## TECHNICAL REPORT

## CARIBBEAN CURRENT SURVEY <br> SPRING 1953

MISS D. JEAN KEEN<br>Oceanographic Publications Branch<br>Division of Oceanography<br>and<br>LDCR. WALTER CHIMIAK, USN<br>Plans and Operation Office



$$
\begin{aligned}
& G C \\
& i \\
& T 43 \\
& \text { TH R-12 }
\end{aligned}
$$

U. S. NAVY HYDROGRAPHIC OFFICE WASHINGTON, D. C.

## ABSTRACT

Geomagnetic Electrokinetograph (GEK) observations by the USS PURSUIT, USS SAN PABLO, and RV ATLANTIS, and 21 oceanographic stations by the USS PURSUIT were obtained in the northern Caribbean area bounded by Cuba, Hispaniola, and Jamaica between 14 March and 9 June 1953.

The current system was found to be more complex than previously believed; current speeds were strong, often exceeding one knot, and an easterly drift along the southern coast of Cuba was observed at all times. Volume transport above 920 meters was calculated as $45 \times 10^{6} \mathrm{~m}^{3} / \mathrm{sec}$.

It is believed that the current system was undergoing change during both parts of the PURSUIT survey, since the subsequent surveys by the ATLANTIS and SAN PABLO found a reversed pattern of flow. Calculations of transport (excluding those sections where stations taken at both the beginning and the end of the survey were used in the computations) support the accepted theory of water movement from east to west. However, surface current measurements indicate a definite eastward drift.

The validity of dynamic calculations based on USS PURSUIT oceanographic station data is questionable in certain sections of the area owing to the transient nature of the circulation and the long period of time between occupation of the stations.

| Ack |
| :--- | :--- | :--- |
| PABLO |
| data us |
| to data |
| observe |$\quad$| USS SAN |
| :--- |
| and GEK |
| ertaining |
| IS as an |

## FOREWORD

Information concerning permanent and transient features of current systems as well as the factors controlling these features is essential to the prediction of currents. Just as in the case of weather elements, current patterns existing at a given time may vary appreciably from the overall average portrayed on Hydrographic Office Pilot Charts. Thus, the difference between average and the actual currents existing between 14 March and 9 June 1953 are of particular interest in future studies and publication on currents in the Caribbean area.

During the period while he was Commanding Officer of the USS PURSUIT, LCDR Chimiak, USN, professionally conducted the field survey upon which this report is based. Miss Keen analyzed the survey data and prepared the technical report.


## DISTRIBUTION IIST

CNO (0p-311, 312, 315, 316)
ONR (Codes 416, 466)
NRL (2 copies)
NEL (2 copies)
USNUSI
USC\&GS (2 copies)
USS PURSUIT (AGS-17)
USS SAN PABLO (AGS-30)
USN SOFAR STA, APO 856, c/o PM, N.Y.
DAVID TAYIOR MODEL BASIN
AIR FORCE CAMBRIDGE RESEARCH IAB
US FISH \& WILDIIFE SERVICE
USWB
DIR ASTIA (5 copies)
USCG
IHB
UNIV OF MIAMI
WHOI
SIO
TEXAS A\&M COLLEGS
UNIV OF RHODE ISLAND
CORNELL UNIV
AM MUS OF NAT HTST (Dr. Parr)
UNIV OF PUERTO RICO (Dr. Coker)
BJSM (5 copies)
CANADIAN JOIN'I STAFF (5 copies)

CONTENTSPage
I. Introduction ..... 1
II. GEK Observations ..... 4
III. Transport ..... 7
IV. Current Velocities ..... 9
V. Water Mass Characteristics ..... 10
VI. Tidal Influence ..... 11
VII. Conclusions. ..... 13
Bibliography ..... 14
Page

