2 »Q_ X <\J Dzao h- 1— • sozz a» MMs»< h- m — » Xf-LU O % • <—»-s Q. 1— h- 2ZoO<0 2 oo UJ 00 OZh Q — Q< 00 2 < OOOOQ-h- 2 -*• < 1— < 2- ooo o-io _ O r^ * o >->ujo»— <\l h- <00>X -»HH p- ■— » .-»>— I < H-UJ ■+- «*— • 00 Q. — • * X 00 >— •a 2 — oo. h- oz H-.2 LU •— i m UJ% LLQ2'-U ■ . •— i X CO •» _JI— ar OZmUJ a.co h- 1- l-H OOO a Oh-3 21- >-♦ w 2 UL a_Cooi— 1—4 •» c_ oo o. <2 LUCCH-_l (\Jw — sruj 0^ < .— — . CO KUJ s: II 2<0 -CL r\l«-X a» cCO >J- h- xco a: — «LU22 — 2 -CloO o» 1^02 •> ■> LU LU 00 + 00 •—!< — •— ^ 2I2-" oo —>-» ^ —1 lu_i it -_ucr:t— 21- CoCOcD t— — LUi-iQ CL •• OO QOSWOZ >— i - 2l-< rno_o_< 2 >— i LU2 22 • «-«0< co— H-J •(— a »(J5^-a: i— i _« X Dt-4 33— »O0 o H-.LU* 1 CO a. CM a: — • Lui- l x •> •> H- -*LU m — .Q—oO h- 2 * LU»-- Zl-JOXUJ — * • — < •* •» —. o o. Imtu ■i O ■—< * oo2oO OZOO oo — i>— — 31 Q_ ro • 22 -LU 2 o co — CQ-«<2-Jt— m -Q. r— t— LU •» o •— 'O— ic_ •_< o i- vf Gh-LU h-h2 «1Q »"-> o co»— ««— o X — o •■ ■■ - X a. cq - .►-a— Ql • ►0_2O Q_CQ o ■«>• «_ XOOLU O002 — .a: 03 7*)- O-CO 00 2 G -JLUi-i 1 1— H- o LU CL -«- a 00 K2 C m »— i — 21— LULU ►—i LU »>CQ2 <—• o 0- 2 «— •» — — 21-— '2o_ m a_>-> •— ; -X— 1 CD • ~zi-a SO oo < 1— H 3 >s.x» : X * ix aa. m 2 I co 2:1—0 H- — » — C II --> pCO . — 1 • —Z5 CO co V..-4 *— tX^lUOO—iLU n02 — 2— in i — . 2; Z~» m— 2 OO — 00 1— LU-^ -II SOI _H- i— v, -ro — ic0o02l— CM— m -t <-*C0--i >Cco2 -too —»— ii —• — .-« ii ►Im> >— "S II -5 -Z5LL l*-2 Ii 1 •—LUQ- "N.- LL" SiHQh-(/)<-«H-^ - •—: -v0LU-H ->2— • -LUQ. -*— I Oh- *— 2LULUX — • ►-ZZJOX'-' -D< —»■-- ■-»— ' LU < Q • Q.CZ5 3 H- N — ^20-1— — <2Z? _-- I— K- Q.H- X2LU-^LO— m— LU2-^-'u-H--4"— 2— "— O— UllflCZUZ '-' — ' — i 3 >— •— LU «-- m ~ -- O << <<3ILU00O<2 •*-LU^LnQH-»— — LUOOXLOO— 'COU-im +(— 0>- " i—SQC:— « CQZKNt.- <3»— OO zj: srsrxco <»— arooi— + <%)<•- it-Of-iuLU(Mj—i'— 'OcoQi— xo ct— 02 a =2 o-cc: Q-CtJ-SQ-LUOO I|&(J) f\j— 1 m coa^ 00^ _j-* m lhiti 'n_j — •— < — 1 _(— 1 _i_<< r\i r\j(M cnj< UOUUOO OLJ O O OO OO '-) 160 CM ♦ 3 CO 1— II H- < , LU c£ _ mm O H-t 2 «to to CO >- •— • h- < to* +m LU 2 LU QL CO M O I- •-^ • ^» _) 1— t- <-. O < S!~» • UJ c£ • _ QC Q-< 2T*— ■ SO Q. 2 t— « CO (•> LU -1 o — 1» 1 -5 - CO CO w ^ l-l- Q- — 1 t ZO- ■to— » •-Z — 1<\| CQt— 1 to to l-CO -3-) 1 H- tow ■toto Q.Q. 1 tl. 2:2: **- .WW > — ■— » — • CQqC — c\jc\Jt-t— a.**"— — 2:*** * j2 LO (—* I I I I -*JQ— -»-~"— — -~r\jrOw»•• « ►aw 33mh — «_ir\jc\iwr\joZLU •■»»►►.»» towto- -5-5-5^:^ cOcQf— X O rnC » * •■ to< — —•z— — -— 'U_i — -* I org — -'WM1-i«i-lwMCDc:ci3!aca:iot/i Z>— » •» to|| 1— "CtH-O -*H0O Zl/Jto- to-.^-.H-LUt— C£~ CO CO CO CO CO CO CO CO cot— t— * — 1 — ♦— I— h- II 11 3r\J«-i —1— - -Jt— GOLU 2! »0 toiOcOCQCOcO «XUJI— »— I — I — I — »— l-HI- II II II II II II II — "«-> 2!co 11 <— UJ 11 to-aj<-i— wlui— 11 11 11 11 11 11 11 11 11 ———.—.. .^rj X^wSOt-i •OSISI'-iUJ UJ H-— LU h-Q— «(JolZ- »—»-•«-»-■ .-»-.— .-^0-<<\jrO^-Lno •• » 1— 11 coz wza: U.00 Z5 _juJOZ5 11 11 11 < H-»iNfn>tir,^)N00(>-i-<-i--(-4-- — w—>-.-.— %~— — .—^. .—*-*-»-.«-. Q^0< < — lu X aC c£ ct: c£ ct: c£ cc sL QCQiQ.o£ a: cCocct: 2: 2 oocomooi-cQ'-'hh^z 11 u.3oz 11 11 za: cc luhocccoaccaooooocc — JCQ OQ OZll>- >-i 11 CJ~?i-" a»-iii— 1— h— t— t— COCO < LU 2 C£c£ "5 LJ O LOQioOOOl/)(/)00r m coo ao cr co -h — i zi-J— J ta m 2-J UJ<< CN| CM LU< o 0000 00 161 CM + Ql + •-* O >-•-» <\j + CO^H , O + + )- - CL — I— < < *- -* Z CNJ CO CO — »-— *— • •• O V, >s r-4CL COCNJ o -» ~ ►Z— I -» — — .— .-»—.+ + ^^t-.oj «-»*CLs>s »z I *«• ■» *co—» (M _^_^— » | C\)>-<-~Q. C\J ,-H h- O- X Q.Q.Q.C— «—— — CC-^Z — '— ' I Z ►-• ZZZZ>-ic\jC\Jc\J 0.1— •>*-« O.Q- — ►— Q. >_H-ii-iH-t »«•••> Z + C\|;0 ZZCMCO — COCOCOcO'-— • ►— 1 •»►— • \r~\- H- »- — — CO — Q-# COcO^* O I I I I 0-0-0.0- H-CNZ — H-l — U-i •»-»*»- -ZZZZ + •— «.-i + +0.~* • —IC\JC\J.-I>-I|_|-.|-| — CMcQ •» — — z •» — •••»•• ».COc0cOC0 — 4w|— M CNJ — »— if\| rn c\imcNj.