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CHAPTER \Y

SYSTEM OF UNITS.

1. Meter-Ton-Second System. In quantitative physical investigations the abso-

lute units of the centimeter-gram-second system are now in general use. Sometimes
these units are used directly. But, as one set of units can not have the proper

magnitude for all sorts of measurements, special practical units are in many cases

introduced which are derived from the corresponding fundamental units by the

multiplication by suitable powers of 10. The choice of practical units is a question
of great importance. It is of great advantage if they themselves form a connected

system, or if they are at least in some simple relation to a connected system which

can be used as a system of reference, the incessant troublesome return to the c.g.s.

system being thus avoided.

For the purpose of dynamic meteorology and hydrography, the centimeter and

gram are too small as units of length and mass. If tor unit-length we choose the

meter, and for unit-mass the metric ton, i. e., the mass of a cubic meter of water

at maximum density, great advantages are gained. The choice of a convenient

unit of time unfortunately implies difficulties. Evidently the second is far too small

a length of time for the measurement of changes in the state of the atmosphere and

still more so in that of the sea. But the circumstance that the division of time is

not decimal makes every change in the fundamental unit of time inadvisable. As
fundamental units of reference we shall therefore use consistently

Meter = io2
centimeters. Metric ton = io6

grams. Second.

We shall refer to this system as the meter-ton-second system, or the m.t.s. system.
To the fundamental mechanical units we have to add, finally, the fundamental

thermal unit. For this we shall choose the degree of the centigrade thermometer.

Unfortunately there is great confusion as to the units to which meteorological
and hydrographical observations are referred. As we proceed we shall, therefore,

give the tables required to derive from the observations recorded in the principal

publications the results we wish to express in the units used in this treatise. These

auxiliary tables, which would be superfluous if all observations were recorded

in absolute units, are collected in the annexed "
Appendix to meteorologic and

hydrographic tables."

2. Simplest Derived Units. From the values of the fundamental units those of

the derived units are easily deduced. For completeness we shall add the dimen-

sions of each derived quantity, expressed in the usual way in terms of length Z,
mass M, and time T.
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The m.t.s. unit-velocity [Z Z-1
] is the velocity of i meter per second, or ioo

c.g.s. units of velocity.

The m.t.s. unit of momentum [ML Z_1
] is the momentum of the mass of a ton

moving with the defined unit velocity. It is, therefore, equal to 100,000,000 c.g.s.

units of momentum.
The m.t.s. unit of acceleration [Z Z~

2

] is the acceleration of 1 meter per sec-

ond, or 100 c.g.s. units of acceleration. The acceleration of gravity is, therefore,

in the m.t.s. system, equal to 9.8 approximately, or in rougher approximation

equal to 10.

The m.t.s. unit of force [3/Z Z-2
] is the force which gives the mass of

a ton the defined unit-acceleration. This unit of force is equal 100,000,000

c.g.s. units or dynes, i. e., equal to 100 megadynes. Taking 10 for the ac-

celeration of gravity, it will represent the weight of a tenth of a ton or of 100

kilograms.
The m.t.s. unit-impulse [J/ZZ

-1
]

is the change of momentum given by the

defined unit-force during the time of 1 second. This unit-impulse is equal to

100,000,000 c.g.s. units of the same quantity. With respect to numerical value

and dimensions this unit is identical with that of momentum.
The m.t.s. unit of force per unit-mass, sometimes called accelerating force

[ZZ-2
], is equal to the defined unit-force per ton of mass which is subject to the

action of the force. It is equal, therefore, to 100 c.g.s. units of the same quantity.

With respect to numerical value and dimensions the unit of force per unit-mass is

identical with that of acceleration. The weight per unit-mass of a resting body is

thus numerically equal to the acceleration which the body would take if it was free

to fall. On account of this numerical accordance the expression
" acceleration of

gravity
"

is used to designate the intensity of gravity measured statically, i. e., the

weight per unit-mass of a heavy body.
The m.t.s. unit-work [J/Z

2 Z~2

]
is the work performed by the defined unit-

force over the length of 1 meter. This unit-work is 10,000,000,000 c.g.s. units

or ergs, i. e., 10,000 meg-ergs. A unit of work in common use is the joule,
which is equal to 10 meg-ergs. The m.t.s. unit of work, therefore, is a kilojoule.

It represents approximately the work performed by lifting 1 ton 1 decimeter, or

100 kilogram-meters.
The m.t.s. unit of kinetic energy [J/Z

2Z -2
] is the kinetic energy of the

mass of 1 ton moving with the unit-velocity defined above. The unit-increase of

kinetic energy and also the unit-increase of potential energy [J/Z
2Z -2

] are

obtained as equivalents for a unit of work performed. For this reason we can

use numerically the kilojoule as a unit of kinetic and of potential energy as well as

of work. When gravity is the acting force, unit-increase of potential energy is

obtained by lifting 1 ton the approximate height of 1 decimeter.

The m.t.s. unit of activity [ML 2 Z-3
] is the activity of 1 kilojoule per second.

This is the kilowatt, an extensively used unit, introduced to replace the old unit

of activity, the horsepower. The kilowatt is equal to 10,000,000,000 c.g.s. units

of activity, and equal to 1.36 horsepower.
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3. Units Used in Dynamics of Continuous Media. In elementary dynam-
ics definite masses are considered, to which the above-mentioned quantities are

referred. In the dynamics of continuous media we have to deal with continuous

distributions in space of mass, as well as of the quantities serving to define the static

or the dynamic state of this distribution of mass. We then meet with the idea of

fields of scalar as well as of vectorial quantities.

The purely kinematic quantities velocity and acceleration can be used at once

for the description of fields in continuous media. But the quantities involving the

idea of mass are not immediately serviceable. They must be referred either to

unit-mass or to unit-volume of the medium.
The distribution of mass itself is described either by the volume per unit-mass

or by the mass per unit-volume of the medium. The first of these quantities is the

specific volume [Jlf'
1
!,

3

], the second is the density [AfL~
z

]. They are reciprocal
to each other, and the units in the m.t.s. system are the same as in the c.g.s. system.

Referring a mechanical quantity once to unit-mass and once to unit-volume of

the medium, we arrive at two corresponding quantities. The passage from a

quantity referred to unit-mass to the corresponding quantity referred to unit-volume

involves the multiplication by a density, while the return involves the multiplica-
tion by a specific volume.

Most investigations in the dynamics of continuous media have been restricted

to the case where the media are homogeneous. Then the fields of the correspond-

ing quantities do not differ essentially from each other in their geometrical feature.

This is the reason why the correspondence mentioned has attracted no greater
attention hitherto. But in the problem now before us we shall have to treat the

dynamics of essentially heterogeneous media. In this case the fields of correspond-

ing quantities may differ widely from each other, and it is important to notice the

analogies as well as the contrasts in these fields.

Momentum when referred to unit-mass leads back to the velocity, while

momentum per unit-volume or specific momentum [ML~~T~
l

] is the product of

a velocity by a density. The m.t.s. unit of specific momentum is equal to 100

c.g.s. units of the same quantity, just as in the case of velocity. Velocity and

specific momentum are the two corresponding quantities serving to describe the

fields of motion in a continuous material medium.
Force when referred to unit-mass leads back to accelerating force, or accelera-

tion, while force per unit-volume [J/Z
_2y -2

] is equal to the product of an accel-

eration by a density. The m.t.s. unit of force per unit-volume is equal to 100 c.g.s.

units of the same quantity, just as in the case of force per unit-mass. For the

description of fields of force, the two defined kinds of force are theoretically equiv-
alent to each other. The acceleration of gravity, used generally to describe the

gravitational field of force, is a force per unit-mass. The gradient serving to

describe the field of force due to a distribution of pressure in a fluid is a force per
unit-volume. But for special reasons it may also be useful occasionally to describe

the gravitational field by the force per unit-volume, and the field due to the pressure

by the force per unit-mass of the medium.
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The kinetic energy per unit-mass has the cUmensions of the square of a velocity

[Z
2Z~2

]. The kinetic energy per unit-volume is the square of the velocity multi-

plied by the density of the moving medium [J/Z
_1Z-2

]. The units of each of

these quantities in the m.t.s. system are equal to 10,000 of their c.g.s. units. They
are perfectly equivalent to each other for the description of the field of kinetic

energy in a moving medium. The work per unit-mass and per unit-volume have

the same dimensions, respectively, as the kinetic energy per unit-mass and per unit-

volume, and can be measured by the same units.

Activities referred either to unit-mass or to unit-volume come into considera-

tion when processes of continuous transformations of energy are going on in the

medium. The units of these quantities in the m.t.s. system are also equal to

10,000 of the corresponding c.g.s. units.

The gravity potential is a quantity which has the character of a work per unit-

mass [Z
2Z-2

], while a pressure is a quantity which has the character of a work

per unit-volume [iJ/Z
_1 Z_2

]. The pressure is defined in a more elementary
manner as a force per unit-area. But, however the definition be chosen, potential

and pressure are closely related to each other from a theoretical point of view, and

in a broader sense of the word they may be considered as corresponding quantities.

Their dimensions differ by a quantity of the dimensions of a density, and their units

in the m.t.s. s)
ystem are equal to 10,000 of their c.g.s. units. As the units of these

two quantities are of special importance to us, the)' will be discussed separately.

4. Units of Gravity Potential. To every point in space we attribute a certain

value of the gravity potential, defined numerically by this rule: It is equal to the

potential energy relatively to sea-level possessed by a unit-mass situated in the

point. The gravity potential of a point is therefore equal to the amount of work

required to lift unit-mass from sea-level to the point against the action of gravity.

To unit-increase of gravity potential will therefore correspond, in any given

locality, a definite increase of height, numerically equal to the reciprocal value of

the acceleration of gravity. This increase of height will be slightly different in dif-

ferent localities, depending on the variations from place to place of the acceleration

of gravity. But setting smaller variations aside, and taking 10 for the acceleration of

gravity in the m.t.s. system, the height giving unit rise of potential will be equal to

a decimeter.

To fix in our minds the approximate value of this height, we shall call the m.t.s.

unit of gravity potential a dynamic decimeter. A ten times greater unit is the

dynamic meter. Expressing gravity potentials in this latter unit, we gain the prac-
tical advantage that the number giving the gravity potential of a point will be very

nearly equal to the number giving its height above or its depth below sea-level,

expressed in common meters. This fortunate accordance makes it very convenient

to use the dynamic meter as a technical unit of gravity potential. Values of the

gravity potential expressed by an integer number of dynamic meters will be called

standard values, and will be used very much as representatives tor heights or

depths.
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But it should be emphasized that the dynamic meter and its subdivisions are

units of gravity potential, not of length. In every given locality, however, they

represent definite lengths measured along the plumb-line, and for this reason they
can be used as full equivalents for the common length-measure when distances

measured along the plumb-line are concerned.

5. Units of Pressure. The unit-pressure of the m.t.s. system is the pressure
of the unit-force defined above when it is exerted over the area of a square meter,

and, as mentioned already, is equal therefore to 10,000 c.g.s. units of pressure, or

10,000 dynes per square centimeter. To avoid circumlocution, it will be necessary
for us to have names for the employed units of pressure. The megadyne per

square centimeter is approximately equal to the present practical unit, the atmos-

phere. It has often been proposed to introduce the megadyne per square centi-

meter as a practical unit of pressure, and to designate it by some name derived from

the word " barometer." We shall choose the name bar as being the shortest, and

designate the decimal parts of it as the decibar, centibar, and millibar. The m.t.s.

unit of pressure will then be the centibar, while the c.g.s. unit will be the microbar.

Very simple rules are obtained for the columns of water exerting these pressures
if we agree to have the heights of the water-columns represented by their values in

dynamic meters, their multiples or subdivisions. Taking pure water at maximum
of density, and neglecting its compressibility, we get these relations:

1 bar = pressure of 1 dynamic decameter of water.

1 decibar = pressure of 1 dynamic meter of water.

1 centibar = pressure of 1 dynamic decimeter of water.

1 millibar = pressure of 1 dynamic centimeter of water.

Finally, the c.g.s. unit, the microbar, is equal to the pressure of 10 dynamic
microns of water.

Among these units we shall use often the decibar as a technical unit, on

account of its correspondence to the dynamic meter as unit of gravity potential.

Completing our terminology, we shall denote pressures represented by an integer
number of decibars as standard pressures. In cases where we have to do with

the relations between pressures and gravity potentials we shall often refer to these

standard values of both quantities, using thus dynamic meter and decibar as con-

nected units. But when the relation to other quantities comes in, we shall have to

return to the m.t.s. units, the centibar, and the dynamic decimeter.

We shall also make frequent use of the millibar as that technical unit which is

most convenient in reading the barometer. It will replace the present practical

units, the millimeter or the inch of mercury. Using 13.59545 *or tne density of

mercury at o C.,* and 9.80617 for the standard value of gravity (compare sec-

tion 8 below), we find that 1 meter of mercury of o C. at a place where gravity
has this standard value exerts the pressure of 1.333193 bars. Thus, a mercury

*Thiesen und Scheel : Tatigkeitsbericht derPhys. Techn. Reichsanstalt, I Feb., 1897-31)311., 1898. Berlin, 189S.
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barometer which gives, for standard value of gravity, direct readings in millibars

is a barometer whose scale has its divisions at the mutual distance of 0.750079 mm.
or 0.75 mm., practically, instead of at the distance of integer millimeters.

In meteorology it is common to give the barometric pressure either in milli-

meters or in inches of mercury. The millimetric division is not in the least more

rational than the division into inches. Neither of them has anything to do with the

system of absolute units. The consequences of this irrationality have not yet been

seriously felt, because the barometric records have until now served for qualitative

purposes mainly. But the further development of dynamic meteorology will

compel us to introduce rational units sooner or later. Meanwhile we shall be

obliged to change from the one system of units to the other by auxiliary tables.

The tables required for the direct passage from millimeters or inches of mercury
to millibars are given in the Appendix. In many cases, however, it will be a saving
of time and labor for a while to retain the units to which the original observations

are referred, in order to carry out the transition to the rational units at a later

stage of the work of computation, as will be developed in the proper places below.
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CHAPTER II.

GRAVITY AND GRAVITY POTENTIAL.

6. Gravity. The exterior force upon which the conditions of equilibrium and

motion in the atmosphere and in the sea depend is gravity. By gravity without

further specification we mean the force the intensity of which is found by the pen-

dulum experiments. It is the resultant of two different actions the attraction of

the earth and the centrifugal torce due to the earth's rotation. But in practical

application we shall never make use of this decomposition of the force into the two

components of different origin.

A first condition for the solution of concrete problems relating to the equilib-

rium and the motion of the air and the sea is therefore a knowledge of the intensity

of gravity at ever)' point of the space filled by these two media. This knowledge
is founded on the actual measurements of the intensity of gravity at the earth's

surface. But it is not necessary for us to take into consideration all the small

irregularities in the variation of this force as they present themselves in geodetic

investigations. Where no measured values of the intensity of gravity are at hand it

will suffice to work with the " normal "
values, as they can be calculated by the

general formulae of geodesy. They will give an approximation far closer than that

by which we can find the values of any other force upon which the atmospheric or

oceanic equilibrium or motion depends.
We shall therefore write down the formulae necessary for the calculation of this

normal intensity of gravity, and give a complete tabulation of these formulae.

According to the common terminology, we shall call the tabulated quantity the

acceleration of gravity. But it should be remembered that it represents, as already

mentioned (section 2), at the same time the intensity of gravity measured statically

by the weight per unit-mass of the heavy body.

7. Normal Decrease of Gravity in the Atmosphere. Let the numerical value

gx of the acceleration of gravity be known at a point of the earth's surface. Its value

g can then be calculated at any height z above this point from the decrease of

the attraction with the increase of the distance from the attracting masses, and from

the increasing influence of the centrifugal force with the increasing distance from

the earth's axis. Setting aside quantities of the order of magnitude of the square of

the ratio z/r, z being the height and r the radius of the earth, we find, according to

Helmert,* as the best expression for the decrease of the gravity with the height,

() g (g\ 0.000003086^)

* Helmert : Ueber die Reduction der auf der physischen Erdoberflache beobachteten Schweerebeschleuni-

gungen auf ein gemeinsames Niveau, zweite Mitteilung. Sitzungsberichte der Akademie der Wissenschaften,
Berlin, 1903, p. 650.

9
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The sign is used because the acceleration of gravity is directed downwards,
while we take the direction upwards as positive. The value of the correction

term 0.0000030862- is given in table 1 m of the Meteorological Tables.

8. Reduction to Sea-Level and Normal Value of Gravity at Sea-Level. By
sea-level we mean on the one hand the surface of the sea in the case of perfect

equilibrium and on the other an ideal continuation of this surface below the conti-

nents, determined by the condition of being always at right angles to the plumb-line.
Values of the acceleration of gravity, which are found by pendulum experiments

at the surface of the earth, are reduced to sea-level to make them intercomparable.
The purpose of the reduction is to arrive as closely as possible to the theoretical

value of the acceleration of gravity, which is a function only of the latitude and

which depends upon the figure and the rotation of the earth, all irregularities of

topography and of local mass distribution being neglected. There has been much
discussion as to how this reduction should be performed properly. Two different

views have been advanced, based upon physically different conceptions of the nature

of the equilibrium of the earth's crust. According to the first view the equilibrium
is that of a solid elastic body. The masses of the continents present above sea-

level are considered as additional masses whose weight is carried by the stress

produced in the solid crust of the earth. According to the second view, the earth's

crust has sufficient stiffness only to carry the weight of local elevations above the

main level of the land, while on a larger scale the equilibrium is of a hydrostatical
nature. The elevation of the continents above sea-level are, then, due to their

buoyancy, their density being smaller than the average density of the earth's crust.

The average density would be attained if the masses of the continents present above

sea-level were absorbed by the underlying masses.

These two views of the nature of the equilibrium of the earth's crust lead of

course to two different principles for the reduction to sea-level. According to

the first view, the continental masses present above sea-level represent a surplus
of mass, the attraction of which must be subtracted if the reduction should lead to

the required normal value. This leads to the reduction according to the formula

of Bouguer, which until lately has been used almost universally. According to the

second view the reduction is made as if the continental masses were absorbed by
the earth's crust below the continents, no mass being present between the physical
surface of the earth and sea-level. The reduction is, then, simply the same as in

the free air.

According to the result of recent geodetic investigations* this simple reduction

leads with much closer approximation to the normal value of gravity at sea-level

than the reduction according to the formula of Bouguer. Thus the theory of the

*G. R.Putnam: Results of a transcontinental series of gravity measurements. Phil. Soc. of Washington,
February 2, 1895. Bulletin of the Society, vol. 13. Washington, D. C, 1900, p. 31.

G. K. Gilbert : Notes on the gravity determinations reported by Mr. G. R. Putnam. Phil. Soc. of Washing-
ton, March 16, 1895. Bulletin of the Society, vol. 13. Washington, D. C, 1900, p. 61.

R. v. Sterneck : Relative Schweerebestimmungen. Mitteilungen der Militiir-Geographischen Institut.

Wien, 1898, p. 100.

F. R. Helmert : Ueber die Reduction der auf der physischen Erdoberflache beobachteten Schweerebeschleunig-
ungen auf ein gemeiusames Niveau. Sitzungsberichte der Akademie der Wissenschaften. Berlin, 1902, p. 843;
'93. P- 650.
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approximate hydrostatic equilibrium of the masses in the earth's crust is verified.

More recently this verification has also been extended to the open sea by the

measurements of the Nansen Expedition in the Polar Sea and those of Hecker on

the Atlantic* These results are very important for dynamic meteorology and

hydrography, as they show that the gravitational field of force in atmosphere and

sea is much more regular than originally supposed. The continental masses

present above sea-level do not cause perturbations of the field. On the contrary,

they make it more regular, because they compensate for subterranean mass defects.

Neither does the sea, with its smaller density, complicate the field, because there

are compensating excesses of mass below the sea-bottom. The only perturbations
of the field are due to irregularities of local topography or of local mass distribution

sufficiently small to be balanced by the elastic stresses which they produce in the

earth's crust. We shall make no corrections for these local irregularities. The
reduction to sea-level of the numerical value g\ of the acceleration of gravity found

by pendulum experiments at the earth's surface at the height z above sea-level will

be given by the formula

(a) *o ="i + 0.000003086*

the correction term being the same as that of formula section 7 (a), or of table 1 m
of Meteorological Tables, but with the sign reversed. We shall use this reduction

consistently in cases where we start with really measured values of the accelera-

tion of gravity at the earth's surface. It will be convenient, as all heights are

measured from sea-level, and the reduction will bring in no errors in the values of

gravity calculated for the free air, as errors possibly introduced by the use of for-

mula (a) for reductions downward will drop out again by the reduction upward,

according to formula section 7 (a).

If no measurements of the acceleration of gravity are at hand, we shall start with

the " normal " value of gravity at sea-level, and derive from it by formula section 7 (a)

or table 1 m the value at the earth's surface or at any height above sea-level. The
normal value g~ of the acceleration of gravity at sea-level we shall consider as

given by the formula of Helmert: f

(b) g-g
= 9.80617 (1 0.002644 cos 2<f> + 0.000007 cos2 2

4>)

The values ofga are tabulated according to this formula in table 2 m of our Meteor-

ological Tables.

9. Normal Increase of Gravity in the Sea. Calculating the decrease of gravity
in the atmosphere, we could simplify the problem by neglecting the mass of the air.

But in view of the greater density of the water, the corresponding simplification
will not be allowable for the case of the sea.

* O. E. Schiotz : Results of the pendulum observations. The Norwegian North Pole Expedition 1893-96, vol.
II. Christiania, 1901.

O. Hecker : Bestimmung der Schwerkraft auf dem Atlantischen Ocean. Verbffentlichungen des preussischen
geodatischen Instituts. Berlin, 1903.

fR. F. Helmert: Der normale Teil der Schwerkraft im Meeresniveau. Sitzungsberichte der Akademie der
Wissenschaften. Berlin, 1901, p. 328.



12 DYNAMIC METEOROLOGY AND HYDROGRAPHY.

In order to calculate the correction in this case, we shall consider the earth as

a sphere of radius r, and make use of the well-known theorem in the theory of

attraction that a spherical shell of constant density does not exert any influence on

a point inside it. In the depth z below sea-level we have therefore only to take

into account the attraction of the mass contained within a sphere of radius r z.

M being the whole mass of the earth and m that of the shell, we have for the

acceleration of gravity at sea-level

and at the depth z below sea-level

M'

in

g= \r-zf

Neglecting squares or products of the small ratios m\ J\T and z/r, we conclude

from these equations
z in

g = g'o+ 2g --goJjf

Denoting by pm the mean density of the earth, and by p that of the spherical shell,

we have

M'=
$irr

a
pm in = q-rrr

2
zp

and thus

w *-*+?H)
For the factor 2g- /r we have to use, according to Helmert, the value 0.000003086.
For the density of the spherical shell we shall use as an average value p = 1.05, cor-

responding to the density of the sea-water at the depth of nearly 5000 meters

(compare table 14 h). Choosing finally pm = 5.5 as the probable value of the

average density of the earth, we get the formula

(b) g = ga + 0.000002202^

by which we shall calculate the normal values of the acceleration of gravity in

the sea.

The values of the correction term 0.0000022022 are given in table 2 H of the

Hydrographic Tables.

Of course the normal values of the acceleration of gravity, which we are thus

able to calculate, will generally slightly differ from the real local values, as a conse-

quence of the local distribution of mass. It must also be remembered that the

spherical shell does not consist exclusively of water, but also contains the land-

masses below the continents. For this reason we might have chosen a still greater
value for the mean density of the shell. But this heterogeneity of the shell will

have different effects near the coasts and in the middle of the open sea, and we
therefore leave it out entirely, the more so as the "normal" value of gravity gives
a precision amply sufficient for the discussion of the dynamics of the sea in the

present state of development of this science.
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10. Level Surfaces and Dynamic Height or Depth. A surface everywhere

perpendicular to the plumb-line is a level surface. The free surfaces of liquids in

equilibrium always form level surfaces, and the surface of the sea, together with its

continuation below the continents as referred to above, is the fundamental level

surface, to which all differences of level are referred.

If gravity is the only acting force, no work is required to move a weight along
a level surface. But in order to lift it from one level surface to another, a certain

amount of work is required, and always the same amount, irrespective of where

on the two surfaces the two extreme points of the path are situated. Otherwise

perpetual motion could be realized by lifting the weight at the place where less

work is required and letting it down at the place where more work is required.

Any level surface is therefore specified without ambiguity by the amount of work

required to lift a certain mass, say unit-mass, from sea-level to any point of the sur-

face. Or, in other words, a level surface is a surface of equal gravity potential

(section 4) and is perfectly specified by the gravity potential of any of its points.

The level surfaces must be carefully distinguished from the surfaces of equal

height above or equal depth below sea-level. The intensity of gravity decreases

from the pole to the equator. Consequently the unit-mass must be lifted higher at

the equator than at the pole, if the same amount of work is to be performed, and

thus the same level surface be attained. A surface of equal height above or of

equal depth below sea-level must therefore cut through the system of level surfaces.

The surface of equal height or depth is a slanting surface, which is not normal to

the plumb-line, and on which equilibrium is not possible under the sole action of

gravity. If the surfaces were hard and smooth a ball would remain in equilibrium
on a level surface. But on a surface of equal height above sea-level it would roll

in the direction from the pole to the equator; and on a surface of equal depth below

sea-level it would roll in the direction from the equator to the pole.

This property at once shows that the surfaces of equal height or depth are not

suitable as coordinate surfaces in problems relating to the statics or the dynamics of

the atmosphere or the sea. For this purpose only level surfaces are found suitable.

The introduction of the level surfaces as coordinate surfaces involves the use

of gravity potentials for the specification of heights and depths. With this applica-
tion of gravity potentials in view, we have introduced the names dynamic meter,

dynamic decimeter, etc., for units of this quantity. To standard values of the

gravity potential in the sense defined (section 4) will correspond standard equi-

potential surfaces. These will serve us as coordinate surfaces.

We shall also use the expressions dynamic height and dynamic depth as synony-
mous with gravity potential, with the difference only that we take the dynamic

depth in the sea as a positive quantity, while the corresponding values of the

gravity potential are negative. By this mode of expression the level surfaces are

surfaces of equal dynamic height above or of equal dynamic depth below sea-

level, the height or depth of the standard surfaces being an integer number of

dynamic meters. We shall as a rule prefer the expressions dynamic height or

depth when we refer to the dynamic meter as unit, and the expression gravity

potential when we use the m.t.s. unit, the dynamic decimeter.
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Denoting the gravity potential by <, and the dynamic heights and depths respec-

tively by //and D, we have the relations

(a) 4>
= ioJ/

<f>
= 10D

by which we return from the technical unit, the dynamic meter, to the m.t.s. unit,

the dynamic decimeter.

ii. Fundamental Formulae for the Gravity Potential. The difference of

potential between any two points can be found if we know the value of the accel-

eration of gravity everywhere along a curve 5 leading from the one point to the

other. Let gs be the component of the acceleration of gravity in the direction

tangential to the curve s. The work per unit-mass performed against the action

of gravity, when a mass is displaced the length ds along the curve is then gsds.

That is, the elementary difference of potential between the end-points of the line

element ds is gsds, and the finite difference of potential <f>2 <f> t
between any two

points joined by the curve s is found by the integration

() 4>2
-

4>i J g.ds

If the curve s coincides with the plumb-line, the acceleration of gravity will

always come in with its full value g. It the lengths measured along the plumb-line
be denoted by z, and the heights of the points i and 2 above sea-level by zx and z2 ,

the expression (a) takes the form

(*) * - *, = - ("gdz
Jz,

If from (b) we pass to dynamic heights in the atmosphere, expressed in dynamic
meters, we have

W H.-H^-^rgdz

Correspondingly for the difference ot dynamic depths in the sea we have

These formulae serve to calculate the dynamic value of given geometric differ-

ences of height or depth.

12. Normal Relation between Geometric and Dynamic Heights. Introducing
the value (a), section 7, of the acceleration of gravity g in the integral 1 1 (c), and

integrating from the initial height z to any height z, we get for the corresponding
difference of dynamic height

(a) H- H
l

=
>̂
(z- r

x)
-

o.ooooooi543(*
2 -

z?)

By this formula we find the dynamic difference of height corresponding to any

given geometric difference of height. It is to be noted that in the first approxima-
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tion we can neglect the term containing {z
2 z 2

),
and instead of that use the

approximate value 9.80 for the acceleration of gravity at sea-level. This gives

the approximate relations

(a') H H
x

= 0.98(2 z
x),

or counted from sea-level, H= 0.980

(b') z z
x

= i.02(H H
x ),

or counting from sea-level, z = 1.02H

That is, the number expressing a height in dynamic meters is approximately 2 per

cent smaller than the number expressing it in meters.

Supposing that the dynamic height be given, while the corresponding value of

the geometric height should be found, we have to solve equation (a) with respect

to z zx . To do this conveniently we first substitute from (b') the approximate
values of z and z1 in the correction term of equation {a), which is thus made linear

in z zx . Solving and simplifying the correction term by the introduction of the

approximate value 9.80 for the acceleration of gravity gu we get the equation

{!>)
z-z

x

= (H-Hx ) + o.ooooooi637(/P- H*)
O 1

by which the geometrical value of a given dynamic height can be calculated.

In practical application it will generally be most convenient to have all heights

measured from sea-level. We then have z x
= o, Hx

= o, -,
==

g<>,
and formulae (a)

and (b) take the form

{a") H= z 0.00000015432
2

(b") z= H + 0.0000001637H
2

In order to tabulate conveniently these formulae, we shall write them in a slightly

modified form. In both the main term depends upon two variables, namely, g- and

z or g- and h, respectively. But, thanks to the small variations of g~ ,
we can ac-

count for the influence of the variations of this quantity in a correction term, while

the main term is made to depend upon one variable only. To attain this we shall

write

w *~9.*>(
I+^)

The fraction contained within the parentheses will have a value never exceeding

0.004. Neglecting squares of this quantity as well as products of it by quantities of

its own order of magnitude, we bring the formulae (a") and (b") to the forms

('") H= {0.982 0.00000015432
2

} 4- o.i(g'u 9.80)^

(b"') z= {i.02o4o8Zf + 0.0000001637ZP} ~
g ~

q

9
6o

H

The expressions inclosed within parentheses depend upon one variable only. Their

values are given in tables 3 m and 5 m of Meteorological Tables. They give the

relation between geometric and dynamic height for places where the acceleration
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of gravity at the sea-level height z
x
has the special value 9.80. The last term in

each equation gives the correction for other values of g . The value of this cor-

rection is given in tables 4M and 6 m of Meteorological Tables. These tables can

thus be used to pass from geometric to dynamic heights and vice versa, the only

supposition being that we know the value g of the acceleration of gravity at sea-

level, which is found either by table 2 m, or by reduction to sea-level of the value

of the acceleration of gravity found by direct determinations at the earth's surface.

Proceeding in this way, we find the dynamic heights above sea-level both of the

ground and of points in the free atmosphere. The height of the ground will con-

tain an uncertainty due to that of the reduction of g to sea-level. But the heights
of the points in the free atmosphere above the ground will contain no error due to

this reduction.

13. Normal Relation between Geometric and Dynamic Depths. Introducing
the value (b), section 9, of the acceleration of gravity below the integral sign of (a)

section 11, and integrating from sea-level, where D = z = o to any depth z, we find

the corresponding value of the dynamic depth D
or

(a) Z>= z + 0.000000 1 ioi^ 2

v ' 10

This formula serves to calculate the dynamic depth D corresponding to any given

geometric depth z.

From this formula we draw as a first approximation

(a')
D = 0.982

or, solving with respect to z,

(b')
Z=l.02D

That is, in the case of the sea we have the same approximate difference as in the

atmosphere between the figures representing the two kinds of depth amounting to

about 2 per cent.

Solving (tf) by the method employed for (a), section 12, we find the equation

(b) z = D 0.000000 1 168Z?2

by which the geometric value of a given dynamic depth is calculated.

To make the formulae (a) and (b) suitable for tabulation, we use the same arti-

fice as above. Introducing (c), section 12, and neglecting small quantities of the

second order, we can write the formulae

(a") D = {0.982 + 0.000000110122

} + o.i(g- 9.80)2

(b") z =
{
1.0204082? - o.oooooou68Z>2

}
~^

fo
#

The expressions within the brackets depend on one variable only, and their values

are given in tables 3 h and 5 H respectively of the Hydrographic Tables. They give

the relation between geometric and dynamic depth in the special case that accel-

eration of gravity in sea-level has the value 9.80. The last term in each equation
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gives the correction for other values of g, and the numerical values of these cor-

rections are given in tables 4H and 6h respectively of the Hydrographic Tables.

14. Gravity Potential of Points at the Earth's Surface. According to the

modern principles of geodesy, levelings of high precision should always be combined
with determinations of the acceleration of gravity. This combination of leveling
with gravity measurements gives all the data required for the determination of

gravity potentials of points at the earth's surface.

Leveling consists in sighting along level surfaces and in measurements of heights
normal to them. A curve consisting of successive horizontal and vertical parts is

thus traced out. Forming for this curve the integral (a), section 11, we have to take

into account the vertical parts only. Let their lengths be z, z', z", ,

and let g, g' , g", be the mean values of the acceleration of gravity

along each of them. The integral then takes the form

{a) 4>t
- ^ = gz + g'z' +g"z" +

The sum on the right side thus gives the difference of gravity potential between the

end-points of the curve.

All the measurements required for the determination of gravity potentials are

thus performed by modern geodetic work. But unfortunately the results are not

worked out and published in this form. Attention is directed mainly to the sum

(b) Z=z + z' + z" +

which is supposed to represent the difference of height between the two end-points.

This Z is, however, no well-defined quantity, because the level surfaces are not

parallel to each other. If the leveling be performed along another route, a slightly

different sum Z will generally be found. The discrepancies caused by the lack

of parallelism between the level surfaces may be diminished by suitable corrections,

but no general method can be conceived which would make them disappear, and

the real relation of the determined Z to the vertical distance of the one point from

the level surface passing through the other will remain obscure.

The only quantity which can be determined without ambiguity is the gravity

potential <f>.
The same will be the case if we pass to the other fundamental method

for the determination of heights, the barometric method. As we shall have occa-

sion to show later, this method also gives gravity potentials as its direct natural

result, while the passage to heights brings uncertainties.

That under these circumstances gravity potentials, when wanted, must be found

by recalculation from the published heights, is very unsatisfactory, so much the

more so as it will probably presently become apparent that gravity potentials are

what are really needed for scientific purposes, heights being only of secondary

importance. Such at least is the case in meteorology, and will also be that of

geology as soon as the question of the statics and dynamics of the earth's crust is

taken up seriously. It would therefore be a great advance if gravity potentials were

published as the main scientific result of geodetic work, and heights only as results

computed from gravity potentials.
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Provisionally we have to do the reverse. The problem to compute the most

probable values of the gravity potential from the published heights is therefore of

some importance. The method will mainly consist in removing the corrections

originally introduced to pass from gravity potentials to heights, and will therefore

turn out somewhat differently according as the barometric, the leveling, or trigo-

nometric methods have been used. Further, it will differ with the different rules

for the reduction used in each of these methods. Thus different methods would

have to be used on different occasions, and the data determining the choice of

method would not always be at hand. In this state of confusion the normal reduc-

tion, which we have developed in the case of points in the free atmosphere (section

12), seems to be the most worthy of recommendation, also for the determination of

gravity potentials at points on the earth's surface.

15. Maps of Dynamic Topography. When the gravity potential or the dy-
namic height is known for a sufficient number of points of the earth's surface we shall

be enabled to draw a new kind of topographic maps, representing not the geometric
but the dynamic heights of the country. The curves of these maps would be real

level curves, which would represent the coast-lines if the country were partially

submerged under the sea. The number of curves between two points would repre-
sent the amount of work per unit-mass which had to be performed against the

action of gravity, if a body should be moved from the one point to the other. The

maps would thus represent the height of a mountain, not by the vertical distance

of its summit from sea-level, but by the work required to reach the summit. They
would further directly give the amounts of potential energy possessed by the masses

of water stored in the lakes and would show how this potential is given up during
the flow of the water down the rivers.

The motion of the air is restricted by the condition of tangential contact with

the earth's surface. The knowledge of the topography of the land is therefore

indispensable for the study of this motion. Both the geometric and the dynamic

topography must be known, but for evident reasons the dynamic topography is of

first importance.
For the construction of these maps the close accordance of the common and the

dynamic meter is of great practical value. Especially if the maps should represent

large parts of the world on a moderate scale, there will be no visible difference

between the course of two curves, one of which represents the height of a certain

number of common meters, while the other represents the height of the same number
of dynamic meters. To make such maps practically useful in meteorology it will

be necessary to simplify the topography, smoothing out all the small irregularities.

These maps of idealized topography, drawn on a moderate scale, can therefore,

according to circumstances, be considered as representing both the geometric and

the dynamic topography.
If the topography of the earth's surface is of importance for the motion of the

air, that of the bottom of the sea is of still higher importance for the motion of the

sea. As in the case of the air, the dynamic topography is of the greatest importance,
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the geometric being only of secondary interest. But for maps on moderate scales

we can identify both kinds of topography. Near the coasts it will generally be

necessary to simplify the course of the curves. But for greater distances from the

coasts the bottom configuration is generally so regular, or our knowledge of it so

incomplete, that artificial simplifications may be more or less dispensed with.

The topographical maps accompanying this work can be considered as repre-

senting both geometric and dynamic topography. On the map of the world, giving
the topography of the earth's surface both above and below sea-level, the main
curves are drawn for the interval of 1000 meters, which may be interpreted as

geometric or dynamic meters according to circumstances. For the displacement
from curve to curve of a unit-mass, we have a gain or loss of potential energy of

10,000 m.t.s. units.

16. Scalar Field. It will be useful to refer here to some fundamental notions

relating to scalar fields, and their variations from place to place in space. Let a

be a scalar quantity which has a uniquely determined value in every point of space.
To represent distinctly the distribution in space of these values, or, in other words,
to represent the field of the scalar a, we can draw a set of equiscalar surfaces

Each of these contains the points in space where the scalar has a certain constant

value, a
, u a

2 , respectively. This is the well-known method of repre-

senting the distribution of potential by equipotential surfaces, that of pressure by
isobaric surfaces, that of temperature by isothermic surfaces, and so on.

The sheet between two equiscalar surfaces a and a.^ will be called an equi-
scalar sheet. The use of the word "

equiscalar
" in connection with a sheet must

not be misunderstood. The scalar is not constant in the sheet, but it has limited

variations, the limits being given by its values <x and a
x on the boundary. The

word "equiscalar" used for a sheet should remind us of this limitation of the

variations, as well as of the possibility of defining an average value of the scalar,

which is constant all along the sheet.

In most cases it will be found convenient to draw the equiscalar surfaces for unit

differences of the scalar. These surfaces will then divide the space into a set of

equiscalar unit-sheets. Choosing a unit of suitable magnitude, we can always be

certain that the unit-sheets get a suitable thickness for a perspicuous distinct rep-
resentation of the field. If sufficiently thin sheets are obtained we can always say
that the difference between the values a

x
and a of the scalar in two points of space

1 and o is equal to the number of unit-sheets contained between them.

This difference, a
x

a
,
divided by the length s of any curve joining the points

o and 1,

gives the average rate of variation of the scalar along the curve s.
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Now let the curve s be a straight segment of line, and let its length diminish

indefinitely. In this limiting case (rr) gives the local rate of variation of the

scalar a in the direction determined by the elementary segment of line s. This

rate will vary with the direction of s. To examine this variation let us choose the

unit of the scalar quantity so small that the thickness of the unit-sheets is small in

comparison to the elementary length s. Further, let s have one end-point fixed and

let it have a constant length, while it can have any direction. Within the spherical

space of radius 5 the equiscalar surfaces separating the unit-sheets can be consid-

ered as parallel and equidistant. Then the number of unit-sheets cut by the seg-
ment s will evidently be proportional to the cosine of the angle which this segment
forms with the normal n to the equiscalar surfaces. The rate of variation of the

scalar being in direct proportion to the number of unit-sheets cutting the segment
of line s, we get this result:

The rate of variation of a scalar quantity in any direction s is equal to its rate

of variation along the normal to the equiscalar surfaces, multiplied by the cosine

of the angle contained between this direction s and the normal n to the equiscalar
surfaces.

17. Gradient and Ascendant. In accordance with this result we can repre-
sent the main rate of variation of the scalar field by a vector directed along the nor-

mal to the equiscalar surfaces. The rate of variation along any direction is, then,

represented by the component of the vector along this direction. The vector may
be defined with the positive or with the negative sign, according as the rate of vari-

ation be interpreted as the rate of increase, or as the rate of decrease of the scalar

quantity. The vector representing the rate of decrease is generally called the

gradient and, more specially, potential gradient, pressure gradient, temperature

gradient, etc., in accordance with the nature of the scalar quantity. To have a

name for the vector representing the rate of increase of the scalar, we shall call it

the ascendant. Generally the gradient has the most perspicuous physical sense.

But still in some cases the use of the ascendant is to be preferred for practical

reasons.

From what precedes it will be seen that the gradient G and the ascendant A
of the scalar a may be defined by the equations

w *~*

n being the normal to the equiscalar surfaces, counted positive in the direction

of increasing values of a. In the same way the components Gs
and A s of these

vectors along any direction s are given by the rates of decrease or of increase

respectively along the direction s

w --
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The equiscalar surfaces or the unit-sheets ? representing the field of the

scalar quantity a give at the same time a complete representation of the field of the

vector G or A. From what is stated above we can immediately draw these

conclusions:

(i) The direction of the vectors is that of the normal to the equiscalar surfaces.

(2) If a sufficiently small unit be used, the magnitude of the vector will be repre-

sented numerically by the number of unit-sheets per unit-length of the normal; or,

what comes to the same thing, by the reciprocal thickness of the unit-sheet.

(3) The component of any of the vectors in any direction s is numerically equal
to the number of unit-sheets per unit-length in this direction; or, in other words,
it is equal to the reciprocal length of that segment of the line s which is contained

in a unit-sheet.

If, finally, we add that the gradient points in the direction of decreasing and the

ascendant in the direction of increasing values of the scalar, we see that the

equiscalar surfaces and the unit-sheets give a full representation of the field of the

gradient or of the ascendant. If greater units be used, so that the unit-sheets

have greater thickness than supposed above, perfectly corresponding theorems may
be formed for the average values of the vectors or their components referred to

definite lengths of the segment s.

As we can pass by a process of differentiation from the field of a scalar to the

field of its gradient or its ascendant, we can, vice versa, return by a process of

integration from one of the latter fields to the first. To show this, say tor the

gradient, we can multiply equation (c) by the line element ds and integrate along
the curve s from a point o to a point 1. This gives

() G.ds=-fo Ps dS = -da= ait
-a

l

and ! being the values of a at the points o and 1, respectively. The first member
of this equation is the line-integral of the component of the vector G tangential to

the curve s. As we shall usually have to take line-integrals only of the tangential

vector-components, we may denote an integral of this nature simply as the litie-

integral of the vector. This line-integral of the gradient gives us the means of

reconstructing the field of the scalar. For, knowing the field of the gradient and

the value of the scalar quantity in one point of space, we can find the value of the

scalar in any point by integrating the gradient along any curve leading from the

first point to the second.

It will be useful, finally, to express in terms of the gradient the ratio (a), section

16, from which we derived originally the definition of this vector. Taking in the

integral (e) the mean value Gsm o{ the tangential component of the gradient outside

the integral sign, the integration can be performed, and gives the length s of the

curve. Dividing by this s, we get

CO 6,S, 771

Thus, the mean value of the component of the gradient tangential to any curve s is
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equal to the difference of the values which the corresponding scalar quantity has in

the end-points of s, divided by the length of s.

18. The Gravitational Field of Force. The relation of gravity potential to the

acceleration of gravity is that of a scalar quantity to its gradient. The gravity

potential will therefore serve to give us not only a rational system of coordinates
;

it will also give us a full representation of the gravitational field of force.

To sum up the facts relating to this representation, we see that formula (a),

section 1 1, which defined the gravity potential in terms of the acceleration of

gravity, has exactly the form of the formula (e), section 17, which defines a scalar

quantity in terms of the gradient. Vice versa, the acceleration of gravity can be

represented by the rate of decrease of the gravity potential along the normal to the

equipotential surfaces, i. e., along the plumb-line z,

In the same way the component of the acceleration of gravity along any direction

5 is given by the rate of decrease of the gravity potential along this direction

Another form of expressing the facts contained in the formulae (a) and (&) is the

statement that the equipotential surfaces and the unit-sheets give a full representa-

tion of the gravitational field of force. First, the acceleration of gravity is directed

along the normal to these surfaces, i. e., along the plumb-line. Second, it is

numerically equal to the reciprocal thickness of the unit-sheets. Thirdly, its com-

ponent along any line 5 is numerically equal to the reciprocal length of the segment
of this line which is contained in the unit-sheet. As we see, these statements are

simply the reversal of the statements by which we defined originally our unit ot

gravity potential, the dynamic decimeter, in terms of the acceleration of gravity.

Corresponding to (f), section 17, we get finally

(') -,
=^-

where g-sm is the average value of the component which the acceleration of gravity

has tangentially to the curves, while <f> and 4>i are the values of the gravity potential

in the end-points of the curve.

The gravitational field of force is a field in space and thus a 3-dimensional field.

The components of its field intensity tangentially to a surface will represent a 2-

dimensional field of force. These 2-dimensional fields, which will be of great

importance for us, are represented fully by a map giving the dynamical topography
of the surface.

We can exemplify this by reference to our maps of dynamic topography.
Formula (c) can be used to find the average value of the acceleration of gravity

along any part of a curve contained in the surface represented by the map. Any
such curve will be divided into segments s by the level curves of the maps, and to

each such segment the formula (c) can be brought into application.
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In this case it will, however, be inconvenient to measure the length of the curve

in meters
;
but the m.t.s. value ofge>m will come out correctly also when the length

of the curve s is measured in kilometers and the difference of potential fa fa for

each 100 dynamic meters of height is taken for unity. The average value of the

component of the acceleration of gravity along a segment limited by two succes-

sive level curves on our map of the world will therefore be

If the map represented the topography of a perfectly hard and smooth surface,

and if the curve 5 be the path of a particle forced to slide on it with any initial

velocity under the sole action of gravity, this formula would serve to find the

average acceleration of the particle in any part of its path.





CHAPTER III.

SPECIFIC VOLUME AND DENSITY OF ATMOSPHERIC AIR AND
SEA-WATER.

19. Distribution of Mass. Every motion consists in the displacement of masses.

Only in certain definite distributions of mass will the causes of motion cease to

act. As introductory to the investigation of the conditions of equilibrium and

motion of the atmosphere and the hydrosphere, we will therefore have to consider

the distribution of mass in general, and the methods of finding and representing it-

For the numerical representation of the distribution of mass in a continuous

medium, such as air or water, we have, as mentioned already (sec. 3), two methods:

We can specify the volume occupied by the different unit-masses, or we can specify
the masses present in the different units of volume. In the first case we register

the specific volume, in the second the density of the medium. The number rep-

resenting one of these quantities is the reciprocal of that representing the other.

These quantities are completely equivalent in representing the distribution of mass.

But which to choose is a question of importance, as it leads to one or the other of

two different methods already referred to (section 3) of formulating the conditions

of equilibrium and motion of the medium. Theoretically neither of these methods

has any advantage over the other, but they supplement each other in a convenient

manner. We shall therefore develop both side by side.

Specific volume or density of atmospheric air or of sea-water are as a rule not

observed directly. Generally they will have to be calculated from other quantities,

more easily observed with sufficient precision. These quantities are pressure,

temperature, and humidity in the case of the atmosphere; depth, temperature, and

salinity in the case of the sea.

20. Equation of State of the Atmospheric Air. To calculate the specific vol-

ume of dry atmospheric air, we use the equation of Boyle-Gay-Lussac. As the

letter / will be reserved for the most fundamental of all independent variables, time,

and the letter v for the most important vector quantity related to the motion of the

atmosphere or the sea, velocity, we shall represent the temperature according to

the common centigrade scale by t, and the corresponding temperature referred to

the absolute zero by &, thus

{<>)
& = t + 273

while we shall denote the specific volume by a. The equation connecting pressure,

specific volume, and temperature of a perfect gas is then

{b) pa = R
25
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The gas constant R of dry atmospheric air is 2153 when the pressure is expressed
in millimeters of mercury, and 2870 when it is measured in m-bars.

If the air be more or less moist, an equation of the form () can still be used,

only with a new value R' of the gas constant

fa = R'd

If the unit-mass of moist air contains in parts of water-vapor, and consequently
1 m parts of dry air, the laws for the mixtures of gases give for the constant R'

the expression
R' = (1

- m)R + mR"

R being the gas constant of dry atmospheric air, and R" that of water-vapor.

Now the constants of two gases are in proportion to their specific volumes. For

the case of water-vapor and dry atmospheric air this proportion has the well-known

approximate value 8/5, which will give sufficient accuracy for our purposes. Con-

sequently R' R(i -\- 0.6m).

21. Virtual Temperature. The gas constant R' of moist air is thus a variable

quantity, changing with the variable mass m of water present. The second member
of the equation for moist air will therefore contain two variable quantities, R' and d.

The first of these will be, however, variable only between narrow limits. We can

therefore advantageously use a well-known artifice, considering the slightly variable

quantity R' constant and equal to R, while we for compensation add a small

correction to the widely variable quantity &. Thus, introducing

(a) & = d(i + 0.6m)

we can write the equation for moist air in the form

(b) fa = R&
r

R being the gas constant for dry air, and dr a somewhat increased temperature,

namely, the temperature which dry air ought to have in order to get the same spe-

cific volume as the assumed mass of moist air of temperature d. With Guldberg
and Mohn, who first introduced this useful auxiliary quantity, we shall call #. the

virtual temperature.
As may prove most convenient, we shall count this virtual temperature either

from the freezing-point of water or from the absolute zero, and denote it by rr and

#r respectively, thus

{c) r
r
= t + e

r
$

r =&+ e
r

where, according to (a), the correction e
r
has the value

d) e
r
= o.6md

m being the mass of water-vapor per unit-mass of atmospheric air.

22. Tables for the Virtual-Temperature Correction. The tormula (d) above

can be used to calculate the virtual temperature when the mass m of water-vapor
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per unit-mass of the air is known. But this quantity m is never observed directly.

What is generally determined is the relative humidity, i. e., the proportion of the

quantity of water-vapor really present to that which would be present if, at the

same pressure and temperature, the air were saturated with moisture.

Iff be the pressure of the saturated vapor at the temperature considered,/)
the total pressure, and r the relative humidity, rf will represent the pressure of the

vapor and p rf that of the dry air in the mixture. The partial pressures of each

constituent in a mixture are in the same ratio as their volumes were before mixing.
The specific volumes of air and water-vapor being in the ratio 5 : 8 the volumes of

1 m parts of air and m parts of water-vapor are in the ratio 5(1 m):8m and

consequently
U> - rf) rf- 5(i

-
)

: Sm

If the value of m found from this equation be substituted in the equation (d), sec-

tion 21, we find the temperature correction

It appears as a function of four variable quantities. But only three of these pres-

sure p, temperature &, and humidity r are independent, while the vapor pressure

_/"is a known function of temperature.
To conveniently calculate e, we can first put r= 1, and calculate the tempera-

ture correction

(*) *
10.
=
8^17*

corresponding to 100 per cent humidity. This sm being calculated, the value of e

corresponding to any relative humidity is easily found. Division of (a) by (d) gives

8 "3 Z

where the temperature # has dropped out. Numerical calculation easily shows

that, even under unfavorable circumstances, the coefficient of r can be set equal to

unity without producing any error in the tenths of the centigrade degree. Thus
the equation is reduced to

(
c
) r

= rem

As an immediate result of equations (&) and (c) we get the following rule for

the calculation of the virtual-temperature correction s
r for air of r per cent relative

humidity: First calculate the correction e100 for saturated air of the given tempera-
ture and pressure; then r per cent, of s100 gives the required correction er.

The virtual-temperature correction em for saturated air is given in table 7 M of

the Meteorological Tables as function of the pressure in m-bars and degrees of the
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centigrade thermometer. * The tabulated numbers are, as seen, all very small, and

r per cent of any of them is easily found with sufficient accuracy.
When the pressure is given in millimeters ol mercury, table 1 1 a of the Appendix

gives the virtual-temperature correction for saturated air, expressed as above in

degrees of the centigrade thermometer.

When the observations are made in inches of mercury and degrees of the Fahr-

enheit thermometer, it will be usually found most convenient, also, to calculate the

virtual-temperature correction in Fahrenheit degrees and to perform at a later

stage the transition to the other system of units. The virtual-temperature correc-

tion for saturated air, expressed in Fahrenheit degrees, and with the pressure in

inches of mercury as argument, is given in table 12 a of the Appendix.

23. Virtual-Temperature Diagrams. The calculation of the virtual-tempera-
ture correction for every special observation ofa long series will be found to be a great
waste of time. In such cases it is easy to find a curve, the virtual-temperature

diagram, giving the relation between virtual temperature and pressure. This

diagram is obtained by the following procedure: On coordinate paper the pres-
sures are measured out along the axis of the ordinates and the temperatures along
the axis of the abscissa;. In this plane the observed values of temperature and

pressure give a number of points by use of which a curve representing the relation

of pressure and temperature is drawn. This curve immediately gives the temper-
atures corresponding to the pressures 1 100, 1050, 1000, 950, m-bars, serving
as argument in table 7 m. The corresponding virtual-temperature corrections for

saturated air are taken from this table with great ease, no interpolation respecting
the pressure now being required. By means of these corrections a second curve is

drawn, the curve of virtual temperature for saturated air. The curve for the virtual

temperature corresponding to the observed relative humidities will run between

these curves at a horizontal distance from the curve of real temperature, which is r

per cent of the horizontal distance between the two curves. This final curve is then

easily drawn by estimation, in accordance with the observed relative humidities.

The method is easily understood by inspection of the diagrams accompanying
the examples worked out in Chapter VI. In each of them the curve to the left

is that of real temperatures, as immediately given by the observed temperatures
and pressures. The curve to the right is that of virtual temperature for saturated

air, as obtained by the use of table 7 m as described above. The line between the

two others is the required curve of virtual temperatures, as drawn by means of the

observed relative humidities.

The observations being made in millimeters of mercury and centigrade degrees,
or in inches of mercury and Fahrenheit degrees, the virtual-temperature curve will

be obtained in exactly the same way, table 1 1 a or 12 a of the Appendix being used

to obtain the curve, as shown in the examples of Chapter VI.

*The values of the vapor-tension f used for calculating table 7 m have been taken from Broch's well-known
table (Travaux et M^moires du Bureau International des Poids et des Mesures, T. I, Paris, 1881) for temperatures
above zero, and from Juhlin's table (Bihang till k. svenska Vetenskapsakademiens Handlingar, T. 17, Afdelning I,

Stockholm, 1891), for temperatures below zero.
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24. Virtual Temperature as a Function of the Height. In some cases the

height will appear instead of the pressure as one of the observed quantities. It will

then be convenient to be able to calculate the virtual-temperature correction as a

function not of pressure but of height. For this we must first know the average

pressure for the heights to be used as argument in the table. Using the inter-

national kite and balloon ascents performed in Europe for the years 1901 to 1903,

we have found the values of the average pressure in given dynamic heights above

the 1000 m-bar surface (table A).

Table A. Average Pressures in Given Dynamic Heights above the IOOO m-bar

Surface, Calculated from the International Kite and Balloon Ascents in

Europefor the Period 1901-1903.

Height
(dynamic
meters).
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(*> p = tIt

Two variables #
r and ft appearing on the right side of each of these equations, and

each of the variables having a wide range of variation, the complete tabulation of

a and p would be very laborious and lead to very bulky tables. We shall there-

fore use the equations (a) or (b) for eliminating a or p of our equations. After-

wards we shall give an indirect way to obtain the geometric representation of the

fields of specific volume or of density in the atmosphere. As an aid for this, table

14 M of Meteorological Tables, giving the value of the specific volume for the

standard pressures, will be found useful.

26. Investigations of the Physical Properties of Sea-Water. The physical

properties of sea-water have been subject to elaborate investigations in connection

with the international exploration of the northern European waters.*

The specific volume of sea-water and its reciprocal value, the density, depend

upon three variables pressure, temperature, and salinity. Generally the salinity

is not determined directly, but deduced from the content of chlorine found by titra-

tion, s denoting the salinity and CI the quantity of chlorine, both expressed in per
milles (/oo) of weight, s and CI are, according to Martin Knudsen, connected by
the equation

() 5 = 0.030+1.805001

By this equation, which is tabulated in Martin Knudsen's tables, we can pass from

the independent variable CI used by Martin Knudsen to the independent variable

s, which we shall use consistently.

To express the results obtained for the specific volume or the density of sea-

water, we shall introduce the following notations: a
srp

means the specific volume

and pSTp
the density of sea-water of salinity 5 / 00 , temperature t C, and sea-

pressure of ft decibars. By sea-pressure we then mean the total pressure dimin-

ished by the pressure exerted by the atmosphere against the surface of the sea.

The decibar is employed as a practical unit instead of the unit centibar belonging
to the m.t.s. system, because the pressure increases approximately by 1 decibar for

every meter increase of depth.
Instead of writing the whole number representing a value of the density p, say

the number 1.02674, practical hydrographers usually write the four last figures 26.74.

This quantity being denoted by a, we have thus

"rP
= Ow - 1) 1000

Martin Knudsen: Berichte iiber die Konstantenbestimmungen zur Aufstellung der hydrographischen
Tabellen von Carl Forch, Martin Knudsen, und S. P. L. Sorensen. Memoires de l'Academie Royale des Sciences
de Danemark. Copenhague, 1902.

Martin Knudsen: Berechnung der hydrographischen Tabellen und Diskussion der Ergebnisse. Wissen-
schaftliche Meeresuntersuchungen herausgegeben von der Komission zur Untersuchung der deutschen Meere in

Kiel, Band 2, 1903.
Martin Knudsen : Hydrographical Tables according to the measurings of Carl Forch, J. P. Jacobsen, Martin

Knudsen, and S. P. L. Sorensen. Copenhagen and London, 1901.
V. Walfrid Ekman : Die Zusammendriickbarkeit des Meerwassers, etc. Conseil permanent International

pour L'Exploration de la Mer. Publication de Circonstance N 43. Copenhague, 1908.
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By measurements under atmospheric pressure on different samples of sea-water

of different salinities at a series of different temperatures, Martin Knudsen has

determined the quantity <r
ST(t

. The result is contained in the following formulae:

For the case of r o the quantity <rm is determined as function of the quantity

ol chlorine by the equation

() <rm = 0.069 + I -47o8 CI 0.001570 CP + 0.0000398 CI3

Then the quantity <?,T(S
is determined as a function of the temperature Tand the quality

<rm found from (b) by the equation

(')
_ v2

T + (o-m + 0.1324) [1 -A T + BT(<rM - 0.1324)]

the quantities
2

T} A T and BT being the following functions of temperature:

S =- (T-3.98)
2 T + 283

(C)

503-570 r + 67.26

A T
= t(4.7867 0.0981857 + 0.0010843T

2

)
io~ 3

BT
= t(i8.030 0.8164T + 0.01667T

2

) io-6

The quantities o-
<00 and o-

jt0 determined by these formulae are tabulated in Martin

Knudsen's tables. From the tabulated numbers we pass to the corresponding
values plr0 of the density by the formula

ftrO
= I + ^t0

IOOO

and from these we can pass by an inversion table (table 23 h) to the correspond-

ing values of the specific volume. The equations (5) and (a) or the corresponding
tables in Knudsen's collection allow us to bring in s as the independent variable.

V. Walfrid Ekman has determined the influence of the pressure upon the

volume of sea-water of different salinities and at different temperatures. By these

measurements the pressures were calculated from the compression of distilled

water of o C, the measurements of Amagat* being, after an independent control

of their reliability, used as a base for this calculation. Mr. Ekman has kindly fur-

nished us with the following formula computed from his own measurements in

connection with those of Amasrat:

(d)

+/io- 4

["

4886 To ,1
s 7 227 + 28.33T o.55it

2
4- 0.004T

5

I + O.OOOOI83/ L

105.5 + 9-5ot-o.i58t
2 - i.s/7'io"

8

,-28
10 I47.3 2.72T + O.O4T

2

p IO_4(32.4 O.87T + 0.002T2

)

+ {^^)'h- 5 + - it -*- io_4
<
1 -8 - -o6t)

] }

'

* Amagat: Mdmoires sur l'dlasticitl et le dilatation des fluides jusqu'aux trfes hautes pressions. Annales de
Chimie et de Physique, t. 29, 1893, p. 544.
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the quantities aw0 and o-m being calculated as explained above from the formulae 01

the tables of Martin Knudsen. Mr. Ekman's discussion of his results shows that

the specific volume calculated by the formula will not probably contain greater
error than o.ooooi for the pressure of iooo d-bars, and proportionally o.oooi for

10,000 d-bars. Still more important for the oceanic dynamics is the following con-

clusion from Mr. Ekman's discussion: Differences in the specific volume of two

samples of sea-water taken from the same depth, which have been calculated by this

formula, will be perfectly reliable in the fifth decimal in all cases met with in

the sea.

27. Tables for the Specific Volume of Sea-Water. We shall never use the

preceding formulae directly in investigations in statics or dynamics of the sea. They
will only serve for the construction of tables giving the specific volume or the

density of sea-water for all necessary values of the independent variables. This

tabulation, however, contains difficulties. The greatest depth hitherto sounded in

the sea being 9636 meters, the sea-pressure can vary from o to about 10,000 d-bars.

The temperature can vary from 2 to about 30 C. and the salinity from o to about

4o/ 00 - Modern observations being taken with a precision of about 0.01 C. and

of 0.0 1 / 00 of salinity, the tables should not have greater intervals than 0.1 C.

and 0.1 /oo salinity. To be able to interpolate conveniently to any depth, the pres-

sure should not be taken with greater intervals than 10 d-bars. The direct tabu-

lation would thus involve the calculation of 320 X 400 X 1000 = 128,000,000

different values of the specific volume. By printing 500 numbers on each page the

tables would cover 256,000 pages. The direct tabulation must thus be given up,

and we shall have to use in a more developed form the principles exemplified for

the case of two variables in tables 3 m to 6 m and 3 h to 6 h, viz, to break up the

quantity to be tabulated in a sum of terms, each of which is more easily subject to

tabulation.

To carry this through in the present case, we can use a development analogous
to that of Taylor. We first write

(a)
a
,rP
= a

35, 0, ,,
+ 8

Here a
35,o,,,

denotes the specific volume of sea-water of the constant salinity 35 /oo

and the constant temperature o C. under any pressure p. These special values of

salinity and temperature are not very far from the average values in the deep

oceans, and we shall therefore denote a^j^as the normal specific volume of the sea-

water under the pressure p. The value a
3rp representing the specific volume of

any kind of sea-water under the same pressure p is then found from a^,i0iP by the

addition of a correction 8, which we shall call the anomaly of the specific volume

This correction will be a function of salinity, temperature, and pressure, and can be

broken up in a series of terms

(b)
8- 8, 4- K + S

ST + Sv + B
Tp + S

STP

where the indices show the variables upon which the different terms depend.
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Thus 8
a and 8

t depend each on one variable, &
ST , 8^,

S
Tp

r

each on two, and only S on

all three variables. The main point is now to determine these terms so that the

terms depending upon more than one variable become as small as possible. This

is done if we give them the following values:

s
= a

t, 0,
a

35, 0,

t
=

<*35, t,
a
35, 0,

.'T
=

\
a

s, t,0
a

35, r,o) \
a

i, 0,0
a

35, 0, 0)

(
C
) $*p

=
(<*, 0, p

a
35, 0,p) (

a
,0,

a
35, 0, 0)

&TP
=

0*35, T, ;.
a

35, 0, p ) (
a

35, t,
a

35, 0, o)

$srp
=

[(<*, t,p
a
35,r,;.) (

a
s,T,0

a
35,T,o)] [(<**, O.p

a
36,<,,p)

~
( ., 0,

~
%>,0,o)]

It is easily verified that the substitution of (c) and (b) in (a) makes this

equation identical. Now, each of the quantities *35,o, P ,
8
S ,

8
r ,

8
ST , 8^, 8

TP ,
8
STP

are easily

tabulated separately. The values of^,,, are found from Ekman's formula, putting
s = 35, t = o, and using the values 35f0 ,o

= -97364 and <rm = <r
36i 0>

= 28.13, calcu-

lated from Martin Knudsen's tables. The result for rooo values of the pressure is

given in table 8 h. The correction o
t
for salinity at temperature zero and the cor-

rection 8
T for temperature at salinity 35 /oo are both found from Martin Knudsen's

formulae or tables. The result is given in tables 9H and 10 H for 400 values of the

salinity and 320 values of the temperature, respectively.

Being differences of the second order, the quantities depending upon two

variables 8
sr ,

8
sp ,

8
Tp

are sufficiently small to be tabulated for ten times greater
intervals of the independent variables, viz, for 40 values of the salinity, 32 values of

the centigrade degrees, and 100 values of the pressure. 8
ST is found from Martin

Knudsen's formulas or tables. The expressions of 8^ and 8
Tp ,

which are rather

long in spite of the smallness of the numerical values, are formed from Ekman's

formula. The results are given in tables 11 h, 12 h, and 13 h. The quantity 83r

finally, depending upon three variables, is given by a very long expression

deduced from Ekman's formula. But being a difference of the third order, it is

sufficiently small to be tabulated for still greater intervals of the independent

variables. The result is given in table 14 h as a system of 17 small tables, each

corresponding to a certain salinity, while within each table temperature and pressure

figure as the independent variables, the intervals of pressure being 1000 decibars.

The tabulation of the specific volume of sea-water has thus been accomplished

by seven small tables covering 10 pages. This system of small tables is equivalent

to the one table of 256,000 pages on account of the possible permutations in the

sum (a) and (b) of the values taken from the different small tables.

The three last tables, involving the pressure as one of the independent variables,

are not calculated completely, those combinations of the variables being left out

which are not found in the sea. The general distribution of temperature and

salinity in the sea is readily seen from the charts worked out by Dr. G. Schott.*

The greatest variation of temperature is found on the surface of the sea, extending
from the evident lower limit, the freezing-point of sea-water, between 1 and

* Wissenschaftliche Ergebnisse der deutschen Tiefsee-Expedition auf dem Dampfer
"
Valdivia," 1898-99.

T. I. V. Oceanographie und maritime Meteorologie von Dr. G. Schott. Jena, 1902.
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2 C, to the maximum values in the tropics, hardly anywhere exceeding 30 C.

in the open sea. As we proceed downwards, the freezing-point of sea-water is

retained as the lower limit, while the upper gradually decreases, but at a very differ-

ent rate, in the open ocean and in the more or less closed seas. The temperature
in the open sea will hardly anywhere exceed io C. at a depth of 1000 meters, and

in still greater depths it will be found between the limits +2 and 2. In more

or less closed seas the temperature may be much higher in corresponding depths.

Thus, in the Red Sea there is a temperature of 2i.5C. at the depth of 2100

meters, in the Sulu Sea (between Borneo and Philippines) 10.2 C. at the depth
of 4300 meters, and in the Mediterranean 13.9 C. at the depth of 4400 meters.

The salinities also have their greatest range of variation at the surface, namely, from

zero at the mouths of great rivers to 39/ o hi the Mediterranean and 40.4 /oo m the

Red Sea. As we proceed downwards the low salinities rapidly disappear, but at

a different rate and converging towards different limits in the open ocean and in

the closed seas. In the open ocean the salinity rapidly converges towards the

almost constant salinity of about 35 / 00 . The Mediterranean has the higher salinity

of about
j39/oo and the Red Sea of about 4o/ 00 at the bottom, while the Baltic has

the low salinity of about 10 / 00 in its greatest depths, somewhat exceeding 400
meters. Lower salinity than that of the Baltic and higher than that of the Medi-

terranean or the Red Sea will hardly be found anywhere in corresponding depths.
These general data have determined the limits of the three last tables.

The method of tabulation which we have used, while leading to very small and

convenient tables, has a defect which must be mentioned. The result is found as

the sum of seven terms. Each term may have an error of five units in the sixth

decimal of the specific volume, or, on account of the double interpolations in the

tables containing more than one variable, even somewhat more. Thus in excep-
tional cases errors may occur exceeding 3.5 in the fifth decimal, corresponding to

an error of about 0.03 /<x> m the salinity and thus exceeding somewhat the errors

of careful observations, which may be carried to about 0.01 / 00 . This error may
perhaps be of importance for the investigation of the conditions of equilibrium or

motion in very homogeneous parts of the sea. It might have been avoided if we
had calculated all our tables with one decimal more. But this would have made the

use of the tables in the most common cases much less convenient. When more
accurate tables are required it will probably be the best plan to construct three

different sets of tables for three different types of sea-water: the oceanic type, the

Mediterranean type, and the Baltic type. For the oceanic type the tables should

be extended to all pressures, but for all greater pressures the temperature and

salinity could be contained between very narrow limits, approaching C. for tem-

perature and 35 /oo for salinity. For the Mediterranean type the tables should

extend to pressures somewhat exceeding 4000 d-bars, while the temperature in

greater depths has about 10 for its lower and 20 for its higher limit. The salinity

in greater depths should have 35 for its lower and a little more than 40 for its higher
limit. These tables might be used in closed tropic or subtropic seas, as the Medi-

terranean, the Red Sea, and the Sulu Sea. For the Baltic type the tables could be
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limited to the pressure of 500 d-bars, while the temperature must have all values

from the freezing-point of water to that of the tropic sea, and the salinity all values

from that of fresh water to that of oceanic water. These tables could be used for

the Baltic, the St. Lawrence Bay, the mouths of great rivers, the shallow waters

along the Arctic coasts, etc. The variations of the independent variables being
limited in this way, the tables could be constructed for so small intervals of the

independent variables that convenient differences would be obtained even if the

specific volume was calculated with six decimals.