1. Current patterm at surface determined from dynamic topography relative to 1,200 meter level. ..... 1
2. Current pattern at 100 meters determined from dynamic topography relative to 1,200 meter level ..... 2
3. Current pattern at 500 meters determined from dynamic topography relative to 1,200 meter level ..... 2
4. Curxent pattern at 1,000 meters determined from dynemic topography relative to 1,200 meter level ..... 3
5. Current pattern at surface determined from dynamic topography relative to 400 meter level ..... 3
6. Surface currents USS PURSUIT GEK observations 14-28 March 1953 ..... 5
7. Surface currents RV ATLANTIS GEK observations 18 March to 13 Apric 1953 ..... 6
8. Surface currents USS SAN PABLO GEK observations 29 May to 9 June 1953 ..... 7
9. Direction and volume of transport calculated to an average depth of 920 meters $m$ USS PURSUIT data ..... 8
10. Current speeds (knots) calculated from volume transport through cross sections of 920 meters average depth ..... 9
11. Surface current speeds (knots) computed from dynanic topography relative to 400 meter level. ..... 10
12. Comparison of USS PURSUTT T-S data and Tom curve for Yucatan Channel, redrawn from Iselin, 1936 (a) PUESUIT stations having 2owest dynamic heights relative to 400 meters; and (b) PURSUIT stations taken in southwestern section during latter phase of survey ..... 11
13. Selected portions from temperaturewsalinity curves of USS PURSUIT stations in the northwestern section of the survey area ..... 12
14. Surface current measurements exhibiting tidal characteristics ..... 23

## I. INTRODUCTION

Between 14 March and 5 May 1953 the USS PURSUIT made a current survey in the northern Caribbean area bounded by Cuba, Hispaniola, and Jamaica. The survey. consisted of 21 oceanographic stations (numbers $13-21,33-42,49$ and 50) ${ }^{1}$ and 50 Geomagnetic Electrohnetograph (GEK) observations. In support of this survey the USS SAN PABLO took 3 anchor stations and 69 GEK observations in the area during the period 29 May to 9 June 1953. The RV ATLANTIS (Woods Hole Oceanographic Institution research vessel) also took 116 GEK observations in the area between 18 March and 13 April 1953.

Dynanic height anomalies were computed from the oceanographic station data. Current patterns determined from dynamic topography are shown for the surface, $100-, 500$-, and 1,000 -meter levels relative to a reference level of 1,200 maters (figs. l-4). The figures, with the exception of Windward Passage, show little change in the current pattern of horizontal flow to a depth of 1,000 meters. The current pattern at the surface with reference to 400 meters (where comparatively stable conditions were found) is shown in figure 5. A comparison of figures 1 and 5 shows that the greatest changes take place within the upper 400 meters.


Fig. r. Current pattern at surface determined from dynamic topography relative to $\mathbf{I}, 200$-ineter ravel

[^0]

Fig. 2. Current pattern at 100 meters determined from dynamic topography relative to $\mathbf{1 , 2 0 0}$-meter sever


Fig. 3. Current pattern at 500 meters determined from dynamic topography relative to $\mathbf{1 , 2 0 0 - m e t e r ~ l e v e l ~}$


Fig. 4. Current pattern at 1,000 meters determined from dynamic topography relative to 1,200 -meter level


Fig. 5. Current pattern of surface determined from dynamic topography relative to 400 -meter level

Average differences in dynamic height between various depths are presented below in dynamic centimeters:

| Depth Interval - (Meters) | Average Dynamic Height Differences | Average Deviation | Range | Number of Stations |
| :---: | :---: | :---: | :---: | :---: |
| 0-250 | 83 | 4.6 | 69-95 | 21 |
| 250-500 | 39 | 2.3 | 33-49 | 21. |
| 500-800 | 33 | 3.25 | 27-49 | 20 |
| 800-1200 | 26 | 2.6 | 18m40 | 18 |

The largest proportion of flow, as well as the fastest, takes place in the top 250 meters. The values compare favorably with those of Parr (1936) for the entire Caribbean area survey in 1933 and 1934.