— ih-i— »— |— •.q_wv «.^cn— ■ w— w* * ■* * ^Z*Q- —1 •.f-O- CNJ Q-O-O-CL — — « *-*-iOZ — - «-iz + i- — »-■ f_|_^(_^^.«_^„ co— — l cot-i — 1 Q.CO w «— 0-0.0.0- \— rNJ — (— CO— »— - ZK- + + 22ZZ »- ••cnjcnj ■—!— f\j(M — H* • CQ -O I— II— |l— 1»— « *i — I » •> ■£+•>« ujcOq£ <£ v 1 — h— 1 — 1 — -«>-«* ^*.mm# •4— • ► •• •»•»*.*» ••^COcQO*^— » ••C CO uO 3 — » — o.-..*.*o* * — — .— — i-hi—^-i— .q. o. aQ.CLa-0 0.0 — »oo !»■ a_co — — »oc CNirOvtinvOcOQa— — >2I 2 ZZZZ Z-Hv*- • • Zt—rsj^vt — ^— 4— 4— H^f- 1»— ct^'rnrOi— ■ 1— 1 1— 1»— "— ••— >o mO » • I fM(N O > '» » • I cm rvj ■«"«-*— «-"w—*-0 • •» "CO CO COcOCOcQh- CO I — •— . *s oiGCoccxiQiQrf-oaj— "— 1 1 *♦♦*□ i*q.o_-«<— — a 1 10.0.*——. oocooo< 1 •q.o.— — — — -»o -.#zzccoo o -.NZZalOO (— f-f-t— h-H- C2 J— 2TZ^ CM (M— 1^-^-» NOmmv vooo — » — <* •-n-i—oot^) oooooococooo i^^h-ih^ •, * ► » » »0 »~x Zco Q I I -03 >s -HCMCNjcsjmrOX'— "Z<<>— 1 1-1 1-11— ii-i hi ^OQQ •"-•< H — *-» Z'JII ►-■< 11 — ■ '»-» ZiuO — "— — — • <-> —i^l— cQ CO COCOCOCO • II II II -OcO II O II II 3 • I II II COCO II O II II 3»-i>v II o.o.aCLaaa:z:E&QQh >— t- h- 1— i— ll.3-^^r\jh— ujw-*— i— u.3 ZZZZZZUJIH 11 II— — -— —>3cx:oo QxxGu.ixxrcii/) Q>>oouc COCDCOCOCOCOZ>-iLi_-« p«- »»m r\i I--* CO + —4«— — » co K — O —a. a. I — .-* z>— • — — . r-4 » O •— cm Q-i"\iZ>— "h + - Q- o_ zzaz z I CC«— — -*— 4 rO •> ••— 4 — I CNJ - Q.— 'ZcO * » CNJCvl •• » »-«ZCO^— — Q.O_—~ — Q. co.—»— *a_ a ZZQ.Q. a.z H-CO + CZ Z hmZZ Z"-"1 + (— — 00 --i— -CO CD CO CD CD h- ZcOh- • r- I —a** I (njcnj —ro i i * i *o co- I • • a — C~* I — ■ — CM*— <«-» • «^—.- — J— »— # <\JCM(\| h- 0< »cm* ujcmcm— 4(\ic\j*-« I o ♦v.^ • qcnj* » — * — .oo z— ■» •> •» » «o — < * — — a — •♦ —..*.— —4a.OO< < »a_ ro— cm cm mo — iq arTUO + OQ.O-«-^^WQC — 2— — — *— w— • » I — . <•!«/> -* fM* 2: — UJw II II < -OQQOZt-l- II cOcOCO ~>a:oo QXXCU-I OOU.CDUJUl.L3 >— i O"— • o>— • + —• — CM —4 •• + -CM — » CM~- — < — Q. •> Q.Z CM Z« •_• — icD Q. COH- Z >-* i—i 1 •» CO — CM »- —4 » * •N— 1 «— > ^^«^ r-t — O. •> Q.Z <-* Zh- •_• — CO Q. cot- Z f- + »—• 1 •» CO — ^~. 1- — CM + CM ► — . ►CM — » rM — -^ <— a. n az CM z— «« «CD Q. 331- Z I- + —4 + — QQ — -»CM — H-CM— . CM • r\l+ »-J •~^ *— og< — 4— » (M— < — oo — Q. w -O.* Q.Z a-^zo Z-- z»— ►— » • — CD hhclCC^OO COt- COZh- 1 • • K — 1— m« CMCMCM w* 1 CO—* "^^ ■«■ C — f— (NJ-* — — tJ< cm«— »cr:<-)0 1 C -4 -^^,0000 O 1 — tx — '«— •— "— " 0 Q. 2 •-^ CD * o H O o o 2 m a. 2 CO I— a — CM 1— » * Psi-~ — O. Q-2 2— •-.CO I-* r-»f\J — .— * n ^Tsi to (fl^vj to_| Q.O- — O- zzaz l—c I— >Zl- < CD CD •—• CD Hl-CDI- I I >- + *— . •— ICNI— •—»—» » toOocMrg 1— •■— < •» » •. w— »to4f0i-< Q.0 — «~ — zzaaa HM2ZZ CDCD> <' '►— 1 I— (—CD CD CO + -♦- ) — »— I — + ** C\J-^i— tPsI — c<">— «rslr\jr\i 0.0.0.0.0. o V. 1— 11 0 it— «>— —> CO * CM to o. CD + m Q. 2 ►— • CO I- rsj CNJi— I to to mm Q-O, 22 !—••—• COCO l-J- + * — » to toto> ~*<\J(\|.J q.mi-iO r- 2CDCD • —KI — too o CO^ I t • I— h-* (\jc\jrg 1 o *^^v a -* *• to I — (/)(/) o (NJCM H->-H»-* • — * a^cc O Q-# O* I • — • UJC020 LOccalcoU-iu- UJ«v<>ar:oo QxxOhI to- 1 O CO CD ro— * — ^ •» O-fM 2 — 1-* a. CD2 »— I CO —I— (MX Q.og 2* — •* xmi 11 11 1— 11 — OnJ I _J CC II < xxacoo * _i — < (M00 -* (MO Q-^OO 2 I • • «-.(\j(M(M CD* NS H-* a:oo — 0000 t— ►-«»—« a:oo 0+ 1 OOQiQCCOUJ O I I r-Z3 ll ^— "Z'JJ O II it C— v. 00 — <(\JH- H-UL — CO 2 11 00 m«— ^o. 0.2 2 — to- 1 CO COh- to(\|(M (M— * ^o_m Q.2— 2 — O- to-tCQ2 cot— <-> H- + CD I — H -.-.* (M to(M — o 0.20- 2 — 2 •— — * cOy-cD I- + H- + -» - — <\| OJ » to<\J Ovl— . — a. 0.2 2 — I— < CO co>- — » 1 o o 1 0<t • • I oaog OnIw — * C —00 000 (—— >i— 1 + CiQC-' 0+ 1 a OOOiOiX Oil* II ^^o (_> II II II «COC 3XX> -M m 164 + + — CM-* *-» ♦ -* _)•»•» „—^ — .CM •rOfO — *Q rgO ^ rn^^. 0> 0> -. -CO. XI X| CM Q.ZZ I — I — m 2*-"-« ***M — CM CM «— 'COcO — t •» t— i m w cdh-i- •—• *-H Q. (-<•* -l — -«w 2 I —-» — a. — o_ ■—) — CM-* Q.2 Q-2 CQ ~+ • » Zi-< 2>— i I— •.f\|fsJ >-^0>CM zz i — a > i o> i o >->—> •— — » >• I — X i —x coca — CM •> — .CM | — CM I — .