28. Control of the Accuracy of the Tables. A question of the highest

importance is that of the absolute reliability of the tables. The test is given in as

direct form as possible by the annexed tables B and C. The first table contains

the volumes of the samples of sea-water under atmospheric pressure examined by
Martin Knudsen. These volumes are not given in absolute measure in Martin

Knudsen's paper, but by the additional data they have been reduced from the rela-

tive measure employed in the course of the experiments to the values in absolute

units given in table B. In the same manner table C contains the specific volumes

of the samples of sea-water under different pressures examined by Ekman. These

Table B. Fundamental Values as,T,o of Specific Volume of Sea- Water under Atmospheric Pressure.

I. s= 3.20 %0
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values do not appear explicitly in Mr. Ekman's paper either, but he has kindly

calculated them for us as directly as possible from the compressibilities measured,

using the necessary additional data from Amagat and Martin Knudsen.

Table C. Fundamental Values of asr ^ of the Specific Volume

of Sea- Water under Different Pressures.
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The three terms corresponding to the case p = D= o, viz, e e
t , e,T ,

are calculated

directly from Martin Knudsen's formulae or tables. Thus the only difficulty con-

cerns the terms pMi o,z >m tz *std containing the depth as an independent variable.

To perform the transition from the variable p to the variable D, we must know
with a sufficient approximation the relation between pressure and depth in the sea.

For the case of normal sea-water of 35 %o and o C. this relation is easily deter-

mined by a method explained in the next chapter. The result is contained in table

7 h, which gives the dynamic depth of any given pressure for intervals of 10 d-bars.

By interpolation in this table we can determine the pressure in any depth expressed

by any integer number of dynamic meters. The result of these interpolations is

given in table 15 h, which contains the pressures in depths expressed by any

integer number of dynamic meters, registered for intervals of 10 dynamic meters.

We can now by table 8 determine the specific volume of the sea-water correspond-

ing to the pressures registered in table 15. These will be the specific volumes ol

normal sea-water for the depths figuring as arguments in table 15 H. Passing to

the reciprocal values by use of the inversion-table 23 h, we get table 16 h, giving

the normal density p3
-

Oi0,i>
of sea-water in 1000 different dynamic depths.

For the calculation of the small quantities e from the corresponding quantities 8,

we can make use of simple approximation rules. Differentiating the equation con-

necting the density p with the corresponding specific volume a, w,e get dp = dale?.

Applying this for the transition from the correction S of any value of the specific

volume to the corresponding correction e of the density, we get

8

(a) B = --t

Using, as above, table 15 h to find the pressure corresponding to the given dynamic

depth, and this pressure to find 8-values from tables 12 h or 13 H, the corresponding
values of e are calculated by equation (a). In this way the main tables 20 h and

21 h are calculated. These would give exactly the required corrections ssD and T

if the pressure in the depth considered had exactly the normal value given by
table 15 H. But if the water above the level considered has other than the normal

salinity 35 / 00 or other than the normal temperature o C, the pressure will be

slightly different, and this will have a slight influence upon the density of the sea-

water in the level considered. The anomaly of pressure in question can easily be

estimated with sufficient approximation from the average salinity and the average

temperature of the water above the level considered, and thus the corresponding
correction of the density as the consequence of the compression found. These cor-

rections are given in the small tables placed at the foot of the main tables 20 h and

21 h, having the average instead of the local values of salinity and temperature as

argument.
It is seen that as a2 never difters very much from unity, corresponding values of

B^ and stD ,
as well as of h

rp
and erD,

are very nearly like each other, but with opposite

signs. Passing to the calculation of the term of the third order, e
srp ,

we can simply

put a2 =
1, and identify the numbers expressing depths in dynamic meters with

those expressing pressures in decibars. Table 22 h, giving the values of e D ,
is
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therefore identical with table 14 H, giving S
arp ,

but with the difference that all

terms appear with the sign reversed.*

30. Important Features of Specific Volume or Density of Sea-Water.

Tables 9 h and 17 h show the regular decrease of the specific volume, or the

increase of density with increasing salinity. In the same way tables 8h and

16 h show the regular decrease of the specific volume, or increase of density with

increasing pressure. These tables do not show any marked peculiarities of the

sea-water. But very marked peculiarities are shown by the volume-tables 10 h,

11 h, and 12 h and the corresponding density-tables 18 h, 19 h, and 20 h.

Table 10 h shows for sea-water of the salinity 35 /oo a regular decrease of

volume, and table 18 h the corresponding increase of density for decreasing tem-

perature. No maximum of density is found. Table 10 h used together with 11 h,
or 18 h used together with 19H, shows that we have a minimum of specific volume
or a maximum of density at 4 C. for fresh-water, at 2 for a salinity of about

9.5 "/a,,, at o for a salinity of about 19 /oo and at 2 for a salinity of 28 to 29 / 00 .

But for the normal oceanic salinity of about 35 / 00 ,
there exists no maximum of

density, and we shall, in the case of equilibrium, always have warmer water above

and colder below. This circumstance makes the equilibrium condition of the ocean

quite different from that of fresh-water lakes.

*The first determinations of the compressibility of the sea-water were performed by P. G. Tait {Challenger
Report, Physics and Chemistry, vol. II, 1889). The first hjdrographical tables taking into account the compressi-
bility were calculated by Sandstrom and Helland-Hansen (Report on Norwegian Fishery and Marine Investigations,
vol. II, No. 4, Bergen, 1903). When our tables were first calculated, the only measurements performed upon sea-
water were still those of Tait, which had not by far the exactitude of Ekman's. Especially, no care had been taken
to determine the salinity of the samples of water experimented upon at the time when their compressibility was
measured. We therefore combined Tait's measurements for sea-water with those of Amagat for distilled water,

using Amagat's as absolute determinations and those of Tait only as relative comparisons of the compressibility
of sea-water and fresh-water of the same temperature. In the developments, section 27 (c), we therefore had to
subdivide every term where the pressure and the salinity entered into a main term depending upon the measure-
ments of Amagat upon fresh-water and a correction term depending upon the corresponding measurements of Tait

upon sea-water. Thanks to this method of calculation we had obtained tables which were in unexpectedly good
accordance with the new tables, which we have now calculated after the manuscript of the first tables had been sent
to press. The degree of accordance between the two 6ets of tables will be seen from the following data.

The specific volume of normal sea-water (Amagat-Tait) was smaller than that registered in our new table Sh
for the pressures from zero to about 2200 d-bars, the maximal error being 0.00007 at 8 to 9 d-bars. Then the
volume was found greater from 2200 to 4400, the error varying between 0.00001 and 0.00002. For greater pressures
the specific volume was always found smaller, the error increasing gradually to 0.0001 at 5700 d-bars, to 0.001 at

S500 d-bars, and to 0.002 at 10,000 d-bars. Thus the error here runs up to 1/500 of the total volume. It should be
remarked, however, that these greater discrepancies only occur for the values which have been extrapolated, Tait's

experiments being extended to the pressure of 4629 and Ekman's to the pressure of 6000 d-bars. For depths in the
sea not exceeding 5000 meters the accordance is remarkably good, and hydrographic surroundings very seldom go
to a greater depth. The degree of accordance is very well illustrated by the following fact : The normal depth of
the isobaric surfaces calculated according to Tait never differs by so much as one decimeter from the corresponding
depths according to Ekman (table 7 h) for the first 5000 meters. For greater depths there are gradually increasing
discrepancies, the depth being found according to Tait 1 m. too small for the pressure of Sooo d-bars, 2m. too small
for the pressure of 9000 d-bars, and 3.6 m. too small for the pressure of 10,000 d-bars. But even these discrepancies
are of a secondary importance, for, as will be seen later, an error in the estimation of

t
the normal depth of the

isobaric surfaces will have practically no influence upon the discussion of the state of equilibrium or motion. Of
much greater importance are the much smaller corrections in tables 12 h and 13 H. The greater part of the numbers
in these tables have remained unaltered. But still there is a marked difference, the numbers being found numeric-
ally too small in both tables, the discrepancies in the most extreme cases mounting to 0.00004 m tne values of 6Sp
and to 0.00007 > n the values of 6TP . In spite of their smallness, these corrections are of real importance for the esti-

mation of the conditions of equilibrium and motion in the sea.

The value of the quantity 6srp was underestimated, so that no tabulation was found necessary. This may have
been an error due to the difficulties caused by the complicated method of calculation which had to be employed in
order to eliminate so much as possible the errors due to the inaccuracies of Tait's measurements. Thus table 1414
has been calculated only by Ekman's formula.

The examples in Chapter VIII have been corrected according to the new tables, but the charts in Chapter IX
were already printed. However, the changes in these charts would in most cases be almost microscopical.
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Tables 12 h and 20 h show an increasing resistance of the sea-water against com-

pression for increasing salinity, and tables 13 h and 21 h show, for the interval of

the temperatures in question, a similar increased resistance against compression with

increasing temperature. This dependence of the compressibility upon the temper-
ature and the salinity is of great importance for the internal conditions of equilibrium
or of motion in the sea. To consider a definite example: At a pressure of 5000

decibars, i. e., at a depth of 5000 meters, water of 35 %o salinity and at the

temperature of 1 C. will have the same specific weight as water of 35.48 %o

salinity at a temperature of -j-i C. But under the diminished pressure of 2000

decibars, /. e., at the depth of 2000 meters, the specific volume of the first water

will be 0.00015 greater than that of the second, and at a depth of 9000 meters the

reverse will be the case. The extreme importance of these differences of com-

pressibility will thus be perfectly clear.

31. Isosteric and Isopycnic Surfaces. The value of the specific volume being
known in a sufficient number of points in the atmosphere or the sea, we can repre-

sent the distribution of mass in each of these media by drawing a set of equiscalar

surfaces, joining all points where the specific volume has certain constant values.

We shall call these surfaces isosteric surfaces. If, on the other hand, the value of

the density be known in a sufficient number of points, we may represent the distri-

bution of mass by drawing surfaces of constant value of the density, or isopycnic

surfaces.

The two fields representing the distribution of mass are closely related to each

other, every isosteric surface being also an isopycnic surface, and vice versa. But

one important difference should be emphasized: if the isosteric surfaces be drawn

for unit-differences of the specific volume, the corresponding isopycnic surfaces

will not have unit-differences of the density, and vice versa. This will be well

illustrated if we consider the conditions in the atmosphere. Here the density

decreases upwards, converging toward a very small limit, or perhaps toward

zero. The specific volume, on the contrary, which is the reciprocal of the density,

increases upwards, converging toward a very great limit, or perhaps toward infinity.

Drawing the isopycnic surfaces for unit-differences of the density (a unit of con-

venient magnitude being chosen), the thickness of the unit strata will increase

upward, approximately in geometric series. If, on the other hand, the isosteric

surfaces are drawn for unit-differences of the specific volume, the thickness of the

corresponding unit-sheets will decrease, approximately in geometric series. Even

in the sea there is a corresponding difference between the two systems of surfaces,

only much less pronounced.
The equiscalar surfaces of the specific volume or the density being very nearly

level, the gradient or the ascendant of these quantities will be directed very nearly

along the plumb-line. For reasons which will appear later it will be more con-

venient to use the ascendants than the gradients in this case. The ascendant of

the specific volume points upward, that of the density downward, forming a very
small angle with the plumb-line.
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CHAPTER IV.

PRINCIPLES OF HYDROSTATICS.

32. Pressure, Isobaric Surfaces, and Gradient. The theory of pressure as

met with under general conditions in strained elastic bodies or in moving viscous

fluids is of great complexity. But in the special case of the equilibrium of any

fluid, as well as in the case of the motion of a frictionless fluid, it is reduced simply

to a scalar quantity. The field of a hydrostatic pressure can therefore be described

according to the common principles for the description of scalar fields (section

16). Thus for the geometric representation of this field we draw surfaces of equal

value of pressure, or isobaric surfaces. As a rule we shall draw them for unit-

differences, so that they divide the space into a set of isobaric unit-sheets. To get

unit-sheets of the proper thickness we are free to choose a unit-pressure of suitable

magnitude.
The -pressure gradient, or simply the gradient G, is given by the rate of

decrease of the pressure p along the normal n to the isobaric surfaces

W G= ~Tn

and the component Gs of the gradient along any direction s is given by the rate of

decrease of the pressure along this direction

G = ~ 8

i
The isobaric surfaces and the unit-sheets, drawn for a unit of suitable magnitude,

give the full representation of the field of the gradient G (section 17). The vector

itself is directed along the normal to the surfaces, its numerical value being equal to

the reciprocal thickness of the sheet. Its component Gs along any line is equal to

the reciprocal length of that segment 5 of this line which is contained in the unit-

sheet. In accordance with formula (f), section 17, we have finally

\
c

) Cr,= "

which gives the mean value along the curve i- of the component of the gradient

tangential to the curve. The mean tangential gradient is thus equal to the differ-

ence of pressure at the end-points of the curve, divided by the length of the curve.

33. Dynamic Significance of the Pressure Gradient. Like every scalar

quantity, pressure has a gradient. But the gradient of the pressure has at the same

time a dynamical significance, making it the fundamental vector of hydrostatics and

hydrodynamics.
4 1
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Let us determine the elementary force component dFs , which, as a consequence
of the pressure, tends to move a volume element dr of the fluid in the direction s.

To consider the simplest case, let the volume element have the form of a straight

cylinder with its axis in the direction s and with its bases normal to this direction.

As the pressure in a perfect fluid acts normally to the surface, the pressure against
the lateral surface can be disregarded, as giving no addition to the component of

force along the axis s. We have thus only to consider the pressure against the

two bases of the cylinder. Let the value of the pressure at the first base be p.

At the other it will then be p -\- -~ds, ds being the height of the cylinder. The

area of each base being dcr, we find that the exterior fluid exerts the force pda
d-t>

against the first and the oppositely directed force {p-\-f- ds) dcr against the sec-

ond base. From these two oppositely directed forces will therefore result the force

dpdFs
= - dsda. Now dsda is the volume dr of the element. Further, dp/ds is

the component G, of the gradient in the direction s (section 33, b). We therefore

get

(a) dF, = G,dT

Thus the elementary force tending to move a volume element of the fluid in any
direction is equal to the component of the gradient in this direction, multiplied by
the volume of the element. Or, in other words: The gradient represents the

force per unit-volume uue to the field of 'pressure in thefluid.

By this we see that there is a close relation between potential gradient and

pressure gradient. For both gradients represent moving forces. But there is this

important difference, that the potential gradient represents the force of gravity per
unit-mass, while the pressure gradient represents the force of pressure per unit-

volume (section 3). To get the force of pressure per unit-mass we have to multiply

the gradient by the specific volume, exactly as we get the force of gravity per

unit-volume by multiplying the acceleration of gravity by the density of the body
considered. Force of gravity and force of pressure, both referred to unit of mass,

are therefore, respectively,

(b) g and aG

while the same two forces, both referred to unit-volume, are, respectively,

(c) pg and G

The consistent use either of forces per unit-mass or of forces per unit-volume

leads to mutually equivalent but formally different methods of formulating the

principles and of treating the problems of hydrostatics. We shall develop both of

them in parallel, as they are complements of each other from a practical point of

view.

34. Condition of Equilibrium in Terms of Forces per Unit-Mass. The con-

dition of internal equilibrium of a fluid is fulfilled if the force of gravity and the
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force of pressure are everywhere directed oppositely to each other, and if their

amounts per unit-mass are equal,

() g=-aG
Other forms for this condition are easily deduced. Remembering that the

negative derivatives of
<j>

and p along the direction s are equal to the components
of g and G in this direction, we get

(*) Ts*%
Writing equations of this form for each of the three rectangular axes x, y, z, we

get the hydrostatic equations in their traditional form, referred to rectangular
coordinates. For us, however, the introduction of artificial systems of coordinates,

having no relation to the intrinsic geometry of our problems, will only cause

complication. It will, on the contrary, be most convenient for us to have the condi-

tion of equilibrium referred as closely as possible to the natural coordinate surfaces,
the level or equipotential surfaces. This is obtained if we multiply equation ()
by the line element ds, and use the differential formula?

dcj) dp
&*-<** J~s

ds = dp

Between the total increases d<f> and dp of pressure and of potential along the line

element ds, we thus get the relation

(c) d<f>
= adp

This equation gives in its simplest form the intrinsic relation which, in the case of

equilibrium, exists between pressure, specific volume, and gravity potential.

35. Equilibrium Relation between the Fields of Potential, of Pressure, and
of Specific Volume. We have considered, independently of each other, the fields

of potential, of pressure, and of mass, and the description of each field by means
of its proper equiscalar surfaces and sheets. The condition of equilibrium which
we have formulated gives a relation between these three fields which can be

expressed as a relation between their surfaces and sheets. Expressed in this wa}r

the equilibrium relation will contain two distinct principles, the first of which is

purely descriptive, dealing with the course of the surfaces, while the other is of

metric nature, giving a numerical relation between the unit-sheets.

(I) Principle of Coincidence of Surfaces. The gradients of potential and
of pressure being oppositely directed, while the first of them is normal to the equi-

potential and the second to the isobaric surfaces, we at once conclude that isobaric

and equipotential surfaces must coincide.

From this it follows that every isobaric sheet must coincide with an equipoten-
tial sheet. Let the two coinciding sheets be infinitely thin. The passage from
the one limiting surface of the sheet to the other, then, gives a certain increase of

potential d(f>, and a corresponding increase of pressure dp; all along the sheet d<f>

has the same value, and the same will be the case with dp. Their ratio d<f>/dp,
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therefore, is constant. But this ratio, taken with the negative sign, is, by equation

(c), section 34, equal to the specific volume of the fluid in this sheet. We there-

fore conclude that the specific volume is constant all along the sheet. This con-

dition being fulfilled for every infinitesimal sheet, it follows that the surfaces of

equal specific volume must have the same course as those of equal pressure and

of equal potential. Hence:

In the state of equilibrium there is coincidence between the isobaric, the iso-

sleric, and the equipotential surfaces.
This remarkable coincidence of the equiscalar surfaces of three different fields

is a necessary but not sufficient condition for equilibrium.

(II) Principle of the Unit- Sheets. From equation (r), section 34, we further

conclude that in every direction the variation of potential is a times more rapid than

that of pressure. In reference to infinitesimal unit-sheets this means that every
isobaric unit-sheet contains a equipotential unit-sheets. For practical reasons it

will be important to have this principle formulated not only for infinitely thin

sheets, but also for sheets of finite thickness. Integrating, therefore, equation (c),

section 34, and denoting by am the mean value of the specific volume in the interval

between the pressures p x
and p2 ,

we get this relation between finite differences of

potential and the corresponding finite differences of pressure:

(
a
) 4>2

-
4>,
= -

,(A -A)

Applying this to an isobaric unit-sheet, we get p2 pi = T
>
and thus

(*) fc
-

+1
- -

.

Here <p2 $, is the number of equipotential unit-sheets contained within the con-

sidered isobaric unit-sheet. Disregarding the sign, we thus get this numerical law:

In the state of equilibrium the number re-presenting the mean specific volume

of thefluid in an isobaric unit-sheet also represents the number of equipoten-
tial unit-sheets contained in the isobaric unit-sheet.

These two principles, taken in connection with the rule of signs that increasing

potential gives decreasing pressure and vice versa, give the full equilibrium relation

between the three fields that of mass, that of pressure, and that of potential.

36. Determination of Heights or Depths of Given Pressures. In the m.t.s.

system of units the thickness of an equipotential unit-sheet is 1 dynamic decimeter.

The number of equipotential unit-sheets contained in an isobaric unit-sheet is there-

fore the number of dynamic decimeters giving the thickness of the sheet. The

principle of the unit-sheets, therefore, enables us to find the thickness of any isobaric

sheet, adding the thicknesses of the successive unit-sheets and to determine thus

the height or depth where the pressure has any given value. This is the dynamic

principle of the barometric measurements of heights or of manometric measure-

ments of depths.

Performing this operation practically, it will generally be convenient to pass
from the m.t.s. units, dynamic decimeter and centibar, to the greater units, dynamic
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meter and decibar, or occasionally also to other decimal parts or multiples of the

dynamic meter and the corresponding decimal parts or multiples of the bar.

As a first simple example we can consider pure imcompressible water of unit

specific volume. Here there is full coincidence between isobaric andequipotential
unit-sheets. The standard isobaric sheets of i decibar (section 5) have the thick-

ness of 1 dynamic meter, exactly as the standard equipotential sheets (section 4).

Disregarding the atmospheric pressure on the sea's surface, and considering only

what we have called the sea-pressure (section 26),
we get this simple rule for finding the depth where

the pressure has a given value. The number ex-

pressing a given sea-pressure in decibars expresses
at the same time the depth of this sea-pressure in

dynamic meters. This rule, being exact for the

case of pure incompressible water, remains a use-

ful approximate rule also for the case of common
sea-water.

As a second example we may consider sea-

water of 35 / 00 salinity at o C. In table 8 h of

Hydrographic Tables we have registered the spe-

cific volume of this water for the differences of

pressure of 1 bar (10 decibars). The unit of

gravity potential corresponding to this difference

of pressure is the dynamic decameter. Forming
the arithmetic mean of two and two successive

numbers in table 8 h, we get the mean specific vol-

ume of the water in isobaric sheets of 1 bar, i. e.,

the thickness of these sheets expressed in dynamic
decameters. Adding these thicknesses from the

surface downward, we get the depths of all iso-

baric surfaces for the interval of pressure of 1 bar.

The dynamic depths found in this way are given
in table 7 H of Hydrographic Tables, the units

being again turned into dynamic meters and deci-

bars. The equilibrium relation connecting dynamic

depth and pressure according to this table is illus-

trated by the first vertical of fig. 1. The divi-

sions to the right of this vertical give the pressures

in decibars, and the divisions to the left the corre-

sponding depths in dynamic meters. The second

vertical of the figure gives in corresponding man-

ner the equilibrium relation between pressure and

specific volume, i. e., the relation contained numerically in table 8 h.

If we had constructed complete tables of the specific volume of atmospheric air,

we should have been able to determine the heights of given pressures in the atmos-

3
9000

-1OO0O 1OOO0

ton

ioooo->- 10000-

Fig. 1. State of equilibrium of sea-

water of 35 / 00 salinity and o C.
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phere in the same direct way. But as such tables would be very bulky, we have

not calculated them, and we shall show later how to proceed without them. On
this occasion, therefore, we only remark that the pressure at sea-level is very

nearly 10 decibars. In the atmosphere we shall therefore have to count with 10

standard isobaric surfaces of the pressure from 10 to 1 decibars. These surfaces will

divide the atmosphere into 10 standard isobaric sheets, the highest of which,

however, has only a distinct lower limit, the standard surface of the pressure of 1

decibar, while the existence of the upper limit, the isobaric surface of pressure zero,

may be open to discussion. As a consequence of the decrease of the pressure, the

thickness of the standard sheets will increase upward. The thickness of each of

them will vary with the virtual temperature as shown in table 9 m of Meteorologic
Tables. The methods used for calculating this and other tables required for finding

the height of given pressures in the atmosphere will be given in Chapter VI.

In the mercury column of a barometer we have the same number of standard

sheets as in the atmosphere. The specific volume of the mercury being 0.073554,
the thickness of the standard sheets is 0.073554 dynamic meter, or 0.075008 meter

for the value of gravity at sea-level at 45 latitude. This is 75 millimeters,

practically.

37. Condition of Equilibrium in Terms of Forces per Unit-Volume. To

express the condition of equilibrium we can also use the forces per unit-volume,

section 33, (c). Equilibrium exists if the forces per unit-volume are equal and

oppositely directed.

(a) G=- Pg

Proceeding as in section 35, we derive from this

and

(c) dp = pdcf>

Each of these equations may be formed from the corresponding equation of

section 35 simply by multiplying by the density p. The difference between the

equations is thus the slightest possible, but still important in its further consequences.

38. Equilibrium Relation between the Fields of Potential, Pressure, and

Density. On interpreting geometrically the condition of equilibrium in this form,

characterized by the reference of the forces to the unit of volume, we find this

difference only, that the field of mass is described by the distribution of density
instead of, as previously, by the distribution of specific volume. We thus arrive at

the following two slightly changed forms of the principles formulated in section 35 :

(I) Principle of Coincidence of Surfaces. Every isosteric surface being at

the same time an isopycnic surface, we immediately get from section 35 (I):

In the state of equilibrium there is coincidence between the isobaric, the

isopycnic, and the equipotential surfaces.
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(II) Principle of the Unit-Sheets. As is immediately seen, equation (a),

section 35, takes the changed form

() A -A = -
Pm(4>2

~ <M

and thus for an equipotential unit-sheet, <f>2
< being equal to unity,

(*) A-A --ft.
Therefore:

/ Me s/a/g of equilibrium the number representing the mean density of the

fluid in an equipotential unit-sheet also represents the number of isobaric

unit-sheets contained in the equipotential unit-sheet.

39. Determination of the Pressures at Given Heights or Depths. The

principle of the unit-sheets in its first form led to the method of barometric

measurements of heights or of manometric measurements of depths (section 36).

In its second form it leads to the solution of the inverse problem, namely, the

determination of the pressure at given heights or depths. The m.t.s. isobaric unit-

sheet represents the difference of pressure of 1 centibar. The number of such

sheets contained in the equipotential unit-sheet therefore gives the difference of

pressure in centibars between the surfaces limiting the equipotential unit-sheet.

Adding these differences of pressure from level surface to level surface, we can

determine the pressure at any level if it be known in an initial level. Performing it

practically we may as above make use of other units of pressure and of gravity

potential than those of the m.t.s. system.

Taking the same examples as above, there will be no difference so long as we
consider pure incompressible water at maximum of density. The density being

unity, the increase of pressure for each dynamic meter of depth will be 1 decibar,

and the number representing the depth in dynamic meters will represent at the

same time the sea-pressure expressed in decibars. As a second example we shall

determine the pressure in given depths in sea-water of 35 /oo salinity and oC.
The hydrographical table 16 h gives the density of this water at all depths for

intervals of 1 dynamic decameter. Forming the mean value of two and two suc-

cessive numbers in this table, we get the average density of the sea-water in

equipotential unit-sheets of 1 dynamic decameter, i. e., the increase of pressure in

bars from level surface to level surface. Adding these increases of pressure from

sea-level downwards, we get the sea-pressure expressed in bars at all dynamic

depths for intervals of 1 dynamic decameter. Then, on returning to the smaller

units, the dynamic meter and decibar, these pressures are given in table 15 h in

our Hydrographic Tables. The equilibrium relation between dynamic depth and

pressure contained in this table is intrinsically the same as that contained in table

7 H. Graphically we arrive at the same representation from both tables, given

by the first vertical of fig. 1. The third vertical represents the relations between

dynamic depth and density contained in table 16 h.

40. Integral Forms of the Equation of Equilibrium. In equations (c), sec-

tion 34, and (c), section 37, the increase of potential d<f> and the increase of pressure
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dp are referred to the displacement along an element of line ds. Forming the sum

for any succession of line elements, we get the equations referred to a curve of finite

length, namely, from (c), section 34,

(a) <f>2
- & = -

I adp

and from (c), section 37,

(*) X*2^1

The first of these equations gives the difference of potential, i. e., the difference

of dynamic height, between the isobaric surfaces of pressures p2 and px . The
second gives the difference of pressure between two equipotential surfaces of

potentials <
x
and

<f>2 .

The dynamic sense of the integrals forming the second member of equations

(a) and (b) is easily found, as we have

acip
= aGds pd<f>

= pgds

Thus the integral in (a) is the line-integral of the force of pressure per unit-mass.

The integral in equation (b) is the line-integral of the iorce of gravity per unit-

volume. On the other hand, the differences appearing on the left side of the

equations $2 4>i ar>d pi p\ are the line-integrals of the force of gravity per unit-

mass and of the force of pressure per unit-volume. Equation (a) thus shows that

the force of gravity and the force of pressure, both referred to unit-mass, have

oppositely equal line-integrals. In the same way, equation (b) shows that the force

of gravity and the force of pressure, both referred to unit-volume, have oppositely

equal line-integrals. One of the two oppositely equal line-integrals can always be

expressed in finite form, namely, that of the force of gravity per unit-mass and that

of the force of pressure per unit-volume.

The equations (a) and (b) enable us at once to derive a fundamental property

of the integrals appearing on the right side. The values <f>y and <f>2 of the potential

in the end-points 1 and 2 of the curve depend only upon the situation of these points

1 and 2, and not upon the course of the curve s joining them. The same is the

case with the values p x and p2 of the pressure in the same two points. The integrals

on the right side, therefore, must have the same property. Hence we conclude:

Under statical conditions the line-integral of the force of pressure per
unit-mass

(
C
)

- r~adp
l/p,

as well as the line-integral of theforce ofgravity per unit-volume

X*2.1

are independent of the course of the curve and dependent only upon the posi-
tions of its end-points.

As a corollary we get this other theorem:

Under statical conditions the line-integrals of the force of pressure per
unit-mass (c), as well as the line-integral of the force ofgravity per unit-volume

(d) are zerofor every closed curve.



CHAPTER V.

IDEAL STATES OF EQUILIBRIUM IN THE ATMOSPHERE.

41. Analytical Integration of the Equation of Atmospheric Equilibrium.
The hydrostatic equation

() dip = adp

contains three variable quantities, <p, fi, a. Two of them, p and a, are connected
with a third variable # by the equation of state

(6) fa = R&

& being the true temperature of dry or the virtual temperature of moist air. By
this equation we may introduce temperature i?asa variable in (a) instead of the

specific volume a. This will generally be convenient, and the equation of atmos-

pheric equilibrium then takes the form

(c) d<p=-R9
d

Now, supposing a relation between temperature and pressure to be known,

equation (c) is seen to be integrable immediately. To perform the integration we
may choose either of two ways. We may use (d) to eliminate the pressure from
the second member of (c). The integration then gives a relation between gravity

potential and temperature

(c) yi{<p, ;?)
= o

Eliminating afterwards the temperature between (d) and (<?), we get the relation

ot equilibrium connecting gravity potential and pressure

(/) F&, p) = o

Or we may, on the other hand, use equation (<f ) to eliminate the temperature from
the second member of (c). The integration then immediately leads to the equi-
librium relation ( f) between gravity potential and pressure. The elimination of

pressure between equations (/") and (d )
will then lead to the relation (e) connect-

ing gravity potential and temperature.

Again, we might have written equation (c) in the form

(*)
-}
= - Rd<p v dp

49
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The equation in this torm is seen to be integrable at once if a relation between

temperature and gravity potential be given, i. e., a relation of the form (e). For

the integration we again have the choice of either of two ways. We may use

equation (e) to eliminate the gravity potential from the left member of (g). The

integration then leads to the relation (<f) between temperature and pressure. Then
the elimination of the temperature between (rf) and (g) leads to the equilibrium

relation (f) connecting gravity potential and pressure. Or we might have used (e)

to eliminate the temperature from equation (g). The integration would then have

led directly to the equilibrium relation (_/") between gravity potential and pressure,

while elimination between (y~) and (e) would have led to the corresponding rela-

tion (a?) between temperature and pressure.

As will be inferred from the above discussion, we have to notice two cases of

immediate integrability, the first characterized by a relation between temperature
and pressure (</), the second by a relation between temperature and gravity

potential (e). Between these two cases of integrability there is a full correspond-
ence in this sense: that to a given relation between temperature and pressure (a?)

there will correspond a perfectly definite relation between temperature and gravity

potential (e), and vice versa.

42. Atmosphere with Constant-Temperature Gradient. Let us suppose

temperature to be a linear function of gravity potential

() * - #,
-

Tfi

# being the temperature at sea-level and y the temperature gradient

which is in this case constant.

To find the relation between temperature and pressure, corresponding to the

relation (a) between temperature and potential, we eliminate d<f> between equations

(') and section 41 {g). This gives

and hence after integration, p being the pressure at sea-level,

H!)
We thus arrive at this important result:

If temperature be a linearfunction of gravity pote?itiaI, with the tempera-
ture gradient y, it will be proportional to the power Ry ofpressure, R being the

gas constant. And vice versa: If temperature be proportional to any power
Ry ofthe pressure, it will be a linear function of gravity potential with the

temperature gradient y.

Eliminating the temperature between the equations (a) and (3), we arrive at

the equilibrium relation between gravity potential and pressure, namely,
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w
^

-*-()*
Adding, finally, the equation of state

we can find the corresponding equilibrium values of the specific volume a or of its

reciprocal, the density p.

The problem is thus fully solved. Summing up the results, we shall choose

once the pressure and once the gravity potential as independent variable. In the

first case we shall represent the distribution of mass by the specific volume a, in

the second by the density p. Denoting by #
> P<*>

a
o> />o

the values of temperature,

pressure, specific volume, and density at sea-level, we easily arrive at the follow-

ing two schemes of formulae:

-*(*r or -tt-ttn
(
B
)

&=s
^--j.^ P = Po

(i-^<t>yy-' p=p(i-}
a$f>

each of which represents the full solution of the problem.

43. Limit of the Atmosphere in Case of Constant-Temperature Gradient.

Temperature being a linear function of the gravity potential, and decreasing

upwards, absolute zero will be reached at a certain finite height

w ** =
*

Substituting this in the two last equations (b), section 43, and remembering that y
is positive when temperature decreases upwards, we get

p = o p =

Supposing, thus, the gas laws to be true even at absolute zero, we find the atmos-

phere to be limited by the level surface determined by (a).

For decreasing values of the temperature gradient y the height of the atmos-

phere always increases and converges towards infinity when y converges towards

zero, i. e., in the case of the isothermic atmosphere.
When y is negative, and thus the temperature rises with the height, 4>L also is

negative. The atmosphere remains unlimited upwards, while its analytical con-

tinuation below sea-level has the limit 4>L determined by equation (a).

44. States of Unstable Equilibrium. In the extreme case Ry = 00, ?'.
<?.,

in

the case of an infinite decrease of temperature with the height, we get <f>L = o. The

atmosphere is, then, condensed to an infinitely thin sheet. For values ofRy decreas-

ing from 00 to 1, we get values of the temperature gradient y decreasing from 00 to

0.00348, this last value representing a fall of temperature of 3.48 C. for every 100

dynamic meters of height. Extreme falls of temperature of this order of magni-
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tude may exist locally under extraordinary conditions, as above a hot chimney or

above a volcano in action. They may perhaps exist also for a short while over a

heated area before the formation of a tornado. But the corresponding state of

equilibrium can not endure. For it is seen from the second equation (b) that as

long as Ry is comprised between co and i there will be increase of density upward.
The state of equilibrium is therefore completely unstable.

The limiting case

(a) i?7 = i

corresponding to a fall of temperature of 3.48 C. for every 100 meters, is interest-

ing from a mathematical point of view. In this case the equations (a) and (b) re-

duce to the simple forms

(') * =
*.(' "Wo *)

p = p> >-a(i-jb[*)

These are all linear, those for the specific volume, a a
,
and for the density, p =p ,

showing that specific volume and density are constant. As the pressure and the

temperature thus both decrease with the height, they compensate each other in

their influence upon the density of the air, the result being a perfectly homoge-
neous atmosphere.

Also, in the case of the homogeneous atmosphere the equilibrium is unstable.

For if a mass of air be moved upwards, the adiabatic cooling will not suffice to

bring it down to the temperature of the higher strata, to which it has been moved.

Therefore, if once given the slightest displacement upwards, it will continue mov-

ing upwards, remaining always lighter than the adjacent air.

The height <f>L
' of this homogeneous atmosphere has, according to (a) and sec-

tion 43 (tf), the value

(') 4>,'
=M

It merits attention that we may introduce the two limiting heights <f>L and <j>L
'

as fun-

damental parameters in our formulae. To do this we have the expressions

The ratios on the right side being independent of the units of gravity potential, we

may also write

measuring the heightH and the limiting heights HL and H in dynamic meters.

Equations (5) or (b') give thus a perspicuous sense to expressions appearing in the

equations (a) and (b).
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Proceeding to values of Ry smaller than 1, we come to states of less pronounced

instability. The case Ry = -, corresponding to a decrease of temperature of

1. 74 C. for every 100 dynamic meters of height, is interesting mathematically, tem-

perature being in direct and specific volume in inverse proportion to the square
root of the pressure, and the density being a linear function of the dynamic height.

Ry= j; also gives simple formula;, representing a state of equilibrium still unstable

but greatly approaching the state of indifferent or adiabatic equilibrium.

45. Indifferent or Adiabatic Equilibrium. The state of equilibrium will be

indifferent if the adiabatic cooling of a mass of air, which is displaced upwards, will

always bring its temperature to that of the air-masses in the new level. For in

this case no force will arise tending to favor or to counteract the displacement.
The distribution of temperature giving adiabatic equilibrium will be different

according to the humidity of the air. Considering first the case of a perfectly dry

atmosphere, let k be the well-known ratio 1.4053 of the two specific heats of an

ideal gas. Introducing

() Ry= ^^ = 0.2884

we see that the equations (a) and (b) take the forms

The two first equations (a") are the well-known ones connecting temperature and

pressure, and specific volume and pressure, respectively, in the case of an adiabatic

change of state of an ideal gas. The state of equilibrium defined by equations (a")
or (b") has therefore the following property: Proceeding upwards to decreasing

pressure we find everywhere the temperature which a mass of dry air moved

upwards would take on account of its adiabatic cooling. The temperature gradient
in this atmosphere is

,
. k 1

(') 7 = o- = 0.0010048

representing a fall of temperature of 1.0048 C. for every 100 dynamic meters of

height.

Moist air will have the same adiabatic temperature gradient (') as dry air, as

long as no condensation takes place. But as soon as condensation begins, the heat

of condensation will partly compensate for the adiabatic cooling, and the adiabatic

gradient will take one of the values given in table D.* While the adiabatic tem-

perature gradient for dry air is constant, that for saturated air varies both with

pressure and temperature, decreasing with decreasing pressure and increasing with

decreasing temperature. The decrease upward both of pressure and temperature

*The table is taken from Harm's Meteorology (first edition), p. 241, with the difference that the pressure
figuring as argument is reduced from millimeters of mercury to m-bars, while the fall of temperature is taken per
100 dynamic instead of per 100 common meters.
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therefore counteract each other in their effect upon the fall of temperature, making
its variation with the height very gradual. But still it will always increase upward,

converging toward the limit 1.0048, which would be reached when all moisture

had fallen out. To illustrate this increasing fall of temperature, the values corre-

sponding to the case of a mass of air moved upwards from sea-level with the initial

temperature of 15 C. are indicated by heavy-faced figures in the table.

Table D. Adiabatic Fall of Temperature per 100 Dynamic Meters for Saturated Air.

Pressure
(milli-

bars).
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Passing to the case of negative temperature gradients, ?'. e., of increase of

temperature upward, the height of the atmosphere remains infinite, the limit

determined by formula (a), section 43, having only the analytical meaning of the

limit of an imaginary continuation of the atmosphere below sea-level. This increase

of temperature with the height is meaningless if it be extended to the whole

atmosphere.
But "

temperature inversion "
is well known as a local phenomenon, limited

to more or less narrow sheets, occurring specially often in the case of high pressure

during winter. The main feature of this state from a dynamic point of view is a

pronounced stability which can be overcome only by causes producing different

distribution of temperature. Values of Ry as \ or 1 give very simple forms

tor equations (a) and (b) and represent increases of temperature with the height
which may occur in the sheets of inversion, namely, 1.74 and 3.48 C. for every
100 meters of height.

47. Numerical Representation of the States of Equilibrium. For the numer-

ical representation of any definite state of equilibrium we have the choice between

either of two methods.

Tablk E. Ideal States of Atmospheric Equilibrium. Argument, Pressure.

Pressure
(m-

bars ) .
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On the other hand, we can choose dynamic height as argument and register

temperature, density, and pressure for certain standard heights. This is made
in table F, the four sections of the table representing the same four cases as in

table E.

Table F. Ideal States of Atmospheric Equilibrium. Argument\ Dynamic Height.

Height
(dy-
namic

meters),

30,000

29,000
28,000

27,000

26,000

25,000

24,000

23,000

22,000

21,000

2O,000

10,000

18,000

17,000

16,000

15,000

14,000

13,000

12,000

11,000

10,000

9,000
8,000

7,000

6,000

5,000

4,000

3,000
2,000

1,000
o

1000 v = 3.48 C.

(Homogeneous atmos-

phere.)

Pressure Tem-
(m- perature

bars). (C).

106.9

234.5

362.O

489.6

617.2

744.8

872.4
IOOO

-243.8

-209.0

-174.2

-139-3

-104.5
- 69.7
- 34-8

o

Density
(10-6
ton/m3

)

1276
1276
1276

1276
1276
1276
1276
1276

I0O0 v
=

1.0048 C.

(Dry atmosphere in
adiabatic equilibrium.)

Pressure
(m-bars).

Tem-
perature
(C).

0.00003
0.0188

0.158

O.586

I-5I4

3-i86

5-877

9.889

15-54

23.19

33-19

45-93
61.82

81.28

104.7

132.7

165.7

203.8

248.0
208.6

356.1

421. 1

494.2

575-8

666.7

767.2

878.1
IOOO

-271.2
-261.2

-251.1

-241. 1

231.0
221.0

210.9

200.9

-190.9
-l80.8

-170.8

-I60.7

-I5O.7

-140.6

-130.6

-120.5
-1 10.5

-100.4

-
OO.4

- 80.4
- 70.3
- 60.3
- 50.2

-
40.2

- 30.1
- 20.1
- 10.0

O

Density
(io-
ton/m3

)

1000 y
=

0.5 C.

0.005

0.56

2.51

6.40
12.6

21.3

33.0

47-7

65-9

87.6

"3
143

176

214
256
303
355
411

473
540
612

689
773

861

956
1057
1 163

1276

Pressure

(m-
bars).

3-9

5-i

6.7
8.6

11. 1

14.1

17.7

22.2

27-5

34-o

41.7

50.8
61.6

74-4

89.3

106.7

127.0

150.4

177-5

208.7

244.4

285.3

331-7

384-5

444-5

512.2

588.6

674-6

771-2

879.1
IOOO

Tem-
perature
CO),

-150

-145
140

-135
130

-125

120

-115
no

-105- 100

- 95- 90
-85- 80
- 75

- 70- 65- 60
- 55- 50

- 45- 40- 35- 30- 25

- 20
-

15- 10
- 5

o

Density
(10-6

ton/m3
).

14

17
22

27
33

40
49
59
70
84

99
117

138
161

188

216

252
290
334
382

435
496
563
637
719

810

911
1021

1 143

1276

IOOO Y = o.

(Isothermic atmosphere.)

Pressure
(m-

bars).

21.8

24.7
28.1

31-9

36.3

41.2

46.8

53-2

60.4
68.6

77-9

88.6

100.6

"4-3
129.8

147.5

167.6

190.4

216.3

245-7

279.2

317.2

360.3

409.4

465.1

528.4

600.3
682.0

774-8
880.2

IOOO

Tem-
perature
CO),

Density
(10-6

ton/m :i

).

28

31

36
41

46
53

60
68

77
87
99

113
128

146
166

188

214
243
276
314
356

405
460
522
593
674

766
870
088

1 123

1276

The two tables show essentially different features. The first has the important

property of being finite, which gives a great practical advantage, while the second

continues infinitely to infinite heights. It is important to remark also that the

division of the atmosphere into isobaric sheets, as in table E, represents practically

a division into sheets of equal mass, and thus, from certain points of view, of equal

importance, while the division into equipotential sheets as in table F corresponds

to a division into sheets of decreasing masses upward, and thus of decreasing

importance.
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The states of equilibrium represented by these tables are also illustrated by

fig. 2, the method of representation being the same as that used in fig. i (p. 45) to

illustrate the equilibrium in the sea.

9
27/70=1--

20000- jo

10000-

!
o-

I

4 I

I

-- 100- --

200- - =

-=-- 30O--\

00 ZW8*r-0
wonono
[,00000

] sooooo
tooooo
100000

MS

20000- -

%--800- -I
J--900-

0-&--1000--

t

%

I
5*600-

50000 -

4

10000 JzOoooj

\O.0002

-%p.ooas uoooo-

lOOOO^pooou

%Ooooi

- %0.ooos
~
%>.ooof

00008

^p0OO9
KfiOPJO

%0.OO12
<*0.0012Tf

0-

* lb 3

00 S1600-r-0

-Iff

10'

3 50000-

uoooo-

30000-

-78<t O -

Dry atmosphere in adiabatic equilibrium

2O00O-

f
0.0O127e

100OO-

-10-

-200000

rJOOOOOjoooo- -0,00001

-moo

. 100

---200-

= --300- -S

-78V- O -*-00OlS76

Homogeneous atmosphere.

10000- =

-
-O.ooat

zfiooos

%

I

6

50000-

UOOOO-

10000- =

fo^soo
ymooo

--S00000

I200000

uoooo-

-100000
- -0.00001

20000- -

- 100-

- -10000 20000- -00001

'--20O--

Fatl of temperature 0.5 C. per 100 dyn.m.

E 300-- 1

-%--UOO I

\\-*500~- 1

-|-- OOO-

\
700-- 1

i 800-
- I- -900 I

0-E-- lOOO-

Isothermic atmosphere.

30000-

-O.0002

0O003

<XXXh%
- 0.0004
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48. Graphical Representation of the States of Equilibrium. To get a more

comprehensive view of the states of equilibrium than that afforded b}' the numer-

ical tables and the diagram, fig. 2, we may use a graphic method. Introducing

according to (b') section 44, the ratios -=-=- and
-jyr,

in (b), section 42, this system

of equations may be written in the form

, ,
H p ( H Yffc.j f ( H \i

To see the content of these equations we may use as ordinates the dynamic

heights H, and as abscissae the ratio HL \UL
'

of the limiting heights. Doing this,

we range the different atmospheres according to their heights compared with that

of the homogeneous atmosphere. The ratio itself has a real physical meaning only
when it is positive. But to every value, positive or negative, of the ratio there corre-

sponds a definite value,"positive or negative, of the temperature gradient according
to the first equation ('), section 44, or

(*) 7 =
jjrg^

To facilitate the interpretation of the diagram the values of 1000 y according to

this equation, i. e., the fall of temperature for every 100 dynamic meters, is also

shown along the axis of abscissae.

In the plane of coordinates thus defined a constant value of the ratio #/# gives
an isothermic curve, a constant value of the ratio p/p an isopycnic curve, and a

constant value of the ratio p/p an isobaric curve. Choosing a set of values for these

three ratios we get three systems of curves, drawn in fig. 3. The three sets of curves

give a full representation of the state of equilibrium for every value of the ratio of

the limiting heights HL \HL '. Fixing a certain value for this ratio, or for the tem-

perature gradient, we get a definite vertical line in each of the three diagrams.
The intersections of this vertical, for instance with the isothermic curve o. 1, give

the height H at which the absolute temperature is reduced to one-tenth of the

value # which it has at the earth's surface. In the same manner the intersection

of the vertical with the isopycnic curve 0.1 gives the height H where the density

P is reduced to one-tenth of the value p which it has at the earth's surface.

Finally, the intersection of the vertical with the isobaric curve 0.1 gives the height
where the pressure is reduced to one-tenth of its value p at the surface of the

earth. Fixing according to the equation of state a consistent set of values #
, p ,

p at the earth's surface, the values of these quantities at any heights are found

from the diagram.
As to the course of the curves, it is seen that each diagram contains, on the side

of the positive temperature gradients (decrease of temperature upwards), a straight

line forming an angle of45 with the axis and representing respectively temperature,

density, and pressure zero. The ordinates of this straight line give the limiting

height of the atmosphere for all positive finite values of the temperature gradient,
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the value being eo for HL IHL
' =

oo, i. e., for gradient zero or isothermic atmos-

phere. On the negative side of the axis of ordinates no such limiting curve exists,

the atmosphere being always unlimited in the case of increase of temperature

upward. Both isobaric and isopycnic curves converge at infinity towards horizontal

-as
-i m i r-i i i i

t -3-+6-10i<>> 10 5* 3 as loot)-*

Fig. 3. States of atmospheric equilibrium for different values of the ratio Hi\Hi! of the limiting heights.
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asymptotes, the asymptotic values representing the case of the isothermic atmos-

phere. The course of the isobaric curves is relatively simple. For positive infinite

values of the temperature gradient they all begin at zero. The ordinates increase

with decreasing values of the gradient, converging towards infinity for an infinite

negative value of this gradient. The course of the isopycnic curves is more com-

plicated. They also all begin at zero for infinite positive values of the tempera-
ture gradient. Then they pass through one point that representing the limit of

the homogeneous atmosphere. Afterwards, passing through a maximum, they
return to zero for infinite negative values of the gradient, giving as we approach
this point an infinitely rapid decrease of the density upward.



CHAPTER VI.

PRACTICAL SOLUTION OF THE HYDROSTATIC PROBLEM FOR
THE ATMOSPHERE.

49. Four Forms of the Problem. In the preceding simple cases we have

used two different methods of registering numerically the equilibrium relation

between pressure and dynamic height. We have registered either the height of
given -pressures or the pressure at given heights. In cases of practical occur-

rence, when any analytical form to the equilibrium relation can not be given, we
shall always try to find the result in one of the same two forms, as a table contain-

ing the heights of given pressures or as a table containing the pressures in given

heights.

On the other hand, the observed data from which the equilibrium relation may
be deduced will generally be given in one of two forms. The observed quantities

may be the correlated values of pressure, temperature, and humidity, or of height,

temperature, and humidity. From the first set we can calculate the virtual tem-

perature for given values of pressure ;
from the second the virtual temperature at

given heights. The practical problem, theretore, will present itself in one of the

following four forms :

(1) To calculate the heights corresponding to given pressures, the virtual tem-

peratures for these values of the pressures being known.

(2) To calculate the heights corresponding to given pressures, the virtual tem-

peratures at given heights being known.

(3) To calculate the pressures at given heights, the virtual temperatures tor

given values of the pressure being known.

(4) To calculate the pressures at given heights, the virtual temperatures at

given heights being known.

Of these four problems the first is by far the simplest, and at the same time

practically the most important. We shall therefore first direct our attention to the

practical solution of this problem. The others will afterwards easily be solved.

50. Fundamental Formula. As already remarked, the hydrostatic equation
in its first integral form, (a), section 40, gives the difference of potential correspond-

ing to a given difference of pressure. Passing from the potential <f> expressed in

dynamic decimeters to the dynamic height H expressed in dynamic meters, and

passing simultaneously from centibar to decibar as unit-pressure, the equation takes

the form

(a) H.-H^-Tadp
6l
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Eliminating the specific volume by the equation of state

we get
dp

1
or

(d) Hb-Ha=-R r dd nat. log. p

Considering henceforth nat. log. p as the independent variable, and taking out-

side the integral sign the average value t?^ of the virtual temperature, we get the

simple formula

(e) //
t -//=^nat.log.^

giving the dynamic height from the isobaric surface pa to the isobaric surtace pb .

The defined average value #a6 of the variable virtual temperature &r has a simple

meaning: It is that constant temperature which, substituted for the variable tem-

perature &r gives the sheet between the two isobaric surfaces pa and pb its true

thickness. This average value is easily found by the virtual-temperature diagram,
this diagram being drawn with logarithmic scale for the pressure, as in fig. 5,

example 1 below. Here the horizontal lines correspond to constant pressures and

the vertical lines to constant temperatures. Three curves running close together
are seen in the diagram. The middlemost is that representing the virtual tem-

peratures derived from the observations. The vertical segments of line give the

required average values of the virtual temperature of each of the standard isobaric

sheets. Each segment is drawn so that the two triangular areas limited by the

urve, the segment, and the two standard isobaric lines are equal. These vertical

segments may generally be drawn free-hand with a precision exceeding that of the

observations from which the curve of virtual temperature has been derived. Of
course greater precision, if required, may be obtained by use of a planimeter.

51. Fundamental Tables. The sheet between the isobaric surfaces pa and pb

will generally contain a set of isobaric standard sheets. The height Hh Ha can

therefore be calculated as the sum of three terms: (1) the height from the isobaric

surface pa to the nearest standard surface; (2) the height from this standard sur-

face to a certain higher standard surface; (3) the height from the last standard

surface to the isobaric surface pb .

To find height (2), we determine the thickness of any standard sheet. Let n be

the pressure in any standard surface. The pressure being measured in decibars, n
will have one of the values 1, 2, 3, . . . 10. The thickness Hn ,

ll_x of the standard

sheet between the surfaces n and n 1 is obtained if in the fundamental formula

section 50 (e) we introduce pa n, pb n 1. Substituting further fori? its

numerical value when the pressure is expressed in decibars, R =
28.7, and writing
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273 -\-t instead of 9, r being the virtual temperature counted from the freezing-point

of water, we get this expression for the thickness of the standard sheet:

() Hnn_ x
= 28.7 (273 + Tnn_ x )

nat. log.
1

Height (2) can evidently be found as the sum of a certain number of heights given

by formula (a).

The determinations of the heights (1) and (3) are different forms of one problem,

namely, the determination of the distance Hnp from a certain standard suriace of

pressure n to any isobaric surface of pressure p. By the fundamental formula this

distance is

H, P
= 28.7(273 + t) nat. log. j

t iP being the average virtual temperature for the sheet of air between the isobaric

surfaces n and p. This formula containing two continuously variable quantities,

T p and p, is not immediately suited for tabulation. But it may be written as a

sum of two terms, a principal term H containing only one variable p, and a cor-

rection term A// containing two variables, namely, H and t. We thus write

(b)
Hn

, v
= // + AN

giving H and A// respectively the values

b') IT,
= 7835 nat. log. ^

Thus, tabulating the three formulae (a), (b'), and {b"), we shall easily be able to

calculate the height from any isobaric surface pa to any isobaric surface pb ,
the

required values of the virtual temperature being given. Only three tables would

therefore be necessary. But for practical reasons, however, we shall give two dif-

ferent tabulations of formula ('), arranging the table in a special form for the

important case of pa being the pressure at the earth's surface. Thus in the second

tabulation of formula (b') the height (1) is the height from the ground to the

nearest standard surfaces. We then get the following four tables.

(A) Table 9 m. Mutual distances measured in dynamic meters between

standard isobaric surfaces. This table contains nine small tables in succession,

each giving, according to formula (), the thickness of one of the standard sheets

of the atmosphere for practically occurring values of the average virtual temper-
ature. These successive tables are separated the one from the other by horizontal

lines representing standard surfaces, the pressures of which are added in millibars.

(B) Table 10 m. Distances in dynamic meters, measured from the stand-

ard isobaric surfaces to points of given pressure, the average virtual temper-
ature of the sheet being o C. This table contains ten small tables in succession,
calculated according to formula (b

r

).
Each gives the distance from one standard
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isobaric surface to all other isobaric surfaces situated below the next higher and

above the next lower standard surface. The distance is counted positive upward
and negative downward. It gives the first approximation value U of the height

Hn p from the standard isobaric surface to a point of the pressure p.

(C) Table iim. Distances in dynamic metersfrom the earth''s surface to the

nearest standard isobaric surfaces, the average virtual temperature of the sheet

being o C. This table differs from the preceding one only in the arrangement.
As argument appears the pressure observed at the earth's surface. The tabulated

quantities are the distances to the two nearest standard surtaces above and to the

nearest standard surface below the point where the pressure is observed. The dis-

tance upward from the earth is counted positive and the distance downward nega-
tive. Of course the standard surface below the earth has no real existence. It

may, however, for obvious reasons, be useful to bring it under consideration. The
table gives the first approximation H to the height Hv n from the earth's surface,

where the pressure is p, to the standard surface of pressure ;/.

(D) Table I2m. Corrections to tables iom and 1 1 m for temperature. This

table is calculated according to formula (b") with the two arguments, the average
virtual temperature t iP between the two surlaces n and p and the height JT found

from table iom or iim. This correction for temperature may be either positive

or negative according to the sign of the temperature t iP . But as it has equal
numerical values for equal numerical values of r, it will not be necessary to intro-

duce signs in the table. The first part of the table, extending to the value noo

dynamic meters for height H and to values 34 C. tor temperature, will be suf-

ficient for most cases practically occurring. The continuation gives the extension

to the limiting height of 10,000 dynamic meters and to the values ioo C. of

temperature.

52. Calculation of the Height Corresponding to a Given Pressure. If the

virtual-temperature diagram be given as a curve connecting virtual temperature
and pressure, tables 9M to 12 m will at once enable us to calculate the height corre-

sponding to any pressure. From the diagram (fig. 5), we take the average virtual

temperature, first between the earth's surface, where the pressure is fta ,
and the

lowest standard surface, then between the successive standard surfaces, and finally

between the highest of these and the isobaric surface of the given pressure pb . By
tables 11 m and 12 m we then find the height of the lowest standard surface above the

earth, by table 9M the thickness of the successive standard sheets, and by tables iom
and 12 m the height of the given isobaric surface above the highest standard surlace.

Adding these heights we get the height of the isobaric surface pb above the ground,
and adding the height of the ground above sea-level we get the height above sea-

level of the given isobaric surface. As all the other heights, that of the ground is

to be expressed in dynamic meters. The first of the problems defined in section

49 will then be solved.

Suppose now the virtual-temperature diagram to be given with the heights in

dynamic meters as ordinates (fig. 6). The pressure observed at the station at the
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earth's surface gives by means of table iim an approximation~value H of the

height above the station of the lowest standard isobaric surface. By means of this

approximate value we may, with sufficient precision, take from the diagram the

average virtual temperature of the sheet. This temperature used in table 12M

gives the correction h, which added to the approximation value If gives with

sufficienfcorrectness the height of the surface above the station. Adding the height
of the station we get the height of the surface above sea-level. This height being

known, we estimate a value for the height to the next standard surface. This is

easily done with fair approximation by the inspection of the virtual-temperature

diagram and by comparison with the 'corresponding heights in table 9M. For this

estimate of height the value of the average virtual temperature is taken from the

diagram. Using this value in table 9M, we generally find the height to the next

standard surface with sufficient precision. Otherwise the operation may be

repeated, giving for every repetition a more accurate value. The final value of

the height found in this manner added to the height of the first standard surface

gives the height of the second standard surface. Then the distance to the next

standard surface is estimated, the corresponding average virtual temperature deter-

mined from the diagram, and this temperature used to find a better value for the

distance by means of table 9M, and so on.

To complete the solution of the problem we finally determine the distance Hnv
from one of the standard surfaces, the height of which is found, to a neighboring
isobaric surface of the given pressure pb . An approximation value H of the height
is found at once from table iom. Using this approximate value we find the average
virtual temperature of the sheet trom the diagram, and by means of this temperature
we find from table 12 m the correction A.I1, which, added to the first approximation
value H

, gives the required height Hnv .

The second of the problems defined in section 49 is thus solved.

53. Calculation of the Pressure at a Given Height. Let H be the given

height at which the pressure is to be found. We then determine first, as described

jn the preceding section, the height of the standard isobaric surfaces. Now, let -pn

be the standard surface whose height Hn is nearest the given height h. The prob-
lem is then reduced to finding the pressure p at the height H Hn above the

standard surface of pressure n.

Now, the height H Hn is the quantity tabulated in table iom, and the argu-
ment is the corresponding pressure p. Then if the average virtual temperature
of the sheet of air between the heights Hn and // happens to be o C, table iom
used inversely immediately gives the required pressure.

As a rule, however, this average temperature wilT have [another value, t. This

temperature being known, we can avail ourselves of a simple artifice, determining
a difference of height H' Hn defined by the property of being the height, which,
used in table iom, gives the required pressure^.

The difference of pressure corresponding to a given difference of height is in

inverse proportion to the specific volume of the sheet of air between the two heights,



66 DYNAMIC METEOROLOGY AND HYDROGRAPHY.

and therefore also in inverse proportion to the average virtual temperature of this

sheet, reckoned from absolute zero. Thus the two heights H' Hn and H Hn

must be in the proportion

H' -H = (H- H) 273
v " ; 273+t

Subtracting H Hn ,
we find the following value for the required correction:

AH"= H> - H = - (H - H)
7

K "'
273 + T

This may finally be written in the form

the auxiliary quantity r' having the value

273T
(b)

273 +T

Formula () has the same form as formula ("), section 51, tabulated in table 12 m.

But, to use table 12M for the determination of the height correction A// in the case

now treated, we have to use the artificial temperature t' instead of the real tem-

perature r. This artificial temperature is tabulated according to formula (&) in

table 13 m of our Meteorological Tables. Using this table in connection with

tables 9M to 12M, we can calculate the pressure at any given height.

The practical procedure will turn out somewhat differently according as the

virtual temperature is known at a given height or for a given pressure. In both

cases we first determine the height of the standard isobaric surface as described in

the preceding article. Then, if the virtual temperature be known for a given

height, we immediately find from the diagram the average virtual temperature t for

the sheet between the heights H and Hn . On the other hand, if the virtual tem-

perature be known for a given pressure, we use table iom to find an approximate
value p' of the pressure at the height H. Taking from the diagram the average
virtual temperature between the pressures n and p' we get a temperature r, which

with sufficient approximation can be identified with the average virtual temperature
of the sheet between the heights Hn and H.

This temperature t being found, we take the corresponding artificial temper-
ature t' from table 13 m. Using this and the height H Hn in table 12M, we find

the required correction AH. This correction added to the height H Hn gives the

height H' Hn ,
which used in table iom gives the required pressure ft at the

height H.
The third and fourth of the problems defined in section 49 are thus solved.

54. Examples of a Complete Interpretation of the Results of a Meteorological
Ascent. On pages 68-75 are given the schemes for the complete hydrostatic appli-

cation of the observations obtained, under different suppositions, from an ascent
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in the air with meteorological instruments. It will be evident that, the hydrostatic

results contained in these schemes being once worked out, a set of supplementary
results of general meteorological interest might easily have been obtained. We
may for instance mention temperatures and humidities at given heights tor given

pressures, or average values of these quantities for given height-sheets or pressure-

sheets. But in order not to complicate the schemes we have taken up only what

is of interest for as full an illustration as possible of the developed hydrostatic

methods.

The examples are derived from the observations obtained by the celebrated

balloon ascent by Berson and Suring from Berlin July 31, 1901, to the greatest

height yet attained by man.* The height of the station, Tegel at Berlin, was 40
meters or 39 dynamic meters above sea-level. The observed quantities during the

ascent were time, pressure in millimeters of mercury, temperature centigrade, and

relative humidity. From the general remarks in the preceding articles and by the

small examples added to each table in the Meteorological Tables, the schemes will

easily be understood. We shall therefore content ourselves with a few general
remarks.

In the first example (page 68) we have made a direct use of the observed data

only supposing the pressure to have been observed in millibars instead of in milli-

meters of mercury.
This first example being worked out, we have constructed the second, consider-

ing the calculated heights (column 24 of table J) as observed quantities, column 2

of table K. We have preferred thus to derive example 2 artificially from example

1, instead of taking an independent example, where the heights have been really

observed; for the analogy and the contrast of the methods are better illustrated

when both are used to work out the same case of atmospheric equilibrium. Com-

paring the two schemes, we see that the difference amounts mainly to an inter-

change of the order of the columns, followed by a passage from direct methods to

methods of estimation, or vice versa.

In connection with this second example it is important to emphasize that a

observed heights should be considered only those found according to rational geo-
metrical methods, as for instance when the height of a kite is determined by the

angle and the length of the kite-line. The use, on the contrary, of a barometer with

height-scale instead of pressure-scale is unscientific. It gives less trustworthy

results, and at the same time additional labor; for the working out of the results

according to example 2 is more laborious than the corresponding work according
to example 1. In some cases both pressure and height may be observed. The
observations then give directly the equilibrium relation between pressure and

height. But on account of the imperfections of the aneroid barometer, the relation

found in this direct way will be much less accurate than that found by one of the

above methods, the observations either of pressure or of height being provisionally

set aside. The derivation of the results according to both methods, once omitting

*
Verofr'entlichungen des K. Preussischen Meteorologischen Instituts. R. Assmann und A. Berson : Ergebnisse

der Arbeiten am Aeronautischen Observatorium 1900-1901. Berlin, 1902. p. 227.
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The vertical segments of line determining the average virtual temperature of the standard sheets

are drawn, and the corresponding temperatures read off (column 6). The mutual distances between
the standard surfaces (column 7) and the heights of these surfaces (column 8) are determined.
In addition the virtual temperatures at the standard surfaces (column 9) may be read off from the

diagram, and the corresponding specific volume of the air determined (column 10).
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Fig. 5. Virtual-temperature diagram, with logarithmic pressure-scale.

Columns 11 to 19 give the solution of the inverse problem, the determination of the pressure
at a standard height. The dotted horizontal lines in the diagram represent the approximate situation

of the level surfaces, these lines being drawn according to the approximate pressures in the heights

given in column 14. Not to complicate the figure, the vertical segments giving the virtual temper-
atures in column 15 are not drawn.

Columns 20 to 24 give the determination of the heights from which the observations in columns
1 to 4 are taken. The horizontal and vertical lines in the diagram required for this determination are

not given in fig. 5. It should be emphasized that the determination of these heights is independent
of the solution of the inverse problem (columns 11 to 19) and dependent only upon the knowledge
of the heights of the standard isobaric surfaces (column S).
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Table J (Example i).

1
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Table J (Example i) Continued.

71

11
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Example 2. Observed height (meters), temperature (C), and humidity (per cent).

(Table K) . The observed geometric height (column 2) is changed into dynamic height (column 5 ) .

From these heights and the observed temperatures the curve of true temperature is drawn (curve to

the left in fig. 6). By means of table S m the curve of virtual temperature for saturated air is drawn

(curve to the right). Using the percentages of humidity (column 4) the curve of virtual tempera-
ture is drawn between the two others.
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Fig. 6. Virtual-temperature diagram, with dynamic height as ordinate

The heavy horizontal lines represent the standard isobaric surfaces, successively drawn according
to the estimated thickness of the standard sheets (section 52). The vertical segments of line give the

average virtual temperatures of the sheets (column 7) by which the more accurate thickness of the

sheets (column 8) and the heights of the surfaces (column 9) are determined.
The solution of the inverse problem, the determination of the pressure at a given height (columns

12 to 19) is found mainly by the same method as in the preceding example, except that one operation
less is necessary to find the required virtual temperatures (column 15). Not to complicate the figure,
the vertical segments giving these temperatures are not drawn.
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Columns 20 to 24 give the determination of the pressures at the heights where the observations
were taken. The lines in the diagram required for this determination are not given in fig. 6. The
determination of these pressures is independent of the solution of the inverse problem, and dependent
only upon the knowledge of the heights of the standard isobaric surfaces (column 9).

The discussion and the comparison of the examples 1 and 2 is important in con-

nection with the practical question as to the choice of method of observation, as

well as in connection with the theoretical question as to the choice of method for

representing the result of the observations.

It is seen that from the point of view of the computer it is no advantage at

all to have the height instead of the pressure as one of the observed quantities.

Observed heights being always geometric heights, they have first to be changed
into dynamic heights, and then the average virtual temperature of the standard

isobaric sheets must be found by the method of conjectures instead of by the direct

way which can be followed when the pressure is one of the observed quantities.

When some practice is acquired, these conjectures can easily be made with suffi-

cient precision to make repetitions of the operation superfluous. But still the con-

venience of the direct method can not be attained. Thus, as far as the observa-

tions of pressure can be obtained with the same precision as those of height, the

observations of pressure should be preferred as those giving least trouble to the

computer. In no case the values of pressure should be left out in the publications

of the result of the meteorological ascents, as it is unfortunately sometimes done,

height being substituted for pressure as the result of the calculations. But espe-

cially we must warn, as we have already done, against the use of barographs with

height scale instead of pressure scale. For in addition to the increased trouble to

the computer, this method will give much less trustworthy results.

On the other hand, it is seen that the calculation of the height of standard pres-

sures is in all cases easier than the calculation of pressure in standard heights.

This is equally true whether it is pressure or geometric height which is observed.

Even if it may be possible to further simplify the methods developed for calculating

pressure in standard dynamic heights, it is not probable that it should be possible

to attain the simplicity of the method given for calculating the dynamic height of

standard pressures.

In the choice between the two theoretically equivalent methods of representing
the distribution of pressure, viz, that of registering the height of standard pressures

or that of registering pressure in standard heights, we have thus found an important

practical reason for preferring the first method, that of registering the height of

standard pressures.

Whichever method of observation be used, and whichever method of repre-

senting the results be preferred, it is seen that the fundamental operation remains

that of drawing and interpreting the virtual-temperature diagram. What can be

done to facilitate this work will therefore be of the highest practical importance.
In this respect the hints given in the next section (55) will be useiul.
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Table K (Example 2).

1
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Table K (Example 2) Continued.

75

12
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55. Remarks on Virtual-Temperature Diagrams. When many calculations

are to be performed, much time may be saved if convenient blanks be prepared for

the drawing of the virtual-temperature diagrams. The use of tables 7 m or 8 m
may be completely dispensed with if the horizontal lines on these blanks be pro-
vided with divisions showing the distance from the curve of true to that of

Table L. Virtual-temperature divisions on lines

representing' standard isobaric surfaces. ( Verti-

cal columns in the table correspond to horizontal
lines on the virtual-temperature diagram.)

