CIHM Microfiche Series (Monographs)

ICMH
 Collection de microfiches (monographies)

Technical and Bibliographic Notes / Notes techniques et bibliographiques

The Institute has attempted to obtain the best original copy available for filming. Features of this copy which may be bibliographically unique, which may alter any of the images in the reproduction, of which may significantly change the usual method of filming are checked below.

Coloured covers /

Couverture de couleur

Covers damaged /
Couverture endommagée

\square
Covers restored and/or laminated /
Couverture restaurée etlou pelliculée

Cover title missing / Le titre de couverture manque
Coloured maps / Cartes géographiques en couleur
Coloured ink (i.e. other than blue or black) /
Encre de couleur (i.e. autre que bleue ou noire)
Coloured plates and/or illustrations /
Planches eVou illustrations en couleur

Bound with other material /
Relié avec d'autres documents
Only edition available /
Seule édition disponible
Tight binding may cause shadows or distortion along interior margin / La reliure serrée peut causer de l'ombre ou de la distorsion le long de la marge intérieure.

Blank leaves added Juring restorations maj appear within the text. Whenever possible, these have been omitted from filming / II se peut que certaines pages blanches ajoutées lors d'une restauration apparaissent dans le texte, mais, lorsque cela était possible, ces pages n'ont pas été filmées.

Additional comments / Various pagings. Commentaires supplémentaires:

L'Institut a microfilmé le meilleur exemplaire qu'il lui a été possible de se procurer. Les détails de cet exemplaire qui sont peut-être uniques du point de vue bibliographique, qui peuvent modifier une image reproduite, ou qui peuvent exiger une modification dans la méthode normale de filmage sont indiqués ci-dessous.

Coloured pages / Pages de couleur

Pages damaged / Pages endommagées
Pages restored and/or laminated /
Pages restaurées etou pelliculées
Pages discoloured, stalned or foxed /
Pages décolorées, tachetées ou piquées

Pages detached / Pages détachées
Showthrough / Transparence
Quality of print varies /
Qualité Inégale de l'impresslon
Includes supplementary material /
Comprend du matériel supplémentaire
Pages wholly oi partially obscured by errata slips, tissues, etc., have been refilmed to ensure the best possible image / Les pages totalement ou partiellement obscurcies par un feuillet d'errata, une pelure, etc., ont été filmées à nouveau de façon à obtenir la meilleure image possible.

Opposing pages with varying colouration or discolourations are filmed twice to ensure the best possible image / Les pages s'opposant ayant des colorations variables ou des décolorations sont filmées deux fois afin d'obtenir la meilleure image possible.

Thia item is filimed at the reduction ratio checked below / Ce document est filmé su taux de réduction indiqué cl-dessous.

The copy flimed here has been reproduced thanks to the generosity of:

National Library of Canada

The images appearing here are the best quailty possibie considering the condition and iegibility of the originai copy and in keeping with the fiiming contract specifications.

Originai copies in printed paper covers are flimed beginning with the frorit cover and ending on the last page with a printed or lilustrated impres. sion, or the back cover when appropriate. Ail other original copies are fimed beginning on the first page with a printed or lilustrated impresslon. and ending on the iast page with a printed or iliustrated impression.

The iase recorded frame on each mierofiche shail contain the symboi \rightarrow Imeaning "CONTINUED"I, of the symboi ∇ (meaning "END"). whichover appios.

Maps, piates, charts, otc., may be filmed at different reduction ratios. Those soo iarge to be entireiy inciuded in one exposure are filmod beginning in the upper isft hand corner, ioft to right and top to bottom, as many frames as required. The foilowing diagrems iliustrate the method:

L'exempiaire fiimd fut rsproduit grâce ala gd́nd́rosit' de:

Bibliothèque nationale du Canada

Lss images suivantes ont dtd raproduitas svec la pius grand soin. compte tenu de la condition at de ia netterd de i'exampiaire fiimb. ar an conformitd avec ies conditions du contrat de filmage.

Lee exempiaires originaux dons ia couverture en papier eat imprimbe sont flimbe en commençent par is promier piat ot sn terminant soit per la dernidre page qui comporte une emprainte d'impression ou d'iliustration, soit par is second piat, soion is eas. Tous ies autres exemplaires origineux sont filmes en commençent par ia premidre page qui comporte une amprainta d'impression ou d'lilustration ot an terminent per la dernidre page qui comporte una talle emprointe.

Un des symboies suivants apparaitra sur la dernibre image de chaque mierofiche, seion le cas: is symboie \rightarrow signifie "A SUIVRE". Ie symboie ∇ signifie "FiN".

Les cartes, pianches, tabieaux, etc., peuvent ötre fiimós das taux de réduction differents. Lorsque io document est trop grand pour itre reproduit en un seui clicht. Il eat flime a pertir de l'angio supdriour gauche. de gauche à droite. et de haut en bas, en prenent ie nombre d'images ndcessairs. Les diagremmes auivants iliustrent ia mdthode.

OANADA

DEPARTMENTOF MINES GBOLOGICAL EURVEY BRANOK

Hod. W. Templeman, Mingeten; A. P. Law, Depott Minigtan; R. W. Broct, Dinctor.

MEMOIR NO. 15-P

ON a TRENTON ECHINODERM FAUNA

AT
KIRLIFIELD, ONTARIO

By
FRANE SPRINGER.

OTTAVA
GOVERNMENT PRINTING BUREAU 1911

```
1 n
```


-20

$$
1
$$

$$
{ }^{2}
$$

(DANAI.I

GEOLOGICAL sunvey branch

 r. W. Brock, Dimetor.

MEMOIN No. 1ォ-1

ON A TRENTON ECHINODERM FALNA

Al^{7}
KIRKFIELD, ONTARIO

HI
FRANK SPRINGER.

OTIAWA
GOVERNMENT PRINTING HLRENU 1911

LETTER OF TRANSMITTAL.

R. W. Broce, Esq.,

Director Gcological Survey, Department of Mines, Ottawa.

Sir,-I bes to submit a Report on the Echinotermat. from the Trenton limestone, near. Kirkfield, Ontario: accompaniod by fise plates of drawings and explanatory notes.

> I have the honour to be,
> Sir,
> Your obedient cervant,
> (Signed) Frank Springer.

Burlingtos, Iowa, U.S.A., June 28, 1010.

1

TABLE OF CONTENTS.

TIST'
$1 \cdot 4,1$
 ;
'RIVOHH:C. 4
 "
Aesencrinu: Hisllang '
Retcocrinus alreolatus n. np. III
Prchutarrinu: licumasua (Billing-) 11
Hhmiorrinus nurifurmls (Biliingn) 11
Archocorrinus microbasalis (Hilings). 11
Irriglupferainus priorun (Billingw). 11
 11
liluplocrinus ornalus (llillinga). 11
"ilupiocrinus ramulusus (Hillings). 11
FIRINIBTIIA 11
Prularorrinu* lerris (Itillins. 11
NIDINAT: 13
Hubocuatis chdonensis Purkn. $1: 1$
Hyhorysils probiematicus Parka. 27
''nstorrinn• articulasus (Billlngs). $\because 1$
l'osterrinus inequalis (Hililugn) \because
Hcterocrinus tenuis Biliings. $:$
Whiocrinus bellerillemsis (W. H. Billigga) ?
''ииulorrinus jerrefli (Billingn) :
Cupulacrinus humllis (Blllinga) -8
Cupulocriиие соијираия (lillingn) $^{\text {(}}$ 3
Dendrocrinus proboscidiatus Bllling*
:18
:18
Ottawacrinus tupu: W. R. Billing.. is
Ottouarrinus billingsi n. kp. 11
Carabocrinus radialue Biliings. in
Carabocrinus rancortlandii Billing- 11
Palaocrinus angulatus Billings.
11
11
Porocrinus conicus Billings. 11
INNERTFE SEDIS. 11
Clciocriaus regiu: Billing4 11
EDRIO.ASTEROIDE.A 11
F.drioaster bigsbyi Billings.
11
11
Igrlacrinus dicksoni Billings. 11
Cuclacystoides halli Billings. in
lichenorrimus. 1.
ClSTIDEt $1:$
Gluplocystis ninliforus Billings. i.
Pleurocystis squamosus Billings.
1.
1.
Amugdalocystif forenlis Billinga. ゅ
ASTEROIDEA Page.
Stenaster salteri Billings. 45
1Taniura cylindricus Billinga. 45 45
Petraster rigidus Billings. 4.5 4.5
Protaster uchiteavesianus Parks. lf
Astroporites ottavaensis Lambe. 46 46
Index. 46
illustrations.
Plate I. Figures of
53
53
Retcocrinus alvcolatus, n. sp. 52
$1 a, 1 b, 2 a, 2 b, 3,4$. and 5 53
Reteocrinus stellaris Billings. 52
6 and $7 .$. 53
Cupulocrinus humilis (Billings). 32
8 and 9 53
Cupulocrinus jecretti (Billings) 5
10,11 , and 12.
53
53
Plate II. Figure of. 37
Hubocystis eldonensis Parks. 56
$1,2,3,4,5,6,7 a, 7 b, 7 c, 8 a, 8 b, 9,10 a, 10 b, 11$, and 12 . 57
Plate III. Figures of. 61
Cupulocrinus humilis (Billings). 60
$1 a, 1 b, 1 c, 1 d, e, 2,3,4 a$, and $4 b$. 61
Cupulocrinus jewetti (Billings) 60
$5 a, 5 b, 6,7 a, 7 b$, and $7 c$ 61
Cupulocrinus jeuretti var. kentuckiensis. 60
8 and 9 61
Protaxocrinus lovis (Billings) 60
$10,11 a$, and $11 b$ 61
Plate IV. Figures of 63
Ottawacrinus billingsi n. sp. 64
$1 a, 1 b, 2 a, 2 b, 3,4 a, 4 b, 4 c$.
63
63
Ottavacrinus typus W. R. Billings 64
5,6 , and 7
5,6 , and 7 6.5 6.5
Plate V. Figures of.
69
69
Hybocrinus tumidus Billings: 68
$1,2,3,4$, and 5 .
69
69
Hybocrinus conicus Billings
68
68
$6 a$ and $6 b$.
69
69
Cleiocrinus regius Billings.
68
68
$7,8,9 a$, and $9 b$
69
69
Cleiocrinus sculptus n. sp.; Mercer county, Kentucky. 68 $10 a, 10 b, 10 c, 10 d, 10 e$, and $10 f$ 69
Cleiocrinus avis n. sp.; Shelbyville, Tennessee: 63
$11 a, 11 b$, and $11 c$.
63
63
Fig. 1. Dendrocrinu longidactulus 29
" 2. Cupulocrinus humilis. 9
3. 'Sruphorriuus' heterocostalis Hall; from the principal typespecimen, Pal. N.Y., Vol. I, Pl. 28, fig. 3d.
30
INDEX 49
LIST OF GEOLOGICAL SURVEY PUBLICATION

ON A TRENTON ECHINODERM FAUNA AT KIRKFIELD, ONTARIO.

HY
Frank Springer.

In the coursc of excavating the Trent canal, a considerable cutting was made through the lower part of the Trenton limestone at a point near Kirkfield, in Victoria county, Ontario, Canada. Some of the layers proved to be extremely fossiliferous, and extensive collections were made there during the years 1906-9 by the staff of the Geological Survey of Canada. Among these were a considerable number of Echinolermata, which, through the courtesy of Mr. I. W. Brock, Director of the Geological Survey, have been placed in my hands for examination. These specimens, together with others previously collected for the author hy Mr. Edwin Kirk from the samin locality, form the sulject of this report. During the years 1 1:0 and 1909, collections were also made in the Kirkfield beds for the University of Toronto, which lave been studied by Dr. W. A. Park', of that institution, and some new species described in papers which will be referred to later. He has obligingly furnished me for comparison a list of the species as identified by him, and allowed me the fullest opportunity for examination of the specimens in the University Museum under his charge.

The fauna of the Canadian Trenton was investigated at an early day, and most thoroughly described, by that eminent palmontnlogist. E. Billings-the Echinodermata in the two finc Memoirs on the Cystidea and Crinoidea known as Decades III, and IV', of 'Figures and Descriptions of Canadian Organic Remains,' published respectively in the ycars 1858 and 1859. Many of the species were preliminarily described, without figures, in reports of the Geological Survey for 1856 and 1857. These treatises were largely based upon collections made by Mr. Billings himself in the vicinity of Ottawa and IIull, and his many careful references to the exact stratigraphic
position, within the general limits of the Trenton, of the species described, furmish us the means of interesting comparison with the similar oceurrences in Victoria counts.

Billings derriptions, in the works above mentioned include eight genera and twenty species of Cystids, Starfishes, etc., and three genera and thirty-three species of Crinoids, from the Trenton, all new to seience-besides several new genera and species from other Ordovieian horizons.

Further valualle contributions to our knowlelge of the Trenton crinoidal fauna were made by Mr. Walter K. Billings, who in 1881 to 1 s 8 T , in the Transactions of the Ottawa Field Naturalists' Club, described several new species and one new genus from Ottawa and Belleville. Some ndditional speeies were described by Dr. J. F. Whiteaves, Sir James Grant, Mr. I. M. Lambe, and Dr. W. A. Parks.
13. far the greater part of the Fehinodermata deseriled by these nuthors was derived from the lower and middle parts of the Trenton beds at Ottawa and vicinity. Among considerable collections made in the same region by Mr. Jolm Stewart, and afterwards acquired for the Museum of the Geological Surver, were some which are believel to have come from the upper part. Of the forty or more species found at Kirkfield, thirty are readily recognized as among those described by E. and W. R. Billings, ehiefly from the lower and middle beds at Ottawa, whereas some forms believel to be from the upper beds at Ottawa are wholly wanting. Mr. W. A. Johnston, who made the fine collections at Kirkficld for the Geological Surver, informs me that the zone from which these fossils were oltained probally extends from twenty-five to seventy-five or eighty feet above the heary coral beds which are regarded as the base of the Trenton, or the top of the Blaek River beds; and that the Echinodermata are most abundant in the lowest twenty-five feet of this zome. The almost complete identity of the crinoidal fama in the two regions would, therefore, seem to indicate the approximate continuity of the inwil-bearing leds, and to confirm the statement of Dr. Ami, in his paper on the 'Outliers of the Ottawa Palrozoir Basin' (Royal Sor. Canada, 1806. p. 154. Sce. IV) that 'the echinoderms abound in the shaly and thin-bedded portions of the lower Trenton of Hull and Ottawa.' The fossils at Kirkfield also occur ehielly in thin, shaly layers; and while the preservation of the specimens is often very good for the study of structural details, many of them are much

Hattened by pressure. In general, however, the fossils are in better rondition than those sturlied by Billings, and in many rases species, deseribed l . him from imperfect material are represented by specimens far more perfect than were at his disposal, afforling new and important information upou their morphologys and relations.

Direct compurison with tho types of Billings' speries was foumd to be highly desiralle it the study of this material, and upon being informed of this Mr. K. W゙. Brork, with a likrality for whieh le has my sincere thanks, promptly placed the whole of the original collertion in the Mlusemu at Ottawa at my disposal for examination, and authorized such portions of it as 1 desired for more detailed sturly to le shipmed to me at Burlingtom. I ann much indelitel to Mr. Lawreure N1. Lambe, Pakeoutologint, firological Surves, for his rareful and courteous attention to the packing and shipping of these valuable specimens.

The following list will slow the character and extent of this echinoderm fauna, sufficiently for comparison with that of other localities; and along with it I will give an account of some new and notable oceurrences brought to light ly this studs.

> CRINOIDEA.
> Order ('AMERATA.-
> Retron mints (Billings).