## II. GEK OBSERVATIONS

It is important to state that the GEK is a spot observation which measures not only current resulting from general circulation, but also transient vindmdriven and inertia currents. However, in the case of the USS PURSUIT data, an attempt to correlate current directions with locel meteorological conditions met with little success, especially where discrepancies with ATLANTIS observations appear. The discrepancies are obvious, and since with two exceptions the USS PURSUIT GEK's were taken first, with a minimum time difference of 3 days whenever the two ships took observations at the same positions, it is concluded that the variations are significant, depicting the circulation prevalent at the time of observation. The two exceptions are USS PURSUIT GEK's 13-14 and 15-16, with speeds exceeding one knot. These were taken within an hour or two of ATLANTIS observations at the same locations, where the latter found equally strong currents running in opposite directions. It is believed that the electrodes on the USS PURSUIT's GEK were connected in reverse at these stations which would account for the $180^{\circ}$ discrepancies. This belief is supported in part by the USS PURSUIT boat sheets which show a calculated drift of 2.8 knots setting $167^{\circ} \mathrm{T}$ at the location of GEKs $15-\mathrm{m}$, but a drift of .44 knot setting $329^{\circ} \mathrm{T}$ at GEKs 13-14。 Credence is accorded the ATLANPIS data, since the ATLANTIS GEK's were supported by additional observations with drogues. The remaining USS PURSUIT GEK's are substantiated by calculated current direction and ship's drift and by ATTANTIS datm。

It is believed that the circulation was in a state of flux at the initiation of the USS PURSUIT survey, while the ATLANTIS found an estabiished system (the reverse of the accepted pattern) which began shifting before her departure. By the time the USS SAN PABLO surveyed the area 6 teeks later, the system of east-to-west movement was re-established. Figures 6, 7, and 8 show tho GEK data obtained by the three ships.

The striking differences in the data from tho three ships imply a current system far more flexible than was previously believed to exist. The high surface current speeds found in all three surveys are previously unrecorded features of the circulatory system, as is the large eddy inferred from tha USS SAN PABIO observations. This eddy must be of a most transient nature, otherwise it could scarcely have escaped notice so long. of equal interest are the apparent similarities found during the three surveys, particularly the eddy off Punta Maisi and the persistont eastward drift along the southern coast of Cuba.


Fig. 6. Surface currents USS PURSUIT GEK observations 14-28 March 1953

USS PURSUIT (fig. 6). Currents set southeastward through the northern and southwestern parts of the area with a westward counterflos through the western centrol. section. If GEK's 13-74 and 15-16 are reversed $180^{\circ}$, observations in the eastern portion of the area support the ATLANTIS findings.


Fig. 7. Surface currents RV ATLANTIS GEK observations 18 March to 13 April 1953

ITY ATLITrIS (Fig. 7). Eastrard and southeastrard drift occurs threughomit the central section; thence movement is southotard bstreen Jamaca and Hicponiol.z. Currents setnortheastword acrocs Windsard Panaage. An eddy form ofin Puta Maisi. (Cape Maysi). Betreen Tifnámad passage end Fispaniola, movenent is soutruestrard and thonee southrard.

Eotaeon deraica and Hispaniola, where surface and subsurface Cronaos tiore ured in addition to the GEK, the ATLANMIS found strong southrerd currents in the top 200 moters.

The tro vestomrrost sections were obtained on 24 March and 6 through 8 April, roading from left to right. The earlier series of coservations showed all flow moving eastrard. Subsequently, a dow Liwito shift wes notod, except along the southern coast of Cuba, where the eastrard drift porsisted.


Fig. 8. Surface currents USS SAN PABLO GEK observations 29 May to 9 June 1953

USS SAN PABLO (fig. 8). Currents setting to the west and south west show water entering the area through Windward Fassage. The eddy off Punta Maisi is clearly indicated. The movement botween Hispanjola and Jamaica is tho reverse of thet found by the RV ATIANTIS. Sub sequent drift is westraxd and northwestward. A countercurrent flow eastward along the southern coast of Cubn. A large eddy is indicated extending from Guantamono to the passage betreen Hispeniola and Jamaiea.

## III. TRANSPORT

Before proceeding with a discussion of celculated volums transe port, it must be pointed out that there was a time differvnce of 7 weeks between the first and last oceanographic stations occupied by the USS PURSUIT. In the light of the subsequent surveys by the ATLANTIS and USS SAN PABLO, it is apparent that the circulation was in a transient state during both USS PURSUIT survoga. lavertheless, the data from each group have been integreted and tronsport and relative cuments calculated to see how thoy compared with the GeK results.

Volume transport has been calculated from USS PURSUIT data above a depth of stability having a sigma-t value of 27.52 , which averages 920 motars over the entire area. It was felt that this would be more accurate quantitatively than referring the calculations to 1,200 meters, as was done with the dymaic topography, although the horizontal flow is almost uniform to this depth. At each station, the weighted mean onomaly was calculated referred to the depth at which sigma-m was equal. to 27.52 as read from STD curves. The direction and volume of transport is shom in figure 9, Total volume transport on calculated is $45 x$ $10^{6} \mathrm{~m} / \mathrm{sec}$ through tho area, with an exror of 2 oly betreen incoming and outgoing transport. The presence of intermal tides (inferred by figure If and discussed under VI. Tidal Influence) may account for tho error.


Fig. 9. Direction and volume of transport calculated to an overage depth of 920 meters -- USS PURSUIT data

For the most part, the GEK's are in good agreoment with the calculated tronsport directions. Where the strong currents in disagreereat are found, 2 sets, GEK's $25-26$ and $27 \infty 23$, may be explained by winds of 10 to U4 lmots (high for the time of yenr) occurring 1.8 to 20 hours earlice. For GEK's $37-38$ no simple explanation presents itself, but other observations taken the samo day in the same genoral area support the calculated transport diroction. Too much importance should not be attached to the dineropancios, hovever, since it was in this area that tho tiro lag betroen GME's and occanographic stations was grontest.

## IV. CURRENT VELOCITIES

The presence of surface currents exceeding one knot was noted throughout the area by the three ships. Currents of this magnitude are not recorded on any charts of the area. The calculated velocities shown in figures 10 and 11 are further evidence of the existence of amounts in excess of 1 knot. Figure 10 represents the velocity through cross sections computed from volume transport. Figure 11 depicts surface speeds as determined by dynamic topography relative to 400 meters. It is considered of slight importance that the determined velocities do not agree quantitatively with the GEK's, since the computed currents are averages across sections often exceeding 60 miles in length. The significant feature is that the magnitudes of the calculated currents and of the GEK's agree well in most cases.


Fig. 10. Current speads (knots) caleulated from volume transpory through cross sections of 920 meters average depth


Fig. 11. Surface current speeds (knois) computed from dynamic topography rolative to 400 -meter level

## V. WATER MASS CHARACTERISTICS

Temperaturemsalinity correlations are plotted in figures 12a and 12b together with a mean curve for the Iucatan Channel (redrawn from Iselin, 1936) which serves as a basis for comparison. The plots in figure 12a represent those stations having the lowest dynamic heights relative to 400 meters (see figg 5), and as such are each a part of an enclosed circulation The plots include stations both in the first and last phase of the PURSUTT survey. In general. the T-S correlations below 200 meters in figure 12a fall farther to the right of the Yucatan Channel curve than do the correlations in figure 12b, which represent stations taken in the southwestern section of the survey area (latter phase of survey). The stations in the northwest section have been excluded from these composites; however, selected portions of their TwS diagrams are shown in figure 13. Of these, the curve for station 17 best fits the correlations in figure 12b. The water in the central section seems fairly well mixed with the water from the southwest and east, while in the northwestern area progressive mixing in the maximum salinity layer ( 150 to 250 meters) is observed.