Table M. Virtual-temperature divisions on lines

representing standard levels.
( Vertical columns

in the table correspond to horizontal lines on the

virtual-temperature diagram. )
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virtual temperaturefor saturated air. The annexed table L shows how these

divisions should be drawn in uninterrupted succession on those horizontal lines

which in the diagram represent standard pressures. Table M shows how the cor-

responding divisions should be drawn on those horizontal lines which in the

diagram represent standard heights.
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Fig. 7. Virtual-temperature diagram with common pressure-scale and with virtual-temperature divisions.

In both tables the figures give the distances of the points of division from that

ordinate, which in the diagram represents o C. They are found by a simple process
of summation of the numbers contained in the tables of virtual temperature,

respectively 7 m and 8 m. Examples of these divisions taken from table L and

introduced on the lines representing standard pressures are shown in fig. 7 as well

as in several of the following diagrams.



78 DYNAMIC METEOROLOGY AND HYDROGRAPHY.

Theoretically it is correct to use a logarithmic scale of pressure. Practically,

however, the common pressure-scale maybe used without introducing error of any

importance. Fig. 7 gives the same virtual-temperature diagram as fig. 5, but with

a difference of scale. It is seen that the average virtual temperatures deduced

from this diagram are practically the same as those deduced from fig. 5.

In reality the temperatures will be found a little too high from the diagrams
with the common pressure-scale. The amount of error can be determined theo-

retically if we suppose the curve to be a straight line in the one of the two

diagrams. It will then run up to 0.008 (t,
t9 )

for the isobaric sheet between the

1000 and the 900 m-bar surfaces, and to 0.057 (t2 tj) for the sheet between the 200

and the 100 m-bar surface, t10 and ra respectively, t2 and r
l being the temperatures

at the limiting surfaces of the sheet. Thus a temperature difference of io between

the limiting surfaces will bring the error up to about 0.1 degree for the lower sheets,

and somewhat above 0.5 degree for the highest sheet. These errors will generally
be much smaller than the errors of observation from these different sheets.

While the errors introduced are thus unimportant, many practical advantages
are gained. Common coordinate paper can be used, and we avoid the special

inconvenience of the logarithmic scale, namely, that the best observations, those

trom the lower strata, have to be worked out on a minute scale, and the inferior

ones, those from the higher strata, by constructions on a large scale.

56. Examples of the Method of Calculation when the Pressure is Given in

Millimeters or Inches of Mercury. When the observations are given in irra-

tional units, the most direct method is to change at once all observations to rational

units using the tables of the Appendix. And this change will be necessary, if it

be desired to work out the results with the completeness of the examples given
above. But if it be only required to find the main result, viz, the height of the

standard isobaric surfaces, a shorter way can be followed, which is illustrated by
the two examples below. No example is given for the case when the observed

quantity is the height. For in this case the first step will always be a change irom

geometric to dynamic height, and it is immaterial whether the height is observed

in meters or feet.

It is to be hoped that the time will soon come when all observations obtained

from the higher strata are recorded in rational units. But as a vast amount of such

observations has already been produced and recorded according to the different

systems of irrational units, it will for some time to come be a question of great

importance to be able to work out with as little waste of labor as possible the most

important results in rational units from the data given in irrational units.

The simplest method of doing this, under the supposition that no other aux-

iliaries are at hand than our tables and common coordinate paper, is illustrated by
the examples 3 and 4 below. As will be seen immediately from these examples,
several operations will drop out, and no little amount of time will be saved, if

special blanks be prepared, containing, besides the common coordinate lines, also
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some special auxiliary lines and auxiliary divisions. These are also shown on figs.

8 and 9 belonging to the examples. When extended work of this kind is to

be performed, the best method of saving time will therefore be to print such

special blanks.

When the observations of pressure are recorded in millimeters of mercury and

those of temperature in centigrade degrees, the blanks should contain (see fig. 8) :

(1) horizontal lines representing the standard isobaric surfaces
; (2) virtual-temper-

ature divisions on each of these lines. These divisions are obtained by using
table L, page 76, as explained in the preceding section. If these blanks be used

the somewhat time-wasting work of drawing by hand the lines representing the

standard isobaric surfaces drops out. Further, the virtual-temperature divisions

allowed us to draw the virtual-temperature diagram without using table 11 A'of the

Appendix. It is thus seen that in using these special blanks, the height of the

standard isobaric surfaces can be determined with practically the same ease as if

the observations of pressure had been taken in rational units. Some supplemen-

tary results, as for instance the specific volume of the air at the standard isobaric

surfaces, are also obtained with the same ease. But if the working out of the

example should be carried still further, if it be required, for instance, to determine

pressure in given heights, or to find the heights at which the observations were

taken, it will be the best plan to change from the beginning the observed pressures

from millimeters of mercury to millibars, and to proceed as in example 1.

When the observations of pressure are given in inches of mercury, and those

of temperature simultaneously in Fahrenheit degrees, the blanks should contain

(see fig. 9): (1) special divisions along the axis of abscissas representing the centi-

grade degrees, while the main divisions are used to represent the Fahrenheit

degrees; (2) horizontal lines representing the standard isobaric surfaces
; (3) virtual-

temperature divisions on each of these lines. These divisions are found by using
table L, p. 76, in connection with the centigrade divisions along the axis of abscissae.

If these blanks be used, the following facilitations are obtained: The special draw-

ing by hand of each line representing a standard isobaric surface is no more required.

The virtual-temperature divisions allow us to draw the virtual-temperature diagram
without being obliged to refer to table 12 a of the Appendix. The use of table

9 A of the Appendix for the transition from Fahrenheit to centigrade degrees is no

more required. In this way column 6a, table O, drops out, the centigrade tempera-
ture recorded in column 6b being found directly from the diagram. It is seen

that in this way, by the use of these special blanks, the height of the standard iso-

baric surfaces are found with practically the same ease as if the observations ot

pressure had been recorded in m-bars and those of temperature in centigrade

degrees. As in the preceding case, some supplementary results are also easily

obtained, such as the specific volume of the air at the standard isobaric surfaces.

Even these supplementary calculations are simplified by the centigrade divisions

along the axis of abscissce, column 90, of table O, dropping out when these divisions

are at hand. But if the example should be worked out still more in detail, if it be

required to determine pressure in given heights, or to find the heights at which the



So DYNAMIC METEOROLOGY AND HYDROGRAPHY.

different observations were taken, it will be the best plan, exactly as in the preced-

ing case, to change at once the given observations to rational units, and proceed as

in example i.
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Fig. 8. Virtual-temperature diagram, pressure in millimeters of mercury.
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Example 3. Observed time, pressure (millimeters of mercury), temperature (C), and

humidity {per cent). (Table N.) From the observed pressures and temperatures (columns 2

and 3) the curve of true temperature is drawn (the curve to the left in fig. 8). The curve of virtual

temperature for saturated air (curve to the right) is drawn by means of table 1 1 a of the Appendix.

Table N (Example 3).

1
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Example 4. Observed time, pressure {inches ofmercury) , tcmperattirc ( F. ) ,
and humidity

( per cent) . (Table O). From the observed pressures and temperatures (columns 2 and 3) the

curve of true temperature Fahrenheit is drawn (the curve to the left in fig. 9). Then the curve of

virtual temperature for saturated air is drawn (curve to the right) by means of table 12 a of the

Appendix. Finally, the curve of virtual temperature is drawn between the two others in accordance
with the percentages of humidity (column 4). Then the horizontal lines representing the standard
surfaces are drawn in accordance with the following table giving the value of the standard pressures
in inches of mercury :

m-bars 1000 900 Soo 700 600 500
Inches mercury 29-53 26.58 23.62 20.67 17-72 14.77
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Fig. 9. Virtual-temperature diagram; pressure in inches of mercury, temperature in degrees Fahrenheit.

The standard isobaric sheets being thus marked in the diagram, their average virtual temperatures
are determined in the usual way by drawing the vertical segments of line. The diagram gives these

temperatures in degrees Fahrenheit (column 6a), but by table 9 a of the Appendix they are changed
into degrees centigrade. Afterwards the thickness of the standard sheets (column 7), and the height
of the standard surfaces (column 8), are determined as in the preceding examples. From the dia-

gram also the temperature Fahrenheit at the standard surfaces can be read off, and from this tempera-
ture, changed into centigrade (column 9b), we'fmd the specific volume of the air at the standard sur-

faces (column 10).
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Table O (Example 4).
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Simultaneous ascents from a system of stations for aeronautical meteorology

may therefore be organized, and the problem will present itself, how to use the

results of these ascents for the daily forecasts of the weather. The meteorologist
at each station must therefore be

able, as soon as possible, to send

oft* a telegram giving the main re-

sult of his ascent. We shall here

take under consideration the pre-

paratory work for sending this tele-

gram as far as the hydrostatic state

of the atmosphere above the sta-

tion is concerned. The further

work at the central bureau after

the reception of the telegrams will

be discussed in the next chapter.

The hydrostatic state of the at-

mosphere above a station is given
if we know the height above sea-

level of the standard isobaric sur-

faces. To enable the central

bureau to find these heights it will

be sufficient if the telegram con-

tain (i) the height of the lowest

standard isobaric surface; (2) the

average virtual temperature of the

standard isobaric sheets.

We have thus to show what

the meteorologist at the station has to do from the moment he receives the mete-

orogram representing the results of the ascent on his table, in order to find the re-

sults (1) and (2) to be telegraphed.
Discussions of instrumental technics will not be taken up in this treatise. But

it is important to remind the reader of the existence of two kinds of registering

meteorographs. The first, which is most commonly used, contains a clock, and all

the meteorological elements are registered as functions of the time. The second

contains no clock. The barometer produces the motion of the paper on which the

curves for the other meteorological elements are thus registered as functions of the

atmospheric pressure. We shall show how to interpret a meteorogram obtained by
each of these two kinds of instruments.

(A) Meteorological elements registered as a function of time. Fig. 10

represents a meteorogram obtained by a kite flight from Tegel at Berlin, August
28, 1901.* The circle-arcs are coordinate curves of equal time. The curve in the

Time

Fig. 10." Meteorogram, Berlin, August 28, 1901

* R. Assmann und A. Berson : Ergebnisse der Arbeiten am Aeronautischen Observatorium 1900-1901, p.

259. The figure is changed, in as much as the coordinate curves on the barogram are drawn form-bars instead of

for millimeters of mercury.
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Fig. 11. Virtual-temperature diagram, Ber-

lin, Augu6t 28, 1901.

first section of the diagram represents the variation of temperature, that in the

second the variation of pressure, and that in the third the variation of humidity,
all as functions of time. If there are instrumental errors, the corrections are sup-

posed to be introduced graphically upon the

diagram, the curves of fig. 10 being such cor-

rected curves.

In order to derive from this meteorogram the

curve of virtual temperature, we have to deter-

mine sets of corresponding values of pressure,

temperature, and humidity. To do this most

conveniently, we start with the points where the

barometer-curve cuts the lines for 1000, 950?

900, . . . m-bars. Using a pair of compasses, 800

we mark the corresponding points on the ther-

mometer and hygrometer curves. Reading the

temperature corresponding to the marked points

on the temperature curve, we draw the curve of

true temperature in the diagram (fig. 11). Then,

using the virtual-temperature divisions, we draw

the curve of virtual temperature for saturated

air. Finally, using the humidities correspond-

ing to the marked points on the hygrometer
curve of fig. 10 we draw in the diagram fig. 11 the curve of virtual temperature
between the two other curves. The vertical segments of the line giving the aver-

age virtual temperatures of the standard sheets are drawn, as well as the segment

(invisible on account of its shortness), giving the average virtual temperature

(+ 16) of the air between the lowest standard surface and the earth. By means of

this temperature and the pressure 1001.2 at the station, we find the height 10

dynamic meters of the 1000 m-bars surface above the earth, using tables iim and

12 m as described previously. Adding the height (39) of the station, we get the

height (49) of this standard surface above sea-level. The figures to be telegraphed

are then

(a) 49, 12, 4, '1, -5

the first, 49, being the height of the 1000 m-bars surface, and the tour other num-

bers the virtual temperature of the standard sheets.

The interval of time from the moment the meteorologist has obtained the

meteorogram (fig. 10) on his desk until he has found the figures () to be tele-

graphed ought not to exceed ten to fifteen minutes.

(B) Meteorological elements registered asfunction ofpressure. The curve

to the left in fig. 12 is recorded by Professor Assmann's baro-thermograph* at an

ascent with a registering balloon on July 4, 1901.^

* R. Assmann und A. Berson, I. c, p. 42.

fR. Assmann und A. Berson, /. e,, p. 209. The original figure is changed by introduction of coordinate curves

representing the pressure in m-bars, and by change of positive direction on the axis of temperatures.
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This recorded curve is the curve of true temperature. Using the virtual-tem-

perature divisions, we draw the curve to the right, the curve of virtual temperature
for saturated air. No humidity having been registered, we suppose the relative

humidity to have had the average value of 70 per cent and draw the curve of virtual

yivenu?*
temperature at a dis-

WrfuaZ'' tance from the curve

'XtempemHwe f true temperature
Tressune of standard , .

m-z bars
'

sheets'^ equal to 70 per cent

~t of the distance be-

tween the two curves.

Then the circle arcs

are drawn, which, in

this system of coordi-

nates, represent the

average virtual tem-

peratures of the

standard sheets, as

well as the arc (invis-

ible in the figure on

account of its short-

ness) representing the

average virtual tem-

perature (+12) of the

air between the lowest standard surface and the earth. Using this temperature and

the pressure (1005.2) at the station, we find by tables iim and 12M the height (42

dynamic meters) of the lowest standard surface above the station, and adding the

height (39) of the station, we find the height (81 dynamic meters) of this surface

above sea-level. The figures to be telegraphed

60 so W 30 20 10 , O 10

Temperature C.

Fig. 12. Meteorogram, Berlin, July 4, 1901.

SO

(*) 81, 13, 9, 3, -2, -10, -21, 36, -54

are thus found. The time from the moment the meteorologist has obtained the

meteorogram until he has found the figures {b) ought not to exceed five minutes.

58. Extrapolation of the Virtual-Temperature Diagrams. The virtual-

temperature diagram obtained from the observations of a meteorological ascent may
be prolonged some distance upward, so as, for instance, to attain the next standard

isobaric surface. If the prolongation be not too long, a slight deviation from the

course which real observations would have given will have no great influence upon
the calculated heights or pressures. Short extrapolations of this kind have been

used occasionally in the examples given above.

A special kind of extrapolation will be of great importance, namely, those from

the earth's surface. Complete observations along a vertical in the atmosphere will

always remain rare, while we may get abundant observations from stations at the

earth's surface. The observation of pressure, temperature, and humidity gives one
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point of the virtual-temperature diagram for a vertical in the atmosphere passing

through the station. If the curve could be continued upwards somewhat from this

point, we should be able to solve the hydrostatic problem for a vertical of moderate

height. The solution would give a perfectly satisfactory accuracy in sufficiently

small heights above the station, but of course decreasing accuracy with increasing

height. Experience would gradually show to what height the extrapolation might
be ventured.

As a guide for extrapolations of the virtual-temperature diagram, table i6m of

Meteorological Tables has been constructed. It has been obtained by a statistical

study of the results of the international balloon and kite ascents for the three years

1901, 1902, and 1903. The table gives the correction, which should be added to

the virtual temperature at the station in order to give the virtual temperature at the

heights above the station figuring as argument. The little table headed " Under
the earth's surface "

gives the correction for extrapolations downwards, based upon
the common supposition of a decrease of the temperature of 0.5 degree per each

100 meters, used generally at present for " reductions to sea-level " of barometric

records.

An observation being given, taken at a station at the earth's surface, table 16m
thus enables us to draw the virtual-temperature diagram for a vertical through the

station. The ordinates being the heights, we have to use the method shown in

example 2, page 72, for calculating from this diagram the heights corresponding to

given pressures or the pressures at given heights, negative heights below the earth's

surface being also for theoretical reasons included.

We emphasize that table 16 m should serve only as a guide in extrapolating
virtual temperatures, and that it must be used with caution. Preferably a table of

this kind should be made for each meteorological station, based solely upon data

from ascents in air from this station. Great differences, dependent on the situation

of the station, would probably be found. Thus for stations situated on high isolated

mountains the temperature inversions (positive temperature corrections) given in

table 1 6 m in case of high pressure during winter, would probably not be found, and

the gradients under ordinary conditions would probably be found smaller than

above low land. When these gradients are determined by ascents undertaken from

mountains, the value of meteorological observations at stations on mountains will

be very much increased.

59. Extrapolation of Average Virtual Temperatures. The method devel-

oped in the preceding article is important, because it enables us to find the hydro-

static state of the atmosphere near the earth's surface every day by common

meteorological observations, quite independently of ascents in the air. Since it

therefore furnishes methods which at once might be introduced into the daily

meteorological work for the forecast of the weather, it will be important to simplify

the operations to be performed as much as possible.

If the problem be to find completely the hydrostatic state, both as to the height

corresponding to any given pressure, and as to the pressure at any given height, no
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simplification is possible. In such a case the virtual-temperature diagram must be

drawn. But limiting the problem to the determination of the heights of the lowest

standard isobaric surfaces, a convenient short cut is easily found. Instead of using
table i 6 m, giving the local values of the virtual temperatures, we use table 15 m,
which gives in a corresponding manner the average virtual temperatures for the

sheets of air between the station and the heights figuring as argument. This table

is deduced from the preceding one by a process of integration, the principle of

which will be clear in itself.

This table being given, we may proceed as follows in order to find the heights
of the nearest standard isobaric surfaces : Using the observed pressure we find from

table 1 1 M approximate values of the heights of these surfaces above the station.

Using these approximate height values and table 15 m, we find the average virtual

temperatures of the corresponding sheets. These virtual temperatures enable us

to correct the approximate heights already found by means of table 12M. The

complete procedure is seen by the example annexed to the table.

This method of calculating the height above or the depth below the earth of

standard isobaric surfaces is analogous to the method of " reduction to sea-level "

of the barometric observations taken at stations situated at heights above sea-level.

We emphasize some important differences however our aim is always to find the

heights of isobaric surfaces really existing in the air. The main reductions are

therefore made upward and not downward. Consequently the result of the reduc-

tion is capable of being controlled by actual observations made in the open air,

while reductions to the interior of the earth involved in the reduction to sea-level

can not be made the subject of any kind of test by actual observations made at the

place for which the pressure is calculated. Further, the reductions to sea-level are

made generally according to a schematic method, using under all conditions the

same temperature gradient. We have retained this gradient for small reductions

downwards, while in working out the part of table 15 m to be used for reductions

upwards, we have tried to introduce individual temperature gradients according to

the different types of weather. In this direction probably much progress could be

made by a statistical study of the results of ascents in the air, as remarked above.



CHAPTER VII.

SYNOPTIC REPRESENTATION OF THE FIELDS OF PRESSURE AND
OF MASS IN THE ATMOSPHERE.

60. Quasi Static State. Setting aside extraordinary phenomena, as, for

instance, waterspouts, we may characterize atmospheric motions as slow motions

going on near a state of equilibrium. Comparing simultaneous barometric records

taken from two different places, we find the conditions of equilibrium apparently ful-

filled, if the two places are at small or moderate distances from each other. Only
as the distance increases do we find a gradual departure from the fulfillment of these

conditions. As long, therefore, as the distance is small, the correct result will be

produced if we use the barometric records for calculating the difference of height
between the two barometers. The instruments will especially show the same pres-

sure if they are placed on the same level. But if we sufficiently increase the dis-

tance between them, they must finally be placed on distinctly different levels in

order to show the same pressure.

Thus, in reality, there is a deviation from the principle of the coincidence of sur-

faces (sections 35, 38). But the angle of intersection is so small that we must fol-

low the surfaces over great distances in order to find an appreciable separation.

On the other hand, proceeding along the plumb-line, we can not attain distances

sufficiently great in order to prove an unquestionable deviation from the principle of

the unit-sheets (sections 35, 38). Owing to the great lateral and small vertical

extent of the atmosphere, we have therefore this peculiar relation, characterizing
what we may call the quasi static state of the atmosphere :

The conditioti of equilibrium is apparently fulfilled along every vertical

line. But as we proceed in a horizontal direction, there is a gradual change

from vertical to vertical in this apparent state of equilibrium.
This important principle forms the basis of all practical investigations in atmos-

pheric dynamics. In making use of it, it is important to remark that we need not

take the expression "vertical" in the narrow sense of the word. We can consider

the greatest angle of inclination of the isobaric surfaces as a kind of critical angle.

Every curve whose angle of inclination is everywhere great in comparison with this

critical angle will be called a quasi vertical curve, while curves whose angle
of inclination is of the same order of magnitude or smaller than this critical angle
will be called a quasi horizontal curve. The latter curves may attain lengths

comparable to the lateral extent of the atmosphere, while the first remain short in

the same sense as the true vertical curves are short. Following a quasi vertical

curve, we can not therefore attain sufficient distances to be able to observe any

appreciable departure from the hydrostatic conditions, and the principle stated

above can therefore at once be extended from true vertical to quasi vertical curves.

89



90 DYNAMIC METEOROLOGY AND HYDROGRAPHY.

61. Consequences of the Principle of the Quasi Static State. In the pre-

ceding chapter we have shown how the results of meteorological ascents could be

worked out according to the principles of hydrostatics.

In the case of true equilibrium, one ascent would be sufficient to give the state

of the whole atmosphere. For according to the principle of coincidence of surfaces,

the state will be the same at all points contained in the same level surface. There-

fore, if we know the state at the points of a curve cutting a set of level surfaces, we
also know the state at all points of these level surfaces.

Now, the actual state of the atmosphere is not one of true equilibrium. But

owing to the principle of the quasi static state, the hydrostatic methods may still

be used to a certain extent. The curve along which the ascent of a kite or balloon

has taken place is always a quasi vertical curve. Along every curve of this kind

the conditions ot equilibrium are fulfilled with sufficient approximation to entitle us

to use the principles of hydrostatics. The states recorded by the instruments at

the different points of this curve maybe interpreted as if recorded at points of cor-

responding heights in a true vertical. By means of the developed hydrostatic

methods we therefore find the distribution of pressure and of mass along this

vertical. Although calculated upon a supposition not strictly fulfilled, the distribu-

tions of pressure and of mass found in this way will be very nearly the true ones.

This does not, however, entitle us to draw any conclusion as to the distribution

of pressure and of mass along other verticals. For verticals of sufficient mutual

separation, the distributions will generally be distinctly different, and must be found

by independent observations. But this being done, we can easily calculate by inter-

polation the distribution of pressure and of mass also for all interjacent verticals,

and thus find this distribution in the whole atmosphere.
Before concluding the consideration of atmospheric statics, we shall develop the

geometrical methods of representing synoptically the results obtained by this

method.

62. Method of Drawing Charts Representing Scalar Fields. It will be use-

ful first to exemplify some practical methods of drawing charts representing scalar

fields in a plane.

If the values of a scalar quantity be known at a number of points in a plane, we

always know how many equiscalar curves will pass between any two of these points,

the curves being drawn for fixed intervals, say for unit-differences of the scalar

quantity. By this condition the course of the equiscalar curves is determined to

some extent, the more accurately so the greater the number of points in which the

value of the scalar quantity is known. Therefore, knowing the value of such a

quantity at a sufficient number of points, we can draw the equiscalar curves with

sufficient accuracy, and thus arrive at the graphic representation of the scalar field

in the plane.

This is the well-known method of drawing isothermic charts from the observa-

tions of temperature, isobaric charts from the observations of pressure, topographic
charts from measurements of heights, and so on.
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63. Arithmetical and Graphic Methods of Adding and Subtracting Scalar

Fields. Let a
x and a2 be scalar quantities of the same kind, say both temperatures,

both pressures, or both heights above sea-level. From the fields a
t and a

2 we shall

often have to deduce the field of their sum

to
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way we can draw a topographic chart for every standard isobaric surface reached by
the ascents. A set of such charts gives a perspicuous representation of the distribu-

tion of pressure in the investigated part of the atmosphere. Examples are given
in figs. 13 and 19.

To find the correlative representation of the distribution o mass, we have to

remember that the figures representing the mutual distances from one standard

surface to the next at the same time represent the average specific volume of the air

in the sheets between the surfaces. A chart ofmutual topography of two successive

standard isobaric surfaces will therefore also represent the field of average specific

volume in the sheet between the two surfaces. We may draw these charts directly

from the figures representing the thickness of the sheets (example 1, column 7,

table J, p. 70 example 2, column 8, table K, p. 74) or indirectly from the charts of

absolute topography, using the method of graphic subtraction, the latter method

being, however, less accurate. Charts of this description are given in figs. 14 and 20.

Of course we might also have represented the distribution of mass by topographic
charts of the isosteric surfaces. But, however interesting these might be, the

above representation, obtained in immediate connection with the distribution of

pressure, will generally be found the more useful, apart from the greater facility

with which it is found.

In order better to conceive the topography represented by the charts it will be

usetul to draw profile curves of the isobaric surfaces. A set of such verticals as

the second of fig. 4 are drawn at horizontal distances corresponding to the distances

between the stations. Joining the points belonging to the same isobaric surface, we

get the profile curves. Taking the other set of divisions on the same verticals, we

may also get the profile curves of the isosteric surfaces. If both sets of profile curves

be drawn on the same diagram, as in figs. 17 and 21, they intersect each other, show-

ing the deviation from the hydrostatic principle of the coincidence of the surfaces.

These vertical sections are not of the same practical interest as the charts of abso-

lute and relative topograph}-, but have still interesting theoretical properties, and

enable us to get a more complete conception of the content of the charts. An im-

portant geometrical relation between the section containing the profile curves and

the charts of relative topography will be given presently (section 73).

65. Charts of Absolute Pressure and of Mutual Pressure Differences in

Level Surfaces. On the chart containing the stations we can then note the num-
bers representing the pressure found at a certain level, and guided by these numbers
draw an isobaric chart for this level, in the same manner as such charts are drawn
for sea-level in the daily weather service. A set of such charts, drawn for a set of

standard levels, will give as complete a representation of the distribution of pressure
as the preceding one by topographic charts of isobaric surfaces. Examples of such

isobaric charts at different levels are given in figs. 15 and 22. As too many charts

would be acquired if drawn for every standard level, i. e., for every dynamic meter

of height, we have only drawn them for intervals a thousand times greater, i. e., for

level differences of 1,000 dynamic meters. The pressures represented by the

isobaric curves are added in m-bars.
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To find the correlative representation of the distribution of mass, we have to

remember that the difference of pressure from one standard equipotential surface

to another is equal to the average density of the air in the sheet between them.

By arithmetical or graphic subtraction of the fields of pressure in the level sur-

faces limiting an equipotential sheet we therefore get a chart representing the

average distribution of density in this sheet. Such charts are given in figs. 16 and

23. The figures added to the curves give the mutual pressure differences in m-bars.

As they refer to level sheets of 1000 dynamic meters interval they will, after divi-

sion by io 5
, give the average densities of the sheets.

A valuable complement to these charts of absolute pressure and of pressure dil-

ference are vertical sections like those of figs. 18 or 24. These are obtained by
means of verticals like the third of fig. 4. A set of such verticals being drawn at

proper mutual distances, points representing the same dynamic height are united by

curves, and in like manner points representing the same value of density. In this

way we obtain the profile curves of the equipotential and isopycnic surfaces, those

of the equipotential surfaces being drawn simply as horizontal equidistant lines.

An important relation between these vertical sections and the corresponding
charts will be developed below (section 73).

66. Construction for Lower Levels of Charts of Absolute and of Mutual

Topography from Observations Made at the Earth's Surface. In drawing the

charts described in principle in the preceding articles, it is important to make as

complete a use as possible of the observations from the stations at the earth's sur-

face. For these observations are abundantly at hand, while those from the open
air will always remain relatively scarce. By means of the method of extrapolation

developed in sections 58 and 59, it will be possible from the observations at the

earth's surface to draw charts for the lower sheets of the atmosphere.
From stations near sea-level the heights of the three lowest standard surfaces

may be found, and from many mountain stations the heights also of the fourth and

fifth and even higher surfaces may be determined with satisfactory accuracy. The
common meteorological observations will therefore enable us to draw topographic
charts of the three, four, or even five lowest standard isobaric surfaces. The three

first charts of fig. 19 are obtained in this way, only slightly corrected and extended

afterwards by the results obtained by ascents in the air. It is important to remark

that charts of this kind can be obtained every day from the regular meteorological

observations, and with the same ease as the charts for sea-level now in use.

It is of course always desirable to derive the charts directly from the original

observations, and not from these observations after they have been " reduced to

sea-level." But often, when past atmospheric states must be worked out from

published observations, these are accessible only in the distorted form of isobaric

charts for sea-level. Re-reductions to higher levels are thereby made more
troublesome and less trustworthy. But it is important to notice that it is very easy
to change an isobaric chart for sea-level into a topographic one for the 1000
m-bar surface, provided the isothermic chart be known besides the isobaric.

To perform this change when the isobaric chart is drawn for millimeters of

mercury and the isothermic for degrees of the centigrade thermometer, table 18 a
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of the Appendix is used. The table shows that the level curve of the height zero

coincides with the isobaric curve of a pressure of 750 mm. mercury at sea-level,

independently of the temperature. The level curve of a height of 50 dynamic
meters coincides almost completely with the isobaric curve for a pressure of 755
mm. mercury, deviating for high temperatures towards the isobaric curve of 754
mm. mercury, and for low towards the isobaric curve of 756 mm. mercury. In the

same way the curve of 100 dynamic meters of height closely follows the isobaric

curve of 760 mm. mercury, with small deviations towards higher pressure for low

temperature and towards lower pressure for higher temperature, and so on. Using
this table and the isothermic chart, slight changes are easily made in the isobaric

curves, giving thus the level curves representing the topography of the 1000 m-bars
surface.

Table 19 A of the Appendix serves the same purpose, in the case of the isobaric

chart being drawn for inches of mercury and the isothermic for Fahrenheit degrees.
This table has been used to draw the topographic chart for the 1000 m-bars sur-

face in fig. 13 from the corresponding isobaric chart for sea-level published by the

U. S. Weather Bureau.
The principle for the calculation of tables of this kind is explained in the next

article, where tables serving an analogous purpose are described.

From the charts of absolute topography, obtained by extrapolation from below,
those of relative topography, representing the distribution of mass in the sheets

between the standard surfaces, may be deduced at once by the method ofarithmetical

or graphic subtraction. The arithmetical method will generally be found preferable
on account of the acuteness of the angles of intersection of the curves of absolute

topograph}* (section 63). Two charts obtained in this way are given in fig. 20.

67. Construction for Lower Levels of Charts of Absolute Pressure and of

Pressure Differences from Observations at the Earth's Surface. Drawing the

extrapolated virtual-temperature diagram as explained in section 58, and calculating
the pressure in standard levels, we can draw the isobaric charts of absolute pressure
in these levels. Afterwards, by the method of arithmetical or graphic subtraction

(the first being generally preferable), the charts of relative pressure, representing
the distribution of density in the level sheets, can be drawn.

On the other hand, if the charts of absolute topography of standard isobaric

surfaces be drawn, it is easy to change them into isobaric charts for corresponding
standard levels. To see this we remark that the level curves on isobaric sur-

faces and the isobaric curves on level surfaces belong to one family, the curves of

intersection between isobaric and level surfaces. The level curves on an isobaric

surface and the isobaric curves on a level surface from about the same height in the

atmosphere will therefore resemble each other. Further, the standard isobaric

surfaces of pressures 1000, 900, 800, 700, 600, 500, 400, and 300 m-bars are nearly
in the levels of o, 1000, 2000, 3000, 4000, 5000, 7000, and 9000 dynamic meters, and

therefore only a small correction is required to [change the level curves of these

isobaric surfaces into isobaric curves at the correspondingjevels.
The principles for finding these corrections are easily seen. The isobaric curve

700 m-bars in the level surface 3000 dynamic meters is identical with the given
level curve 3000 dynamic meters on the isobaric surface 700 m-bars. The isobaric
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curve 705 m-bars will run where the sheet of air between the isobaric and the

level surface exerts the pressure of 5 m-bars. In order to exert this pressure the

sheet must have the thickness of 56 dynamic meters if it has the temperature of

C, the thickness of 58 dynamic meters if it has the temperature of io C, and so

on. This is seen at once from tables iom and 12 m. The required isobaric curve

of 705 m-bars will thus coincide with the given level curve of 3056 dynamic meters

where the sheet has the temperature of o C, with the given level curve 3058 dy-
namic meters where the sheet has the temperature of io C, and so on. These tem-

peratures and the level curves being given, the isobaric curves can thus be drawn.

To avoid the laborious use of tables 10 m and 12 m, table 17 m has been derived

from them
;

as one argument appears the pressures along any isobaric curve to be

drawn, and as the other the virtual temperatures in the given isobaric surface.

These are always known (see example 1, column 9, table J, p. 70, example 2,

column 10, table K, p. 74). To these temperatures at the surface will correspond
a definite average temperature of the sheet if we make the common supposition of

a 'fall of temperature of 0.5 C. for every 100 dynamic meters of height. On
account of the smallness of the reductions a greater accuracy than that obtained

under this simple supposition will never be required. Using this supposition, the

tabulated numbers are derived from tables iom and 12 m. They indicate with

which level curves the required isobaric curves should coincide. Using these tables

and the given topographic chart and temperature chart for the isobaric surfaces
}

the required isobaric charts can be drawn with great ease.

68. Correction of Charts for Lower Levels and Construction of Charts for

Higher Levels by Means of Observations Obtained from Ascents. If results

from simultaneous ascents in the air were available in sufficient number, charts of

absolute and of mutual topography, or of absolute pressure and pressure differences,

could be drawn directly and independently of each other for every level. But as

long as these ascents remain comparatively rare, it will be advisable first to draw
all charts which can be obtained by extrapolation from the stations at the earth's

surface as completely as possible.

This being done, our first task will be to correct the charts according to the

absolute values obtained from the ascents. This is easily done for charts of abso-

lute topography or of absolute pressure. The values obtained from the ascents are

noted on the charts, and the whole set of curves displaced or changed so as to suit

these values. As a rule this is easily done without any noticeable change in the

qualitative course of the curves. These corrections have been made on the charts

of figs. 19 and 22.

Greater difficulty will be found in correcting charts of mutual topography or of

pressure differences, because their curves have a very complicated course, evidently
in great measure depending upon the topography of the land and the distribution

of land and sea. It is not easy to see how to change the course of such curves so

as to suit the small number of correct values obtained by the ascents. In the ex-

amples worked out below we have therefore desisted from making this correction.
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In fig. 20 are given side by side two charts of mutual topography obtained by

extrapolation from 219 stations at the earth's surface, and two as obtained from the

results of ascents in the air from 5 stations. If ascents had been made at a sufficient

number of places the curves of the latter charts would probably have had mainly
the same course as those of the extrapolated charts, but with slightly changed situa-

tions of the different curves, and it would have involved no difficulty to correct the

extrapolated charts by the fundamental values obtained by the ascents.

As to the charts for higher levels, those of mutual topography or of pressure dif-

ferences are drawn directly from the results of the ascents. Afterwards we use the

following method for drawing the charts of absolute topography not obtained by

extrapolations from below : The chart of mutual topography of two surfaces is

placed upon that of the absolute topography of the lower one. Then the absolute

topography of the upper one is obtained by graphic addition. The chart thus

obtained is then corrected in accordance with the absolute heights found from the

ascents and from the observations on mountains of a sufficient height. For the

present, however, the latter observations must be used with caution because of our

ignorance of temperature gradients above mountains (section 58). This chart being

drawn, we place upon it the next chart of mutual topography, proceed in the same

manner, and so on.

The charts of absolute pressure in the higher standard levels are found by a

completely analogous procedure.
In drawing charts in this way, one after the other by graphic addition, there is

this advantage that the characteristic feature of the distribution of pressure as

known from the numerous observations from the earth's surface does not disappear
as we proceed upward, as would have been the case if each chart had been drawn

independently of the others by means of the small number of calculated values.

69. Remarks on the Rapid Work Essential for Daily Weather Service.

In the preceding articles we have shown in detail how to find and represent as

completely as possible the distribution of pressure and mass in the atmosphere.

Nothing would prevent the use of these methods in the daily meteorological service

for the forecasts of the weather. But then it becomes a question of vital impor-
tance how to be able to draw the whole system of charts with as short a delay in

time as possible.

We have, then, first to make a choice between the two methods, developed side

by side that of representing the absolute and the relative topography of isobaric

surfaces, or that of representing the absolute and relative pressure in level surtaces.

There is no doubt as to what choice to make; the charts of absolute and relative

topography can be found by a smaller number of operations, and therefore be ready
within a shorter time. It may be possible that the method of constructing the iso-

baric charts in level surfaces might be developed to a greater degree of simplicity
than is done here. But it is not probable that the simplicity of the other method

could be reached. The preference in favor of the first method is due to the greater
theoretical simplicity of the problem of determining the height corresponding to a

given pressure compared with that of determining the pressure at a given height.



FIELDS OF PRESSURE AND MASS IN THE ATMOSPHERE. 97

The superiority of the charts of absolute and relative topography being admitted,
the meteorologists at the central bureau have to work out such charts from two

sets of telegrams, giving (1) the observations from the common meteorological

stations, (2) the height of the lowest standard surface and the virtual temperature
of the standard sheets above the aeronautical stations from which ascents have been

made (section 57).

From the first set of observations the charts of absolute and relative topography
are drawn as described above for the lower levels. They can be drawn independently
of each other, and accordingly simultaneously by different workers. As the drawing
of each chart is of precisely the same nature as the drawing of an isobaric chart for

sea-level, nothing prevents the whole set from being ready within an interval of

time not exceeding that required for drawing the single isobaric chart for sea-level.

From the telegraphed values of the virtual temperatures of the standard isobaric

sheets the higher-level charts of relative topography are drawn. In doing this it is

not necessary first to change by table 9 m the telegraphed virtual temperatures into

heights. The curves for constant thickness of a sheet are curves for certain con-

stant values of the virtual temperature. We may therefore note these tempera-
tures on the chart and draw the curves for constant thickness of the sheet directly

from them, table 9 m showing which virtual temperature corresponds to a required
value of the vertical distance.

The charts of relative topography being drawn, the corresponding charts of

absolute topography are found by the method of graphic addition. Finally, if

required, the charts are corrected according to the absolute heights, which to save

time may have been calculated by another computer. But as long as observations

from- the open air are rare, one man will probably be able to perform all the work
for the higher-level charts during the time required by the other workers to draw

the lower-level charts. Thus, by good organization there is nothing to prevent the

whole system of charts giving the distribution of pressure and mass in the atmos-

phere for all heights reached by extrapolations from below and by direct ascents in

the air, being ready within an interval of time not greatly exceeding that required
for drawing such charts as are now used for sea-level.

70. Example i. Atmospheric Conditions over North America, September

23, 1898. The first simultaneous meteorological kite ascents were organized by
the U. S. Weather Bureau during the summer of 1898.* September 23 seven

ascents succeeded, five of which were fairly simultaneous, between 7 and 1 1 o'clock

in the morning, and thus simultaneous also with the common meteorological obser-

vations at 8 o'clock, time of the seventy-fifth meridian. Two of the ascents, from

North Platte and from Dodge City, came between 2 and 5 in the afternoon. Dur-

ing the days September 21 to 24, kite ascents were made also from the Blue Hill

Meteorological Observatory near Boston.f None of them were simultaneous with

*See H. C. Frankenfield : Vertical Gradients of Temperature, Humidity, and Wind Direction. A preliminary
report on the kite observations of 1898. Weather Bureau Bulletin F. Washington, 1899. The original results

of the kite ascents have not been published. Those used below have been kindly communicated by the Weather
Bureau.

tH. Helm Clayton: Studies of Cyclonic and Anticyclonic Phenomena with Kites. Bulletin No. 1, 1899,
of Blue Hill Meteorological Observatory.
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those of the Weather Bureau. But by a method of interpolation to be explained
below they have been reduced to simultaneousness with the others. Besides the

results of these kite ascents we have had at our disposal the synoptic charts of the

Weather Bureau for this day, but not the original observations from the stations at

the earth's surface.

Table P contains for each of the kite-flights the calculated dynamic heights of

the three lowest standard isobaric surfaces (first column under each station), and

the mutual distances between these surfaces (second column under each station).

Table P. Dynamic heights of standard isobaric surfaces and mutual distances between them,

United States., September 23, i8g8.

Station :
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Fig. 14. Field of mass, Sept. 23, 1898, represented by charts giving
the average specific volume (m 8

/ton) of the air in is"baric

sheets, or the thickness of these sheets in dyn. meters.

Fig. 13. Field of pressure, Sept. 23, 1898, represented by topographic-

charts giving the height of isobaric surfaces in dyn. meters.
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110' I"" 90 *W

1000-2000 dvn.meters

Fig. 16. Field of mass, Svpt. _'.">, I 898, represented by charts giving the

average density ( 10~
5
ton/m' ) of the air between level sur-

faces, or the difference of pressure between these surfaces

in m-bars.

Fig. 15. Field of pressure, Sept. 23, 1898, represented by isobaric charts

giving the pressure in level surfaces in m-bars.
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The iooo m-bar surface rises to a height of ioo dynamic meters or more above

the Atlantic Ocean, Hudson Bay, and the nearest parts of the coast; it cuts the

earth's surface along a line running approximately parallel to the coast, and shows

a marked depression in the region about the Great Lakes, where it goes down to or

below sea-level. The 900 m-bar surface runs at an average height of 950 dynamic

meters, and cuts the earth along the lower slope of the Rocky Mountains as well as

about a few of the higher peaks of the Appalachian Mountains, which rise as islands

above the surface. The 800 m-bar surface runs at a height of 1950 dynamic meters

and cuts the earth only along the upper slope of the Rocky Mountains. Both show
the same depression as the 1000 m-bar surface in the region about the Great Lakes.

The curves of the first chart, fig. 14, giving the mutual topography of the 900
m-bar and the 1000 m-bar surface, run mainly east and west, indicating a decreas-

ing distance between the surfaces as we proceed from south to north. The curves

of the next chart, giving the mutual topography of the 800 m-bar and the 900 m-bar

surfaces, have a very different course, running mainly north and south, and indicat-

ing a decreasing distance between the surfaces as we proceed from west to east.

Interpreted as charts of the distribution of mass in the standard isobaric sheets,

the first shows decreasing specific volume, i. e., increasing concentration of mass,
as we proceed from south to north, while the second indicates a corresponding con-

centration of mass as we proceed from west to east, the greatest concentration

apparently being found a little south of the greatest depression of the isobaric

surfaces.

Fig. 17 is a vertical section showing the profile curves of the isobaric and the

isosteric surfaces. This section is not, however, derived from the observations

used in drawing the charts, but from the successive ascents performed at Blue Hill

on each of the four days September 21 to 24. Supposing the cyclone to have

moved during these days without undergoing any change in its interior constitu-

tion, the section obtained in this way would have given the same result as a set of

simultaneous ascents from four properly chosen stations on any of these days. We
waive the question as to the invariability of the cyclone during this time, and there-

fore also as to what approximation the four successive ascents from Blue Hill may be

interpreted as four simultaneous ascents from different stations. The sections ob-

tained by successive ascents from the same stations will always be of value in them-

selves, and in this case in enabling us to find by interpolation the state of the

atmosphere above Blue Hill at the time of the Weather Bureau ascents September

23. The point marked B. H. indicates the vertical of the moving cyclone which

was above Blue Hill at the time, and from its sections with the isobaric and the iso-

steric curves the numbers under the column Blue Hill in table P have been derived.

Table Q^contains the result of the same kite ascents as table P, but worked

out for the absolute pressures at given levels and the pressure differences from

level to level. The corresponding synoptical representation of the state of the

atmosphere is given in figs. 15, 16, and 18. The isobaric curves are drawn con-

tinuously or dotted according as they represent real pressure in the open air or

ideal pressure below the earth's surface. The curves of intersection of the different

levels with the earth's surface are drawn heavy.
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The first chart of fig. 15 gives the pressure at sea-level. It is derived from the

isobaric chart of the Weather Bureau, only changed by table 8 a of the Appendix
from inches of mercury to millibars. The two charts of pressure-differences (fig.

16), from level o to that of 1000, and from this level to that of 2000 dynamic meters,
are drawn from the figures in table Q^ The curves of these charts are dotted from

the point where the lower limiting surface of the sheet cuts the ground and stop
where the upper surface cuts the ground, the part of the earth rising above this

upper surface being shaded. The second chart of absolute pressure (fig. 15) is

obtained by graphic addition of the first charts of fig. 15 and the first of fig. 16, and

in the same way the third chart of absolute pressure is obtained by graphic addi-

tion of the second chart of fig. 15 and the second of fig. 16.

Table Q. Pressure (nt-bars"), in standard level surfaces, and differences ofpressure between

them. United Stales, September 2J, i8p8.

Station :

Dynamic height:
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On November 7, 190 1, in the morning and forenoon there ascended* from Paris

one registering balloon with two instruments; from Strassburg two registering and

one manned balloon; from Berlin two registering and one manned balloon; from

Vienna one registering and two manned balloons. From St. Petersburg one reg-

istering balloon ascended on the following morning, November 8. This ascent has

been treated as simultaneous with the others, our aim being only to exemplify the

technics of our methods, not to discuss the true state of the atmosphere on this par-

ticular occasion.

Table R. -Dynamic heights of standard isobaric surfaces and mutual distances betxveen them,

computedfrom ascents, Europe, November 7, 1901.

Station :
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Table S. Dynamic heights of standard isobaric surfaces and mutual distances between them, computed

by extrapolationfrom observations taken at the earth's surface, Europe, November 7, 1901.

Station :
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Table S. Dynamic heights of standard isobaric surfaces and mutual distances between them, computed by

extrapolationfrom observations taken at the earth's surface, Europe, November 7, iqoi Continued.

Station :
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Table S. Dynamic heights of standard isobaric surfaces and mutual distances between them, computed by

extrapolationfrom observations taken at the earth's surface, Europe, November j, igoi Continued.

Station :
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Table S. Dynamic heights of standard isobaric surfaces and mutual distances between them, computed by

extrapolation from observations taken at the earth's surface, Europe, November 7, iqoi Continued.

Station :
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Table S. Dynamic heights of standard isobaric surfaces and mutual distances between them, computed by

extrapolationfrom observations taken at the earttis surface, Europe, November 7, igoi Continued.

Station :
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Fig. 19. Field of pressure. Nov. 7, 1901, represented by topographic charts giving the height of isoharie surfaces in dyn. meters.
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Fig. 19. (Continued). Field of pressure, Nov. 7, 1901. The last chart

gives the situation of the meteorological stations.
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Fig. 20. Field of mass, Nov. 7, 1901, represented by charts giving the average specific volume (m s
/ton) of the air in isobaric

sheets, or the thickness of these sheets in dyn. meters.
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Fig. 22. Field of pressure, Nov. ;, 1901, represented by isobaric charts giving tlie pressure in level surfaces in m-bars.
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Fig. 22 ( Continued ) . Field < f pressure, Nov. 7, 1901
, represented by isobaric charts giving the pressure in level surfaces in m-bars.
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Fig. 23. Field of mass, Nov 7, 1901, represented by charts giving the average density (10~
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J
) of the air between level

surfaces, or the difference of pressure between these surfaces in m-bars.
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Table S contains the absolute heights of the lowest standard isobaric surfaces,
as well as the heights from surface to surface as obtained by the method of extra-

polation from the common meteorological stations.* Among those from which
observations have been available 219 have been chosen. Their situation is seen

from the last chart of fig. 19. The principle in choosing has been to get as many
stations as possible on different levels. The chart therefore contains a great number
of stations in mountainous regions, and relatively few in low land.

By means of the figures contained in tables R and S the charts of absolute and
of mutual topography (figs. 19 and 20) of the standard isobaric surfaces have been
drawn in full accordance with the directions given in sections 66 and 68. The two
lowest charts of mutual topography obtained by extrapolation from the 219 com-
mon stations and the two corresponding obtained from the ascents from the five

aeronautical stations are given side by side in fig. 20, no attempt having been made
to mold the corresponding charts into one. (Compare section 68.) The charts

of absolute pressure in the four lowest levels (fig. 22) have been derived from the

corresponding topographic charts of fig. 19 by the graphic method described in

section 67. The charts of pressure differences (fig. 23) are drawn exclusively from

the pressure differences contained in table T.

As in the preceding example, we have dotted all isobaric or level curves running
below the earth's surface, the lines of intersection of the isobaric or the level sur-

faces with the earth being marked as thick curves. Thus the half of the 1000

m-bar surface is below the earth, while the 900 m-bar surface passes below the earth

only in the mountainous parts of Scandinavia, southern Europe, and adjacent parts
of Asia. Above the 800 m-bar surface only the higher parts of the Alps and of the

Caucasus rise as small islands.

Figs. 21 and 24 are vertical sections containing profile curves, the first of iso-

baric and isosteric, the second of equipotential and isopycnic surfaces. These sec-

tions are worked out from ascents from Strassburg, Berlin, and St. Petersburg.

Figs. 19 to 24 thus described give the distribution of pressure and mass in a

cyclone having its center above Finland. Here the isobaric charts show a mini-

mum of pressure, and the topographic charts deep depressions of the isobaric

surfaces. A striking feature of the topograph}- of the isobaric surfaces is their

inclination as we proceed upwards. It is characteristic of the other method of

representation that the isobaric charts do not show noticeably greater difference of

pressure in one level than in another. Thus the topography of the isobaric surfaces

is in some sense a more sensitive indicator of the distribution of pressure in higher
levels than the isobaric charts for given levels. A most striking feature of the charts

of mutual topography is that they indicate decreasing specific volume towards the

cyclone center. In the same manner the charts of pressure-differences show an

increasing density of the air as we approach this center. Thus both indicate a

*The observations are taken from the meteorological year books published by the different countries. Unfor-

tunately some of them (Italy, Spain) only contain different average values, not original observations, and are there-
fore of no use for investigations in atmospheric dynamics. As is well known, the simultaneity of the observations
from the different countries is not very satisfactory. This will be a great difficulty for dynamical investigations.
For our present purpose we may treat them as if they were true simultaneous observations.
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concentration of mass in the center of the cyclone. We indicate this only to point

out what the charts tell, not to discuss the fact in itself. For we have refrained

from discussing the reliability of the observations from which charts have been

deduced, our only aim being at present to illustrate our methods, the observations

being given and considered as trustworthy.

Table T. Pressure (tn-bars) in standard level surfaces and differences of pressure
between them, computedfrom ascents, Europe, November 7, IQOI.

Station :
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measure for the departure from the state of true equilibrium. For this reason it

will be useful to develop some simple relations involving the number of unit-tubes.

Proceeding along an isobaric unit-sheet, we get unit-change of specific volume,
and consequently unit-change of thickness of the sheet for every isosteric surface

met with. Instead of counting the isosteric surfaces, we may also count the unit-

tubes. Introducing the ascendant (section 17) of the specific volume, we see that

the projection of this vector on the isobaric surface points in the direction of increas-

ing thickness of the sheet. We can therefore count algebraically, reckoning a tube

positive when the projection of the ascendant points in the direction in which we

proceed, otherwise negative. By this mode of counting we get a measure for the

increase of thickness of the unit-sheet. From the unit-sheet we may pass to any
sheet composed of any number of unit-sheets; the increase of thickness of the

sheet from one vertical to another will be equal to the number of isobaric-isosteric

unit-tubes contained between them, counted algebraically in the defined manner.

The increase of height comes out in dynamic decimeters if the m. t. s. units be used.

Counting in the same way the number of equipotential-isopycnic unit-tubes

contained in an equipotential sheet, we find the variations in the difference of pres-
sure between the upper and the lower limiting surface of the sheet. The rule of

signs is formally the same as in the preceding case, the projection of the ascendant

of the density pointing in the direction where the difference of pressure increases.

Thus, in order to find the increase in the difference of pressure between foot and

top of two verticals having their end-points in the same two level surfaces, we have

simply to count algebraically the number of equipotential-isopycnic unit-tubes con-

tained within the closed curve formed by the two verticals and two level curves

joining their end-points.

73. Relation between Sections and Charts. These rules lead to a new view
of the charts representing the mutual topographies or the differences of pressures.
The curves of these charts may be considered as the horizontal projections of ver-

tical walls, dividing the sheets into a set of tubes. These tubes with vertical walls

are easily seen to have a close relation to the unit-tubes with oblique walls.

To consider first the charts of mutual topography, each vertical wall has a con-

stant dynamic height. Two different walls therefore have a constant difference of

dynamic height. From the numerical relation developed in the preceding article

we therefore conclude that every tube with vertical 'walls must contain a constant

number ot isobaric-isosteric unit-tubes. If m. t. s. units be used, this number will be

equal to the difference of height between the vertical walls, expressed in dynamic
decimeters. Thus every section of the tube, it being plane or curved, normal or

oblique, contains this constant number of unit-parallelograms. This does not mean
that the course of the unit-tubes with their parallelogram-section is exactly the

same as that of the tubes with vertical walls. But the latter give the average course

ot the first. Thus, if a unit-tube passes out through the vertical wall, for instance

at its base, a corresponding tube will enter through the same wall at its top. We
thus arrive at this result: The charts of mutual topography of isobaric surfaces

show the average course and the number of the isobaric-isosteric unit-tubes in the

sheet between the surfaces.
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Passing to the charts of pressure differences, we get this perfectly analogous
result: The charts for pressure differences between successive level surfaces show
the course and the number of equipotential-isopycnic unit-tubes in the sheet

between two levels.

On the charts of mutual topography (figs. 14 and 20) the curves are drawn for

differences of height of 10 dynamic meters, i. e., for 100 dynamic decimeters. Thus
between the vertical walls represented by the curves there run 100 isobaric-isosteric

unit-tubes. On the charts of pressure differences (figs. 16 and 23) the curves are

drawn for the intervals of pressure of 1 m-bar, i. e., 0.1 c-bar. Between the vertical

walls represented by these curves there will consequently run 0.1 equipotential-

isopycnic unit-tubes, if the m. t. s. units be used.

74. Complete Representation of the Fields of Moving Forces and Moved
Masses in the Atmosphere. Our aim has been to arrive at a complete represen-
tation of the fields of pressure and of mass. But it is worth while mentioning that

in reality we have attained more than this.

For the investigation of atmospheric equilibrium and motion a third field, that

of gravitational force, is of fundamental importance. Being invariable, this field

need not, like the changing fields of pressure and mass, be specially represented.
But it merits attention that in our representations of the variable field of pressure
is implied also that of the invariable gravitational field.

The charts giving the dynamic topography of the isobaric surfaces are repre-
sentations of the gravitational field of force tangentially to these surfaces. Men-

tioning the charts of dynamic topography of the earth's surface and of the bottom

of the sea, we have already developed the idea of these charts as representing
two-dimensional fields of force (section 18). Evidently a combination of the two-

dimensional fields for the succession of isobaric surfaces will give a complete

representation of the three-dimensional field in space.

The other representation of the field of pressure is by isobaric curves drawn on

level surfaces. Now, the level or equipotential surfaces give themselves a direct

representation of the gravity potential and thus of the gravitational field of force.

It is the field of pressure, which is represented in the more indirect way, as the

field of gravity potential in the preceding case. We have here a perfect parallelism.

The isobaric charts in level surfaces represent the two-dimensional fields of the

pressure gradient in these surfaces, just as the topographic charts of the isobaric

surfaces represented the two-dimensional fields of the potential gradients in these

surfaces. The comprehension of these isobaric charts for the successive levels give
the representation of the three-dimensional field of the pressure gradient in space.

Whichever of the two methods we choose, we thus get simultaneously a repre-

sentation of the fields of force due to gravity and to pressure. At the same time,

the charts of relative topography or of relative pressure represent the field of mass.

We have thus obtained a complete representation of the fields both of the moving
forces and of the masses moved.



CHAPTER VIII.

PRACTICAL SOLUTION OF THE HYDROSTATIC PROBLEM FOR THE SEA.

75. Normal Equilibrium Relation and Small Deviations from this Relation.

In order to illustrate the principle of unit-sheets, we have already calculated the

depth corresponding to a given pressure (section 36) and the pressure at a given

depth (section 39) of the sea having a constant salinity of 35 /oo and a constant tem-

perature of o C. This calculation gave us the fundamental tables 7 h and 15 h of

our Hydrographic Tables. In the ideal case of a sea with these constant values of

temperature and salinity we have thus fully solved the hydrostatic problem in both

its forms.

The treatment of the problem generally is very much simplified by the circum-

stance that the variations in temperature and salinity only produce minute changes
in the equilibrium relation between depth and pressure. We can therefore con-

sider the equilibrium relation represented by tables 7 h or 15 h as the " normal " one.

The problem is then reduced to the determination of the small deviations from this

relation produced by the variations of temperature and salinity, or, as we may call

it, the "anomalies" of the equilibrium relation.

To find the expressions for these anomalies, we have to start with the hydro-
static equation in either of its integral forms, section 40 (a) or (b). Instead of gravity

potential <f>
we introduce the dynamic depth D, measured in dynamic meters and

counted positive downwards (section 10). Simultaneously we count the pressure

only as sea-pressure (section 27), expressed in decibars. Choosing the lower limit

of the integrals in the sea's surface, we then get as expression for the depth D cor-

responding to a given pressure p,

(a) D= radj>

and as expression for the pressure p at the given depth Z>,

(b) p = j%dD
Applying our notations from sections 27 and 29, and introducing

(d ) P=Pk,o,i> + s

we separate the specific volume and the density of the sea-water into their normal

values a^A p , />Mi o,/
and their anomalies S and e. Substituting this in the equations

(a) and (b), we get D and p separated in two terms,

(0 Z> = A6,o P + AZ

(/) t=tu,*,D+*P
123
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Where

(g) A5,0,p
=

I
a
35,0, pdp

W As,0,D= I P35,0,Dd-D

and

(/) A/= f et/Z*

Here (^") represents the normal depth corresponding to a given pressure, *. e.,

the depth tabulated in table 7 h; (//) the normal pressure at a given depth, i. e., the

pressure registered in table 15 h. We have therefore henceiorth to occupy our-

selves only with equations (3s")
and (_/), the first of which gives the anomaly of depth

tor a given pressure, while the second gives the anomaly of pressure at a given

depth.

76. Fundamental Approximation Rules. The anomalies of depth or of pres-

sure should be determined in accordance with the observed values of salinity and

temperature. Generally the values of these quantities are obtained ior known
values of depth, measured in meters by means of the sounding-line. In other

cases a manometer is used, giving the pressure at the places from whence the

samples of water are taken, the temperature and salinity of which are determined.

Between the depths of a certain number of common and the same number of

dynamic meters there is a difference of about 2 per cent. Between the depths

represented by a sea-pressure of a certain number of decibars and that represented

by the same number of dynamic meters there is a variable difference not exceeding

3 per cent in the upper layers and 5 per cent in the greatest depths of the sea, as

seen from table 7 h. Between the depth represented by a sea-pressure of a certain

number of decibars and that represented by the same number of common meters

there will finally be a variable difference not exceeding 1 per cent in the smaller

and 3 per cent in the greatest depths of the sea. To these differences (from 1 to 5.

per cent) of the total depth there will correspond only very small differences of

temperature and salinity. For in the upper sheets, where relatively great differ-

ences of temperature and salinity may occur, this difference of depth will be very

small, and lower down the variations of temperature and salinity will be exceed-

ingly gradual. Thus, these small differences of temperature and salinity will have

no appreciable influence upon the small corrections AD and Ap. Suppose, there-

tore, a sample of water to be taken up from a depth of a certain number of common
meters. If it be convenient for the calculation we can, without restricting the

accuracy of the final result, consider it as taken from the depth of the same number
of dynamic meters, or from the isobaric surface of the same number of decibars.

Or, suppose the sample to be taken from a place where the manometer has shown
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a sea-pressure of a certain number of decibars. It it be convenient for the calcu-

lations we may consider it as taken from the depth expressed by the same number
of dynamic meters.

As a consequence of these approximation rules, it remains indifferent whether

depths or pressures have been observed. The four forms of the problem met with

in the atmosphere (section 49) are, therefore, in the case of the sea, reduced prac-

tically to two, the calculation of the depth corresponding to a given pressure and

the calculation of the pressure at a given depth, it being immaterial whether the

temperature is registered as functions of pressure or of depth.

77. Calculation of the Anomalies of Depth and of Pressure. These approxi-
mation rules being accepted, the calculation of the integrals (a) and (b) can be

made immediately. Taking first the anomaly of depth of the isobaric surfaces,

we remember (section 27) that we can write for the anomaly 8 of the specific

volume
8 = 8+8+8+8 +8 T +8 r

the quantities S
s ,
Sr , S, T , 8,p ,

S
T) S^ being tabulated in tables 9H, 10 h, iih, 12 h, 13 h,

and 14 H,- respectively, for all occurring values of temperature, salinity, and pressure.

By means of these tables and the observed temperatures and salinities we find the

values of these quantities and by adding them the values of 8 corresponding to a

set of known pressures. Then the value of the integral (z), section 75, is found by
a regular process of integration; i. e., we take the average of the successive values of

8, multiply by the corresponding difference of pressure, and form the sum from the

pressure o at sea-level down to the pressure p. This sum represents the anomaly
AD of the dynamic depth of the isobaric surface of pressure p.
We find the anomaly of pressure Ap in the given dynamic depth D in exactly

the same way, writing
e =

. + e
T + s r + e,z> + ^d + sT z>

using tables 17H, 18 h, 19 h, 20 h, 21 h, and 22 h and performing the integration in

the same regular way.
The systematic performance of the calculation is easily understood by examina-

tion of the examples worked out below.

Adding the anomaly of depth AD to the normal value D
35:0)P

we get the equi-
librium relation in form of depth for a given pressure. Adding the anomalies of

specific volume 8 to the normal values a^ aiP
we get the actual specific volumes a

for given values of the pressure, i. e., the equilibrium relation between pressure
and specific volume.

In the same way the addition of the anomalies of pressure Ap to the normal

values _^36|0 ,i) gives the equilibrium relation in form of pressures in given dynamic
depths, and the addition of the anomalies of density s to the normal densities p3s,o,j>

gives the actual densities p at given depths, i. e., the equilibrium relation between

density and depth.
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78. Example of the Hydrostatic Results of Soundings in the Sea. On pages

126-129 are given the schemes for the hydrostatic derivation of the results of

soundings in the sea. The examples are chosen from soundings executed by the

northern European states, one (Norwegian Expedition, May-June, 1904) being
chosen from the Norwegian sea, and one (Finnish Expedition, May, 1904) from the

inner Baltic*

100 wo-

300 300-

E
500 SOO-

fa 5 9

I

:: :

2269 .

-

zzeo

_ = 2250

_ 22*0

- too goo -

23W

= t3i0

2220

tiOO

2290

1280

Fig. 25. State of equilibrium in the Atlantic,

64 55' N. lat., 2 52' W. long., June 7, 1904.

Fig. 26 State of equilibrium in the Baltic,

6o 12.5' N. lat., 19 7' E. long., May 17, 1904.

Conseil Permanent International pour l'Exploration de la Mer. Bulletin des Resultats Acquis pendent les

Courses Periodiques publie par le Bureau du Conseil avec l'assistance de M. Knudsen. Annie 1903-1904. No. 4:

Mai, 1904, pp. 96 and 77. Copenhague, 1904.
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The soundings are as seen to have been taken with increasing intervals down-

wards, corresponding to the decreasing variations of temperature and salinity in the

greater depths. This inconstancy of intervals, though unavoidable practically, is

irrational from a theoretical point of view. Therefore the final results are interpo-

lated for two sets of constant intervals given in column 11 of each scheme. These

intervals are 10 dynamic meters or 10 decibars in the upper sheets, and 100 deci-

bars or 100 dynamic meters in the greater depths.

The data tor each sounding are treated according to the two diflerent methods,
that of depth corresponding to a given pressure (tables U and W), and that of pres-

sure at a given depth (tables V and X).

79. Graphic Representation. The results worked out in these examples are

represented graphically in figs. 25 and 26. The first vertical in each figure gives

the depth of the isobaric surfaces exactly as the first of fig. 1 (p. 45) gives these

depths for sea-water of 35 /oo salinity and temperature o C. The comparison shows

perspicuously a greater depth of the isobaric surfaces in the brackish water of the

Baltic than in that oi the Atlantic, while the Atlantic vertical would have shown

only microscopical differences from that of the normal sea-water (fig. 1), both

figures being reduced to the same scale.

On the second vertical of figs. 25 and 26 the first division gives the situation of

the isobaric surfaces, transferred from the first vertical. The second division does

not, however, give the true specific volume as in fig. 1, but the anomaly of the

specific volume taken from column 10 of the schemes (pp. 126, 128). In this way
the difference from one vertical to another is made much more perspicuous. A
vertical would have no anomalous divisions if the water had the "normal" salinity

f 35 /oo and the " normal "
temperature of o C. The anomalous divisions

therefore show the deviation from this normal state. As is seen, these anomalies

are of relatively great numerical value in the brackish water of the Baltic, but oi

much smaller value in the Atlantic. Otherwise the anomaly varies rapidly near

the surface and slower as we proceed downward, the variations with the depth

being of the same order of magnitude along the vertical in the Baltic as along that

in the Atlantic.

The third vertical in figs. 25 and 26 gives in exactly the same way the anomaly
of density in different dynamic depths.





CHAPTER IX.

SYNOPTICAL REPRESENTATION OF THE FIELDS OF FORCE AND
OF MASS IN THE SEA.

80. Quasi Static State. The motion of the sea being generally much slower

than that of the atmosphere, we may characterize sea-motion with still greater reason

than that of the air as slow, and going on near a state of equilibrium. Excepting
local phenomena, such as the formation of whirlpools in narrow straits or waves on

the surface, we find the conditions of equilibrium apparently fulfilled to a great
extent during the motion.

On the other hand we have, still more than was the case in the atmosphere, small

distances in a vertical and great in a lateral direction. Consequently the conditions

of the quasi static state (section 60) are fulfilled in the sea and with still greater

approximation than in the atmosphere. We therefore state this principle, forming
the basis of all practical investigations in oceanic dynamics:

The condition of equilibrium is apparently fulfilled along every vertical

or quasi vertical line. But as -we proceed in a horizontal direction, there is a

gradual change in this apparent state of equilibrium from vertical to vertical.

81. Topography of Isobaric Surfaces. Owing to this principle we can pro-
ceed formally as in the case of the atmosphere. Let us suppose first the depth of

a given sea-pressure to have been determined by a set of simultaneous soundings.
Then on a chart containing the situation of the hydrographic stations, we can note

these depths and draw topographic charts, exactly as in the corresponding case of

the atmosphere. Fig. 27 below gives examples of such charts.

It is important, however, to get a clear perception of these charts. For an

important difference enters between the results attained in the case of the atmos-

phere and in that of the sea.

First, the surfaces whose topography is represented are surfaces of equal value

of the sea-pressure, not of the total pressure. Secondly, the topography is given

relatively to the physical sea-level, from which the measurements are made, and

notJrom the ideal sea-level of the gravity potential zero. To be able to draw charts

of absolute topography we want to know the topography of the physical sea-level,

and this can not be found from the results of the soundings. This is of great

importance to keep in mind. For owing to the motions of the sea and to the

varying atmospheric pressure, the distance of physical from ideal sea-level will be

of the same order of magnitude as that of isobaric from corresponding level sur-

faces. Thus, not only theoretically, but also practically, the topographic charts of

the isobaric surfaces given in fig. 27 are charts of relative topography, relatively
to the unknown topography ofphysical sea-level. This is an important restric-

tion on the completeness of the result, making the discussion of sea-motion much
less direct than that of atmospheric motions.

J 33
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It may be useful in this state of indetermination of the results to remark that we
can give a slightly changed interpretation to these charts. Let us, instead of sea-

pressure, consider total pressure, obtained by addition of the atmospheric pressure

upon the sea's surface. Let us further, to simplify the conditions, imagine the

atmosphere to be removed and be replaced by a layer of sea-water of the proper
thickness to exert the actual atmospheric pressure. In this case the isobaric sur-

face of absolute pressure 10 decibars will always very nearly coincide with the

physical sea-level, passing a little below it in places where the atmospheric pressure

upon the physical sea-level is smaller than 10 decibars, and a little above it in the

artificially introduced water-layer, where the atmospheric pressure is of smaller

value. Now, the working out of the soundings gave the distance from the physical
sea-level to a surface of the constant sea-pressure p. But this distance will be

essentially the same as the distance from the defined ideal isobaric surface of the

total pressure 10 decibars to the isobaric surface where the total pressure is p -f- 10

decibars.

We can thus also interpret the charts of fig. 27 as representing the topography
of true isobaric surfaces of a total pressure of p -f- 10 decibars, taken relatively to

the unknown topography of the ideal 10-decibar surface.
Whichever view we take of the chart representing the distribution of pressure

in the sea, the representation remains incomplete. But of the distribution of mass,
on the other hand, we are able to give as complete a representation as in the case

of the atmosphere.

Forming the differences of depth between two isobaric surfaces of the standard

pressures of p and -p -f- 1 decibars, we get the numbers representing the specific

volume of the water in the standard sheet between the two surfaces. But the

thickness of these sheets being only about 1 meter, we would get too many charts

by taking every sheet. We have therefore introduced for this purpose dynamic
decameters as units of dynamic depth in the upper sheets of the sea, to a depth of

6 dynamic decameters. Simultaneously we use the bar as unit-pressure. For the

deeper strata, where the changes with the depth are slower, we have used dynamic
hectometers as units of dynamic depth and the decabar as corresponding unit of

pressure. The charts representing the specific volume in the corresponding sheets

are given in fig. 28 .