Several specimens belonging to this gemas, deseribed by Billing, from fragmentary material, and of whieh he said 'none of the specimens collepted are perfect, and the characters of the species, thetefore have not been fully aseertained,' fully confirm the inturpretation of the genus given by Wachsmuth and Springer in their 'lemarks on Glyptocrinus and Reteocrinus' (Am. Jour. Sci. xxv, p. 25if), to the effect that insteat of haring, as Billings suppoed, 'no perfeetly formed plates,' and its cup con-isting of 'a retieulated skeleton, composed of rulimentary plates, etc.,' the plates of the base and radial series are perfectly formed. monceted with each other by distant sutures; the interbrachinl areas only being oecupied by a large number of small plates, without definite arrangement. In the original description by Billiugs the eolumu of the typ speries is stated to be 1ound. The revisenl leseription by Wachameth and Springer (N. A. Crinoidea Camerata, p. 178) gises the column as ' obseurely pentag. onal.' This was a mistake in the trxt. and does not agere with our own
figures on Plate IX. The column is absolutely round in the type specimens, not only those refigured by us on that Plate, figs. $3 a, b$, but still better in the original of Billings Plate IX, fig. 4b, of Decede IV, which I have here refigured after additional preparation (Plate I, fig. 6). It is now interesting to find that all the specimens from Kirkfield, some fifteen in all the collections, while very similar to \boldsymbol{R}. stellaris in every other particular, have a very large and sharply pentagonal column, so sharp, in fact, that in very mature specimens the sides arc concave (Plate I, figs. 3, 4). In the first of these, having about 6 inches of the stem preserved, the pentagonal feature obtains throughout, with no sign of becoming round; but in one rather small specimen, with about two inches of stem intact, it passes from pentagonal to round at about half the distance (Plate I, fig. 5). This would indicate a tendency to variation in this character sufficient to justify the retention of both forms within the genus, and its diagnosis should be modified accordingly. The difference is really a matter of secondary growth, as the axial canal is of the same character in both. This is shown for the new form by figures $1 b$ and $2 b$, of Plate I, giving cross-sections of the column near the calyx in two specimens; the first, at one of the thin interpolated joints, consisting of a large central, surrounded by five peripheral canals wholly separated from it; and the second, e.mewhat nearer the base, and at one of the larger, projecting joints, having a larger central canal connecting with the five peripheral ones. In fig. 1b, the central canal is itself pentagonal, with the orientation reversed, i.e., interradial, but this does not hold good in sections of other stems farther down, where it is round. In R. stellaris the stem, while round externally, has the same quinquepartite canal, as is shown by the cross-section of one of Billings' types, 4d, (Plate I, fig. 7), the peripheral canals being radial.

The persistence of the pentagonal stem at Kirkfield, and the constant absence of it in the Ottawa specimens of R. stellaris, seem to indicate a distinct species, whi in may be identical with one having this character from the Trenton of Kentucky, viz:-

Retencrines alveolates Miller and Gurley.

 Plate I, figs. 1, 2, 3, 4, 5. The pentagonal column sufficiently characterizes the species; there are some minor differences, such as the decper pits at the sides of thecalyx plates, and lateral buttresses on the brachials in some specimens (fig. 7a), but these are probably not important, and the latter is not constant.

Archarocrinus lacunosus (Billings).
Glyptocrinus lacunosus.-Dec. IV, p. 61, Plate VIII, fig. 3. Rare and doubtful.
Archaeocinus pyriformis (Billings). Glyptocrinus pyriformis.-Dec. IV, p. 61, Plate VI, figs. 1a-d Rare.
Archaeocrinus microbasalis (Billings).
Rhodocrinus microbasalis.-Dec. IV, p. 03, Plate VI, fig. 2. Rare.
Periglyptocrinus priscus (Billings).
Glyptocrinus priscus.-Dec. IV, p. 56, Plate VII, figs. 1a•f. Rare, and showing much stronger ornamentation than the types.
Periglyptocrinus bilingesi (Wachsmuth and Springer).
N. A. Crin. Camerata, p. 22%.

Rare.
Glyptocrinus orvatus (Billings).
Dec. IV, p. 60, Plate IX, fig. $2 a$.
Rare.
Glyptocrinus ramulosus Billings.
Dec. IV, p. 57, Plate VII, figs. $2 a-f$; VIII, figs. 1 a-e.
Abundant throughout the strata in the crinoidal part of the zone. This is a widely distributed species, being also found in the lowest part of the Trenton in Kentucky.

Order FLEXIBILIA.
Protaxacranus levis (Billings.)
Figs. 10, 11a, b, Plate III.
Lecanocrinus levis.-Dec. IV, p. 47, Piate IV, fig. 3.
Two specimens, probably of this species, were found. Tbis and its companion species, P. (Lecanocrinus) elegans, which as stated by Billings are but slightly different, are the earliest known representatives of the Flexibilia trpe. The original specimens did not
diselose the construction of the nul side, hut for reasons then stated 1 expressed the opinion in 1906, in the course of a discussicn of the general eharacters of the Crinoidea Flexihilia (Journal of Cicology NIV, p. in2), that they must have possessed the Faxorrinoid amal structure, viz., a tube-like serie, of anal platere, uniten! to the noljncent rays liy perisome, and not hy suture. This minion was contirmed while the paper was in press, ly the diveovery of the two specimens above mentioned, in each of which the anal side is exposen. Afterward, anong some specimens from Ottawa in the Museum of the Geological Survey, sent me fol examination Wy Dr. Whiteaves, 1 found another small individual in whinh the sume structure is shown. Not only do they possess the Taxocrinoid anal structure, but, as should be expected from their geologieal position in the lower Ordorician, they have it in its most primitive form, in which the radianal is a part of the right posterior ray, and lies directly under the radial-being thus in the same developmental condition as the contemporary Inadumate genus Dembrocrinus. This fact becomes of considerable interest in connexion with the discoveries hereinafter discussed under the genus Cupulocrinus, showing a prolbable line of divergence between the orders Inadumata and Flexibilia.

Billings, in describing these two species, gave as the only points of distinetion that leveis ' is shorter, and has only four joints insteal of five in the sceondary rays.' In six other small specimens from Ottawa considered to be lavis, since found, the number of seeondary brachials is mostly four, sometimes five, and some arms have hut three. thus indieating a tendency to the greater shortuess on which he re:'ed. In my specimens from Kirkfield, one about the size of the type of lavis and the other very sunall, the number of secondary brachials is mostly five, which would suggest their reference to P. elegans. But the type, and only known specimen heretofore, of elegans has the arnis very angular in the lower part, and tending to hecome flat above, while in the type and other Ottawa specinens of levis the arms are evenly rounded throughout. The Kirkfield sperimens agree with them in this, and also in beiug of small size. while the trpe of P. elegans is much larger. Considering how variable the number of secundibrachs is, I ann at present inelined to refer the Kirkfiell specimens to P. lipvis. For comparison in the discussion later I have figured the Kirkfield specimen showing the anal structures, and another of supposed P P. lavis, from Ottawa (Plate III,
fig. $10,11 \mathrm{c}, \mathrm{b}$). figs. 10, 11a, b).

Oriler IS.IIIN.ITA.
 Hubechtis elomenasis Pints.

Hybocistis Problematices Purk, lue. eit., nom Wetherlhy.
Plate II, fige. 1 to 10.
This singular ('riauid, which Jr. P. Herkert ('urgenter called ' one of the most remarkahle fossil eehinoterms yet discovered,' in represented by the remaius of a small colong, in which the speeimens. to the numbier of a limidred or more, were found crowded together into a spee of a few square feet. This was, of eourse, broken ul in the removal of the rock from the eutting, and probably not all the individuals were recovered, but not a single speeimen was fomul outside of the one small spot. Some ideal of their crowdel condition when embedded muy he had from the faet that in a small pieee of shaly rock less than two square inchew in area nre the remains of uine individuals, more ur less distortenl ly contart with each other. This genus wns evidently of an strongly gregarions hathit, as it is usinally found similarly crowder, with many specimens injured by teing pressed against their fellows.

Of the two spectios muned the smaller one, II. eldonensix, was hy fur the more abundant, comprising ubont four-fifths of the specimens. The two forms were apparently comminglect, und the colong secmto have been emberded just as it grow on the sea bottom, in quiet waters; for the ('rimoils all have their stems aud arms attaehed, althongh. owing to the nsual areidents of guarrving aud collecting. but few are savel for our studies in that eondition.
'This genus was first recognized hece in 190s, hy 1/r. W. .I. l'arks, among collections made for the I'uiversity of Toronte at the smme torality (Ottawa Xinturalist XXI, p. 2?2). In addition to describing his new speries. II. sldonensis. he grave a wery full redeseription and discussion of I. pontemalirus. which as the type suecies of the arme wa- wiginally deseribed ly l'rof. A. (i. Wetherby, from speeimens eollerterl in the Trenton of Mercer emmets. Kenturks. The gemin :s one of singular iuterost, and was the sabject of much disenssion is Dr. P'. Herbert Carpenter (Quarterly, Iourmal (ieologieal Socie . Iondou, 1882, pur 296-?12), and Wachsmith und Springer (Revision of the Palwocrinoidea, 15.5, Part TIT, p. 199). It is remurkable on aceremint of havine mity there arms. two of the brachial
series in Crinoids generully being replaced by ambulacra extending downward upon the dorsal sido of the calyx plates, as in some Cyatids. The three arms also differ from the usual arms in Crinoids in that, instend of tapering to a point by the growth of young brachiald, the distal end is blunt and rounded, and the ambulacra curve around it from the ventral to the dorsal side, and extend downward along the back of the arms, leing what are called 'recurrent' ambulacra.

The better preservation of his specimen enabled Dr. Parks to add some new and useful information touching the species, and with the considerably more extensive material at my command I am able to confirm his excellent description in most particulars. I must, however, come to the support of Carpenter, and Wachsmuth and Springer, on one or two points whercin he disagrees with them. He says: 'The above description differs in many points from the assertions of Wetherby, Carpenter, and Wachsmuth and Springer,' and he specifies as among the cliief differences the construction of the arms, and the mouth and anus. As to the arms he says, 'only two joints have been previously observed; five certainly occur, and no more.' Ordinarily in Crinoids the number of ultimate brachials in an arm is of little moment, being merely a matter of growth in the i:arlividual, the arm becoming longer by the addition of new brachials at the distal end as the size of the organism increases. In a form like this, with recurrent ambulacra, it is clear that such growth could not take place by additions distally, for the presence of the ambulacrum around the end would preclude the formation of any articulating surface; and in view of the presence of the same ambulacrum along the dorsal side of the arm it is not easy to see how there could have been any increase of the arm by interpolation of brachials after the developmental stage was passed. The enlargement of food-gathering area incident to increase in size must have been provided for by extension of the ambulacra farther downward upon the calyx. In one specimen this is indicated by the extension of an ambulaerum not only to and across the basal plates, but also a short distance down the stem (Plate II, fig. 7a). Hence in this case the number of brachials in the arm may be supposed to have become fixed in the young, and therefore to have more importance for the distinction of species than in Crinoids of the usual type.

Carpenter, in the paper above cited, figured and described the amhulacral furrow as curving over the summit of the seeond arm. joint. Wachsmuth and Springer, in describing tbe arms, said, 'they
consist, so far as kuown, of two qualraugular joints.' I can contirm Dr. Parks' statement, in criticism of this, that in the Canadian form there are five joints, and if ho had added the cautiomary words of Wachsmuth and Springer, 'во far as known,' I could lave done so without qualification. But when he says, 'five, and no more, I am obliged to bring his criticism lome to himself. For ont of three specimens before me with the arins preserved to their full length, two have five joints, and the third has six (ilato II, fig. 6). Since the original descriptions and discussions of this genus I have also obtained considerable accessions of material from the typical locality and others, in Kentucky, some of which show the arms much better than those first found. In eighteen specimens preserving the arm in one or more rays, the number of brachials runs as follows:-
With 1 brachial 1
" 1 and 2 brachials 1
" 2 brachials. 7
" 2 and 3 brachials. 2
" 3 brachials. 6
" 4 brachials. 1

In the one with four brachials they are unusually short, together not longer than the two in other specimens, so it may be disregarded. Thus while the number originally stated proves to be rather the most common among the Keutuchy specimens, there is a variation from one to three.

Second, as to tho moutl. Dr. Parks says: ' The ambulacra mect at or near the centre of the disc, and do not enter the calyx at the edge of the radials, as siated by Wachsmuth and Springer. A central oral aperture must exist, but it is not observable.' By this I understand him to mean an aperture opening outward through the tegmen. Wachsmuth and Springer's statement on this point was not quite so clear as it might have been, being chiefly concerned in combatting Wetherby's interpretation of the mouth as being situated centrally upon the upper surface, producing likewise an external oral aperture, which would be after the manncr of the Recent Crinoids. It is true that the ambulacra converge at the centre of the disk, as described by Dr. Parks; but, as he also correctly says, 'the furrows are arched over by rigid covering pieces, so that the oral aperture is entirely hidden.' But they do not pass downward between the oral plates into a central opening, as in the case of Taxocrinus (N. A.
('rimoiden ('unerutn, Ilate 111, tig. : ©) mil other filexibilin. and the Reernt ('rimoils; the mublulacra pass over the apmoend edges of the ornly, meet, and roonf over every mosihle ofeniug with their rigid plates, heroming morplonlogically fixenl und prmament (Plute II. figs. iu, $86,9,106$); so thint the month must have leow subtegminul. mids supplied by fook grooves rmming mulerneath the rigiol phate. fron rome puint ulong the ventral furrow of the ruse into which form was gathered hy lirnchioles, pinnules, or tentardiow. It is the
 C'yathocrinus, ete. (N. A. C'rin. Camerata, Plate III, figs. 2, 4. 5:
 mminulnera overlie thin mposed ellyes of the ornls, and close over the oral eentre by fixel mid rigid structeres. That this is the raee larpro is well shown hy aspecimen of $1 /$. prolicmaticus from Woonford comity, Kenturky, ill which the orals are in very perfect condition, divented of the ambulacrol phates (Plate 11. fig. 11). They are produced iuward lye extensions hevond whit is seen when the munbulaera are in place, until they ineet by close sutures near the efntre: the edges are depressed where the ambulacral platess rested upon throm. and there is a passage underneath these joined edges where the fool grooves eould pass inward to the sultegminal oral centre. The emildition of the orals in this syceimen is the same as shown in fig. 15 sm , Ilate. V. of Butheres ('rimoillen ol' (iotland, of the orul plater of \&iиярігосrinus.

The urrmagement of the mululatul phates is somewhent peoliar. There is first at the outside in doulle series of trunsversely elongate Hates-onter side-piowe-then an wecond series of smaller phatesinner side-pieces nterlocking with them. Whose apposed augular thees appronch each other. leaving a narrow spice between (Plate II. fig. 7b). In perfect specimens this furrow is arched over ly time rows of very minute covering pieces, whieh ure partly erect mud interlock dondy alove it, furning; a narrow, keel-like ridge ut the median line of the aunbulaerum (fig. 7c). This ridg, may be suen at someHace on most of the specimens where the andulara are preserven, l.ut the small plates of which it is composed are diffienlt to identify. and eannot be shown in drawings exegrt by great culargement, us in fig. ic. Similar sets of plates corresponding to the two orders of -ide pieces are scen in Ihyborrimus conicus (Ilate V, fig. ©ib) ; there they all lie perfertly flat. and the row of arched plates lans met heen
nux,
. 8
the
the
$1 \times F \cdot$
imn,

onl

```II•
```5i;,
oluervel. But I call attention io n stil! diff nt set of plater in the latter figure, viz., n dnuble row of large alternating plates at the hottom of the groove formed by the lateral extensions of the orals: ure sub-ambulaeral in position, und mueh moro massive and hrger thin the side pieces superimposed upon them.

The posterior oral is surmounted by a smull, raised tuberele, which is perforated, and marks the presence of a hydropore, the same as in Ilybocrinus. This was evidently not preservel inl Dr. Park;' speeimens, as nothing is shown of it in the figurs it is very plain, however, in many speciuens, 'soth of the large and mall forms, and the little rit in the centre of the tuberele is rlearly seen (Plate II, figs. 7a, 8b, 0.)

Dr. l'arks' description of the disk and anal sthuctures is otherwise perfectly correct, and adds to previous knowledge of the genus the fact that the valvular pyramid of plates elosing the anal opening is surrounded by numerous small plates. These small plates formed an integument which was doubtless somewhat flexible, and perislıahle. It was attached to the posterior oral, which is coneave on that side, and the re anants of these small plates can be seen ti.ere in several specimens (Plate II, figs. \(0,10 b\)); and it was also attached to the margin of the a alal plate, which is distinetly crenulated. In ib they are in situ und semarkably plain, but unfortunately the pyramid and anal plate are broken off in this apecimen. The space occupied by this strueture is always found depuesserl in these specimens, with the little pyramid in the centre of it. It is really a misnomer to cail it a ventral sac; it probably did not project inuch above the surface, simply yielding to motion with the protrusion or retraction of the anus, which seems to have been in the latter condition when the Crinoids were fossilized.

The crenulation of the anal plate above nentioned is produced by a number of small grooves passing over the margin of the plate towards the interior. Similar grooves pass from the central portion of ihis plate to the sutures on all sides, where they connect with other like gronves from the adjoining plates, producing at the suture lines deep pits, which probably penctrated to the interior, as they certainly do at the distal margin (Plate II, figs. 8a, \(b, 10 a, b)\). Some of these, and similar ones along the radials, running into the margins of the ambulaera, may be connected with hydrospire pores. This crenulation is similar to that found on the highly elevated and
curved distal margin of the anul phate in Ilybocrinus lumidus. This was deseribed by Wetherly in his necount of the discovery of \(/ 1\). lumidus in Kentueky, but deniel lyy Waehanuth nad Springer (Ifev. Pal, III, 100) upon the streugth of apecinens found ly Mr. W. If. Rillings showing the margin of that plate to be hordered by small plates, eonatituting the culge of the anal protuberance; and it was anggestel that the se-culled erenulation was merely un appearance due to weathering. It now turns out thint the difference in the mheve viewn of this strncture is actually due to a murked and persistent difference in the speeies, and not to in, perfect preservation. The plate is crenulated and highly spreialized in I/. lumidus, but not in II. conicus, thus furnishiug n deeisive elarncter for distinguishing the pieceics an known lefore. This will be discussed further on.