The transport calculations across stations in the northwest section (taken in the first phase of the USS PURSUIT cruise) indicate an eddy system involving a considerable quantity of water, which is not borne out by the T-S diagrams. In spite of the time lag between phases of the cruise, it is apparent that a fair proportion of this water must therefore be diverted southward, as the transport computations using station data from the second phase of the cruise show.


Fig. 12. Comparison of USS PURSUIT T-S dato and T-S curve for Yucatan Channel, redrawn from Iselin, 1936 - (a) PURSUIT stations having lowest dynamic heights relative to 400 meters; and (b) PURSUIT stations taken in southwestern section during latter phase of survey

## VI. TIDAL INFLUENCE

No tidal currents are in evidence except perhaps close inshore. However, data from an anchor station occupied by the USS SAN PABLO between Hispaniola and Jamaica give the interesting result shown in figure 14, where current speed at the surface is plotted against time. The curve closely resembles that of a tidal cycle although there is little change in direction. It is believed that any tidal influence is usually masked by the larger circulatory picture.

SALINITY (\% $\%$ )


Fig. 13. Selected partions from temperature-salinity curves of USS PURSUIT stations in the northwestern section of the survey area


Fig. 14. Surface current measurements exhibiting tidal characteristics

## VII. CONCLUSIONS

Considerably more work shonld be done toward integrating meteorological conditions in the Gulf of Mexico and the Horth Atlantic with the current system in this stady orea. If this is done, it might be possible to predict the syster which vond exist at a specific time, or at least define the percentage of time en eastward or westuard drift might be expected.

In addition, further interpretation of the $T-S$ diagrams should be attempted before this stady may be considered as more than a preliminary report.

DEFANT, ALBERT. On the origin of internal tide waves in the open sea, Journal of Marine Research, vol. 9, p. 111-119. 1950.

ISELIN, C. O'D. A study of the circulation of the Western North Atlantic, Massachusetts Institute of Technology and Woods Hole Oceanographic Institution, Papers in Physical Oceanography and Meteorology, vol. 4, no. 4, 101 p. 1936.

PARR, A. E. On the relationship between dynamic topography and direction of current under the influence of external (climatic) factors, Journal du Conseil, vol. ll, p. 299-307. 1936.

-     -         - A contribution to the hydrography of the Caribbean and Cayman Seas, Hulletin of the Bingham Oceanographic Collection, Vol. 4, 110 p. 1937. .am

SEIWELL, H. R. The effect of short period variations of temperature and salinity on calculations in dynamic oceanography, Massachusetts Institute of Technology and Woods Hole Oceanographic Institution, Papers in Physical oceanography and Meteorology, vol. 7, no. 3, 32 p. 1939.

SVERDRUP, H. U., JOHNSCN, M. W., and FLEMING, R. H. The oceans; their physics, chemistry, and general biology. New York: Prentice-Hall. 1087 p. 1942.

VINE, A. C., KNAUSS, J.A., and VOLKMANN, G. H. Current studies in the Eastern Cayman Sea, Woods Hole Oceanographic Institution Reference No. 54-35. Office of Naval Research Contract Nonr ll58(00) (NR-087-031) Technical Report. 73 p. 1954. Unpublished.

VON ARX, W. S. An electromagnetic method for measuring the velocities of ocean currents frora a ship under way. Massachusetts Institute of Technology and Woods Hole Oceanographic Institution, Papers in Physical oceanography and Moteorology, vol. 11, no. 3, 62 p. 1950.