82. Pressure along Level Surfaces. Suppose us, on the other hand, to have

determined the sea-pressure at a given dynamic depth. We are then able to draw
a chart representing the distribution of sea-pressure in this depth. But it must be

remembered that this depth is measured from the physical sea-level. The chart

thus gives the distribution of the sea-pressure not along a true level surtace, but

along a surface of constant dynamic depth below the physical sea-level.

As in the preceding case, we may take a different view of the chart, giving
another definition of the indeterminate element. We then imagine the atmosphere
to be replaced by a layer of water having the density of the water at the sea's sur-

face and of the proper thickness to exert the pressure of the atmosphere against the
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sea's surface. This layer will then till out the deepenings where the physical sur-

face of the sea is lower than the ideal sea-level. This being done, we can transport

all verticals so as to begin at the ideal sea-level. The charts will then represent a

certain pressure along true level surfaces, namely, that which added to the

pressure along the ideal sea-level would give the true pressure. The indeter-

minate element, then, will be the pressure existing along the ideal sea-level under

the defined conditions.

Whichever interpretation we choose for the isobaric charts, the indetermination

due to our ignorance of the true topography of physical sea-level will remain. But

quite independently of this, the charts giving the differences of pressure from one

surface to another will give a full representation of the distribution of density in the

standard layers.

83. Change of Topographic into Isobaric Charts. An isobaric chart for the

depth of a certain number of dynamic meters will be exceedingly like the topo-

graphic chart of an isobaric surface of the same number of decibars. In the same

manner, the chart of pressure differences between two level surfaces will be

exceedingly like the chart of mutual topography of the two corresponding isobaric

surfaces. If, therefore, the topographic charts be drawn, we can derive the corre-

sponding isobaric charts from them, no independent calculation of pressures at

given depths being required.

To change a chart of mutual topography of isobaric surfaces into one of pressure

differences between the corresponding levels, table 23 h, which changes densities

into corresponding specific volumes, can be used with satisfactory exactitude.

This is evident at once if we remember that the charts of mutual topography repre-

sent the average specific volume in the isobaric sheets, and those of pressure

differences the average density in the level sheets. If, therefore, the water were

under exactly the same pressure in the isobaric and the corresponding level sheets,

this table would change with perfect exactitude the required differences of pressure

between the level surfaces into the corresponding vertical distances between the

isobaric surfaces, or vice versa. Now, corresponding isobaric and level sheets are

not exactly at the same depth, and, therefore, not exactly under the same pressure.

But the difference is too small to produce any visible error on the charts drawn

according to the directions appended to the table.

We then consider the problem of changing the topographic chart of an iso-

baric surface into the isobaric chart in the corresponding level surface. Of course,

the method of doing this will be independent of the question whether the given

chart represents true topograph)' or only relative topography referred to an initial

surface of an unknown topography. But in the latter case the resulting isobaric

chart will be one of corresponding incompleteness, as explained above (section 81).

For simplicity we make our developments as if always true topographies, true level

surfaces, and true pressures were under consideration.

Given the isobaric surface of pressure p, represented topographically by the

level curves of depth, Z>,, Dt,
. . . D

n ; further, the level D, in which the cor-
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responding isobaric chart should be drawn; and the series of pressures, p x , p2 ,

. . . pu ,
for which the isobaric curves should be drawn. The problem is to find

the situations of these curves from the known situations of the level curves

D
iy
D

2 ,
. . . That is, we shall find the depth Dx of a point on the isobaric surface

p, vertically below which we have the given pressure p n
at the level surface D.

In the first approximation we may consider the water as homogeneous along

every vertical, while its density may vary from vertical to vertical. Under this

supposition we have simple proportionality along every vertical between dynamic

depth and pressure, thus

D- Di

But now D and p represent corresponding pressures and depths in the sense

defined. Thus numerically we may write D instead of p, and consequently

D2

W A =jn
This formula is easily tabulated for all depths D at which we wish to draw isobaric

charts, and for all pressures pn which may occur at these depths.

The numbers thus tabulated will, however, be slightly erroneous, because the

water between the isobaric and the corresponding level surface is not homogeneous,
there being a slight increase of density downward as a consequence of the com-

pression. The amount of this error is easily found in the case of sea-water of

35 / 00 salinity and o C. For in this case we have tabulated both the depths at

given pressures and the pressures in given depths (tables 7 h and 15 h). From
these we find the true Dr ,

and thus the error involved in the use of the formula (a)

in the case of " normal " sea-water. From this the correction in all other cases is

easily found. For evidently the error will be proportional to the distance between

the isobaric and the corresponding level surface. This distance is zero for water of

unit density, and otherwise proportional to the excess of the density above unity.

Table 24H of our Hydrographic Tables is calculated in this way by the formula

(a), with addition of the always very small corrections obtained in the manner
described from tables 7 h and 15 h. The practical use of the tables is easily seen

from the appended examples.

Evidently these tables also enable us to solve the inverse problem to change
isobaric charts for given levels into topographic charts for the corresponding
isobaric surfaces.

84. Vertical Sections. As we did in the case with the atmosphere, so we can

draw diagrams containing the profile curves either of isobaric and isosteric surfaces

or of equipotential and isopycnic surfaces. This will, however, present a practical

difficulty. Since the deviations of the different profile-curves from the horizontal

course are so minute, extreme exaggeration of the vertical dimensions in compari-
son with the horizontal would be required to make them visible.
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Fits. 27. Field of Bea-presaure, May, 1904, represented by charts of relative topography, giving the depth of surfaces of equal

sea-pressure below physical sea-level in dyn. meters.
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Fig. 27 (Continued). Field of sea-pressure, May, 1904, represented by charts of relative topography, giving the depth of surfaces

of equal sea-pressure, below physical sea-level in dyn. meters.
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Ftg. 28. Field of mass. May 1!K)4, represented by charts giving the average specific volume (10 'm'/ton) of the sea-water in

isobaric sheets, or the thickness of these sheets in dyn. meters.
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Fr 28 (Continued I. Field of mass, May, 1904, represented by charts giving the average specific volume (10
'

-m'/ton) of the

sea-water in isobaric sheets, or the thickness of these sheets in dyh. meters.
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But, then, instead of drawing profile curves of true specific volume, we may draw

profile curves for constant values of the anomaly of the specific volume. In order

to draw sections of this kind we have to place at proper mutual distances verticals

like the second of figs. 25 and 26 and join points of the same value of pressure and

points of the same value of the anomaly of the specific volume. In the same way,

by taking verticals like the third of figs. 25 and 26, we might draw curves through

points of the same potential values and through points of the same value of the

density anomaly.
These curves for equal values of the anomaly show on an exaggerated scale the

deviation of the isosteric or of the isopycnic curves from the horizontal course.

85. Example : Northern European Waters, May, 1904. Since November,

1901, hydrographic expeditions have been sent out iour times a year from most

northern European states for the exploration of the northern European waters.

The chart (fig. 29) shows the places where soundings were made by the expedi-

tions in May-June, 1904.* The soundings are very far from being simultaneous.

But having no data from true simultaneous soundings, and our object here being

mainly to exemplify our methods, and not as yet to discuss the actual states of the

sea, we have treated the soundings as if they were simultaneous. How great errors

consequently may be introduced it is not possible to find out before more is known
of oceanic motion.

The charts of fig. 27 show the topography of surfaces of equal sea-pressure

relatively to the physical sea-level, or, according to the other interpretation, the

topography of the true isobaric surfaces relatively to the ideal initial surface of the

pressure of 10 decibars. The curves are drawn ior every dynamic centimeter of

depth. The most direct method of obtaining them is to note on the chart the depths

calculated from the different soundings and to draw the curves by means of these

numbers. But it facilitates the work to note not the absolute depths (column

15 of tables U and W, pp. 126, 128), but the anomalies of depth (column 14 of same

tables). For the course and the mutual distance between the curves is determined

by the anomalies, while the addition of the constant normal depth of the surface

is required only to determine the situation of one of the curves representing an in-

teger value of the total depth. The heavy curves show the intersection of the iso-

baric surfaces with the bottom of the sea. As the isobaric surtaces are practically

level, these limiting curves are obtained at once from a bathymetric chart.

The first six charts of fig. 27 show the topography of six isobaric surfaces with

the interval of pressure of 10 decibars, the next six that of six others with the interval

of pressure of 100 decibars. A general view of the charts shows that they contain

a greater number of lines the more we proceed downward. This does not mean,
of course, that the deeper surfaces are necessarily less level than the higher ones.

On the contrary, at a certain depth, differing according to circumstances, the iso-

baric surfaces will show a minimum of deviation from the absolute level surfaces.

The greater depths of the isobaric surfaces below the physical sea-level along the

* Bulletin des Resultats Acquis pendent les Courses Periodiques, Annde 1903-1904. No. 4. Mai, 1904, pp.

74-98. Copenhague, 1904.
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Norwegian coast or in the Baltic, therefore, tell us rather that the sea's surface is

higher here than in the open sea. But to what degree this may be the case can not

be decided merely from the hydrostatic treatment of sea-soundings. The topog-

raphy represented by the charts is otherwise a complicated one, showing maxima
and minima of distance from the physical sea-level. As a rule there is an increas-

ing distance between physical sea-level and the different isobaric surfaces as we

proceed from east to west in the Norwegian Sea, and more especially so as we

\

Fig. 29. Hydrographic stations, May, 1904.

continue into the Baltic. In general, the distances are greater along the coasts

than in the open sea, but even there both maxima and minima are found, in some
cases side by side in a most striking manner. It is important to observe also that,

as we proceed downward, the continuity of the isobaric surfaces is soon broken.

Only the io-decibar surface stretches continuously from the Atlantic into the Baltic.

Already the 20-decibar surface is broken in the Belts, and for greater depths the

Atlantic and the Baltic belong to different systems hydrostatically. As we proceed
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downward the different deep pools are separated from each other. Finally, also,

the Norwegian Sea and the open Atlantic are separated by the Shetland-Faroe-

Iceland submarine ridge.

The charts of fig. 28 show the mutual topography of the successive isobaric sur-

faces, the first six for the interval of pressure of 10, and the last six for the interval

of pressure of 100 decibars. The curves on these charts are drawn for intervals 1

dynamic millimeter. The curves along which the upper and the lower surface of

Anomaly
ofsprot

I0'5mfiort

u J 1 I L.

50 100km

Fig. 30. Profile curves of isobaric surfaces and surfaces of equal volume anomaly.

the sheets cut the bottom of the sea are drawn heavy. These charts show mainly
the same feature as those of fig. 27. In every sheet we find a general increase of

thickness as we proceed from Iceland toward Norway, and especially as we get

into the Baltic. Otherwise we recognize the same maxima and minima as in the

charts of fig. 27. Considered as representing the mass distribution, the charts

indicate greater concentration of mass where the sheets have their minimum of
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100

200

300

WO

500

thickness and less concentration of mass where they have their maximum of thick-

ness. On the first six charts representing sheets of io decibars the figures added

to the curves represent the average specific volumes in the sheets after a division

by io, and in the six charts for the sheets of ioo decibars the average specific

volume of the water in the sheet after a division by ioo.

Besides charts representing the topography of isobaric surfaces, we might also

have drawn charts representing the pressures at level surfaces. But these would
have been so like the topographic ones that it would have been of no interest to

draw them. A glance at table 24 h shows, for instance, that in the Baltic, where
the density of the water is so near unity, we have in the upper sheets only to change
the numbers added to the curves, 9.95 into 10.05, IQ-94 into 2 -6 and so on.

Then the charts would at once be the isobaric charts for the depth of 10, 20 . . .

dynamic meters below sea-level. In the greater depths also a slight change in

the situation of the curves representing the integer values would be required. Out-

side the belts the change would have been a little greater. In the upper layers the

isobaric curves would follow each other with 5.5 per cent smaller intervals than

the corresponding level curves drawn in fig. 28. This percentage would increase

gradually downward with the increasing density due to the compression reaching 6

at the depth of 600 dynamic meters. As, however, the course of the curves is

unchanged, the two kinds of charts would be extremely like each other, the most

striking difference being that maxima on the one would have been minima on the

Norwegian Sea
10 20

Norwegian, Submarine Channel

Fig. 31. Profile curves of isobaric surfaces and surfaces of equal-volume
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other, and vice versa. If both kinds of charts be drawn, care must be taken

that they be not interchanged. The best distinction between them will be this:

The figures added to the curves on the topographic charts are all a little below a

certain decimal number, thus 9.74, 19.46, 29.20 . . .
,
while the figures on the

isobaric charts are always a little above the same decimal numbers, as 10.26, 20.57,

30.91 ....
In figs. 30 and 31 we have, finally, two sections containing the profile curves of

the isobaric surfaces drawn simply as horizontal lines, and those of the surfaces of

equal anomaly of the specific volume. These give, as we have developed on an

exaggerated scale, the elevations and depressions of the true isosteric curves, making
the intersection with the isobaric curves more conspicuous. The first is taken

across the Faroe Island bank, the second passes from the Baltic through the Belts,

along the Norwegian submarine channel across the Norwegian Sea, as shown by
the two lines on the station chart (fig. 29). The great density of lines of equal-
volume anomaly in the Belts is especially conspicuous. Here we have the change
from the brackish Baltic waters to those of the greater salinity of the open sea, and

at the same time the greatest deviation from the true equilibrium conditions.

Corresponding sections containing the profile curves of the equipotential sur-

faces and the surfaces of equal anomaly of density would have had the same

appearance, the only difference being that the curves of equal-density anomaly
would run a little^closer together than those of equal-volume anomaly.

2M0

Anomaly of sp.vol. ''2200. lO^nf/ton

tni.Mlnl t I
I

I > I I

O 500
J ,_!

iOOOhm.

Belts Baltic

anomaly. Every parallelogram re presents o.oooi isobaric-isosteric unit-tubes.
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86. Remark on Unit-Tubes. In sections 72 and 73 we have developed some

properties of the isobaric-isosteric unit-tubes, formed by the intersection of the iso-

baric and the isosteric surfaces. It is important to remark that these properties are

retained by the tubes whose cross-section is seen in figs. 30 and 31, nothing being

changed by the fact that surfaces of equal-volume anomaly have been used instead

of the true isosteric surfaces to define the tubes. To show this we remark that the
" normal "

specific volume is constant all along an isobaric sheet, the anomaly only

varying. Consequently we get unit-change of specific volume and unit-change of

thickness of the sheet for every volume anomaly met with, these surfaces being
drawn for unit-differences of the specific volume. Instead of counting the surfaces

we can count the tubes. Further, the variation of the total specific volume and the

anomaly going always in the same direction, we can use the same rule for the signs

of the tubes, based upon the direction of the projection on the isobaric surfaces of

the ascendant of the true specific volume or of its anomaly.
We can therefore use the expression isobaric-isosteric unit-tubes irrespectively

of their being defined by true isosteric surfaces or surfaces of equal-volume anomaly.
In both cases the algebraic counting of the tubes will give the change of thickness

from place to place in an isobaric sheet and the horizontal course of the tubes

within the sheets will be given by charts like those of fig. 28, giving the topography
of the surfaces limiting the sheet relatively to each other.

The isobaric curves in figs. 30 and 31 being drawn for the interval of 1 centibar,

and the curves of equal-volume anomaly for intervals of 0.000 1 m3

/ton, each paral-

lelogram in the figure will represent 0.0001 unit-tube. The curves on the charts

of fig. 28 being drawn for intervals of 1 dynamic millimeter, the interval between

the successive curves will represent 0.01 unit-tube.

What we have thus said of the isobaric-isosteric unit-tubes may, the terms being

properly changed, be applied to the equipotential-isopycnic tubes, whether they be

defined by the true isopycnic surfaces or by surfaces of equal anomaly of density.
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Table I H. Normal value of the acceleration of gravity at sea-level.

Lati-
tude
(de-
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Table 3 H. Depths reducedfrom meters to dynamic meters, the acceleration ofgravity at

sea-level being Q.80.

Depth
(meters).
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Table 5 H. Depths reducedfrom dynamic meters to meters, the acceleration ofgravity at

sea-level being g.8o.

Depth
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Table 7H. Z>350iP {depth in dynamic meters of standard isobaric surfaces in sea-water of jj
a
/M salinity

and oC).

Sea-pressure
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Table 8 H. iosaJ6 0iJ, (035,0,,,
= specific volume of sea-water of 35 "/ salinity and

expressed in m 3

Jtons) .

C. at standard pressure,

Sea-pres-
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Table 7 h (continued from p. 6a). -Z?35 j, {depth in dynamic meters of standard isobaric surfaces in sea-water

f35 %o salinity and C).

Sea-pressure
(decibars).
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Table 8h (continued from p. 7A). io6a 3i p (a 35 0p = specific volume of sea-water of jj /a

at standard pressure, expressed in m'j tons').

salinity and o C.

Sea-pres-
sure
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Table 9H. io5
<S

6 (<5
= salinity correction in m*\ton to the specijic volume of sea-water").

Salinity
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Table IOH. io5
<J
T (<5T

= temperature correction in tn*
j to?i to the specific volume of sea-zvaler).

Temperature
(C).
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Table II H. io55JT (*5St
= combined salinity-temperature correction in m%

lton to the specific volume

of sea-vjater).
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Table II H (continued). io5
(5,t (5st

= combined salinity-temperature correction in ni*jto?i to the specific

volume of sea-water) .

Salinity
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Table 12 H. io6

^, (3 = combined salinity-pressure correction in m^jton to the specific volu?ne of sea-water').

Salinity (%).

10 II 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34

O
- 4
- 8

-12
-16

-20

-24
-28

-32
-36

-39
-43
"47
-51

-55

-58
-63
-66

o
-

4
8

12

-15

19

23
27

-30
34

-38
41

-45
-49
-52

-56
-59
-63

-70 -67
-73 -70

o

4

7
-11

15

18

22

-25
-29

33

36
-40

43
47

-50

53
-57
-60

-64
67

4
7

-11

14

17
21

-24
28

3i

34
38

-41
44

5i

-54
-58
61

-64

16-16
-20-19
-23-22
26-25
29-28

o

3
- 6

9
13

-33-31
-36-34
-39r37
-42-40
-45-43

-48-46
-52,-49

o

3
6

-

9
12 -11

o
-

3
- 6

14
-17
20

23
-25

28

-31
33
36

-39

o
-

3
-

5
- 8
-11

13
-16
18

21

-24

-26

-29

-32

-34

-37

-41 -39
-44-41
47-44
49-46-44

-52 -49 -46

-37
-39
41

-77 "74 -71 -67 -64 -61 -58 -54 -51 -48 -45
-47
-49
-51
-54

-56
-58
-60
-62

-64

13

15

17
19

-21

24
26

-28

30

32
-34
-36

-38

-40

4-

44
-46

-48

-50

-52

-54

-56

58
-60

o
- 2
- 4
- 6
- 8

-10
-12

14
-16

I

-20
22

24
-26
28

-29
31
33
35
-37

39
41
43

-44
46

o
- 2

4

9
11 -10

-13-12

48 -44

14
-15

17
-18
20
22

23

25
26

-2

30
.V

34
36

-37
39

40
-42

-44
45
47

3
5

- 6

8

9
11

-12

-14

15

17
-1

-20

-21

-23

-24

-25

-27
-28

-30

-31

-32

"34

-35

o
1

2

4
5

- 6

7

9
10
11

12

3

14
-16

-17

-18

-19
-20
-21

-23

-27 -24
-28 -25
-29 -26

"37 -33
-38 -34

-27
-28

-29
-3
-32
-33

-35

-37

-38-34

o
1

2

3
4

-
5
6
8

9
10

-11
12

13

-14
15

-16

17
18

19
-20

21
-22

-23
-24
-25

-26
-26

-27
-28

-29

o
- 1

- 2
- 2

3

4
5

-
5
6

7

11

1

- 1

2
- 2

3

4
-

4
5

3

-
9
10
10

11

12

12

-13
14

'5

15
16

-17
-17

o
o
I

I

2

2

3

3
4
4

5
5

5
- 6

6

9
9
10

-11
-11

-12
-12

-13
-13
-14

-22 -18-14
-23

-23

-24

-25

-66 62 -57 -52 -48 -44 -39,-35 -30 -26 -22
-22

-23
-24
-24

-25

-25
-26

-27

Salinity C/u0 ).
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Table 13 H. io5
-

<5
TP (Srp

= combined temperature-pressure correction in melton to ike specific volume

of sea-water).

Sea-

pres-
sure
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Table 12H (continued from p. 14A). io5d
sp (d,p

=
combined salinity-pressure correction in

m z
/ton to the specific volume of sea-water) .

Table 13H (continued from p. 15A). io*d,p (dv=
combined temperature-pressure correction in

m'/ton to the specific volume of sea-water) .
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Table 14 H. io5
'5
ir/, (<SJ77,

= combined salinity tcmpcrature-presstire correction to the specific volume

of sea-water, expressed in m 3

/ton).

'

Salin-
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Table 15 H. 7^35 d (sea-pressure in decibars at standard dynamic depths in sea-water of 35 /m salinity

and C).

Depth
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Table 16 H. io5

pi5i ,
d (i35, o, d = density in tonjtn? of sea-water 0/35 "j salinity and C. at standard

dynamic depths') .

Depth
(dy-
namic
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Table 15 H (continued from p. 18A). p35,o,D (sea-pressure in decibars at standard dynamic depths in sea-water

of J5 /oo salinity and C.)

Depth
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Table i6h (continued from p. 19 A). io5 o35>0i n (/>3 ,, 0|fl
= density in tonjm* of sea-water ofJS/00 salinity

and C. at standard dynamic depths').

Depth
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Table 17 H. 105
e
s (e t

= salinity correction in ton/m' to the density of sea-water).

Salinity
(%o).
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Table 18 H. io5
-eT (sT

= temperature correction in ton'/n 3
to the density of sea-water) .

Tem-
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Table 19 H. io6
e8I (e,T

= combined salinity-temperature correction in tonlm %
to the density of

sea-water) .
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Table 19 h (continued). io6
- eST (sar

= combined salinity-temperature correction in totijm*

to the density of sea-water).
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Table 20 H. io5 ^ (ssD = combined salinity-depth correction in ton'm 1
to the density of sea-water).

Salinity (%o). Depth
(dyn.
me-
ters).

10 II 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 ! 32 33 3435 36 37 38 39 40

19 18 17

23 22 21

27 26 24
30 I 29 28

34 I
33 31

40 38 36 35
42 40 38
45 43 41
49 47 45
53 50

1
48

17 16
20 19
23

' 22
26 25
30 28

13 12

>4

17
20 1

24122 21

27 25 24

30
I

28

32 31
35 33
38 36

43 41 39

12 12

15 14

17
20

26

29
3i
34
36 i34

15 14
17 16

19 18

23 21 20 18

25 23
i

21 20
27 25
29 27
32 29

38
40
4-

44
53 49 46

45 42
47 43
49 45
5i 47

23 21

25 23
27 25

o
1

3

4
6

7

9
10
12 I 16

13 12

16 15
18 16

17 14

18,15
19

I

16
20 17
21 18

32 29 25 22 19

33 30 ! 27
;
23 20

35 31 !

28 , 24 21

36 33 29 25 22

38 1 34 30 26 23
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Table 20 h (continued from p. 26A). io5^ (es2)

= combined salinity-depth correction in

ton\m
%
to the density of sea-water.

Table 2 1 h (continued from p. 27A ) . 1 o5

Ti> ( erD

= combined temperature-depth correction

in to?ijm
z
to the density of sea-water").
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Table 22 H. io5
8ri) (s- >StZ>= combined salinity-temperature-depth correction in ton/in

3
to the density

of sea-water) .

Salin-

ity
(
n
/oo).

15

25

33

Depth
(dy-
namic
me-

ters).

o
1000

o
1000

Temperature (C.

2 |-i o I 2 3 4

o o
o -1

56789

o
I

o
-2 1-3

o o

-5 -6
o

I

o

-71-7

IS

o
I
o

I
o

I
o

-4 1-5 -6 -6

o
1000

o I o
o l-i

o
I
o

I

o
-I -2 -2

O I O

-3-4

000
-4 i-5 1-5
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Table 23 H. Inversion table to passfrom densities to specific volumes, and vice versa.

Density
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Table 23 H (continued). Inversion table, to passfrom density to specific volumes, and vice versa.

Density
(ton/m3

).
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Table 24 H. Change of topographic charts of isobaric surfaces into isobaric charts in level surfaces.
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Table 24 H (continued). Change of topographic charts of isobaric surfaces into isobaric

charts in level surfaces.
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Table 24 h (continued). Change of topographic charts of isobaric surfaces into isobaric charts in

level surfaces.
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Table 24 h (continued ).- Change of topographic charts of isobaric surfaces into isobaric

charts in level surfaces.
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Table 24 H (continued). Change of topographic charts of isobaric surfaces into isobaric charts in

level surfaces.

I c. Depth of 1000 d-bars Pressure (Dynamic Meters).

Pressure
at standard

dynamic
depths
(d-bars).

1030.4
1030.5
1030.6
1030.7

1030.8

970-56
970.47
970.38
970.28
970.19

970.55
970.46
970.37
970.27
970.18

970.55
970.45
970.36
970.26
970.17

970.54
970.44
970.35
970.25
970.16

970.53
970.43
970.34
970.24
970.15

970.52
970.42
970.33
970.24
970.14

970.51
970.41
970.32
970.23
970.13

970.5O
970.40
970.31
970.22
970.12

970.49
970.40
970.30
970.21
970.11

970.48
970.39
970.29
970.20
970.IO

He. Depth of 2000 d-bars Pressure (Dynamic Meters).

2065.8
2065.9
2066.0
2066.1
2066.2

1936.58
1936.49
1936.40
1936.30

1936.57
1936.48
1936.39
1936.29

1936.56
1936.47
1936.38
1936.28

1936.55
1936.46
1936..37

1936.27

1936.54
1936.45
1936.36
1936.26

1936.54
1936.44
1936.35
1936.26

1936.53
1936.43
1936.34
1936.25

1936.21 1936.20 1936.19 1936.18
;

1936.17 1936.16 1936.15 1936.14 1936.13 1936.12

1936.52
1936.42
1936.33
1936.24

1936.51

1936.41
1936.32
1936.23

1936.50
1936.40
1936.31

1936.22

III c. Depth of 3000 d-bars Pressure (Dynamic Meters).

3105-9
3106.0
3106.1
3106.2
3106.3

2898.39
2898.30
2898.20
2898.11

2898.38
2898.29
2898.19
2898.10

2898.37
2898.28
2898.18
2898.09

2898.36
2898.27
2898.18
2898.08

01 2898.00 2897.99 2897.

2898.35
2898.26
2898.17
2898.07

2898.34
2898.25
2898.16
2898.06

2898.33
2898.24
2898.15
2898.05

2898.32 2898.31
2898.23 2898.22
2898.14 2898.13
2898.05 1 2898.04

2897.97 2897.96 2897.95
j

2897.94

2898.30
2898.21
2898.12
2898.03
2897.93

IVc. Depth of 4000 d-bars Pressure (Dynamic Meters).

4150.7
4150.8
4150.9
4I5I-0
4I5I-I

3856.18
3856.09
3855-99
3855-90
3855.81

3856.17
3856.08
3855-99
3855-89
3855-80

3856.16
3856.07
3855-')

3855-88
3855-79

3856.15
3856.06
3855-97
3855-87
3855-78

3856.14
3856.05
3855-96
3855-87
3855-77

3856.13
3856.04
3855.95
3855.86
385576

3856.12
3856.03
3855.94
3855.85
385576

3856.II
3856.02
3855.93
3855.84
385575

3856.IO
3856.OI
3855.92
3855.83
385574

3856.IO
3856.OO
3855.9I
3855.82
385573

Vc. Depth of 5000 d-bars Pressure (Dynamic Meters).

5200.0
5200.1

5200.2
5200.3
5200.4

4809.75
4809.66
4809.56
4809.47
4809.38

4809.74
4809.65
4809.55
4809.46
4809.37

4809.73
4809.64
4809.55
4809.45
4809.36

4809.72
4809.63
4809.54
4809.44
4809.35

4809.71
4809.62
4809.53
4809.44
4809.34

4809.70
4809.61
4809.52
4809.43
4809.33

4809.69
4809.60
4809.51
4809.42
4809-33

4809.68
4809.59
4809.50
4809.41
4809.32

4809.67
4809.58
4809.49
4809.40
4809.31

4809.66
4809.57
4809.48
4809.39
4809.30

Vic. Depth of 6000 d-bars Pressure (Dynamic Meters).

6253.8
6253-9
6254.0
6254.1
6254.2

5759-57
5759-48
5759-39
5759-30
5759-21

5759-56
5759-47
5759-38
5759-29
5759-20

5759-55
5759-46
5759-37
5759-28
5759-19

5759-54
5759-45
5759-36
5759-27
5759-18

5759-53
5759-44
5759-35
5759-26
5759-17

5759-52
5759-43
5759-34
5759-25
5759-16

5759-51
5759-42
5759-33
5759-24
5759-15

5759-51
5759-41
5759-32
5759-23
5759-14

5759-50
5759-41
5759-31
5759-22
5759-13

5759-49
5759-40
5759-31
5759-21
5759-12

VII c. Depth of 7000 d-bars Pressure (Dynamic Meters).

7312.0
7312- 1

7312-2
7312.3
7312.4

6705.64
6705-55
6705.46
6705-37
6705.28

6705.63
6705-54
6705-45
6705.36
6705.27

6705.62
6705-53
6705.44
6705-35
6705.26

6705.61
6705-52
6705-43
6705-34
6705-25

6705.60
6705-51
6705.42
6705-33
6705.24

6705-59
6705.50
6705.41
6705-32
6705.23

6705.58
6705.49
6705.40
6705-31
6705.22

6705.58
6705.49
6705-39
6705.30
6705.21

6705-57
6705.48
6705-39
6705.30
6705.20

6705.56
6705-47
6705.38
6705.29
6705.20

VIII c. Depth of 8000 d-bars Pressure (Dynamic Meters).

8374-5
8374.6
8374-7
8374.8
8374-9

7648.08
7647.99
7647.90
7647.81
7647.72

7648.07
7647.98
7647.89
7647.80
7647.71

7648.06
7647-97
7647.88
7647.79
7647.70

7648.05
7647.96
7647.87
7647.78
7647.69

7648.04
7647-95
7647.86
7647-77
7647.68

7648.03
7647.94
7647-85
7647.76
7647.67

7648.02
7647-93
7647.84
7647-75
7647.66

7648.02
7647-93
7647.84
7647-75
7647.66

7648.01
7647.92
7647.83
7647-74
7647.65

7648.00
7647.91
7647.82
7647-73
7647.64

For example see p. 35A.
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METEOROLOGICAL TABLES.

Table I M. Normal decrease of the acceleration ofgravity with the height.

Height
(meters).
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Table 3 M. Heights reducedfrom f/ieters to dynamic meters, the acceleration ofgravily'jzt
sea-level being 9.80.

Height
(meters).
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Table 4 m. Corrections to tabic JMfor values of the acceleration ofgravity at

sea-level different front p. So.
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Table 5 M. Heights reducedfrom dynamic meters to meters, the acceleration ofgravity at

sea-level beitig Q.80.

Height



METEOROLOGICAL TABLES. 7B

Table 6 M. Corrections to table mfor values of the acceleration of gravity at sea-level

differentfrom Q.80.

Height
(dynamic
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Table 71. Virtual temperature of saturated airfor given pressures.

Pres-
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Table 8 m. Virtual temperature of saturated air in given heights.

Height
(dy-
namic
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Table 9 M. Mutual distances in dynamic meters between standard isobaric surfaces.

Standard
isobaric
surface

(m-bars)
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Table 9 M (continued). Mutual distances in dynamic meters between standard isobaric surfaces.

Standard
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Table 10 M. Distances in dynamic metersfrom a standard isobaric surface to a surface ofgiven pressure, the

average virtual temperature of the sheet betzveen the surfaces being C.

I. Distances from the ioo-millibar Surface.

ioo m-bars.

Pressure
(m-

bars).

o
10
20

30
40

50
60

70
80

90

IOO
no
120

130
140

150
160

170
180

190

00

18044
12612

9435
7180

5432
4003
2795
1749
826

o
-

747
-1429
-2056
-2637

-3177
-3683
-4158
4606

-5030

36087
17297
12230
9178
6987

5277
3873
2684
1651
739

- 78- 818

-1494- 2116

-2693

-3230
-3732
-4204
-4650
-5071

30656
16615
1 1 865
8929
6798

5124
3746
2574
1555
653

-
155- 888

-1558
2176

-2748

-3281
-378o
-4250
-4693
-5112

27478
15988
11517
8688

6614

4975
3621
2466
1460
569

25224
15407
11183
8454
6433

4829
3497
2360
1366
485

- 232- 958
-1623
-2235
-2803

-3333
-3829
-4295
-4736
-5153

- 307
1027

-1686
-2293
-2857

-3384
-3876
-4341
-4778
-5193

23475
14866
10863
8227
6257

4685
3376
2254
1274
402

- 383
-1095
-1749
-2352
2912

-3434
-3924
-4385
-4821
-5233

6
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Table IOM (continued). Distances in dynamic metersfrom a standard isobaric surface to a surface ofgiven

pressure, the average virtual temperature of the sheet between the surfaces being C.

III. Distances from the 300-millibar Surface.

300 m-bars.

Pressure
(m-

bars ) .

200
210
220

230
24O

250
260

270
280

29O

300
310
320
33
34

350
360
370
380
390

3177
2795
2430
2082

1749

I429
II2I
826

541
266

3138
2758
2395
2048
I7l6

1397
1091
797
513
239

o
- 257
- 506
- 747
- 981

-1208

-1429
-1643
-1852
-2056

- 26
- 282
- 53
- 771
-1004

-1230
-1450
-1665
-1873
-2076

3099
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Table 10 M (continued). Distances in dynamic meters from a standard isobaric surface to a surface ofgiven

pressure, the average virtual temperature of the sheet betzveen the surfaces being o C.

V. Distances from the 50o-millibar Surface.
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Table 10 M (continued). Distances in dynamic meters from a standard isobaric surface to a surface of given

pressure, the average virtual temperature of the sheet between the surfaces being C.

VII. Distances from the 700-MiLLiBAR Surface.

700 m-bars.

Pressure
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Table IOM (continued). Distances in dynamic metersfrom a standard isobaric surface to a surface ofgiven

pressure, the average virtual temperature of the sheet between the surfaces being o C.

IX. Distances from the 900-MiLLiBAR Surface.

900 m-bars.

Pressure

(m-
bars).

800
810
820

830
840

850
860

870
880

890

900
9IO
920
930
940

950
960
970
980
990

923
826

729
634
541

448
356
266

176

o

87
172
257
341

424
506
587
667
747

913
816

720
625
53i

439
347
257
167
79

903
806

710
616

522

429
338
248
158
70

9
95
181

265
349

432
5H
595
675
755

17

104
189
274
357

440
522
603
683
763

3
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Table II M. Distances in dynamic meters from the earth's surface to the nearest standard isobaric surfaces,

the average virtual temperature of the sheet being C.

Pressure
at sta-

tion (m-
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Table II M (continued). Distances in dynamic meters from the earth's surface to the nearest standard isobaric

surfaces, the average virtual temperature of the sheet being O
a
C.

Pres-
sure at
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Table IIM (continued). Distances in dynamic metersfrom the earth's surface to the nearest standard

isobaric surface, the average virtual temperature of the sheet being o C.

Pressure
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Table 13 M. Artificial temperature to be used in table 12 Mfor calculating- pressures
in given heights.

Tempera-



METEOROLOGICAL TABLES. 25b

Table 15 M. Temperature correction to be added to the virtual temperature at the earth's surface in

order to give the most probable average virtual temperature in the sheet between the earth's sur-

face and the nearest standard isobaric surfaces {based upon statistics).

Height of
standard sur-
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Table 16 T&.. Temperature correctionsfor the extrapolation of virtual-temperature

diagrams [based upon statistics).

Height
(dynamic
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Table 17 M. Change of topographic charts of isobaric surfaces into isobaric charts

in level surfaces.

I. Height of the iooo m-bars Surface (Dynamic Meters).

Pressure at

sea-level

(m-bars).
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Table 17 M (continued). Change of topographic charts of isobar ic surfaces into isobaric

charts in level surfaces.

III. Height of the Soo m-bars Surface (Dynamic Meters).

Pressure in
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Table 17 M (continued). Change of topographic charts of isobaric surfaces into isobaric charts

in level surfaces.

V. Height of the 600 m-bars Surface (Dynamic Meters).

Pressure in

4000 dynamic
meters height

(m-bars).

550
555
560
565
570

575
380
585
590
595

600

605
610

615
620

625
630
635
640
645
650

Virtual temperature ( C.) at isobaric surface (600 m-bars).

-70

349
3543
3596
3648
3700

3751
3802
3852
3902
3951

4000
4048
4096
4144
4191

4237
4283
4329
4374
4419
4464

-60
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Table 17 M (continued). Change of topographic charts of isobaric surfaces i?ito isobaric charts

in level surfaces.

VII. Height of the 400 m-bafs Surface (Dynamic Meters).

Pressure in
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APPENDIX TO METEOROLOGICAL AND HYDROGRAPHIC TABLES. 3c

Table I A. Heights reducedfromfeet to meters.

Feet.
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Table 2 A. Heights reduced from feet to dynamic meters, the acceleration of gravity
at sea-level being g.8o.

Height
(feet).

90000
80000

70000
60000

50000

40000
30000
20000
IOOOO

o

26767
23804
20839
17870
14899

1 1925
8948
5968
2986

27063 I 27359
24IOI

;

24397
2II35 I 21432
I8167 I 18464
15196 I5494

12223
9246
6266

3284
299

12520
9544
6564
3582
597

3000
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Table 4 A. Depths redticedfromfathoms to meters.

Fathoms.
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Table 7 A (continued). Pressure reducedfrom millimeters of mercury to millibars

Millime-
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Table 8 A. Pressure reducedfrom inches of mercury to millibars.

Inches of
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Table 8a (continued). Pressure reduced from inches of mercury to millibars.

Inches of
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Table 9 A. Air-temperatures reducedfrom Fahrenheit to centigrade.

Degrees
Fahren-
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Table II A. Virtual temperature of saturated air in degrees centigrade, the pressure beinggiven in

millimeters of mercury.

Pressure
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Table 12 A. Virtual temperature of saturated air in degrees Fahrenheit, the pressure

being given in incites of mercury.

Pressure
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Table 13 A. \~irtital temperature of saturated air in degrees Fahrenheit, the height being given in

dynamic meters.

Height
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Table 14 A. Distances in dynamic meters from the earth's surface to the nearest standard isobaric surfaces, the

average virtual temperature of the sheet being C. and the pressure at the station being given in millimeters

of mercury.

Pressure
at the
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Table 14 A (continued). Distances in dynamic meters from the earth's surface to the nearest standard
isobaric surfaces., the average virtual temperature of the sheet being C. and the pressure at

the station being given in niillinieters of mercury.

Pressure
at the
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Table 15 A. Distances in dynamic metersfrom the earth's surface to the nearest standard isobaric sur-

faces, the average virtual temperature of the sheet being J7., and the pressure at the station

being given in inches of mercury.

Pressure
at the
station

(inch
Hg).

17.O

17.1

17.2

17-3

17.4

17-5

17.6

17.7

17.8

17-9

18.0

18.1

18.2

18.3

18.4

18.5
18.6

18.7
18.8

18.9

19.0

19.1

19.2

19-3

19.4

19-5

19.6

19.7

19.8

19.9

20.0
20.1

20.2

20.3

20.4

20.5
20.6

20.7
20.8

20.9

21.0
21. 1

21.2

21.3

21.4

21-5
21.6

21.7
21.8

21.9

Standard surfaces (m-bars).

800 700 600 500 A

H33 -304 1032
1390-261 1075
I347-2I8' 1 1 18

-1220-

-II83-
-II47-
I 1 1 I

-

1075-

IO39-
IOO4-

"

968
933

863
828

793
759
724

690
656
622

589
555

1304
1262

1220
1 179
II37
1096
1055

1014
973

-

933
893
853

-813
- 774
- 734
- 695
-
656

- 618
- 579
-
54i

-
503

-
465

- 427
- 390
-
353

-316
- 279

242
205
169
133
97

175 "61
1 33

j

1203

91 1245
50,1286
81328

33
74

1369
1410

H5I45I
156 1492
W1532
236 1572

1612

1652

276

316
355 1 69 1

395 1 73 1

434 1770
473 1809

511 1847
550 1886

5881 1924
626 1962
6642000

7022038
7392075
776 21 12

8i3
!2i49

8502186

887 2223
924 2260

960 2296
996 2332
1032 2368

61 1068

26:1103
101139
45
80

"5

1 174
1209

1244

150,1279
1851314
219 1348
254 1383

288

322
356
389

2404
2439
2475
2510
2545

2580
2615
2650
2684
2719

14172753
1451 2787
i485'282i
151812854

423 15522a

43
43
43
42
42

41

42
41

41
41

4i

40
40
40
40

39
40
39
39
38

39
38
38
38
38

37
37
37
37
37

37
36
36
36
36

35
36
35
35
35

35
35
34
35
34

34
34
33
34
33

Pressure
at the
station

(inch
Hg).

22.O
22.1

22.2

22.3

22.4

22.5
22.6

22-7
22.8

22.9

23.0
23.I

23.2

23-3

23-4

23-5
23.6

23-7

23.8

23-9

24.0
24.1

24.2

24-3

24.4

24-5

24.6
24.7

24.8

24.9

25.0
25-1

25.2

25-3

25-4

25-5

25.6
25-7

25.8

25-9

26.0

26.1

26.2

26.3

26.4

26.5
26.6

26.7
26.8

26.9

Standard surfaces (m-bars).

IOOO 900 800 700 600 A

-522

-488]
-455

-422

-389'

456,1585
490 1 619
523 1652

556,1685;
589I7I8

-196

-164

-132
-101
-
70

-901
870

-839
808

778

747
-717
-686

-656
-626;

596
-566
-536
-507I

-477|

-

38 94
-

7 97i
24 1002

55 1033
85,1063

116 1094
146 1 124

177,1155
207 1 185

237 1215

267
!

i245
297 1275
327 1305
356 1334
386 1364

2069
2100

2131
2162

2192

-933
-905
-877
-849
-821

-794
-766
-738
-711
-683

-449 415 1393

-419 4441422
-390 473 1 45 1

-361 502 1480
-332 53i 1509

-303 5601538
-275! 5881566
-246. 617 1595

-2i8| 645 1623
-189; 674 1652

-161

-133

105
-

77
-

49

702 1680

730 1708
758 1736
786
814

21 842
6 869

34 897
61 924
88 951

1764
1792

1820

1847
1875
190.

1929

-3571 621J1750
-324 6541783, \%
-292
-260

-228

686,1815; 11
7181847,

32

750 1879
32

782 1911
814 1943
846 1975
877 2006

908 2037

32
32
3i
3i

32

3i

31
31

30
3i

2223
2253 i,
2284

31

2314
30

'2344!
30

I

w
30

2404
3

2434
6

29
2463 2

9

2493 2\

29
29
29
29
29

28

29
28

29
28

28
28
28
28
28

27
28

27
27
27

Pressure
at the
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Table 15 A (continued). Distances in dynamic meters from the earth's surface to the nearest

standard isobaric surfaces, the average virtual temperature of the sheet being' F. and
the pressure at the station being given in inches of mercury.

Pressure
at the
station

(inch
Hg).

28.80
28.81
28.82

28.83
28.84

28.85
28.86

28.87
28.88

28.89

28.90
28.91

28.92
28.93

28.94

28.95
28.96
28.97

28.98
28.99

29.00
29.01

29.02

29.03

29.04

29.05
29.06
29.07
29.08
29.09

29.10
29.11

29.12

2913
29.14

29- 1 5

29.16
29.17
29.18

29.19

29.20
29.21

29.22

29.23

29.24

29.25
29.26
29.27
29.28
29.29

Standard surfaces (m-bars).

1000 900 800 A

-183
-180

-178
-175
-173

-170
-168

-165
-163
-160

-158
-155
-152
-150
-148

-145
-143
-140
-138
-135

-132
-130
-127
-125
-122

-120
-Il6

-115
-112

-no

-107

-104
-102
-
99

-
97

-
94

-
92

-
89

-
87

-84

- 82
-
79

-
77

-
74

- 72

-69
-67
-64
- 61
-
59

588
591
593
596
598

601

603
606
608
611

613
616

619
621

623

626
628

631
633
636

639
641
644
646
649

651
655
656
659
661

664
667
669
672
674

677
679
682

684
687

689
692
694
697
699

702
704
707
710
712

I45i
1454
1456
1459
1461

1464
1466
1469
1471
1474

1476
H79
1482
1484
1487

1489
1492
1494
1497
1499

1502
1504
1507
1509
1512

I5H
1517
1519
1522
1524

1527
1530
1532
1535
1537

1540
1542
1545
1547
1550

1552
1555
1557
1 5'"'

1562

1565
1567
1570
1573
1575

Pressure
at the
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Table 16 A. Corrections to table IJ A for temperature.

Dynamic
Example : meters.

Given the temperature of 62. 3 F. and the height of 330
Table i6a gives for 330 meters and 6o F. the correction 43
Table i6a gives for 330 meters and 2.3 F. the correction 1

330 meters at o F. reduced to 62.3 F. gives the height of 374

Height
(dynamic
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Table 16 A (continued). Corrections to table 15 a for temperature.

Dynamic
Example : meters.

Given the temperature 44 F. and the height of 1462
Table 16 A gives for 1000 meters and 40 F 87
Table i6a gives for 1000 meters and 4 F 9
Table i6'a gives for 462 meters and 40 F 40
Tablei6A gives for 462 meters and 4 F 4

1462 meters at F. reduced to_44 F. gives 1602

Height
(dynamic
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Table 17 A. Temperature correction to be added to the virtual temperature at the earth's surface
in order to give the most probable average virtual temperatures in the sheet between the

earth's surface and the nearest standard isobaric surfaces [based upon statistics).

Height
of stan-
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Table 18 A. Change of isobaric charts, given in millimeters of mercuryfor sea level, into charts of
dynamic topography of the 7000 m-bars isobaric surface.

Height
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Table 19 A. Change of isobaric charts, given in inches of mercuryfor sea-level, into charts of dynamic

topography of the IOOO m-bars isobaric surface.

Height
(dyn

meters).
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CHAPTER I.

GENERAL CONSIDERATIONS ON THE OBJECT AND THE METHODS OF
DYNAMIC METEOROLOGY AND HYDROGRAPHY.

87. The General Problem. Treating statics of atmosphere and of hydrosphere
we have considered invariable states of these media. Although passing occasionally

the strict limits of statics, we never considered the states from the point of view of

their variations, time never entering into our equations. But in entering upon the

investigation of these states, not only from the point of view of their distribution

in space, but also from that of their variation in time, we have to introduce time as

a new independent variable. This allows us to view our problem in its generality

and it will be useful to do this before returning to investigations of detail.

Considering the problem from a mathematical point of view, we have first

to define our independent and our dependent variables.

We consider meteorological and hydrographic phenomena in relation to space
and time, *'. e., our independent variables are coordinates and lime. The system of

coordinates is always rigidly attached to the earth. Two of the coordinates are the

geographical ones, serving to define points at the surface of the land or of the sea;

while the third has to give the height above or the depth below sea-level. In our

static investigations we have found it convenient to measure this third coordinate

in dynamic instead of in geometrical measure, and this will generally be convenient

during the continued work.

As dependent variables we have to introduce the quantities required for defin-

ing the state of the atmosphere and the hydrosphere, or formulating the laws of the

changes of these states. We shall designate these dependent variables as meteoro-

logical or hydrographic elements. The distribution in space of any of these elements

is called its field. For the description of atmospheric states we have to consider at

least five fields, those of pressure, of mass, of temperature, of humidity, and of

motion. The first four of these are scalar fields; the fifth, that of motion, is a

vector-field. The question may be raised if the full description of atmospheric
states and of the laws of their changes will not require the introduction of still more
fields. Thus there may be a mutual dependency upon one another of the meteoro-

logical processes and the electric or the magnetic fields of the earth. This would

require the introduction of vectors describing these fields as further meteorological
elements. But the rational plan will be, first, to treat the problem, as far as possible,

with the smallest number of variables. We therefore restrict ourselves to the con-

sideration of the five fields already defined for the case of the atmosphere. The five

corresponding fields for describing the states of the hydrosphere and for formulating
the laws of their changes are the fields of pressure, of mass, of temperature, of

salinity, and of motion, precisely the same as in the case of the atmosphere, except
that salinity takes the place of humidity.
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The fields of pressure, of temperature, of humidity, and of salinity are described

by the values of the corresponding elements observed in the different points of

space. The fields of mass can be described in either of two ways, by the mass per
unit volume or by the volume of unit masses. That is, we can consider either

density or specific volume as the scalar element describing this field. In the same

way we can use two different elements of vector-nature for describing the field of

motion, either velocity or specific momentum (Statics, section 3).

Having defined our variables, we can thus concisely state the problem of

meteorology and hydrography : To investigate the five meteorological and the five hydro-

graphic elements as functions of coordinates and time.

88. Investigation of Phenomena Depending upon More Variables. The general

principle for investigating phenomena depending upon more variables is this : syste-

matically to keep constant a certain variable or group of variables, in order to examine

the effect of varying another variable or group of variables.

We have used this principle in statics already. Independent variables were

then only the three coordinates. Among them the two geographical ones evidently
form a natural group, having other relations to the investigated fields than the

third coordinate, height. This difference determined the method. We began by
considering the conditions of equilibrium along certain vertical (or quasi-vertical)

lines, namely, the lines along which meteorological ascents or hydrographic soundings
had taken place (Statics, Chapters VI and VIII) ;

or in mathematical language,
we gave to the geographical coordinates the constant values defining the stations

and examined the effect of varying the third variable, height.

Using the results thus obtained, we afterwards drew synoptical charts, repre-

senting the fields by horizontal sections instead of by vertical soundings (Statics,

Chapters VII and IX). This representation involves a modified use of the same

general principle; for a chart shows the effect of varying the two geographical

coordinates, while the third independent variable keeps constant.

When performing investigations according to this general principle it is occasion-

ally convenient to let a certain dependent and a certain independent variable change

parts. In this way we interchanged pressure and height. Retaining height as the

third independent variable, to which the constant values were given, we arrived at

isobaric charts drawn in level surfaces (section 65). Using pressure as the third

independent variable to which the constant values were given, we arrived at topo-

graphic charts of isobaric surfaces (section 64). But in both cases the general
result was the same, namely, a representation of the field of pressure in its relation

to space, i. e., in reference to coordinates as independent variables.

Introducing now a fourth independent variable, time, besides the three old ones,

the coordinates, we have to apply the same general principle. The first question
will then be that of the grouping of the variables. About this question there can be

no doubt; for evidently the three coordinates form a natural group, having other

relations to the phenomena than the fourth variable, time. The grouping of the

variables being agreed upon, we can proceed along two ways: (1) Giving constant
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values to the coordinates, we can examine the effect of letting time vary; or (2)

giving a constant value to time, we can examine the effect of letting coordinates

vary. These two different ways lead to two essentially different branches of

meteorological and of hydrographic science.

89. Climatological Method. First let us give constant values to the coordi-

nates, and examine the effect of letting time vary. We can imagine the investi-

gation performed in the following way : Self-recording instruments are set up at a

number of fixed points (stations) in atmosphere or hydrosphere. The different

records of the meteorological or hydrographic elements then show directly the effect

of letting time vary, while the coordinates have the constant values defining a

certain station.

When we examine the records we find great irregular changes, the explanation of

which can not be found by a direct examination of the curves; but conspicuous

signs of regular changes are also discovered. Forming averages in different ways,
the irregular phenomena will more or less disappear. The regular ones will then,

for the most part, present a periodical character, having the periods of the solar

day, of the solar year, of the sunspots, and perhaps of still other cosmic phenomena.
Besides the decidedly periodic phenomena, slow secular changes may also be dis-

covered.

The different kinds of averages thus formed of the meteorological or hydro-

graphic elements may be called the climatological elements for atmosphere or

hydrosphere. Inasmuch as time enters into the definition of these elements, it is the

local time of each station, not universal simultaneous time. The elements found at

the different stations may be compared to each other. This leads to the drawing
of climatological maps, showing the average influence of geographical data, just

as the single curves showed that of astronomical events; but no way leads to the

investigation of the nature or the causes of what we called irregular phenomena.
These were eliminated, and to investigate them we must follow another way.

90. Dynamic Method. In order to examine the other method, we can start

with the records obtained from the same set of self-recording instruments, but

shall make a modified use of them. Giving time a certain constant value, we read off

from all records the values of meteorological or hydrographic elements at this epoch,
and draw continuous synoptical representations of the field of each element.

Having thus got a complete picture of the state of the atmosphere or the hydro-

sphere at this epoch, we give time a new constant value, read off the new values of

the elements, and produce new synoptical representations of the fields, which give
a complete picture of the state of atmosphere or hydrosphere at this second epoch,
and so on.

A series of such pictures being produced, the next step will be to make them
the subject of a comparative investigation. This comparative investigation of the

successive states must lead to the solution of the ultimate problem of meteoro-

logical or hydrographic science, viz, that of discovering the laws according to which
an atmospheric or hydrospheric state develops out of the preceding one.
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We shall call this the dynamic method; for in virtue of the laws of hydro-

dynamics and thermodynamics which govern atmospheric or hydrospheric phe-

nomena, preceding states are in relation of causality to subsequent states. Inasmuch

as we know the laws of hydrodymanics and thermodynamics, we know the intrinsic

laws according to which the subsequent states develop out of the preceding ones.

We are therefore entitled to consider the ultimate problem of meteorological and

hydrographic science, that of the precalculation of future states, as one of which

we already possess the implicit solution, and we have full reason to believe that we
shall succeed in making this solution an explicit one according as we succeed in

finding the methods of making full practical use of the laws of hydrodynamics and

thermodynamics.

91. Three Partial Problems. Evidently general investigations according to

the dynamic plan must lead to occupation with three special problems. The first

is the question of the organization of observations serving these investigations. The
observations being given, the next problem will be to work out from them synoptical

representations of the fields serving to define actual states of atmosphere or hydro-

sphere. Introducing a terminology taken from medical science, we shall call this the

problem of diagnosis of atmospheric or hydrospheric states. The result of a diagnosis

being given, the final problem will be that of precalculating future states. Making
continued use of the same terminology, we shall call this the problem of prognosis
of future states. Before returning to details, we shall make some general remarks

on each of these three problems, taking as the leading idea that the condition for

real progress is to arrange so that full use can be made of the knowledge contained

in the laws of hydrodynamics and thermodynamics.

92. Principles for the Organization of Observations. It is of course not

possible to know how observations will be organized later, when the problems of

diagnosis and of prognosis are completely solved in explicit form. But the question

interesting the present generation of investigators is to get that organization which

would facilitate as much as possible the work with the solution of these problems.
From what we have evolved already it will be clear that the dynamic method

requires simultaneous observations. The principle of simultaneity being therefore

agreed upon as the fundamental one, the next questions will be those of the distribu-

tion in space of each set of simultaneous observations and the distribution in time of

the successive epochs of observations.

In order to answer these questions, we have to remark that the fundamental

laws of hydrodynamics and thermodynamics have the form of partial differential

equations giving relations between the continuous space-variations and time-varia-

tions of the different elements. To make it as easy as possible to bring them into

application, we must try to organize observations so as to realize an approximation
toward continuity in space and time. In other words, the distances in space
between the points of observation and the distances in time between the epochs of

observation must be small enough to be used, with a certain degree of approxima-

tion, as line-differentials and time-differentials.
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The test that the distribution in space of the points of observation fulfil this

condition will be, that it turns out to be possible to draw synoptical maps, by use of

the observations; for such maps give continuous representations of the fields of the

observed elements. The distances to be allowed in the net of observations will

therefore depend upon the space-variations of the elements. The network must be

satisfactory for the element having the strongest space-variations. But nothing
hinders elements which have less irregular distribution in space from being observed

at a smaller number of points in the network.

A suitable time-differential must be determined by a comparison of synoptic

charts representing the field of the same element at successive epochs. The changes
which the element has undergone from epoch to epoch must be small enough to

allow us to form satisfactory approximate values of the time-derivative of the element.

The time-differential must therefore be chosen so as to suit the element which has

the most rapid time-variation. But nothing hinders elements having slower time-

variations from being observed, only, for instance, at every second or every third of

the eoochs of observation, which have thus been chosen.

93. Special Remarks on Meteorological Observations. In passing to concrete

meteorological observations, we shall first make some remarks regarding the principle

of simultaneity.

The ideal is of course the use of self-recording instruments having sufficiently

large time-scale. But whichever instruments or methods of observation be used,

it will be neither possible nor required to realize simultaneity in the mathematical

sense of the word. Most meteorological elements will under ordinary circumstances

change very little during as small an interval of time as, for instance, half an hour.

Departures of this magnitude from the precise epoch of observation will therefore

not usually produce errors of greater importance, though exceptions are not excluded,

The general slowness of the variations makes it possible to use averages

registered during suitable intervals of time instead of true instantaneous values.

For one element, wind, the use of averages, as we shall see, will be unavoidable, and

it will have certain advantages also in connection with other elements, especially

inasmuch as time-integrations should be performed afterwards. But if averages
be used, they should be used at all the cooperating stations, and taken according to

the same rules at all. These conditions have been excellently fulfilled by hourly

averages which we have obtained from the U. S. Weather Bureau.

Observations obtained from the higher strata by meteorological ascents will

cause certain difficulties inasmuch as the records taken by the same instrument at

different levels are not taken simultaneously. But the departures will be reduced

according as we increase the velocity of the ascent. A registering balloon can be

made to mount from the ground to the lower limits of the isothermal layer in less

than an hour. Departures up to half an hour from the true epochs of observation

being considered allowable, we are entitled to consider the observations obtained

by such a balloon in different levels as simultaneous with observations taken near

the ground half an hour after its launching.
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Thus a tolerably satisfactory simultaneity can be realized even for the observa-

tions from the higher strata. But still the principle of simultaneity is not carried

through universally, not even for the observations at the ground, where its realization

should not cause any real difficulty. Thus departures by far exceeding the half-hour

limit exist still in the European net of daily observations. Fortunately in the

United States the principle of simultaneity is completely carried through for the

whole net of stations. This circumstance, in connection with the complete homo-

geneity of the observations, all being obtained from self-recording instruments of

the same construction and treated according to the same rules, make these observa-

tions the best which we have had at our disposal for the study of the conditions of

the atmosphere near the ground.

Passing to the distribution in space of the points of observation, we must

distinguish the points of observation near the ground from those in the free atmos-

phere. As to the investigation of the lowest atmospheric sheet, the greater nets of

observation, as that of Europe, of the United States, or of India, may be said to be

satisfactory, exceptions beingmade for certain specially difficult regions, for instance

the western mountainous parts of the United States. For practical reasons the net

of stations is here less close, while the space-variations of meteorological elements are

stronger than in the flat land. For the most variable element, wind, this has caused

us great difficulties.

In the free space fixed points of observation can not be maintained, and would

not, unless they could be kept up in great number, be of appreciable use; for the

lengths which can be used as line-differentials in vertical direction are much smaller

than those which can be used in horizontal direction. But on account of the relative

slowness of the variations in time and the rapidity with which meteorological
ascents can be performed, we can get continuous records along vertical lines, repre-

senting approximately the instantaneous state of things along these lines.

As the variation of meteorological elements in horizontal direction is necessarily

much smaller in the free atmosphere than near the ground, where the local influences

of topography come in, it will not be necessary to provide all stations at the ground
with the implements for meteorological ascents. But only experience can show how
close the net of aerological stations should be. Further, it will not be required to

give all aerological stations equally complete equipment, for the scalar elements

have much less pronounced space-variations than the vector-element, velocity.

As air-velocity is also much easier to observe, thanks to the method of pilot-balloons,

it will be rational and economical to erect two classes of aerological stations, com-

plete aerological stations and pilot-balloon stations. How close the net of each

kind should be, will be evident by and by from the synoptical maps drawn by use

of the ascents. The erection of aerological stations, including pilot-balloon stations

in great numbers, will be of special importance in mountainous regions, where the

effectivity of the common stations is so limited on account of the local irregularities.

The last and most delicate question is that of the determination of a suitable

time-differential separating the epochs of observation. Inasmuch as continuity in

time is realized in as great extent as possible by providing the stations at the ground
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with self-recording instruments, the question will be reduced to that of a suitable

interval between the successive aerological soundings. As time-variations of the

meteorological elements have the same rapidity near the ground as in the free air,

this question can be answered by examination of charts for the ground concerning

the element which has the most rapid time-variations, namely, velocity. According

to our preliminary experience regarding these charts (see Chapters XII and XIII)

it seems reasonable to try time-differentials of three hours for this element, while

differentials of double the length may be used for the other elements.

Observations of the completeness thus required can not be kept up continuously.

It will be necessary to organize special periods of investigation extended for each

time over a series of days. An effective organization of such a period would be this :

During the whole period continuous observations or observations for every

hour of Greenwich time are kept up at all stations at the ground.

For every third hour of Greenwich time ascents are made from the pilot-

balloon stations.

For every sixth hour of Greenwich time ascents are made from the complete

aerological stations.

94. Remarks on Hydrographic Observations. Oceanographic observations are

not yet organized systematically. But the general principles for their organization

will be the same as for the meteorological observations. Hydrographic expedi-

tions going out occasionally can only contribute to the knowledge of the average

state, i. e.
,
to the climatology of the sea. But the final aim must be that of investiga-

ting the actual states and their variations. The organization must then be governed

by the principle of simultaneity. The investigations will have to be performed not

by one luxuriously fitted ship, passing months or years at sea, but by the cooperation

of small ships going out simultaneously.

The demands regarding the degree of simultaneity and the intervals between

the epochs of observation will depend upon the rapidity of the changes. There are

indications both for rapid changes (amongwhich the tidal phenomena in the deeper

strata will play an important part) as well as for slow seasonal changes and changes

from year to year. The problem will be to organize observations so as to separate

from each other the changes of different rapidity and to investigate them as much as

possible independently of each other. But a serious discussion on the suitable

method of organization will only be possible by and by, as our knowledge of the

oceanic phenomena advances.

95. The Problem of Diagnosis. The observations being given, the diagnosis

will consist in working out continuous synoptical representations of the field of each

element. This involves first the choice of proper methods of representing each field

synoptically. This choice being made, methods for passing from the observations to

the synoptic representation must be worked out. These diagnostic methods must

take into consideration not only the observations themselves, but also all intrinsic

relations existing between observed quantities and quantities to be represented. It

is due to these intrinsic relations that we are able to work out relatively complete
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representations in spite of the extreme incompleteness of the observations. Accord-

ing as we introduce the different relations of dynamics and thermodynamics, we

shall have to examine carefully their possible diagnostic use.

In statics our work was exclusively of this diagnostic nature. We chose our

methods for representing two fields, those of pressure and of mass, and we developed
the methods of arriving at these representations, making diagnostic use of two

relations, viz, the equation of hydrostatics and the gas-equation, respectively the

relation existing between temperature, salinity, pressure, and specific volume of

the sea-water. Passing now to kinematics, we shall have to occupy ourselves with

the diagnosis of the field of motion. We shall choose methods for representing this

field, and try to make complete diagnostic use of all relations of kinematic origin.

96. The Problem of Prognosis. The present state being diagnosticated, the

final problem is that of the precalculation of future states. The solution of this

problem will involve the simultaneous use of all intrinsic relations of hydrodynamic
and thermodynamic origin, to be used in connection with the initial conditions, the

surface conditions, and data regarding exterior effects of terrestrial or cosmic origin.

Evidently the problem is of enormous complexity. But in order to try to prepare its

solution, we shall solve one by one a series of partial problems belonging to it. For

every equation introduced we shall examine its prognostic as well as its diagnostic

value. In kinematics we shall meet with the first partial problem of prognosis, for

the definition of the fundamental kinematic vectors involves the idea of time. When
we know the instantaneous velocity of a moving particle, we shall know the place

of this particle a differential of time later. The changes of place of the moving

particles can therefore be determined in the first approximation by purely kinematic

principles. The solution of this problem of kinematic prognosis is the first step

in the solution of the general problem.

During the work with the problem of prognosis, it will be apparent that while

we are probably in possession of all the intrinsic relations to be used for its solution,

certain empirical data required for bringing them into application must be sought.

The missing data can in many cases be found by reversing the problem of prognosis.

The state being known at two epochs, we calculate the missing data, which, used

in the intrinsic relations, should allow us to calculate the second state when the

first is given. Having this method in view, we shall treat the different partial

problems of prognosis both in direct and in inverse form.

Reversing the problem of kinematic prognosis, we shall thus arrive at the

purely kinematic determination of accelerations. When we determine afterwards

the same accelerations by dynamic principles, we get the opportunity of finding the

value of a term in the dynamic equation, of which we have not a priori a sufficient

knowledge, namely, of that representing frictional resistance.



CHAPTER II.

THE OBSERVATIONS OF AIR AND SEA MOTIONS.

97. The Common Wind-Observations. Taking up the subject of the kine-

matics of atmosphere and hydrosphere, we have first to discuss the observations to

be used as the basis of the kinematic diagnosis. We shall begin by considering the

observations of wind.

Even a rough examination shows the wind to be very irregular, its direction

and intensity changing rapidly in varying limits. By using finer methods of obser-

vation smaller irregular air-movements will be discovered which would otherwise

escape our attention. Directions and intensities of wind noted at meterological
stations are therefore always averages, the smaller irregularities not being discovered

and the greater ones being smoothed out by the personal estimate of the observer

or by a regular treatment of the records of the self-recording instruments.

It is therefore only certain average air-motions which can be submitted to a

kinematic analysis. Neglecting the small irregularities in the large-scale meteor-

ology, we make a similar approximation as when in laboratory experiments on

fluid motion we neglect the irregular molecular motions existing according to the

kinetic theory. But in both cases indirect effects of the small motion arise in the

form of an apparent increase of frictional resistance. The question of this resistance

will be taken up in the dynamic part of this book.

For our kinematic investigations we have to mention these irregularities only
on account of the uncertainty which they cause in the noted average direction and

intensity of the wind. When quantitative use is to be made of the wind-observa-

tions, it will be important to use rational methods both for taking the observations

and for smoothing out the irregularities. Especially it will be important that the

same method should be used for these purposes at all cooperating stations. The
best results will be obtained by self-recording instruments, the averages being taken

from the values registered during an interval of time extended equally long before

and after the epoch of observation. The average should be formed by vector-addition

and registering instruments should allow an easy determination of this average.
The vector formed by taking the separate averages of the recorded directions and
of the recorded intensities will not be the true vector-average ;

but it may be used

approximately instead of the true vector-average if the variations of direction and

intensity have not been too strong during the interval for which the average is

formed. As meteorological wind-observations have not been organized in view of

our quantitative applications, they are very imperfect from our point of view. In

Europe, besides the fundamental imperfection that the principle of simultaneity is

not carried through, all sorts of wind-observations are used, from personal estimates

9
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to averages obtained by the best self-recording instruments. Greater homogeneity
is highly desirable. The best wind-observations which we have had at our disposal

are from the United States. We have obtained them partly from the published
weather maps, and partly from unpublished material, thanks to the kindness of the

United States Weather Bureau. They give the registered average wind-velocities

from hour to hour, and eight corresponding average wind-directions. We have con-

sidered these averages as defining the vector-average of the wind for the half-hour

epoch, though for periods of rapid changes they may differ considerably from the

true vector-average. Quite independently of the method of averaging, it would be

a great improvement to increase the number of wind-directions noted from eight

to at least sixteen.

98. Preliminary Synoptic Representation of the Wind-Observations. A set

of simultaneous observations of the wind being given, the first step in the subsequent

diagnostic work will be to introduce these observations in a convenient form on

the map.
The most direct way will be to draw on the map a set of arrows representing

the observed wind-directions, and to add numbers representing the observed wind-

velocities in meters per second. These numbers, giving the result in quantitative

form, should always be introduced instead of the different qualitative signs used to

represent the strength of wind according to the different "wind-scales." Plates

XXXI, XXXVI, and LIII give examples of charts containing in this way a repre-

sentation of wind-observations.

Besides representing the directions by arrows, we shall use a method of rep-

resenting them by numbers. This will be useful not only for purposes of regis-

tration, but also for quantitative work. The correspondence between directions

and numbers which we shall use is illustrated by fig. 32.

The numbers defined by this figure may be used not only as names of the direc-

tions, but also as measure of the angles which the different directions form with the

initial direction, the direction toward E. We get in this manner a measure of the

angles by dividing the circle into 64 instead of 360 degrees. We have chosen this

measure of angles for our purposes by two reasons; first, 64 is the highest two-

figure number which is a power of 2
;
and then its tenth part, 6.4, differs only by

1.9 per cent from 2t or 6.28. This difference will as a rule be insignificant for us.

We can therefore consider the numbers 1 to 64, after division by 10, as representing

the angles in absolute measure. The choice of the direction E. N. W. S., i. e., the

direction against the motion of the hands of a watch, as the positive, and the direc-

tion toward E. as the initial direction, is made for reasons which will be apparent

later, when we shall choose our systems of coordinates and give the corresponding
rule of signs.