— . I— H- CM •" (M (\| ••—CM ..— ICM <■ * »-ro c •»-« OOZ1-1 0-2 — >CL>> — ►-'CO >K«cOZ>->COZ I I 0.0. COt— •> -qj_)— i cO H-— — »—•>*■ 22 I— + HQh- -C0|— — CO— "—CO i-«»-t + — — oo—i———»— coco COCO —CM _J X— -4-V.— *«v — * »0 H-»— CM » < •.—_—.*-«,.—.* —j_*j-- + I »-3 C0>* I >X | >X»— •— — • m^fMroO (M 2>— > O* # I— —— I I — I l cCCOrM ^ww»,(D 00 ►-•CO «00 ^q_^<.-.-„^,^_|_|__| 0-0.0.0. COh— >f • • 2"— •»CM_) ••CM'-^— O 22220 O K — I CMfM a «CM »• -CM * -22Q __n_,-,^- j_ -.* CM—— •-•O— CMfM— CMCM<<0 COCOCOCQ — — . —» *0 ■a-'^'v I— UJQ- — — CL— — h-H-3T o t— t—t— i— a — i-« o cmcm <_>-co o •20.0.70.0.00 • < I |« O »»o • « I Q 0£00<< OJ«mZZ«ZZ LU o — —» — .— i-* — » ~4— * o i — cooo _jcnco>— ••— 'CO1— "— —•++ LU "+— CO CC I— £ CO CO CO • CM •■•»•»• Q.O- • O.O. »Q* CtOO'-^fM -"-ih »u. i_.-H.-mj lii + oo ooa:a:xxuj no. h u u n oa * ZDr-UJO-CLQ. UJ^<—»-* CO CO CO U-O^CM-^fMH-UJ'-— tCM^CMh- 1— LLOOCM-J <^> — < CM -^ CM h- "-" QC H- _J _J OO — X 02 I — I — »— I — — 002 II II II LL.O>>XXOU-XXX>>-OOOOOq:oO 0XX>>C20U_> > 3T2— • UOOUJU.O •— i O— OO OQOi-" o o< 00 sO O CM —I— < Is- r>- to ao cor- o 165 + + ~H — C>- — i. — 'OOtvj xi xi oooo I — I ~ xxxx — c\j —c\j I I I I »»<%! •-♦— <—*«—• r\J — i rM«— •>•>•>*. wQ. -»Q. C\J— <-> Q.Q.CLQ. — CD —icQ 2T^2^ C0(— CQI— t-*i ii «>-* h--* *— — eocococo — '* — * l-f-h-h- -»^-»— .04— + + — tQ— (NO— -» — 0>,"lO>r^ -H CM > I o> IO OO I ~»x I —x > > -* — f\J I -~ » h- CO — O.CM — G.CM_J_| — — 00 0.2— 0.2:- << — — CDZ—ClZ—Q.» 0_ Q- q. i-*-'caz*-icaz 11 2: z z COI— •— iCQ}— •— 1— »-*00 •— 1 >— ' O •— ' Oh- — CQH- — CO — .— »C0 CO CO O CO O— h-—- - .»_ mm t— h- i— -»■*■>»-•* v»— » *o — — o — — .* — *XI>Xwm« >. > — Ol »-•— 11 — 11 COCOCM I I — >- .H- h-_l — — . — <: «— «-» <0 — X>-ZaOZ-« (M — <(MQCO ZaCZOOH (M -^fMQOO ZCCZDlU uj » » • » 11 1- h- n tt •— • 1— iarr ct JJOx>o«y>i- za: a: jjox>Omx>«z- i_ jqc— «— <— .fM O ZCCI-OiflO O OOS II II I- 1— II 11 hO>-Q a OO^ II II t-h- II lit-"— UJ< — — — >cCx>zki-j _j 00—00 zoczi-i-j -j QQ^ca zcozhvii-irQ.o.ia. 00 o — oox>o z< ocx>oz i-izzzz oou_> > s:?"— 1 00 000 > srsi-" 00 ooq*-hmmm« O1-1 00 ozz,—,32 3occca uj>— a: h- t— I— ►— rvj.m ^i<^ -J5 h- O -^ m m 00 0s r* o — LU< 166 a > m a X ro LTl w o a- — .vO CO (/) -~cr cr LU a o a —I i— t- >-a O o i k \- z a o — » < o o CNJO c 1 <-» — . »o o •< •» •» Q.r-4 ~l H- «~ «—■►—. ^ •■ •> X «T ^, «^ >— I.— I h- LU •» O- Q- CO— ""• — i cO cD v»>-^ >— • I cQ I— I— ^co CO — » > h . . at- i- z (2 ► LU JJ X • • » I O -J O I LU LU N — — X >- • • -^O —I < -5 Q-i-i ■> O O r-4 • • » ■— zu. ax x «o o -^ rvj —> I x • • hx x m < y-C oo o a c_a: ceo. *- — >~u.— i • • 20 C* ~- — • -*-»—.—..-»—.< !_j |— — o ~ -1 • »o ->Q- «~ — — — — -C^Mro.tinvOI- f-Q 3 l ir>>or*-coo^^'^'-<^— <^h„ _ ^,0 0+ + wCO« o + UJUJUJLLIUJUJUJUJLUUJUJUJ CD 00 M «—- - -^ ^ •— » •— <-» OOt— _l O — a£ <^ c£ c£ ai ae: ac c£ a: a: c£ a: _ io_Z < a.1-1 a. Zi— —> lu«-« *-• X>— ■— o m coococoococa< 10 1 za. zo -••-•< —SI— • I— V. 3>-_j -«_i _j .-i^-iM *0 — •• 0- — — •— .^• — .— .— »-»-^— ... .— -zh-ct h- » «m •«-« it — »-Lu< u 0^3 n Dlu -< »««•••»•.•.»» EZ|— LUZ II 2 II 0">Z II 00<-«LL.— • LL— Z — ZZ5UJ KIhODOm cOLU r\l <\l ro r^i i— n-n— 1-^-)-5^ vili1— "— Owi-i •— •— Z— _J»-0_l «□« mm 2^_j 3" h- H Za I— Z5 w^-w—— „-.^w~^,w—.C£ I Z Q«OCMC'-«*'l-<-l-|-'«hHZ< — lO^— •»-iLLiO'-< It Z C- CO. 0.0.0. 0-0.0.0.0.0-0 1— 3! •— SCN>^l->»-»— H-U.^ivJ «— fvl Z^ Zh •— — set: a — t-^sl-* + — .-« ZZZZZZZZZZZZhi^ZI-lo-N — .ivl ZJU-— — it— «t-i^-. •— it— ••— • tMiM 1-1 ►-■ •—•-> iS) it-Zh u. CM o •» h- h- -5 * to > ton 1 1 •> to* CM to "— o a * < to* o a. M > X — » * < X z o to* -— 3 -to 3 •» ►— i 00 1 i 00 ^ 1— a. CO «* -to .