Dr. Parks' new specifa, I/. eldonensis, is the first oue deserihed since Wetherby's type. I have had similar specimens for some ycars amoug the new naterial from Kentucky, laid aside as a possible new simeics, and weleomed its diseovery at Kirkfichd us a fresh evidence of the intimate connexien between the Trenten faunas of Caunda and Kentueks. From the Kirkfeld loculity I have a very good scrics of this form, from which 1 can supplement Dr. Parks' description with some facts not disclosed by his specimens. If was unable to identify the anal ('upper azygous') plate, saying: 'its presence is more to be inferred than observed.' It is, however, present in upwards of fifty specimens (Plato II, figs. 8a, 10a), but in many it is not recognizable by reason of injury to the calyx from being remented by pressure to other apeeimens. On nceount of the unequal swelling, or 'liumping,' of the anal side in this genus and Hybocrinus, the specimens seem to have found their centre of gravity best hy lying on that side.

The deseription says: 'There is no trace of mumbuacral furrow out the arm-learing radials, uor can such a depression be made out out the external aspeet of the arms themselves.' The first part of this I can eonfirm, but not the last. The amlulacra are perfectly plain on the dorsal side of the arms in many specimens, extending over several braehials (Plate II, figs. 1, 2, 5), and are undoubtedly present in all; but wherens in \(J\). problematicus they frequently, in faet usialls, pass down more or less upon the arm-bearing radials, I have not seen this in a single ease of the smoll form described as H. eldonensis. This fact, with the correlative one that the ambulacra
from the two non-arm-hearing rays do not extend, or extend but little, over the basals, but are eliefly contined to tho radials, and the zenerally omaller size nud moro deliento appearance of tha apeeimens, "re the characters, if any, which munt be depmided uron to neparate. the precies lin practiee.

Dr. Parka' apeeimen had a maximum of three joints to the arm, hut wac not perfeet enough to enable him to say 'that the arm was romplete In three aegments.' On this point my evidence is abundant and interesting. In thirty-four apecinema from Kirkfold having one or more arms complete, the mumber of braehinges appear thas:-

With : brachiuls................. 1
" 4 brachials........... in
" bbrachials. \(1 t\)
" 8 braehials........ : :
And variations of 3 and \(f, 4\) and 5,5 and \(B_{1}\) in the sume specimen (Plate III, figs. 1 to \(\begin{aligned} & \text { b } \\ & \text {). }\end{aligned}\)

In the Kentucky speeimens of similar size und aprourance there are:-
\[
\text { With } 2 \text { brachials. .. }
\]
.- 3 brachials. 5

It results, therefore, that in both fornas the number of brachiuls to the arm is not a fixed one, but there is consideruble vari: sility in this character. The variation, however, is within limits which are not common to the two. The averago in \(H\). problematicus is for the Kentueky form 2.2, and for the (amadian :.2-the maximum of the former not equalling (except as to one isolated ease) the minimum of the latter. The difference in the smaller fe:m, \(I\). eldunensis, is not quite so great, the average being \(\mathbf{4 . 9}\) for the Cauatian specimens ugainst 2.6 for the lientucky; but the relative number of siveimens eompared is considerably different.

A further question remains as to the relation between the larger and smaller forms themselves in eaeh locality. Taking the specimens of II. eldonensis and II, problematicus from kidfeld, where we know they all came from a sugle crowded colony, we find that the differences letwen then are precisely those which might urise from individual growth. The small. delieately marked form would tend with age, or with any advantage inducing further arowth, to become

\footnotetext{
5675-21
}
larger, more rugose, and its food gathering anmbulacra to become longer, so that those on the arm-bearing rays, from being eonfined to the arms (Plate II, figs. 1 to 5) would ereep down upon the radials (figs. 6, \(7 a, 10 a\)), and those on the other two would tend to pass the limits of the radials (figs. 2, 4), and enter the basals (fig. 6)-even, perhaps, as in one of iny specinens injured during life, extending down an eighth of an inch upon the column (fig. \(7 a\)). There are no other differences between then; and the same thing is true of those from the Iientuciny localities, where they are also always found elosely associated. In the extension of the ambulaera there is, in fact, a wide range of variation among the specimens of both localities. In those where the two lateral ambulaera pass down upon the lasals, the anbulacra on the other rays encroach in very different degrees upon the radials, as was also pointed out in 1882 ly Carpenter in his paper already eited. In some they pass down over the ealyx almost as far as they do in the lateral rays; in some they only touch the radial for a short distance; in some they fail to reach one, or perhaps two radials at all. Then there are forms intermediate in size, where the lateral ambulacra traverse the basals to a inuch smaller extent, and in which the other ambulacra either touch the radials lut little, or only one or two, or not at all. Finally, among the small forms of the size of the type of \(H\). eldonensis (Dr. Parks' figures of both forms are enlarged, although the explanation docs not mention it), there are many in which the lateral ambulaera touch the basals but very slightly, or not at all (Plate II, fig. 12).

So it is possible to construct a series of specimens ranging from those in whieh the lateral ambulacra are limited to the radials and the others do not reach them at all, through the above intermediate stages, to those in which the lateral ambulacra traverse the basals completely, even entering upon the stem, and the others cross the radials and fo on to the hasals; and having, eoncurrently with these modifications, a variation from small and delicate to large and rugose. The following table gives the actual data for such a series, taken upon 104 Canadian and 4: Kentueky specimens, divided ronghly into three sizea, which I call large, inediumt, and sinall:-

TRENTON ECHINODERM FAENA AT KIRKFIFLD, ONT.

Upon the small specimens the ambulacra are often very delieate. and it is hard to see where they end. In the thirty above noted where the ambulacra pass to the basals, while in some very plain, they mostly pass just a little beyond the basi-radial suture, but still quite enough to show that the ambulacrum is not morphologically limited to the radials; different stages of this are shown on Plate II. One specimen has four arm-bearing rays, and only one ealyx ambulacrum. A number have a slightly tubereular surface, but are not otherwise different.

On the other hand, as between the specinens from the two loenlities respectively, there is the difference in arm development which is constant within the respective limits, and which, so far as we can judge from present knowledge of growth in the living Crinoids, must have originated during the developmental stage, and not during adult growti. The Kentucky form is eharacteristically short-armed. while the Canadinn form is distinctively long-armed-thus suggesting a specific sepaation upon grounds much more decisive than can le pointed out between many described speeies in this group of fossils.

These eonsiderations lead to the final question whether the Canadian forms identified as II. problematicus should he made a new species on aceount of the differenee in arm structure, or whether they should be held to be simply the older stage of II. eldonensis, and the diagnosis of the latter modified accordingly. In view of the fact that Dr. Parks was the first to investigate and descrile the Canadian forms, I prefer to place the forcgoing facta at his disposal and leave
the decision of the guestion to him, hoping that ho will publish his conclusion; but the weight of evidence scems to mo to favour the latter vien:

Before leaving this subject, a word should be said about the relations between this genus and IIybocrinus. In the elements of the calyx and the construction of the tegmen the two genera are substantially identical, as is the case with various genera in other family gronps. The asymmetry of the calyx, due to the greater size of the plates on the postcrior side, and the excentric position of the column, are common to both; lut this, ouly moderately developed in Hybocystis, hecomes strongly pronounced in IIybrocrinus (at least in \(H\). lumidus), producing the peculiar 'hump' posteriorly whieh suggested the name. The anal plate, relatively small and slightly projecting in Iybocystis, is greatly enlarged, and its distal margin highly arched and projeeting nuch above the level of the radials in Hybocrinus; but it is without any of the deep furrowing towards the sutures such as I have described in Hybocystis,-the grooves being confined to the distal margin, where they form a regular crenulation. The 'liump' in the calyx of IIybocrinus tumidus is no doubt due to some unusual functional peculiarity of the hind gut; in the silicified specimens from Mercer county, Kentucky, there is always found a large cavity corresponding with the bulging anal and radianal plates. In the brachial structure, however, they are as far removed as any two genera in the same family can be. No sexual difference, as suggested by Wetherby, if one may judge from shat we know of sexual conditions in the living Crinoids, could account for the wide departure of IIybocystis from the normal arm structure. Hybocrinus has such normal structure: regular and equal arms, with ambulacra confined to tho ventral side, taperinj to points, and increasing by addition of new brachials at the distal end; whereas IIybocystis departs from it in such an extraordinary way as to lead to elaborate discussion and wide differcuce of opinion whether it is a Cystid, a Blastoid, or a Crinoid. Dr. Bather, in the Treatise on Zoology, p. 95, et seq., upon perfectly satisfactory reasons, considers it an ancestral Crinoid, confirming the view of Wachsmuth and Springer that it is 'a Crimoid of low organization.' IIe finds the decisive crinoidal affinitics of the genus in the two braehial ossicles (all that were then known), supported on the summits of the radials, over which the ambulacral grooves pass from betwcen the deltoids (orals) down on to the outer surfare of the radials. 'These ossicles.' he says, 'form exothecal,
jointed outgrowths of the ahactinal thecal plates, and 'therefore, though ineipient, they constitute true brachia.' This view is strongly reinforeed by the present discoveries showing the extension of these lirachia to five aud six ossicles. As an ancestral type, traces of its dominant character may le found reeurring frepuently among the Crinoidea, as in the Hexille genus Cholocrinus (Forbesiocrinus obesus of Angelin). where the anterior and two posterior rays are inereased enormously by division, at the expense of the lateral rays whieh are dwarfed and insignifieant; and in many Batoerinoid genera like Megistocrinus, igaricocrinus, etc.. where increase in the munber of arm openings is first effected by adlitions in the same three rays.

Three speeies of Hybocrinus have lieen deseribed, two from the Trenton and one from the Chazy. The two Trenton speeies, 11 . lumidus and \(H\). conicus, hitherto separated eliefly on areomit of size and proportions of the ealyx, oceur together at Ottawn, but perhaps not in ee same strata. It is rather singular that the two genera have not been ionnd together at the Canadian loealities. \({ }^{7}\) Iybocystis has not, to my knowlelge, been reeorded from Ottawa, where the original IIyl,ocrinus were obtained, and in all my eu. eetions from Kirkfiell, and those of the Geologieal Surver and Toronto Lniversity, covering five seasons' eareful work on the well-weathered dumps of the eanal eutting, and vielding the llybocystis numeronsly as before stated, I have not seen a single speeimen of Hybocrinus. But in Kentueky, in two different loealities in Mereer and Woodford counties, the two genera are found indiseriminately mingled in the debris of the same beds. There the IIybocrinus, all elearly belonging to II. tumidus, have been separated, in colleeting, into two forms whieh I find meself unable to distinguish by auy eonstant eharaeters, exeept that the basal part of the calyx in the smaller one is more rounded, as is the ease in sounger speeimens generally. \(S_{1}\) it appears that we have here a ease similar to that of IIybocystis. where the speeimens as found merely represent the extremes of individual growth in one speeies.

Returning now to the apparently eonflieting views upon the strurture of the anal plate: Prof. Wetherby and Mr. Billings were both right in their ohservations, and Wetherby's figures of \(H\). Fumidus from Mereer eounty, Kentueky (Jour. Cin. Soc. Nat. Hist. III. July, 1880, Plate V. figs. \(2 c, d\)) are perfeetly eorreet. This speciehas sinee been fomd in considerable numbers, both at the original
locality in Mercer county, und in much better preservation at another in Woodford counts. I have upwards of fifty specimens showing the anal plate, and in every one of then it is large, highly arched above the level of the radials, and strongly erenulated by groores passing over its rounded distal margin in a dorso-ventral direction (Plate V, figs. 1, 2, 3). There is no sutural face whatever for the attachment of succeeding plates, but the rounded nargin is of a character suitable for the attachment of perisomc. I find upon examination of Billings' tyle specimens of 11 . tumidus that the same structure is perfectly evident in them also. It is plain in the originals of figures \(1 a\), and \(c\), of Dec. IV, Plate II, and is in fact well indicated in the figure, \(1 a\), though the cronulation is not shown, being concealed by the matrix. I have figured the posterior side of the type, \(1 e\), where the structure is entirely elear (Plate \(\nabla\), fig. 5). Both the arched form and the crenulation appear in other specimens from Ottawa, and this must be taken as one of the strongest characters of the species. To it must be added the characters of the tegmen, hitherto unkuown, but now observable in specimens from Woodford county, Kentucky. It is substantially the same as that of Hybocystis, though the exact details of the ambulaera and oral plates are not well preserved; and it is very differ irom that of H. conicus. The anal pyramid, eomposed of - - , upright, triangular plates, is in front of the arehed anal plate, and in all the succimens is sunk down considerably lelow its margin, and separated from it. It is not connected with the aual plate by any succession of suturally uuited plates, but is no doubt surrounded by a flesible integument of small plates, extending from the posterior oral to the edge of the anal plate; although not preserved in the specimens. the space for sueh a bordering integument as is found in Hybocystis is apparent (Plate V, figs. 3, 4).

Now this is an entirely different strueture from what is found in H. conicus, which is the species upon which Mr. W. R. Billings made his observations mentioned in Revision of the Paleocrinoidea, III, p. 199. A diagram founded on his drawings is published in Lankester's Treatise on Zoology, III, p. 125, fig. 36; but as this does not lring out elcarly the contrast in details which I wish to point out. I give figures from a specimen of my own, lateral and suminit views (Plate V, figs. ba, b). From these it will be sen, that the anal plate, instead of being arched, rounded, and crenulated, has its mar-

IIeterocrnus te.uls Billings.
Dcc. IV, p. 50, P!rte IV, fig. 6; Plate X, fig. 1.

Not uncommon at Kirlfield. Specimens with part of the column attached show that while it is pentagonal near the ealy. \(x\), it enlarges and becomes round as it reeedes, until it presents a very differcnt appearance. But it probably does not continue to eularge to the same extent as that of Ohiocrinus.

Ohombus belfethlensis (IV. li. Billings).
Meterocrinus bellcrillensis. Trans. Ottawa Field Nat. Club, 1 Ssü, No. 4, 1. 4. ; and Plate.
This speeies was escellently described and illustrated by Mr. Walter 13. Billings from a good specimen found at belleville. He recognized the marked heterotumy of the urns, consisting of two main brancles to the ray bearing armets instead of pinnules. The species has leen frepuently mentioned in morphological discussions by various authors, diagrams of it having been mate by: Dr. Dather in his work on Mritish Fossil C'rinoids as representative of the genus lleterocrinus. Wuchsmuth and Springer undertook to place it, along with \(H\). heterodactylus and several other species, in a generic groul under a new name-Stenocrinus-a nomenclatorial adventure which was unsuccessful, us will be shown presently. Tho association of species was not more fortunate than the naming of them, since \(\mu\). bellevillensis is wholly different in its arm strueture from 11 . heterodactylus, and belongs to the group for whieh we cstablished the genus Ohiocrinus (Rev. Pal. III, p. 208).

At that time our investigation of the little group of Lower Silurian monocyelic Crinoids describel under Hcterocrimus, all having nuequal rays by reason of the presence of compound radials or their equiralents in some of them, indicated the advisability of subdividing it into three genera, which we proposed as follows (Op. cit. Pr. 207, et seq) :-

Heterocrinus, with II. simplex as type.
Stenocrinus, with \(H\). heterodactylus as tyic.
Ohiocrinus, with \(I\). laxus as type.
This subdivision las been aecepted by subsequent authors, but through some misunderstanding of trpes the name Heterocrinus was assigned by us to the wrong set of species. 11. heterodactylus, being Hall's type of that genus, could not be taken for the type of a new genus; therefore, Stenocrinus must go into synonymy. Heterocrin:is must be retained for the 11 . heterodactylus group, thus leaving the form represented by \(1 /\). simplex and allied species withont a name. For this S. A. Miller supplied the name Ectenocrinus. Hence the species listed by us in the Revision under Stenocrinuts should be written Heterocrinus, and those under Heterocrinus should be written Ectenocrinus. From the latter, however, as already stated, must he excepted the epecies under consideration, \(H\). bellevillensis.