When this correspondence between numbers and directions is used, it will be

found convenient to have the diagram of fig. 32 engraved on a transparent sheet of

glass or of celluloid. By use of this divided plate we can then easily pass from an

arrow to the corresponding number, or vice versa.
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These numbers can now be introduced on the charts instead of the arrows.

The chart will then contain a representation of the wind-observations by use of two

sets of numbers, one set representing the wind-directions and another representing
the wind-intensities. It will be found convenient to use ciphers of different type
or of different color for the two different sets. The heavy numbers on plates

XXXVI and LIU represent wind-directions.

S-wincL

15 k

SW-wind

40
NE-wind *t 55 NW-urind

a& '*7 4g 49 50

N-wind
Fig. 32. Representation of directions by numbers.

Charts of this description, which contain a representation of the observed

motions either by arrows and numbers or by two sets of numbers, will form the

starting-point for the whole subsequent work of kinematic diagnosis.

99. Observations of Air-Motion in the Free Atmosphere. Until lately the drift

of the clouds gave the only information on air-motion in the higher strata. Quali-
tative results were obtained by observing the cloud-form and the direction of the

drift, and quantitative results in the first approximation by also measuring the
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angular velocity of the cloud by a nephoscope. For as the height of the cloud can be

estimated approximately by its form, the velocity can be calculated. But besides

the smaller errors caused by the use of the estimated heights, great errors may
arise on account of the difficulty of recognizing with perfect certainty the cloud-

forms. Even if finer methods be used, based upon the measurement of the parallax,

the diffuseness of the objects observed causes difficulties, and the process of forma-

tion and dilution of clouds going on simultaneously with their motion makes the

interpretation of the observations difficult.

But the great drawback of the cloud-observations is that they only give spor-
adic information, depending upon where clouds happen to be. What is wanted are

continuous records of the air-motion taken along vertical or quasi-vertical lines, cor-

responding to the continuous records of pressure, temperature, and humidity, which

we have considered in Statics. Continuous records of air-motion may be obtained

by the same ascents which give records of the scalar meteorologic elements. Besides

the other instruments, a kite can lift an anemometer registering the wind-intensity,
while the direction can be estimated roughly by the direction of the kite-line. But
the best results are obtained by observing the motion of free balloons by theodolites.

If the height of the balloon can be found from other data, only one theodolite is

required. Thus if the balloon carries a registering barograph, the direction and

intensity of the wind may be found as function of the registered pressure or as func-

tion of the height calculated from this pressure. But an important simplification

has recently been introduced. A closed caoutchouc-balloon has been found to

mount with a practically constant velocity, which can be calculated by the dimen-

sions and buoyancy of the balloon. Thus the height is known simply by the time

elapsed since the moment of its launching. The air-motion can therefore be deter-

mined much more easily than all other meteorological elements in the free air, the

instruments required being simply a theodolite and a small pilot-balloon. Accord-

ing to Hergesell* this method gives better determinations of the air-motion in the

higher strata than our ordinary station-instruments can give for the layer near the

ground.

Just as other instruments, the pilot-balloons give the air-motion with the small

irregularities to some degree smoothed out. Small oscillations of the balloon are

seen as long as the distance is not too great, but as the observations are taken at

intervals which are long compared to the period of these small irregularities, only

averages are obtained.

It should be observed that these averages in reality are of a complex nature,

being averages simultaneously as regards intervals of time and of height, and further,

that the air-motions found by the same pilot-balloon in different heights are not

strictly simultaneous. We have mentioned already this general imperfection of

observations obtained by aerological ascents (section 93) and its relatively small

importance when the ascents are arranged so as to be made with sufficient ver-

tical velocity.

*H. Hergesell: Die Bedeutung der Pilotballonaufstiege fur die praktische Aerologie. Sixieme Reunion de la

Commission Internationale pour l'Aerostation scientifique a Monaco, 1909. Strassbourg, 1910.
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100. Horizontal Motion and Vertical Motion. The considered observations,

those from the earth's surface as well as those from the higher strata, do not give
full information on the direction of the motion. They only give the azimuth of the

direction, not its inclination relatively to the horizon. Observations of the vertical

components of the motion are difficult. It has been proved possible lately to derive

the vertical velocity of the air from the motion of pilot-balloons, the observations

being taken in a more complete way by two theodolites and base.* This or other

methods of making the observations more complete are very much to be recom-

mended, especially also on account of the more correct values thus obtained for the

horizontal velocity. But even if it be possible thus to obtain valuable results on the

local ascending or descending currents, it may turn out difficult to arrange a suffi-

cient number of observations for the purpose of getting a complete picture of the

general vertical motion. As long as a sufficient system of observation of this nature

has not been organized, we shall be obliged to derive the vertical motion indirectly.

This can be done by proper diagnostic methods which will be developed later,

provided that we know sufficiently well the horizontal motion. We shall therefore

first examine this part of the motion as completely as possible.

101. Direct Result of a Pilot-Balloon Ascent. Directing our attention to the

horizontal motion only, we shall consider the result of the ascent of a viseed balloon.

Table A, columns 1,3, and 4, shows the result of an ascent as given in the publica-
tions of the International Committee for Aeronautical Meteorology.!

A table like this gives more detailed information on the air-motion than we can

use in the subsequent work, when the result of a great number of simultaneous

ascents are to be worked out. The contents of the table must therefore be con-

densed, and evidently by forming vector-averages of the air-motion for thicker sheets

than those appearing in table A.

102. Vector-Averages of Horizontal Motion Formed with Height as Inde-

pendent Variable. As the required averages have to be found by vector-addition,

a graphical method will be best. From table A we derive a curve giving a geo-
metrical representation of the distribution of velocity in the different heights.

We form the numbers noted in column 5, obtained as products of the velocities,

column 4, into the thicknesses Az of the corresponding sheets, column 2
; drawing

then in succession segments of line having the lengths represented by the numbers
in column 5 and the directions given in column 3, we get a polygonal curve which is

seen in each of the diagrams, figs. 33 and 34 (pages 15 and 1 7). The numbers added
in the corners represent the heights.

Now let us mark on the curve two points, representing two heights, and let us

draw the chord joining them. This chord then represents the vector-sum (or the

vector-integral) of velocities within the sheet defined by the two points, formed with

height as independent variable; and dividing by the thickness of the sheet we
shall get the average velocity within this sheet. In each of the figures 33 and 34 a

*See note, p. 12.

fPublications de la Commission Internationale pour l'Aerostation scientifique, 1907, p. 358. Strassbourg, 1909.
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set of such chords are seen, drawn to determine the average velocities in the corre-

sponding sheets.

If we wish to have the air-motion represented by specific momenta instead of

by velocities, the direct way of proceeding will be to change the velocities contained

in column 4 of table A into specific momenta, multiplying them by the corresponding
densities of the air. Afterwards the construction is performed exactly as in

the case of the other vector, velocity. We multiply the numerical values of the

specific momentaby the corresponding thicknesses of sheet Az, and draw in succession

segments of line having the directions given in column 3 and the lengths represented

by these products. By use of the curve thus obtained we form the vector-average
for any sheet precisely as in the case of velocities.

Table A. Horizontal velocity oj vise

long. g io'E.), July 25,

ed balloon in different sheets. Pavia (lat. 45 11',

1907, 7
h

33
m

7*48
m

a. m., Greenwich.

I
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We emphasize this as a method which may be seriously thought of, especially

later, when more complete observations can be obtained. But for the first attempts
we shall prefer a more summary method, using the same sheets which we have

already introduced in statics for the representation of the fields of pressure and of

mass. This will be convenient for several reasons. First, the kinematic diagnosis
is not complete as long as we know only the velocities. We must also know the

amounts of mass which have these velocities. Using the sheets introduced in

4400-

Fig. 33. Construction of average velocities for standard level sheets.

statics, we get a coherent representation of velocities and of masses. Further, our

final aim being the performance of dynamic investigations, we shall arrange every-

thing convenient for future purposes by choosing our representation of the field of

motion in as close connection as possible with that of the field of pressure. We shall

therefore use either level sheets of the thickness of 1 ,000 dynamic meters, or isobaric

sheets corresponding to the difference of pressure of ioom-bars. In so doing, we
shall evidently often get sheets which are too thick for a detailed representation of

the motions. But the way of refining the representation by the choice of thinner
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sheets is evident. Thus level sheets of 500 or of 100 dynamic meters, or isobaric

sheets of 50 or of 10 m-bars may be used, especially in the lowest strata near the

ground, where the greatest irregularities occur.

104. Use of Standard Level Sheets. Fig. 33 shows the construction leading

from the observations given in table A to the average velocities in standard level

sheets. The curve having been constructed as described in section 102, points

are marked on it corresponding to the heights of 1020, 2040, 3060, 4080 . . .

meters, i. e., to 1000, 2000, 3000, 4000 . . . dynamic meters. Then the chords

are drawn, and the numbers representing their directions found by use of the divided

sheet described in section 98. These numbers are given in column 4 of table B.

Further, the length of the chords is measured and the numbers representing these

lengths divided by 1020, which represents the common thickness of the level sheets.

The velocities found in this way are given in column 5 of table B .

As the balloon carried self-recording instruments, the pressures in the standard

level surfaces have been calculated (Statics, sees. 53-54) and are given in column 2

Table B. Average horizontal motion in standard level sheets. Pavia (lat. 45 11',

long. qio' E.),July 25, 1907, 7
b

33'" 7
h

48
a

a. m., Greenwich.

I

Height
dyn. meters.
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have to mark on it the points which represent the heights of the standard isobaric

surfaces. From the records in the case before us these heights are found equal to

99, 989, 1970, 3057, 4274 dynamic meters, as noted in column 2 of table C. The

corresponding thicknesses of sheet, also expressed in dynamic meters, are given in

column 3. These two columns then represent, as we have seen (Statics, sees. 35, 54),

the distribution of pressure and mass along the vertical, the thickness of the standard

isobaric sheets giving the average specific volume of the air within the sheet.

4400/
600m-bars

Fig. 34. Construction of average velocities for standard isobaric sheets.

On the curve we now mark points representing the heights noted in column 2,

i.e., the heights of 101, 1009, 2009, 3121, 4362 common meters, and draw the corre-

sponding chords. The directions of these chords determined by the transparent
sheet (fig. 32) are noted in column 4. Then the lengths of these chords are measured

and divided by the thicknesses of sheet, viz, 908, 1000, 11 12, 1241 common meters,

respectively. The average velocities found in this way are noted in column 5.

As the numbers in column 3 represent the average specific volume of the air in

the sheets, we get the specific momenta simply by dividing the velocities (column 5)
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by the specific volumes (column 3). The result is given in column 6. But as

in the preceding case, we have to remark that the values of specific momentum
found in this way are not the exact height-averages of specific momentum for these

sheets; yet they give as a rule sufficient approximation toward these averages. If

the exact values are required, we have to change the velocities given in table A into

specific momenta before performing the construction leading to the averages.

Table C. Average horizontal motion in standard isobaric sheets. Pavia (lal. 45 11',

long. qio'E.), July 25, 1907, 7*33" 7*48 Greenwich.

I
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six days, extending from July 22 to July 27, during which the North Pole was sur-

rounded by a circle of aerological stations. During this period in all 89 registering

balloons, 20 manned balloons, 100 kites and captive balloons, and 41 pilot-balloons

were sent up.

From our point of view these observations were spread out over too great an

area as well as over too long a period of time. The number of pilot-balloons launched

was also far too small compared with that of registering balloons (compare sections

92, 93). In order to try a diagnosis of atmospheric motions we can only think of

using the observations from a more limited area, where the network of stations was

closest, namely, central Europe. And we shall choose the epoch when the greatest

number of fairly simultaneous ascents took place, namely, July 25, about the time

of the daily meteorological observations, 7 a. m. Greenwich. From one hour

before to two hours after this epoch 13 balloons were followed by theodolites. This

number is not sufficient for working out a real diagnosis of atmospheric motions

over Central Europe, but we shall at least be able to illustrate the formal methods.

When working out the example we shall choose the method of dividing the

atmosphere into isobaric sheets
;
the corresponding use of level sheets will be under-

stood without difficulty. Using the methods developed in vStatics, as well as those

given in section 105, we get the result of the ascents condensed in table D. In

each of the 13 subdivisions of this table, the first column gives the standard pressures

and the pressure at the station
;
the next gives the dynamic height of these pressures,

and the three following the thickness of sheets, direction, and velocity of air-motion

in the sheets. It may be remarked regarding the observations that those of the

wind in subdivision 8 are obtained from the ascent of a kite, those in subdivisions 1 1

and 12 from the course of manned balloons. The registering balloon, subdivision 13,

could not be viseed for cloudiness. In subdivision 7, heights of standard surfaces

and thickness of standard sheets are estimated from the ascents at the other stations.

From the numbers registered in table D we shall now work out the corre-

sponding synoptical representations. Using the numbers representing the heights

of the standard isobaric surfaces and the thickness of the sheets contained between

them, we shall first work out representations of these sheets. For the sake of brevity

we shall denote these sheets, counted from below, by the Roman numbers X, IX,

VIII, . . .
,
X being the sheet limited below by the 1000 m-bar surface, IX that

limited below by the 900 m-bar surface, and so on. The always incomplete sheet

contained between the 1000 m-bar surface and the ground may be denoted by XL
To distinguish the curves for absolute and those for relative topography we

shall draw the first as single and the second as double lines. The double lines con-

sist of a thick and a thin line, the thin being drawn on that side where the isobaric

sheet, whose thickness is represented, is thinner. Fig. A of plate LVII represents

the isobaric sheet X, the single lines giving the dynamic height of the 1000 m-bar

surface above sea-level and the double lines giving the height of the 900 m-bar

surface above the 1000 m-bar surface. Or, as we express it: the single lines give

the absolute topography of the 1000 m-bar surface and the double lines the relative

topography of the 900 m-bar surface. In the same manner fig. a of plate LVIII
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Table D. Aerological observations {Europe, July 25, igof).
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represents the isobaric sheet IX, the single lines giving the absolute topography
of the 900 m-bar surface and the double lines the relative topography of the 800

m-bar surface, and so on.

On the charts representing thus the different isobaric sheets, we now introduce

the arrows and corresponding numbers representing the air-velocities given in table

D. These data regarding the air-motions in the higher strata, in connection with

the corresponding data for the ground which are given on plate LIU, will now form

the basis for the further diagnostic work regarding the air-motion above central

Europe, July 25, 1907, about 7 a. m. Greenwich.

108. On the Observations of the Sea-Motions. If the observations of the air-

motions are too scarce, this is still more the case with those of oceanic motions.

Quantitative measurements are only to be had exceptionally. The motions of the

sea's surface is in many cases known qualitatively from the drift of floating objects
or of bottles thrown out for the purpose of investigation. Qualitative conclusions

as to the motions in the deeper sheets can be drawn from the measurements of

the salinity, this giving information as to the origin of the waters. Similar conclu-

sions can be made also on the basis of the examination of the organisms contained

in the water. But none of these observations are of the quantitative nature which

can give rise to a closer kinematic analysis.

For this reason we can work out no example of a kinematic diagnosis of the

sea-motions. But the principle of the methods to be employed in the case of the

sea, as soon as serviceable material of observations is produced, will be sufficiently

illustrated by the example worked out for the case of the atmosphere. We shall

therefore only make occasional references to the sea.

The most important point to emphasize is the necessity of producing sufficient

data of direct observations of the sea-motions from the surface as well as from all

depths. Suitable instruments for doing it have already been invented.* It remains

only to bring them into application on a sufficiently large scale and according to

rational principles.

*V. W. Ekman: Kurze Beschreibung eines Propell-Strommessers. Conseil Permanent International pour

l'Exploration de la Mer. Publications de Circonstance No. 24. Copenhague, 1905.

Otto Pettersson: Beschreibung des Bifilarstrommessers. Publications de Circonstance No. 25, Copenhague, 1905.

A. M. van Roosendaal und C. H. Wind: Prtifung von Strommessern und Strommessungsversuche in der Nordsee.

Publications de Circonstance No. 26. Copenhague, 1905.

Fridtjof Nansen: Methods for measuring Direction and Velocity of Currents in the Sea. With an Appendix by
V. W. Ekman: Current Measurements by means of buoy and releasing clock-work. Publications de Circonstance

No. 34. Copenhague, 1906.

Helland-Hansen: Current Measurements in Norwegian fjords, the Norwegian Sea, and the North Sea in 1906.

Bergens Museums Aarbog No. 15. Bergen, 1907.

Otto Pettersson: Stromstudier vid Ostersjons portar. Svenska hydrografisk-biologiska Kommissionens, Skrifter

III. Gotenburg, 1908.

B. Helland-Hansen and Fridtjof Nansen: The Norwegian Sea. Report on Norwegian fishery and marine

investigations, Vol. II, No. 2. Christiania, 1909.





CHAPTER III.

ELEMENTARY PRINCIPLES OF KINEMATICS OF CONTINUOUS MEDIA.

109. Kinematics of a Continuous Medium. We have considered the observa-

tions from which we shall derive our diagnosis of atmospheric or hydrospheric states

of motion. We shall then proceed to develop the general principles of kinematics

which shall govern the diagnostic work.

In order to arrive at these general principles, we shall consider atmosphere,

hydrosphere, and solid earth as a material system which fills space continuously.
We shall neglect phenomena related to the molecular structure of these bodies,
such as the diffusion of water-vapor through air or of salt through water. In the

same manner we shall neglect every transfer of mass from one of these bodies to

any other of them. Thus we shall set out of consideration the transfer of mass
from the sea or from the moist ground to the air by the evaporation of water, and
the return of these masses to the sea or to the porous ground in the form of rain.

These processes will be of high importance in connection with the thermodynamics
of atmosphere and hydrosphere. But from the pure kinematic point of view they
will be insignificant, as they will give mass-transports which are small compared
with those connected with the great air-motions or sea-motions.

It will therefore be sufficient for our present purpose to consider a material

medium which fills space continuously. Density or specific volume may vary from

particle to particle of the medium, even in discontinuous manner, as at the surface

of separation between air and sea. The dynamic properties are not taken into

consideration. The only condition to be observed is that of the material nature

of the medium, involving the principle that every moving particle shall have an invari-

able mass, together with the supplementary condition that the medium shall fill space

continuously.

To describe the instantaneous state of motion of this medium we shall use two

vectors, velocity and specific momentum. The conditions of the material nature of

the medium, and of its continuity in space, do not restrict the generality of the

fields of these vectors. The methods of representing them geometrically will there-

fore be the methods of representing geometrically a vector-field of unlimited

generality. From a formal point of view this chapter will therefore deal with the

subject of the geometrical representation of vector-fields, and will thus contain

results which we shall use later in connection with other vectors.

While the conditions of the material nature of the medium and of its continuity
in space do not restrict the geometrical properties of the field of motion, they will

23
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lead to a fundamental relation connecting these fields with that of mass. For as

motion consists in the displacement of invariable masses having to fill space con-

tinuously, the knowledge of the present field of motion involves a certain knowledge

regarding the future field of mass. Thus the two fundamental suppositions regard-

ing the medium lead to an intrinsic relation of prognostic nature, in its mathematical

form called the equation of continuity. In special cases time drops out, and the

equation is reduced to a diagnostic one, submitting the fields of motion to certain

restrictive conditions. In connection with the geometrical principles for representing
the fields of motion, we shall therefore develop this prognostic equation and pay

special attention to the cases when it is reduced to a diagnostic equation.

no. Vector-Lines, Vector-Surfaces, and Tensor-Surfaces. In Statics we have

considered the methods of representing geometrically certain special vectors, the

ascendants or the gradients of a scalar quantity (sections 16, 17). The field of

the scalar quantity gave a complete representation also of the vector derived from

it. But in the general case a vector will, for its geometrical as well as for its ana-

lytical representation, require the use of three instead of only one scalar quantity.
In order to represent first the direction of a vector at every point of the field, we

can draw a set of curves running tangentially to the direction of the vector. These

lines are called vector-lines, or for a field of motion lines of flow. A set of curves in

space is obtained by the intersection of two sets of surfaces. Each set of surfaces

being the equiscalar surfaces of a certain scalar field, we see that the representation
of the direction of a vector by vector-lines involves the use of two scalar fields.

The surfaces used to represent the vector lines may be chosen in an infinite

number of ways; but they have the common property of being surfaces generated by
vector-lines. Any surface generated in this way will be called a vector-surface, or

for the field of motion a surface of flow.

The direction of the vector being thus given by two scalar fields, we can use a

third for representing its numerical value or its tensor. An equiscalar surface of this

third field will pass through all points where the vector has a certain constant

numerical value. These surfaces may be called tensor-surfaces, or surfaces of equal

intensity.

The vectors considered by us will have a uniquely determined direction at every

point where it is different from zero. As intersections of vector-lines under finite

angles would give two or more different directions for the vector in the point of

intersection we conclude :

Vector-lines can intersect each other only at zero-points of the field.

Nothing prevents vector-lines from touching each other
; for, having a common

tangent, both lines indicate the same direction at the point of tangency.

in. Vector-Tubes and Surfaces of Equal Transport. The two sets of vector-

surfaces cutting each other along the vector lines will divide the field into a set

of elementary tubes which have parallelogrammatic cross-sections. These may be

called vector-tubes, or, for a field of motion, tubes offlow.
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Cutting a vector-tube by any surface a let da denote the area of the section. A

being the vector and A its component normal to the section, let us consider the

product A n da. This product does not depend upon the angle contained between

the normal to the section and the axis of the tube; for as this angle varies, the

area da of the section and the vector-component A normal to it will vary in inverse

proportion to each other, always giving a product equal to that of the area of

the normal section into the tensor of the vector. We will call this product the

transport through the section. The name is derived from the case to be examined

more fully below, when the field represents motion. The bundle of tubes cutting

through a finite surface a divides this surface into elements da and determines a

certain transport A da through each of them. Forming their sum, we get

(a) Transport through surface a =
J Ada

The excess of transport leading out of a closed surface over that leading into it may
be called the outflow, and the same quantity with the sign changed the inflow. The

outflow is obtained by taking the integral (a) over the closed surface, counting

the normal directed outward as positive. The inflow is obtained in the same way,

counting the normal directed inward as positive.

Returning to an elementary vector-tube, let the section be moved from place to

place along it. The transport will then, as a rule, be found to vary. Measuring

its value from section to section in all tubes, we get numbers representing the field

of transport. This field can be represented in the common way by drawing surfaces

of equal transport.

The tubes of flow in connection with the surfaces of equal transport will give

a representation of the vector field as complete as that given by the lines of flow

in connection with the surfaces of equal intensity; for, being sufficiently narrow,

the tubes will represent the direction of the vector equally well as the lines; and

from the value of the transport we can come back to the numerical value of the

vector dividing by the area of the cross-section of the tube.

Though the field of transport thus performs a similar service as the field of

intensity for representing the numerical value of the vector, one important difference

should be observed. The intensity-field is uniquely determined, while the field

of transport has a definite sense only in connection with a given system of tubes.

Choosing new surfaces for defining the tubes, we shall as a rule get tubes which have

other cross-sections, and therefore lead to a new field of transport.

112. Solenoidal Vector. A field may have the property that the outflow is

zero out of every closed surface. The transport will then be the same throughevery

section of one and the same tube. The surfaces of equal transport may then be left

out as superfluous. It will be sufficient to know the constant of transport for each

tube. It will in this case be found convenient to undertake the division of the field

into tubes in such a way that each tube gets the same transport, in the simplest

case unit transport. Choosing a unit of suitable magnitude, we can still get tubes

sufficiently narrow for the purpose of representation. These narrow, in the limiting
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case infinitely narrow, tubes are called solenoids, and every vector which can be

represented completely by such tubes is called a solenoidal vector.

The solenoidal vector is simpler than the general vector inasmuch as it can be

represented completely by two sets of surfaces, i. e., by two scalar fields, while the

general vector requires three. In other words, there is a dependency between the

three components of the solenoidal vector. Using the solenoidal condition, i. e.,

the condition expressing the fact that the outflow from every closed surface is zero,

(a) (Ada = o

we can determine the third component of the vector, if we know the value of the two
others at all points of the field.

113. Volume-Transport and Mass-Transport. Passing to concrete fields of

motion, we shall consider a tube of flow and a section of it having the area da. The

particles situated at a certain time / on this section and having the velocity v, will

an element of time dt later be situated on another section which is displaced the

distance vdt along the tube. The normal distance between the sections will be vn dt.

The two sections and the walls of the tube determine an elementary parallelepipedon
of volume v dt da, giving the elementary volume of the medium which during the

time dt has passed the section da. Multiplying by the density [>
of the medium, we

get the mass contained in this volume, i. e., the mass which during the time dt has

passed the section da. When we remember that the product of density into

velocity gives the specific momentum V of the medium, we get as expression of this

elementary mass V dt da. Dividing by dt we get the expressions v da and V da

representing, according to our definition, the transport respectively in the field of

velocity and in the field of specific momentum. We thus arrive at this result :

(A) In the field of velocity the transport through a surface

() jvnda

gives the volume of the medium passing the surface per unit time.

(B) In thefield of specific momentum the transport through a surface

(b) j'vnda

gives the mass of the medium passing the surface per unit time.

Taken over a closed surface the integral (a) will represent the volume and (b)

the mass of the medium conveyed per unit time out through the closed surface.

Considering the transport as given in our m. t. s. units, and returning to the

vectors, we arrive at these methods of measuring velocity and specific momentum,
which may be useful to bear in mind in the subsequent practical work :

(C) Velocity is measured by the number of cubic meters and specific momentum

by the Jiumber of tons passing per second a square meter normal to the

direction of the motion.



ELEMENTARY PRINCIPLES OP KINEMATICS OF CONTINUOUS MEDIA. 27

114. Equation of Continuity. The physical significance of the integral express-

ing transport in a field of motion being thus known, it will be easy to give in

quantitative form the dependency of the future fields of mass upon the present
field of motion.

Measuring the elementary volume conveyed out of a closed surface in an

element of time dt, we evidently get the elementary increase of volume during the

time dt of that mass which is momentarily contained in the closed surface. Reducing
to unit time we get the velocity of expansion of this mass. Thus :

(A) The integral of the normal component of velocity taken over a closed

surface

(a) Jvja
is equal to the increase of volume per unit time of the mass momentarily
contained in the surface.

Measuring on the other hand the elementary mass conveyed out of a closed

surface in the element of time dt, we get the elementary decrease during this time

of the mass stored within the surface. Reducing to unit time, we get :

(B) The integral of the normal component of the specific momentum taken

over a closed surface

(b) fVnda

is equal to the diminution per unit time of the mass contained in the

surface.

The dependency of the future field of mass upon the present field of motion is

expressed by these two theorems in two different ways, in the first case by the

change of volume of moving masses, in the second by the change of mass within

stationary volumes. We shall later write in explicit form the "equation of con-

tinuity,
"
expressing in mathematical symbols the contents of any of these theorems.

Provisionally it will be found more convenient to work directly with the physical

facts as contained in the theorems (A) and (B).

115. Conditions Leading to Solenoidal Fields of Motion. Every reference to

variations in time of the field of mass will disappear from the theorem 114 (A) if

the mass momentarily contained in the closed surface does not change its volume.

In this case the field of velocity will fulfil the solenoidal condition

(a) J vnda = o

In the same manner, the reference to future fields of mass will drop out of the

theorem 114 (B) when the content of mass of every stationary volume is constant.

Specific momentum will then fulfil the solenoidal condition

(jb) fVnda = o

We thus get the important results :

(A) Velocity is a solenoidal vector if the moving medium is incompressible.

(B) Specific momentum is a solenoidal vector if the field of mass is stationary

in space.
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If the medium be both incompressible and homogeneous, the moving masses

will not change volume, and the mass-contents of every stationary volume will be

invariable. We thus get the special case :

(C) Both velocity and specific momentum will be solenoidal vectors if the

moving medium be both homogeneous and incompressible.

Without restricting the physical properties of the medium, we can apply theo-

rem 114 (A) to the infinitely small volume contained between two parallel surfaces

running at infinitely small distance from each other. Finite difference between the

normal velocity-components at adjacent points on the two surfaces would in this

case lead to finite expansion of an infinitely small volume. Thus the continuity
would be broken. Therefore a finite difference between the normal components
can not exist. This leads to the solenoidal surface-condition :

(D) The normal component of velocity must have the same value on both sides

of any surface in a material system filling space continuously.

This solenoidal surface-condition must be fulfilled, for instance, at the surface

of separation between atmosphere and hydrosphere. It applies only to velocity, not

in general to specific momentum. Taking the case of mercury and water in contact

with each other, the normal component of velocity will be the same on both sides

of the surface; but that of specific momentum will be 13.6 times greater on the side

of the mercury than on that of the water.

If the system is at rest on the one side of the surface, there will be no velocity-

component normal to it on the other side
; consequently the normal component of

specific momentum will also be zero. Thus :

(E) Velocity and specific momentum are directed tangentially to every resting

boundary.

This condition is to be applied to the motion of the air along the ground and of

the water along the bottom of the sea.

116. Examples of Volume-Transport and Mass-Transport. It will be useful

here to take a few examples illustrating the difference between the conditions of

solenoidal velocity-field and solenoidal field of specific momentum.
Let a tube be filled partly with water and partly with mercury, both fluids being

considered incompressible. If the fluid column moves along the tube there will be

equal volume-transport through a section in the water and through one in the

mercury, say one cubic meter per second through each. The volume-outflow out

of the closed surface formed by the walls of the tube and the two cross-sections

will be zero, and the field of velocity will be solenoidal. But measuring the transport
in tons, we find a transport of one ton per second through the upper and a trans-

port of 13.6 tons per second through the lower section. The difference, 12.6 tons

per second, gives the outflow of mass through the walls of the volume, and thus

the decrease per unit time of the mass contained in the volume. We shall have

outflow or inflow of mass according to the direction of the motion. For there will

be a decrease of mass in the volume when water expels mercury, and an increase
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when mercury expels water. The specific momentum will be solenoidal within

each homogeneous part of the fluid column, but non-solenoidal at the surface of

of discontinuity separating water and mercury. Instead of a discontinuous system
like this, we could also have considered a fluid system with continuously varying

density, for instance, a column of water with continuously varying salinity. Even
in this case we would have a solenoidal velocity-field and non-solenoidal field of

specific momentum, the solenoidal condition being violated by this vector not

only at a certain surface of discontinuity, but at every point where density showed
variations in space.

Let us now, on the other hand, consider motions in a compressible medium,

atmospheric air. Setting aside the insignificant influence of humidity, we know that

the density of the air depends upon temperature and pressure. Therefore, if the

fields of temperature and of pressure are maintained stationary in space, the field

of mass will also be stationary, and the specific momentum will be a solenoidal

vector. Let us then consider a tube having its lower end near sea-level and its upper
end in the region of cirrus. If one ton of air enters the tube per second at its lower

end, one ton per second must leave it at its upper end. But measuring by volumes,
we find that one ton of air has at sea-level a volume of about iooo cubic meters,
and at the height of cirrus a volume of about 3000 cubic meters. There is a volume-

outflow from the closed volume limited by the walls and the cross-sections of the

tube equal to 2000 cubic meters per second. This volume-outflow is equal to the

velocity of expansion of the column of air which is contained in the tube. This

expansion is due to the motion up toward lower pressures. Reversing the direc-

tion of the motion, we get a corresponding inflow, equal to the contraction per
second which the column of air will have in virtue of its descending motion.

117. The Fields of Motion in Atmosphere and Hydrosphere. We can now
take up the discussion of the chances of arriving at a satisfactory diagnosis of

atmospheric or hydrospheric motions. The great incompleteness of the observations

of air-motions is that they give only the horizontal components, and no information

on the vertical components. The same has also hitherto been the case with all

observations of sea-motions. The conditions for a satisfactory diagnosis will then

be that we should be able to derive the unknown vertical components from the

observed horizontal components. This will be possible if the motions can be con-

sidered solenoidal, and the question will be if we can suppose this to be the case with

sufficient approximation for the purpose of the kinematic diagnosis.

In the case of the hydrosphere there is no doubt. We can put out of consider-

ation both the slight compressibility of the sea-water and the slight changes in the

field of mass following local changes of temperature, salinity, and pressure. Doing
so, we find that both the field of velocity and the field of specific momentum will

fulfil the solenoidal condition. Using this condition for deriving the not-observed

vertical components from the observed horizontal ones, we shall obtain an accuracy

depending entirely upon that of the observations; for the errors introduced by
neglecting compressibility and heterogeneity will be insignificant.
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In the case of the atmosphere we have seen already that the changes of volume

of the moving masses of air are too great to allow us to consider the field of velocity

solenoidal. But the field of mass is not very far from being stationary, the changes
in this field being caused exclusively by the gradual changes in the fields of tempera-
ture and of pressure ;

we may therefore try to derive the vertical motions, supposing
the field of specific momentum to be solenoidal in the first approximation.

In order to see the errors which can then arise, we can consider a cylinder going
from the ground up to a certain height in the atmosphere. Calculating the vertical

motion through a horizontal section at the top of the cylinder, we set the transport
of mass up through this section equal to the transport of mass in through the walls

of the cylinder. The vertical motion thus found will be erroneous, inasmuch as the

temperature or pressure within the cylinder is changing. To find the error we shall

estimate the additional vertical motion produced by the local changes of temperature
and pressure.

First let there be an increase of temperature within the cylinder of i C. per

hour, i. e., of tAh C. per second. This will give a cubic meter of air the velocity of

expansion of tts-'tjVtt, or less than one-millionth of a cubic meter per second. The

corresponding linear velocity of expansion of the air in the cylinder will be less than

one micron per meter in the second. There will thus arise a vertical velocity not

exceeding i mm. per second at the height of iooo meters, and not exceeding i

cm. per second at the height of 10,000 meters. We can only as an exception expect
to get changes of temperature greater in average than a few degrees centigrade

per hour for columns of air of this height. Therefore, neglecting the local change
of temperature, we shall get errors in the vertical velocities not exceeding a few milli-

meters per second at the height of 1000 meters, and a few centimeters per second at

the height of 10,000 meters.

For the corresponding influence of local change of pressure, we can suppose

temperature to be constant. For the column of air contained in the cylinder we
have then pK = const, p being the average pressure in the cylinder andK its volume.

As only the height z of the cylinder is variable, we can write pz = const. Differ-

dz
entiating with respect to time and solving with respect to

, we get
at

dz _ z dp
di~ p~~dt

Supposing the change of pressure -^ to be one m-bar per hour, i. e., tbVt m-bar per

second, setting the height of the cylinder equal to 1000 meters, and the average

pressure between sea-level and this height equal to 900 m-bars, we get the vertical

dz
velocity j-

smaller than a third of a millimeter per second. Setting the height of

the cylinder equal to 10,000 meters and the average pressure between this level

and sea-level equal to 600 m-bars, we get the vertical velocity due to the variation of

the pressure smaller than half a centimeter per second. Thus in both cases the
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change of pressure of one m-bar per hour will have smaller effect than the change of

temperature of one degree centigrade per hour. Now the change of pressure of a

few m-bars per hour for columns of air of this length will have about the same

degree of probability as the change of temperature of a corresponding number of

degrees. Thus we have an equal right to neglect the influence of local pressure-

changes as of local temperature-changes.
When we determine vertical velocities in the atmosphere by the condition of

the solenoidal nature of specific momentum, we may thus get errors amounting to a

few millimeters per second at the height of 1000 meters and of a few centimeters per
second at the height of cirrus. As the errors due to the uncertainty and the incom-

pleteness of the observations of the horizontal velocities will be much greater, these

errors must be considered as insignificant.

We can therefore set down as fundamental principles to be used in the diagnostic
work regarding the fields of motion in atmosphere and hydrosphere:

(A) In hydrosphere both velocity and specific momentum fulfil the solenoidal

condition.

(B) In atmosphere specific momentum fulfils the solenoidal condition.

Finally we have, independent of every approximation:

(C) At every surface velocity fulfils the solenoidal surface-condition.

As a special case of this condition we have

(D) Both velocity and specific momentum are tangential to every resting

boundary.





CHAPTER IV.

EXAMPLES OF SOLENOIDAL FIELDS AND THEIR REPRESENTATION BY
PLANE DRAWINGS.

118. Two-Dimensional Representations ofThree-Dimensional Vector-Fields.

Before passing to practical applications, it will be useful to consider a few simple

examples of solenoidal fields and to illustrate different methods of representing

them by plane drawings.
In order to see the character of two-dimensional drawings representing any-

three-dimensional field, let us consider a surface cutting through the field in space.

At every point of the surface the vector has a certain direction and intensity. For

the representation it will be convenient to consider separately two projections of

the vector, that on the normal to the surface, and that on the plane tangential

to the surface. The normal component can be represented simply by curves for equal

numerical values. No representation of the direction is required. The field of this

component has lost the character of a vector-field and has completely obtained

that of a two-dimensional scalar field.

The tangential component, on the other hand, will represent a true two-dimen-

sional vector-field. The methods of representing it geometrically will be special cases

of the methods for representing vectors in space (section 1 10) . Precisely as in space,

the direction can be represented by vector-lines. But instead of surfaces we shall get

curves of equal intensity. It should be observed that these curves of equal intensity

will not, as a rule, be the intersections of the given surface with the surfaces of equal

intensity in space. This will be the case only if the given surface happens to be a

vector-surface
;
for then the normal vector will disappear and the vector of the two-

dimensional field will be identical with that of the three-dimensional field in space.

A set of two-dimensional drawings representing a three-dimensional vector-

field in space can therefore be obtained in the following way: We choose a set of

surfaces cutting through the field. The vector defines at each of them a two-

dimensional vector-field and a two-dimensional scalar field. The first can be repre-

sented by two sets of curves, viz, the vector-lines and curves of equal intensity for

the tangential component; and the second by one set of curves, viz, curves for equal

values of the normal component.
We shall then have to direct our attention to the two-dimensional vector-fields

contained in a surface and to the correlated scalar fields representing a vector-

component normal to the surface.

1 19. General Remarks on the Two-Dimensional Vector-Field. For the same

reasons which we have for vector-lines in space, we get :

Vector-lines of the two-dimensional field can intersect each other under finite

angles only at points where the two-dimensional vector is zero, i. e., at

points where the corresponding vector in space is either zero or normal

to the surface containing the two-dimensionalfield.
33
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Instead of vector-tubes we shall in the two-dimensional field get vector-bands

bordered by vector-lines. Transport must be referred to lines instead of to surfaces.

A n being the component of the vector normal to the curve s, we get

(a) transport through curve s = J Ads

Instead of surfaces we get curves of equal transport. The solenoidal condition is

expressed by

(b) JAJs
= o

the integral being extended over a closed curve. When condition (b) is fulfilled,

the curves of equal transport can be left out, and the field be represented by bands

of equal transport, most conveniently of unit transport. If unit bands be used, the

numerical value of the vector is given by the reciprocal of the number expressing

the breadth of the band.

If a unit band gets infinitely narrow, the solenoidal vector will be infinite.

Excluding infinite values, we get this important result:

In the two-dimensional solenoidal field the lines offlow can not touch each other.
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The line-integral of the normal component of the vector is easily found for any closed

curve having the form of a rectangle with sides parallel to the axes of coordinates.

If two of the sides are the coordinate axes, and the two others the lines x = x andy = y,

the line-integral taken over the closed curve will be A xy-\-AyX. Substituting the

values (a) of the components, we get the line-integral equal to axy+bxy, and the

solenoidal condition is seen to be fulfilled if b = a. Thus the formulae will be

(b) A x
= ax A y

= ay

Fig. 36 represents the components of this solenoidal vector. If the vector represents

velocity, the motion given by fig. 36 will be the simplest typical fluid motion pro-

ducing a deformation of the fluid masses without change of volume.

A vector-line is determined by the condition that the projections dx and dy of

its line-element are proportional to the vector-components A x and A y . It is there-

fore given by the differential equation

(c)
dx ^dy
A X Ay

Substituting the values of A x and A y according to (b), and integrating, we find

(d) xy = const.

i. e., the vector-lines are equilateral hyperbolae, having the axes of coordinates as

asymptotes (fig. 37). These axes themselves belong to the system of lines of flow,

Fig. 37. Hyperbolic lines of flow and circular curves

of equal intensity I, 2, 3, . . . of a plane

deformation-field.

Fig. 38. Neutral point of higher order.

and cut each other at the neutral point of the field where A x
=A y

= o. The intensity

A of the vector is

A = v A 2

x+Ay = av'x2+y2 = ar

Thus the curves for equal intensity are circles r= const, around the neutral point.

Through equal lengths of a line parallel to one of the axes there will go equal trans-

port. Drawing the hyperbolae through equidistant points on such a line as made in
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fig. 37, we get bands of equal transport and can leave out the curvesof equal intensity.
If this field represents a field of motion, it gives the picture of two currents flowing

against each other, bending off against each other, and canceling at the neutral point.
Neutral points of a more complex nature, where three or more currents cancel

simultaneously, may also be conceived (fig. 38).

121. Graphical Addition of Two-Dimensional Solenoidal Fields. The investi-

gation of the two-dimensional solenoidal vectors is much assisted by a construction

allowing us to pass from the representations of the fields of two such vectors to that

of their vector-sum.

Let the two given fields be represented by the two sets of thin lines of fig. 39.

These lines divide the plane into a set of parallelograms. Every diagonal in any
one of the parallelograms represents a section simultaneously of two unit bands, viz,

of one belonging to the first and of one belonging to the second of the given fields.

It is further seen that through one diagonal in a parallelogram goes the sum of the

transports in two unit bands, i. e., the transport 2, while through the other goes the

difference, i. e., the transport zero. Drawing the diagonal curves formed by the

Fig. 39. Graphical addition of two-dimensional

solenoidal fields.

Fig. 40. Addition of oppositely directed divergent

fields.

latter set of diagonals, we evidently get lines of flow of the field due to the coexist-

ence of the two given fields. These lines are drawn heavy in fig. 39. Further, it is

seen that the bands separating these lines are unit bands. For two of them corre-

spond to each diagonal through which we found the transport to be equal to 2.

As an application of the construction, fig. 40 shows how a deformation-field

with neutral point and hyperbolic vector-lines is produced by the coexistence of

two oppositely directed fields with straight, slightly divergent vector-lines.

Figure 41 shows the effect of adding the field with parallel and equidistant

straight vector-lines to that with the hyperbolic vector-lines. As is seen, the result

is simply a displacement of the latter field, the neutral point turning up where the

two^fields cancel.
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122. Solenoidal Field in Space with Neutral Point. It will be useful to show

the simplest case of a solenoidal field in space having a neutral point. Correspond-

ing to the two-dimensional field of section 120, we shall then consider a field with

the rectangular components

(a) A x
= ax A y

= by A t
= cz

The integral of the normal component of the vector is easily formed for a surface of

parallelepipedic form having sides parallel to the coordinate planes. The solenoidal

condition is seen to be fulfilled if

a+b+c = o

In order to simplify we shall further set b = a, which gives c = 2a. We then have

the field

(b) A x
= ax A y

= ay A t=2az
Composing the components A x and A y we get a resultant contained in a plane

passing through the axis of z. Calling r the distance of any point in this plane from

the axis of z and R the resultant of A x and A y ,
we get instead of the two first equa-

tions R = ar. The field will then be completely given by the two components

(c) R = ar A z
= 2az

y

%

Fig. 41. Addition of translation-field and defor-

mation-field.

Fig. 42. Lines of flow and curves of equal inten-

sity, 1, 2, 3, of a symmetrical deformation-field

in space.

The field is thus symmetrical around the axis of z, and the vector is contained

in the meridian planes passing through this line. Substituting the values of R and z

in the differential equation
dr _ dz

R~A,
and integrating, we get the equation of the vector-lines

(d) r"z = const.
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They are a kind of asymmetric hyperbolae having the axes of r and 2 for asymptotes,
but converging more rapidly toward the first of these axes than toward the second

(fig. 42). The axes are themselves vector-lines cutting each other at the neutral

point of the field.

The vector is seen to have the constant numerical value A on the curve

A 2 = R*+Al = cfr'+^tfz
1

A A
which is an ellipse of half-axes and \ These ellipses are drawn in fig. 42 for

the values 1
, 2, 3, of A .

We can now get a complete picture of the field. The meridian planes passing

through the axis of 2 form one set of surfaces of flow. The other set is generated by
the lines of flow of fig. 42, when this figure rotates around the axis of 2. Simultane-

ously the other curves of this figure will generate the surfaces of equal intensity.

We get thus the complete representation of the field by three sets of surfaces : two

sets of surfaces of flow cutting each other along the lines of flow in space, and one

set of surfaces representing equal scalar values of the vector.

As the field is solenoidal, a representation can also be obtained where the last

set of surfaces is left out. A z is constant in a plane 2 = const. Thus there goes equal

transport through equal areas of this plane. A division of this plane into equal areas

is obtained if the radial lines defining the meridian planes are drawn with equal

angular intervals and the circles defining the other surfaces of flow are drawn with

radii proportional to the numbers VI, V2
, V3, V4, .... These intervals have been

chosen already for the meridian curves of fig. 42, which represent these surfaces of

flow. Thus the intersection of these surfaces with meridian planes which have

constant angular distance from each other will produce tubes of equal transport rep-

resenting the field completely. The surfaces of equal intensity may then be left out.

As atmosphere and hydrosphere have a limited extent in vertical direction but

an enormous extent in horizontal direction, the best representations of fields of

motion in these media will be obtained by charts in horizontal projection. It will

be useful to consider different types of charts representing a simple field of motion,

as that which we have just examined. Fig. 43 gives four different types of such

charts.

(A) In fig. 43 A, the full-drawn concentric circles are contour-lines representing
the topography of one of the surfaces of flow, namely, that of which a profile-curve

is drawn at the top of the figure. The radial lines represent the lines of flow on this

surface. Their vertical course is given directly by the topography of the surface.

Finally the stippled circles are curves for the equal intensity of the vector. Evi-

dently a set of charts of this kind each containing three sets of curves, contour-lines,

lines of flow, and curves of equal intensity, will give a complete representation of

the field.

(B) A varied method of representation, derived from the solenoidal property,
is given in fig. 43 B. The contour-lines giving the topography of a surface of flow

are retained and the lines of flow on it are drawn as before. But these lines are
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supposed to represent the projections of vertical walls separating from each other

a set of tubes of flow. A third set of lines is then drawn, representing the height of

these tubes. The curves for the equal height of the tubes will be a new set of con-

*
i

*
j i i i r r i

Fig. 43. Field with singular point in space represented by different charts in horizontal projection.

A. Surface of flow represented by contour-lines (circles) and containing lines of flow (radii) and curves of equal
intensity (stippled circles).

B. Tubes of flow represented by contour-lines for absolute and for relative topography (full and stippled circles)
and lines of flow (radii).

C. Horizontal section through the system of tubes of flow.
D. Two-dimensional field in a horizontal plane represented by lines of flow (radii) and curves of equal intensity

(circles). Normal component constant and not represented.
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tour-lines, giving the topography of a second surface of flow relatively to the first.

The stippled circles of fig. 43 b are these contour-lines. A set of charts of this kind,

each containing three sets of curves, lines of flow, curves of absolute and curves of

relative topography, will also give a complete representation of the field.

Instead of using surfaces of flow, as in the cases (A) and (B), we can use arbi-

trary surfaces cutting through the field. We can then simplify by choosing sur-

faces of simple configuration, instead of the surfaces of flow, which as a rule will not

be simple. But in return we must give special representations of the component
fields tangential to and normal to the surface. In the case before us it will be easiest

to cut the field by horizontal planes 2 = const. As above, we shall then get two

different representations according as we make explicit use or not of the solenoidal

property of the field. We shall then arrive at the following two representations,

(C) and (D) :

(C) Let us imagine the field in space to be given by tubes of equal transport
i. e., by the meridian planes and the surfaces of revolution which form the walls of

these tubes. The two sets of surfaces will cut the horizontal plane in two sets of

curves, the radii and the circles of fig. 43 c. These curves divide the plane into

areas which are sections of the unit tubes, and thus areas of equal transport normal

to the plane. While these areas represent the normal component-field, the radial

lines of flow represent the tangential field. Evidently the field in space can be

represented completely by a set of charts of this description.

(D) Instead of using the solenoidal property of the field,we can draw the vector-

lines and the curves of equal intensity which represent the tangential field contained

in the plane z = const, and the curves of equal intensity which represent the normal

field, as developed in section 118. In the case before us the vector tangential to any
of the planes z = const, is R = ar. It has radial lines of flow and curves of equal

intensity which are concentric circles with radii increasing in arithmetical series

(fig. 43 d). As in the case before us the normal component A z
= 2az is independent

of the coordinates x and y, no curves for representing the normal field are required.

Only the constant value of the component will have to be noted for each plane.

123. Solenoidal Field in Space with Asymptotic Line. As another example of a

solenoidal field in space, we shall consider that defined by the rectangular components

(a) A x
= ax A y

= b A z=az
It consists of two partial fields which we have examined already (section 120), the

field of the constant vector A, and the field of the linear vectors A x and A z defining

a two-dimensional deformation-field in planes parallel to the xz-plane. Each of

these partial fields being solenoidal, that produced by their co-existence will also be

solenoidal.

The vector-lines of the field thus produced will be represented by the differ-

ential equations
... dx _dy _ dz

A X Ay A z

or, substituting the values of the components,
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(c)

dx _ dy _ dz

ax b az

Integrating each of the three equations contained in this system, we get

v ' x = e
b xz = c2 z = e

b

The surfaces for equal scalar values A of the vector are given by the equation

(e) A 3 = Al+Al+Al = 6
2+a2

(.r'+3')

representing for every constant value of A a circular cylinder around the axis of y.

The second equation (d) shows that the lines of flow in space project them-

selves as equilateral hyperbolae on the plane of xz. As the cylindrical surfaces of

equal intensity cut this same plane along concentric circles, we get in this plane a

figure precisely similar to that of fig. 37. The third equation (d) shows that the

lines of flow in space project themselves on the yz-plane as exponential curves

converging asymptotically toward positive y. The first equation (d) shows in the

same manner that the lines of flow in space project themselves on the xy-plane as

exponential curves diverging out asymptotically from negative y (fig. 44).

Fig. 44. Lines of flow in the *}i-plane diverging from, and in the yz-plane

converging to the axis of y, which is a singular line of flow.

As the planes of xy and yz are themselves surfaces of flow, fig. 44 represents

directly the lines of flow contained in these planes. The axis of y is itself a singular

line of flow, and toward this line an infinity of lines of flow converge in asymp-

totically in the vertical plane and diverge out asymptotically in the horizontal

plane.

In order to get a more complete view of the field, we can use the different repre-

sentations by charts in horizontal projection.

(A) Fig. 45 a gives the topographical representation of two surfaces of flow

which cut the xz-plane along two equilateral hyperbolae. The course in space of
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the lines of flow contained in these hyperbolic surfaces and projecting themselves

on the horizontal plane as exponential curves is thus easily conceived. Adding the

lines of equal intensity (stippled straight lines), we get a complete representation

of the field contained in these hyperbolic surfaces.

x i ? *-t * 5 ** r-* * J >

1 J Z > 3

C D
Fig. 45. Field with asymptotic line in space, represented by different charts in horizontal projection.

A. Surface of flow represented by contour-lines (straight) and containing lines of flow (exponential curves) and
curvesof equal intensity (stippled straight lines).

B. Tubes of flow represented by contour-lines for absolute and for relative topography (full-drawn and stippled
straight lines), and lines of flow (exponential curves).

C. Horizontal section through the system of tubes of flow.

D. Two-dimensional field in horizontal plane represented by lines of flow (exponential curves) and curves of equal
intensity (straight lines).
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(B) Leaving out the lines of equal intensity, and introducing in their place

contour-lines giving the relative topography of a second surface of flow over the

first, we get the solenoidal representation of the field contained between the two

surfaces of flow (fig. 45 b).

(C) Fig. 45 c gives the horizontal section through the system of unit-tubes.

The diagram shows the horizontal projection of the tubes and represents the ver-

tical motion by a division of the horizontal plane into areas of equal transport

normal to this plane.

(D) Fig. 45 d gives the lines of flow and the curves of equal intensity for the

two-dimensional field contained in a horizontal plane. As in the example in section

122 (D), the vertical component A z
= az\s independent of x and y and does not

therefore require any special representation. But the principle of representing a

variable normal component by drawing equiscalar curves is evident at once.

124. Charts Representing Fields of Motion in Atmosphere and Hydrosphere.

Referring to simple examples, we have given four different types of charts for

representing fields of motion in space. Each type can be used practically in the

case of atmospheric or hydrospheric motions, and we shall later indicate the methods

of arriving at each of them. For the purpose of representation each type will have

special advantages and special disadvantages. But it would lead too far to develop

and exemplify them all in full detail. We shall therefore choose one of the methods

as the principal one, namely the method D, i.e., we shall choose arbitrary surfaces

cutting through the field, and consider separately the two-dimensional vector-field

contained in the surface and the scalar field representing the normal component of

the vector.

As surfaces cutting through the field, we shall use level surfaces, isobaric sur-

faces, or for more limited purposes surfaces running parallel to the ground. In order

to reduce as much as possible the number of drawings, we shall compose the two-

dimensional vector-fields for a series of surfaces. In this manner we shall get two-

dimensional vector-fields representing the average tangential motion within sheets

of a certain thickness, level sheets, isobaric sheets, or sheets parallel to the ground.

We have already made the introductory steps for the determination of such two-

dimensional vector-fields from the observations (Chapter II).

These two-dimensional vector-fields being found as the direct result of the

observations, we shall afterwards use the solenoidal condition for deriving the cor-

responding scalar fields representing the normal component of motion. It will be

most convenient to determine them for the surfaces separating from each other the

sheets for which the two-dimensional vector-fields have been drawn.

The methods for deriving the two-dimensional vector-fields from the observa-

tions will be considered in Chapters V-VII. Then Chapters VIII and IX will give

from general points of view the graphical methods of performing mathematical oper-

ations to be used in the subsequent work. These methods being developed, we shall

apply them in Chapters X and XI to complete the kinematic diagnosis by deriving

the scalar fields which represent the normal component of the motion.





CHAPTER V.

DIRECT DRAWING OF THE LINES OF FLOW AND THE CURVES OF EQUAL
INTENSITY FOR THE TWO-DIMENSIONAL VECTOR-FIELDS.

125. Continuous Representation of the Two-Dimensional Vector-Fields.

Passing to the practical diagnostic work, our first problem will be this: From
the observations of motion (local values or averages for certain sheets) to draw
the lines of flow and the curves of equal intensity for the corresponding two-dimen-

sional field. Drawing these curves we shall get a continuous representation of this

field instead of the discontinuous representation given by the observations them-

selves.*

Our solutions of concrete problems of this kind are given on plates XXXII,
XXXVIII, LV, and LVII b to LX b. The lines of flow are represented by heavy
curves provided with arrow-heads, the curves of equal intensity by thinner curves.

As such continuous representations of the two-dimensional fields are to form

the basis for every further step in kinematic diagnosis or prognosis, we can not dis-

cuss too carefully the methods for drawing them as correctly as possible. Referring
to the mentioned plates as examples, we shall take up this discussion, which will

occupy us in this as well as in the two following chapters.

126. Equiscalar Curves in the Field of Single-Valued Scalar Quantities. The
numbers representing the numerical value of the vectors velocity or specific momen-
tum define a scalar field having the same geometrical features as the well-known

fields of other scalars, like pressure or temperature. The method of drawing the

curves of equal intensity of a vector is therefore precisely the same as that of drawing
isothermal or isobaric curves

;
but as the curves in the case before us will have an

irregular course, the drawing will require a good deal of care.

Equiscalar curves are never drawn exclusively by the use of the numbers repre-

senting the observations. Otherwise an infinite number of observations would be

required for the determination of their course. The intrinsic properties of the

scalar quantity are also taken into consideration. The main property used in draw-

ing the common synoptical charts is this, that the scalar is single-valued. As it can

never have two different values in one point, two different curves, representing differ-

ent values of the scalar, can never intersect each other. This property gives to the field

of the single-valued scalar features which are totally different from those of the

multiple-valued scalar, which we shall have to consider later.

*That charts of this character have not yet been used in practical meteorology, must be on account of their

apparent complexity. The only charts containing lines of flow of atmospheric motions which we have been able to

find in literature have been drawn by Rene de Saussure (Archives des Sciences Physiques et Naturelles, Quatrieme
Periode, T, 5, p. 497, Geneve, 1898) and by Jean Bertrand (Bulletin de la Societe beige d'Astronomie et de Meteorologie,

1905, No. 7 and 8; see also Physikalische Zeitschrift, 1905, p. 853).
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The property of never intersecting each other very much limits the course of

the curves, and makes it possible to draw them as soon as the values of the scalar are

known in a relatively small number of points. But the course is never completely
determined by a limited number of observations. There will always be a certain

limited freedom in the way of drawing each curve. But as the number of observa-

tions is increased this freedom will be reduced, and finally the course of the curve

will be perfectly determined from a practical point of view, i. e., with a certain

finite degree of precision.

The curves will obtain their characteristic features by the situation of the points
where the scalar has its extreme values. At the maximum points and the minimum
points the equiscalar curve will be reduced to a point. These points are surrounded

by closed equiscalar curves. Between the maximum and minimum points there

will be maximum-minimum points. In each a certain singular equiscalar curve

cuts itself. The two branches of this singular curve divide the field in the neighbor-

Fig. 46. Maximum points, minimum points, and a

maximum-minimum point of a scalar field.

Fig. 47. Maximum-minimum point of higher

order.

hood of the maximum-minimum point into four angular areas. In two of them the

scalar has greater and in two of them smaller values than in the point of intersection

(fig. 46). More complex maximum-minimum points may also be mentioned, though

they will rarely be met with in practice. Thus three branches of the singular equi-
scalar curves may cut each other in this point, dividing the surrounding field into six

angular areas of alternately higher and lower values of the scalar (fig. 47), and so on.

The said features of the field give the practical rules for drawing the curves.

Examining the numbers we first look for the points where the scalar has its extreme

values. Around these points we then draw closed curves, proceeding subsequently
to the curves representing intermediate values of the scalar and having the more

complicated course between the areas of greater and those of smaller values. Among
these curves the ones intersecting themselves should not be avoided. They give
more information regarding the field than any other single curve.
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It is important to observe the remarkable completeness of the graphical repre-

sentation of a scalar function. When we draw the equiscalar curves for unit inter-

vals, these curves will represent not only the scalar itself, but also its ascendant or

its gradient (section 17). Any one of these vectors gives complete information

regarding the result of any differentiation of the first order performed upon the

scalar. The drawing of the equiscalar curves involves therefore a differentiation of

the scalar function. The representation gives not only the function itself, but also

its differentials. We shall derive great advantage from this later, when we have to

perform differential operations in graphical form.

127. The Drawing of Vector-Lines. The drawing of vector-lines by the use

of arrows representing observed directions of a vector and the drawing of equiscalar

curves by the use of observed values of a scalar are analogous operations, inasmuch

as interpolations have to be performed by eye-measure. But in one case the inter-

polations are of scalar nature, in the other of vector-nature, interpolations of

direction.

This difference regarding the nature of the interpolations is intimately related

to a difference of principle between the two operations : The drawing of equiscalar

curves involves a differentiation in graphical form of a scalar function
;
the drawing

of the vector-lines involves an integration in graphical form of a differential equation,

namely, the differential equation for the vector-curves. We have performed the

corresponding analytical integrations in special cases above (sections 120, 122, 123).

This graphical integration would not contain any difficulty if arrows of absolutely

correct direction completely covered the plane of the drawing. But the curves have

to be drawn by the use of the minimum of data given by the observations, and with

attention paid to the limited accuracy, or to the direct errors of the observations.

Under these circumstances, in order to get the lines drawn as correctly as possible,

it will be important to make as complete use as possible of the general properties of

the field. We must derive from them qualitative rules which allow us to make the

correct use of the data contained in the observations.

For this we shall have to pay special attention to the singularities of the field,

i. e., to the mutual intersections and touchings of the lines of flow; for as soon as

the places are determined where intersections or touchings take place, and as soon as

the manner is known in which the lines of flow pass through these places, the general

feature of the field will to a great extent be given ;
for everywhere else in the field

the lines will be limited in their course by the condition of not cutting or touching
each other.

128. Simplest Singularities in the Field of the Lines of Flow. We have

chosen our examples in the preceding chapter so as to illustrate the simplest

singularities which can arise in the three-dimensional solenoidal field ; and forming
the horizontal sections through these fields we have seen the character of the corre-

sponding singularities in the two-dimensional vector-fields which we shall use to

represent the three-dimensional one. In the simple cases treated analytically, the

fields had simple properties of symmetry. Drawing correspondingly crooked and
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asymmetric figures, we get pictures of the singularities and of the field surrounding

them as they will appear in the case of concrete motions. In this manner we get the

schemes of singularities presented by the different diagrams of fig. 48. The following

remarks regarding each of them will easily be understood by a comparison with the

results obtained analytically in sections 120, 122, 123 of the preceding chapter.

I. Neutral Points. Points of this description appear when opposite currents

meet each other and bend off against each other without producing any motion

normal to the sheet (section 120). In the singular point two lines of flow will

intersect each other. Points of higher order, in which a greater but still finite

number of lines of flow intersect each other under finite angles, are also theoretically

possible (fig. 38), though they will occur rarely.

II. Points of divergence and of convergence. Let a field in space as that of fig.

42 (p. 37) be given. The corresponding two-dimensional field contained in a

horizontal plane is represented by fig. 43 d. It contains a point in which an

infinite number of lines of flow intersect each other. A tangential motion of this

kind in a sheet always depends upon the existence of a motion normal to the sheet,

leading masses into it or taking masses away from it. In the atmospheric sheet

near the ground a point of divergence will appear where there is a descending current

(centre of anticyclone) and a point of convergence where there is an ascending
current (center of cyclone). The lines of flow are drawn in diagrams B-E of fig. 48,

with the common spiral-formed curvature due to the earth's rotation, which is

so well known from the air-motions near the centers of cyclones or anticyclones.

In the sheet of water near the sea's surface a point of divergence will depend upon an

ascending motion and a point of convergence upon a descending motion of the

water masses below. When the sheet is situated at a greater distance from the

bounding surfaces, divergence in the tangential motion shows that the normal

motion brings greater masses into the sheet on one side than it brings out on the

other, and vice versa for convergence in the tangential motion. But no definite

conclusion can be drawn regarding the general direction of this normal motion,

which may even have opposite directions on the two sides of the sheet.

III. Lines of divergence and of convergence. Let a field in space, as that de-

scribed in section 123, be given. Fig. 45 d shows that the two-dimensional field in a

horizontal plane will contain a singular line of flow from which an infinite number
of other lines of flow diverge out asymptotically (fig. 48 p) . Reversing the direction

of the motion, we get a similar line toward which an infinite number of lines of

flow converge asymptotically (fig. 48 g). Evidently the lines of divergence and

convergence are in precisely the same relation to the normal motion as the points of

convergence and of divergence. In the case of rapid convergence, the designer can

make no difference between common and asymptotical touching. When the singu-

lar line is represented by a stroke of finite breadth, it will completely absorb the

lines converging toward it. The case of an infinitely rapid convergence arises when
the lines go normally into the singular line, the case ^4j,

= oor& = o in the example
of section 123. In this case the asymptotic line ceases to be a line of flow and is

reduced to be a line for zero numerical value of the vector.
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The singularities presented by the lines of flow are in a definite relation to the

field of intensity. As we have remarked already, wherevervector-lines intersect each

other under finite angles, the vector must have the numerical value zero. In the same

Fig. 48. Simplest singularities in two-dimensional vector-field.

A. Neutral point.
B. Point of divergence, northern hemisphere.
C. Point of convergence, northern hemisphere.
D. Point of divergence, southern hemisphere.

E. Point of convergence, southern hemisphere.
F. Line of divergence.
G. Line of convergence.

manner the vector must have smaller numerical values in the asymptotic lines than
on both sides of it, because the components normal to the line disappear in the line.

Thus:
The numerical value of the vector is zero in the singular points, and has a

relative minimum in the singular lines.
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The curves of equal intensity must therefore be closed around the neutral

points and around the points of convergence and divergence, and make a bend as

they pass lines of divergence or of convergence. This bend may be very slight and
impossible to discover by the observations when the lines of flow have a slow con-

vergence toward the singular line. But in the case of rapid convergence the bend
should come out strongly.

Fig. 49. Complexes of singular points.

A. Neutral point and point of divergence.
B. Neutral point and point of convergence.

C. Line of flow branching out into several lines.
D. Lines of flow joining into one.

129. Complexes of Singular Points. When good observations are at hand, it

will generally cause no greater difficulty to discriminate the nature of the singular
points as long as they are separated from each other by sufficiently large spaces;
but it may be more difficult when singular points of different nature appear close



DIRECT DRAWING OP THE LINES OP FLOW, ETC. 5 1

together. It will therefore be important to consider the conditions for the formation

of some such complexes of singularities.

Let us for this purpose consider two coexistent fields, a simple field of trans-

lation represented by the parallel straight lines of flow, and a field containing a

point of divergence, having the straight radial lines of flow of fig. 49 a. For the sake

of simplicity we may consider also the last field as solenoidal except at the center

itself, the normal supply being localized to this point instead of being spread over

a finite area. Under these conditions we can add the solenoidal fields graphically

(section 121). We then get the resultant field represented by the heavy lines of

fig. 49 A, containing the constellation of two singular points, a point of divergence
and a neutral point. Fig. 49 b shows the result of the same construction when the

field of translation is retained, while the second field is changed into one containing
a center of convergence. The field has the same character as the preceding one,

only reversed.

This constellation of a point of convergence or divergence and a hyperbolic

point will often occur on the charts of air-motion along the earth's surface. It

appears as the result of a main horizontal wind and a vertical descending, respec-

tively ascending, current. The discrimination of this constellation will cause no

difficulty when the phenomenon is on a sufficiently large scale, and the two singular

points are thus at sufficiently great distances from each other; but they may also

get so near to each other that no observations of the air-motion is obtained between

them. The direct drawing of the lines of flow from the observations will then give

points or places where a line of flow branches out into several branches (fig. 49 c),

or several lines of flow join into one (fig. 49 d). At the point of ramification the

different branches may touch each other or cut each other under finite angles. The
first case presumes a minimum and the second zero numerical value of the vector

at this point.

130. Complex Phenomena in Connection with Lines of Convergence and of

Divergence. The theoretical possibility of certain complex singularities is seen at

once. A line of convergence or of divergence can contain a neutral point in which

the direction of the motion tangential to the line changes its sign (fig. 50 a, b).

A line of divergence can come out from a point of divergence, and a line of converg-

ence can end in a point of convergence (fig. 50 c, d) . The latter seems to be no rare

phenomenon in well-developed cyclones. Several lines of convergence are also often

seen to join into one (fig. 50 E).

A specially interesting feature is the closed line of convergence containing

within the inclosed area a point of divergence (fig. 50 p) . This gives the kinematic

aspect of the phenomenon called eye of cyclone, which seems to be common in strong

cyclones. Corresponding eyes of anticyclone are also kinematically possible,

though for dynamic reasons less probable.

A remarkable feature sometimes found on synoptical maps representing the

air-motion along the ground is lines alternately of convergence and of divergence

running more or less parallel to each other.
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A. Line of divergence with neutral point.
B. Line of convergence with neutral point.

Fig. 50.- -Complex singularities.

E. Two lines of convergence joining into one.
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1 Of CYClOnC
C. Line of divergence issuing from point of divergence. G. Rolling mass of air bordered by a line of convergence and a line of
D. Line of convergence ending in point of convergence. divergence.
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I

- K
Fig. 51. Effect of combined wave-motion and motion of translation.

A. Pure wave-motion.
B. Translation parallel to wave-ridges.
C. Translation normal to wave-ridges.
D. Translation oblique to wave-ridges.
E. Stronger translation normal to wave-ridges.

F. Stronger translation oblique to wave-ridges.
G. Still stronger translation normal to wave-ridges.
H. Still stronger translation oblique to wave-ridges.
I. Still stronger translation normal to wave-ridges.
K. Still stronger translation oblique to wave-ridges.
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The corresponding motions in space may be of different kinds. Thus a rolling

mass of air (fig. 50 g) will be bounded by a line of convergence and a line of diver-

gence parallel to each other. But the most common origin of such lines may be

wave-motions.* We shall therefore examine this case separately.

131. Influence of Wave-Motions on the Aspect of the Lines of Flow. The

large-scale waves which can arise in the atmosphere will be of the same nature

as long waves in shallow water. During the propagation of the waves the different

particles will describe elliptic orbits in vertical planes normal to the wave-ridges.

Every ellipse has its long axis horizontal and its short axis vertical. The latter

axis will decrease as we go downward, and be zero at the ground. Thus the motion

near the ground will consist in rectilinear oscillations.

Remembering the difference of phase from particle to particle, we can draw
arrows representing the simultaneous motion of a set of particles at a given epoch.
This distribution of arrows in a vertical plane is shown at the top of fig. 51 A, and
the corresponding lines of flow at the top of fig. 51 b. As will be seen, the prop-

agation of the waves depends upon a conflux of masses below the front-slope and a

corresponding afflux below the back-slope of the waves. In the horizontal projec-
tion we shall therefore always get a line of convergence below the front slope and a

line of divergence below the back-slope of every wave. These lines will follow the

waves in their motion of propagation.