^ — »— . h- to < z 1— o -J >—t _)3 # to- 1 * >—> -^ > to- >-. •CO — » — «« 00 + M a a 3:»- >— » 3 ~* t- * >v < 22h< z X Om o » » Ol- o ■» 3V- o to y-t—ujh- < 1 O0C0 o -5 to- 1 -<* o ~> t-< o »-M <s >-H to uu2:< o 2: Z Z3— o to* 33 o 3 <3* CM — a I— 1 o«— — » o mm i—i 3LU o 2 00»— o 1— 3*-* -CM w zCM to——*-) <0i— <3< _J<»-4C0 HHQC -4 "* II LU <-* > — 1 X <^z — 1 — II -5LU wa: to^- •UJ 3UJto-to-3 "-^ I II 1- Qt-^ II II — 3lL lw || «— II «— — C£^ »^UJ UJf— — 1 II »^>-OLLI (-><- ~o<-z^ ^— » — n u X -*— -ZUJ to^<\jm<-i|— •-iLLIsl-'-^'^Z^— 4CM2X 4-to-v* ZHmZQ. h-<>i-2H-'-'ZX < — — ■-is:— r 3 1— zt- <-.oos:>CnJ-3 h- z:h"'-,'-,3: u — *cm acxcMto-i_C UQO l|to-2 llto-ZI-hf- Q* inooo invj-rnQO on^jqo Z-i -*Z-i -*'-* -• -I2-J-J -1-MZj «t-l--tZ-l UJ< CMUJ< CMCM CM CMUU<< UJ< LU< i->^J uu<~> o 000 00 00 163 > 3 < — 33 K- Z I- -J LU >- > Q < — X — -J— Q pvjfM < o luz o J32< UJ O X< X — 3»-i-i a x • — <-• t-_j -i ~- <**LU<0 > Z —luj LU -J —- .— «QH> < O LUQ 3 * 0 h-~-<— t— ••>-» — Q — • 00 «■ • »f— "J Z — •-« zoo-jxh o »rg in a >a_j — 3 < _J *- LU++U-KZ >x* a • *UJ x i h- 3 3 ST—— Qt-'-' »<* D I X2C * u. LU \— O H- LU^— 4w_jO Ch>- I— Q *-cQ •• — O — co < o < a:^.— ooluo. x— 1< lu ZJ-.J — -j iz S. w O ♦ O-J-JH-Q I — LUh- O K O * •• Z •> Z ► — -J O — » ->Z22Z-J I— Q_J (_0-^O ►-»t— * X O ^ — >•-« •• » H- O —» 3 kKSTZ1-1 •-■LUCl 0>"^ *«Z^ •» O < —■ —■ »-l— > —•— •< o _i >-c**Luai— 00 + -0 -oo^oj < o + z »- <~- — .wO I 002 — O — » _J 00»-'3 (M<— 'X 0-*H- -h^^OKZX)- «*0 »X H»Q.0QX> X 0(M»-h _) | _!>►- ►2 - »Z<^<<-JQi* t— -«*— -J-O MOXXZO •— »Z — -ih3a: •• «-^ II 3X-<(\I*-Z> l»-t— C -~»-l-S^O II < LU X<~H — - Q 1^ o i << ii — :*:>-Olu00V)l— ——I— «-OjmZX X>H-—I ++Z LU<_iH- — Z5 aQ" — .frii->i-'ZX II Z^-LU •-• — i .r>~ i— •"■•< 2: -j-— —•> ac 2: ^: • »lux^"3 kZl-a:iKi-D3:iX> LX 11 LUK-aiXI— CxX Oi^w xz»— Xlo — >h- 13 I— t-O-'-Liiiico,-,couj«-iGaij.K«-ia h — — ^_jcza:HH'H»-Qi2Ja:a:xxr O zu lavtz-j zzj z_j z z_j mjj ir/r\ — i _o 1 LU< LU< 'JJLU< lu< lu lu< u_<< < < 169 — , 1 — » (M CNJ •» •* tN * v — ■• Of CM + o — ► >- n x I 00 » — O •• •""" ^ 2 X w — < oo o -h Q. X >--~ ♦ or — *** I l> o — 3 o u_ ox o v. CO O O XoO O — —I— O I < * O - o OOO O O XoO O (NJ — — oO o -z. \ - o ■— o oo»— o < u_x o or O CQoO O >-i Oi0 o * o oco • q; k» • — O IO O < LUt— >t -* O I— I 00 > ox — + — * o xx >-i a xlu o— • cm a»-« -»o jo — o <"-• aro * •— luo »-»< * oo i ho *»a:-* •* oo — . UO LULU — COO QCf- I— «0 **"" * — hi — > < • 3 I — oz oo — — o m«»«> h-i q:(\j lu. — w >>ll lux ► cm ooo •» > > — • » t— I h-O •— X I XOLU i-ioOO » •—O t-i •• ♦ 3 •-« »UJ hh | •» OOO— »*■» WOO O •**■ <\J xo *• w 3 -» CDO — >0 ZZ ►-• LU — <0 < 3 »— »-i t— O 3 —3<— » XJO *-» LUO-Jr\J<\j>0:Z U.00O0 O O oO aa >o — — o cq lui— c£uj l^— • 300 hi •. .. ►wzo ll. *>a. i a:o —• J- wO 3 LUO »— OX— — U_t — CO •• LLI— »4fM~4 «<»-. LUX1-1 — OO 00 * >0 •— — .UO + <— «— cC o< I—*-* o<— »«— — X II— »OOoO_J —i -5 .< — -» 30 > XO LU c^CNv< H — - H-1 000*00000 a: O •»UJ •• <-njoox x*-« -t-oz+ soiozo t— oo>x x>— n-m z>— *— z-jo-t— o i- -< s:— -»< — 3>o -*> i— h-o •»•< •— "Jo ouj^Zq:^ OLut— h— -^cauj*r^"ZoOQ i— o-*3 > o— *cc Lusri— "—« — *-»om •O"-" — a c£ a: <\i (•<">•--• acxrno—o ro-- *o •-, or: r^ ar: ii ii lu>2IO it h- lu— zo ii i— ujuI>i- OH- !■ i» •«/! » i— oo* ^kc:i/>-hi-iz^^o-- 2:0^0 — — .ZJ— 'XO<-h">D">X •<— II X00Ci- ^CO< inw'-'i— 1— 11 ^j>«— 1— — Lur^o*-1!— at:— 000 — olu"2> ■* # oo—> >— ._joo — at **-s: L03H- >C£:>LTv3j— >C^OLO<|— C CtlOOOUJ-S: LUQOOOl— *-* LUST O O— 'LULU 2TX LULU — SLU 21 0 SZ5LU I I— "Z 03 h-"Z o< a:ZQO< II QH-inw^l-Qiyivl || (-Qlom-aOXI-XoO^X^I— o>oqoi-o>oqoq:oi-qzjI3Q h--« II ac 2 |h- il || >— H— II — c^LU|->-|-OOH- II — s o oz_i>o uzji-q oLu->x>-xc<:»— -icciOQi'-a:'- n — "— . ~ •• < -2 0 0 2I — LU< O O < CO 0OH- OOO ■ X O O » •— I °/1'~LU'-*l— " -J"LU II UJ< »0— 'LU «•— « -LUZ5 iAOJ toQvo*~o »-ii •o2<2:r\j^ jo^zjoqoo'— u-Ovo mnci^M^ #<—2: -*< >-.ooZhl--ujw< zozh- s— o^ocii 11 <3:^<— isrc—sr—'Cujo^—Luirc^-a: o — I^HwIOo-Z^U-OOQ Oi— >»-"— 'LL CO C< C^LU CC 3 C£ Oa C*-«00Cj Q ooo£Xxx>»->c£<- o> ■O-OZJ 2-1 2—1 -O >C 227s tr\ O LU< LU< LU< UJ< JJUU^ ~g C* 00 00 00 00 00 00 at 0m. h- * <-\J O Q *■» m O — * -^ 0> -Ar* O < ~ (Nl — . •» in — O O S (\i * -» a~* a O < » * — t •«—• O *oo O O 1 M >- Da t— 0^0 O • CM^- O #> CO* O 0 0 O 0 *o O — i wQ OO oao • ► fNJ* O X m COO 00 000 CM D— O -^ O m vO - h- 0 CO »o 000 Q. Q— «0 f\l>- »o < ceo w c\jO • • • + 1—1 »o * •>< • «-» a ao CO — 0 cMOcg < f--iO •* -^corg •» 0 2 •<£ ll-l 00 <— ««v CD 0—0 — X— v. 0 — » mNoiX- • »o 2l-< LU LUO • * QC Xw— •Olil • <_IO SL CO*3! —>CC*TC£< »«s. <<3!fMLU— 'LU — OJfM— •^O'-'CC: + >LU << ZOhOS-<« LUOOOO a ti => < I- * r\j ^— 1~ lu < < _j •O a:oo3coa:'-« O 0 a O QO 0» -J 2-J m 171 I z I > en ICL XOQ -•t-z Q LU 172 » »z— m ■ i— XLU 0 —4 X»—_J m 0 00Q hh t— LU vO O 00003 • LU zz ojo t— 1— <-»><< .— X -J a: mO acz CC _J00-. — LL <\j 00 C£X •» OX oOZ Ou.- SL < O U.OH OOoOCS-» « • < • LL OO -a COLL -J (\j-« 2: OOa: LU XO •• *>» ox 1 Z'-UQXoo •QUJH •> rou- Z LU ■ o LUZ mUZ l- >-—it-UJ'_) -^ »JQ(N •> »-*LU 00 II z ooa no- "-u oo U.I-* *OOZX< oza: »~- rf\m (NJ*— » »— 4 1— < O0»— z Xa: XLU X —xuja:uj»- ><->-Lr\a ^ 0 oo >«->O0 LL t— LU ZLUCtOOc^O ^QU?« ^XLL 0 z 1— 1 ua (MZISLL s: >s mDCcoO- O •» "XtlNI LLOO "Q 0 • Q LLLU»-i OOOOt-" ox aca hjq:ou.>o X-~LU •• «. ►- . z -J •» O0C-J -cCOCd ocu LUcii 00-> OOLL oujlucs:— * o •»<>— 11 xo 1-^ m o O0 OO i—i x CO— lu _ia:X> >oac •»<: Xr^ictoo »— pi Z lui— at: QZ ~ Q2 O^vJ wCOCXOh- X •»— <»— -^ 2 ». ►—«—>• -^^ C\J < r-x>o >luClu LU 00 LULUCtZO. »-ia: >5! 00 l-><< 2! X XO »< LU «z< • • <\i ZCOai c£t-< C£C >-l>- O >-h— U_ M Lum>xo •» •»CO h- QCZO t— CCoOZ CO OO OCOf-D^O < •»O0 •■ -■ <►— 1— i» 1— iLU* - a - m coz U. _4q£H-< (Xh- oOZ UQD< «o0 0 (M00— »iZQ^ OoO ►— 1 — •"-•< • •» hOZ QX00 Xoo 00 oLU *( 30fOZjXX 1 -X z COLL'-* — 1— <\J 1— LULU* -.LUQi - X>LU OQQIiiZ O-JoO 1 •» •»— »C<— It— m •» »— « — j»— ioO Z2ICOO 2IX Z LUH-LUCOOU-I-'X 00 luoo *tuCoo tKaiiiixz •TO t- Q H- a*-* z «-•»— <00> «LU < LU ►n^a: Qt-ouj>o 0 -~- z LUX 1— < ►: VO -LUQi< "-•LL • -LL »— ILL) o0>00 < -— «*OC)-<- - CMLULL.Z — O LU OCOOLU 2 O0LU 002: XI— » -«O0O0»— ' •— • 1 — 1 H- ►z ».x<— 1 «. » •> • «.oooo—ll. -- Luxaooxco > •CO •• » •• 3 ■< "N. ^4 ^^ ^x » •• •LL— v •• •'^XXX'M » O ~2: ODS 0"-»Q^-> »>»— i—ooa:o luqsuj oluQooatZaooau<»-'OZiiJi:Z X) »-• Q.^>v V.>s,-<- • LUGO h-t- 1— t— 1— h— f— t— H- i-LLUJ osz Z ZLU< Z'aJZSQu.»-<^l-<0_l 2:0* <<«*<<<<<< Ooo Z c < i—OOLUOOO LUO0O1— LU XLU Z< Xlu_i 2:2:2:2:2:2:2:2:3: u_>2:o QCOO >X»—C0— «X'-'C0Ca:LUt— t-X>— <\l > f-l— < cc ca u. cc cc cc cc cc a: oo< Q-LUOO oo<»— t— Coot— t-UO OXc£l-XooZ |-iZ'Jj cocoa oacc (j »a:0 C£LU - 3: < < LUZO.O O- »LU— J a:» -ct LLLLLLLLLLLLa.LLLL LU»— OZ O0LLI— ' O— i~— l OO »-h (33 •— i O0 ► -• 00 1— en 1—1 «-» •— 1«— • 00 3: ■< 0 .OvOP^COCT'OfNlCr— * •-uaa: xo< 00 | | 1 1 1 1 -J f\iro>~">mcv$" X-H(\J <\| m vj- m < NNOUOOOOOUOOUOUUOUOUOOUUUOUUUOU 173 -, . o • I • LUQ-LU O — -» 00 _JLLI— »(\J Cc—O < + — •■« H- LU- 2LU2 Q <\| + ■» » LU 1— <^ UJ ff- f\l— »>v + X OO LUUJ OQ > * •* — —Osl m SluX q_ o_ — * -* -HI1 » < Q.I-UJO UJ <\J -. » — I* (\l 1— OZ5XO 00 ►> —.— « •—- • < » LUST^-O 03 — I — *— — •-J (\l Q »Qh i O «< HQ. <- ► _-l c\J f>JLUX — . Q. »2 a.-- LL I— • Z«_- » <1 vO» h- "■ - — » 2 ro i— • »«»a3 •— >o. I U. •O-O -4" ro h- 2 I I— <-• K • - » >J- — vt«— — a. O- — f\l CD^ — •— U-lh- O OZ U-oo •> a. »o. — colu 2 -» * h- •>— »<\j«- ♦ 2 ULO ►UJ22 »-. 2 r02 — > *>- ►— ro ■* I (\Jf\J ► I f\l m ►—_. - oao — • —i «_»•-« vtmiu 03 » — — »-» •»— *<\i* •> Oh- •» II 2>—>»-« O. CO 0_03 •—ST h m M — «0-C\| — * * X — .UJ2 — Q-*— » ro — -»—.-> 2>>-i h-<< »*• •> __w -2Z ^ a m f-r\j,-_a_2---rn -»• • ■ ooi— iq: _,mooi— (— 03 — aooo o.