The structure of the anal side is suhstantially the same in the thre genern，having of radianal direetly under the right posterior radiul，bearing the anal \(x\) on its left shoulder；and they firther agrec in having unequal rays，beeause in three of then the radinl is trans－ versely divided，producing what aro known as compond radink． They muy be distinguished as follow：－

1．．．．．．Column pentigonal，quingnemartite．
a．Arms irregularly dichotomous，divergent．Ver：－ ral buc straight and delicate．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．erocrinus． Species：H．heterodactplus，H．jurenis，H．extlis： Н．tenuis，H．milleri．H．geniculatus，H． pentagonus．
b．Arms heterotomous，divergeut，having 10 main branches，with ramules usually bearing silb－ ordinate brauches．Veutral sac strong and con－ voluted．．． Species：
raupeli，U．belleviliensis．
II．．．．．．Column round，tripartite．
c．Arms isotomous，abutting； 10 in number，with ramules or pinnules．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．ctenocrinus． Species：E．simplex，E．nrandis，E．canadensis．
The speeies referred to Ohiocrinus ure all from the IIudson river， or Cineinnatian group，exerpt \(O\) ．Vellevillensis．This aiffers from the others very strongly in the fact that its ramules do not alternate， but are restricted to the inside of the diehotom－a featuro whieh was noted by Mr．Lillings，and which he said was＇unknown in muy species of the genus previously described．＇It might be suggested that this important modifieation of brachial strmeture would require further generie sepurntion，as has heen done in another group．Un－ til a comprehensive study of the whole of the Palueozoic Inadunata has been made．which I hope to accomplish hereafter，and the full taxonomic value of these characters is more thoroughly understood， I do not eare to propose it．Whether the ramules themselves in turn bear subordinate branches or pinnules eannut be aseertained from the specimens；they ure relatively stronger than in \(O\) ．larus， in whieh sueh seeondary lranehing does oeeur．

The Kirkfield material enables me to add to the knowledge of this speeies furnished by Mr．Billings the fact that it has a eonvolu－ ted ventral sae，whieh confirms its reference to Ohiocrinus，of which this is the most striking eharaeter dhown by the Cineinnati speci－ mens．We now also lave the eomplete eharacters of the stem，whiel is beautifully shown in a magnifieent specimen found by Mr．Kirk in 1405；the erown is preserved in perfect condition，and the stem continues from the ealyx to what was evidently very near the end－ a distance of over twelve inches．The remarkalle thing alout it is，
that whereas the stem next to the calyx is, as descrived oy MIr. Billinge, sharply pentagonal, and divided iuto five lougitudi ‘a reg. ments, after a few inches it becomes round, and increases in size to nearly double the diameter at the lower end. This is accomplished by secondary growth, clearly shown in cross-sections at the thickest part, in which the original pentagon with its five divisions can be plainly seen in the middle.

Ectenocrinus canadensis, descrihed by Billings, from Ottawa, is not represented in the collections from Kirkfield.

\section*{Cupulocannus jewetti (Billings).}

Plate III, figs. \(5 a, b, 6,7 a, b, c\).
Dendrocrinus jewelti.--Lec. IN, p. 43, Text-fig. Plate I, fige. 10, 11.
Cupulocrinus mumilas (Billings).
Plate I, figs. 8, 0 ; Plate III, figs. 1 a-e, 2, 3.
Dendrocrinus humilis.-Dec. IV, p. 39, Plate III, fig. 4.
These two species are by far the most abundant Criuoids at the Kirkfield exposures, and they are found in good preservation. The use of this long ignored generic name of d'Orbigny calls for explanation. The above species were described and figured by Billings at the places stated in the citation, to which must be added a figure of D. jewetti given by W. R. Billings in 1883 (Trans. Ottawa Field Nat. Club, No. 4, Plate without number). Comparing Billings' original figures of these and of D. latibrachiatus (Dec. IV, Plate III, fig. 5), with that of D. gregarius on the same Plate, fig. 1a, and of D. longidactylus of Hall (Pal. N. Y. II, Plate 42, fig. 7a), it is evident that the species referred to Dendrocrinus cannot all remain in the same genus. Forms in which the first brachials rest in small, horse-shoe-shaped sockets in the middle of the distal facc of the radial, must be separated from those in which the facet bearing the first brachial fills the entire distal face of the radial; for this is a character elsewhere recognized as of family importance.

The first is of the form of (a) D. longidactylus (type of Dendrocrinus), D. gregarius, D. acutidactylus, etc., which seem to have a round stem. It also includes (b) D. casei, etc., from the IIudson River group at Cincinuati, and D. proboscidiatus, from the Canadian Trenton, except that they have a pentagonal stem. The sccond is the form of (c) D. jewetti and D. hunilis from the Trenton of Belle-
ville and Ottawa, D. latibrachialus from the IIulson River group of Antieosti, and D. polydaclylus (deseribed hy Shumard as \(/ l o m o-\) crinus) from tho Hudsou River at Cineinnati.

Forms \(a\) and \(b\) have a similar anal side and ventral sae, viz., a broad and very loug sae of about uniform hexagonal plates immediately following the anal plate: text-fig. 1. Form \(c\) has a wholly different anal structure; the anal \(x\) being followed ly a medinn, tulelike and relatively short row of large plates in vertieal series, horderel by amall irregular pieces on either side, much resembling that of some Flexibilia: text-fig. 2.

Fig. 1.
bendrocrinus longidactylus.

Fig. 2
Cupulocrinus humilis.

Hence the following analysis-all being of eourse dicyelic, with five infrabasals, a large radianal under the right posterior radial, und having arms diehotomous, without pinnules:-
1......Anal \(x\) followed by rentral sac of hexagonal plates in longitudimel ?ows, without distinet nedian ridge. Radial facets round, not filling distal face of radial.
a. Column round. Dendrocrinus. Species: D. longidactulus, D. arruarius, etc.
b. Column pentagonal.

1I......Anal \(x\) followed by median row of large plates bordered br irregular plates on either side. Radial facets linear, tilling distal face of radial.
c. Column round.
D. jeurtti.
-conjugans.
-latibrachiatus.
-polydact,1us.
and 'scyphocrinus' heterocostalis, of Hall.
The last named speeies gives the elue to a generie name for seetion c. Hall deceribed it in 1847 (Pal. N.Y., I, p. 85, Plate 28, figs. \(3 a-f\)), as the sole speeies upon whieh he proposed the genus Scyphocrinus. His generie description is as follows:-
'Pelvis (base) eomposed of five pentagonal plates; costal (radial) plates five, four of them heptagonal and one irregular and octagonal; a seeond row of eostal plates, or perhaps more properly a double row
of sempular phates, which are simihr, uniform, nud yuadrangular, except over the irregular costal plate; seapulae (brachials) supporting a cunciform arm joint, interseapular and interbrachial phates.'

This deseription, like many others made ut a time when knowlengo of tho Crinoids wis in its infaney, is meaningless as genera uro now understood, und furnishes no basis whatever for a deternination of any definito characters for the geuus, or tho referenee of any apeeimen to it. It would fit any monoeyclie Crinoid having five hasal plates with ono truneated for an aunl, and somo interbrachials. For describing tho species Hall had two specimens: one a ealyx only, fig. \(3 a\), and another with a cousiderable portion of tho arms preserved, \(3 d\), c. \(\Lambda\) s figured, they appear to represent very different types, and in tho speeific deseription lie inchuled elaracters taken from both of them. Theso specimens are now in the Imerican Museum of Nutural History, New York, nad I havo had an opportuinty, thauks to the courtesy of Dr. E. O. Ilovey, Assistant Curator, to examine and make figures of them. The uriginal of fig. \(3 a\) is imperfeet, and has somo eracks which IIall mistook for sutures, thus giving an erroneous representation of the arrangement of the plates, both in the figure and diagram. The other specimen, \(3 d, e\), is more "omplete, but JIall's figures wero made from positions whieh failed to show its most important diagnostic eharaetor. The base is innierfect (Hall's figures show the stem attached, but the fragment of tho matrix containing this and part of the base has disappeared), but enough remains to show that it was a dicyelic Crinoid, with five infrabasals, and a prominent unal series. The accompanying drawing, text-fig. :3, whis made after some alditional eleaning, and is sufficient to show that it belongs in all substantial reapeets to our form \(c\), as above defined:-

Fig. 3.
-Scyphocrinus'helerocostalis Hall: from the principal type specimen, Pal. N.Y., Vol. I, Yl. 28, ig. 3 d .
Hall's diagram-fig. \(3 b\)-was construeted chiefiy from 3a, but evidently ineluled eharacters taken from hoth specimens. It shows
angular, support lites.' a knew. genera erminaence of ing five achials, \(x\) only, ns preifferent taken neriean opporurator, . \(3 a\) is es, thus plates, a more failed is innlent of eared), ith five drawand is to our
a monowelice ('rinuid, with tive basals, and three primary braching following the rulinh: whereat the original of 3 a lua clearly but two primibrachas, with the number of hasals uncertain-leing in fact a Cumerate (rimoin with radinls in contact all around, belenging t" the fumily Melowriniten: \(3 / l\) lus more than two primihrachs (in fuct tive) and the number of bumb, is clearly tise, with the addition of another circlet below them.

In the ceremmetunces, I think it proper to leane the denhtind specimen, \(3 a\), out of consideration, and to take the characters or ne penus and species from :in, from whinh ther cam be defintely usentthined.

The name semphocrinus was pre-necupied hy Zenker, and insteml
 "rinus, with C. (Scuphorrinus) het rocoslatis, IIall, as first species anll type. He gave the following generic diagnosis: Culyx cupuliform, composed of tive series of pieces, and havi:g five basal phates': which represented what he could extract from Hall's definition, an! was equally non-luminous. Further on, page 40, no doubt :ulucel hy IIall's fig. 3a, he ranged Cyathocrinus tuherculatus Nither (a flexible Crinoid), from the Wenlock Limestone of Dudles, Englani. under the same genus. So the ense eomes tu this: that while both Hall's and d'Orbigny's generie definitions are absolutely worthless. and the specifie description no better for any diagnostic purpose. there is an authentic type specimen, accessible to the scientific mml , lic, which diseloses definite characters of generic rank unitiug a considerable assemblage of speeies. These faets, under the rules of nomenelature, are sufficient to (iblish the genus as valid under d'Orbigny's name, aml its definition will he as given above under -ection \(c\), including the suecies there listel. The only ulternative, if the confusion ariving out of Hall's two typea rembers this doubtul. is to propose a new genu- for this group, whinh I am not proparel to ins.

The form: of this generis typ at Kirktied fall readily into two principal and well markeci species, which, in view of their predominance in the fauna, it may be advisable to define more fully. Both are characteristic examples of the genus as I have defined it, baving five infrahasals, very wide primary brachials, coupletely filling the face of the radials, so that the rays are closely abutting. except at the anal side, where they are separated by the thbe-like base of a large veutral sae (or anal tube, whirherer it may fimally he eallell),
which rise to about the third bifurcation of the arms; axcepting, however, as to occasional small, irregular interbrachials hereafter mentioned.

No. I has calyx plates convex, and more or lews strongly marked with ridges or folds rallating from the centre to adjoining plates, with the sutures mueh dopressed; Inter-basal sutures sharply levelled; brachial sutures stronyly gaping and of ten sinuous, resembling those of smo Flexihilia; number of primibrachs differing in different ruys accorling to a jefnite and fairly constant plan, viz., three in cach losterior ray, four in the lateral rays, und three in the antorlor ray. 'Lhero aro slight variations from this, as fivo in the lateral rays, or four in a posterior, but tho rule holds good in three-fourths of a 1. . Le number of specimens. Ventral sac with prominent keel along merlian plates. Base well rounded; stem small, not eularging at the calyx, and with alternato long and short columnals, none of them projecting. General form of crown rather short and stout (Plate III, figs. Ba, b, 6, 7a, b; Plate I, figs. 10, 11).

No. 2 has calyx plates perfectly smooth and tush with each other; 110 depressed sutures in the calyx, and those between the brachials less strongly gaping; number of primibrachs 4,6 , or 6 to the ray, upparently without regular plan. Ventral sac evenly rounded, without median keel. Stem strong, enloging next to tho calyx to the diameter of tho truncuto baso; composed of uniformly thin columnals, for some distance, when they begin to alternate in size and differ in liameter, there being a projecting one at intervals of four or five, or more; it is short, and tapers rapidly to a fine point. General form of crown elongate, with arms becoming long and slender (Plate JiT, figs. 1a, b, c; 2, 3; Plate I, fige. 8, 0).

No. 1 agrees very well with \(C\). jewetti, though in the deseription and original figure the definite arrangoment of primibrachs does not appear; in fact, if correctly shown, tho type specimen must have been of tho irregular kind, as it slows four in the posterior rays. E. Billings' type cannot le found, but the original of W. R. Billiugs' figure, now in the muscum at Ottawa, conforms exactly to the rule. There is a very similar form from Kentueky in which, while loaving strongly bevelled sutures, the calyx pletes are smooth, without any ridges or raised centres; in this, among a number of specimens, the primibrachs are much less regular, being mostly three in the anterior and right posterior rass, with four or five irregularly in the others;

Compared with Billing, tigures, it would seem Had our No. : might be reierred to \(1 /\). latibrachiwhen rather than In \(1 /\). humilis. The type apecimen of hamilis canmot le fomul wis the vollectiont at Ottawa (having probably heen misluid at the ' ne oi the removil fron Montreali, und there nre ine innilisates. It was evidently a Hattened specimen, but thus the fignere giver the impression of " lroader and lower eulys thin way probably the finet. II. Intibrachintuy was said by the anthor to le chomely related, the only sliflorence laving in the greuter lireulth numl lougth of the arma. Examinutime of the type specinen, lawever, will sume others from the sume loculity. show that it is thoronghly differentiated from the lirkfiehl form lo. the base and stem claructers. While, ns Billings suid, the stem is not preserved, the facet for ita nttuehnent shows that it was sery small, with a strongly roundel base enrsiug in towards it-nothing at all like the lironl, trunente buse passinus into a large, tumprinu stem, of the Kirktieh speeies. Neasurementy ure quite decisive m this point; the width of the stem-faret in several speeimens of hatierachialus is to the width of the culys at the top of the infrumensals as 1 to 3 , while in the liirktiell species it is about 1 to 1.3 . So latibrachiafus may be eliminated: lut I will suy about it in passing that while the arms are more chusely uhutting than in any of the other sprecies, wome specimens shaw in slight developuent of the same kind of small interlorachial phates hireinhefore deseribed. D. conjuguns is distinguighed live it* uartuiser and much more romided arms. and is distinctly represented loy a few specimens of that clurarter found. Of Hall: C'. helerocostulis from New Yo.i we do not kuow the base well enouglı fur eomparison. ('onsidering the great generai sinilarity of the famus of Kirkfield and Ottawa, and that humilis is associnted at the latter with jewelli, which is thos distinctly reroznized from botii localities, I think it leest to apply the name humilis to our species No. 2. with the elaraeters above set forth.
C. latibrachialus was deserilued from the Indson River beds of Antirnoti. C'. polydactylus, another well-known Ifulaon River specie: from the Cinciunati region, is of the type of \(C\). jewelti, with strongly conver plates and deep sutures. So we have the two forms persisting from the lower Trenton into the Hudson River: thus making the genus, with its wide geographical range, one that muat he recognizel as a very strong type of an earl: Palmozoic Criunid.
\(35^{\circ} \mathrm{F} 3\)
lefering now again to the sugention of the flexibilia in connexion witin ' \(n^{\prime}\). \(0: 3\), it is to be remarked that there is a striking \(\mathbf{r}\) : forms of lat :ran, the closely abutting arms, anll the widely gaping and on wongly sinuons sutures hetween the brachials, all recall the characters of many Filexibilia (Plate III, figs. 7a, b, c). The mal side. with its tube-like row of median plates, is remarkally similar to that of I'rotaxoc inns, finorimocrinus, ete.; but this tulselike series is :roluced into a strong rentral sae rising to lualf the height of the arms, which is not founl bmong known Plexibilia (figs. :. . in, fi: llate 1, fig. :9). Ln adlition to this, and of mueh significance, is the fact that in many of these specimens of both species there are to be seen letween the ray divisions a large number of small plates. They are irregular, and seem mostly to be parts of nerisome pushed out lnetween the ruys, often in a small rounded fold (Ilate 1 II , fig. \(1 c, 5 b\)) ; in rare eases, however we find a small, welldrfined whte fitting exactly into the axil, just as a regular interIn:a hial plate (Plate III, fig. 3).