Fig. 51 a will thus give the instantaneous distribution of motion at the ground
in the case of a pure wave-motion. With the system of velocities thus given we
shall compose the constant velocity due to a pure translation.

(1) First let us add a constant velocity which is parallel to the direction of the

wave-ridges. Performing the parallelogram-constructions and afterwards drawing
the lines of flow, we get the picture of fig. 51 B. The picture shows lines of flow run-

ning between a system of parallel and equidistant asymptotic lines, alternately
lines of convergence and of divergence.

(2) To the velocities of fig. 51 a we shall now add a constant velocity which is

normal to the direction of the wave-ridges and of smaller intensity than the greatest

velocity due to the pure wave-motion. We shall then get the picture of fig. 51c.
When we afterwards add the same constant velocity parallel to the direction of the

wave-ridges as above, perform the parallelogram-constructions, and draw the lines

of flow, we get the picture of fig. 51 d. The picture shows parallel, but no more

equidistant, lines of convergence and divergence.

(3) To the velocities of fig. 51A we shall again add a constant velocity of direc-

tion normal to the wave-ridges, but now of intensity equal to the greatest occurring
in the pure wave-motion. We shall then get the velociti s presented by fig. 51 E.

When we add in this case the same constant velocity parallel to the wave-ridges as

above, perform the parallelogram-constructions, and draw the lines of flow, we shall

get the picture of fig. 5 1 F. Here we have a set of wave-formed lines of flow, touching

*Cf. J. W. Sandstrom: Ueber die Beziehung zwischen Luftdruck und Wind. K. Svenska Vetenskapsakade-
miens Handlingar, T. 45, No. 10. 1910.
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each other along a set of singular lines, each produced by the coincidence of a line

of convergence and a line of divergence.

(4) To the velocities of fig. 5 1 a we shall finally add a constant velocity of

direction normal to the wave-ridges and now of greater intensity than the greatest

velocity due to pure wave-motion. We then get velocities which are periodically

increasing and decreasing, but without any change of direction (fig. 51 g). If we add
to these velocities the same constant velocity parallel to the direction of the wave-

ridges as above, we shall get the system of asymmetric wave-formed lines of fig. 5 1 H,

containing no singularity.

(5) If we increase still further the velocity normal to the wave-ridges, and then

add the same velocity parallel to the wave-ridges as before, we shall get fig. 51

1 and k respectively. The lines of flow of the latter figure are very nearly sinus-

lines, but of very small amplitude.
In all of the figures B, d, f, h, k, the velocity parallel to the wave-ridges has the

same value, and a very small value. If we increase this velocity, the lines of flow

of the figures b, d, f will be stretched out in the direction of the singular lines, i.e.,

in the direction of the wave-ridges, and the lines of flow of the figures h and k will

get higher waves.

132. Practical Rules for the Direct Drawing of the Lines of Flow and the

Curves of Equal Intensity. When a chart is given containing arrows and numbers

representing the observations of the motion, the first thing to do in order to pass

on to the continuous representation of the motion will be this: by examination

of the distribution of arrows and of the corresponding intensities to find out the

nature and the approximate situation of the singularities.

This being done, it will generally be best first to draw certain of the lines of

flow issuing from the singularities. Some lines of flow will generally be found whose

course can be drawn with great certainty. A set of such lines being drawn, the

general character of the whole field will practically be determined, for they will

divide the chart into areas within which the other lines must have their course, as

intersections are excluded except in the singularities.

The lines of flow and those of equal intensity should be drawn with continuous

attention to each other. The closed intensity-curves surrounding the singular points

are first drawn, then other closed curves surrounding other places of maximum or of

minimum values of the vector, and then by and by the curves which have a more

complicated course.

In this way, it will generally not be found too difficult to draw the lines of flow

and curves of equal intensity, representing the air-motions along the ground over

the areas where we have a satisfactory network of meteorological stations. Cases

of doubt as to the character of the singularities as well as to the detailed course of the

curves may arise. But making the experiment of letting different workers draw

the curves of flow from the same observations independently, we have always
found that the result has been very nearly the same as soon as the observations

have the completeness of those from Europe or from the United States.





CHAPTER VI.

SUPPLEMENTARY RULES TO ASSIST IN THE DRAWING OF THE LINES OF
FLOW AND OF THE CURVES OF EQUAL INTENSITY.

133. Remarks on the Digression. We have emphasized the fact that the

drawing of the lines of flow and of the curves of equal intensity would cause no

difficulty, if we had at our disposal a sufficient number of really good observations
;

but as a matter of fact the observations are often so scarce and so heterogeneous

that great doubts arise as to the course of the lines. In such cases we must look for

other diagnostic methods than the pure kinematic ones.

This leads us to give here, in anticipation, diagnostic rules depending upon

dynamic, partly also upon thermodynamic and other principles. The foundation

of these rules will be considered more fully in later parts of this work. Deviating

thus for practical reasons from the strictly theoretical plan, it will be important to

make certain reservations in connection with this digression.

If the aim be simply this, to find the most probable motion of atmosphere

or hydrosphere on a certain occasion, it is perfectly legitimate to bring into applica-

tion all diagnostic methods which may serve the purpose. But if further con-

clusions should be drawn from the picture of motions thus obtained, we must take

care to avoid the circulus vitiosus. If rules derived from dynamic or thermodynamic

principles have been used to produce the picture of atmospheric motions, this

picture can not be used legitimately afterwards to verify these same rules.

It can not therefore be too strongly recommended to develop the system of

direct observations of atmospheric and hydrospheric motions, in order to make it

possible to arrive at the synoptical representations of the motions by methods of a

purely kinematic nature. Representations obtained in this way will be the only

ones which can be legitimately used for subsequent investigations regarding the

dynamic and thermodynamic phenomena which are the causes of the motions.

134. Relation of the Kinematic Singularities to Dynamic and Thermodynamic
Phenomena. Motion has a general tendency to go from higher toward lower pres-

sures. From this we easily derive the following special rule :

Within a barometric depression there is a probability for existence of points

or lines of convergence; within areas of high pressure there is a probability for the

existence of points or lines of divergence. Long ridges of high pressure will as a

rule contain a line of divergence; long ridges of low pressure a line of convergence.

In the neighborhood of a maximum-minimum point of pressure situated between

two high and two low areas there will be a probability for the existence of a neutral

point with hyperbolic lines of flow.

Where the given observations of the wind do not give sufficient evidence for the

nature and placement of the singularities, the required supplementary evidence

may be obtained by examining the chart of pressure. But in doing so we should

remember that there is no necessity for the motion to go always, and under all con-

57
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ditions, toward lower pressure. There will seldom be an absolute coincidence

between the points of convergence or of divergence with the points of minimum or

of maximum pressure, or between the neutral point and the saddle point on the iso-

baric surfaces. The draftsman will often find that the observations of the wind

give full evidence for the existence of kinematic singularities, especially of neutral

points and of lines of convergence and of divergence at places where the chart of

pressure does not show the expected peculiarities. Examples where the pressure for

theoretical reasons shows other peculiarities will be considered below.

For thermodynamic reasons the kinematic singularities are in similar relation

to the distribution of precipitation, cloudiness, and blue sky, as to that of pressure.

Within an area of precipitation or of cloudiness there is, as a rule, ascending motion

and therefore a probability of the existence of a point or of a line of convergence.

In the same manner within areas of blue sky there will usually be descending

motion and therefore a probability for the existence of a point or a line of divergence.

The neutral point, which has no relation to vertical motion, will be indifferent in its

relation to precipitation and to blue sky.

The charts of precipitation, of cloudiness, and of blue sky may therefore be used

precisely as those of pressure, to get additional evidence in cases where the observa-

tions of the wind are not sufficient. But as in the case of pressure, the conclusion

can not be reversed. Especially there will often be found lines of convergence caus-

ing no precipitation. Examining the relation of the kinematic singularities to pres-

sure and precipitation, cloudiness and blue sky, it will probably be possible to decide

whether the singularity is a local one, concerning only the lowest strata, or whether

it has any connection with the motion also at greater heights.

135. Consequences of the Stability of Atmospheric or Hydrospheric Equilib-

rium. The different layers of the air or the sea as a rule rest upon each other in

stable equilibrium. A mass of air or of water will not leave its level except it be

forced to do so. The currents will therefore always prefer to some extent to go round

instead of going over obstacles. In other words, the lines of flow will have a certain

tendency to follow the level curves representing the topography of the bounding
surfaces. Many striking examples of this are seen on the accompanying maps of

the air-motion. This dependency of the wind-direction upon topography is so strong

that it can be recommended to draw the lines of flow on outline-maps containing a

simplified representation of the topography of the land. In many cases the apparent

irregularity in the distribution of arrows representing the observed wind-directions

will be understood at once, by a comparison with the level curves of this map.
Sea-motions will depend upon the configuration of the bottom still more than

air-motions on the configuration of the ground. The remarkable correspondence
of lines of equal salinity, or equal temperature,* even at the surface of the sea, with

*In his paper "Some oceanographic results of the expedition with the 'Michael Sars', 1900" (Nyt Magasin
for Naturvidenskab, T. 39, Christiania, 1 901), Professor Nansen says, p. 153: "If we consider the chart (Plate I) of the

surface-salinity and temperature it must strike one how almost exactly the most saline surface-water follows the deepest

channel of the Norwegian sea, and how the isotherms especially of io
c
C. and 9 C.seem to bedeflected in a waysimilar

to the isobaths." Further observations on this and allied subjects are found in the same author's
"
Oceanography

of the North Polar Basin," pp. 260 et seq. (The Norwegian North Polar Expedition, 1893-96, Scientific Results, Vol.

Ill, Christiania, 1 902), and in Helland-Hansen and Nansen: The Norwegian Sea, Chapter X,p. 311 (Christiania, 1909).
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the course of bathymetric curves several thousand meters below is a very striking

sign of this dependency.
Sudden disturbances of the equilibrium will give rise to wave-motions. There

seems to be good evidence for the existence of large-scale waves in the bounding
surfaces between different layers in the sea.* Motions of the same kind are equally

possible in the atmosphere, and lines of flow of the character described in section 131

seem to show that they actually occur. When the motion has this character, we
have no right to expect a minimum of pressure along the lines of convergence and

a maximum of pressure along lines of divergence. In case of pure wave-motions,
the maxima of pressure should be under the summits and the minima under the

troughs of waves, while the line of convergence is under the front-slope and the line

of divergence under the back-slope of the advancing wave. If a progressive motion

is added, displacements of the lines of convergence and divergence take place, and

their relation to the pressure will not be easy to see on the chart.

f f 136. Consequences of Kinetic Instability, Discontinuous Motions, and Eddies.

A kinetic phenomenon which is equally well known, though not so well understood

vr//////////////777mM/.
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A. Eddy in a valley.

Fig. 52. Motions due to kinetic instability.

B. Eddies on windward and leeward side of a mountain. C. Eddy joining the great atmospheric motions.

as that of the formation of waves, is that of the formation of eddies. They are

very often formed in the neighborhood of obstacles, both on the windward side of

the obstacles, and still more frequently behind them. A motion going on without

eddies is in such cases kinematically possible, but dynamically unstable, and has

therefore no chance of persisting even if it be produced for a moment.

An eddy due to the instability of the motionmay fill a valley acrosswhich there

passes a main wind (fig. 52 a). It may be produced both on the windward and on

the leeward side of a mountain (fig. 52 b), the latter case being the most frequent.

The observations of thewind at the ground will then give pictures like that of fig. 50 G,

with a parallel line of divergence and of convergence, the latter being as a rule the

one which appears most distinctly. The line of divergence may also disappear

completely when the eddy enters as a part of great atmospheric motions (fig. 52 c).

In such cases only a line of convergence will be discovered following the ridge of a

chain of mountains or the edge of a plateau-land. Eddies having a vertical axis

may be formed in the same way. This latter kind of eddy will be very frequent in

the atmosphere and perhaps still more so in the sea.f The eddies can exist on

'Regarding this question on submarine waves, cf. Helland-Hansen and Nansen's work just quoted, Chapter VI.

See also V. W. Ekman's paper, "On Dead Water "
(The Norwegian North Polar Expedition, 1893-96, Scientific Results,

Vol. V, Christiania, 1906).

fConcerning eddies of large scale in the sea, cf. figs. 2, 37, 39, 105-107 of Helland-Hansen and Nansen's work just

quoted; and especially pp.311-312.
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every scale, down to the smallest, which must be considered as local disturbances.

These local eddies in connection with the sheltering effect of mountains and the devi-

ating effect of valleys make the use of wind-observations from mountainous regions

difficult. For such regions it would be good to have special information as to the

peculiarities of each station, i. e., to know the relation of the observed local wind to

the general wind to be found higher up, where the influence of the obstacles is reduced

or has disappeared. Signs representing these peculiarities could be introduced on

the outline maps. The best method of investigating these peculiarities would be by

sending up simultaneously from all stations pilot-balloons, giving the motions in the

free air with which the local motions at the ground should be compared.

137. Cold Wave, Warm Wave. Let us suppose a certain mass of air has been

cooled down below the temperature of other masses in the same level. Equilibrium
will then be disturbed, and in order to restore it the cool and heavy air will tend to

spread out along the ground, driving away the warmer and lighter masses previously

covering it. These will on the other hand go up, in order to fill the space from which

the heavy masses of air sink down. In this case there will appear at the ground a

line of convergence a little before the front of the advancing cold wave (fig. 53).*
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Fig. 53. Cold wave. Fig. 54. Warm wave.

Let us consider, on the other hand, a warm mass of air resting originally in

hydrostatic equilibrium upon a thin sheet of cooler air. This arrangement will be

stable as long as there is no motion or only a feeble motion. But if the upper layer

has a sufficiently strong motion, the arrangement will be kinetically unstable.

The warm air will then roll up and sweep away the thin layer of cool air. In this

case there will arise at the ground a line of convergence a little before the front of an

advancing warm wave (fig. 54) .

In such cases there is no reason to expect a minimum of pressure along the line

of convergence. There may come a sudden change of pressure as the line passes, but

the most striking effect will be the sudden change of temperature along the line, and

such a discontinuity of temperatures may give additional evidence for the existence

of a line of convergence when the wind-observations themselves are insufficient. f

138. Lines of Convergence at the Sea's Surface. While the observations of

the motions themselves are difficult at sea, the situation of a line of convergence will

under favorable circumstances be strikingly visible, for the reason that all sorts

*Cf. Sandstrom's paper, quoted p. 54.

fCf. R. G. K. Lempfert and Richard Corless: Line squalls and associated phenomena,
the Royal Meteorological Society. London, April, 1910.

Quarterly Journal of
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of floating objects, such as foam, seaweed, wood, etc., are collected in this line.

Such lines are seen on a small scale near the shores when the wind is directed against

the land. They then run parallel to the shore, often only like an oily band, marking
the limit between the somewhat brackish water near the shore and the more salt

water outside. Mr. Sandstrom has investigated directly the motion in the neigh-

borhood of this line and found horizontal and vertical motion to be that represented

by fig. 55.* Under the same condition of wind against the coast these lines exist

on greater scale several kilometers from the coast, separating the coast-water from

the salter sea-water. They are very well known by the fishermen, especially on

account of the danger to the nets when they are set out across the line. These lines

may also be seen under favorable circumstances on the open ocean, separating

sea-currents of opposite directions. f

B

Fig. 55. Line of convergence at sea.

A. Motion at sea's surface. B. Motion in a vertical section.

The investigation of these lines, their course, the degree of their constancy, etc.,

may be of great use for the kinematic investigation of the oceans.

139. Dynamic Diagnosis of Motion in the Free Space. The observations of

the air-motion in the higher strata are still too scarce to form the basis of a satis-

factory construction of the motions, if only direct kinematic methods should be

used. The arrows on the charts are far too few to determine the course of the lines

of flow, and the numbers added to them are too few to determine the course of the

lines of equal wind-intensity. We can not therefore avoid relying upon dynamic

principles, if in such a case as this we should be able to give a fairly probable recon-

struction of the air-motion on this occasion.

*J. W. Sandstrom: Windstrome in Gullmarfjord. Svenska Hydrografisk-biologiska Kommissionens Skrifter II.

fAlthough the phenomenon must often have been observed, not only near the coasts, but also in the open sea,

I have not been able to find any reference to it in literature in the latter case. I am indebted to Professor Fridtjof

Nansen for the following communication concerning this case:

"Lines of convergence, as you mention, are frequently met with in the open sea, wherever a surface-current

formed by light surface-water meets with another current formed by heavier water. Such conditions are quite com-

mon along the margin of the East-Greenland Polar Current. I remember especially to have observed such a remarkably
distinct line of convergence in the Denmark Strait, northwest of Iceland, in about 6642' N. Lat. and 26 40' W. Long,

where we were with the 'Michael Sars' on August 3, 1900. The cold but light surface-water of the Polar Current

met here with the warmer but more saline and consequently heavier water of the Irminger Current, coming from the

south. One could distinctly see how the latter water flowed in under the surface-layer of polar water, and everything

floating on its surface was, as it were, skimmed off by the polar water, especially of course all kinds of foam, and the

line of convergence between the two currents was consequently marked with quantities of this foam which had been

skimmed off, and we could thus easily trace the line across the sea surface, as far as the eye could reach toward the

horizon, both northeastward and southwestward."
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Setting aside on the one hand frictional resistance, and on the other hand the

acceleration of the particles of air, we get a motion determined dynamically by the

equilibrium between pressure-gradient and deviating force of the earth's rotation.

Recent observations have shown that the true motion in the higher strata is usually

not very different from that determined by this equilibrium condition.* The ideal

motion existing when this condition is fulfilled is directed along the level curves

on the isobaric surfaces and goes on with a velocity represented by the formula

v =
2 w a sin ip

to is the angular velocity of the earth, measured in radians per second (* = 0.000073) J

<p is the latitude, and a the distance in meters between level lines corresponding to

unit difference of level (one dynamic decimeter). The difference of level between

the successive curves being on some of our charts 10, on others 50 dynamic meters,

we can use the formula

v 2 :
>
or

>
f r tne greater interval, v =

1 .46 a sin ip

'

1 .46 a sin <p

measuring the distance a between the curves in millimeters on our chart in the scale

1 : 10 000 000.

To use this principle to complete the observations on the charts, we have first

constructed the level curves for the isobaric surfaces representing a pressure equal

to the arithmetical mean of the pressures at the upper and the lower limits of the

sheet. These curves are easily found by the principle of graphic addition, by

drawing the diagonal curves through the parallelograms formed by the curves of

absolute topography of the lower and the relative one of the upper bounding surface

of the sheet, after having left out every second of the last curves.

The accordance of these curves with the direction of the arrows is never com-

plete, and should be complete only in exceptional cases. Drawing the lines of

flow (fig. b of the plates LVII-LX) we have made them cut the level fines under

angles similar to those under which the arrows cut them (fig. a of the same plates).

Further, the numbers representing the observed wind-intensities are never in full

accordance with the formula. We have drawn the curves of equal wind-intensity

(fig. b of the mentioned plates) so as to get departures from the theoretical value

similar to those presented by the observations as seen by fig. A of the same plates.

Of course, many different drawings of the lines of flow and curves of intensity

can be produced which are in accordance with these elastic rules. To what degree

we have succeeded in reconstructing by plates LVII-LX, the true horizontal motion

within each sheet will therefore remain an open question. We can not therefore too

strongly recommend further work to produce satisfactory direct observations of

atmospheric motions. Provisionally, the synoptic representations in higher strata

which we have obtained will serve our nearest aim, viz, that of illustrating formally

the further steps in the work of kinematic diagnosis.

*E.jGold: Barometric gradient and windforce. London, 1908.



CHAPTER VII.

ISOGONAL CURVES.

140. Isogonal Curves. The drawing of vector-lines from the observed direc-

tions of a vector is an operation of the nature of an integration (section 127). On
account of the incompleteness of the observations this integration is combined with

interpolations. But it will be possible to separate from each other these two hetero-

geneous operations of interpolation and of integration. This is obtained by the

method of isogonal curves devised by Mr. Sandstrom.*

We have agreed to represent observed directions by numbers (section 98). In-

stead of inscribing the arrows we can inscribe these numbers on a chart. Then we
can draw curves joining the points where these numbers are equal. In all points

of such a curve the vector will have the same direction, i. e., form the same angle

with the north-south line. These curves may therefore be called isogonal curves

or isogons.

A chart containing these curves may be considered a completely interpolated

representation of the differential equation determining the vector-curves. This

representation being obtained, the integration will cause no difficulty. Across each

isogonal curve we can draw short lines of the direction represented by the curve.

These will be line-elements of the vector-lines. In this manner we can get the whole

plane filled with such line-elements, and joining them to continuous curves we get

the vector-lines.

141. Singular Points in the Field of a Multiple-Valued Scalar. The isogonal

curves represent the field of a multiple-valued scalar, the angle. The angle has no

true greatest and no true smallest value. From the highest number, 64, used in our

representation, we interpolate to the lowest, 1
;

for 1 represents the same angle as

65 would do.

In order to see the consequences which this peculiarity of the scalar has on

the appearance of the field, let us suppose observations to have been taken at the

points of a closed curve and to have given in succession the numbers from 1 to 64 ;

in this case isogonal curves representing all angles must run in through the closed

curve, in order to cut each other somewhere in the area contained within it. The

point of intersection will be a singular point.

In the diagrams of figs. 56 and 57 the isogonal curves passing through the singu-

lar point are for the sake of simplicity drawn as straight radii. The numbers belong-

ing to these radii may be arranged in two different ways : they can increase in the

*J. W. Sandstrom: Ueber die Bewegung der Fliissigkeiten. Annalen der Hydrographie und der maritimen

Meteorologie. Berlin, 1909.
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same direction as the numbers on the dial of fig. 32, the singular point will then

be called positive; or in the opposite direction, the singular point will then be

called negative. The eight diagrams of fig. 56 represent positive, the two of fig. 57

negative singular points, the successive diagrams are differing from each other by

the situation of the initial isogon, that represented by o or 64. The change from

/g
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The examination of the figures leads to the following results :

(1) The positive singular point of isogons corresponds to a point of divergence or

convergence, the negative singular point to a neutral point of the vector-field.

(2) The rotation of the system of isogons of a positive point has as a conse-

quence that the vector-lines take the form of spiral curves of all types,

including the limiting cases of straight radial lines and of circles.

(3) The rotation of the system of isogons of a negative point has as a conse-

quence a rotation of the system of hyperbolic vector-lines without

any change in their form; the angle of rotation of the vector-lines

is half as great as that of the isogonal curves.

When the isogonal curves are no longer straight radii with constant angular

intervals, but curves with more irregular intervals, the vector-lines of the corre-

sponding vector-field will no longer be true logarithmic spirals or true hyperbolae;
but otherwise the character of the field will remain unchanged. If the numbers
1 to 64 are repeated twice or a greater number of times on a contour surrounding
the singular point, always increasing in the same direction, the singular point will

be of higher order. Only the negative singular points will be physically possible ;

but even they will occur rarely and be of small practical interest. (Cf. fig. 38.)

142. Further Remarks on the Field of Isogonal Curves and their Relation

to the Vector-Field. When the isogonal curves are to be drawn, the first thing
will be to discover the situation of the singular points. For this we have to examine

whether closed contours can be found on which the numbers representing the

observations always increase in the same direction. If this be the case we are

sure that there must be a singular point within the contour. As these singular points

will always coincide with the singular points of the vector-field, we can also find these

points by the use of rules which we have developed in the preceding chapters.

Fig. 58. Closed isogonal curves.

Inflexions of vector-lines.

Fig. 59. Parallel isogonal Fig. 60. Concentric circles

as isogonal curves.

The situation of the singular points being found, in which the curves intersect

each other, the drawing of the curves will involve no other difficulties than those

connected with the drawing of the equiscalar curves of the single-valued scalars;

for isogonal curves representing different angles can never intersect each other in

other points. Besides curves issuing from or entering into the singular points there

will be found closed curves surrounding places of what may be called maxima or
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minima. Within these regions the lines of flow will have points of inflexion (fig. 58) .

As in the fields of the single-valued scalar, there may appear complexes of such

maxima and minima
, containing between them a maximum-minimum point where

a certain singular isogonal curve cuts itself (fig. 46).

It is remarkable that no special singularity of the isogonal curves corresponds
to lines of convergence or of divergence in the field of motion. Fig. 59 shows a case

where such lines appear in the case of rectilinear and parallel isogonal curves, fig. 60

a case where they appear in the case of circular concentric isogonal curves. The
feature of the isogonal curves in the case of the wave-motions described in section

131 is remarkably simple. Let the numbers on the rectilinear and parallel isogonal

curves oscillate between two extreme values for instance, 52 and 12. If the isogonal

curves run parallel to the average wind-direction, we get the parallel and equidistant

lines of convergence and divergence of fig. 61 a. As the angle between the average
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Fig. 61. Isogonal curves for combined wave-motion and motion of translation.

A. Isogonal curves parallel to the main wind-direction.
B. Isogonal curves oblique to the main wind-direction.
C. Isogonal curves normal to the main wind-direction.

wind-direction and the isogonal curves increases, the singular lines are displaced

relatively to each other, until finally two and two join into one, as in fig. 61 b. For

still smaller angles we get sinusoidal lines of flow, the case of symmetry (fig. 61 c)

arising when the isogonal curves are normal to the main wind-direction.

143. Sandstrom's Integration-Machines. Mr. Sandstrom has based a method
for graphical integration of differential-equations upon the representation of these

equations by isogonal curves.* These curves being drawn, the tracing of the curves

representing the integral, i. e., the vector-curves, will cause no difficulty. Still,

the draftsman will find it time-wasting to measure out the precise angles which

these curves will have as they pass the different isogonal curves. But the work of

drawing the vector-lines is very much facilitated by special machines constructed by
Mr. Sandstrom, which trace automatically line-elements of the required direction

across the isogonal curves. The construction of these machines will depend upon
the system of coordinates to which the angles are referred. If the angles are referred

to the meridians of a chart drawn in conical projection, very simple devices may be

used. Fig. 62 shows a simple instrument serving the purpose in this case. A rule

*See note, p. 63.
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R can slide through a guide which can turn around the pivot P. This pivot is fixed

at the point of convergence of the meridians of the chart. At its other end the rule

carries a toothed wheel W, which may be fixed in a position, where the edge of the

teeth (*. e., of the axis of the wheel) forms any given angle with the meridians.

This angle is measured at the dial D. If the wheel is colored and carried along the

isogonal curves, it will mark lines of the required direction across them.

During the motion the wheel partly slides and partly rolls. As the resistance

against these two motions is not equal, it requires some care to follow precisely the

Fig. 62. Machine for tracing line-elements across isogonal curves.

given curves. It will for this reason be advantageous to have an adjustable friction

at the pivots of the toothed wheel. Fig. 63 shows another instrument by which

this difficulty is avoided. Instead of a toothed wheel, the rule R carries a drum D
with a caoutchouc membrane. This membrane carries a metal plate with a chisel C,

which writes a line-element when it touches the paper. By an alternating air-

current the membrane is set in motion, making the edge go up and down. When
the chisel has this motion and is guided along the curve, it will mark the required

Fig. 63. Other machine for tracing line-elements across isogonal curves.

line-elements across it. The desired angle with the meridian can be obtained by

turning the drum, which on its upper face carries a dial with the required divisions.

The alternating air-current for driving the membrane is obtained from another

drum, joined with the crank of a rotating wheel, which is driven by a little

electromotor.
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When the charts are drawn on semi-transparent paper, no special device is

required to color the tooth-wheel or the chisel. A coloring paper can be placed
under the transparent sheet upon which the isogonal curves are drawn. The line-

elements will then come on the under-side of the sheet, but will be seen through it.

When an instrument like one of these is at hand, it will be found very con-

venient to draw the lines of flow in the indirect way, using the isogons as auxiliary

curves. Of course the indirect method will always require more time than the

direct one. The latter will therefore be preferable for rapid work. But the indirect

method gives a much higher degree of precision, and should therefore be preferred
when the purpose is quantitative scientific investigations.

144. Equivalence of Isogons and Vector-Lines for the Representation of Vector-

Fields. We have introduced the isogons as auxiliary curves for tracing the vector-

lines
;
but in reality they are perfectly equivalent to these lines for the representation

of the field. We shall therefore have henceforth to reckon with two different repre-

sentations of the vector-fields
; by intensity-curves in connection with vector-lines,

and by intensity-curves in connection with isogons. We have used the first con-

sistently hitherto because it gives the most conspicuous picture. But our work
will consist henceforth in the performance of mathematical operations upon the field,

and these operations are in many cases performed more easily when the direction of

the vector is given by the isogons. Therefore, in the following chapters, when we
are going to study methods for performing elementary algebraic or infinitesimal

operations upon the fields, we shall have to take into consideration the one method
of representing the vector as well as the other, trying to utilize the special advantages
of each of them.



CHAPTER VIII.

GRAPHICAL ALGEBRA.

145. Graphical Mathematics. When the synoptical charts are found which

can be derived directly from the observations, the further work for the diagnosis of

present or for the prognosis of future states will consist in the performance of

mathematical operations with the data given by these charts. The development
of proper graphical methods for performing these operations directly upon the charts

will be of the same importance for the progress of dynamic meteorology and

hydrography as the methods of graphical statics and of graphical dynamics have

been for the progress of technical sciences. The first serious problems of these

graphical mathematics will present themselves as soon as we shall accomplish
kinematic diagnosis by determining the vertical motions. Afterwards we shall meet

with such problems continuously. This will therefore be the moment for taking a

general view of the character of these problems and of methods to be used for solving
them.

The problems will present themselves in this form : a chart or a set of charts is

given, representing the fields of certain scalars or vectors. Another chart or set of

charts is to be derived from them, representing the field of other scalars or vectors,

which are defined as functions of the first by relations in finite or in infinitesimal

form.

One way for the solution of such problems will always be open. We perform

discontinuously, for a certain number of points, the operations defined by the rela-

tions. This gives the values of the required scalars or vectors in a certain number of

points. By use of these values we draw the charts representing the new scalars or

vectors, just as we draw such charts by use of the observations taken at a finite

number of points. By following this method we give up the idea of continuous

fields during the performance of the mathematical operations, in order to return to

the fields as soon as the operations have been performed. We shall call this the

discontinuous method.

But on the other hand it will be possible to find methods by which the idea

of the field is never given up. The method will then consist in the continuous

tracing of curves guided by the data contained on the given charts, and by the

relations containing the implicit definition of the new charts. Every operation leads

to a chart representing a field, and it will, as a rule, be necessary to pass through
several auxiliary fields in order to arrive at the required fields. We shall call these

methods continuous, and the development of them will be our main object.

146. Drawing-Board. Certain practical arrangements should be mentioned at

once. It will be impossible to draw all the different curves on one sheet of paper.

They must be distributed on several sheets. But at the same time we must be able

69
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to make different systems of curves simultaneously visible in their true mutual

position, as if they had been drawn upon the same sheet of paper. Certain measures

must be taken to attain this.

We have found it most convenient to draw the different charts upon sheets of

semi-transparent paper, and to have at hand a special drawing-board. This board

consists of a sheet of glass with a wooden frame and has a contrivance for producing

illumination from below. This illumination is obtained most easily by an incan-

descent electric lamp. The sheets of paper should cover the glass completely.

They can be fixed to the wooden frame by drawing-pins. The paper should be

sufficiently transparent, or the illumination sufficiently strong, to allow us to have

at least three sheets simultaneously upon the board, two containing given systems of

curves and a third upon which the derived curves are drawn. The plates accom-

panying this book have been printed upon paper which we have found convenient

for this kind of work.

147. Graphical Algebra with One Variable. Let a be a scalar function repre-

sented by a chart of equiscalar curves. These curves are to be drawn for what we

shall call "integer values" of the scalar, using the expression in a widened sense

as a shortened expression for "integer values multiplied by a positive or negative

power of 10." By a suitable change of units they will get integer values in the

common sense of the word. It is required to find the equiscalar curves which

represent in the same way the field of another scalar

(a) <P
=

/(<*)

In this case a curve a = const, will also be a curve <p
= const. But the curves which

represent integer values of a will as a rule not coincide with those which represent

integer values of <p.

The discontinuous method of finding the curves for integer values of <p will be

this : by direct calculation to find the values of <p in a certain number of points, and

then to interpolate between them the points where <p has integer values. These

points will give the placing of the curves for integer values of <p between those for

integer values of a.

But we can give a continuous method of solving the same problem : We then

solve equation (a) with respect to the known variable a,

(b) a = F(tp)

and construct an auxiliary table in which the values of a are tabulated for integer

values of the argument (p. Thus

Table E. Table-scheme for graphical algebra with one variable.

f
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Table E shows at once for which values of a we shall get integer values of <p. We
can then at once draw the equiscalar curves for integer values of <p in their proper

places between the given equiscalar curves for integer values of a.

As an example we can consider the square of a given field, /(a) = a
2

. Thus

(c) <p
= a*

Solving with respect to a we get

(d) a = Vtp

a is tabulated for integer values of <p in table F.

Table F. Square-root table for passing from the field of a scalar to the field of its square.

<p
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We then construct a table (table F') according to the equation

(f) a = arc cos <p

By use of this table we can easily draw the curves for "integer" values of cos a

between those for integer values of a (fig. 65).

Table F'. Arcus-cosine table for passing from the field of an angle to the field of its cosine.

V
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Instead of following the vertical columns we can also follow the horizontal lines

of the table, and then draw directly one by one the curves <p
= const., performing

successively the interpolations by eye-measure which give the points of intersection

with the different curves a = const. This method will usuallybe the most convenient.

Tables G. Table-schemes for graphical algebra with two variables.

<p
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Table H. Graphical addition.

One addend tabulated as function of the sum and the other addend.

Sum.
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Table I. Graphical multiplication.

One factor tabulated as function of the product and the other factor.

Prod-
uct.

V
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Tables J. Graphical division.

I. Divisor tabulated as function

of quotient and dividend.
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152. Case of Three or More Variables. Now let the scalar <p be a function of

any number of variables

<P
=

f(a, & 7 )

In this case the discontinuous method, which consists of calculating the values of <p

in any sufficient number of points and subsequent tracing of the equiscalar curves

<p
= const., may be used precisely as in the case of two variables. But if we solve with

respect to one of the given scalars, for instance a, in order to bring the continuous

method into application, we meet with the practical difficulty connected with the

tabulation of functions of more than two variables; for numerical tables can not

easily be provided with more than two arguments.
In special cases it may be possible to decompose the complex operation into a

series of partial operations each depending upon two variables only. Then all

difficulties connected with the greater number of variables will drop out, and we
can bring into application the methods which we have developed already, depending

upon the construction of numerical tables with two arguments.
In the general case this decomposition of the problem will not, however, be

possible. We must then look for other auxiliaries than numerical tables, and it

will always turn out to be possible to produce special graphical or mechanical

auxiliaries which will serve the same purpose as tables with more than two argu-
ments would have done. These auxiliaries will, however, as a rule be more laborious

to use than the tables with two variables. If, therefore, a reduction to problems
with two variables is possible, it should generally be performed even if the number
of single operations be thereby considerably increased.

We shall give the general method for constructing graphical tables which

serve the purpose in the casewhen the number of variables is limited to three. Then
let a, /3, 7 be three given scalar quantities. The field of each of them is represented

by equiscalar curves. The problem is to find the equiscalar curves <p
= const.,

which represent the field

(a) <P=f (a, (8, 7)

In order to find the points of the curve a =
a, in which

<p
has integer values, we

have to examine the values of

(b) ?=/(a/3,7)

Here only /3 and 7 are variables, and when we follow the curve a = a, (fig. 70B), we
see that to any value of /3 will correspond a definite value of 7, and vice versa.

In order to find those values of one of them for which <p has integer values, we
construct a graphical table. We set off /3 and 7 as abscissa and as ordinate of a

rectangular system of coordinates (fig. 70 a) and draw in this system of coordinates

the curves <p
=

1,2,3, according to equation (b) . We observe on the given chart

(fig. 70 b) the values which /3 and 7 have along the curve a =
a,. These values

will define a certain curve in the system of coordinates /3, 7. We draw this curve

on a transparent sheet of paper, laid upon the graphical table fig. 70 a. This curve
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will cut the curves <p= 1,2, 3, . . . of the graphical table, and we can read off those

values of /3 or of 7 for which <p has integer values. Then we can set off these points

along the curve a = a, on the given chart (fig. 70 b).

a.=a.t

B

Fig. 70. Example of graphical operations with three variables.

A. Scheme of graphical table.
B. o, J3, y, given fields. Construction of <p f (a lf 0, y).

If we construct a graphical table as that of fig. 70 a for each of the curves

a = const., we can thus find a complete system of points determining the course of

the curves <p
= const.

153. Vector-Algebra. It will be of special importance for us to bring graphi-

cal methods into application for mathematical operations concerning vector-fields.

It will be useful and save circumlocution when at the same time we introduce a few

simple notations of modern vector-analysis.*

A vector considered as a quantity which has both magnitude and direction will

be denoted by a letter in heavy print. The corresponding letter in common print

will denote its scalar value or tensor (intensity) . The same letter in common print

and with the suffix 5 will denote the projection of the vector on the direction 5.

In the same manner we shall by the suffixes x, y, 2 denote the projections on the

three rectangular axes x, y, and 2. Thus

Vector.
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The fact that the vector F is the vector-sum according to the parallelogram-law
of the two vectors A and B will be denoted by the vector-equation.

(a) A+B

This equation can be considered as equivalent to the three scalar equations

(a') A x+B x Fy
= A y+B, F2

= A t+B,

which express the projections of F as the scalar sum of the projections of A and of

B (fig. 71). The scalar-sum of the tensors A+B must be carefully distinguished
from the scalar value or tensor |A+ B|of the vector-sum. There will be identity
between the scalar sum of the tensors and the tensor of vector-sum when the two

given vectors have the same direction, and between the scalar differences of the

tensors and the tensor of the vector-sum when the two given vectors have opposite
directions.

A scalar quantity which is equal to the product of the tensors of two given
vectors and the cosine of the included angle will be called the scalar product of the

two given vectors. When the given vectors are

A and B, their scalar product shall be denoted

by A.B, thus

(b) A.B = AB cos 6

By the fundamental formula? of analytical geom-

etry it is easily verified that the scalar product
is equal to the sum of the products of the rec-

tangular components of the given vectors,
K

-Vector-addition.

(jb') A.B = A xBx+A yBy+A :B z

The vector-operations defined by the pre-

ceding formulae are symmetrical with respect to

the two given vectors A and B. In the vector-

formula? the symbols for the vectors can there- Fig. 71

fore be commutated

(c) A+B = B+A A.B = B.A

We shall define finally an important unsymmetric vector-operation, in which

this commutation of the symbols will no more be allowed. The succession of the

symbols will be used to serve an important purpose, namely, to distinguish between

opposite directions in space. In order to give the definition of this operation, we must

first make animportantremarkconcerning the geometry of translations and rotations.

Let an axis in space be given. Two opposite translations will be possible along

it, and two opposite rotations will be possible around it. We must agree upon a

definite connection by which we can define the positive direction of rotation as soon

as the positive direction of translation is chosen, and vice versa. We shall attain

this by the rule of the positive or right-handed screw. When this screw moves in its
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nut, it can not advance along its axis in a definite direction unless it performs a

rotation around this axis in a corresponding definite direction; and vice versa it

can not turn around its axis in a definite direction unless it advances along this axis

in a corresponding definite direction (see fig. 72) . Thus this screw connects a definite

direction of translation with a corresponding definite direction of rotation, and vice

versa. We shall agree to give the same sign to directions of translation and of rota-

tion which are connected to each other in this way.
Two vectors in space, A and B, define two rotations which are smaller than two

right angles, that from A to B and that from B to A. Both rotations take place

around an axis which is normal both to A and to B, and can be represented symboli-

cally by arrows pointing along the axis of rotation, in that direction which by the

screw-rule is positive in reference to the direction of rotation.

Positive Translation, <

Fig. 72. Positive-screw rule.

Now let us consider a vector F which is normal to the two given vectors A and B,

which by its direction represents the rotation from A to B, and which has a tensor

equal to the product of the tensors of the given vectors and the sine of the included

-F=BxA
Fig. 73. Vector-product. Fig. 74. Positive system of rec-

tangular coordinates.

angle. The fact that the vector F has this relation to the two vectors A and B will

be expressed by the formula

(d) F = AXB
and F will be called the vector-product of the vectors A and B.
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The relation of the vector-product F to the vector-factors A and B is illustrated

by fig. 73 : F is directed along the normal to the plane which contains A and B; the

positive rotation around F transfers the first vector-factor A into the second B
;

and F has the scalar value F, which is given by the formula

{d') F = AB sin d

or which is represented geometrically by the area of the parallelogram which has

sides representing the vector-factors.

It follows immediately from the definitions that when we commutate the vec-

tors A and B, we get the vector F, which is directed oppositely to F, thus

0) BXA = -AXB
When we bring coordinates into application we shall agree to use consistently

what we shall call a positive system of coordinates. Let the positive direction along
each of the rectangular axes be chosen. The corresponding positive rotation around

an axis will then either be a rotation in or against that direction which is defined by
the succession of letters X, Y, Z, X, . . . In the first case the system will be

called positive, in the second case negative. Thus when the system is positive, the

positive rotation around Z will go from X to Y, the positive rotation around X will go
from Y to Z, the positive rotation around Y will go from Z to X. A positive system
of coordinates, of which we shall make a frequent use, is one which has its axis of X
directed toward the east, its axis of Y directed toward the north, and its axis of Z
directed upward. (See fig. 74.)

When we use a positive system of coordinates, it is easily verified by the funda-

mental formulae of analytical geometry that the rectangular components Fx ,
Fy ,

Fz of

the vector-product F are

(/) Fx
= AyB,

-A zBy Fy
= A ZB X

-A XBZ Fz
= A xBy-A yBx

The vector-equation (d) may be considered as a shortened symbolic expression for

the three equations (/). Equations (/) also at once lead to the result expressed by

equation (e), that the vector-product changes its sign when the succession of the

vector-factors is interchanged ;
for we get Fx ,

Fy ,
and Fz when in equations (/)

we change A x with Bx ,
A y with By ,

and A z with Bz .

154. Consistent Use of Rectangular Components in Graphical Vector-Algebra.

As drawings are two-dimensional, our methods can deal directly only with two-

dimensional fields. Vector-fields in space must be treated indirectly. We have

introduced for this the method of solving the three-dimensional field into fields tan-

gential to and normal to a set of surfaces (section 118). The normal field may be

treated as a two-dimensional scalar, while the tangential field represents a true two-

dimensional vector. Our subject will therefore be that of developing graphical
methods for performing mathematical operationsupon these two-dimensional vectors.

One general method presents itself at once. We can introduce two sets of curves

cutting each other under right angles, and use them as coordinate-curves. In the

simplest case the two sets of curves will be two sets of parallel lines, which are mutually
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perpendicular to each other. A vector is represented in every point of the field by
its components along each of the two coordinate-curves passing through the point.

The coordinate-curves are the vector-lines of the two vector-components. But as

these vector-lines are given invariable curves which are common to the components
of all vectors, no operations will have to be performed upon them. Although these

components A*, Ay ,
B x ,

B
y ,

. . . are primarily vectors, we never need take into

account their vector-nature. They will be represented completely by the fields of

their scalar values A x ,
A y ,

Bx ,
By , .... The sign of the scalar value will give

the direction of the component along the coordinate-curves. The graphical methods

for scalar fields which we have developed will then come directly into application

to all problems of vector-algebra.
When we follow this method, the problems of graphical vector-algebra are

solved already.

Thus the vector-sum F of two vectors A and B will be represented by the two

scalar components Fx and Fy , and each of them is found by graphical addition of the

fields of the scalar components A x and B x , respectively A y and By ,
in accordance

with the equations

(a) FX =A X+B X Fy =A y+By

The scalar product of the two vectors A and B will be found by two graphical

multiplications and one graphical addition in accordance with the formula

(b) A^+AyBy
In the case of the two-dimensional fields, the vector-product of two vectors will

be normal to the surface which contains the field. From the point of view of two-

dimensional geometry it therefore loses its character of a vector. We have to deal

simply with a scalar

(c) A xBy-A yBx

and the field of this scalar is derived from those of four given scalars A x ,
By ,

A y ,
Bx

by two graphical multiplications and one graphical subtraction.

The advantages gained by the consistent use of vector-components are great

enough to make it a serious question whether it should not be favorable from the

beginning to work exclusively with components, and notwith the vectors themselves.

From the point of view of the observations there will be no objection against this.

It would be a good plan to observe separately the N.-S. and the E.-W. component
of the wind or of the sea-motion. If the observations were taken with self-recording

instruments, the vector-averages required (section 97) would be obtained by taking
the ordinary average of each component separately. Neither would there be any
objection from the point of view of the meteorological telegraphic service. Which-
ever system be used, two numbers will have to be telegraphed. In the one case the

two numbers will have to represent the two rectangular components. In the other

case one number must be used to represent the wind-intensity, and another to

represent the wind-direction.
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But as long as the observations are not very good and complete it may be a

question if it be advisable to draw the charts for each component separately,

without compounding them to a vector. The formal process of drawing equiscalar
curves would be simple enough. But the difficulty would consist in smoothing
out the irregularities and filling up gaps in the observations. This must be done

with full understanding of the kinematical situation of which the true vector-chart

gives a conspicuous picture, but the two separate component-charts present only
a very imperfect picture. This full understanding of the situation will also be of

use for the control when mathematical operations are to be performed on the charts.

We shall therefore as a rule avoid the artificial representation of the vectors by
two component-fields, and use as much as possible the direct representations.

155. Use of Angles to Represent the Directions of Vectors. We have intro-

duced two direct representations of the two-dimensional vector, by intensity-curves

and vector-lines, and by intensity-curves and isogons. We shall as a rule prefer

the latter when mathematical operations are to be performed. The angles which

-E

B A
Fig. 75. Angles and differences of angle.

represent the directions of the vectors A, B, . . . F will be represented by Greek

letters a, /3, . . . <p. We shall find it convenient occasionally in two-dimensional

vector-algebra to use the symbols (A, a), {B, &), . . . {F, <p) as symbols for the

vectors instead of A, B, . . . F. Thus we shall have identically

(a) A= (A, a), B= (5,i8), F = (F, <p)

In order to define completely the angles a, (3, . . . <p, we must agree upon the

choice of an initial direction from which they should be counted, and the direction of

that rotation by which they should be produced. The initial direction must be agreed

upon by an arbitrary choice. On our charts in horizontal projection we will choose

the direction toward E as this initial direction. The positive rotation around a point,

or, what comes to the same, the positive circidation around a closed curve, is always
to be defined in accordance with the positive-screw rule. Most of our charts will

represent fields which are contained in horizontal or quasi-horizontal surfaces.
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As we count the normal to these surfaces positive upward, the positive rotation

around the normal will be a rotation against the motion of the hands of a watch

and the positive circulation will be the cyclonic circulation E-N.-W.-S. of the

northern hemisphere. (Compare the dial of fig. 32.)

We shall agree to consider all given angles a, /3, . . . which are used to represent

the direction of given vectors as produced by positive rotation from the chosen initial

direction. Thus all initially given angles will be represented by positive numbers

which are smaller than the number used to represent four right angles, i. e., in our

measure positive numbers smaller than 64 (see fig. 75).

When we form sums or differences of the numbers which represent the given

angles we may come both to positive numbers which are greater than 64, and to

negative numbers. In such cases we shall always by subtraction or addition of

64 (or a multiple of 64) reduce to a positive number smaller than 64. This will

always be allowed by the general reason that there is no difference between the

direction represented by a and that represented by a four right angles. This

remark is of special importance in connection with the difference of angle (8 a,

which represents the direction of the vector B relatively to that of A. When we agree

always to represent this difference of angle by a positive number, it implies that we

agree to count it as produced by a rotation in positive direction from the vector A, of

which the anglect a ppears as subtractor to the vector B, of which the angle appears as

minuend (see fig. 75).

These agreements must be remembered for the understanding of our charts,

where the isogons, whether they represent absolute angles a, (3 . . .or differences

of angle /3 a, are always numbered with positive numbers contained between

o and 64.

Two vectors which cut each other under constant angle will have the same

system of isogons, only with different numbers appearing on the isogons. The
difference will be zero, if the two vectors have the same direction, 32 if they have the

opposite direction, and 16 or 48 if they cut each other under right angle. Evidently
two opposite directions will have equal right to be called normal to a given direction.

We shall therefore agree to distinguish between these two directions by a rule of

signs, namely this :

From a given direction we pass to that of its positive normal by a rotation of

one right angle and to that of its negative normal by a rotation of three right

angles in positive direction.

It follows from this rule that when the vector B is directed along the positive

normal to the vector A, the vector A will be directed along the negative normal to

the vector B. Or in the notations (a) : The vector

(B,P) = (B,a+i6)

is directed along the positive normal to the vector (A, a). But then

(A, a)
= (A, /S-16) = (4, 18+48)

will be directed along the negative normal to the vector (B,0).
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156. Projections of a Vector; Scalar Product and Vector-Product. Let a

direction represented by the angle a be given everywhere in the field. We shall

form the projection A t of a given vector (F, <p) on this direction. This projection
will have the positive or the negative sign according as it points in or against the

direction represented by the given angle a.

The projection is given by

(a) A ,
= F cos (<p a)

We solve with respect to F, and to
<p

a

r =
7 -v <p a = arc cos ^r

cos (<p a) F

We tabulate F as function of the variables A , and <p a (first of tables K) . In

the same manner we should have tabulated <p a as function of F and A
t

. But as we
deal here only with the general principles, and not with the tables for practical

use, we shall give here and in several cases below only one table. The field of the

projection A x can then be found in two operations. By graphical subtraction we
form the field of the angle <p a. This field is placed upon that which represents
the scalar value F of the given vector. Using the first table K, we derive from

the curves <p a = const, and F = const., the field of the scalar A lt proceeding
as we have exemplified several times already for graphical operations with two
variables. In this, as well as in several of the following tables, each tabulated

number corresponds to different sets of arguments. The arguments on the left side

and above belong together, and so do the arguments on the right side and below.

In order to avoid mistakes it may be favorable for practical use to have two tables

containing the same tabulated numbers, but each only with one set of arguments.
We can now form the projection of (F, <p) on the positive normal to that direction

which is given by the angle a. For this projection we have

(6) A 2
= Fsin (<p a)

We solve this equation with respect to F

(60 F =
. f

2
,v

sin (<p a)

and tabulate F as function of A and
<p

a (second table K). Thus, in order to find

the field of this projection A 2 ,
we first form the same auxiliary field <p a as in the

preceding case, place this field upon that which represents the intensity F of the

given vector, and draw the curves A 2
= const, by use of the second table K.

By the two tables K we can thus solve a vector F into orthogonal components
A x and A 2 . We thus have the way open to bring coordinate-methods into applica-

tion when this should be desirable.

From expressions of the form (a) and (6) there is only one step to expressions

of the form

AB cos (/3- a) and AB sin (p-a)

i. e., to the formation of the complete scalar product or the complete vector-product
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of two-dimensional vectors. Tables K in connection with a table for graphical

multiplication will thus give the complete solution of the formation of these two

products.
It is easier to explain the graphical procedures by formulae and text than to

illustrate them by text-figures, for the text-figures can not be placed upon each other

on the illuminated drawing-board in order to make any two systems of curves

visible at once as if theywere drawn on the same sheet. This should be remembered

when studying the example given in fig. 76, which illustrates the formation of the

projection of the vector (F, <p) on the direction defined by the angle a. The chart A

Tables K. Projections of a vector (F, <p).

I. Table for
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Fig. 76. Projection of a vector.

A. Field of given vector (F, ip) represented by intensity-curves
F = 6, 7, 8, . . . (fine) and isogons <p

= 8, 4. o, 60 . . . (heavy).

B. Isogons of angle o =52, 56, 60, . . .

C. Isogons of angle a of the angles and of the difference <p a =16,
12,8,. . . (stippled).

D. Isogons ipa, intensity-curves F, and intensity-curves A =1,2,3,
... of projection derived by first of tables K.

E. Field of projection (.4, a) represented by intensity-curves -4 and
isogons a.



88 DYNAMIC METEOROLOGY AND HYDROGRAPHY.

Tables L. Graphical addition of mutually normal vectors.

I. Table for drawing the intensity field F =
\ A 2

-\-B
z
(B or A tabulated).

Intensity of

vector-sum.

F
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somewhat changed arrangement as to the sign of the tabulated numbers and the

arguments. For the scalar value of the vector (F, <p) which is the resultant of the

vectors (A , a) and (B, /3) we have

(a) F2 = A 2+B>

We solve this equation with respect to one of the given quantities A or B,

(a') B = 1 F3-A 2
, or A = VF*-B*

Both formula? lead to the same table, the first of tables L, where, according to cir-

cumstances we can consider F and A or F and B as arguments. By this table we can

thus derive the intensity-curves for the vector-sum from the intensity-curves of

the two orthogonal vector-addends.

In order to form the isogons of (F,<p) we have to remember that the vector

(5,j3) in some regions of the field may be directed along the positive and in others

along the negative normal to (A, a). In the two cases we shall have respectively

/3 a =16 and a = 48

with corresponding values of the angle <p a

<p a<i6 and <p a>48

The rectangular triangle will give for the determination of this angle in the two

cases respectively

(b) tg O-a) =
j and tg (<p-a) =

-j
We solve these equations with respect to one of the given quantities A or B, thus

(b') B = A tg (<p-a) and B = -A tg (<p-a)

A = B cotg (<p a) A = B cotg (<p a)

By suitable change of arguments all formulae can be represented by one table, the

second of tables L. This table allows us to derive the field of the angle <p a from

the fields of the two tensors A and B.

When the field of the angle <p a is found, we find by the graphical addition

(c) <p=(<p a)+ a

the field of the angle <p which represents the direction of the vector-sum.

The illustration of the procedure by text-figures would seem complicated, but

when the illuminated drawing-board is used, only four sheets of paper are required :

two contain the fields of the given vectors ;
a third is used for the field of the auxiliary

quantity <p a; on the fourth we draw directly the final curves giving the fields of

F and of <p.

158. Addition of Any Vectors. When the two given vectors (A, a) and (B, /3)

cut each other under a variable angle, the operation of determining their vector-sum

(F,<p) will depend upon four variables, A, a, B, 0. But the complex operation can be

decomposed into the following series of operations, each involving the use of two

variables.
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(i) By graphical subtraction we form the auxiliary field of the scalar /3 a

which represents the angle between the two given vectors.

(2) By graphical division (section 151) we form the auxiliary field representing

the ratio -r of the numerical values of the two given vectors.

(3) By the elementary properties of the triangle with the sides A
, B, and F we

get the following relation connecting the angle <p a with the known angle a and
. B

the known ratio -r

T>

We solve this equation with respect to -r and tabulate this quantity as function

of the two angles /3 a and <p a. Using this table, the first of tables M, we can

derive the field of the angle <p a from the fields of the two auxiliary quantities
T>

j8 a and -r.A
(4) By the properties of the same triangle we find the following relation which

F B
connects the ratio -7 with the ratio -r and the angle fi a,

() *= + '+! *.-)

We solve this equation with respect to -7 and tabulate this quantity with the ratio
-j

and the angle /3 a as arguments. This gives the second of tables M. Using this

F
table we can derive the field of the ratio

-j
from the fields of the two auxiliary quan-

tities /3 a and
-j.

When two numbers are given in the same place in the table,

the curve -7 = const, has two points of intersection with the curve /? a = const.

Both will have to be used.

(5) By graphical multiplication (section 150) we derive the field of the intensity
pF of the required vector from the fields of the ratio -7 and of the intensity A of the

given vector.

(6) By graphical addition we derive the field of the angle <p of the required
vector from the fields of the angles <p a and a.

It should be emphasized that as soon as we have drawn the first two systems
of auxiliary curves (1) and (2), we know the situation of all zero-points of the field.

Every singular point of a vector is a zero-point for its absolute value. The
resultant can be zero only in points where the two given vectors have equal magnitude
and opposite direction. Now the two given vectors have equal magnitude in the

Tf

points of the curve -r = 1
,
and opposite direction in the points of the curve j3 a = 32 .
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Hence it follows :

The singular points in the field of the vector-sum are the points of intersection

of the curves
T>

(c) p-a = 32 and -j= 1

On account of the ample information which the singular points give regarding
the field, it will be important to draw with as great care as possible these two curves.

In return much labor can be saved in other parts of the field, where few additional

data are required besides those involved in the knowledge of the situation of the

singular points.
Tables M. Graphical addition of any vectors.

I. Table for drawing the field of the angle between the vector-sum and the vector-addend A .



92 DYNAMIC METEOROLOGY AND HYDROGRAPHY.

The vector-addition will be performed according to the simplest law, that of

scalar addition or subtraction, in all points where the two given vectors have either

the same or opposite directions, i.e., in the points of the curves

(a)

(b)

a. i*

j8-o o

32

(i-a-o ,e
p.

Fig. 77. Easily accessible data on the field of the vector-sum.

A. First given vector (A, a).
B. Second given vector (B, 0).
C. Curves a = and a =32, and their points of intersection with the required curves <p =12, 8, 4.
D. Curves o =0 and a =32 and their points of intersection with the required curves F = 1 1, 10, 9, . . .

In all points of the first curve the vector-sum F will have the same direction as both

A and B,and a numerical value equal to their scalar sum. In all points of the second

curve the vector-sum F will have the same direction as the greater of the vectors

A and B, and a numerical value equal to their scalar difference. We can therefore
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with the greatest ease find all data regarding direction and intensity of the vector-

sum in all points of the two curves (a) and (b).

The curves (a) and (b) belong to the first set of auxiliary curves drawn for the de-

termination of the vector-sum, section 158 (i). While we draw the curve (a) we can

mark on it the points where it will be cut by the required curves <p
= o, 1, 2, . . .

for these will be the same points as those which serve for the determination of the

curve (8 a = o itself, namely, the points of intersection of the curve a = o with /3
= o,

of the curve ai with /3
=

1, of the curve a = 2 with /J
=

2, and so on (fig. 77 c).

In order to find the points where the same curve is cut by the required intensity-

curves F = o, 1, 2, . . ., we have simply to draw the short parts of the curves

A-\-B =
o, 1, 2, . . . which cut the curve (a) (see fig. 77 d).

In the same manner, while we draw the curve (b) ,
we can mark on it the points

where it will be cut by the curves <p
=

0, 1, 2, . . .
;
for these points will again be

the same as those points of intersection of the given curves a = const, and /3
= const,

which serve to determine the curve (b). We have to remark that the integer values

of <p which should be noted at these points will be those of a when A>B and

those of (8 when B>A. In order to find the points where the same curve is cut by
the intensity-curves F=o, 1, 2, . . .

,
we have to draw the parts of the curves

\AB\ = o,i,2, . . .
,
which cut the curve (b) (see fig. 77 d). Evidently the inter-

section of the curve A B = o with the curve (b) gives the singular points of the field

of the vector-sum. It should be observed that the curve B A = o is identical

with the curve -j
= 1

,
which we have used already in the preceding section for the

determination of the singular points. These points will divide the curve (b) into

distinct branches. As we pass a singular point the value of the angle <p will change

suddenly from <p
= a to tp

=
fi,

or vice versa.

Thus the investigation of the two curves (a) and (b) gives with great ease both

the situation of the singular points in the field of the vector-sum and in addition a

great number of points through which different curves representing the field of the

vector-sum shall pass. These data can be utilized in different ways, according
to the method otherwise used for finding the field of the vector-sum. If the method

given in the preceding section be retained, it will be important to remark that the

curves (a) and (b) will turn up again as the curves

(c) <p a = o

(d) <p-a = 32

in the auxiliary field of the angle <p a, which is found by the operation (3) of the

preceding section. The curve (c) will correspond to the curve (a) and certain parts

of the curve {b), the change in the correspondence taking place at the singular points.

160. Graphical Tables for Vector-Addition. Our first solution of the problem
of graphical vector-addition depended upon the decomposition of the general

problem with four variables into six partial problems each with two variables.

But if we use the method which we have developed in section 152 for three varia-
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bles, we can reduce to a smaller number of partial problems. The operations with

three variables which we shall have then to perform will join themselves directly to

those of the preceding section.

After we have drawn the curves

(a) (8 a = const.

we can pass directly to the determination of the angle ip a and of the intensity F
of the resultant by the formulae

...
4. / \ -B sin 03- a)

(6) tg (?-,)= A+B cqs (j8
_

ft)

(c) F2 = A*+B*+iAB cos (/3-a)

In each of these formulae we can give a a certain constant value and by the

principles of section 152 construct a graphical table by which we can find the points

in which this particular curve a = const, is cut by the curves for integer values

of <p a and of F. We then set off A and B as abscissa and ordinate of a rectangular

system of coordinates, and draw in the one case the curves <p a = const., in the

second the curves F = const, in this system of coordinates. It will be seen at once

that the first curves are simply straight lines through the origin of the coordinates,

the second ellipse with the origin of the coordinates as center and with the axes

forming the angle 8 (45 ) with the axes of coordinates. It will be convenient to

draw both systems of curves on the same diagram. Then we can read off simul-

taneously the situation of the required points for integer values both of <p a and

of F.

In fig. 78 we have drawn these diagrams for the values 13 a = 4, 8, 12, 16, 20, 24.

The radial lines <p a = const, are drawn in these diagrams for the interval 4. Thus
on the first diagram j8 a = 4 we have only two lines ip a = const., namely, the two

axes of coordinates. On the following we have 3, 4, 5, 6, and 7 of them respectively.

The ellipsae are drawn for unit intervals of the intensity F. The ratio of the axes

changes as we pass from the one diagram to the other. In the case of /3 a = 16,

i.e., at the curve where the vectors cut each other under right angle, the two axes

are equal to each other and the curves are circles. It will easily be seen that the

same diagrams may be used for the values 60, 56, 52, 48, 44, 40 of j3 a, taken in

connection with the values of <p a, which are written in brackets on the diagrams.

By use of these diagrams, including the first of figs. 101, p. 127, we can then find

the points in which the curves for integer values of <p a and of F cut 14 isogons

13 a = const. The points of intersection with the fifteenth and the sixteenth, viz,

(3 a = o and /3 a = 32, have been found already by the simpler method of the pre-

ceding section.

A great advantage of this method is that two draftsmen can cooperate. One

has before him a chart containing the three sets of curves A = const., B = const., and

(3 a = const. They may be copied on one paper, or they may be drawn on three

different papers which are placed upon each other on the illuminated drawing-board.

The other has the graphical table fig. 78 and a transparent paper placed upon it.
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Let it be required, for instance, to determine the points in which the curve 13 a = 20

is cut by the curves <p a = o, 4, 8, 12, . . . and by the curves F = 1, 2, 3, 4, . . .

The first draftsman then observes the connected values of A and of B along the curve

/3 a = 20, and dictates that it cuts the curve A = 1 in the point where B = B lt the

curve A = 2 in the point where B =B2 ,
etc. The second draftsman then draws

point by point the corresponding curve on the transparent sheet placed upon fig. 78.

Then the second draftsman follows the course of the curve which he has drawn, and

dictates to the first that it cuts the curve F = 1 at the point where A=A,, the curve

F = 2 at the point whereA=A 2 . . ., the curve <p a = o at the point where A=A'Q .

the curve <p a = 4 at the point where A=A\, . . . . The first draftsman then

marks these points on the curve /3 a = 20 on his chart, using different kinds of

marks for the curves F = const, and <p a = const., and adding the numerical values

of F and <p a. When this is repeated for a sufficient number of curves /8 a = const,

we shall get a complete set of points determining the course of the curves F = const,

and <p a = const.

From the set of curves <p a = const, we finally pass, by the graphical addition

(<p a) + a =
<p, to the curves representing the required angle <p.

When we compare with the method of section 158, we see that the use of the

graphical tables replaces the performance of the separate graphical operations

(2 )> (3). (4). (5)- Only the simple graphical subtraction(i) and the graphical addi-

tion (6) are retained.

161. Complete Resultantometer. While the method of section 158 required
the drawing of four auxiliary systems of curves, besides the fifth and sixth, which

represent the result, we succeed by using the graphical tables in arriving at the

result by drawing only two auxiliary systems of curves. By introducing a still

more complete auxiliary, a complete machine for vector-addition, we can completely
avoid the drawing of auxiliary systems of curves.

Instruments for adding vectors can be constructed in various ways, each having
an advantage according to the special form in which the problem presents itself.

Fig. 79 shows a convenient construction for our purposes. We draw parallel and

equidistant lines on two circular transparent sheets and concentric circles on one

of them. The sheets are laid upon each other, so that the upper is free to slide inside

the divided brass-ring C, while the lower is mounted in a brass-ring which can slide

outside the ring C. This ring contains the divisions o to 63, which represent the

angles. When the instrument is to be used on our charts in conical projection, the

ring C is attached to the rule R, which passes through the point of convergence of the

meridians. (Compare the integration-machine of fig. 62 .) The divisions of the circle

C will then always show the true directions relatively to the meridians on the chart.

For the practical use of the instrument it will finally be useful to have two screws

by which we can attach either of the divided sheets rigidly to the ring C and thus

give the lines of the fixed sheet an invariable direction relatively to the meridians of

the chart. The two sheets are perforated at the center, in order to make it possible

to set marks on the paper underneath by use of a pin or a sharp pencil. All lines are
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engraved on the upper side of the lower sheet and on the under side of the upper
sheet. When using the instrument it will be best to have illumination from below.

Otherwise the pictures seen will be blurred by the shadows which the lines will throw

on the paper.

Fig. 79. Resultautometer.

When one of the divided sheets is made to rotate relatively to the other, the

two sets of parallel lines produce parallelograms of all possible shapes. The inter-

section of the lines gives at the same time equidistant divisions on each line, which

can be used for measuring the lengths which shall represent the scalar values of the

given vectors. In this manner we use a variable unit length, which varies with the

angle between the lines. This is a great advantage, for we get automatically the

construction performed on a large scale in the difficult case in which the given vectors
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are nearly equal and oppositely directed. The direction of the resultant is read off

on the divided circle C. In order to read off the intensity of the resultant on the

same scale as that used for the components, we follow the circles from the point at the

end of the resultant to one of the central lines of the one divided sheet.

The discontinuous use of the instrument will be understood at once. If the

directions of the given vectors are represented by vector-lines, the two divided

sheets are adjusted so as to be tangential to one line of each set. If the directions

are given by isogons, the adjustment of the sheets is made by use of the divided

circle C. In this case it will not be necessary to place the instrument on the chart.

Two workers can cooperate. One manages the instrument, while the other reads

off from the chart the given data and introduces the results on it.

Continuous use of the instrument will also be possible. We can then go

along an isogonal curve, having the one disk fixed in the angle represented by the

isogon, while the other is turned according to the value of the angle represented

by the other set of isogons. The intensities of the two vectors are observed, and

thus by short steps we can follow the variations of the angle and the intensity of the

resultant and mark the points where integer values occur. But this work will

require keen attention.



CHAPTER IX.

GRAPHICAL DIFFERENTIATION AND INTEGRATION.

162. Different Forms of the Problems. We shall meet with problems of

graphical differentiation in a variety of forms, each requiring the development of

special methods and auxiliaries. The problems will take different forms according
as space or time derivations should be performed. The pure space-derivations will

depend upon measurements performed upon a chart which represents the given
field at a given epoch. The time derivations will involve a comparative investiga-
tion of two charts which represent the fields of the same quantity at two different

epochs. We shall consider first the space-derivations and afterwards the time-

derivations.

The space-derivations will present themselves in different forms, requiring
different methods and auxiliaries according as they depend upon the measurement
of lengths or of angles. We shall consider first the angular or directional and then the

linear differentiations. To each problem of the differentiation will correspond a

problem of integration which in the elementary cases will cause no difficulty as soon

as the problem of differentiation is solved.

163. Directional Differentiation and Integration. Let a system of curves 5 be

given; by their tangents they define a system of directions. It is required to find

the angle <p which gives the direction of the tangents, i. e., we shall draw the

isogonal curves which represent the field of this angle. Evidently this is a problem
of differentiation which is inverse to the problem of integration, consisting in the

drawing of the vector-lines to a given system of isogons. This drawing of the isogons
to a given system of curves can be performed with a certain degree of precision by
eye-measure, but a simple auxiliary instrument will be of great use. A transparent
circular sheet (fig. 80) can slide in a ring, which has the divisions o to 63 or a

certain number of these divisions. On the sheet is drawn a diameter and a set of

lines parallel to it. Millimetric distance between them will in most cases be con-

venient. The ring is guided so that it has invariable orientation relatively to the

system of coordinates. Thus if cartesian coordinates are used, the ring is guided so

that it can perform any motion of translation without rotation. In the case of our

charts in conical projection the ring is attached to the rule R, which always passes

through the point of convergence of the meridians. (Compare fig. 62.) The sheet

has a small perforation at the center, which allows us to mark the points where the

desired values of the angle are found.

The sheet is guided in such a way that its center (the hole) follows one of the

given curves. During the displacements it is turned so that the diameter remains

tangent to the curve. The adjustment to tangency will be very much assisted by
the lines which are parallel to the diameter. Whenever the diameter points to

99
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one of the integer divisions on the ring we make a mark on the curve through the

hole. In this manner the disk is guided along the given curves, and marks are

made where the required isogonal curves should intersect them. Afterwards these

isogonal curves can be drawn continuously. If they are made to pass precisely

through the points marked they will always show oscillations in their course, due to

the unavoidable errors accompanying the drawing of the given curves and the use of

the differentiating instrument. But these irregularities are easily smoothed out

on the final drawing of the curves.