*->— • 2 2 — cM—cDr"*— •— » •» cnjoo cououj2:uj- •-•oooo >— c\j i— __: 2cq < •—> a. c\jq_i— -~«a3— »--< • LU a_0_UJO_0000 000 » •> ••< >-n» I O *2 u_o luu-ilulu jw< «. o_ •»< •— -mo q_oooo.h- h — •— > •—<>-< •UJ 5TSIQOU_LLU_2XUJ >-• 2 rOaiOoO »2 CT IC022+ O— — •> — t-i ^ la32 q£ ccal a. ca o.oo-^<— « 0s ujNs.«-'a3* # —- > ..^-iQ.^ LUwQh4 * — .— » •w — H-t — uox rsi(\jrg2OOOOXU-0C >-• » •-«aj<— QZcC O □;Gl<^»— — <-hcm(njq. — 03 — «f(\i • •• »o>-"— ••— «uji— «c^ 03 — a3a£a_— o— art— m<— • •■ •—»2'^i— ^^ uj •» 'NrMtxjt— loot— k-> «qlu i— — « h— cO'—aCaoo oj-tf- 12 » •■— *c^o.—> •■ I « i~0 • • •h-'-<< »>UJ* lh-UJ— C -»— «-^Q-^v0»-«(Mi-i«-'"-'2O3i-i«— <-* • 0>(yODCt-i»-Q — «-■ *— O — oo »»Oooo rororo ItoluO^"-»q.Q.»-"»— — '-h — r- u_u_^ juj>>woq:^ ^ «— — * Ua-uj— 2uj— » •• •• »2 »ujQ.n.Q- zzco-Q- *q. r-iu. •• •>u.Cac:ujuJcC'— lu< m ► a. »2 ►ujro— • 2 rOCma: •eta: • w <—- -->-•—. O-Jt— i<-— •♦— o< cr a. co clooq.ujwOuj • zzz^ZQmhi- • 1 1 m O • • • Hi-i» » -H OOOO (rt ►-• » •— iLUh- 1 t2> UJ 03G3a3>O32'— • CM f\| LU (NJ —^ --^ — 03— - *a:-» •»»•>•••>«•. ^m (T| 03 <-> a3>a32'--Qc:2 • h|-hZt-OZ#* • *w«hH XQiXxXX^^xXV. Q in K — V-2H- OcOUJh-!-*-^—— ~C II "-"-i** — — »o.o. •^-' •■ -iiijh^»jh\\hh\ioIZ so— »m— f\|— • — • C II »-i|— 00 rOrnv3-Lf--oo-~oo H» — -^-— 22(NI* s>n. n »\>.(_— • ».0- ►— • >— "^ O — • H-» • • • "^V.» • >s.<3> •• OO— 4vO -**~ * -O -tQiOO -4rfH-<^S »LUOO •» »*NJ203U3a. »Q. Ool-a:— «— 2(M2 • ••-•• ^>^» • v._j»-.h- -^ i*h »lu»-«-olu »im>^h'i-avO'OvO-OH*'Z,^^»<-aaQ^#«-t— •- — w-~-w.ww^^-^'— Qu3u.a.a.zt-#ocDMi: k- H-»— ♦ — I — I — h-H- 1— H- <2 — «— CO— 20NLU2'-"-'0.aLriQ.2:'-'LULUUJUJai20 22'-'— LU 't-LUl— < <<<<<<<<j »» «^«^ S SSSrSSZSSUJZQ POI— f\j_.--.__►-- 003CX0303h- II II 11 a: ocoiQCQ:a'a:QE:a:orc!-'Oo3Q<'— <— ctoc:or:a:_ii-2>-i— h-—— <j ZUO O — I fNjrO * <\J rflvtin>OM^ON^O<-i I CO o^ o o O -OvO^OOONNf>-Oo2> — < — • (Nj _j 000 O U OO O '_JO 174 CM CM * •* * *• 1 1 <*— ac — 0(M3-^^-*'— * — * cl + cl + ZCMZCM •—■*■ «-•■* CO* 03-* CM (N •» » CM -w a. CL z z i— < >— 1 CO CO I 1— 1 1 1 r-^ CM CM m •» •» (M -H — « — — a CL CL h- Z z >— i (—1 o eo CO o t— 1— — » — — — ■* *■ o — i o O • > > UJ + + z in 1*- <) m m m O IS) 1—4 CO m cm * •» O <<0 m m m O a. a. co — — — « cm o >. •» *— CO CO CO ■* O > > UJ LU OOO I I I > + + z z xxm cm cm cm o o m — » — CM CM CMCMLU < < -— i *. •. m ~l — — CL Q. ClClO UJ UJ UJ —a. — a. z z zz^ z _j CL _i2 — -^Z— ►-< •-• Z— » UJ>-»«- .ujk-i«-»cO CO .»_■-, __» •*- CO— 4* COr-41— I— H-h-QC CM CM CM CO-* OH- -Of- ► • • ► »0 » * * m-4m^ i— •» • i -h • i ~4ai on — — • * * •» I r-l CM — — CM— — O O »^~ tQ_' iCl • • »Z^-t cnj corn •» m ro «CM«— <— CM""- 'O O — — co— — cox x clcl — moo m m I | Qocooam en HI— z »m— • + + -o— i o^ •f »Z I »Z— (M— CM •—"•-« >k0i>O^h^C mo UJ CMCM»-'CMCM»-'CL mCL mUJCtCt f^ — O^mOO CMC"! CMfMCNjm — <-4^U CLCMUjZcO^cOCMUJ"- -CM— 'CMLUUJ— CQUJ — cOZcMCMCMZ^-^rMOOOOUJ <00 C— X>— 'ZD -<* »cO— CD— .CM^H- Z — UJ— ^UJ— •C0X>Oc0X>O>-'_J_J<'-'»— — II II I — — ' II II I — • — ' II II I— — Z cOcMvj-H— I— — OvJ-UJUJ— Oi-i II II || II I— II II I— t— II II l-^-J_J — CC — OC —CO — OCZI— — • H-ujuj i| n I— UJ || ii h-i—^i,^ rMCM — OC —CO Z<Cu.X>0u.X>CZI- II — C O — OO ZOO OO U-x>CU_x>OCOc_>'— o— • o— ■ o«— ucz ^■u_x > au_>x oo>-x >X —• 0<-h 'JO OO UJt-. 'S>—* OO o C0«-iQ.>-iQ- o CM— Z«^Z m ^o. cmcl*— iaM CM »Z ZCOZcO (Mi— i mo»-ii— —>h- O —CO UJH-CO 1 CO | 1- CLh- CM* H— H- — — Z 1 •* hC + ^ + <-* o,_i_.^ ♦ ujo— •»-» » OUJCO'-h — .* — .-HOJfMCM — *i- « (MOO •— •»"«- OO— — •CL'— '0s • 1 «zo o o •■» — • CM * * —— - •^ f-4C\i Q. OOO Z >>o 1—4 •» ••-» CD — <-4 • ClClO UJ zzm z >— «i— < <^ • OOcQ • — i— H-a: (M ► -a » — — • • * — •— 4— . —•. •* «»m •■» mm •» m — — m •» CLCL — moo zza •*- • • —->+- > 'y CLCMCM COCO*—1 Z«V«N. 1— H- CO — (— 1-~— . — h- r» COCMCM qcqc *o h-OO UL-lL- 1 x> in vr; >~ oo — * cm CO O "M m * * ■* # CM CM * •* # — «>fr — — — O O -*CM*t — — — h- i— oom n m ro — coco •• •» •» cmcmcnj o o <>0 w w, w ro >>> o >- >• •> •"— CD cQ cQ -•»•»•» o • • » •> fO pT) CT www (/> — CM CM — * » •« * »»z www » zzz o — #■ ro co roro • — w — — w»_w cm cm— » w — ww»-* ••• cm COCO CO */> •O O. Q- O.Q.O UJ UJ UJ » I — >— I — ► — •> Z ~2L z?m Z _i O ro www O w I .