The ventral sae in these species is muel longer than we find in any form of the Flexibilia, and this would ordinarily be taken to indirate the possession of a rigid tegnen ineonsistent with the strueturw of that group. A long and strong ventral sae has heretofore heen erm-inlered to negative the presence of a pliant disk, being supjumed to require a solid tegmen for its support. In many Inadunata the sar is itelf the ehief part of the tegmen, the anus not being lowated at its extremity, lut at various places below it-sometimes at its very hawe, on the anterior wide. In most Recent Crinoids the posterior protulerance reprements the ams allone: it is simply a portime of the perisome raised allowe the level of the di-k by the protrosion of the hime gut, foming a tule with the amal opening at the enal of it. The mall tulxe of onychocrinus, ete.. is similarly formed, except that it has a vertien morine of strong plates supporting it on the posterior side, thus making posilile a comsiderally greater length of tule. I have traced the sac in both the prewent speeies to the extremity, mad I ser nothing which might mot lie a mere exaggeratim of the anal tule of Onychocrinus, Taxocrinus, ete. The strong vertieal serife of median plates muns all the way up, but the sides of the suc do not seem to be mueli different from those of the protruding perisome in those genera. I have not identified the anal
opening in these speciec, lut have little donlt that it is at the distai end. For further comparison I have figured a specimen of a smali undescribed specics foulld associated with • Dendrocrinus ' polydurtylus in the Hudson River gronp, near Cincimati, with the tultrlike series eurving over upon the temmen, almost exaetly like we fixu it in Onychocrinus (Plute III, figs. 4a. ふ

If now the smahl, perisome-like :a teltrachi:I me constant.
 lar to thone we know, excent to tre :esti, mo the tive ufrabasalis int." three-apparently one of the rinsic , in ace in the Crinoids. Fusion of two pairs of the primitive five plates. ns has actually oeeurred within the limits of a family between Cyathocrinus and Gissocrinus, mul the thing is done. Fven the incorporation of interl,ruchials is not essential, us there are several genera of the Flexibilia without any. The enhrging stem of C'upulocrinus humilis next to the calyx is also in very common character anong the Flexibilia, but rarely found in other groups.

The number and distribution of primibraehs, however, is different from those in the Flexibilia generally. There the rule in the preDevonian genera is not excecding two primibrachs, with one or two -xecptions in the Silurian having threc. More than three are unknown in any normal Flexibilia mutil fomm in the Carboniferous Oligorrinus and Onychocrinus-about the last important molifieation that ocelirred before the non-pinnulate division of the order became extinct. Furthermore, except in oceasionarl ahnormal specimens, whatever the number may be, it is constant for all five raysan apparent but not actual exception being in forms like Ichthyoc. rinns, where the radianal so much resembles a radial that it looks as if there were an extra brachial in the right posterior ray. The pre--fuce "f three and morr prinihrache in the specics before us, and their unequal, and in C. humilis irreqular. distribution annour the rays, and of fise infrabasals-a charaeter so fur unknown among the Flexibilia-are facts widich would incline us to range them rather muler the Iunduatu, as amwing hase eomfinsion in the definition of the larger groupe. But there is wery elparly an intermingling of the characters of the two orders, and it is evident that we have here to deal with a tramsition form whose exart -tatus is diffeult to decide from what we can see in the fossil.

The orter Flexibilia is considered to he an off-hoot from the 567531
dieyelic Latdunata, through morlitications reatting in ath open mont and the loose ineormoration of brachials in the calyx. We have no hitherto been able to point out the origin or probable course of thes modifications, but it was reasonably to be expected that the comnex ion would be found through the noln-pimulate Dendroerinidae, the exact nature of whose tegmen lius never been discovered. It is nov of much interest to note that the earliest known genus of the Flexi bilia oceurs in this same lower Trenton Limestone, and that specie of it-Protaxocrinus elegans and P. levis-are found in the same horizon and localities as c'upulocrinus, and directly associated witl two of its species in which the above-mentioned tendencies towards the Flexibilia are observed. We do not know the length of the ana tube or ventral sac in I'rotarocrinus, but we know it was very strong and constructed in a very similar way, so far as can be seen (Plate III, figs. 10, 11b). It is to be remembered, also, that these two genera are in the same stage of development as to the radianal, a character which is coneeded to be of high importance in the plyylogeny of the Crinoids. In both of them the radianal is in what we eall the primitive position, being located within the ray in the form and position of a radial, dircetly under the right posterior radial-infer-radial-giving to that ray one more plate below the brachials than the otlier four.

Having, therefore, two contemporaneons genera in the earlict Ordovician, existing in the same loeality, and being in the same morphological condition as regards one of their strongest characters: the one flourishing in profusion auf the other extremely rare; we lave the very conditions under which we might expect to find evidence of developmental changes marking the divergence of two higher groups, which are of an admittedly common origin. This divergence is of such a degree in these two forms that we need not look so ver: far haek for a probable common ancestor, and may yet hope to find it in the Ordovician. With the three unequal infrabasals of Profaxocrinus separated into the primitive five, and the number of primibrach = inereased from two to three or more, it would tax the ingenuity of any malaeontologist to show wherein it differed generically from one of these rupulocrini having an interbrachial in the axil. So it may be that d'Orbigny made a shrewder guess than lie knew of when lie placed Hall's 'Scyphocrinus' heterocostalis and 'Cyathocrinus' tuberculatus-one of the most widely known Fleni-bilia-in the same genus.
en mouth have not e of these e commexlidae, the It is now he Flexiat species the same ated with \(s\) towards the anal ry strong. on (Plate hese two dianal, a he phylowhat we the form radialbrachials e earlicr the same aracters: rare; we find evio higher ivergence E so very e to find of Promber of tax the generic1 in the than lie alis and 11 Flexi-

\section*{Cepleocrines conjugass (Billings).}

This species, of which there are some specimens in the collectiuns, exhibits a considerable variation from the last two, but has the transition characters still indicated. It wholly lacks the closely abutting rays, and decply excavated brachial sutures; the arms are rounded, long, and very much more slender, and the first lrachial does not quite fill the face of the radial, thus leaving rather wide interbrachial spaces. These are oceupied hy an integnment of perisomic plates which is broader and higher than in the other specics, and without any well-defined lower plate; it is very similar to the -tricture found hetween the rays in Pyrnosaccus, and Vipterocrinus. The median series of the anal tube is relatively rather stronger than the arm-, and it was probahly longer than in the other species. The sten is enlarged next to the calyx, as in C. humilis, but the projecting joints farther down are closer together, and the stem is much longer anl tapers less rapidly. It is another evidence of the tentency to variation in this genus that the sten is different in these three species, that of C. Lumilis and \(C\). conjugans leing more like the most frequent stem in the Flexibilia, while that of C. jewetti rather nore resembles the stem of such exceptional Flesible genera as Gnorimocrinus, etc. Comparison of the type specimens show, that \(D\). cylindricus is clearly identical with this species, and must be held a synonym.

Dendrocrinus probosctimates Billing:-
Her. IV, p. \({ }^{\cdots} \quad\) te LII, figs. \({ }^{10-c}\).
Fairly well represented, e. \(\quad\) in the Toronto Iniversity collection. The succies was des \(r\).... from the upuer part of the Trenton at Montreal, and afterwards figured and redescribed by \(W\). R. Billings, from a specimen found at Division Street, Ottawa.

Dendrocrinus gregarius, which is from the middle Trenton at Ottawa, was not found at all at Kirkfield.

Ottamachines typus W. R. Billings.
Plate IV, figs. 5, 6, 7.

> Tr. Field Nat. Nlub Ottawe 7, Vol. I, 1. 49. Plate.

The new material enables us to supplement the description of this genus and species by important additional information not disclosed by the original specimens, and to confirm by further facts
the recognition of this hy Mr. Billings as a perfectly distinct generic type. The most striking thing about it now appears to be that it is the first genus of the Dendrocrinidea to show a tendency to pinnulation, its character in this respect being quite renarkable. In the original specimen the rass were preserved only to near the first bifurcation, leaving the nature of the arms and ventral sac beyond that level unknou 1. The principal distinction relied on in separating the genus from Derdrocrinus was the construction of the ventral sac, which is formed of hexagonal plp es not in longitudinal rows, as is the case in that genus, and slight differences in the forn of the anal and radiunal phates. The specimens now in hand give the complete arm structure.

There is a bifurcation on the fourth or fifth brachial into two long and slender nain branches; these bear ramules on each side alternately from every fourth joint, occasionally third, or tifth. The ramules are notably smaller than the arm-about half its dia-meter-and they subdivide on the fifth or sixth joint into two very slender brauches, which may one or both branch again on the seventh, or eighth joint, giving final divisions of extreme tenuity. It is alout the stage of incipient pinnulation shown in Botryocrinus; ramosus (See Bather. Treatise on Zoology, fig. XXI, 1). This is the mode of branching in \(O\). typus; it is varied somewhat in another species, as will be shown presently. The ventral sac is long, extending to the full height of the arms, and is composed throughout of irreqularly hexagnal pieces, without any longitudinal arrangement. In 0 . typus it is del. ', and the plates smooth. I have figured three specimens illustrating these characters (Plate IV, figs. 5, 6, 7).

This gems is further well distinguished from Dendrocrinus by the fact that the radial facets here fill the entire distal face of the radials. instead of being mere rounded sockets in the middle of them. as in that genus. Fxcept for this last character there would be nothing in the generic diagnosis to distinguish Gothocrinus, estallished by Dr. Bather in 1893 (Crinoidea of Gotland, p. 114), from Ottawacrinus. The author characterized it as 'a Dendrocrinus cup with Botryocrinus arms,' which would still hold good in view of my proposal (supra) to restrict Dendrocrinus to forms having sumall. round radial facets. There is, however, a great difference in the details of the arm branching. If, as stated in the text, p. 115. the armilets of Gothocrinus are given off from each side, then ar ording to the figure (Plate V, fig. 158) they must be borne on every suc-
ctosive brachial, like trac pimulea, since on earla side of the armowhere visible, there appars to lie an armet on every second brachinl.

Another fact is develuped in this gems which is of considerable interest in comuexion with the previous discussion of the modifications of the genus Cumbortinus in the direction of the Flexibilia. For hem we have another Ordovician Inalluate genns showing a decided development of interbrachial structures, having the effect of incorporating, to a slight extent, the lower l, rachials into the ealyx. In both the typical species and the new one describel below, are found distinct plates in the axils letween the rays. This is not entirely constant in O. typus, but is olservable in the inajoity of the specimens. Ir the new species, it is quite pronomsel in all the shecimens. With strict regard for the definitions of the respective orders, such a form would have to be excluded from the Inedunatio. whose leading character is the non-incorporation of brachials. But the same objections exist to referring it to the Flexibilia that were found in Cupuloarinus, hesides the possession of an extromely large ventral sac, of the true fistulat: trpe. So the only rational course is to rerognize it intermediate position, and see in this modification of a second genus anoug the Denilruerinide a further indication that in this Ordevician Inadunate fumily we are not far from the origin of the order Flexibilia. as an offslicot from the more primitive orifer. The Dendrocrinidx seem to be a sort of synthetic family, embracing a number of variable charauters to which no very closlimits can be assigned, but whieh in luter geological time became fixed in different groups. The form and ronstruction of the anal series and rentral sac are not very rontant; there is considerable shading between genera in the form of the ramial fucet: round and pentagonal stems tend to fall into the same genu*; the characters of Flexibilia and Inadunatin are found within the tanily: there is a tendency towards pinnulation in Othawariuns: and a peculiar arm structure in Dendrocrinus aculidact!lus surgest- the strangely folded side pieces of the Silurian Cyathocrini.

The new facts thus brought to light suggest some uddition to the generic diagnosis of \(\mathbf{M f}\). Billings' genus, which may be stated thus:-

Dicyclic, with five infrabasals.
Radianal large, almest under right posterior radial.
Radial facets filling distal face of radial.
Ana' followed by small plates of sac not in longitudinal row. a.t long.

Arms heterotomons; 10 main branches bearing bre aed ramules. Column round.

\section*{Ottawacrines blahian 11. sp.}

Plate IV, fige. 1, \(2 a, b,: \%\)
specimens of the genus are very rare, and in aldition to the few of \(O\). typus the collection has sielded another tine species. The prineipal speeimen is fully trice as large as the largest specimon of O. Typus, has arms at leat thre inches long. and a lange ventral sac of equal lougth, compoeel of sharply eleraterl, stellate plates, with deep pits between them, giving a very rough surfaee as contrasted with the smooth and delicate sat in 0. lypus. The most remarkable difference. however, is in the arms, which are relatively atronger; and in the ramules, whinh, instead of hranching ly one or two more or less eqian hifurcations, give off sceonlary and sometimes hranched ramules to the number of seven or eight or mure, from every fourth joint, not alternately, but from the same side. I do not recall auy variation in arm structure elsewhere guite comparalle to this. Definitely fermed interbrachials are well developed. The stem, as in 0 . Iypus, is round and guinguepartite, composed of very thin ossieles, slightly alternating near the calys. As it is knowin in that speeies to be very long, eularging distally to a stroug root, it is probable that certain large stem fragments, some as much as 13 mm . in liameter, belong to this species. The rentral canal is very large. and the walls thin; at sone plares along the division lines between the segments iuto which the stom is diviled are to he seen pores in longitudinal wows at the suture lines between the ealumar ossiele, (Plate IV. figs. 4a, b, c). They somewhat resemble the interartienlar pores in the colum of the reenent Isocrinus.

I esterm it a privilege to assonciate with this romarkable am! thoroughly distimet eperies the name of Mr. Walter R. Billings, the author of the genus.

Cartmomits bamatis Billings.
Dee. IV, p. 21. Plate II, figs. :3a-e.
Carabocrintes vaicomtiondti Billinge.
Dec. IV, p. : :2, Plate II, fig. 4.
Both these speeies were fonnd at the Trent Canal eutting, radialus represented ly a few individuals limited to one place, probably the remnants of a small colony, while rancorflandli is fairly plentiful. and apparently, distributed throughont the Crinoid-learing formation. This material shows the distinction liet ween the two species as pointerd
out hy Biiliags to the remarkably constamt. He dr-cerilual \(C\) ', mdialus as having a globose ealyx, with the arus diviling on the secoud free plate, i.e., on 1 Br , as aprainst C'. cancorllandli with an ovoid calyx, and arms dividing on or heymd the third free phate-IBr3. This holds absolutely good in nll the specimen- from liirkfield. C. radiatus is also i.aiformly muels the smaller, and has a stronger ealyx, that of cancorllandi being composed of thinuce phates and usiully fonnd erisherl. O. raliatus also oweurs in the basal Trenton of Kenturks, showing there, too, its characteristic arm division. Dr. Parks has a new species of Carabocrinus mong the thiversity ol 'lornoto material, whirh he will soon deserile.
pal mormists antichatis Billiles.

l:an.
Porocrines conicts Billingr.
Jee. IN, p. 34, Plate II, figs. ba-d.
This species is well representel, asswiated with \(/ 1 y b o c y s l i s ~ a n d ~\) Edrioaster. P. sinithi, descriled by Dr. Grant from Belleville, was not found, but oecurs in the Trenton of Kentucky associated with the same menera.

\section*{NS:RRT.T: SEDIS.}

Plate V, figs. 7, R, 3.
Dec. IV, p. 5s, Plate V, fig. 1a-!.
Sperimens of this very perplexing and anomulons ('rinoid were found, mostly fragments. One of thesc, however, preserving the lower part of the calyx, is of special importance, because it gives us for the first time, in eonnexion with some others to be mentioued. a perfect view of the hase from the exterior. It will he renembered that I was able. by a difficult preparation of one of Billings' type specimens, to discover the true construction of the hase in this gents, which had before been a complete purzle to paleontologista. This was explained in my Memoir on Cleiocrinus (Mem. Mus. Comp. Z.ml. Harvard, XXV, No. 2. p. 93, et seq, 1905), showing the hase to he composed of five large infrabasals. resting upon the column, with a circlet of ten plates, consisting of five hasals and five alternating radials, surroundiag them; that is, the hasals and rarlials have hren puched down over the infr hacal ring and top of :h. stem. so that they
are not in direct succession, citiur with the infrabasals or with cach other, but overhang the stem; and the radials, instead of resting upon the shoulders of the basals, as in other Crimoids, are interposed between them at the same level-a structure absolutely unprecedented in Crinoid morphology. These facts were ascertained by exposing the interior of the base in the specincul mentioned, it being impossible to discover then in other known specimens, because in all of them the base was concenled by the few column joints which were always held in place liy the surroming ring, and impossible to de-
tach.

In the kirkfield necimen the column is completely detucheel by weathering. so that the same purts are perfectly seen from the exterior, or opposite side (Plate V, fig. 7). The arrangement is precisely as shown in my 6 g . 56 , Plate I , of the work cited; the five large infrabasals, with the alternating hasals and radiuls enclosing but not resting upon them, are plainly visible. The evidence of these facts is still further confirmed ber two other very instructive specimens from the rinnivulent Trenton of Kentucks, in which the calyx. divested of all the upper stem joints, is to the top of the first primibrachs completely freed from the matrix. looth dorsally and ventrally. They ware emberlded in a coarse sand which did not adhere, but left all surfures well exposed aiter cleaning with a soft brush (Plate V. figs. 10a. b, c). All the plates above mentioned are in perfect condition. in the same singular departure from the normal oder as already deseribed. Thus there can no longer be mes. loubt that this structure is the usual one in this (rinoid, and not in any respect accidental or sporadic.