It will be important to remember that the curves which we obtain by this

instrument can be numbered so as to be the isogons of the curves 5 themselves,

or so as to be the isogons of the curves which are normal to the curves s. We pass

Fig. 80. Divided sheet for directional differentiation.

from the isogons of the curves 5 to those of their positive normal curves by an addi-

tion of 1 6, to those of their negative normal curves by an addition of 48 to the

numbers which the isogons have when they represent the curves s.

We have treated already (Chapter VII) the problem of integration which is

inverse to the directional differentiation. Evidently the sheet of fig. 80, by which

we perform the differentiations, may also be used to assist the integrations; and

the integration-machine of fig. 62 or 63 can be considered as intrinsically the same

instrument as that of fig. 80, only provided with special devices for facilitating the

practical work connected with the integration.

164. Linear Differentiation and Integration. Let the scalar a have a definite

value at every point of a line s; i. e., let a be a function of the length of arc 5

(a) a = a(s)
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We represent this function by marking the points where it has certain integer values,

aOI a,, a2 ,
. . . a, a +I ,

. . . The expression
"
integer

" must be taken in the same

generalized sense of the word as before (section 147). The differences between the

values of a in consecutive points will then also be expressed by "integer" numbers,
and they must be small enough to be considered as differentials, da = a +t an .

The distance between the points will be the corresponding differentials of line ds, and
the problem of differentiation will consist in forming the values of the quotient

(b) <p(s)
= d

ds

at the different points of the line s.

Fig. 81. Divided sheet for linear differentia-

tion and integration. (Measurement of recipro-

cal lengths.)

In order to construct a convenient auxiliary for the formation of the value of <p

in one operation, we solve equation (b) with respect to da

(c) da =
ipds

We measure off <p x along the axis of abscissae and ds = y along the axis of ordinates

of a rectangular system of coordinates. To each positive or negative integer value

of da, viz, da =
. . . 2, 1, o, 1, 2, . . . will then correspond an equilateral

hyperbola xy = const. The diagram of fig. 81 contains these curves together with a

number of ordinates, one for each millimeter. Now let a value of the differential

da be given, say da =
4. The abscissae of the hyperbola da = 4 then gives the values
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of (p corresponding to the line-element ds measured off as ordinates. If the length

of this element is given, we can read off on the axis of abscissae the corresponding

value of the ratio <p
=

-j-
. Instead ofmeasuring the length (fabetween the hyperbola

4 and the axis of abscissse, we can also measure it between the two symmetric hyper-
bolae da = +2 and da = 2. This will as a rule be preferable.

For practical use we engrave the diagram on the under side of a transparent

sheet of celluloid, and cut a narrow slit in this sheet along the axis of abscissae. The
slit should just be broad enough to make it possible to make marks with a sharp

pencil on the paper below the sheet. The sheet is placed so that the line-element ds

is parallel to the ordinates of the sheet. In the case da = 4 it will have one end-point
on each of the two hyperbolae da = +2 and da = 2. The reading on the axis of the

abscissa gives the value <p
=

-j- ,
which the derivative has in the central point of the

line-element ds. This point can be marked through the slit. It will be clear how
different hyperbolae should be used according to the occurring values of the differ-

ential da. The procedure is illustrated by the upper line of fig. 82, where the points

for integer values of the function a are marked on the upper side of the line, while

the values determined for the derivative are noted on the under side.
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Fig. 82. Linear differentiation or integration.

When the line-elements ds are short, a small error in the placement of the points

where the given function has integer values will cause great errors in the values

of the derivative. It will then be an excellent method of reducing these errors to

measure two or more elements simultaneously. Thus if the points for all integer

values a = 1, 2, 3, . . . are given, we measure the corresponding elements two by
two between the hyperbolae + 1 and i

;
or we can measure them four by four

between the hyperbolae +2 and 2, and so on.

As it is seen, the direct use of the sheet gives the derivative at points where it

has all sorts of fractional values. But it will be easy afterwards by interpolation

to find the points where the derivative has certain integer values. In the example
of fig. 82 these points are marked on the lower line.

We can now treat the inverse problem, the linear integration. Then let the

function <p(s) be given. The problem is to determine any function a(s), which is

in the relation to the given function <p which is defined by equation (b) or (c) . Evi-

dently this can be done by the same divided sheet. For the sheet at once gives those

lengths ds to which integer increases da will correspond. The process of integration

must begin at a certain initial point s = s and we presume that at this the required

function has a given value a = a .

Now let the value of the given function in the region of this initial point be

<p
=

<p . In order to find the point where a has the value a +4 we set off from the
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initial point a length ds equal to the ordinate which the hyperbola da = 4 has for

the value <p of the abscissa. Using the value <p
=

<p, which <p has in the region of

this new point, we measure off in the same manner the length ds, which leads to the

point where a has the value a +8, and so on. Inasmuch as a is integer, we find

in this manner points for integer values of the function a. If we wish to proceed

by other steps da, we use other hyperbolae.

The marking off of the successive points can be made without removing the

sheet from the paper. Thus in the case of da = 4 the sheet is placed with the hyper-
bola 4 on the point from which the length ds is to be measured. The new point can

then be marked through the slit in the sheet.

We have spoken above of the value which the given function <p has in the

"region" of the point from which the length ds is to be measured. This "region"
will have a maximal extent equal to the length of the line-element ds. The use of

one value or another of <p from this region will give no appreciable difference in the

lengths ds obtained, if these lengths are sufficiently short; but the greater the

lengths ds used, the more important it will be not to choose an arbitrary value

of <p in this region, but the average value of <p along the element ds. As the approximate

length of ds is seen at once, it will cause no difficulty to find a sufficiently approximate
value of this average value of <p, and to use it for the final determination of ds.

Evidently the function a(s) which we determine by the process described will

be that which is expressed analytically by the integral

(d) a = a -\- ( <p(s) ds

Fig. 82 can be used to examplify this graphical integration. We then consider

the divisions <p
=

5, 4, 3, . . .on the lower line as given, and find by use of the

divided sheet the divisions a = 12, 16, 20, . . .on the upper line.

165. Application to Two-Dimensional Scalar Fields. The application of the

described process of linear differentiation to scalar fields in two dimensions will be

the most important graphical differential operation. It will return in most of the

more complex differentiation-problems.

Let the two-dimensional scalar field be represented by a system of equiscalar

curves

(a) a = aQ a =
a, a = a2 . . .

where ao; a,, a2 ,
. . . are integer values in the widened sense of the word as

defined above. Let further a system of curves s be given which cut through the

field. (Compare fig. 83.) The scalar a will then have a definite value at each point

of a curve 5. On each of these curves the scalar a will appear as a function of the

length of arc 5. We can therefore perform a linear differentiation along each curve s,

using the divided sheet as described in the preceding section. In this manner we
find the value of the derivative

(6) * =
ds
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at a great number of points. Afterwards we can draw curves for integer values of <p,

and thus arrive at the common representation of the field of the scalar <p, which is the

derivative of the scalar a.

In the way described we arrive at the field of tp by a discontinuous process.

But it can be changed at once into a continuous one. Instead of moving the differ-

entiating sheet alongthe curves s, we move it along the curves a = const., andmeasure

the line-elements which are contained between two curves a = aa and a = a, . When
we come to places where the element ds is seen to give one of the required integer

values of <p we make a mark through the slit of the sheet. In this manner we mark

points through which the required curves for integer values of <p are to go. After-

wards these curves can be drawn continuously through the points determined.

Vice versa the problem of determining the field of a when that of <p is given, *. e.,

the problem of integration, will be determinate when an initial value of a is given at

Fig. S3. The curves 5 are represented by thick lines with arrow-heads; the curves = 12, 11, 10, .

da
continuous lines; and the curves (f= =

. . . 2, 1, o, 1, 2, . . . by stippled lines.
as

by fine

one point of each curve s, for instancewhen an initial curve a = a is given. The meas-

urements which are to give the values of a at other points can be performed along
one after another of the curves 5 as described in the preceding section. Or they can

be performed first along the initial curve a = a in order to determine the points of

the next curve a = a, ;
then along this second curve in order to determine the next

curve a = a2 ,
and so on. Both methods are continuous.

It will much facilitate the drawing of the field of the derivative to observe that

the curve <p
= o can be drawn at once, without any use of the differentiating sheet;

for evidently this curve will pass through all the points of tangency of the curves 5

with the curves a = const., including the points of maximum, minimum, or maximum-

minimum, at which the curve a = const, is reduced to a point or cuts itself. Vice

versa we conclude that when the field of <p is given, and that of a shall be determined

by integration, the curves a = const, must have tangency with the curves s at the

points where these curves are cut by the curve <p
= o.
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As we shall make an extensive use of the process of differentiation described, it

will be important to direct the attention to the character of the errors which will

enter, and the methods of diminishing their influence. Let us for this purpose con-

sider the derivatives of the two fields which are given by fig. 84 a and b. In both

cases the lines a = const, have the same general course and the same average distance

from each other; but on the first figure the distance varies in a regular way, and

in the second it shows small irregularities in its variations. The curves which repre-

sent the field of the differential quotient are then seen to be very different in the

two cases. In the first case they have a regular course, while in the second they show

great sinuosities.

Now a free off-hand drawing which should represent a field as that of the first

figure will in consequence of the unavoidable errors get more or less the character

of the second figure. Thus the irregularities in the drawing of the given field will cause

oscillations in the course of the curves representing the field of the derivative. But as the

oscillations will go equally to both sides, they will be easy to reduce afterwards.

Fig. 84. Regular course (A) and oscillating course (B) of the curves representing the differential-quotient f =
ds

A good method of diminishing them from the beginning will be to measure the line-

elements not one by one, but two by two or even more of them at a time. On the

divided sheet we can always find the proper hyperbolae for doing this. But the final

correction will always consist in reducing those sinuosities which are seen to arise

from errors in the drawing and not from the true nature of the given field. By this

correction a posteriori of the field of the derivative, we get a determination of this

field which by far exceeds the accuracy of the single measurements upon which the

process of differentiation depends.
For the process of integration, the irregularities in the drawing of the given

field will cause no errors of greater importance. The process of integration itself

involves a formation of averages, by which the consequences of the irregularities

in the drawing are reduced.

166. Other Forms of the Problem of Linear Differentiation and Integration.

Instead of constructing an auxiliary sheet for the determination of the differen-
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tial quotient itself, ,
of a given function a, we can construct a sheet for the

as

determination of any function of this differential quotient

(a) '-'()
The sheet which allows us to derive this function <p(s) from the given function a (s)

will also allow us to solve the corresponding problem of integration, viz, when <p(s)

is given to determine the function a (s) which is defined as function of <p by the

differential equation (a) .

In order to construct this auxiliary sheet we solve equation (a) with respect to

and obtain -=- = F(<p) or

ds

ds

(b) da = F(<p)ds

As in the preceding case, we consider <p
= x as the abscissa and ds = y as the ordinate

of a point, and construct the curves F(x)y = .. . 2,-1,0,1,2,. . . to positive or

negative integer values of da (fig. 85).

When a value of da and a value of ds

are given, we have a certain curve given
on the sheet and a certain ordinate be-

longing to this curve. The correspond-

ing abscissa then gives the value of the

function <p
= f ( -^ )

. This gives the
\dss

solution of the problem of differentia-

tion. If on the other hand tp (s) is given
the corresponding ordinate up to a cer-

tain curve, da gives the length ds, for

which we have a certain integer increase

in the value of the required function a.

This leads to a method of determining

step by step a series of points at which

the function

_flda.
ds

Fig. 85. Divided sheet for determination of the field of a

function /

to a = a + I F(<pls))ds
** So

has given integer values. The procedure is precisely the same as in the preceding case.

We shall consider only one simple example. Let /(^~)
= - We shall then

determine

that is, we shall determine simply the lengths ds between the points where the func-

tion a has the integer values 1,2,3,. . . Corresponding to equation (b) we then get

ds
to da

<P
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If we consider <p
= x as abscissa and ds = y as ordinate, the constant values

of da give straight lines - = const, which pass through the origin of the

coordinates. Fig. 86 contains these lines for "integer" values da =

2.10-1,
i.io-1

, o, no-1
, 2.io

_1
. . . We get the well-known sheet

for direct measurements of lengths. When the line-elements are

short, it will be convenient to measure them two by two between

the lines da = + iio~'and da = i.io
-1

. The abscissa will

then give the length in ten-fold enlargement, with a corre-

sponding increased accuracy of the reading. Longer
elements can be measured without any enlargement

by use of the lines da =

167. Curves of Equal Intensity and Curves

of Equal Transport. In order to give an

example of the use of this sheet, we shall

treat the following problem: to draw

curves for equal transport when the

vector-lines and the intensity

curves of a vector are given.

The curves of equal trans- /
port will be determinate

Fig. 86. Divided sheet

for direct length-measure-

ments.

only when the vector-

bands have been chosen

(section 119). If we make a

perfectly arbitrary choice of

these bands, letting narrow and
broad bands follow each other in

an irregular way, the curves of equal

transport will get an oscillating course,

see fig. 84 b. In order to get simple curves

of equal transport, we must therefore first make
a careful choice of the vector-bands. A simple way
of doing it will be to draw an arbitrary initial curve
C of regular shape, to divide it into elements ds' accord-

ing to a continuous law, and then to draw vector-lines

through the points of division. As a rule, we shall divide

the curve C into elements through which there goes unit trans-

port ;
that is, A '

being the value of the vector at the points of

the curve C, and dn' the projection of the elements ds' of this curve
on the normal to the vector-lines, we determine these elements so that

for each of them

(a) A' dn' = 1
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(see fig. 87). This principle for dividing the curve C into elements has the advan-

tage that it at once leads to the determination of the bands of unit transport in the

cases where the vector is solenoidal.

The vector-bands being chosen, we know that the transport T is given by the

product

(b) T = A dn

A being the intensity of the vector and dn the breadth of the band. In order to find

the field of the scalar T, we have first to form the field of the line-element dn. This

is done by making continuous use of the divided sheet for direct length-measurements

0.5 OJt 0.3

Fig. 87.

A. Vector curves 5 (with arrow-heads) and intensity curves A = 10, 9, 8, 7, . . . (fine continuous lines).

B. Vector curves s (with arrow-heads) and curves of equal transport T= 1.1, 1.0,0.9, (fine continuous lines).

(fig. 86). The curves n along which the line-elements dn should be measured need

not be drawn; for the sheet can with the same ease be placed with its ordinates

normal to as parallel to the given curves s. Afterwards the graphical multiplication

of the field of dn by that of the intensity A gives the field of transport T, correspond-

ing to the vector-bands. When the elements of the initial curve C fulfil the con-

dition (a) this curve will appear as the curve T = i in the field of transport.

That the use described of the divided sheet is a process of differentiation from

the analytical point of view is thus seen : The choice of vector-lines by the division

of the initial curve C into elements corresponds to the choice of a continuous scalar

function a which has these vector-lines for equiscalar curves 01=1,2,3, . . . T
will then be expressed by the equation :

(&') T = Ad̂a

where da = 1 for the chosen interval between the successive curves.
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If we wish to return from the field of transport to that of intensity of the vector

A
, we have to use the formula

(c)

or corresponding to (&')

(O

a = r-i
dn

a rpda
dn

We then use the common differentiating sheet for forming the field of }- or ~r- and

afterwards perform the graphical multiplication of this derivative with the scalar T.

168. Differentiations of Higher Order. Curvature and Divergence of a System
of Curves. The processes described of directional or of linear differentiations can

be repeated any number of times. By use of the auxiliaries which we have described

(fiS^rSafe

Fig. 88. Positive and negative curvature

of a curve.

Fig. 89. Positive and negative divergence of a system of

curves.

we can thus form a derivative of any order. In precisely the same manner the process
of integration can be repeated, and will then lead back to the primary function from

a derivative of any order.

A case of special importance is that in which a directional differentiation is

succeeded by a linear one.

In order to consider this case let us suppose that a system of curves 5 is given.

By directional differentiation we can derive the angle a which represents the direction

of the tangent to these curves and represent the field of this angle by the isogonal

curves

(a) a = const.

Upon the field of the scalar a we can perform a linear differentiation, which will

then show the variation from place to place of the angle a. Let this linear differentia-

tion be performed along the direction of the originally given curves ^ themselves.

This derivative

< <
- 1

represents the change of direction of the tangent per unit length along the curve, i. e.,

the curvature of the curves s. The differentiation can be performed as described

in section 165 by use of the divided sheet of fig. 81, and will give the field of curvature

of the given system of curves 5.
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It must be remarked that (b) defines curvature as a quantity which has a

definite sign. This sign depends on the direction for the positive increase of the

angle (sec. 155), and the positive direction along the curve 5. It is seen at once

that the rule of signs can be given in this form :

An element ds of a curve has positive or negative curvature according as it determines

positive or negative circulation on the osculating circle (fig. 88).

mm
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Or, let the linear differentiation be performed along the direction of the normal

n to the curves s. This derivative

(c) h=fan
will represent the change of direction per unit length when we proceed normally

from curve to curve instead of tangentially along one and the same curve s. It there-

fore shows how the different curves 5 diverge from each other. Equation (c) gives
the field of divergence of the given system of curves s. This field can also be found

by use of the divided sheet of fig. 81, and it will not be necessary to draw the normal
curves n, as the sheet can be placed with the same ease both with its ordinates

normal to and parallel to the given curves s.

When we remember our definition of the positive normal n to a given direction

s (section 155) we see that formula (c) contains the following rule for the sign of the

divergence <5:

Divergence of a system of curves will be positive or negative according as they

appear to an observer looking in the positive direction of the curves to

diverge or to converge (fig. 89).

As will be seen at once, there is a close relationship between the fields of diver-

gence and of curvature. The field of divergence of a system of curves is the field

of curvature to the normal curves, and vice versa the field of curvature is the field

of divergence to the normal curves.

The derivatives (b) and (c) are derivatives of the second order in reference to

the originally given system of curves. The two successive operations, consisting in

a directional and a subsequent linear differentiation, can be combined into one which

represents a differentiation of the second order and which can be performed by the

divided sheet of fig. 90. This sheet contains a set of concentric circles with integer
values (multiplied by a power of 10) of the curvature, i.e., integer reciprocal values

of the length of the radii and a set of divergent radii with equal and small angular
intervals. For continuous use the sheet is perforated at the points of intersection of

the circles with the central radius.

This sheet can be placed directly upon the field of the system of curves S origin-

ally given. In order to find the field of curvature (fig. 91a) we place it with the circles

tangential to and the radii normal to the curves 5. One after another of the curves 5

is followed, and the points are marked where these curves give complete osculation

with one of the circles of the sheet. In order to find the field of divergence (fig. 91 b)

we place the sheet with the circles normal to and the radii tangential to the curves s.

One after another of the curves 5 is followed, and the points are marked where the

circles osculate the normal curves, i. e., the points where one of the circles is normal

to the curves next to the considered curve s. As a supplementary condition we
have that the radii shall be tangential to the curves at the points where these radii

are cut by the circles.

169. Partial Derivatives; Ascendant and Gradient. The two-dimensional

scalar a is a function of two coordinates which figure as independent variables.
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Now let us consider the curves 5 as the one set of coordinate-curves. The deriva-

tive of a scalar a with respect to 5 will then be the one partial derivative of the

dependent variable a. It is a special case that the curves 5 are parallel and equi-

distant straight lines. If we use two such systems of lines which are normal to each

other, and call the length of arc along the one set x, and along the other set y, the

two partial derivatives will be

(a) F* = py
=

?x 2y

The fields of these partial derivatives can be determined by use of the divided sheet

of fig. 8i.

The two partial derivatives are the rectangular components of the ascendant

F of the scalar. As we have shown already (Statics, section 17), this vector is

directed along the normal n to the equiscalar curves a = const., and is numerically

equal to the derivative of a with respect to the length of arc n measured along the

normal curves

(b) F =
ân

In order to abbreviate we shall introduce here a useful notation. The fact that

the vector F is in the defined relation to the scalar a will be expressed by the single

vector-equation

(c) F = Va
This equation is by definition equivalent to the two scalar equations (a), and in

the case of the three-dimensional field it will be equivalent to three such equations.
A vector G of the opposite direction

(d) G = -Va
represents the gradient of the scalar a.

The field of the ascendant or of the gradient can be found by algebraic methods

(section 157) from the fields of the two rectangular components; but it can also be

derived directly from the field of the given scalar a. This direct method will involve

separate determinations of the direction and of the magnitude of the vector.

The vector-lines can be drawn at once as normal curves to the equiscalar curves

a = const. If we wish to have the direction represented by isogons, we have to use

the directional differentiation described in section 163, and to give the isogons such

numbers that they represent the direction of the normal curves n, not of the equi-
scalar curves a = const.

The intensity-field of ascendant or gradient are found by use of the differentiat-

ing sheet of fig. 81 in accordance with formula (b). The field will contain no zero-

curve. It will only have zero-points at the points of maximum, minimum, and
maximum-minimum of the scalar a. These zero-points will be singular points of

intersection of the vector-lines as well as of the isogons. As points for absolute

minimum of the scalar value of the vector they will be surrounded by closed curves

of equal intensity. The drawing of the field is therefore very much facilitated by
the circumstance that these zero points are given beforehand.
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Fig. 92 represents the ascendant of the same field of which fig. 83 represents
a partial derivative.

From the field of the ascendant (a) we can derive that of any other derivative

caF
*-Isw

as we have

(J) FS
= F cosd

where is the angle between the directions n and 5. This algebraic method of

finding the partial derivative Fs will be convenient if the direction of the ascendant
F is represented by isogonal curves <p

= const., and the direction of 5 by isogonal
curves a = const. We shall then pass from the field of F to that of Fs by the follow-

ing operations (compare sections 149, 156).

(1) By graphical subtraction we form

the field of the angle 6 =
<p a. In the

drawing of these auxiliary curves special

attention should be attached to the drawing
of the curves 6 = 16, and 6 = 48, which will

be curves Fs
= o in the resultant field.

(2) By use of these auxiliary curves and

the curves F = const., we derive the field of

the scalar value of Fs according to equation

(c) by use of the first of tables K.

By this process we can thus derive the

partial derivative of fig. 83 from the ascen-

dant-field of fig. 92.

If we know the field of the ascendant or

the gradient and the value of the scalar a at

a single point, we can reconstruct the field of

the scalar a. The simplest method will be

this: We first perform a linear integration

along the particular curve n which passes

through the point where we have the known value of a. By this integration we
find a series of points through which equiscalar curves representing the required

integer values of a shall pass. Through these points we may then by directional

integration draw the curves a = const., normal to the vector-curves of the ascendant

or the gradient.

170. Divergence of a Two-Dimensional Vector. We have considered already
the "transport" in the two-dimensional field (section 119), i. e., the integral of

the normal component A n of a vector taken along a curve.

(a) jA H ds

In the special case of a closed curve the transport directed outward was called the
"
outflow

"
out from the area limited by the curve.

Fig. 92. Scalar field a = i2, n, 10, . . . (fine con-

tinuous lines), vector-lines of the ascendant

(thick lines with arrow-heads), and intensity-

curves of the ascendant (stippled curves).
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This outflow has a simple additive property. Let the considered area be divided

by a line into two parts (fig. 93). The transport through the dividing line will then

appear in the expression for the outflow out of each part. But in the sum of these two

outflows this transport will drop out, as it represents the transport out of the one

and into the other area. The sum of the outflows out of the two parts will therefore

be equal to the outflow out of the total area. As each part can be divided again,

and so on, we get the general result that the outflow out

of all the parts into which an area can be divided will

be equal to the outflow out of the total area. We sym-

bolize this result by the equation

(b) fAds =
VJA n ds

the first member being extended to the contour of the

total area, and the integrals in the second member being

extended to the contours of all the parts into which the total area has been divided.

The division may be continued indefinitely. The areas of which the contours

appear in the second member of equation (b) may therefore be considered as elemen-

tary areas da. As they can have any form let them be limited by the two elements

ds and ds' of two vector-lines, and by the two elements dn and dn' which are normal

to these lines (fig. 94) . The outflow will be the difference between the transport^ 'dn'

and Adn through the latter elements,

(c) A'dri - Adn

Here A '
will vary as we proceed along a vector-line s, and the same will be the case

with the normal distance dn' between the two vector-lines. We may then consider

these quantities as functions of 5 and use the developments

A' = A+ 9
-^ds3s

dn' = dn-\--~ds
2s

dn\

ds

Fig. 94. Fig. 95-

When we introduce this and disregard quantities of the second order we get as

expression of the outflow
3A , , ,

. 3dn ,

dsdn+A r-ds
CO Ci

or, when we separate the factor da = dnds which represents the area of the element,

we get the expression of the outflow in the form

(2A ,

. 1 2dn\ ,
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We have thus expressed the outflow through the contour of an elementary area as

the product of the area of the elements and a factor which must then represent
the outflow per unit area. We shall call this outflow per unit area the two-dimensional

divergence of the vector A and introduce the notation

fj\ j- a ĉ
1 a x ?dn

{d) dl^A= ^+A -dn^
We can now write every term in the sum which forms the second member of

equation (b) in the form divider. The sum then takes the form of an integral
extended to all the elements of area da; that is, we get the formula

(e) jA nds = fdiv2A do-

or expressed in words :

The integral of the normal component of a two-dimensional vector taken around

a closed curve is equal to the integral of the two-dimensional divergence

of this vector taken over the area bordered by the closed curve.

The two-dimensional divergence, or the outflow per unit area, can be found by
a process of differentiation given by equation (//). The last term has a simple

geometrical sense. As dn represents the elementary distance between two curves

cdn
s, the derivative will evidently represent the elementary angle da between the

C S

tangents of two curves s which have the distance dn from each other (see fig. 95).

Thus we get , ,&
1 ddn _ da _

(f) dn 9s
~
dn

~

where 8 is the divergence of the system of curves 5 as defined in section 168. Thus
the two-dimensional divergence of the vector A can be written in the form

(g) div2A=
S-+A8
cS

where 8 is the divergence of the vector-lines. When in this formula we give the

vector A the constant scalar value 1, we get div. A 8, which shows that the diver-

gence of a system of curves is equal to the divergence of a unit vector which has

these curves as vector-lines.

By formula (g) we have reduced the construction of the field of divergence of a

two-dimensional vector to graphical differentiations which we have performed

already. We shall find it by the following series of operations:

(1) We perform the graphical differentiation of the intensity-field of the given
vector with respect to its vector-lines. (See fig. 83, where we can interpret the

curves .s as the vector-lines and the given scalar field as the intensity-field of the

given vector.)

(2) We form the field of divergence of the vector-lines, using either of the two

developed methods according as the isogons of the vector or the vector-lines them-

selves are given. (See section 168.)

(3) We perform the graphical multiplication of the intensity-field of the vector

and the divergence-field of its vector-lines.
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(4) We perform the graphical addition of the two fields obtained by the

operations (1) and (3).

The construction described will be of great importance for the kinematic

diagnosis of air- and sea-motions.

Other expressions of the divergence will also be useful. If the vector-lines

happen to run at an invariable distance dn from each other, we shall have the

divergence of the vector-lines equal to zero, and the divergence of the vector will

SA
be given by one term only, . Now, when we express the field of the vector A by

3s

the fields of its two cartesian components A x and A y ,
the component-fields have

straight and parallel lines of flow. The divergence of the two component-fields
SA 2A

will be respectively
- and - and their sum will give the divergence of the

Sx Sy
resultant field.

(*) div2A - Ms+
3A>

Sx Sy

When the fields of the rectangular components A x and A y are given, this expression

gives a simple construction of the fields of divergence. By graphical differentiation

SA ^a
we form separately the fields of - - and of - y

,
and then by graphical addition that

Sx Sy
of div 2A.

Inasmuch as coordinate-methods should be used on our charts, it must be

remembered that the meridians are not equidistant coordinate-curves. The diver-

gence of the meridians must be taken into account when the divergence of a

velocity-field should be formed separately from charts of the south-north com-

ponent and of the west-east component of the wind.

171. Divergence of a Vector in Space. The two-dimensional divergence which

we can represent on our charts will have its importance as part of the three-dimen-

sional divergence of that vector in space of which the two-dimensional vector is a

component. We shall therefore also consider the divergence of a vector in space.

Transport in the vector-field in space is represented by the surface-integral

of the normal component of the vector

(a) j
Ada

In the case when the surface a is closed the transport will represent the outflow

of the volume bounded by the closed surface (see section 1 1 1 ) .

If we divide a given volume into any number of parts and form the sum of

the outflows out of each part, the transport through the dividing surfaces will

cancel, and we find that the outflow in three dimensions has the same additive

property as it has in two dimensions. This property can be expressed by the formula

(b) JAda
=
?,JA nd<j

where the integral appearing as the first member is extended to the limiting surface

of the total volume, and the integrals appearing in the second member are extended

to the limiting surfaces of the different parts into which the total volume is divided.
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Now let the total volume be divided into elementary volumes, consisting of

infinitely short trunks of infinitely narrow vector-tubes. There will be a transport

only through the surface-elements da and da' which form sections of the tube (fig. 96).

These sections being normal, we get the transport through them equal respectively
to Ada and A'da', and the outflow equal to their difference

(c) A'da' -Ada
Here we can develop A

' and da' as functions of the length of arc 5 along the axis of

the tube

A' = A+ 9

-^ds2s
da' aa-\--zas

When we introduce this and leave the term of the second order out of consideration,
we get the expression of the elementary outflow (c) in the form

(0 M dsda+A i*Zds
2s 2s

Introducing the volume of the element dv = dads, this expression may be written

/
c
m (9A , A 1 2da^(3A . . 1 ?da\.

Thus for elementary volumes the outflow is proportional to the volume of the

element. The factor of proportionality represents the outflow per unit volume, and

Fig. 96. Fig. 97.

is called the three-dimensional divergence or simply the divergence of the vector A
2da

~2s
(d)

A- A SA . A I
div A =

\-A--y-
2s da

As we can now write each term in the second member of equation (b) in the form

div A dr, this second member takes the form of a sum extended to all the elements

of volume dr, i. e., the form of a volume-integral. We thus get the important formula

(e)

or in words :

J A nda =
J div A dx

The integral of the normal component of a vector taken over a closed surface

is equal to the volume-integral of the divergence of the vector taken in the

volume limited by the closed surface (Gauss's theorem).

fig

/!.-.
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This theorem allows us to bring the solenoidal condition section 112 (a)

into a new form; for when the surface-integral in equation (e) is zero for every closed

surface in the field, the volume-integral must also be identically zero, and this involves

(/) div A = o

This is the differential form of the solenoidal condition.

The expression - which appears in the equation of definition (d) has a
da 9s

I edit
similar significance in space as in two dimensions. When the area da of the

(til cS

cross-section of the tube is constant, the considered trunk of the tubemaybe compared
to a cylinder. When da varies, the trunk of the tube may be compared to a cone,

and the derivative - will represent its solid angle. Then - - will represent the
,?.? da Ss

ratio of this solid angle to the cross-section of the tube and thus be a measure of

what we may call the divergence of the curves 5 in space.

In order to express this divergence by the corresponding divergences in two

dimensions we will consider vector-tubes which are produced in the usual way by the

intersection of two sets of surfaces of flow (fig. 97). Each tube will then have the

well-known parallelogrammatic cross-section. If dn is one side in the parallelogram,

and dz the corresponding height, we have da = dndz, and get

1 Sda _ 1 Sdn
,

1 Sdz

da Ss dn Ss dz Ss

Introducing this in equation (d), we get this more developed form of the divergence

r \ j- a 3A , i Sdn
,

. 1 Sdz
{g) dlvA= *-M -^^ +A-^
The divergence is here given by a trinomial expression, the first two terms of which

are seen to express the two-dimensional divergence equation (d) of the preceding

section of the vector A in the surface which contains the curves 5 and n.

If we resolve the given vector-field into three component-fields, each with vector-

lines coinciding with one set of coordinate-curves of a system of curvilinear orthog-

onal coordinates, we can write the divergence of each component-field in either

of the forms (d) or (g) . In the special case of a cartesian system the vector-lines of

each component-field are straight and parallel. Each vector-tube will have a

constant cross-section da, or constant base dn and height dz, and only the first term

in the second member of formulae (d) or (g) will be different from zero. Therefore,

if we call the vectors of the three component-fields Ax ,
Ay ,

Az ,
and the lengths of

arc measured along the vector-lines x, y, and z, we get for the divergence in each

component-field
SA SA SA

div A, = div Aj,
= div Az

= -
9x Sy Sz

When we form the sum, we get the divergence of the resultant-field

(h) div A = * + y + 2

Sx Sy Sz

This is the most generally used expression of the divergence of a vector in space.
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When we compare with the formula (h) of the preceding section, we see that

we can write the equation

0*) divA=^ + div2 A
Sz

where div2 A represents the divergence of that two-dimensional vector which has
the components A x and A y . Now let the three-dimensional vector A be solenoidal,

div A = o. Then equation (i) gives

(7) ^-'=-div,ASz

This is a differential equation by which we may determine the third component A,
of a solenoidal vector, of which we know the two components A x and A y . This will

be our most important diagnostic formula. We shall use it to derive the vertical

motion from the observed horizontal motion in the atmosphere.

172. Curl of a Two-Dimensional Vector. Instead of the integral of the normal

component A n we shall now consider that of the tangential component A, taken

along a curve s.

(a) fA s ds

In the special case of a closed curve we shall call this integral the circulation of the

vector A around the curve s. Lord Kelvin has introduced this name for cases where
the vector A represents velocity. We shall use it, precisely as the expressions

transport and outflow, even for cases of abstract vectors, which have nothing to do
with motion. Circulation is a quantity which has a definite sign depending upon
the direction which we have chosen as positive for rotating motion around a point
or circulating motion around a closed curve (section 155).

Circulations have an additive property similar to outflows. We can join two

points of the circuit originally given by a curve. The area limited by the first

circuit will then be divided into two areas. We can form the sum of the circulations

around the contours of each of them, using in both cases the same direction of circula-

tion. In this sum the line-integral taken along the dividing curve will appear twice

with opposite signs in the two cases, and will therefore drop out (fig. 98). Thus
the sum of the circulations around the contours of the two parts of an area will be

equal to the circulation around the contour of this total area. As we can continue

the subdivision, we arrive at the result that the circulation around the contour of

any area is equal to the sum of the circulations around the contours of all the areas

into which it can be subdivided. We can express this result by the equation

(b) JA sds = i: JA s ds

extending the integral of the first member to the contour of the primary area and

the integrals of the second to the contours of the areas produced by the division.

Now let the primary area be subdivided into elementary areas by two systems
of curves, namely, the vector-lines and their positive normal curves n. The elements

dn of the contour of these areas will then give no addition to the line-integral.

The circulation in positive direction around the contour (fig. 99) will be represented

by the difference

(c) -(A'ds'-Ads)
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They can therefore beA' and ds' will vary as we proceed along the curve n

developed as functions of the length of arc n

A' A+^dnen
ds' = ds+ hrdn

Introducing this and leaving the term of second order out of consideration, we get
for (c)

(^dnds +A hrdn)\cn Sn J

or introducing the area da = dnds of the element

(
i\ fSA , ,,

i Sds^-m +A m da
\Sn ds Sn)

The factor of da then represents the circulation per unit area, or the curl of the

two-dimensional vector A. We shall introduce the notation

fa
--. . rsA , , i aft

2 \?n ds SnJ

Fig. 98. Fig. 99.

the suffix 2 denoting that the operation curl is performed only in two dimensions.

We shall see presently that the curl of the three-dimensional vector is a vector.

But, precisely as in the case of the vector-product, the vector-nature of the curl does

not appear if we confine ourselves to the consideration of two-dimensional fields.

We can now write every term in the sum appearing as second member of

equation (b) in the form curh A da-. This sum then takes the form of an integral

extended to the area formed by all the elements da. Thus we get the formula

(e) j
A sds = |curl2 Ada

that is, the line-integral of the tangential component of a two-dimensional vector

taken around a closed curve is equal to the integral of the curl of the vector taken

over the area bounded by the closed curve.

As the expression
1 cdn

dn ?s
represented the divergence of the vector-lines, section

ds
170 (/), i. e., the curvature of their positive normal curves, the expression

ds Sn

will represent the divergence of the positive normal curves, i. e., the negative curvature

( 7) of the vector-lines which are the negative normal curves to the curves n (section

168). That is, we can write the expression of curl 2 A

(/) curl 2A = ^ --M7
Sn
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By the expression (/) we can construct the field of curl, A. The construction

will be perfectly analogous to that of the divergence :

(i) We perform the graphical differentiation of the intensity-field of the given
vector with respect to the positive normal curves to the vector-lines.

(2) We form the field of curvature of the vector-lines of the given vector (see

section 168).

(3) We perform the graphical multiplication of the latter field with the intensity-

field of the given vector.

(4) We perform the graphical subtraction of the two fields obtained by the

operations (3) and (1).

The expression (/) may be used also for forming the curl of any component of the

given vector. If we use cartesian coordinates, the vector-lines of each component-
field will be straight lines. The curvature 7 will be equal to zero and the curl of

each component-field will be expressed by the first term only. Observing the rule

?A ?A
of signs, we get - for the curl of the component A x ,

and -^ for the field of the

component A y . Forming the sum we get

(g) curl, A =
9x 9y

When the field of each component is given, we can construct the field of the

curl in accordance with this formula. By linear differentiation of the field of A y

along lines parallel to the axis of X, and of the field of A x along lines parallel to the

?A ~*A
axis of Fwe form the fields of the two derivatives - y and - -. Afterwards, by

Sx Sy
J

graphical subtraction of the latter from the former, we get the field of the curl.

173. Curl of a Vector in Space. Now let A be any vector in space. We may
then define a vector c which has the rectangular components

, v _9Aj_cAy _M^_M* _SA y ?A X
{a) c*~

3y 3z
Cy~lf 3x

z
~~?x~ ly~

By this definition we see that c is a vector of which each component is the curl of a

two-dimensional vector: cx of that which has the components A, and A y \
cy of that

which has the components A x and A.; c, of that which has the components A y and

A x . We see further that each component of the vector c is normal to that plane
which contains the two-dimensional vector from which it is derived. We will agree

to represent this vector by curl A, thus

(a') c = curl A

Now let us consider any surface a in the three-dimensional field. The vector

A will determine a two-dimensional vector in this surface, for which we can write

the theorem (e) of the preceding section. But what we have written there as curl, A.

conceiving A as the two-dimensional vector contained in the surface, may now be
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expressed as the normal component to the surface of the vector (a), (curl A).
Thus

(b) J A s ds = J'(curl A) da

or in words :

The line-integral of the tangential component of any vector taken around a

closed curve is equal to the surface-integral of the normal component of

the curl of the vector taken over any surface which has the given closed

curve as contour. (Stokes's theorem.)

As long as we deal with two-dimensional vectors only, the vector-nature of the

curl does not become apparent, as we have then to deal only with the component
of the vector normal to the surface which contains the two-dimensional vector-field.

In this respect the case is analogous to that of the vector-product.
The general theorem allows us to demonstrate an important property of every

vector which is the curl of another vector. If the surface a is closed, the con-

tour 5 will disappear, and thus the line-integral around this be zero. We then get
the equation

(c) J* (curl A) n d<x
= o

where the integral is extended to the closed surface. But this equation indicates

that the vector curl A is a solenoidal vector. This result can also be verified if we
substitute the expressions of the components (a) of the curl into the solenoidal

condition in its differential form. This leads to the identity

(c') div curl A = o

Thus : The curl of a vector is a solenoidal vector.

174. Complex Differential Operations. Divergence and curl may be considered

as the intrinsic derivatives of a vector-field. The intrinsic structure of a field is

known when we know curl and divergence.

Besides the differential operations leading to these intrinsic derivatives, we
shall have to consider also a differential operation of a more complex nature. A
and B being two vectors, we shall consider a vector F which has the three components

2A 2A PA
F.-B.-'+B.-'+B.-'

SA cA cA

CiA 0/1 oJ
Fz
= 5^+5^+5.'

Sx ?y 9z

Remembering the definitions of the scalar product and of the ascendant, we see that

the expression of each component may be written as the scalar product of the vector

B and the three ascendants VA X , \/A y and VA Z , thus

FX
= B.VA X Fy

= B.VA y Fz
= B.VA t
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We will denote the vector which has the components (a) by the sign BVA, thus

(a') F = BVA
The vector-equation (a') may be considered as a shortened symbolic expression of

the three scalar equations (a).

We shall consider especially the two-dimensional vector F in the case when
B = A. This vector will have the two components

?A ?A 2>A %A
K '

Sx
y

Sy
y x Sx y

2y

and will in accordance with (a') be represented by the vector-formula

(b') F = AVA
If the fields of the two components A x and A y are given separately, we can form the

fields of Fx and Fy in accordance with these formulae, performing for each of them
two graphical differentiations, two graphical y
multiplications, and one graphical addition.

In order to examine more closely the rela-

tion of the derived vector F to the given vector

A, we can make a special choice of the system
of coordinates (fig. 100). At the considered

point the axis of X shall be tangential to the

vector-line s of the given vector A. Fx will A,

then be the same as the component Fs tan-

gential to the line s. As at the considered
a t

FIG - IO -

point A x
= A and A y

=
o, and as ultimately

dx will be identical with ds, we get for the tangential component

to *>^7-S^')cS cS

As the curve 5 near the point of tangency forms the infinitely small angle a with the

axis of x, we can write here A y
= A a. Derivation then gives

c
*

a.^ \-A
cX cX cX

As at the point of tangency a is zero, we get here s- = A = A. But-- representscX cX ?S cS

3 A

the curvature y of the curve s. Instead of - y- in the second equation (6) we can
2x

thus write Ay. When we introduce this, and remember that at the considered

point A x
= A and A y o, we get this expression of Fy or F

(C) Fn
= A*y

Thus the derived vector F will have two rectangular components, one which has

the direction of the given vector and is equal to the derivative of the half square
of the intensity of this vector with respect to its vector-lines, while the other is

normal to the given vector and equal to the square of the intensity of this given

vector multiplied by the curvature of its vector-lines. Hence we can form the field

of this derived vector F by the following construction :
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(i) We form the half square of the intensity-field of the given vector (section

147) and then the derivative (c) with respect to the vector-lines.

(2) We form the field of curvature of the given vector-lines (section 168) and

perform the graphical multiplication of this field by that of the square of the

intensity {c').

(3) We perform the graphical addition of two mutually normal vectors (section

157) : the vector Fs which has the same direction as the given vector A and the

intensity determined by the operation (1); and of the vector F which is normal

to the given vector and has the intensity determined by the operation (2).

We can also give another method for determining the vector F. We can change
the second member of equations (b) : in the first of these equations by adding and

SA ?A
subtracting the term A y ?; in the second by adding and subtracting A x -. This

Sx 3y

gives

yd)

These equations represent the vector F as the vector-sum of two vectors. The first

is the ascendant of the scalar \(Al + A 2

y)
= \ A 2

. The second is the vector-

product of the vectors curl 2A and A. When we remember that the vector curl2A is

normal to the surface which contains A, we see by the properties of the vector-

product that this second vector will be directed along the positive normal to A.

Thus we can represent the scalar equation (d) by the vector-equation

(<*') F= V(i^
2

)+ (curl,A)XA

Thus we can also use the following method for constructing the field of the vector F.

(1) We construct the scalar field of the half square of the intensity of the given
vector (sec. 147), and then the field of the ascendant of this scalar (sec. 169).

(2) We construct the field of the curl of the given vector (section 172) and

perform the graphical multiplication of this field by that of the intensity of the given
vector. This field is considered as the intensity-field of a vector which has the

direction of the positive normal to the given vector.

(3) We form the field of the sum of the two vectors, the fields of which we have

found by the first two operations.

In most cases the first method will be preferable, as the two fields the vector-

sum of which we shall form are then normal to each other. But still in special cases

the second may be the shorter, for instance if some of the partial fields upon which

the construction depends are already constructed for other purposes.

175. Pure Time-Differentiations and Time-Integrations of Scalar Fields.

While a pure space-differentiation is performed upon one chart, representing the field

of a scalar or a vector at a given moment, the pure time-differentiations will consist

in the comparison of two charts, which represent the field at two different moments.
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Let a be a scalar which depends upon coordinates and time. Now let a be the

value of this scalar at a certain point at a time t
,
and a, its value at the same point

at the time/,. The quotient

/ \ a i An
(a) <P = j-~r

will then represent the average value which the differential-quotient

W * =
Tt

has at this point during the interval of time tT t . If this interval is sufficiently

short we can consider the value of the quotient (a) as identical with the value of the

differential quotient (b) at the time

ic) t = t +^
If we know the field of the scalar a at two moments tQ and /,, which are separated

by a sufficiently short interval of time t
1

t
,
we can form the field of the derivative

(b) at the time (c) in this manner:

We form by graphical subtraction the field of the difference

id) a. <*o

and afterwards perform the division of this field by the constant factor

() h-k
The problem is thus reduced to algebraic problems which we have already

treated. The only difficulty will be that the fields a and a, may too closely resemble

each other. Their equiscalar curves may cut each other under too small angles and

it may be difficult to get a good drawing of that set of diagonal curves which repre-

sents the difference (d). It will be important to remark, however, that the errors

will take precisely the same character as in the previous cases of differentiation:

the curves representing the derivative will get an oscillating course, and these

oscillations can be smoothed out afterwards. But in order to avoid these errors from

the beginning, it will be important not to choose too short an interval of time (e).

On the other hand it must not be chosen too long if it is to be allowed to identify,

within the margin of allowable departures, the finite difference-quotient (a) with

the differential-quotient (b) at the time (c).

The reversed problem, that of the pure time-integration, will be solved with

the same ease. Let the field of a be given at the time ta,
a = a

;
and let the value

of the derivative <p be known at any time t which is subject to the condition ta<t<t t .

If then the interval of time /, tQ is sufficiently short, we can identify the value of

<p at the time / with the average value <p during the interval of time tt t . We then

find the value of a at the time t, by the formula

(/) a, = 0.+5P&-0

Thus we have to perform the following graphical operations: first to multiply the

field of the derivative V by the interval of time t
l

t
,
and then to perform the
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graphical addition of the fields a and (p{t, t ). If we have sufficient knowledge

of the derivative <p at different times t, we can repeat this operation and thus find

at any time t the field a which is expressed analytically by the integral

(g)
a = a + I <p dt

*s to

The graphical addition (f) will cause no such difficulty as that of the graphical

subtraction (d) . The only difficulty connected with the integration will arise from

the gradual summing up of small errors from the one partial operation to the other.

176. Pure Time-Differentiations and Time-Integrations of Vector-Fields.

The principles for the pure time-differentiations will be precisely the same for a

vector-field as for the scalar field.

Let A be a vector which depends upon both coordinates and time. Let it have

the value A at a certain point at the time t
,
and the value A, at this same point at

the time /. The vector

m r-^
will then represent the average during the interval of time /, 1 of the vector

w -

which is the pure time-derivative of the vector A at the considered point. If we

use sufficiently small intervals of time we can identify the vector F with the value

of F at the time

(c) / = /<,+
2

By these formulae we see at once that if we know the field of the given vector A
at two moments t and /,, which are separated by a sufficiently small interval of

time tx to, we can form the field of the derivative at the time (c) in this manner:

We form the field of the vector-difference

(d) A,-A
and afterwards perform the division of this field with the constant factor

0) h-to

We have thus reduced the pure time differentiation of a vector-field to algebraic

problems already treated. The only difficulty connected with this differentiation

will consist in the formation of the vector-difference between two vector-fields which

are very like each other. For this reason we must not choose too short an interval

of time (e), just as we must not choose it too long if we are to be able to identify

the two vectors (a) and (b).

For the formation of the vector-difference (d) we can use any of the methods

which we have developed in vector-algebra. We can use the method of section

158 or the graphical tables (section 160), or finally the complete resultantometer

(section 161). If we wish to use either of the first two methods, the field represent-

ing the difference of angle is first drawn as accurately as possible. The curves, as
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they are obtained directly, will always have more or less of the oscillating course

which is characteristic of curves obtained by a process of graphical differentiation.

These oscillations should be carefully reduced. Then all results concerning singular

points, etc., which can be obtained by use of the simple scalar addition or subtrac-

tion (section 159), must be worked out with the greatest care. The rest of the work

<f-a.-2i(W)

fi-a.-28(36) /3-a.z9(j5)

cp
-
a.-zs(36) 21M 20M ,

/I2(S2)

(3-a '30(a) /3-<Z -3/(33)

Fig. ioi. Graphical tables for time-differentiation of a vector-field.

will then mainly consist in forming the vector-sum of vectors which form angles

differing very little from 32. If for this we wish to use graphical tables those of

fig. 101 will serve the purpose. But in many cases the method of section 158 seems

to be the best in spite of the greater number of separate operations.
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When the field of the vector-derivative F is given at a series of epochs, and the

field of the vector A at the initial epoch t
,
we can perform the pure time-integration,

which is the inverse operation to the pure time-differentiation considered. We have

then to identify the value of the derivative F at a moment / with the average

derivative F during a finite but short interval of time /, 1 when t </<^ 1
. We

then perform the multiplication of the average derivative F with the constant factor

t t to, and afterwards perform the addition of the two vector-fields according to

the formula

This operation may be repeated any number of times, and will lead to the field of

the vector A at the time /, which is expressed analytically by the integral

(g) a=a
+j;;f^

The delicate point in this process of integration will be the addition of the

generally very small vector F(/, / ) to the finite vector A. But as the isogons
and the intensity-curves of the two fields will usually cut each other under finite

angles, we shall not meet with the same difficulties as those connected with the

differentiation. The only difficulty will be the gradual summing up of the small

errors which enter at each partial operation.

177. Complex Time and Space Differentiation. Besides the pure space-differ-

entiations and the pure time-differentiations we shall also meet with complex space-
time-differentiations. They will be seen to occur in all investigations concerning

moving continuous media.

Let / be any function of coordinates and time,

(a) f(x, y, z, t)

It has four partial derivatives

{ ' 5x ?y 9z 3t

The last is what we have called above the pure time-derivative. In order to form
it we have to consider x, y, z as constant, and let only time vary; i. e., we compare
the values of / in the same locality at two different epochs. We shall therefore also

call it the local time-derivative.

But on other occasions we shall have to compare the values which the function

/ has at two epochs at one and the same physical particle. What we keep constant

in this comparison will then be not the locality x, y, z, in which the values of / are

observed, but the individuality of the particle at which the values of / are observed.

Now let vx ,
vy ,

vz be the velocity-components of the particle. If at the time / it has

the coordinates x, y, z, it will at the time t+dt have the coordinates x+vxdt,

y+vydt, z+vdt. We have then to compare

(c) f(x+vx dt, y+vy dt, z+vz dt, t+dt)
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with f(x, y, z, t) . For this we can develop (c) according to Taylor's theorem, and

leave quantities of the second order out of consideration, (c) then takes the form

/ (*, y, z, t) + Vxdt+vydt+v,dt+fdtcx cy cz ci

The excess df of the value of / at the point (x + vxdt, y + v
ydt, z + vjdt) at the time

t+dt over its value in the point (x, y, z) at the time /, will then be

df =
9
ldt+^vxdt+%vy dt+^vzdtJ
St Sx dy

y
?z

If we divide this equation by dt, we get a derivative which gives the rate of change

of the value of/ at one and the same moving material individuum. We shall call

this the individual derivative, and denote it by . Its expression in terms of the
dt

four partial derivatives (b) will then be

or in vector-notations

A case of special importance is when / represents one component of a vector

A. The individual time-derivative of the vector A will then be expressed by the

three equations

dA x ?A X . 9A X SA X . 9A X

dA y _?A, 9A_ 9Ay SA,
~Tt U +V

'l^
+
^3y

+V
'dz

dA. z cA z . c-aL 3 . cA z . c A z

-it=ir+v^ +v^+v^
or, using the vector-notations introduced in section 1 74

dk 3A
, Aw -di

=
-Ji
+vVA

An important case is that in which the vector A is the velocity of the moving

particle. The rate of change of its velocity gives its acceleration, for which we

thus get the equation

dy cv . _W ^T7+vVv

In order to form the field of acceleration we have thus to perform pure time-deriva-

tions and pure space-derivations, which we have investigated already.

The distinction which we have here introduced between local and individual

time-derivations will be of great importance in our continued work. The difference
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between them can be very well illustrated in connection with the different methods

of observing the meteorological elements. The instruments of the ordinary meteoro-

logical stations give the local variation of the meteorological elements. When we

determine from the records of the barograph the rise of pressure per second, we get

the local derivative of the pressure,
c--

. In the same manner the thermograph
ct

of the station will give the local derivative of temperature . By use of the wind-

fane and the anemometer of the stations we can in the same way determine the

local time-derivative of velocity . We may call this the local acceleration, to
ct

distinguish it carefully from the acceleration without further specification, which

gives the rate of change of velocity of one and the same moving individuum.

Instead of considering the stationary instruments of a common station, we can

now consider the moving instruments in a balloon, and let the balloon be in perfect

equilibrium. It will then move along within one and the same mass of air. The

barograph will then register the pressure of this mass of air, the thermograph will

register its temperature. Forming from the records the rates of change, we get the

individual time-derivatives -?-> -^ . . . . If finally the velocity v of the balloon
dt dt

J

itself be registered, we should be able to determine the acceleration of the mass

of air in which it moves.

At the moment when this balloon with its moving instruments passes the

station with its stationary instruments, the moving and the stationary instruments

will show the same instantaneous values of the recorded quantities, but different

rates of their change. Formula (d) will give the relation between the derivatives

found from the records of the moving and the stationary instruments.



CHAPTER X.

THE FORCED VERTICAL MOTION AT THE BOUNDING SURFACES.

178. Hypsometric and Bathymetric Maps. Having now developed the mathe-

matical methods to be used, we can proceed to the accomplishment of the kinematic

diagnosis. Chapters 11-VI I gave the direct methods for working out, from the

observations, a complete diagnosis of the horizontal motion in atmosphere or hydro-

sphere. We shall now see how the correlated diagnosis of the vertical motion should

be worked out.

The vertical motion begins at the bounding surfaces. Here the solenoidal

surface-condition, section 115 (), must be fulfilled; i. e., both velocity and specific

momentum must be tangential to the surface. The moving masses will be forced

up or down according as the motion in horizontal projection goes against the slope

or with it. We shall call the vertical motion which is produced in this way the

"forced" vertical motion, to distinguish it from the "free" vertical motion to be

considered in the next chapter.

In order to investigate this forced vertical motion, we must have complete

topographic charts representing the configuration of the bounding surfaces; i. e.,

we must have a complete representation of the topography of the world above as

well as below sea-level. We have referred to such charts before, using them to

define the spaces taken up by atmosphere and sea, and thus to give the extent of

the fields representing the atmospheric or oceanic states. But the main influence

which the bounding surfaces exert upon the internal structure of these fields comes

through the forced vertical motion which arises as a consequence of the boundary
condition. In view of this kinematic application we have worked out a representa-

tion of the topography of the world which is given on the first twenty-four sheets

of the collection of plates which accompanies this work.

Our knowledge of the configuration of the bottom of the sea is still very

incomplete ;
but fortunately most of the knowledge acquired has been made ac-

cessible by the bathymetrical map on a scale of 1 : 10 000 000 edited by the Prince

of Monaco.* This map represents the topography of the earth below sea-level on

16 plates in Mercator and 8 in polar projection. We have for the main part copied

our bathymetrical curves as well as the coast-lines from this chart, the most im-

portant changes being the following : Corrections and completion of the coast-lines

in the Arctic and Antarctic regions have been performed according to the results

of the well-known later Arctic and Antarctic expeditions. Changes in the course

of the bathymetrical lines have been introduced, for the northern Atlantic according

to Helland-Hansen and Nansen,f for the eastern Pacific according to the results

* Carte Generate Bathymetrique des Oceans, dressee par l'ordre de S. A. S. le Prince de Monaco,

f B. Helland-Hansen and Fridtjof Nansen: The Norwegian Sea. Christiania, 1909.

131
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of the American Albatross Expedition* for different parts of the Indian Ocean and

the western Pacific according to the results of the German Planet Expedition. |

While it has thus been easy to bring a bathymetrical chart representing in a

tolerably satisfactory way our present knowledge of the configuration of the bottom

of the sea, we have not been able to produce anything in the same manner satis-

factory for the configuration of the crust of the earth above sea-level. The liter-

ature of cartography is remarkably poor as regards topographical charts of greater

parts of the world. As it would have been quite impracticable for us to collect and

utilize all primary material of topography in detail, which is accessible in the carto-

graphical and geographical literature, we have chosen a limited number of sources-

The most important of them has been the height numbers contained on Stieler's

AtlasJ used in connection with the course of the rivers and the shadings representing
the orographical features of the countries. Besides these we have used a map of

the world on a smaller scale edited by the German Marine Authorities, which

contains the height-curves for 300, 1000, and 2000 meters. During our work
Romer's Atlas) | appeared, containing on a small scale charts of the continents, with

height-curves corresponding to the interval of 1000 meters. The topography for the

United States has been taken from the chart of the Geological Survey, the curves

being changed from feet to meters. Special attention has been paid to the latest

results of Sven Hedin in Central Asia.H The short pieces of height-curves drawn on

the chart of the Antarctic continent are derived from Shackleton's chart.** Eor the

drawing of the height-curves in the Arctic regions, we are indebted to Nansen,

Isaachsen, and Amundsen for valuable hints.

The chart which we have thus produced must not be considered as a geograph-
ical document, and it is to be hoped that better charts may soon be produced by
professional geographers. But it will serve our special purposes very well.

Our chart is on the scale of 1 : 20 000 000, and like that of the Prince of Monaco
it is distributed on 16 plates in Mercator's projection and 8 in polar projection. It

gives the height above and the depths below sea-level precisely in the same way.
The curves for the height, respectively the depth, of 200 meters are dotted, those for

500 stippled, and then continuous curves are drawn for every 1000 meters of height or

depth. It will be equally legitimate to interpret the meter indicating these heights

or depths as the common geometrical meter or as the dynamic meter (compare

Statics, section 15).

179. Charts of Idealized Topography. If we were to proceed with perfect rigor,

we should have to apply the surface-condition to the true surface of separation

between the moving medium and the bounding surface. This would require the

*Memoires of the Museum of Comparative Zoology at Harvard College, vol. 33. Cambridge, 1906.

fForschungreise S. M. S. Planet 1906-1907. T. 3, Oeeanographie. Berlin, 1909.

JStieler's Hand-Atlas, Neunte Auflage. Gotha, 1907.

Weltkarte zur Uebersicht der Meerestiefen & Hohenschichten, herausgegeben von dem Hydrographischen Amte
des Reichs-Marine-Amts. Berlin, 1893.

||Lemberg, 1908.

HSven Hedin: Transhimalaya. Stockholm, 1909.

**B. E. H. Shackleton: The Heart of the Antarctic. London, 1908.
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construction of topographic maps of a completeness which can not be attained

Taking the case of the atmosphere, the chart should give the configuration of every

irregularity of the ground, every stone, every tree, every house. And the use of

the map would require wind-observations taken all around these irregularities.

Just as we have been obliged to consider an idealized wind (section 97), we
must use an idealized topography, corresponding to the placing of the fanes and
the anemometers in open places, above that sheet of air which has the most irregular
motions.

It will therefore be perfectly legitimate to use an idealized topography like that

which is represented by the common contour-lines. And in most cases it will be
not only legitimate, but necessary, to go still further in the idealization than on
common charts. Even the map of theworld aswe havedrawn it on the plates I-XXIV
contains far too much detail for meteorological work as long as the phenomena are

to be studied on a large scale, and not in minute details.

For our practical work we have therefore been obliged to derive from this map
special maps of idealized topography. All these special maps have been drawn on
a scale of i : 10 000 000. We have found this scale convenient for the performance
of our constructions, and all our graphical auxiliaries have been made with this scale

in view. All these special maps have been drawn in a conical projection corre-

sponding to the latitude. Our reasons for preferring this projection to one with

curved meridians have been given already; all kinds of auxiliary graphical instru-

ments (sections 143, 161, 163) are easily applied when the chart is in conical pro-

jection. The idealizations have been performed step by step. First we have drawn
a map where all the smallest irregularities of the contour-lines have been removed,
then a new map where greater irregularities have been removed, and so on. The

simplified curves are always drawn so that the volumes of the great mountain-

chains and of the continents have retained their value. In this manner correct

values will be found for the average intensity of the forced ascending or descending

motion, while the small irregular motions up and down, which are only of local

importance, will drop out. But it should be remembered that the drawing of the

idealized charts has no unique solution. The same degree of idealization can be

attained in different ways as regards details. It will be a question of experience to

find out the proper degree of idealization and the best solution of dubious questions
of detail. In practical work we have used two degrees of idealization, represented

by the "moderately idealized" charts of the United vStates and of Europe given on

plates XXV and XXVIII, and the "greatly idealized" charts of plates XXVI and
XXIX. We have used the moderately idealized charts more for qualitative pur-

poses, drawing on them the charts of the horizontal motion (section 135), while we
use the charts of greatly idealized topography for the rigorous quantitative work.

We have given no examples of idealized bathymetric maps. As we have had
no observations from which we could work out a kinematic diagnosis of sea-motions,

we have had no opportunity of examining the question of such charts for hydro-

graphic purposes. It should be remembered, however, that the bottom of the sea

is, generally speaking, less irregular than the ground above sea-level, and at the same
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time our knowledge is less detailed. When in spite of this further idealizations have

to be performed, great care should be taken, for small irregularities of the bottom

may influence the motion of the sea much more than corresponding irregularities

of the ground are able to influence the motion of the air.*

When in the following we speak of the ground, we always mean the ideal

surface which is represented by our charts. We shall consider the wind-observations

obtained at the meteorological stations as representing the air-motion at this surface

itself. This will be perfectly legitimate from a kinematic point of view. But the

real removing of all irregularities would of course have great dynamic consequences.
We shall therefore be obliged later to consider this ideal surface as offering a frictional

resistance which a smooth surface would not offer in reality.

180. The Motion in the Lowest Surface of Flow. The particles of the moving
medium which are in contact with the bounding surface will move tangential to it in

virtue of the solenoidal surface-condition. Therefore a hypsometric map represents

directly the topography of the lowest surface of flow in the atmosphere ;
and in the

same manner a bathymetric map represents the topography of the lowest surface

of flow in the sea.

When we shall represent the motion in this lowest surface of flow, we must
remember its exceedingly minute inclination. Even on our charts of moderately
idealized topography hardly any place will be found where contour-lines correspond-

ing to a difference of level of iooo meters approach each other as closely as i mm.
On a chart on a scale of i in ten millions, this will give an inclination which is smaller

than one in ten. The cosine of the angle of inclination will therefore be greater
than 0.995, and when we set this cosine equal to unity, we shall never make errors

as great as 0.5 per cent. Such errors will be insignificant compared with the errors

of observation. We need therefore make no difference between the numerical values

of the horizontal component of the motion and the resultant motion itself which is parallel

to the ground.

For this reason we shall get a representation of the motion along the bounding
surface simply by drawing the lines of flow and the curves of equal intensity on

outline-maps which contain the contour-lines. The three sets of lines, contour-lines,

lines of flow (respective isogonal curves), and intensity-curves give a complete
representation of the surface of flow and of the motion in it (compare fig. 43 a and

% 45 a).

181. Charts of Vertical Velocity at the Ground. From a chart containing these

three sets of lines we can easily draw a special chart of the vertical component of the

motion. When s is a line of flow in the atmosphere and z its height above sea-level

its angle of inclination will be

( N dz
{a) * =

ds

*Cf. the notes, pp. 58 and 59.



THE FORCED VERTICAL MOTION AT THE BOUNDING SURFACES. 1 35

v being the resultant velocity, the vertical component vv will then be given by the

formula

(b) vv = v
d

In accordance with this expression we can construct the field of vv . In the case of

motion along the bottom of the sea we should have to use the depth below sea-level

instead of the height above it. But we shall henceforth consider exclusively the

case of the atmosphere. As soon as the observations are at hand, it will be easy
to adapt the same methods to the investigation of sea-motions.

Formula (b) reduces the drawing of a chart of vertical velocity to a simple

problem of graphical differentiation and of graphical algebra.

A rough sketch of the field (b) can easily be made by the discontinuous method.

Evidently the field (b) will contain a zero-line vv
=

o, which separates from each

other the windward and the leeward sides of the mountains. The general course of

this line is seen at once and can be drawn by eye-measure in those parts of the

country where the slope is strong enough to produce a vertical motion of any impor-
tance. By use of the differentiating sheet of fig. 81

,
we can then make a few determi-

nations of vv in the places where it is seen to have its greatest positive and negative
values. Afterwards the curves vv

= const, can be drawn by eye-measure. It will

not be difficult in this way to draw such charts in the daily meteorological service.

For more detailed investigations we can bring the continuous graphical methods

into application. The method of proceeding will be this :

We construct first the chart of the angle of inclination (a) . The construction

is that which has been exemplified in fig. 83. In this figure we can interpret the

lines a = const, as contour-lines, and the lines s as the lines of flow of the wind.

The stippled curves will then be curves for equal values of the angle of inclination i.

Of these curves we first draw that for the angle of inclination zero. This curve will

pass through all the points of tangency of the lines of flow and the contour-lines.

A zero-curve must therefore pass the summit of every mountain as well as the

highest point in every pass. Inasmuch as the wind does not travel precisely along
the chain, but has a component across it, the zero-line will follow near the highest

ridge of the chain, passing all the summits and the highest point of the passes.

In the same manner, when the wind does not travel precisely along a valley, but

has a component across it, a zero-line will run along it, near its bottom.

As soon as the zero-line is drawn, we determine the course of the curves for

integer values of the angle of inclination by making continuous use of the differen-

tiating sheet of fig. 81 as described in section 165.

Finally we perform the graphical multiplication (section 150) of the field of

the angle of inclination i with that of the scalar value v of the velocity of the wind.

The chart resulting will then represent the field of the vertical velocity vv .

182. Ascendant-Charts. From a theoretical point of view the drawing of the

charts of vertical velocity is exceedingly simple. But still, when it is to be done
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with care for the details, it will prove to be the most laborious operation of kinematic

diagnosis. The reason is that in spite of all idealizations, the topographic chart

will remain more complicated than the charts which represent the field of the

meteorological quantities observed.

In order to simplify the work another way may be suggested : From the topo-

graphical map we could derive a chart representing the ascendant of the ground,
and print it as a blank. The process of differentiation would then be performed once

for all
;
for it is easily seen that the vertical velocity may be expressed as the scalar

product of this ascendant and the horizontal velocity. Each chart of vertical

velocity could then be derived by a simple algebraic process (section 156). But
when this method does not work as well as might be expected, it is due to the great

complexity of the isogons and the intensity-curves representing the ascendant. The
control due to direct intuition is lost, and keen attention will be required to avoid

mistakes
;
but this method may be considered if extensive detailed investigations on

the vertical motion at the ground are to be performed.
A method which also might be considered in such a case would be the consist-

ent use of rectangular components. If the W.-E. and the S.-N. components of the

wind were observed, we might draw and print as blanks two special auxiliary charts,

one of the W.-E. component and one of the S.-N. component of the ascendant.

By a simple graphical multiplication we should then be able to derive a chart of the

vertical velocity due to each component of the wind, and afterwards a chart of the

total vertical velocity by graphical addition.

183. Change of Velocity into Specific Momentum. Charts of Density at the

Ground. If we have a chart which represents the density of the air at the ground,
we can at once by graphical multiplication change a chart of velocity into one of

specific momentum. It will be sufficient if the chart of density has an accuracy

corresponding to that of the wind-observations. We can then ignore the influence

of humidity on density and consider density as a function only of pressure and

temperature. When we know the topography of the isobaric surfaces in free space,

we can draw their curves of intersection with the ground. These curves will give

a chart of the pressure at the ground. By this chart, together with a corresponding

chart of temperature at the ground, we can draw a chart of the density at the ground,

using one of the two auxiliary tables N.

Table N, a, contains density and pressure as argument, and temperature as

the tabulated quantity. It gives the temperature of the point where the equiscalar

curves for the required field of density cut the given isobaric curves. Table N, b,

contains density and temperature as arguments and gives the pressure of the points

where the required curves for equal density cut the given isothermal curves.

A density-chart drawn by one of these tables will possess an accuracy far

exceeding that of the observations of velocity. In most cases we can therefore still

further simplify the method, treating pressure at the ground as if it depended only

upon the height above sea-level and ignoring its variations from day to day. We
can then get the density of the air as function of height and temperature.
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When we use the average relation between pressure and height given in Statics,

table A, p. 29, we get the tables O. The first gives the temperature at points where

the contour-lines of the topographic map are cut by the required curves of equal

density, while the second gives the height of the points where the required density-

curves cut the given isotherms. As density is proportional to pressure, and as

pressure at a place will as a rule differ only a small percentage from its average

Tables N.

A. Temperature at
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In all cases when the density-chart is found, we have simply to perform the

graphical multiplication of the charts of vertical velocity by that of density in order

to get the chart of vertical specific momentum.