1. Caribbean Sea -
2. Caribbean Sea -
 - suo!fDasas90 tuasing " $\varepsilon$ 4. Current
LInsynd SSN-sdi4S ${ }^{\circ} \mathrm{S}$
suo!pindwos
SIINVTIV A甘 -sd! $4 S^{\circ} \angle$
$078 \forall d N \forall S$ SSH - sd!
i. title: Caribbean Current
Survey
ii. authors: Miss D. Jean
i. title: Caribbean Current
Survey
ii. authors: Miss D. Jean
hers: Miss D. Jean
Keen and LCDR Walter Chimiak, USN.
iii. H. O. TR- 12

- OTgVd NVS SSt ilinsand SSO a $4+$ aq paulo+qo
pub yวsow pl uəamieq SILNV 6 IV 1 d pto

$$
\begin{aligned}
& \text { discussed. } \\
& \begin{array}{l}
\text { Bibliography } \\
\text { This report } \\
\text { magnetic Electron } \\
\text { obtained by the } \\
\text { and RV ATLANT } \\
\text { 1953. Current ven } \\
\text { mass character } \\
\text { discussed. }
\end{array}
\end{aligned}
$$

Chimiak, USN. Walter (ii.

$$
\begin{aligned}
& \text { 1. Caribbean Sea - } \\
& \text { Currents }
\end{aligned}
$$

2. Caribbean Sea-
3. Currents - Dynamic
computations
4. Ships - USS PURSUIT
5. Ships - USS SAN PABLO
6. Ships - RV ATLANTIS
i. titles: Caribbean Current
Survey ii. authors:
authors: Miss D. Jean
Keen and LCDR Walter
Chimiak, USN.
iii. H. O. TR= 12

$$
\begin{aligned}
& \text { U. S. Navy Hydrographic Office } \\
& \text { CARIBBEAN CURRENT SURVEY by Miss D. } \\
& \text { Jean Keen and LCDR Walter Chimiak, USN, October } \\
& 1955 \text {. } 14 \text { p. } 14 \text { figs. (H. O. TR-12). } \\
& \text { Bibliography } \\
& \text { This report contains on analysis of Geo } \\
& \text { magnetic Electrokinetograph (GEK) observations } \\
& \text { obtained by the USS PURSUIT, USS SAN PABLO, } \\
& \text { and RV ATLANTIS between li March and } 9 \text { June } \\
& 1953 \text {. Current velocities, volume transport, water } \\
& \text { mass characteristics, and tidal influence are } \\
& \text { discussed. }
\end{aligned}
$$



1. Caribbean Sea -
Currents
2. Caribbean Sea -
Physical Properties
3. Current Observations -
EEK
4. Currents - Dynamic
computations
5. Ships - USS PURSUIT
6. Ships - USS SAN PABLO
7. Ships - RV ATLANTIS
i. title: Caribbean Current
Survey
ii. authors: Miss D. Jean
Keen and LCDR Walter
Chimiak, USN.
iii. H. O. TR- 12
 discussed.

CARIBBEAN CURRENT SURVEY by Miss D. Jean Keen and LCDR Walter Chimiak, USN, October
1955. 14 p. 14 figs. (H. O. TR-12). Bibliography

[^1]1. Caribbean Sea -

- oos uosqa!no ${ }^{\circ} \mathrm{Z}$ 3. Current Observations compurations

5. Ships - USS PURSUIT
6. Ships - USS SAN PABLO
7. Ships - RV ATLANTIS i. title: Caribbean Current
Kothors: Miss D. Jean
Keond and LCDR Walter iii. H. O. TR- 12
8. Caribbean Sea -
Currents
9. Caribbean Sea -
Physical Properties
10. Current Observations -
GEK
11. Currents - Dynamic
computations
12. Ships - USS PURSUIT
13. Ships - USS SAN PABLO
14. Ships - RV ATLANTIS
i. title: Caribbean Current
Survey
ii. authors: Miss D. Jean
Keen and LCDR Walter
Chimiak, USN.
iii. H. O. TR-12
U. S. Navy Hydrographic Office
 1955, 14 p .14 figs. (H. O. TR-12). Bibliography


 discussed.
 ํ
 magnetic Electrokinetograph (GEK) ob servations obtained by the USS PURSUIT, USS SAN PABLO,
and RV ATLANTIS between 14 March and 9 June
 mass characteristics, and tidal influence are discussed.