I wish to emphasize the fuct that this remarkable structure is not a mere incagination, nw sme anthors huve supposed, producing a roncavity like that in the base of the contemporary Archaocrinus. In such cases the culy \(x\) is foldell inward upon itself from helow, and the normal succession of the plates forming its wall is retained; whereas ere there is a complete displacement of the plates from their normal and natural order, so that the hasals. instead of abuttine upon the infrabasals at their distal faces, lie outside of them dorsally, and the radials, instead of resting upori and being supmorted by the basals, are interposed between them in the saine range-a sort of telescoping, as it were, of the infrabasals circlet and upper stem joint into the ring of hasals, separating the latter so that the radials
came down between them to till up the spare. I mon as much in the dark nt ener for man caplanation if the probable urigin of this extracrdinary structure.

The study of these wenthered iragments has thrown new light upon the construction of the conly \(x\) whll int this genus. As shown is te specimens former!y studied, the mote of union of the plates reemed to he ly a ont in . Trmblution, suld as in found at the margin of the suture of the Flexilitis penerally, and was no demerilued by me. It is in fact smuething entirely different. In C'. regima, when the exterior surface in perfectly exposed, the suturen are crossed ly: a number of parallel slits arrmperl in diamond-shmpenl rhombs (Plate V, figs. 8, va). These slita lea. from either side to pores on the suture lines, whieh do not pmss divectly through the test, but turn to the right and left of the middle and converge from the half of each sutural fnce into in harge, fumel-whmed pore, opening to the interior at each corner of thic plate (ig. 9b). The course of these converging passage in better shown by the figures of the sutural face in the two other apectio: (figw. 10e, 11b, c). Exeept wher the. surface is muel eroded, the large, inwasd opening pores are mit visible from the exterior. The whole structure is thoroughly illus. trated by a series of drawings on Plate \(V\), from specimens of three species, the details of which are explained with the plate.

It is crident that we have her the equivninat of the pure-rhombe of the (cystids, similur to thow of Echinusphaera. Clyplocystis, etc.: and they oceur on every: plate thronghent the entire enlys to the arm hanes. The test of t'leincrinus is very thin, aml mut have beell extremely pliant; as shown by the figures, the actual sutural surface is less than the approut ross-siction of the phates, ant hesides the plates are ineply corved and chamelled on the ventral side (Plate V, fig. 0 b). forming a system of longitudinal flating which extends from the biane thrombut the entir" hrachial series to the arm ba-e. I have a large specimen of ('. magnificus in which this is shown throughout \(\mathrm{l}, \mathrm{v}\) the exfoliation of the plates.

Cleiorrinus, therefore. is a diverclic Pelmatozam, with a definite quinqueradiate symmetry : five infrabusuls, and non-sucessive basals and radials: pimmulate arms: a thin. pliant test : and the properhomi, and calyeine pores of the C'ystids. It is too summetrically orgmizell to remain with the (cystids, mul will not fit into amy of the rerornized oriers of the Crinoids. It was evidently a case of prewature seeessinn from the Cy-tils. witiont araugiug for engenial asoopiation
allyhere elee; mal matil hitter prools of it- relations are furnished it will have to remain in a sort of palmontologionl no-man's.land.

The specimen represented lis tig. 10a-e, on llate \(V\), is eluborately scupptured, and has a strong, angular median elevntion of the plates. I have another liroken colyx in similar condition, nul n nearly comwete crown, minus the moms, showing the superticinl charneters still hetter, lout two harge to figure here. They represent is well-detinell species, for which I fropme the nume Cleiocrinus sculptus. It is probable thut the sculpturing is mate sharper than originally by rephement of pores and cavities by infiltrution of siliunnus mater. ainl the dissolving of the onter etrreom; but this dill not oceur at the interior, where the large pores ure still representel by openings in the proper nowition. Another suecies is represented ly a goond colyx, of which I muly tigure the details of a few phites; these are enongh to show its marked difference from all others in its absolutely -mooth surface, and I feel warranted on this eharacter nlone to rmisk it as a new species, \(C\). lievis. It has an obseure median ridge in the lower part.

The geographie range of cleiocrinus is greater than wns formerly linown. It is reported from Temnessee in the pullicution of Troost's Manueript (U.S. National Museum, Bulletin 64, p. 100); two rew species of it are here recognized from th. lower Trenton of lientueky; and a finc suevimen, mueh resembling \(C\), magnifirus. "ns fomed ly Dr. Bassur in the basal Trenton of Pennsylvania. We have ulio an important increase in its known stratigruphic rauge. Dr. G. II. Hudson has fomml it in the Chazy of Valeour island, sind his specimens show nlso penetration of the test by pores at the suture lines. Ife informs me that he has of paper in press illustrating this.

\section*{EDREO.ASTEROIDEA.}

Findioister bigebyi Billings.
\[
\text { Dec. III, p. 82. Plate VIII, figs. 1, } 2 .
\]

Simerous in one spot, associnted with Parocrinus and //ybocystis, The specimens here are in very fine preservatim, showing the ambularra limth eovered and osen.

Agelacranus meksoni Billings. Dee. III, p. 84, Plate VIII, figs. 3. 4.

Sot ineommon.

Hec, III, p. wi, I'latr X bis, tifs. 1-G.
 hut they do unt shed any nev light unon its struethre on relatime.
faciatimerints.
 rather frequestly, attached to other dijects, evilemtly the terminal ruot of a colmma, such as have lieen described from the lincinnati loeks uider this name.
('listif)E:A.
Glyptocystis milliportes Billing=.
i)ec. III, ir. it, Plate III, figs. 1a-n.
G. 1.06 N.

Ibid, p. 57, Plate IV, figs. \(1 a-j\).
Pleunnoystia squabontes Billinge.
Dee. III, p. 49. Plute I, figa, 1are.
P. Robl'stes.

Ibid., 1. 49, Plate I, fis. 2a.
Amygdalocystis flarfalis Billing-.
Iee. III, p. 63. Plate VI. figs 1a-f.
A. Radintts.

Tbid., p. 65, Plate VI. fig: . \(8 a, l\).
f these species are fairly represented, hut the specimens are mosuy much crished.

ASTEROLIIF.1.
Stenaster sat.teri Billing-
\[
\text { Dec. III, p. 78, Plate X, fig=. } 1 a, b
\]

This species is quite abundant and in excellent prezervation.
?Teniura ctindricts (Billings).
Timiaster c!!lindricus.-Dec. III. p. S1. Plate X. fig-. \&7. \({ }^{\prime}\).

Protrasten meahis Billingn. Ilid. p. 80. Plate IX, fig. 3a.
linve, and of demitful identits.

\section*{Protabter whiteaveshanuy l'arks.} Trane. C'anadian Institute, 1907-s, Vol. VIII, p. 36:!. The lant species was deseribed by Dr. Parks from goal specimens collected at liirkfield for the University of Toronto.

\section*{Astroporites ottawaengly Lambe. \\ Canadian Recorl Science, 189\%, p. 287 and Plate.}

Some specimeus of this curious fossil were found, which are not sufficient, however, to determine with certainty its systemutic powition. It was described by Mr. L. M. Lambe with doubt as a Polszoan. It appears to be a flat, discoid body having lines of laigo oval pores, with grooves between them radiating from the centre, and ramifying by several uniform and symmetrical bifureations (1) ver. amall ultimate divisions at the perimeter of the dise. Thew: produce a reticulated appearance, somewhat resembling that of the ventrul side of the arms of C'rotalocrinus. We now know that it was a sossile organism of sone kind, the opposite side being a perfectly flat, umorphous surface, and the disk as preserved being very thin. The growises couvergo to a rounded area in the centre, which projects upward to a thickness considerably greater than the other parts. From some fraganents found at the same horizon in Kentucks: it would seem that there was a calcareous covering above this, of similar structure, whereby the grooves were roofed uver, so \(t_{1}\) - they were in fact tuhular passages, so mumerous, and so close together, thr: this covering wis held by very weak connexions, and was readily detached in the fossil. There is thus some ground for helieving that these discoid bodies may represent the lower part, or floor, of an unusually highly organized terminal root of a Crinoid, consolidated by growth into a calcareous plate for attachment to flat surfaces. It is found sonnetimes embedded in shale, sometimes adhering to hard limestone. and usually perfeetly flat on the bottom. Expanded and consolidated roots are quite common among the Crinoids of this formation (see Decarle IV. Plato V, figs. 19 and \(2 a\)), a number of smaller ones of different shapes heing known, anci also found

 fore to the Hove atgeration.

\section*{INDEX.}
1'AGF
Agetocrinus dichsomi, orcintence at. 11
A myghaloctistis formalis, vecurrel:c. 45
radintus, nemrence. t.)
Irchaocrinus lacumosus, occurrence. 11
mirrobasalis, 11
p!riformis, oernrrone. 11
Astroporiles othomensis, octurren⿻. 4i;
a sessile orghnism. 16
Castocrinus arliculosus, occurreuce. 2
inequnlis. owntrenc. 2:
Cumachises, structare athd relations. \(11-41\)
pore-rhombs ill 43
lirvis, 11. sp. 44
regius, new specimen of. 11
scullus, 11. sp. 11
Collections and localities. \(1-4\)
Cepromerisis, diannsed and defined. 29.36
rentral sac in. 3
relation to llexibilis. 3:
conjugans, discussed. 29, 3:
bumilis. nceurrence and redescription 2, \(3:\)
jetrelli, ocenrrence and redenctiption!. 2,32
latibranchiatus, distingni-hed 33
polydactylus. 9
Cyclocystoides lialli, occurrence. 4.5
Desprocrastrs, restricted and defincel. 29
caspi, type of section 29
latibrachialus, distinguinhed. 33
proboscidiatus, ocenrience. \(3:\)
Edrivaster bigsbyi, ocenrrence of. 41
Flexibilia, divergence from Inadmata. 35
relation to C'umulocrinus. 36
Glyptocrimus ormatus, ocembence. 11
ramulosus, occurrence. 11
Glyptocystis multiporus, occurtence. 1.5
Hftrrocrisers, discussed \(210-2\)
bellerillensis, rof. to Ohiocrinus 21
lenuis. ocelnrrence. 2
Hancancs, distinguished from Hulocestis. 2
conicus. st ructure of. 24
tumidus, structure of. 24
Hymorstis, structure and relations of 32:2
ambulacra and orals. 16
eldonensis. structure of. 13
probbrmaticus. strmeture of 15-19
Ohmenives, discussed. !
bellerillensis, ocenrence of 9
Ottawnerines, disenssed and redefind \(\square\) \(\square\)
billingsi, n. sp. -3. 3
typus, redescription of (1)
arms and ventral sar in." 3
Palnocrinus angulatus, occurrence of 38
Periglyptocriuus billingsi, occurrence of 41
priscus, occurrence of 11
Petraster rigidus, occurrence of 11
Plcurocystis squamosus, occurrence of 11: 45
Protaster vhitearesiums, nceurrence of
Protaster vhitearesiums, nceurrence of
['rotixochinus, compared with Cupulocrinus 46 3:
levis, aual tube and radianal of
levis, aual tube and radianal of hatemanis, dixensicel. 12
alvenlatus 9
stcllaris, rolam"! "! 10
 10
heterncostalis, type of \(\ddot{\text { cupulnerinus. }}\) 31
\%W tixntr of. 29-91
Stenaster salteri, oecurrence 311
TTreniura cylindricus, occurrence 45

PLATE I.

\section*{EXPLANATION GF THE PLATES}

All epscimens figured are from the lower part of the Trenton Limestone; and, excep: where otherwise specifiod, ars from Kirkfield, Ontario, and in the author's collection. All figurss, uniess differsently indicated, are of natural size.

PLATE: 1.

Fig.
1a. A mature, slightly flattened specimen with complete crown, and a few pentagonal steta ossicles; r. post. radial view, showing keel-like anal scries to about the level of fourth hifurcation, and the irregular, sharply sculptured iBr plates.
1b. Crnsesection of stem at an interpolated columnal.
2a. Another speciunen with nearly natural contour, frous r. post. interradius; showing the deep pits at sides of hasal and radial plates, the strong elevation and lateral huttresses of the brachial series, and depressed iBr a reas filled with small plates.
2b. Cross-section of stem at a projecting columnal.
3. Large crown with long stem attached, anterior view; showing the prominent and rounded radial angles of the stem.
4. Infiabesal plates of very large specimen with part of stem attached, the sides becoming hroadly coucave.
(Following the terminology of Pentacrinine stems proposed by Dr. Bather in hirecent beautiful Memoir on Triassic Echinoderms of Bakony, p. 24, the stem in this and the foregoing specimens wonld be more accurately called 'suhconcavistellate': hut the work was received too late to enahle me to adopt his terms in the text).
5. A rather young specimen, with stem pentagonal in proximal part and becoming rounde-i helow.

Retfurrinus stellaris Billings.
page 10
Fig.
8. One of the typen, original of Dec. IV, Pl. IX, fig. 4b, post. view, after removal of the matrix hefrther cleaning. It shows the stem to be perfectly round; the croois appearing in the original figure was due to unequal exposure in the matrix, and it was also much exaggerated in the drawing. Ottawa; Coll. Geological Survey, Canada.
7. Cross-section of stem of another twine. Dec. IV, MI. IN, fig. Ad, to show that the form of the axial canal is substautially the same in both species, the exterior form of the stem being due to secondary growth.

Cupulocrinus humilis (Billings).
. page 28.
Fig.
8. Complete specimen with stem tapering to a fine point; r. ant. view. Note the bell-like shape of the projectiug columnals.
9. Posterior view of a specimen showing full length of the anal tube, aud the fine distal hranclies of the arms.
'upulocrinus jeıretti (Billings)..page 2i.
Fig.
10. A mature specimen, showing the general proportions of the calys and arms; from anterior radius. Coll. Geological Survey, Canada.
11. Distal fare of a IBr... the articular markings indistinct.
12. A small specimen to show the characters of the stem; the proximal columuals alternating from the beginning, and not markedly enlarging.

PLATE II.

\section*{l'I.ATI: II.}

Hybocystis eldonensis l'arkn..pags 18
I's.
1. A small specinen with 4 brachials fo tho arm, amd ambulacia recurring on the dorsa? side; from r. post. ray; lateral ambulatrum not passing the radial. x \(\xrightarrow{2}\)
2. Small speeimen witb stem attaebed, left hatural wiw ; brachials to the wim; lateral ambulacra just passing the basi-radial suture. a 2 .
3. Medium specimen with 5 brachink, anterior view : dorsal anbulacra paswing oul; sbort distance from top of arm. x s .
4. Medinm specimen with \(s\) brachials, from left anterior zay; lateral ambulacrom passius down to basals. \(x 2\).
5. Small flattened specimen with 6 brachials, anterior view. Dorsal ambuluern are seen oa the arm to the left; the other brachials in sight are displaced, the upper four having tbe ventral side exposed; the lateral ambulacra in tbis specimen do not pass the radial. x 2.
6. Large specimen with 6 braebials, rigbt anterior view; recurrent dorsal ambulaerum passing full length of arm and down to radial, and lateral ambulacrum fully acros; basals. \(\times 2\).
7a. Large malformed specimen, from anterior radins; the arm broken off during life aud replaced by ealya-ambulaerum extending down upon the stem: risht laters? ambnlarrm imperfectly developed. \(x 2\).
7b. Central part of tegmen of same, showing side and covering ambulacral plates, and integument of small plates between water pore and anal pyramid, which i- broket. ofl. \(x 3\).
Fic. Detail of ambulaerum in same, showing the two sets of side pieces, aud small arched covering pisces forming a median ridge. x 12.
8a. Posterior view of small specimen, showing erenulated anal plate. \(x 2\).
8b. Tegmen of same sbowing ambulaeral plates in place-tbe covering pieces too small to show in this drawing-the water pore, anal pyramid, and the shape of posterior ora: when not covered by small plates. \(x 2\).
9. Tegmen of another small specimen with all structures well preserved; the integumpat of small plates surroundimg the anal pyramid is well shown. \(x\).
10a. Posterior view of large specimen, showing the crenulated anal plate, and grocves radiat. ing to other plates. \(x 2\).
10b. Tegmen of same; posterior oral partly covered by integument of small plates surromm. ing the anal ryramid. \(x 2\).
11. Tegmen of a specimen of H. prohlematicus from Woodford county, Kentueky, with ambnlaora reinoved, and oral plates fully exposed; showing how tbey meet by lateral extensions around a central space-both covered by rigid ambulacra wben it place. \(x 2\).
12. Young speciman of \(\boldsymbol{H}\). problematicus from Mercer county. Kentucky. with latera! ambulacra not passing to basals. XI.

-. * cmamar of

PLATE III.