—I t— • •— tl— 1< ••• w + + + —4 CL — CO CQ COcQ • — — — Q, —CMCMCM oO Z(M H I— I— I— c£ CM CM CM 2 C*-** ■ —• » • • » »o * * * -» -* >-*■»••» o ca-4 — — a: c£. — • * * * O CO •—,.-»-» > i— w u_ u_ o o -4-*— -• — » — > i— oaoo * I a. ww« • *. ..co —.—.«■. ► ► xxxx o — zct> h- t- —* cm coco * ro co ro c — ►III — -x cMt-ro cc ql o o wwro *.•»*. x— o-i q_— — — o * ••CQCM O* o* X X Q.a.— - m fO rO «—_j > » Z^—4— 4COQ. CMH (/> »— CO- m hi _ OOO »Z wQ.Q_a.CMI— >-i#0— -4 iH -» — wwt— r- CO CQ CO Q_Z Q-w i^Z77^-^ CQ-X-O— I » •• — • <-* QCaL ««0 I— h- I— IO ZcQ ujwww •»< H-— * — 4 ~H •. •• lUUJUJhJ I | | _)<— > hh ocOcqcqo I ^rciO-4 >w w ro ro h- (— Z «»CC^^ o— I -O-^ — -^ X ■» •> »w Q. 0. w CM"— CM <-*** i-OCTO vj-O -tO UJ ►— < I— a: -a: co »w »ZvtujM •— zcmcmZ-^cmOOOOuj <0 <0 K>cQXOcDXOwJj- -. 2* c •-. *-o < c£ OQOOO(JX ZV..W ,|_qw || „ || || ^ || I— h- II H-|— -J_JwCt wO wQ wQZI-wZ I Z OCO U1O0002T C—UJCOU. II HI i^cmCMwO wO Z<X>« 0«-< 'JO U22ai-ZI-jOl-CCOWI- QO>IIh tju (_)C-j^-,H-ir3>-i-iH-i OO OLLCtOQiO_ I Z— ) Z — rsjCM CMCMUJ < < UJ< aJ< OO O OU wO 176 r^ cr N m CM CM r-H ro CO cOrn — -fO 00 ~— •— ■ — (■ — ■ «» Q.CL ..Q. — » «-. xZco^ vj" »— ■ 1 IH^M -^ p» • odcqq.cc o CO m ** 1-hZh CO •w — • 2 •— 1 1 -H 1 < o. — • CO 3 aocoo ■I X .vj- ►- CO >XH-> o •— '— «vf •• •> H »»«^'^^» CO o QQnJ" »*— I —» II **** 00 CO >_ *cO»^ ^- V- ■W^«w» Ml •» 00 — CO«— o. ■> < OOOO"—- » o * X-—Q.X >— • LU HHNMmmmfi csj M •—O-X"-* ■_• a: oooooooo •••»••» 00 o Q£X-«C0 Q. r\j — » O o v. >s. ^ v.00 co co co • CO H-'-'COH- x * 2 M o o < — 1 * CO >- © —m— Q.a.0. a. 1— 1 1 SH^Z o CO -* 1- < o ~tc\j^->aC«3: o z •— 1 IVl o < o «-—"-—»—>- h- h- X— • o 00 00 CO co oo j- o: cd o w w 1-^ • — o unaa I 1 i I •->_l o 1 1 — wO «»»^o — 1 1 1 1 ooz^Z- « U^j ►o —.*-«-'>— a: ii oxrvi » ■1 <■— 0300 »ll _z~ •» •► X~< II II lu — t X II "i— XUJ«— X>-X>OOOooo^-oOX II •lii^ZZZ-.u.J-UjH-s; ,i -) «Oujw2: i| H-tuctS J3 II — LU II \— — "3ZDO<-«"«»*'OQOQ<«ImODO«-i>-mJUJ »3UJXm <-iZZ)OX'-' »3< XI— «-■ 3!D>- • •-< & •— 'Zl II II II II II II I ( *— II XctcOcOoO— cOcO CXI— C\J«~— iZlL^t— >--iuj-» — -.—.—. — . x <-<-t— »«-iLUH-i— O— < — 'UJ «-<>-«— «2i— >-hlu— .m«-.fc-iar'-'i— ir. Qco ^Zh-Nnrg^N^ cm <— > "SLcc co <-• »— r«g il il ii IS! a. cl X zc — * coxi— fvial'-'Si— ooa:<— ••*»►- -h O 0-'U_KOOO UOOOCl-C OOflCC" CO —O — w * < _)33< — Q-rO -13 — 3 — 2l-l-(-> Zoo •» CD ^ h- :*£ V-<<_l< •hs 3— f- » < w <-**lUI— C0~ CQ3 * ►-. * _l » Q_l H- >$• H-CO — «— — . + OCvJCvJ HJJ —. » ►»— >-. 3—1 — «- * «XO — xm < » •• I— » ^ oo^r\j< » — • •-•»- —»< ^ — < h •• I — ■ — -^ — -I — X * clcx. w- w < o + — .— • — *- 2:aro_j< «-| I— Z Z3 O < •• O — <<< < _J "— LU++UJh- — <«-• OCQ O + —3 O -5 23h< (-3 3 S C — 3 2TCC "-H- O -* 3V- O » »— K-U-ll— LU I— O I— aj-M^^LlJ CC I— K# O "5 I— < O nh <-i J«t-i-ujZ < h-l— hhoO XLUUJ O 3 COf- O I— 3t-* *<\J • H- O — 3 KK2TC UJ —.wuja:_« |oo OOh H-< 00< *— < — -<— < O —I I— 0#*UJ«-« c£ UJX2— ^k—r-i—nj)-irg •— ■— «-j -»f\jo •»< _Joo •• »Z3 — .JI-UJ — 'SLCC-Z. o^— II -?LU ~»C*: •— «-5 II »UJ 3uJ — H-3'-»l— 3QC - •— 4 II 3Z>^fM«— O —•lu<— ^lu H-x<*—— '<(—»—•-» u ii— uj i— -r— w hjj •DSZU. •«— Zoc II -5 * mZ3UI(/)< It ")m <-2DUJ<22 I <0 | << II — ^w^uj-iiri-»«--«zz>03:>--> ^~co<<-h-< \ 3 >-'--'« 21 < ifivfrnao co^-oqo qo o^qo az -< z_i ll<_j >t-r^zj vf^rz:_i z_j m>tzj Ziu UJ< < < IX.< LU< LU< OJ< UJ 000 000 00 OO ^<*J OO JO 178 o z —•CO •» > 00 3 < •» CO _l ►• LU > > Q < — »>— 00 X -» _l— CO < a luz o H- > Q » | -J - ->• h- LU O X< X Q X <>- O ► -» — t— _J 1-4 O > Z — ILU LU > < a mo 3 » H- "-I Q •» I O _J t— «-X H- X LU ^ —i _)< — .-. <— -»Q in OO — *H- -5 Z h- o *o— ) *-> 3 — 2 >x# oa»»Lu x I -» «- — m ►<* h- I X30 * u_ m — — •-. O OI-> C ~CO - -. O— •.