15. Caribbean Sea -
Currents
16. Caribean Sea-
Physical Propertias
17. Current Observations -
GEK
18. Curronts - Dynamic
compurations
19. Ships - USS PURCUIT
20. Ships - USS SAN PABLO
21. Ships - RV ATLANTIS
i. title: Caribbean Current
Survay
ii. authors: Miss D. Jean
Koon and LCDR Walter
Chimiak, USN.
iii. H. O. TR-12
U. S. Navy Hydrographic Office
CARIBBEAN CURRENT SURVEY by Miss D.
Jean Keon and LCDR Walter Chimiak, USN, October
22. 14 p. 14 figs. (H. O. TR-12).
Bibliography
This report contains on analysis of Geo-
magnetic Elecrokinetograph (GEK) ob sorvations
obtained by the USS PURSUIT, USS SAN PABLO,
and RV ATLANTIS between 14 March and 9 June
23. Current velocitios, volume transport, water
mass ehhacteristics, and tidal influence are
discussed.
iii. H. O. TR- 12

24. Caribbean Sea-
Currents
25. Caribbean Sea-
Physical Properties
26. Current Observations -
GEK
27. Currents - Dynamic
computations
28. Ships - USS PURSUIT
29. Ships - USS SAN PABLO
30. Ships - RV ATLANTIS
i. title: Caribbean Current
Survey
ii. authors: Miss D. Jean
Kean and LCDR Walter
Chimiak, USN.
iii. H. O. TR-12
U. S. Navy Hydrographic Office
CARIBBEAN CURRENT SURVEY by Miss D. $\begin{aligned} & \text { 1. Caribbean Sea - } \\ & \text { Currents }\end{aligned}$ Jean Keen and LCDR Walter Chimiak, USN, October Bibliography

This report contains an analysis of Geo-
magnetic Electrokinetograph (GEK) ob servations obtained by the USS PURSUIT, USS SAN PABLO. and RV ATLANTIS between 14 March and 9 June 1955.

$$
\begin{aligned}
& \text { 1953. Current volocitios, volume transport, water } \\
& \text { mass characteristics, and tidal influence ore } \\
& \text { discussed. }
\end{aligned}
$$

## ii. H. O. TR- 12

 2. Caribbean SeaPhysical Propertios3. Current Observations -
4. Currents - Dynamic

【

| U. S. Navy Hydrographic Office <br> CARIBBEAN CURRENT SURVEY by Miss D. Jean Keen and LCDR Walser Chimiak, USN, October 1955, 14 p. 14 figs. (H. O. TR-12). <br> Bibliography <br> This report confoins an analysis of Gea magnetic Electrokinetograph (GEK) ob servations obtained by the USS PURSUIT, USS SAN PABLO, and RV ATLANTIS between 14 March and 9 June 1953. Current velocities, volume transport, water mass characteristics, and tidal influence are discussed. | 1. Caribbean Sea Currents <br> 2. Coribbean Sea Physical Properties <br> 3. Current Observations GEK <br> 4. Currents - Dynamic computations <br> 5. Ships - USS PURSUIT <br> 6. Ships - USS SAN PABLO <br> 7. Ships - RV ATLANTIS <br> i. title: Caribbean Current Survey <br> ii. authors: Miss D. Jean Keen and LCDR Walter Chimiak, USN. <br> iii. H. O. TR- 12 |
| :---: | :---: |