HALE: \(11 /\)
Cupulocrinus humilis (Hillingo).. .
I.se

मルू女 28.

 intrriadi, and (2) 4 Br ln unterior ray, as. 5 in the two lateral raym,
1h. Posterior view of same: whowing (1) the gapinf: utulefjn the raya; (2) the base of the anal tube wlth it" border of small plitem ou pither side; (3) integument of fr. Jnetuil ut lutt pos in left pumterior ititeriadius; (t) billr la the posterior raye.
 t 3.
f. . I'Atail of brachlal maturem, howing the et profle of the mae! this is not a mere, ic, 11 from the dorsal side, atiol
 Illotal face are deeply sloued, indicatiuh \(i\) i in ulity In the rays, as in mans
\(\therefore\) A brokell sperimen, showing il) the whal tiln
- fill length: the diotwl nul is lost, but the impirint of it in the finutr the estranity, mul how thre talar lugels to

3. Broken mperimen with culri and atms (1) llif in 11 tuming whit must liave bern and and aime torlof lu ilminad of expandink into. (1) the amall literbraching plutas with i.fu.
 into 10 axll; (2) the proximal part of the \(\mathrm{st}, \mathrm{mm}\), , if, non-alternating
colvmmale,

4b. There: posterior rifw, show indistlactly prestrved. s 2 .

\section*{Cupulocrinu: jecetti (Billings)..}
pagn ss.
-
. Nearly complete crown. pontrring riou: sloning il anal thbe with keeled median meriea of plates and bordering structures; (: \(:=\) small plates in left posterior interradius. \(x 2\).
sh. Detail of left pristerior interrallins at b. Hewo the left anterior ray is pulled out of positlon, so that we ate the lateral fore which is usually concealed by contact with
 plates or the imprint of them: nimy the interbrachial plates, estending outward
8. Ponterior completo; it beuds to the tight ut the diofol eud, and renoved, showing anal tube cannot be ascertainow, but thetw is wollt iudicatiull of an
:a. A rery mature, fattened specimen with
show the deeply indented and waring siltures. plates almostamantorlor view to necting ridges or furrows; small plates in ifr areas. almost smonth, without con-
-b. Fosterior view of same, showing base of anal tube
-c. Detail of IrBr at in the right pontruior ras. linwing the strong sinuovity of the suturis. a 3.

Cupulocrinu: jevetti, rar. kentuckiensis,
Fif.
. Specimen with smooth plates, posterior view, with past of arms removed showing tube about complete. Woodford countr, Kentucks
- Similar specimen from same oratit with atms interradils, showing (1) a from left anterion terradins-a sporadic occurience, not fombl in other becinal plate in only one in if stem with alfermatimg rolmmams. very liffor ot fismecimens: (2) proximal pant

\section*{Protaxocrinus lrris (Billinga)}

Fic.
page 11.
 position under right postorion ladial: fur combation with structures in preceding
11a. Smaller Geological Survey, Canada. x g.
1h. Pooterior view of same, showing anal tube. \(x 2\)

Le? Hin

PLATE IV.
lAATI: \(\mathbf{N}\).
"ttaиастіии. billingsi и. s!..page 40.
Fig.
1a. A mature specimen seen from the anterior side, natural size; showing (1) the rugore veatral nac presprverl to about its full leagth, with sharply raised stellate sculpturing on the plates; (\({ }^{(2)}\)) the arms, in two main divisions to the ray, with ramules from alternate sides of the dichotom bearing secondary ramules from one side only. The imprints of the milateral secondary ramules, as well as the rammes themselves, are seen at several placps.
1h. Cross-spetinu of stem of same, showing its division into 5 longitudinal segments.
2n. Enlarged viow of another aperimen, from left posterior radins; showitg the anal side. and the sac, with details of its highly sculptured plates, and of the arms. Note the strong interbrachial plates at the left posterior interradins. \(x 2\).
zb. Opposite view of calyx of same specimen, natural size; to show the iBr plates.
3. Another specimen from the anal interradius, showing the mode of anccession of anal plates following posterior basal into the sac.
1n. Cross-section of large stem found associated with the foregoing. probably of this species, natural size.
46. Side view of small jortion of same, showing the extreme thinness of the columnals, and the lines of the longitudinal segments, with interarticular pores.
if. The pores at a place where two segments have slightly slipped upon one another, out of the same level. \(x 4\).

Ottaucucrinus t!! \({ }^{\prime \prime}\). W. R. Billings
page 37.
Fig.
.). Specimen showing the heterotomous branching of the arins, from antero lateral interradins: the line of longitudinal division of the stem is also seen.
f. A complete crown, with ventral sac of smooth plates rising to the full height of the arms; posterior view. \(\times 2\).
7. Another specimen from posturior side, showing arm-branching and part of ventral sac.

a. M imapmar cet

PLATE V.

\section*{lLatl: V.}

\section*{Hubecrinus tumidus Billinge}
. page 24.
1. Speciman inom Woodiond county, Keutucky, pubterior view; showing the highly arched and creunlated anal plate, and lower part of arms with transrerse groovew leading to ventral side.
2. Ventral side of another specimen, showing the extreme arching of the anal plate, and traces of ambularra; same lorality.
3. Another specimen from same locality with anal pyramid well preserved: drawn with posterior side up, for better view of the structures: water pore indintinctly shown.
4. Small spccimen from Mercer county, Kentucky, with tegmen preferved; anal pyramid distinct, hut ambulacral plates wantlng.
5. Onf of the typec origiual of Dec. IV, Pl. II, fig. Ic, po-terior side. after additional clenning; showing crenulated anal plate. Ottawa. Geological Survey, Canata.
lig. IIyborriuns conicus Bıllings..page 24.
Bia. l'onterior view uf large sperimetit thus Otiawa, showing anal plate with momth dintal margin, followed dircctly by jhates leading to aual opening.
ib. Tegnen of same, showing extreme margimal position of anal opening, directly tiarough a cluster of small plates without any defined pyramid; also the ambulacral structures. Note the large sub-ambulacral plates.
Fig. Cleiocrinus regiu: Billinga. .page 44.
;. Small specimen from Kirkfield, basal vicw; showing external form of the 5 large ln frabasals lying within the ring of alternating basal and radlal plates. To be compared with figures on Plate I of the paper oll Cleiocrinus, Mem. Mus. Comp. Zool., XXV, No. こ.
*. Fragment of another specimen from I. ix upward, showing rhombic areas with slits traversing the sutures. \(x\) 3/2.
and, Fixterior of an axillary plate, probably IIIBr, from another weathered frapment in which the usnal median ridge is worn off; showing the rhomble areas with slite leading to a line of pores on each suture. x 3.
oh. Inner snrface of same plate and the twn next below it, showing the large pores opening to the interior at the corness of the plates, and the broad ventral grooves. \(x 2\).

Cleincrinus sculpfus u. sp.
Mercer county, Kentucky.
Fig.
imi. Lower part of calrx to IIBra, with stem detached, and free from matrix inglde and out, posterior view; it has elaborate sculpturing, with rhombic areas of bars and prooves crossing the suture lines, and plates strongly elevated in the middle; the lower visible range of plates are the alternating basals and radials, the posterior basal bring much higlier than the others. \(x 2\).
10b. Basal riew of same, showing the 5 large infrabasals 'telescoped' into the ring of basals and radials, and the shallow channels at the inner edges of the plates. \(x 2\).
\(1^{\text {fec. Interior of samp. showing large pores opening inward at the corners of the platea, aud }}\) tie lip-like projections from the chanuels on infrubasals leadlng towards the interlor; also the strong currature of the inner surface of the plates generally. \(x 2\).
10.1. Detail of r. post. IIBr and adjoining anal plate, showing the rods, ridges, and grooves radiating from the median, kecl-like eleration, and the rhombs crossing the suture lines. The sculpturing may be accentuated from replacement of carities by infiltration of siliceous matter, and dissolving of the outer stereom, the nsnal granular surface boing destrosed; the pores on the suture lines are obscure at the exterior. I 4.
the. Ilistal face of the same plates, showing course of the tunnela running from the porem on the suture lincs right and left. converging to form the large openings to the intcrior: also the inner curvature of the plates, and relative thinness of the actual cutural face; the anal plate has a peculiar central pit not seen on the others. \(x 4\).
luf. V.retical section at middle of brachial.. showing their median elevation. x 3.
Cleiocrinus laris n.
Shelbyville, Tenuessee.
Fis.
11a. Dorsal side of a IIBr and connerting plates of the trpe specimen, which has the calys nreserved to about the second bifurcation; the original surface is in perfect condition, showing the meshes and folds of stereon: the plates are without seulpturing, fush with each other, having but a falnt, broad median ridge, and no slits or porerhombs visible: but with pores along the suture line of each face. \(x 6\).
11b. Distal face of same plates, showing the course of tunnels at either side discharging into large, funnel-shaped openings to the interior at the colners of the plates; the structhre of these is shown in greater detail in the next figure. \(x 6\).
11r. The two funnel-whaped porcs. \(p\) and \(p\). of the last figure: \(p\) is entirely within plate " Br' and the apposed one above it, while \(p^{1}\) is confined to plate " Br \({ }^{1 \prime}\) and its - Mrranacir. , s.

\section*{CANADA}

\section*{DEPARTMENT OF MINES GEOLOGICAL survey BravCK}

Hon．W．Tumploman，Mixistea；A．P．low．Depity Mintotaz： R．W．Brock，Director．

\title{
SELECTED LIST OF REPORTS AND MAPS
}

\author{
（NINCH 148．5） \\ OF SPEUIAL EOONOMIC IN＂TEREN゙口
}

PUBLIshen By

THE：（iFOHADiCAI，NじHVFI．

\section*{Roperts of the Mines Bootionn}

\section*{Yineral Preduction of Oamolar}

No．＊14．Year 1886 No．＊422．Year 1893.
－ 115 Yar 1887. ＊ 416
-17 － 1889.
\(\begin{array}{r}\text {＊} 418 \\ -418 \\ \hline 1890 .\end{array}\)
－ 420 －1886－91
＊ 421 － 1892.
＊565 － 577 ． 1995 －C12－ 1896.

640 ： 1897.
681 ： 1898.

No． 719. Year 1900
719a－ 1901 813 － 1002
861 － 1903.
806 ： 1904.
924 ： 1903.

Mineral Resenrees Bullotinsi－

No．＊818．Platínum．
851．Conl．
－854．Asbentos．
857．Infusorial Earth．
858．Mangunese 850．Salt．

Ne．860．Zine．
869．Mlm．
872．Molybdenum and Tungsten． ＊877．Graphlte． 880．Peal．

No．831．Phosphate．
882．Copper．
913．Mineral Pigmenta 933．Barytes． 984．Mineral Pigments． （Fren－li）．

Eoperts of the Beotion of Ohomintry and Minoralogrt
No．＊102．Year 1874－5．
＊ \(1: 10\) 1875－6．
-119 1876．7．
No．169．Year 1882－3－4．
No．880．Year 1894.
222
－ 1885
616 － 1893.
120 1877－8． 273 ： \(1887.8 . \quad 651\) ： 1896.
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{5}{*}{} & \multicolumn{3}{|c|}{\multirow[t]{5}{*}{}} \\
\hline & & & \\
\hline
\end{tabular}

168 ： \(1870-80\) ．\(\quad 333\) ： \(1890-1\) ． 859 ： 1900.

\footnotetext{
＊Publicatlons marked thus are out of print．
}

\section*{KEPORTS}

\section*{IENEIRAL.}

74i. Altitudes of cimada, by d. Winte. INON.
-972. Jeacriptlve (iatalogue of Mineral and llocks. by IK. A. A. Jolinton and 1; . . Young.
1073. Catalonite of Publleations: Ileports und Maps (1: 181-1000).
1088. Ilewerlptlve Sketch of the Geology and Ficonomle Minerals of Canada, by 1: A. Young, and Introductory liy R. W. IBrock. Mape No. 108i; No. 1012 (second edltion), wale l(u) th. -1 ln .
10s6. French tranalation of Deacrlptlve Sleteh of the Geology and Enonomle Minerals of Canuda, by (1. A. Young, anil Introlurtory by II. W. Brock. Maps No. 1084; No. 1042 (meconi edltion), srale \(100 \mathrm{~m},-1 \mathrm{ln}\).
1107. Part 11. Geological posltion and character of the ollomiale depositm nf Canada, by R. W. Ells.

YUKON.
200. Yukon dist rict, by (1. M. Dawson. 1887. Maps No. 274, weale ow m, - 1 In.;

Nos. 275 and 277, ncale \(8 \mathrm{~m}=1 \mathrm{~lm}\).
-295. Yukon and Markenzle basins, by IR. G. McConnell. 1880. Map No. 304, scale \(4 \mathrm{~N} \mathrm{~m},-1 \mathrm{ln}\).
687. Klondike pold fiehls (prellminary), by R. G. McConnell. 1900. Map No. A4s, arale \(2 \mathrm{~m} .-1 \mathrm{ln}\).
884. Klondlke gold fielits, by 12. A. McConnell. 1901. Map No. 772, ncale 2 in . \(=1 \mathrm{ln}\).
-909. WIndy Arm, Tagisl lake, by R. G. McConnell. 1906 Map No. 913, ncale 2 m. 1 ln.
943. Upper Stewart river, by J. Keele. Map No. 038, scale \(8 \mathrm{~m} .-1 \mathrm{ln}\).
951. L'eel and Wind rivers, by Chas. Carnsell. Map No. 942, srale \(8 \mathrm{~m}-1 \mathrm{ln}\).
979. Klondlke gravels, by R. G. MeConnell. Map No. 1011 , scale 40 cls . -1 ln .
982. Conrad and Whitehore mining distriets, by D. D. Calmen. 1901. Map No. 990 , srale \(2 \mathrm{~m} .-1 \mathrm{in}\).
1016. Klondike Creek and Hili gravels, by R. G. McConnell. (French). Map No. 1011, scale \(40 \mathrm{ch} .-1 \mathrm{ln}\).
1050. Whitehorvo Copper 13clt, by R. G. MeConnell. Maps Nos. \(1,020,1,041,1,044-\) \(1,049\).
1097. Reconnalasance acrons the Markensle mountalns on the Pelly, lioss, and Gravel fivers, Yukon, and North Weat Territorles; by Joseph Keelc. Jap No. 1090 , scale \(8 \mathrm{~m} .-1 \mathrm{ln}\).

\section*{BRITISII COL.UMBIA.}
212. The Hocky mountalns (between latitudes \(40^{\circ}\) and \(51^{*} 30^{\circ}\)), by G. M. Dawson. 1885. Map No. 223 , scale \(6 \mathrm{~m} .-1 \mathrm{ln}\). Map No. 224, scale \(1 \mathrm{i} \mathrm{m} .=1 \mathrm{in}\).
*235. Vancouver lsland, by G. M. Dawson. 1836. Map No. 247, scale \(8 \mathrm{~m} .=1 \mathrm{In}\).
236. The Rocky mountains, geologleal structure, by R. G. McConnell. 1Nivi. Map No. 248 , arale \(2 \mathrm{nf} .-1 \mathrm{ln}\).
263. Cariboo mining district, by A. Bowman. 1887. Maps Nos. 278-281.
*271. Mlneral wealth, by G. M. Dawson.
*294. West Kootenay dlat rlet, by 7. M. Dawson. 1888-9. Map No. 303, srale 3 \(\mathrm{m},-1 \mathrm{ln}\).
*573. Kamloops district, by G. M. Dawson. 1884. Maps Nos. 556 and 5.57, scale 4 m . -1 ln .
574. Finlay and Omineca rivers, by R. G. McConnell. 1894. Map No. ifit. scale \(8 \mathrm{~m} .-1 \mathrm{in}\).
743. Atlln Lake mining dlvislon, by J. C. Gwillim. 1899. Map No. 742, scale 4 \(\mathrm{m} .-1 \mathrm{in}\).
939. Rossland dlstrict, by R. W. Brock. Map No. 941, scale 1,600 ft. \(\mathbf{- 1} \mathbf{I n}\).
940. Graham lsland, by R. W. Ells. 1905. Maps No. 021 , scale \(4 \mathrm{~m} .=1 \mathrm{in}\). No. 922, scale \(1 \mathrm{~m} .-1 \mathrm{ln}\).
986. Slmillkameen district, by Chas. Camsell. Map No. 987, seale \(100 \mathrm{clı}\). \(=1 \mathrm{ln}\).
988. Telkwa river and vicinlty, by W. W. Leach. Map No. 989 , scale 2 m . -1 in .
996. Nanaimo and New Weatmlnster districts, by O. E. LeRoy. 1907 . Map No. 997, scale \(4 \mathrm{~m},-1 \mathrm{ln}\).
* Publliratlons marked thus are out of print.
1035. Coul-fields of Manholw, Saskateliewan, Ilberta. and tiantern Aritish Conumbia, by 11. 13. Dowllag.
1003. Geology, and Ore lepoitts of Ilediey Mining Matrict. Rrilish Colmulin, iy

 \(1,000 \mathrm{ft} .=1 \mathrm{ln}\).