>>_« Q. X_l< O LU ZI--I — -5 |Z ►- - * 3 «-• I ~LU(— (9 h O** Z » Z •• «— 3 — CDC — -J I— O-J — «00O»-><< •»©•-■ -C2 3 I— m t— O 3 — < Z«-LU COD>h-w X O — -» >•— •» CO >0 — — O CO LU *-* mLLQ O^-J »wZ t— — O 3 LUO I— O t— CO + —0 »OOoOO_j < O 4- z — <— * >0 t— — OO + < *-* Q.2Njca-i3 — . 30 > xo lu ex: zx> w*a »x i~a.oo3 x omm _j i _i>^z>-« —1—02+ 3o:o2u h- ««ja:* H- — *w_)>o MOXXZO •— *Z-* •■— 3>0 •> 1— t— O *< «- I— t— f— 0-^3 > O-^cr: lu 3_)-J«-'-JZO II V-LU — SO II I— LUO IUIIIUJHOKUOC'-' »f— CtLU^J-JX II »"J II 3LU<«- II XLU— 'm|-Im-.3».Io«>0>I •►- II Z5< ZOO«I-jZ .►-•U.OoOQ.cx'JJUJl— <— 1 il -ZD- '>»->>ooool— «Z2h . n Z2I- H LU2!ct: + +Z LU<_JH- wD QOh -^m«-t»-.^x II Z — LU i—m— «l— « l| -o> — ♦— "—LUr-O^—H- sao'-'SaoccKSiLu-oss: u 11 cr:c\j.-«LOwi-<~cr:zac"Ln3i->cr:>LCi3>->cr:oLn<>- xx> cr 11 lui— ctrxi— en on— xzh- im— •»- 10 i— Z 03 1—2 cozz*-— 10 oz_j>q oz_i^q olu ix>Za:t-K <-•'-' a: 3_i oc:a:xx a x OO oo <— • •• — > > C\J + + pg _ | 00 « — » — . •» Q. Q « *H r-l 1-4 f\J — ^ X X _ .. .. «. O O < oo a ^ _i O rO . | _ ^ w >- | oo OX >— * Of ar — . •• CD I b- O *- — —i 3 ~4 U_ OX O ^ v» «. CO ~- o XoO o — — — I —I— * I < » O <\| N — O » *^yj |>_ O » * Qf ooX» ~» o XoO O (M rg — — —o0 O 2 | * O '— — V. o w- m < u_x o ar ar -. O CDOO 00 >-• Ooo O ■* ■» CM O ClQ •* cC h-» • — • — ► O IO ~» < UJI— st — « -* o — <^ o t— I — :> ox -» +—.«.-..» u-\ — so o xx m a xuj o-« 00 — _o — o 00 000 a:c\j hi. — co K >>u_ ujx * cm 000 000 00 00c t— I \— O '-' H X I XOLU wi/iO » •—O mO — *0 O—O ►LU t-< I » «— Ooo— »— » 0000 O ■■*» (N xo — xo — ^o 000 >0 XX —> H- -lU — - <0 <<0 CO (MO OOO 2OX ULOOoO a» o 00 o 00 »o 000 H-CXUJ W-" 300 O H •» * ►WZO Li. »Q- I QfTO *-0c:O -» (MO . • • X— _j ULI~ CO •■ oO U_h- — *CM«-H »coi/)j —• ~5 •<>-'2: »co»-i oc -^ •^ 0*^< ►-« — — —00 ►— OO Ooo 00 OQiO »UJ •• f\looX — »0 X>— < oo>x z>- c\i»— o ^-~^>^^* — 2— ioo-» ro i-~ — • r:— >d- t- »lj Sf-— «->oh-^o^ oor-i— coiQtrrsirnt-'QixmC— om— »o »-(xma:^-QCvj-Qc:< ••n. <^a»— 1—1 11 00 » w^t- do* -^»-a:^1Hi-iza:-io«- j-o^oro^or*— luooovOo 1— uctoo<»— »«o»olu2: *-*UJO—<— 'oOnO *v— '"51— |N0MiyiQOD-0'-'OS-0-' QC^IoOO ~-003lliZO0— > **oO^> > — _JoO — cH *«~2: »»-X -j< «OOShl- Oc^oooujsiLUvj-ooi— •-iQiujujsrX'O'-ujujsxujujH-sujsro sduj i s"ouj i s:~»2:ct-i-U'~< 2 ;5< II nil-MwMl-H-'-'XO 11 azow u-imo-i 1- 11 — a;LJJt-^-i-oo»- 11 — si- 11 «3ii-~o 00^- 00 xcr:i— •-^cac;ca:>-*oc:•— 11 — •— O < 2 oo < — m Q • < + — < — 0l Q < 2 -J- 3" -* UJ 2 (\j < co □£ <■ cm O h- O— t- «— • 2:0 — < — • m o 2 — • X Q.Q 00 (N H- «< m 00 y— 00 ► cm r\j H- » 2 II 3 << O O O cm < 2! »u_ 3 3 O O—* O ~- wLL*1-" Q.— J I— I— — »— > O < -» (M O "-< 0. i-«0 M >< — 00 o s rg ■* -» o a. 2 • • < » » o 3 oox 0v »-i H-O I Q.c-1 00 > • o o— •-« — > 00— co uj 11 uj xa — — . m o •.cm«— o •• o o a 1— oocnj z ••»>/) <-o q 1 o a »o 0-4 o o < •• a: o 00a. xx > • • *<\j* o x m 00 2: — < » 1 >oo • • —a. cm 3—0 r-i O»v0 OO »x s woo x — »o a: 00 o •» < • 2 00 »cr_i o — • — «.* o -*-~coo uj c 00 * — • 00 < xa.r»- • • 00a: ■-■ 2—c —.^000 > I— • O CO w 11 I — »>OCL CL xo a. o— "O cm> *o < cm »o 00 a. 2^ 00 a: *cox x 1 • + ►— »0 * *< • — O ^ 0«J — •■ 2 UJCC UJ UJOlLH • «0 Q.O < i— ~*o *^oocm 20 «-i oo2:o< »— 2 o i— xr-.c*: cr • x • o o^o — x— » ^ o — ex -*<-» < aroovo • •>•» — t 2: 00* cm 2:20020:1— uj< < * —rgnc 00 — Hi— O ct:~ 1 2! 2: ocmooo oro3h 1 »cr>- • >a <_ j< »ai — ujcm—^Oh-iqc: 4. >uj << < <>4"«-'Q. -o-oOuj a ujooin «cmcm .*cj h- »ll ho x<\jujo<\iuj<<_i <2LL'2:2* »XZ:o>oOwuj^i— 11 >J-uj II uj< »0-J3 • -— Cs|3 1 h-OOh «q. »m 2||J|| 21'— O«J'«Xrvi'v_iOs0OOOOv0'-.ajz;Ln -Ol— H-< <>-20 00*-OI— 00 ^»0 + •< 2: < 2T II — H- I*-"*-"- '200 2> 3* «CL II 30. II 3*-»<< CL ozm- 2:— «o^oct 2: 11 <2T^r^2:o'-,2:'-'Oujocit-ouj«->cLi— >o.i— H-LL-^oo 31— -_il-H lo. c£>-^^u_ 30 Q— OO UOciXXX>*«a:<0ZJ 2—1 2—1 O -O ZZ7 C>2 CM ^J LU 2W2H3 0li.<00<02(- 0»-> OU OOLUQ oaz LU