1. Caribbean Sea -
Currents
2. Caribbean Sea -
Physical Properties
3. Current Observations -
GEK
4. Currents - Dynamic
computations
5. Ships - USS PURSUIT
6. Ships = USS SAN PABLO
7. Ships - RV ATLANTIS
i. title: Caribbean Current
Survey
ii. authors: Miss D. Jean
Keen and LCDR Walter
Chimiak, USN.
iii. H. O. TR- 12


| U. S. Navy Hydrographic Office <br> CARIBBEAN CURRENT SURVEY by Miss D. Jean Keen and LCDR Walter Chimiak, USN, October 1955. 14 p. 14 figs. (H. O. TR-12). <br> Bibliography <br> This report contains an analysis of Geamagnetic Electrokinetograph (GEK) ob servations obtained by the USS PURSUIT, USS SAN PABLO, and RV ATLANTIS between 14 March and 9 June 1953. Current velocities, volume transport, water mass characteristics, and tidal influence are discussed. | 1. Caribbean Sea Currents <br> 2. Caribbean Sea Physical Properties <br> 3. Current Observations GEK <br> 4. Currents - Dynamic comput otions <br> 5. Ships - USS PURSUIT <br> 6. Ships = USS SAN PABLO <br> 7. Ships = RV ATLANTIS <br> i. title: Caribbean Current Survey <br> ii. authors: Miss D. Jean Keen and LCDR Walter Chimiak, USN. <br> iii. H. O. TR- 12 |
| :---: | :---: |



1. Caribbean Sea -
Currents
2. Caribbean Sea -
Physical Properties
3. Current Observations -
GEK
4. Currents - Dynamic
computations
5. Ships - USS PURSUIT
6. Ships - USS SAN PABLO
7. Ships - RV ATLANTIS
i. title: Caribbean Current
Survey
ii. authors: Miss D. Jean
Keen and LCDR Walter
Chimiak, USN.
iii. H. O. TR- 12
U. S. Navy Hydrographic Office CARIBBEAN CURRENT SURVEY by Miss D.
Jean Keen and LCDR Walter Chimiak, USN, October 1955. 14p.
This report contains an analysis of Geo-
magnetic Electrokinetograph (GEK) ob servations obtained by the USS PURSUIT, USS SAN PABLO, and RV ATLANTIS between 14 March and 9 June mass choracteristics, and tidal influence ore discussed.
U. S. Navy Hydrographic Office
 Bibliography This report contains on analysis of Geo-
magnetic Electrokinetograph (GEK) ob servations obtained by the USS PURSUIT, USS SAN PABLO, and ATLANTIS between 14 March and June 1953. Current velocities, volume transport, water
mass characteristics, and tidal influence are discussed.
U. S. Navy Hydrographic Office
CARIBBEAN CURRENT SURVEY by Miss D.
Jean Keen and LCDR Walter Chimiak, USN, October
1955 , 14 p. 14 figs. (H. O. TR-12).
Bibliography
This report consains an analysis of Geo-
magnetic Electrokinetograph (GEK) ob servations
obtained by the USS PURSUIT, USS SAN PABLO,
and RV ATLANTIS between 14 March and 9 June
8. Current velocities, volume transport, water
mass characteristics, and tidal influence are
discussed. discussed.

$$
\begin{aligned}
& \text { 1. Caribbean Sea - } \\
& \text { Currents }
\end{aligned}
$$

Currents
Physical Properties 3. GEK Observations
ว!woukg - sjuerang it "NST 'xD!u!

$$
\begin{aligned}
& \text { o, } \\
& \text { ne } \\
& \text { er }
\end{aligned}
$$

Ships - USS PURSUIT 7. Ships = RV ATLANTIS Survey UDER MO SS!W :sjoyind •!!
Koaing iii. H. O. TR- 12


[^0]:    I Station data are available at the U. S. Navy Hydrographic Office.

[^1]:    This report contains an analysis of Geo-
    magnetic Electrokinetograph (GEK) ob servations attained by the USS PURSUIT, USS SAN PABLO. and RV ATLANTIS between 14 March and 9 June 1953. Current velocities, volume transport, water mass characteristics, and tidal influence are