184. Direct Method of Determining Vertical Specific Momentum from Hori-

zontal Velocity at the Ground. If the chart of vertical velocity is drawn already,

the method given in the preceding section will give the easiest construction of the

chart of vertical specific momentum. But we can also use a direct method without

passing through the vertical velocity. As the contour-lines of our charts can be

interpreted as lines of equal dynamic height H, we can write equation 181 (b)

1 \
dH

(a) v,
=
v-g

Now, according to the fundamental equation of hydrostatics, we have dH = adp,

where pressure p is measured in decibars when dynamic height H is measured in

dynamic meters. When we introduce this and divide by the specific volume a, i. e.,

multiply by the density p, we get on the left side the vertical component Vv of

specific momentum,

(b) Vv
= -vfas

This equation gives the following rule for drawing the chart of vertical specific

momentum at the ground : We first draw the chart which represents the field of

pressure at the ground; then we perform the graphical differentiation of this field

with respect to the length of arc along the lines of flow
; finally we perform graphical

multiplication of the field thus obtained by the field of the scalar value v of velocity.

This method is precisely like that which we have developed for the velocity

except that we use the chart of pressure at the ground instead of the topographic
chart. But it will give more work, inasmuch as the topographic map always remains

the same, while that of pressure changes and must be drawn again in each case.

If we ignore, however, the variations in time of the pressure, we can draw a chart

representing the average pressure at the ground and use this chart consistently for

the determination of vertical specific momentum, precisely as the topographic map
for the determination of the vertical velocity. Then it will be as easy to draw charts

of vertical specific momentum as of vertical velocity. The errors in the determina-

tion of vertical specific momentum caused by the use of the average pressure will

amount to a small percentage and thus always be small compared to those which

arise from the imperfectness of the observations of the wind. Therefore in general

there will be no objection to using this simplified method.

We have therefore drawn the charts of plates XXVII and XXX, which give the

average pressure at the ground in the United States and in Europe. As to the degree
of idealization, they correspond to the strongly idealized topographic maps of plates

XXVI and XXIX. The coast-line is to be considered as an isobaric line of pressure

about 1013 m-bar. Then the curves for 1000, 900, 800, . . . m-bar have been

drawn as continuous lines, while a curve for the pressure of 980 m-bar is dotted and
a curve for 950 m-bar is stippled.



CHAPTER XL
VERTICAL MOTION IN FREE SPACE-COMPLETE KINEMATIC DIAGNOSIS.

185. Free Vertical Motion. As the distance from the bounding surface increases,

the forced vertical motion produced at this surface will gradually be modified.

An additional vertical motion will arise in the free space and conjoin with the

forced vertical motion. We shall for the sake of brevity call it the free vertical

motion. It can be investigated by the solenoidal condition in space, precisely as

the forced vertical motion by the solenoidal surface-condition.

We have done it already from a qualitative point of view (Chapter V). We had
to take the free vertical motion into consideration in order to explain the features

of the horizontal motion. The vertical motion existing above centers or lines of

convergence and of divergence gives typical examples of this free vertical motion

and shows its connection with the horizontal motion. It will therefore be under-

stood at once that from a given horizontal motion we can derive the correlated

vertical motion by making quantitative use of the solenoidal condition.

The vector which fulfils the solenoidal condition with the highest degree of

approximation is specific momentum. Both in atmosphere and in hydrosphere the

field of mass can be considered as stationary in space (section 117). Therefore the

mass-transport leading into a stationary volume through one part of the bounding
surface will be equal to that leading out of it through other parts of this surface.

The solenoidal nature of specific momentum is a consequence of this property of

the mass-transport. In the hydrosphere the moving masses can be considered as

incompressible. Then the volume-transport obtains the same property as the mass-

transport, and even velocity will be a solenoidal vector. But in developing our

methods we shall consider only atmospheric motions. Their adaptation to sea-

motions will cause no difficulty as soon as the observations to be used are at hand.

186. Diagnostic Use of the Solenoidal Condition. We shall consider an atmos-

pheric sheet limited by two horizontal or quasi-horizontal surfaces, dz will be their

vertical distance. The average horizontal motion in this sheet will be represented

by the specific momentum V. A chart will be given containing the lines of flow

(or the isogons) and curves for equal intensity V = const, of this vector. By
using the solenoidal condition we shall derive from this chart the correlated data

regarding the vertical motion. We will give three different methods of deriving
these data, each leading to a special form for the representation of the vertical

motion.

(A) Areas of equal vertical transport. The simplest plan will be to draw a chart

of the horizontal transport T in the sheet. By the solenoidal condition this chart

must necessarily give an indirect representation also of the correlated vertical

139
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transport Tv . Let dn be a horizontal element of line which is normal to the lines

of flow. The expression

(a) T = Vdndz

will then give the horizontal transport through the area dndz, which extends from

the bottom to the top of the sheet. Thus we have to draw a chart representing
the expression (a).

In order to do this we shall first consider the expression

(b) r, = Vdn

which represents the transport in a sheet of the thickness of dz = i . The curves

Ti = const, will be the curves of equal transport for the two-dimensional vector V.

In order to draw these curves we may proceed as we have developed already (section

167) : On the chart which represents V we first draw an arbitrary initial curve C
and divide it into elements which give equal values of the two-dimensional transport ;

i. e.
,
for each element we shall have

(c) Vdn' = c'

dn' denoting the projection of the element of the curve C upon the normal to the

lines of flow, c' is an arbitrarily chosen constant, equal either to the unit of transport
used in practice or equal to a simple multiple or fraction of this unit. The essential

point is to choose the constant so that we get bands of flow of suitable breadth

for the construction. Through the points of division we draw lines of flow which

will then define the bands of flow to which the transport T is to be referred. Using
the divided sheet of fig. 86, we then draw curves for equal values of the breadth dn

of these bands of flow. Finally we perform the graphical multiplication of this

field by that of V. The field resulting will be that of Ti ,
which represents the hori-

zontal transport in a sheet of unit thickness, dz =1.

In order to get a chart of T we have finally to perform the multiplication by
the thickness dz of the sheet. If dz is constant this will lead to a simple change of

the intervals between the curves T Y
= const. In the general case, where the thick-

ness of the sheet is variable from place to place, dz will be represented by a chart

which gives the topography of the upper limiting surface of the sheet relatively

to the lower. We have then to perform the graphical multiplication of this field

by that of Tt . The result will be the field of T represented by curves for integer

values

r = ... ii, 10, 9,8, ... .

This field directly represents the average horizontal transport in the sheet,

but indirectly it will also represent the correlated free vertical transport. Let us

suppose, for the sake of simplicity, that the lower limiting surface of the sheet

is a surface of flow. The bands of flow in the two-dimensional drawing will then

represent tubes, the bottom and the two lateral walls of which are surfaces of flow,

while a transport goes through the top. The curves T = const, will represent
vertical walls which are sections of these tubes. When we proceed along a tube
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from one section to the next, we have unit change of horizontal transport. By the

solenoidal condition we must therefore have unit vertical transport through that

area of the top which is contained between these two sections. Thus the curves

T = const, will divide the bands of flow into areas for each of which we have unit

vertical transport through the upper limiting surface of the sheet. In the case of

decreasing horizontal transport the vertical transport will go up, and in case of

increasing vertical transport it will go down through the top of the sheet.

If there is a vertical transport through the lower limiting surface of the sheet,

the areas will represent that addition to the vertical transport which arises on

account of the horizontal motion in the sheet.

We thus see that we have a method of arriving at a representation of vertical

motion like that illustrated by figs. 43 c and 45 c.

(B) Topographic method. We shall retain that division of the given chart of

V into bands of flow which we have performed as an introduction to the construc-

tion of areas of equal vertical transport. The curve C represents a vertical wall

of the given constant height dz' . The bands of flow on the chart represent tubes of

flow in space, which at this wall have the given transport T' = V'dn'dz' . In case

(A) we have examined the change of transport T as we proceeded along tubes,

which were limited below and above by given surfaces. Now only the lower limit-

ing surface will be given. The upper will be subject to this condition, that it shall

pass through the upper edge of the wall C. We will determine its height dz above

the lower surface so that the tubes retain in all sections the transport T' which they
have in the section formed by the wall C .

For this we have to introduce into (a) the value V'dn'dz' for T, and to solve

with respect to dz,

(d) dz = *
dz

>

and construct a chart of this height dz. This will be a topographic chart which

gives the height of the upper limiting surface relatively to the given lower surface.

The construction will be very like the preceding one. We first perform the

construction for the case of a wall C of unit height. Setting dz' = 1 and remem-

bering that V'dn' has been determined to be equal to the number c'
,
we have

{e) dz
<
=
Vdn

As c' is equal either to unity or to a simple multiple or decimal fraction of the unity,

we can determine the field of the quantity ^
in one operation, using the divided

sheet of fig. 81. Then we perform the graphical division of this field by that of V.

The field resulting will be a topographic chart representing the upper limiting

surface when the initial wall C has unit height.

Performing the multiplication by the constant height dz' we get the field of dz,

i. e., the topographic chart representing the upper limiting surface for any given
constant height of the initial wall C .
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The interpretation of the chart will be easiest in the case where the given lower

limiting surface of the sheet is a surface of flow. The transport in each tube being

constant, we conclude by the solenoidal condition that the upper limiting surface

will also be a surface of flow.

We have thus obtained a method of constructing the topography of one surface

of flow relatively to another, and thus of arriving at those representations of vertical

motions which are illustrated by the figures 43 a and b and 45 A and b.

If the lower limiting surface of the sheet is not a surface of flow, the upper
surface (the topography of which we have determined) will not be one either. But

still it will characterize that part of the vertical motion which arises as a consequence
of the horizontal motion within the sheet.

(C) Vertical component of specific momentum. If we wish to find the vertical

component of specific momentum, we have simply to use the solenoidal condition

in its differential form. By equation (/) of section 1 7 1
,
we have

(0 f'=-*v,v
or, when we multiply by dz,

(g) dV2
= (-div2V)dz

By this equation we can draw a chart of the increase d Vz of vertical specific momen-

tum within a sheet of any thickness dz within which we know the horizontal specific

momentum V.

As in the preceding cases, it will be convenient to begin with the case of a sheet

of unit thickness dz = 1 . The corresponding increase of vertical specific momentum
will be

(A) dVliZ
= -div2V

From the given chart which represents the field of the horizontal vector V we derive

the field of the divergence div2 V, using the method developed in section 170. This

field of divergence will, after change of sign, represent the increase dV1>z
of vertical

specific momentum from bottom to top in a sheet of unit thickness.

In order to get the increase d Vz for a sheet of any thickness we have to perform
the multiplication by the thickness of dz. If dz is constant, this will simply be a

change of the interval between the curves for constant values of dVliZ . In the

general case where dz is variable, and is represented by a chart which gives the

topography of the upper limiting surface of the sheet relatively to the lower, we
have to perform the graphical multiplication of the fields of dViiZ and of dz.

187. Change of Variables. The horizontal mass-transport was given by the

formula

T = Vdndz

It is the dz appearing here which brings in the vertical dimension in the formulae of

the preceding section and allows us to describe the motion in reference to this

dimension.
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Instead of expressing the vertical dimension in the direct way by the length
dz measured along a vertical line, we can express it indirectly by the decrease of

pressure dp along this line. For when the field of pressure is known, the indication

of a pressure will be equivalent to that of a height. In order to bring in pressure we
can first substitute dynamic height H for geometric height z. This can be done

with sufficient accuracy by the relation

dz = 1.02 dH

dz being expressed in meters and dH in dynamic meters. Then we can pass from

dynamic height to pressure by the equation of hydrostatics

dH = adp

where pressure p is to be expressed in decibars and // in dynamic meters. When
we introduce this in the expression of T and remember

v = aV

we shall get as a new expression of the horizontal mass-transport

(a) T = (1.02 v) dn { dp)

or, when we leave out the practically insignificant factor 1.02

(a') T = vdn (-dp)

When we compare this expression with the original, T= Vdndz, we conclude

that in the formula? of the preceding section we are entitled to introduce the decrease

of pressure dp instead of the increase of height dz on condition of introducing at

the same time horizontal velocity v instead of horizontal specific momentum V.

This change of the formulae leads at once to the following general rule :

The constructions described in the preceding section may be performed upon charts

of horizontal velocity v instead of upon charts of horizontal specific momentum
V. The charts resulting will then describe the vertical motion in reference to the

pressure decreasing upward instead of in reference to the height increasing

upward.

Thus to mention the special cases :

(A) Areas for equal vertical mass-transport. We start with a chart representing
horizontal velocity, and propose to draw a chart representing the transport (a

1

) .

For this we first draw a chart of the expression

(b) T, = vdn

which represents the horizontal mass-transport in a sheet of a thickness defined by
unit decrease of pressure from bottom to top, dp=i. In order to get this chart

we first draw an initial curve C and divide it into elements which give

(c) v'dn' = c'

where dn' denotes the projection of the element of the curve C on the normal to the

lines of flow, and c' is a constant chosen so as to get proper breadths of the bands of

flow. Through the points of division we draw lines of flow dividing the field into

the bands of flow to which the transport T1 is to be referred. Then we draw curves
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for equal values of the breadths dn of these bands of flow and perform the graphical

multiplication of this field by that of the scalar value v of the velocity. This gives

the field of 7\.

The field of T
x
will represent the final result if the thickness of the sheet is

defined by unit decrease of pressure. If it has a thickness defined by any variable

decrease of pressure, a chart of this decrease of pressure dp must be given.

This chart will give in terms of pressure the topography of the upper limiting

surface of the sheet relatively to the lower one. If we perform the graphical multi-

plication of this field of pressure dp by that of T
t ,
we get the field of T.

The direct interpretation of the chart of T is this : it gives the horizontal mass-

transport in the sheet the thickness of which is defined by the decrease of pressure

dp from bottom to top. But at the same time it represents the vertical mass-

transport through the top of this sheet in an indirect way: The curves T= const,

divide the bands of flow into elementary areas
;
for each of these areas we have unit

mass-transport through the upper limiting surface of the sheet.

(B) Topographic method. We retain that division of the given velocity-chart

into bands of flow which we have performed by drawing the curve C and dividing

it into elements. The curve C will now represent a vertical wall the height of which

is given by the condition that there shall be constant decrease of pressure dp'

from bottom to top. At this wall the tubes will then have the given mass-transport
T' = v'dn'(-dp'). We propose to draw a chart of that decrease of pressure

v'dn'

which must define the thickness of the sheet if the tubes are to have everywhere the

same mass-transport as they have at the wall C.

We perform the construction first for the case in which the wall C has the

height which is defined by unit decrease of pressure from bottom to top, dp' = i.

This is done according to the formula

c'

^ ~ d^= vdn

where c' is the value of the two-dimensional transport v'dn' at the curve C. In

c
>

order to find the field of dp l we first draw the field of by use of the differen-
ce

tiating sheet of fig. 81. Then we perform the graphical division by the field of the

scalar value of the velocity v. The resulting field will be a chart which gives in terms

of pressure the topography of the upper limiting surface of the sheet relatively to

the lower one in the case dp,= i. If the wall C has a height defined by another

constant decrease of pressure dp' ,
we have finally to perform the multiplication of

the field of dp l by this constant dp'. The field resulting (d) represents in terms

of pressure the topography of the upper limiting surface of the sheet relatively to

the lower one. If the lower is a surface of flow, the upper will also be a surface of



VERTICAL MOTION IN FREE SPACE COMPLETE KINEMATIC DIAGNOSIS. 145

flow in virtue of the solenoidal condition. We thus have a method of drawing charts

of surfaces of flow in the atmosphere, giving the topography of these surfaces in

reference to the field of pressure.

(C) Vertical component of specific momentum. When we make the change of

variables in the solenoidal condition in its differential form we shall come to the

equation

m sV> a-
(f) ^sp

= ~ dlv *v

or, solving with respect to the increase dV. of vertical specific momentum, we get

(g) dV,= -(div,v) {-dp)

By use of this equation we can find the increase d Vz of vertical specific momentum
in a sheet the thickness of which is defined by the decrease of pressure dp.

The practical work will begin by drawing a chart for the case in which the sheet

is defined by unit decrease of pressure, dp=i. The increase of vertical specific

momentum in this sheet will be

(A) dVIlS
= -div2v

That is, it will be found if we draw the field of divergence of the given field of

horizontal velocity v, and then change the sign.

From a sheet defined by unit decrease of pressure we can pass to one for any
decrease of pressure by multiplication by that pressure dp which defines the thick-

ness of the sheet. If dp is constant, the result will simply be a change of the

interval between the curves which represent dVs , z . If dp is variable from place
to place, it must be represented by a chart, which will then represent the topography
of the upper limiting surface of the sheet relatively to the lower one, topography

being expressed by decreases of pressure instead of by increases of height. By graph-
ical multiplication of the chart of dp hy that of dVilZ we shall then arrive at the

chart of d Vz ,
which represents the increase of vertical specific momentum in a sheet

of any variable thickness.

188. Example. Cyclonic Center, United States of America, November 28,

1905. As the two sets of parallel methods which we have developed in the two

preceding sections lead to precisely the same formal constructions, it will be suffi-

cient to exemplify one of these sets. We shall take that of section 187, as we can

then apply directly the chart of observed horizontal velocity without changing it

first into a chart of specific momentum.
In all cases we have to start with the chart of fig. 102, which represents the

observed horizontal velocity at 8 a. m., 75th meridian time. The fine lines are

curves for equal wind-velocity, expressed in meters per second. The thick lines with

arrow-heads are the lines of flow, which are seen to run into a marked center of

convergence. For further data regarding the meteorological conditions at the epoch
of observation see plates XXXV and XXXVI.
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The chart of fig. 102 is on a scale of 1 : 10 000 000. Thus 1 centimeter on the

chart represents 100,000 meters. As the centimeter is the unit length on our divided

sheets, we see that by using them for measurements on our charts we express hori-

zontal distances in a unit length of io5 meters.

(A) Areas of unit vertical transport. We draw the curve C, fig. 103, and divide

it into elements which give v'dn' = 5. (The value v'dn'= i would have given too

narrow bands for a good construction.) Through the points of division we draw new

lines of flow which define the bands of flow to which the transport shall be referred.

On the chart which represents these bands we have also copied the curves of

f/ fS

Fig. 102. Lines of flow and curves of equal wind-intensity, U. S. A., 1905, Nov. 28, 8 a. m.

equal wind-intensity from the preceding chart. We then perform the measurement

of the breadth dn of the bands, using the divided sheet of fig. 86. The chart of

fig. 104 gives the curves for equal values of these breadths, together with the lines

of flow copied from the preceding chart. The graphical multiplication of the field

of dn by that of v finally gives the field of transport Tlt which we have represented

on the chart of fig. 105 by the following curves

T, =
. . . 6, 5, 4, 3, . . .

The chart which we have obtained in this manner will represent the horizontal

transport in a sheet the thickness of which is given by unit decrease of pressure from

the ground to the upper limiting surface of the sheet, and at the same time the

vertical transport through this upper limiting surface.
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Fig. 103. Bands of flow which have equal transport at the initial curve C. U. S. A., 1905, Nov. 28, 8 a. m.
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Fig. 104. Curves for equal breadth dn of the bands of flow. U. S. A., 1905, Nov. 28, 8 a. m.
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When we use the decibar as unit pressure the upper limiting surface of the

sheet will be situated at the approximate height of 750 meters above the ground.

The lines of flow represent vertical walls which divide this sheet into tubes. At the

initial wall C the transport in each tube is 5.10
5 m.t.s. units, i. e., 500,000 tons of

air per second. As we proceed from the curve C to other curves T
t

= const., we

have a loss or gain of horizontal transport of 100,000 tons per second. The areas

into which the bands of flow are divided by the curves of equal transport will thus

represent a vertical transport of 100,000 tons per second through the upper limiting

surface of the sheet. This transport is directed upward or downward according

Fig. 105. Areas of equal vertical mass-transport through a surface where pressure is one unit smaller

than at the ground. U. S. A., 1905, Nov. 28, 8 a. m.

as the numbers on the curves T, = const, decrease or increase as we proceed in

the direction of motion along the tubes. The triangular areas which surround the

point and the lines of convergence represent the same vertical transport as the

others. As small areas indicate intense vertical motion, we see that we have a

powerful ascending motion near the point of convergence, especially on its northern

side and along the lines of convergence. But areas of descending motion also occur

even very near the point ofconvergence and between two of the lines of convergence.
If we multiply the pressure of i decibar, which defines the sheet, by o. i we get

a sheet which has the thickness of about 75 meters. The tubes of flow will have

a transport of 50,000 tons per second at the wall C, and the areas will represent a

vertical transport of 10,000 tons per second through a surface having the approxi-
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mate height of 75 meters above the ground. If we multiply by 0.01 we get a sheet

of an approximate thickness of 7.5 meters; the tubes will have a transport of

5000 tons of air per second at the wall C
, and the areas will represent a vertical

transport of 1000 tons of air per second through the surface which has the approxi-
mate height of 7.5 meters above the ground. Of course it will be legitimate to go
up to so great heights as 75 or 750 meters only on condition that the original chart,

fig. 102, represents the average horizontal motion between the ground and these

heights.

A change in the interpretation of the charts, which will be useful for qualitative

purposes, can be obtained in this manner: we multiply the unit pressure which

10"
defines the thickness of the sheet by -

. We shall then obtain a sheet the thickness
75o

of which will be approximately 1, 10, 100, 1000, . . . meters, according
to the value given to n. In order to get the mass-transport in this sheet, we must

multiply the field of T
l by the same number. But instead of that we can multiply

only by 10" on condition of interpreting T, as volume-transport instead of mass-

transport. For 750 is the approximate volume in cubic meters of a ton of air

in the lower strata of the atmosphere. In other words, for qualitative purposes
it will be permissible to give an interpretation like the following of the chart of

fig. 105. It represents a sheet of a thickness of 1000 meters. The tubes have a

horizontal transport of 500,000,000 cubic meters of air per second at the wall C,
and the areas represent a vertical transport of 100,000,000 cubic meters of air

through the surface of a height of 1000 meters. When we choose the thickness of

100 or 10 meters of the sheet, we get the proportional reduction of the numbers

representing the volume-transport.
From the chart of fig. 105 we can see without difficulty how the tubes of flow

go up and down. Let us return to the original interpretation. The areas of 100,000
tons of vertical transport can then be conceived as the sections of the upper limiting
surface of the sheet with tubes of this transport. For each element of the curve C
five such tubes rest upon each other, giving the total horizontal transport of 500,000
tons. Each area shows one of these tubes coming up or going down through the

upper limiting surface of the sheet. (Compare the schematic examples of figs.

43 c and 45 c)

(B) Topographic method. In order to follow not only qualitatively, but quanti-

tatively, the course of the tubes up and down, we can pass to the topographic method.
We then retain the curveC

,
its division into elements fulfilling the condition v'dn' = 5

and the corresponding division of the chart into bands of flow, fig. 103. Introducing
the value c' = 5 in formula (c) section 187, we get

P' vdn

By use of the divided sheet for reciprocal length-measurements (fig. 81) we draw the

field . The curves representing this field will have the same course as those repre-
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senting the breadth dn (fig. 104), only with other intervals. Finally we perform the

graphical division by v. The field resulting is given by the chart of fig. 106, represent

ing in terms of pressure the topography relatively to the ground of a surface of flow

formed by those lines of flow which at the initial curve C have a height above the

ground defined by unit decrease of pressure. The contour-lines dp l
= const, of

this chart have the same course as the curves T1
= const, of fig. 105, only with

changed intervals. The curves 1, 2, 3, 4, 5, . . . show the points where pressure

is 1, 2, 3, 4, 5, . . . units smaller than at the ground. According as we use

m-bar, c-bar or d-bar as unit of pressure, these curves will represent the approximate

Fig. 106. Topography of a surface of flow relatively to the earth. U. S. A., 1905, Nov. 28, 8 a. m.

h eights of 7.5, 15, 22.5, 30, 37.5, ... of 75, 150, 225, 300, 375, . . or of 75,

1500, 2250, 3000, 3750, . . . meters above the ground. Whether it be legitimate

to go to greater heights will depend upon whether the given chart gives a true

picture of the average horizontal motion between the ground and these heights.

We have drawn no curve inside the curve 5, which, according to the different

interpretations, represents an approximate height of 37.5, of 375, or of 3750 meters.

But the formal construction, in losing its physical significance, would give an infinity

of contour-lines inside this curve, indicating an infinite increase of height of the

surface of flow as we approach the point or the lines of convergence. The lowest

part of the surface is represented by the curves 0.9, 0.8, 0.7 .. . which are found

partly outside the curve C, and partly inside it, especially a little south of the point
of convergence and between two of the lines of convergence.
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The chart of fig. 106 gives the topography of the surface of flow expressed in

terms of pressure; qualitatively we can consider it also as a chart giving topography
in terms of height. We have given above the approximate height corresponding

10"
to the different integer values of pressure. But if we multiply by - we pass to

decimal heights. Thus in rough approximation we can interpret the curves 1, 2, 3,

... of the chart as contour-lines which give the heights 1,2,3,. meters or

the heights 10. 20, 30, ... or 100, 200, 300, . . . of a surface of flow.

(C) Vertical component of specific momentum. In order to find vertical specific

momentum, we have to draw a chart of divergence of the horizontal motion (see

formula (h) of section 187). For this we can use directly the given chart of fig. 102,

no special division into bands of flow being required. Divergence of the two-

dimensional field of velocity v will according to formula (g) of section 1 70 be given

by the equation
div2 v = --+z>5

cS

s denoting the length of arc along the lines of flow and 8 the divergence of these lines

(see section 168). As we here come across the most important construction of kine-

matic diagnosis, we will illustrate each of the four separate operations, the last of

which gives the result.

(1) We construct the field of the derivative of the intensity of the vector with
c S

respect to its vector-lines. This differentiation is performed in the regular way by
use of the differentiating sheet of fig. 81 as illustrated in section 165. The resulting
field is given in fig. 107. The numbers added to the curves give the values of the

derivative obtained when ds is measured in centimeters on the chart. In order to

get the true values per meter we have to multiply by io~ s
,
as a centimeter on the

chart represents 105 meters.

(2) Then we have to draw the field of divergence 5 of the lines of flow. We can

determine this field by use of the divided sheet for differentiations of the second

order, fig. 90, this sheet being placed with the radii tangential to and the circles

normal to the lines of flow. But if the isogons of the lines of flow are given, we get
a much better determination by using the ordinary differentiating sheet of fig. 81.

We then perform the differentiation of the angle represented by the isogons with

respect to the normal curves n to the lines of flow. The resulting field of divergence
of the lines of flow is given on the chart of fig. 108. The numbers give the value of

the divergence referred to the centimeter as unit of length and to the scale of the

chart. Multiplying by io~ 5 we get the true divergence of the lines of flow referred

to the meter as unit of length.

(3) Then we perform the graphical multiplication of this field of divergence

by that of the intensity v of the given velocity. The result of this multiplication,

which is performed in the regular way (section 150) is given on the chart of fig. 109.

(4) Finally we perform the graphical addition of the two fields of figures 107

and 109, and change the sign in order to pass from divergence to vertical-component
of specific momentum. We thus get the chart of fig. 1 10, which contains the result.
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Fig. 107. Derivative -~- of velocity with respect to the lines of flow. U. S. A., 1905, Nov. 28, 8 a. m.
c's

-1.0

Fig. 108. Divergence 5 of the lines of flow. U. S. A., 1905, Nov. 28, 8 a. m.
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Fig. 109. Product vh of wind-velocity and divergence. U. S. A., 1905, Nov. 28, 8 a. m.
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Fig. 1 10. Vertical specific momentum at a surface, where pressure is one unit smaller than at the ground.

U. S. A., 1905, Nov. 28, 8 a. m.
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The chart (fig. no) gives the vertical component of specific momentum in the

height where pressure is one unit smaller than at the ground. The sheet can have a

thickness defined by the decrease of pressure of one m-bar, of one c-bar, or of one

d-bar. The numbers added to the curves will then represent the vertical specific

momentum respectively in the units o. i gram per square meter per second, i gram
per square meter per second, or 10 grams per square meter per second.

Instead of defining the sheets by the decrease of pressure, we can define them
as sheets of a thickness of 10, ioo, or iooo meters. The numbers added to the curves

on the chart of fig. no will then approximately represent vertical velocity, in the

following units: in tenths of millimeters if the sheet has a thickness of 10 meters,

in millimeters if the sheet has a thickness of ioo meters, and in centimeters if the

sheet has a thickness of iooo meters. This rule will be very convenient for getting
a qualitative picture of the vertical motion which the chart of fig. no describes

quantitatively by vertical specific momentum.
The chart is seen to give an ascending velocity which has its greatest values near

the point and along the lines of convergence. But areas of descending velocity are

also found, even near the point of convergence and between two lines of convergence.

189. Complete Kinematic Diagnosis. Kach of the three methods of represent-

ing free vertical motion, by areas of equal vertical transport, by topographic repre-
sentation of surfaces of flow, or by charts of the vertical component, will have its

special advantages in special cases. But the question will now be which of them will

work best as a link in a complete kinematic diagnosis of atmospheric motions.

The construction of a chart of areas which represent equal vertical transport
will be easy for each single atmospheric sheet. But inasmuch as the lines of flow

have a different course in the different sheets, the summation of the transports

produced in the different sheets will be circumstantial. For this reason we shall

not make a general use of this method.

When the topographic method is applied, we shall not meet with this difficulty.

We can pass by simple graphical addition from the relative topographies which we
find by the solenoidal condition to the corresponding absolute topographies. But
the drawback of the topographic method will be the great complication of the sur-

faces of flow. In the neighborhood of the initial curve C used to define the surface

it will be relatively simple. But the farther we follow it the more complicated will

be the course of the contour-lines. Finally we shall always come to places where
the surface folds itself so as to be cut by a vertical line at more than one point. The

topographic method of representation will then become complicated, and will lose

its conspicuity. While the method may do good service for special investigations,
we shall not try to take it as the base for a universal method.

We shall therefore base the complete kinematic diagnosis upon the representa-
tion of the vertical motion by charts of the vertical components. The production
of these charts is a little more laborious than that of the preceding ones, but as soon

as they are produced all further operations will be easy to perform upon them.
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In order to perform this diagnosis, we must first know the field of pressure, i. e.,

we must have charts giving the topography of the standard isobaric surfaces and
of the pressure at the ground. From the latter we derive a special chart of the

difference of pressure between the ground and the lowest isobaric surface in free air.

Then we must have a chart of velocity at the ground, and charts of the average
horizontal velocity within each of the standard isobaric sheets, as well as of this

average velocity in the incomplete sheet between the ground and the lowest standard

surface in free air. The kinematic diagnosis will be accomplished as soon as we have

found the complete representation of the vertical motion. We shall arrive at this

representation by the following operations (compare the example, section 204, below) :

(1) From the chart of velocity in connection with that of pressure at the ground
we derive the chart of the forced vertical specific momentum at the ground.

(2) From the chart of the average horizontal velocity in the incomplete sheet

between the ground and the lowest standard isobaric surface in free air we derive

free vertical specific momentum through this surface. The construction is first

performed for a unit sheet, and then the result is obtained for a sheet of irregular

thickness by graphical multiplication by the decrease of pressure which defines the

sheet.

(3) From the charts of average horizontal velocity in the different standard

isobaric sheets we derive the vertical specific momenta produced in each sheet. If

a sheet is partly incomplete, the limiting surfaces cutting the ground, we use the

method (2) for the incomplete parts of the sheet.

By successive graphical additions of the charts (1), (2), (3), . . .we get the

charts of the absolute vertical specific momenta in the different standard isobaric

surfaces. If it be desired it will be easy afterwards to change them into charts of

vertical velocity.

It will be understood at once how a perfectly similar kinematic diagnosis can

be carried out based upon the division of the atmosphere into level instead of into

isobaric sheets.





CHAPTER XII.

KINEMATIC PROGNOSIS.

190. Determination of Displacements from Given Velocities. The fundamental
kinematic vector, velocity, is by its very definition a quantity of prognostic nature.

If the initial position and simultaneously the velocity of a particle is given, it will

always be possible to make a certain definite statement regarding its future position.
How far in the future this statement will have any value will depend upon the

time-variations of velocity. If it does not vary, either in direction or in intensity,
the determination can be made for any future time. But if the velocity varies

according to an unknown law, the forecast will be of value only for a limited period
of time. When we select a sufficiently short period, the variation of velocity will

have insignificant influence, and the prognosis of the future position can be based

exclusively upon the knowledge of the initial position of the particle and the initial

value of its velocity.

This kinematic prognosis will always be the first step when a rational precal-
culation of future atmospheric or hydrospheric states is to be made. In principle
this step will be perfectly simple. The only delicate point will be the choice of

proper periods for which the prognosis may be ventured. They can only be found

by experience. As regards the case of the hydrosphere our experience is still quite
insufficient. As we have not been able to produce any example of kinematic diag-

nosis, we can not give any of kinematic prognosis either. As regards the atmosphere,
our preliminary experience seems to indicate that periods of a few hours may be

used, say from one to six hours. If three hours are used, this period will be con-

venient also because it is in rough approximation a decimal multiple of our unit of

time, the second, viz, 10,800 seconds, or in the mentioned rough approximation
1 0,000 seconds.

191. Synoptical Representation of Horizontal Displacements. When a chart

of horizontal velocity is given, the tangent to a line of flow gives the direction in

which the displacement of any particle takes place, and the scalar value of velocity

multiplied by 10,800 gives the length of the displacement in three hours. On the

velocity-chart we can thus easily mark the initial and the final situation of any
number of points, marking, for instance, the initial position by a little circle with a

dark area, and the final position with a corresponding circle with a white area.

In order to show which points belong to each other we can draw a line from each
black circle to the corresponding white one.

In order to make conspicuous the chart of horizontal displacements, it will be

advantageous to choose systematically the initial situations of the points. They can

be chosen so that they belong to a set of isogons, or so that they belong to a set of

157
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intensity-curves. In the first case the points situated on the same curve will be

displaced in the same direction, in the second along the same length. This will at

the same time make the construction easy and the figure conspicuous. A complicated

picture will, however, appear in places where one series of points is displaced beyond
the initial places of another series.

This difficulty may be completely avoided if we choose the points according
to another principle, namely, so that the final situation of one point shall be the

initial situation of another. In this manner we get chains of points (fig. in)
which have a certain similarity with the lines of flow and would coincide with them
if we drew the displacements for infinitely short intervals of time.

Fig. hi. Displacements in 3 hours. U. S. A., 1905, Nov. 28, 8 to 11 a. rn.

It will be understood at once that from the corresponding charts of vertical

velocity we can derive the correlated vertical displacements, but it will be of no

use to enter into details before we come to the more general problem of dynamic
prognosis. It will be sufficient that we have indicated here the general principle

of kinematic prognosis .

192. Different Forms of the Equation of Continuity. Before we leave the

question of kinematic prognosis we have to examine the prognostic value of the

equation of continuity. We have already alluded to the prognostic nature of

this equation, but we have used it hitherto exclusively for diagnostic purposes.
For the more general purpose we have first to give the complete mathematical formu-

lation of the equation of continuity. The two theorems, section 114 (A) and (B),
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correspond to two different mathematical forms of the equation. The first theorem

deals with the velocity of expansion of a given mass and states its identity with the

integral of the normal component of velocity taken over the limiting surface of the

mass. K being the volume of the mass, the velocity of expansion will be expressed

by the individual time-derivative of K. Thus we can write the equation

dK
(a)

- = jvn d<T
dt

The theorem 114 (B) deals with the varying mass M which is contained within a

stationary volume, and states that the diminution of this mass per unit time is equal
to the mass-outflow through the limiting surface of the volume. Evidently the

diminution of the mass M per unit time in a stationary volume is expressed by the

negative local time-derivative of M. When we identify this derivative with the

well-known expression of the mass-outflow, we get this other form of the equation
of continuity

In order to bring the equations to forms more easily used we can apply them
to infinitely small volumes K. The integrals appearing in the second member of (a)

or (b) will then be expressed by the product of this volume K into the divergence of

the vector. When at the same time we express the volume K of the moving mass

by the product of its mass M into its specific volume, K = aM, and remember that

this mass M is constant, we get equation (a) in the form

M^ = Kdwv
dt

M
Dividing by K, and remembering that the ratio is the reciprocal specific volume,K
we get
, \ 1 da j.
(c)

- = div v
a at

In the same manner, when in (b) we express the mass M as the product of its density

p into its volume K, and remember that here the volume is stationary in space and

therefore constant, we get

(d) -% = div V

When we use the relation existing between local and individual derivative

(section 177) as well as the relations existing between density and specific volume
and between velocity and specific momentum, we can verify at once the fact that (c)

and (d) are merely different forms of the same equation.

193. Equation of Continuity as a Prognostic Equation. Equation (d) of the

previous section directly tells us that if we know the field of specific momentum at

any moment, we can find a field representing the rate of decrease of density
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simply by forming the field of divergence of the specific momentum. Then we could

multiply the field of ^ by a suitable interval of time dt, and add it to the field of
ct

density at the time /. We should then get the field of density at the time t+dt.

This method could be formally carried out if we had sufficiently complete and

exact observations of specific momentum V. But as we have to form the divergence
in space, we need observations not only of the horizontal, but also of the vertical

component of specific momentum. Therefore, as long as we can get an idea of the

vertical motions only in the indirect way by making a diagnostic use of the equation
cD

of continuity, supposing simply the field of density to be stationary in space, =
o,

every prognostic use of the equation of continuity in this directway will be excluded.

But we could also think of a prognosis of a more summary character, which

would also be of great value if it could be carried out practically. We shall return

to the equation of continuity in the integral form

W -TT -/"*ct u

and apply it to a vertical cylinder going from the ground to the limit of the atmos-

phere, or at least to a height in which the density of the air is so low that it can

cause only an insignificant mass-transport. It will then be sufficient to integrate
the horizontal specific momentum over the cylindrical surface, and our ignorance
of the vertical motion will cause no difficulty.

Now the ground carries the weight of the mass of air M in this cylinder. <r

being the area of the base and p the pressure, we have pa = Mg, g representing an

average value of acceleration of gravity. Multiplying equation (a) by g, introducing

pa instead of gM, and remembering that the cylinder is stationary and therefore

its base a constant, we see that the equation can be written

ib) -f = z-fvj*

Therefore, if we know horizontal specific momentum V sufficiently well up to suffi-

cient heights, we should be able by this equation to forecast the change of pressure
at the ground. Evidently this would be of high practical value.

The question whether this will succeed will depend on the 'degree of complete-
ness and of accuracy required in the knowledge of V, or of the corresponding velocity
v. In order to estimate it, we can express the vertical dimension by pressure and
at the same time substitute velocity for specific momentum. Thus we have first

da = dz ds, dz being a vertical and ds a horizontal element of line. Then we can

express dz approximately by pressure, writing dz = o.i a dp, where z is measured
in meters and p in the m. t. s. unit of pressure, centibar. Thus

J Vda =jj Vdzds =
|ji',(-o.i dp) ds
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Here we can first perform the integration with respect to p, denoting by v the

average value of vn along a vertical line of the cylindrical surface, and by p p' the

difference of pressure between bottom and top of the cylinder. Then

jvnda =0.1 {p-p') jv nds

Finally we can by v denote the average value of v when we integrate with respect
to s, i. e., around the base of the cylinder. The circumference being s, we get

/vnda = o.i {p p') svn

Equation (6) thus takes the form

i dp s =

p-p'St <ra

If the cylinder is circular, the ratio of its circumference to the area <r of its base

will be^ ,
D being the diameter of the base. As p' is the pressure in very great

height, and thus very small, we can leave it out without essentially changing the

formula. Thus we get for a circular cylinder of sufficient height

i?p g =

-
pft

=0 *D
V"

In order to estimate the exactitude required in the observations of velocity if

it should be possible to forecast pressure at the ground by this formula, we solve

with respect to v

\Sp D
V"~

p?to.4 g

In this formula we can express pressure in any unit. We shall then use m-bars.

Passing at the same time from second to hour as unit of time, calling m the change
of pressure in m-bars per hour, setting g = 9 . 8, and calling d the diameter of the cylin-

der expressed in kilometers, d = 0.001 D, we get

vn = 0.00007 md

For the change of pressure of 1 m-bar per hour, m = i,we shall then have

d = 1000 km. v =
7 cm. per second.

d = 100 km. vn = 7 mm. per second.

d = 10 km. v= 0.7 mm. per second.

Thus, even if we take areas of a diameter of 1000 km., the observations of the

wind-velocity would have to be correct to a centimeter over the whole area of a cylin-

der having this diameter and extending up to heights where pressure is imperceptible.

Of course observations of wind-velocity of this exactitude and completeness can not

be thought of in the present state of development of meteorological observations.

Kinematic prognosis could therefore hitherto only give the displacements of

the masses of air as developed in sections 190 and 191.





CHAPTER XIII.

REVERSAL OF THE PROBLEM OF KINEMATIC PROGNOSIS. KINEMATIC
DETERMINATION OF ACCELERATION.

194. On the Reversed Problems. According to our general plan (section 96)

we shall now consider the problem of kinematic prognosis in its reverse form.

Knowing from the observations the initial and the final state of motion, we shall

investigate the change of motion which has led from one state to the other. This

will involve a determination, on pure kinematic principles, of the acceleration of

the moving particles.

If we ever succeed in giving the complete solution of the problem of prognosis,
we shall have to determine the accelerations not by kinematic but by dynamic
methods. This should be theoretically possible because the observations should

allow us to derive the forces which produce the accelerations. But passing to

the practical performance, we shall meet with a great difficulty. Though we know
from laboratory experiments the coefficient of the friction of the air, we shall not

be able to use it practically for determining the influence of friction on acceleration.

The reason is obvious. Friction depends upon true motion, while we are forced to

work with an idealized motion, disregarding all the small irregularities of the motion

rsection 97) and of the ground (section 179). If we were to determine the frictional

resistance in the rational way we should have to examine the motion from milli-

meter to millimeter, and not only at stations which may be hundreds of kilometers

from each other. As this will not be possible, we shall be obliged to find other ways
for determining the influence which, as an indirect effect of friction, modifies the

idealized motion which we consider. We must develop methods for determining,

by pure kinematic principles, the acceleration of the idealized motion to the consider-

ation of which we are confined, and by comparing it with the accelerating forces

find empirical rules for taking the effect of friction into account.

As an introductory problem to the kinematic determination of accelerations,

we shall first treat the problem of the identification of particles on two successive

charts of motion or (what comes to the same thing) the determination in the

second approximation of the displacement of these particles.

195. Determination of Displacements in the Second Approximation. Let a

chart be given which represents the state of motion at the epoch t . We shall

consider a particle which at this epoch is situated at the point A (fig. 112). Accord-

ing to the chart it has a certain velocity v . During the short interval of time t
l

/

its displacement will then in the first approximation be

(a) AB' = v (tx-Q
Thus the point B' will give in the first approximation the situation of the particle

at the epoch/,.
'63
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Now let a second chart be given, which represents the state of motion at this

second epoch /,. According to this chart we shall find not the velocity v but a

certain velocity v,' at the point B' . We may therefore expect to get a better determi-

nation of the displacement if we suppose that the particle has moved not with the

velocity v0) but with the velocity (v/+v ). During the time tx ta this velocity

would give the displacement

(b) 4B"-i(T.+T,0(*.-O
The point B" would then more correctly than the point B' give the situation of

of the particle at the epoch tt .

The point B" and the corresponding displacement AB" can be found by a

direct continuation of the construction which led to the point B'; i. e., we measure

off from this point the displacement

(&') 3' C" = v/ (/,-/)

The point B" will then be the central point of the line AC" which represents the

vector-sum of the two displacements AB' and B'C"'.

-Construction of displacement in second

approximation.

Fig. 1 13. Displacement and acceleration.

But according to the second chart the velocity at the point B" will not have

the value v/ but a certain other value v,". Therefore we may expect to get a still

better determination of the displacement required if we suppose that the particle

has moved during the time /, tQ ,
not with the velocity \ (v +v/), but with the

velocity \ (v +v,")> which would have given the displacement

(c) AB'"=\{v +v l ") (*,-0
The point B'" at which the particle would then arrive can be found by a con-

struction similar to that which led to the point B" . From the point B' we set off

the displacement

W) B'C'"= v," (/,-*)

The point B'" will then be the central point of the line AC
vector-sum of the two displacements AB' and B'C" .

Evidently these constructions can be continued indefinitely,

then present themselves :

(i) The distances between the points B', B", B'" . . . may converge toward

zero. The process of constructions will then be convergent and will lead ultimately

which represents the

Two cases may
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to the determination of a definite point B. This point will then represent the situa-

tion of the particle at the epoch t, with the highest degree of approximation which

can be attained when the determination is to be made by the use of two charts of

velocity instead of by the use of only one. Or in other words: AB will represent

the displacement in the second approximation.

(2 ) The distances between the points in the series B'
,
B"

,
B'" . . . may

remain finite. The process of constructions will then be divergent and will lose every

physical significance. Examples of this divergence can easily be given. We should

meet with it, for instance, in the case of atmospheric wave-motions (see fig. 51) if

the interval of time t, 1 was selected of such a length that the displacement (a)

obtained in the first approximation was of the same order of magnitude as the

wave-length. This case of divergence must be avoided, and can always be avoided

if the selected interval of time /, 1 be sufficiently short. The periods which from

this point of view may be used must be found gradually by experience.

We shall consider henceforth exclusively the case of convergence, and of con-

vergence so rapid that already the point B" or the point B'", will define with

sufficient approximation the situation of the required point B. According to our

experience the interval of three hours which we have used seems always to give

convergence, and as a rule of a satisfactory rapidity.

196. Discontinuous Method for Constructing Charts of Acceleration. Let A
be the situation of the considered particle at the epoch tot and B its situation at the

time /, as we find it in the second approximation by the construction of the preceding

section. vQ being the velocity at the point A at the epoch tQ ,
and v, the velocity at

the point B at the epoch tu we shall then have (fig. 113)

(a) AB' = vo(/,-0 B'C= v, (/,-/)

the half vector-sum of these displacements vl.B'and.B'Cdefines the displacementA B.

The vector-difference of the same two displacements (a) will be represented

by the line B' C, for which we shall thus have

(b) B'C'= (v,-v ) (t,-t )

Now let us divide this equation by (/, Q 2
. We shall then get

(A v.-Vq =
B'C

K) t-t (t-t y
But the first member in this equation represents the average acceleration of the

particle during the time t
l

1 . The equation therefore expresses the fact that the

vector B'C which we have constructed will, after division by the square of the

interval of time (/, O 2

, represent the acceleration required. If this acceleration

should be attributed to a definite place in the field, it would of course be to the

central point between the points A and B.

We have thus arrived at a discontinuous method of constructing charts of

acceleration: For a sufficient number of particles we perform the construction

giving the displacement of the particles in the second approximation. This con-

struction at the same time gives the vector B' C
,
which gives the direction and
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(after division by the square of the interval of time) the intensity of the acceleration.

When we have constructed this vector at a sufficient number of points, we can

afterwards draw its vector-lines or its isogons and its intensity- curves.

197. Continuous Method for Constructing Charts of Acceleration. We can base

a continuous method of constructing accelerations upon the analytical representation

of this vector as a complex time-derivative and space-derivative. By formula /
of section 1 77 we have

dv dv
,

H =
* +vvv

We have already called the first term of the second member the local accelera-

tion. If this term be zero

9v

Jt=

the wind-fanes of each station will show invariable direction and the anemome-
ters invariable intensity of the wind. The velocity-chart will remain unchanged
as long as this condition is fulfilled. The particles of air will then move along a

system of lines of flow which remain unchanged. The lines of flow will be the paths
of the moving particles. During this motion the particles will accelerate or retard

so as to take at every place precisely the velocity which is characteristic of the place.

We shall call a motion which is defined by this condition a stationary motion. The
acceleration which the particles of air must have in the case of stationary motion

is obtained if we set the local acceleration equal to zero in equation (/) of section

177; i. e., the term vV v represents the acceleration which the particles must have

if the motion is stationary.

We can therefore state : The acceleration of the moving particles may be rep-
resented as the vector-sum of two partial accelerations :

(A) Stationary acceleration which is given by the space-derivative

(a) vVv
(B) Local acceleration which is given by the time-derivative

< '5

We have already treated the construction of fields representing derivatives

of the forms (a) and (b) . We can thus construct the fields of the two partial accel-

erations, and form their vector-sum

(C)
It

"
* +VVV

which will then give the field of the true acceleration.

(A) Stationary acceleration. When a velocity-field is given, the field of sta-

tionary acceleration (a) can be found in the following way (see section 174).

(1) We perform the derivation of the half square of velocity with respect to

the lines of flow, i. e., we form the field
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It will easily be seen that this field represents the tangential component of the

acceleration in the stationary motion.

(2) We form the field of curvature 7 of the lines of flow, and perform the multi-

plication of this field by that of the square of the velocity v
2

. The field

(e) yv
2

which we get in this way evidently represents the normal component of acceleration

in the stationary motion of the particles along the lines of flow.

(3) We perform the vector-addition of the vector (d) which is directed along,
and the vector (e) which is directed normally to the lines of flow.

Another method of constructing the field of stationary acceleration in which

the single operations will not have the same simple physical significance, but which

may still under special circumstances be advantageous, will be this (see formula (d')

of section 1 74) :

(V) We construct the ascendant of the half square of the velocity

(<*') V(^)
(2') We construct the two-dimensional curl of the velocity (section 172) and

form the vector-product of this vector and the velocity. This vector

(e') (curl2v)Xv
will be directed along the positive normal to the lines of flow.

(3') We perform the vector-addition of the two vectors (d') and (e').

(B) Local acceleration. While stationary acceleration is derived from one

chart which represents the given field of velocities at the given time, local accelera-

tion must be derived from two charts which represent velocity at the two different

epochs. The method will be that of the regular vector-subtraction and subsequent
division by the interval of time as we have developed for the case of pure time-

derivations of vector-fields (section 176).

198. Special Remarks. The chart of local acceleration which we derive

from the charts of velocity for the epochs t and /, will correspond to the epoch

'0+2 (A
- O- On the other hand the chart of stationary acceleration, which is

derived from one of the given charts of velocity, will correspond either to the epoch
ta or to the epoch /,. If the interval between these epochs is sufficiently short, the

circumstance that the charts of local and of stationary acceleration correspond to

slightly different epochs will cause no trouble. But in order to get a satisfactory

construction of the local acceleration, we are obliged to select the interval of time

ti to with as great a length as possible. For this reason it will be rational to derive

the stationary acceleration from both given charts of velocity. The best method

will then be this:

By vector-addition and division by 2 we form the chart of the average velocity

|(v,+v )

during the time from tQ to t t . From this chart of average velocity we derive the

chart of stationary acceleration, which will then correspond to the epoch /o+K^ - O-
Then we form the vector-difference of the same two fields of velocity

v,-v
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divide by the interval of time /, /
,
and thus find the local acceleration at the epoch

k+(*i~~0- Then the sum of the two partial accelerations will give the best value

of the acceleration at this epoch.

As even the determination of stationary acceleration involves a vector-addition,

the complete determination of the field of acceleration will involve the performance
of no less than two vector-additions and one vector-subtraction. The work will

therefore continue laborious. But as this kinematic determination of accelerations

will never enter as a link in the chain of operations which must be performed for the

solution of the problem of prognosis, a practical demand for special rapid methods

will not be required.

199. Return to the Problem of Prognosis. It may be useful to consider a little

more closely what could be done for the problem of prognosis as soon as we can

determine by dynamic methods the accelerations of the moving particles.

To the displacement AB' (fig. 113) found in the first approximation we should

then be able to add the displacement B'B due to the acceleration. In this manner

we should be able to forecast the displacements of the particles with a higher degree

of approximation, retaining the length of time for which we make the forecast; and,

dispensing with the greater accuracy, we could make the forecasts for longer periods.

But in addition to this we should also be able to prognosticate the new field

of motion. For we know the velocities which the particles have when they arrive

at their new positions, and we can then draw the field of these velocities. Instead

of this discontinuous method we could also use a continuous one. From the field of

velocities observed we should have to derive that of stationary acceleration. Sub-

tracting this fieldfrom that of the true accelerations, which we calculated by dynamic
methods, we will get the field of local acceleration. Multiplying this by a suitable

interval of time /, /
,
and adding to the field of velocity at the time t

,
we get the

field of velocity at the time /,. Thus, as soon as the dynamic method has given us

the field of accelerations, kinematic methods, which we have treated already, allow

us to determine the future field of horizontal motion. From this we may again, by
kinematic methods which we have developed, derive the correlated vertical motions.



CHAPTER XIV.

EXAMPLES OF ATMOSPHERIC MOTIONS.

200. Indian Southwest Monsoon in July. In giving a few examples of the

kinematic diagnosis of atmospheric motions, we shall begin with a case of great

simplicity, namely, the Indian Southwest Monsoon in July, at the time of its highest

development.
Plate XXXI gives the discontinuous representation of this air-motion taken

from plate 1 7 of Sir John Eliot's Climatological Atlas of India. The arrows repre-

sent the average wind-directions for the month, and the numbers the corresponding

average intensities, changed from miles per hour to meters per second. In this

case the distribution of arrows is a regular one, and it causes no difficulty to draw

the lines of flow from them. The moderately idealized contour-lines of the blank

map on which the construction is performed are a good help for the understanding
and correct drawing of these lines. The chart representing the lines of flow and

curves of equal wind-intensity is given on plate XXLXII.

On the peninsula of India the motion represented by these two systems of

curves is of great regularity. A striking effect of the topography of the land is seen,

inasmuch as the lines of flow make a bend around the southern projection of the

peninsula in order to avoid going across the mountains of the west coast. In the

places where the wind must still travel directly toward the shore and the slope of

the mountains, decided minima of velocity are seen to exist.

In the northern part of the chart the most marked peculiarity is the long line

of convergence which goes up the whole length of the Ganges valley, in order to

end in a constellation of a point of convergence and a neutral point situated above

the Punjab plains. This long line of convergence is evidently an effect of the

Himalaya chain. The observations do not go to a sufficient height in the mountains

to let us see the complete character of the motion. But in all probability a correlated

line of divergence must exist higher up on the slope of the chain. These two parallel

lines of convergence and of divergence will then give the limits in horizontal pro-

jection of a rolling mass of air, which is kept in rotatory motion by the Monsoon-

current passing across the mountain in greater height (cf. fig. 52 b, p. 59).*

Plate XXXIII shows the forced vertical velocity at the ground. This chart has

been derived from the preceding one by the method described in section 181. The

shaded parts are the areas of ascending and the unshaded ones those of descending

motion, the shaded ones on the windward and the unshaded ones on the leeward

sides of the mountains. The ascending motion reaches its greatest values on the

west coast, where it has a maximum amounting to 15 cm. per second.

Plate XXXIV gives the free vertical motion derived by use of the solenoidal

condition as described in section 188 (C). Properly adjusting the units, we can

'Mr. E. Gold has arrived at a similar conclusion. Nature, Feb. 1908, p. 355.
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interpret the chart as representing vertical specific momentum in the height where

the pressure is one unit smaller than at the ground, or vertical velocity in unit

height above the ground. If we use the latter interpretation, the numbers added

to the curves give the vertical velocity in millimeters per second at the height of

100 meters above the ground, and in centimeters per second at the height of

1000 meters above the ground. The chart will give the correct picture of this

part of the vertical velocity, provided that the chart of plate XXXII represents

the average horizontal motion for the sheet between the ground and these heights.

For a wind which has the regularity of the monsoon, it is not improbable that the

observations at the ground give the character of the motion up to considerable

heights. But decided exceptions exist. Thus, if the line of convergence in the

Ganges valley existed unchanged to the height of 1000 meters it should give here

a vertical velocity of 9 cm. per second, and a corresponding greatly localized precipi-

tation might be expected. But as Sir John Eliot's chart of precipitation for July

does not show any sign of this, we have a strong reason for believing that the line of

convergence is a localphenomenon limited to the lower layers. (Compare section 134.)

Comparing the plates XXXIII and XXXIV, we see that the free vertical motion

has a certain tendency to be of an opposite sign to the forced vertical motion existing

at the ground. The addition will therefore in most places give a reduced vertical

motion. Lower down the forced vertical velocity is the stronger of the two. But

at the height of 1000 meters both are of about the same order of magnitude and as

we proceed farther upward the influence of the ground will constantly recede to

the background.
From the two charts XXXIII and XXXIV we can derive charts for the total

vertical velocity at any constant height above the ground by graphical addition. If

we wish to have the total vertical velocity at a given height above sea-level we

must, before the addition, perform the graphical multiplication of chart XXXIV by
a chart which represents the height from the ground to the given level. It is interest-

ing to draw such charts of total vertical motion and to compare them with charts of

average precipitation like those found in Eliot's Atlas. But in a case like that before

us no complete accordance should be expected. We have referred already to one

departure, the reason of which is easily understood. Another cause of departures

is this: In spite of its great regularity the monsoon-wind shows changes from day
to day, causing corresponding changes from day to day in the distribution of the

vertical motion. For this reason there will from time to time appear ascending

motion and consequently precipitation in places where the average motion is descend-

ing and where no precipitation would appear if there were no departures from the

average motion.

201. North America, 1905, November 28, 8 a. m. Instead of average motions

we shall henceforth consider actual motions.

Plate XXXV represents the field of pressure and of mass in the lowest atmos-

pheric sheet above North America, November 28, 1905, 8 a.m., time of 75th meridian.

The single lines give the absolute topography of the 1000 m-bar surface, and the
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double lines, consisting of a thick line and a thin one, give the relative topography
of the 900 m-bar surface relatively to the 1000 m-bar surface, and thus the average

specific volume of the air in the sheet between these two surfaces. The thin line is

on the side where the sheet is thinner. All lines are stippled where they have their

course below the ground. It will be seen that the 1000 m-bar surface has a strong

depression, going down to 100 dynamic meters below sea-level in southern Minnesota,
with a secondary depression in Colorado. The great area of depression is surrounded

by high areas situated in New England, in Montana and the adjacent parts of

Canada, and on the southern part of the coast of California. Another depression
is situated farther north on the Pacific coast.

Plate XXXVI gives the representation of the observed wind-directions in the

common way by arrows. The corresponding numbers, according to the dial of fig. 32,

are also inscribed, and another set of numbers give the wind-intensities in meters per
second. A glance at the arrows at once shows the unfortunate consequences of the

observation of only eight wind-directions. If the lines of flow were drawn strictly

tangential to the arrows they would get polygonal form, with a great number of

lines of convergence and of divergence separating from each other the areas of

different wind-directions. It must therefore be highly recommended to observe

at least double the number of wind-directions. Provisionally we can only remove
the discontinuities in the drawing of the isogonal curves or the lines of flow by
eye-measure.

Plate XXXVII gives the continuous representation of the motion by isogonal

curves and curves of equal wind-intensity. Plate XXXVIII gives the same repre-

sentation by lines of flow and intensity-curves. The isogonal curves have a remark-

ably simple course: only two singular points appear, one in southern Minnesota

and one in California the former positive, the latter negative. The lines of flow

show a marked point of convergence in southern Minnesota, near the point of the

lowest depression, and several lines of convergence which run into this point. A line

of divergence connects the two high areas in Montana and California, and this line

has a neutral point where the isogonal curves had the negative singular point. The

lines of flow make a very striking bend in order to go around instead of across the

Allegheny mountains. While the lines of flow have a relatively simple course, the

distribution of wind-intensity is very irregular, with a great number of maxima and

minima. North of the cyclonic center winds go up to 28 meters per second.

Chart XXXVIII is drawn upon a blank surface which gives the topography of

the land greatly idealized. By the method of section 181 we have derived from it the

chart of plate XXXIX, which gives the vertical velocity at the ground. The shaded

areas on the windward slopes are those of ascending motion, the unshaded ones on

the leeward slopes those of descending motion. The greatest vertical velocities

amount to 20 cm. per second. The fact that higher values are never reached is of

course due to the idealization of topography. The true local values may be much

greater, while our chart gives only the average values for greater areas.

From either of the two plates XXXVII and XXXVIII we can derive by the

solenoidal condition the free vertical motion, which is represented by the chart of
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plate XL. We can interpret the chart as giving vertical velocity in millimeters per

second at the height of ioo meters above the ground, or in centimeters per second

at the height of iooo meters above the ground. If we venture to extrapolate to

the latter height we get free vertical velocities of the same order of magnitude as

the forced vertical velocity derived by the surface-condition. This free vertical

velocity is seen to have a very irregular distribution. A certain tendency to be

opposite to the forced one is manifest in different places. But as to its general

features free vertical motion is seen to be governed by pressure. Generally speaking

the area of depression is an area of ascending motion, except in the details, inasmuch

as smaller areas of descending motion exist even in the immediate neighborhood

of the cyclonic center.

We can in this case make the simple experiment of compounding free and forced

vertical velocity for the height of iooo meters above the ground. The result is given

on plate XLI. When this chart is compared with the simultaneous data regarding

the distribution of precipitation, of cloudiness, and of blue sky, a considerable accord-

ance will be seen to exist in spite of the great extrapolation involved in the estimation

of vertical velocities at so great heights from observations taken only at the

ground.

202. Practical Applications of the Charts of Motion. It will involve no diffi-

culty to introduce the drawing of charts like that of plate XXXVIII, representing

the horizontal motion by lines of flow and curves of equal intensity, into the daily

meteorological service for the forecast of the weather. When the chart is to be

drawn only for qualitative purposes, it will not be required to use the more circum-

stantial method to draw first the isogonal curves. The main course of the lines of

flow can be sketched directly. When the drawing of the lines of flow and of the

curves of equal intensity is distributed between two workers, and these have acquired

some experience, it will cause them no difficulty to have the chart of motion ready

in a space of time comparable to that required for drawing the common charts

representing pressure, temperature, and other data.

These charts of motion possess many characteristic features in the form of

singularities which are in an obvious relation to the conditions of the weather.

Therefore we have reason to believe that experience will gradually lead to practical

rules for weather-forecasts based upon the examination of the charts of motion in

themselves or in connection with the other charts.

When the draftsman has acquired sufficient experience, a rapid examination

of the chart of horizontal motion will show him the places for the strongest forced

vertical motion and for the strongest free one. By making a few measurements in

these places he will be able rapidly to sketch charts of the vertical motion, and there

is hardly any reason to doubt that these charts would prove useful for the forecast

of precipitation.
The charts of motion may also be useful for aerial navigation. For instance, a

glance at the chart of plate XXXVIII will show at once that an air-ship which moves,

e. g., 15 meters per second will not be able to go in a straight line say from Bismarck
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in North Dakota to the southern coast of Lake Superior, for here it would have a

head-wind of 28 meters. But it would easily accomplish the voyage by the circuit

south of the center of the cyclone. If we were able to estimate the degree of per-

sistency of the state of motion, and the direction in which the changes are to take

place, it would be possible by use of such charts to plan the course of aerial ships so

that they will reach their destination in the shortest time.

203. Charts of Acceleration. Charts XXXVII to XLI exemplify the kinematic

diagnosis as far as it can be carried out by use of observations taken at one epoch

only, and only at the stations at the ground. When we have observations from two

successive epochs, we can go one step farther and determine the acceleration of the

motion kinematically.

The charts of plates XXXVII or XXXVIII were taken from the registered

values of wind-intensities and wind-directions during the hour from 7 to 8 a. m.,

time of 75th meridian. The charts of plates XLII and XLIII show the corresponding

representation of the motion derived from the values registered during the hour

from 10 to 11. As will be seen, the point of convergence has been displaced a little

more than 200 kilometers toward northeast, but otherwise the general features of the

chart are unchanged.
In order to determine the average acceleration during the interval of time

between the two epochs, we first form the chart of the average velocity for this

interval of time. This is done by addition and division by 2 of the two vector-

fields represented by plates XXXVII and XLII. The result as obtained directly,

represented by isogonal curves and curves of equal intensity, is shown on plate XLIV;
plate XLV shows the corresponding representation by lines of flow and curves of

equal intensity.

By the subtraction of the same two vector-fields and division by the interval

of time, 3 hours or 10,800 seconds, we form the chart of local acceleration. Plate

XLVI contains the representation of this vector by isogonal curves and curves of

equal intensity, and plate XLVII gives the representation by vector-lines and

curves of equal intensity.

From charts of average motion (plates XLIV or XLV) we derive the chart of

stationary acceleration as described in section 197 (A). The result is given on

plate XLVIII by isogons and intensity-curves, and on plate XLIX by vector-lines

and intensity-curves.

The true acceleration of the moving particles is finally obtained by the addi-

tion of the vector-fields representing local and stationary acceleration. The result

is represented by the charts of plates L and LI, on the first by isogonal curves and

intensity-curves, on the second by vector-lines and intensity-curves.

Much more experience than we have at present must be gained before we can

estimate the degree of objective reliability of a chart of acceleration like that given
on these plates. In the western mountainous parts, where in many cases great doubt

may arise as regards the charts of velocity from which the chart of acceleration has

been derived, the values found for the acceleration must of course be used with
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great reserve. The same should be the case along the borders of the chart. But in

the more central part, in the Mississippi valley, we have every reason to believe

that the chart gives a good approximation to the truth. The question of attaining

the same reliability of the chart of acceleration in the other districts will, as will be

understood at once, simply be a question of further developing the net of stations

and improving the methods of observing the wind.

204. Main Example of Kinematic Diagnosis, Europe, 1907, July 25, 7 a. m.

Greenwich. In the preceding examples we have exclusively used observations from

the common meteorological stations at the ground. We shall now consider a case

where observations, though in quite insufficient number, are at hand also from the

higher strata, namely, the aerological observations on the morning of July 25, 1907.

To begin with the observations from the ground, plate LI I gives the distribution

of pressure and of mass in the lowest atmospheric sheet. The single lines give the

absolute topography of the 1000 m-bar surface and the double lines the relative

topography of the 900 m-bar surface. It will be seen that pressure is rather uni-

formly distributed. A relatively high ridge goes from Iceland over Scotland and

the North Sea toward the Balkan Peninsula. East of this ridge a great number of

local maxima and minima are seen. Plate LIU gives the winds observed, represented

by arrows, by numbers of direction, and by numbers of intensity. The winds are

generally faint and irregularly distributed.

Plate LIV gives the corresponding continuous representation by use of isogonal

curves and curves of equal intensity. The diagram of isogons shows a great number

of positive and negative singular points. Plate LV gives the representation by lines

of flow and intensity-curves, with the corresponding great number of neutral points

as well as of points and lines of convergence and of divergence. The comparison
with the chart of pressure plate LII shows that the points of convergence with great

regularity coincide with the small depressions, and the points of divergence coincide

with the corresponding heightening of the isobaric surface of 1000 m-bar pressure.

The chart of plate LIV is drawn upon a blank which represents the average

pressure at the ground (see plate XXX) . From this chart we therefore easily derive

that of vertical specific momentum at the ground, plate LVI.

When we pass to air-motion in the higher strata, we must limit our considera-

tions to the small area where we have the closest network of aerological stations.

We have done this on plates LVI I to LX, which correspond respectively to the

standard sheets X, IX, VIII, and VII (section 107). The incomplete sheet XI is so

thin that we have left it out of consideration. The wind-observations are represented
on the charts A of these plates by arrows and intensity-numbers, as we have men-

tioned already. As the arrows and numbers are too few in number for the drawing
of the charts of horizontal motion, we have used in anticipation dynamic principles

for giving at least a tolerably probable reconstruction of the horizontal motions as

developed in section 139. The reconstructed horizontal motions are represented by
lines of flow and curves of equal intensity on the charts B of plates LVII to LX. Of

course we must leave open the question regarding the degree to which we have thus
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succeeded in reconstructing the true horizontal motions. We shall therefore use

them only to illustrate the formal methods of a complete kinematic diagnosis of

atmospheric motions.

From the charts B we then derive auxiliary charts representing the contribution

of each sheet to the vertical component of the specific momentum. These auxiliary
charts have not been reproduced. But the method of drawing them is that devel-

oped in section 187 (C), and for the incomplete parts of the sheets in section 189.

As soon as these auxiliary charts are drawn we find the true vertical specific

momenta at different standard isobaric surfaces by successive graphical additions

By graphical addition of the vertical specific momentum at the ground (plate

LVI) to that produced in the incomplete sheet X we get the chart LVII c, which

gives the vertical specific momentum at the isobaric surface of 900 m-bar pressure.

By graphical addition of this vertical specific momentum to that produced in

the sheet IX we get the chart LVI 1 1 c, which represents vertical specific momentum
at the standard isobaric surface of 800 m-bar pressure.

By graphical addition of this vertical specific momentum to that produced in

sheet VIII we get in the same manner the chart LIX c, representing the vertical

specific momentum at the standard isobaric surface of 700 m-bar pressure.

By graphical addition of this vertical specific momentum and that produced in

sheet VII we get the chart LX c, which represents the vertical specific momentum
at the standard isobaric surface of 600 m-bar pressure.

The plates LVII to LX thus give the complete result of the static and the

kinematic diagnosis of atmospheric conditions on July 25, 1907, about 7 a.m.,
Greenwich time, on the basis of the aerological soundings performed about this time.

The charts LVII a to LX a give the field of pressure and of mass as the result of

the static diagnosis ;
the charts LVII b to LX b give the horizontal motion within

each of the four isobaric sheets defined by the charts LVII a to LX a. The charts

LVII c to LX c represent the vertical transfer of mass from one to the other of

these isobaric sheets.

We have exemplified the diagnosis by taking the four lowest atmospheric sheets.

Some of the observations on the day under consideration go much higher. But it

will have no interest to extend the diagnostic work further before the observations

have attained the completeness required for working out diagnoses which have an

unquestionable objective value . Till thenwe can only exemplify the formal methods.

If the observations were performed according to the plan which we have devel-

oped in Chapter I, we should be able to work out complete diagnoses at epochs which
were sufficiently near each other to allow us to derive also the fields of acceleration

within all atmospheric sheets. This would be the first step in opening the way for

serious investigations in atmospheric dynamics.
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