A1.13E1R1\%
*237. Central porikn, liy i. 13. 'Tyrrell. 1880. Maps Nos. 249 and 250, male 8 \(\mathrm{m},-1 \mathrm{ln}\).
324. Peace and Athabaskn Rlvera diatrict, by 18. G. MeConnell. 1890-1. Map No. 33 t , scale \(48 \mathrm{~m} .=1\) in
703. Yellowhead I'us route, by J. McEvoy. \(18 p 8\), Map No. 678, scale \(8 \mathrm{~m} . \mathrm{m} / \mathrm{In}\).
-949. (iancade roal-fields, by D. H. Dowllag. Mapa (s sheeta) Nos. D2t-9.30), scale \(1 \mathrm{~m} .-1 \mathrm{in}\).
088. Moom Mountaln district, by D, 1). Cinirnes. Maps No. Mis, srole \(2 \mathrm{~m} .=1 \mathrm{In}\).; No. 060, nrale \(1 \mathrm{mi}-1 \mathrm{in}\).
1035. Cond-fields of Manitoba, Saskatchewan, Alberta, and Eimatern Iritish Columbia, by D. I1. Jowling. Map No. 1,110 , mrale \(35 \mathrm{~m} .=1 \mathrm{in}\).

\section*{SABKATCIIEWAN.}
213. Cypresm lillis and Wowl mountaln, by R. G. MiConnell. 18k5. Naps Nos 225 and 220, cale \(8 \mathrm{~m} .=1 \mathrm{in}\).
601. Country between Athobnakn lake and Churchlll river, by J. B. Tyrrell and D. B. Dowling. 1805. Map No. 957, ecule \(26 \mathrm{~m} .=1 \mathrm{ln}\).
868. Sourla River roul-field, by D. 13. Dowllag. 1802.
1035. Coal-fields of Manitoba, Baskatchewan, Alberta, and Eastern British Columhis, by D. B. Dowling. Map No. 1,010 , scale \(35 \mathrm{~m},=1 \mathrm{in}\).

\section*{MANITOBA.}
264. Duck and Riding mountalns, by J. B. Tyrrell. 1887-8. Map No. 282, scale 8 m. -1 ln .
296. Glaciai Lake Agasels, by W. Upham. 1889. Mapm Nos, 314, 315, 316.
326. Northwestern porlon, by J. I. Tyrrell. 1800-1. Maps Now. 330 and 350, scelo \(8 \mathrm{~m} .=1 \mathrm{ln}\).
704. Lake Wlanlper (weat shore), by D. B. Dowllng. 1898.
705. Lake WInnlpeg (enst shore), by J. B. Tyrrell. 1808 .
1035. Coal-fiefds of Manitoba, Saskatchewan, Alberta, and Fastera British Columkia, by D. B. Dowilng. Map No. 1010 , scale \(36 \mathrm{~m}=1 \mathrm{ln}\).

\section*{NORTH WFST TERRITORIES.}
217. Hudson bay and stralt, by R. Bell. 1885. Map No. 229, scale \(4 \mathrm{~m} .-1 \mathrm{in}\).
238. Hudson bay, south of, by A. P. Low. 1886.
239. Attawaplskat and Albany rivers, by R. Bell. 1888.
244. Northera portion of the Dominion, by G. M. Dawnon. 1886. Map No. 255, scale \(200 \mathrm{~m},=1 \mathrm{ln}\).
267. James bay and country east of Hudson bay, by A. P. Low.
578. Red lake and part of Berens river, by D. H. Dowling. 1804. Map No. 576. scale 8 m . \(=1 \mathrm{ln}\).
*584. Labrador peniasula, by A. P. Low. 1895. Maps Nos. 586-388, scale \(25 \mathrm{~m} .=1 \mathrm{ln}\).
618. Dubawnt, Kazan, and Ferguson rivers, by J. B. Tyrrelt. 1866. Nap No. 603, scale \(25 \mathrm{~m},-1 \mathrm{ln}\).
657. Northern portlon of the Labrador peninsula, by A. P. Low.
680. South Shore Hudson stralt and Ungava bay, by A. P. Low.

Map No. 699 , acale 26 m . I In.
713. North Shore Hudson etrait and Ungava bay, by R. Bell.

Bound together. Map No. 699, ncale \(25 \mathrm{~m} .=1 \mathrm{lo}\).
725. Great Bear lake to Great Slave lake, by J. M. Bell. 1900
778. East Coest Hindson bay, by A. P. Low. 1900. Maps Nos. 779, 780, 7.21, scale \(8 \mathrm{~m} .-1 \mathrm{ln}\).
786-787. Grass River reglon, by J. B. Tyrrell and D B. Dowllag. 1000 .
-Publications marked thus are out of print.
 \(80 \mathrm{~m} . \mathrm{ml}_{1}^{\mathrm{la}}\)
t19. Natapoke lalmads, fiudion lay, by A. P. l.ow. 1000 .
o03. The Crule of the Nieptuno, by A. P. L.ow. livis.
1100. French trandation roport on an exploration of the East const of Ifudern bay from Cape Woliteaholme to the south end of James bey, by A. P. Iow. Mape Nos. 779, 780, 781, scale \(8 \mathrm{~m} .-1 \mathrm{ln}\); io. 745 , wale s0l m. -1 in .
1107. Reconnalmance arrose the Markenale mountalns on the Pelly, Roxn, and Oravel rivern, Yukon, and North Went Terrltorles, by Juepli Keele. Map No. 1099, erale \(8 \mathrm{~m} .-1 \mathrm{in}\).

ONTARIO.
218. Lake of the Woodn reglon, by A. C. l.awson, 1 ikj. Map No. 227, arale \(2 \mathrm{~m} .-\) 1 la .
2205. Maliny Lake rogion, by A. C. L.awnom. 1887. Map Nio. 283, ncale \(4 \mathrm{~m} .-1 \mathrm{ln}\)
260. Lake Superior, miaed and mining, by F. 1). Ingall. 188s. Mapa No. 245. ceale \(4 \mathrm{~m} .=1 \mathrm{~lm}\). ; No. 280 , scale \(20 \mathrm{ch} .-1 \mathrm{~lm}\).
320. Budbury rotalat dietriet, by R. Bell, \(1890-1\). Map No 343 , scale \(4 \mathrm{~m} .-1 \mathrm{in}\).
827. II untar Hland, by W. 11. C. Smith. 1200-1. Map No. 342, meale \(4 \mathrm{~m} . \mathrm{m} 1 \mathrm{im}\).
332. Netural Osa and Potroleum, by II. P. II. Brumoll. 1880-1. Mape Noa. 344 - 349 .
357. Victoria, Poterborough, and fiatinge countlon, by F. ij. Adams. \(1892-3\).
627. On the Freach River chert, by R. Ball. 1800. Jap No. 370 , scale \(4 \mathrm{~m} .-1\) in
678. Selae river and Lake ghebandowan map-aheets, by W. Mc Ianes. 1897. Map4 Nos. 890 and 860 seale \(4 \mathrm{~m} .-1 \mathrm{in}\).
723. Iroa depoalte along the Kingaton and Pembroke rallway, by E. D. Ingall. 1000. Map No. 626, scale \(2 \mathrm{~m} .-1 \mathrm{in}\).; and plans of is mines.
739. Carleton, Ruwell, and Proscott countien, by R. W. Fills. 1890. (See No. 739, Quabec.)
741. Ottawe and viclaity, by R. W. Eila. 1000.
790. Perth slient, by R. W. Ella. 1900 . Map No. 789 scale \(4 \mathrm{~m},-1 \mathrm{ln}\)
961. Sudbury Nlekel and Copper deponite, by A. E. Barlow (Reprtat). Mapa Nos 778,820 s acale \(1 \mathrm{~m} .-1 \mathrm{~lm}\).; Noe. 824, 825,804 , scale \(400 \mathrm{ft} .-1 \mathrm{in}\).
962. Niplesing and Timiskaming map-choete by A. E. Herlow. (Reprint). Mepa Nos. 800,600 , acalo \(4 \mathrm{~m} .-1 \mathrm{in}\); No .044 , ceale \(1 \mathrm{~m} .-1 \mathrm{im}\).
965. Sudbury Nickel and Copper deposits, by A. E. Bariow. (Freach).
970. Roport on Nlagare Fall, by J. W. Spencer. Mape Nos. \(926,967\).
977. Report on Pembroke sheet, by R. W. Elis. Map No. 660 , meale \(4 \mathrm{~mm}-1\) In
290. Geological reconaalsaare of a portion of Alsoma and Thunder Bay dlotrict, Ont., by W. J. Wilison. Map No. 934, semlo \(8 \mathrm{~m} .=1 \mathrm{ln}\).
10si. On the reglon lying morth of Lake Superior, between the Ple and Nipison rivers, Ont., by W. II. Collias. Map No. 204, acalo \(8 \mathrm{~m} .-1 \mathrm{ln}\).
992. IReport oa Northwestora Ontario, travarned by Natlonal Tranmoatinental rallway, betwoen Lake Niplgon and Sturgeon lake, by W, H. Collins. Map
998 Report on Pombrok \(4 .-1\) in
998. Report on Pembroke sheet, by R. W. Ells. (French). Map No. 660, scale \(4 \mathrm{sm} .-1 \mathrm{ln}\).
099. French translation Gorgaada Mining Division, by W. 11. Collins. Map No 1076, scale \(1 \mathrm{~m} . \mathrm{m}\) in.
1038. French translation report on the Transcontinental Raliway locatlow between lake Niplgon and Sturgeon lake, by W. H. Colitas. Map No. 903, weale \(4 \mathrm{~m} .-1\) ln.
1059. Geological recoanalssance of the region traversed by the National Trancontinental raliway between Lake Nipizon and Clay iake, Ont., by W. H Collins. Map No. 993 , scale \(\& \mathrm{~m} .=1\) ID.
1075. Gowganda Minala Divislon, by W. H. Collins. Map No. 1,076 , scale \(1 \mathrm{~m} .-1\) ia
1032. Momoir No. 6. - Ceotofy of the Hiallburton and Bancroft areas Ont. Wy Frazk D. Adama and Alfred E. Barlow. Maps No. 703, scale \(4 \mathrm{~m} .-1\) in.; No. 770 , scalo \(2 \mathrm{~m},-1 \mathrm{ln}\).
1114. French trinslation Geological reconnalssance of a portion of Algome and Thunder Bey district, Ont., by W. J. Wilson. Map No. 964 , scale \(8 \mathrm{~m} .-1 \mathrm{ln}\).
1119. French translation on the region lifing north of Lake Superfor, between the Plo and Nipison stvera, Ont., by \(\mathbf{W}\). H. Collins. Map No. 984 , srale s m .
-Publicationa marked this are out of print.

\section*{3}

\section*{YUEHEC.}

240. Compton, stanatead, ikenure, Itichmuad, and Woffe countlew, by H. W. Eilo.

18*6. Map No. 331 (Sherbrooke shere), weale \(4 \mathrm{~m} .-1 \mathrm{in}\).
208. Megantr, Ifeaurs, Ihorihenter, Levin. Bellechawe, ant Montmamay counties, by Ii. W. Eill \(1887-8\) Map No. \(2 \mathrm{Ni}^{-}\), wrole 111 ch -1 In
297. Mberal remourcen, by II. W. Fille 1499.
328. Portneuf, Quelver, and Mont anaghy countles by A. P. Low. 18001.
879. Eanern Townshipe, Montreal ahieet, by R. W. Eilis and F. II. Adatna. 1894. Map No. 87), srale \(4 \mathrm{in},-1 \mathrm{Im}\).
391. Laurentlan area nowth of the lshawf if Montreal, by F. II. Adamm. 1895. Map No. B(m), arale \(4 \mathrm{~m} .-1 \mathrm{in}\).
670. Aufferoun deposita, mouthwantern porilun, by ft. Chaimers. 1s98. Map No. 667, srale \(1 \mathrm{ju} .-1 \mathrm{in}\)
707. Eneters Townshipm, Three lluerw sheet, by f1. W. Ellis. \(1 \times 98\)
739. Arganteull, Ottawn, ani P'oatlar comarlen, by It. W. Fills. 1400. (See No. 739. Oaiarios).

23. Chibougamau region, liy A. I' low. 1! 1 :5
 srule \(4 \mathrm{~m} .=1 \mathrm{ln}\). : No. 944, srale \(1 \mathrm{~m}=1 \mathrm{in}\).
074. Report on Copprer-bearing rocks of Eientern Tuwnalifis, by 1. A. Dreaser. Map No. 976, scale \({ }^{\text {m m. }}-1 \mathrm{in}\).
975. Report on Copper-bearigg rocka ol Siantern Townulipa, by J. A. Uresurf (Frearh).
003. Report on the Pembroke sheet, ly II. W. Fills. (I reach).
1023. Report on a Recent Dismery of Gold near Lake Slegatil. Uuc., I.e 1. A. Dresser. Map No. 1ug9, wale \(2 \mathrm{m1}-1 \mathrm{In}\).
1032. Report on Rereat Discovery of Goll near laake Megantlr. (?ue., 1.y 1. A. Dreaser. (French). Map No. 1020, menie : \(\mathrm{m},-1 \mathrm{la}\).
1052. Freach translation report on Arte dun welin in the idand ol Monitraif, by lirank 1. Aelaus mat O. E. IeRov. Maps Nos. Xit, scale, \(4 \mathrm{~m},-1 \mathrm{itI}\). No. 375, scale 3,000 (t. -1 lm ; No. 876.
1144. Reprint of Summary Report on sive Serpentine Belt of Southern Queber, by J. A. Dremeer.

\section*{NEW BRUNSWICE.}
218. Weaters New Brunvwiek and Fiatern Nova Scotia, by If. W. Ells. 188:. Map No. 230, mrale \(4 \mathrm{~m},-1 \mathrm{ln}\)
210. Carleton and Vletoria countles, by L. W. Bailey. 1885. Map No. 231, scain \(4 \mathrm{~m} .-1 \mathrm{im}\).
242. Victoria, Rentypouche, and Northurnberiand countles, N.B., by L. W. Baliey and W. Mclnnes. 1888. Map No. 254, scalo \(4 \mathrm{~m} .-1 \mathrm{in}\).
209. Northera portion and adjaceat areas, by L. W. Balley and W. Mclaney. 1897-S. Map No. 290, scale \(4 \mathrm{~m} . \mathrm{T}_{1}\) ?
330. Temiscouata and Rlmousk countles, by L. W. Bniley and W. McInnes. 1890-1 Mup No. 350, acale \(4 \mathrm{~m} .-1 \mathrm{ln}\).
661. Mineral resources, by L. W. Raliey. 1897. Map No. 675, brale \(10 \mathrm{mb}-1 \mathrm{in}\). Now Brusswlek geology, by II. W. Ells. 1887.
799. Carbonilerous aystem, by L. W. Bulley. 1900. \{
803. Coal prospects ln, by H. S. Pooie. 1900. | Bound together.
983. Mineral resourcen, by R. W. Ell. Map No. 969, scale \(16 \mathrm{~m} .-1\) in.
1034. Mineral resources, by R. W. Ells. (Freach). Map No. 900 , seale \(16 \mathrm{~mm}=1 \mathrm{~lm}\).

\section*{NOVA SCOTIA.}
243. Guysborough, Antlgonlsh, Pistou, Colehester, aad Ifallfax countles, by Hugh Fletrher and E. If. F'arlbault. 1886.
331. Pictou and Colchester rountics, by H. Fletcher, 1890-1.
358. Southwestera Nova Scotia (prelimlnary), by L. W. Bailey. 1892-3. Map No. 362, scale \(8 \mathrm{~m},-1 \mathrm{in}\).
628. Southwestern Nova Scotla, by L. W. Bailey. 1896. Map No. 641, acale a \(\mathrm{m} .-1 \mathrm{la}\).
685. Sydney coal-field, by II. Fletcher. Mapn Nns. 652, 653, 654, scale \(1 \mathrm{~m} .-1 \mathrm{ln}\)
797. Cambrian rocks of Cape Breton, by G. F. Matthew. 1900.
871. Pictou comb-field, by H. 8. Pooie. 1002. Map No. 6:33, scale \(25 \mathrm{ch},-1 \mathrm{in}\).
*Publleationa marked thus are out of print.
3675-5

\section*{MAPS.}
1042. Dominion of Canada Minerals. Scale \(100 \mathrm{~m} .-1 \mathrm{In}\).

\section*{YUKON.}

805, Explorations on Macmillan. Upper Pelly, nnd Stewart rivers, scale \(\times \mathrm{m},-1 \mathrm{in}\).
891. Portion of lluncan Creek MIning di-trict, arale \(6 \mathrm{~m} .=1\) in
894. Sketoh Map Kimute Mining district, seate \(6 \mathrm{~m},-1 \mathrm{In}\).
-916. Windy Arm Mining di-trlot. Sketofi Geolugical Map, srale \(2 \mathrm{~m} .-1 \mathrm{in}\)

991. Tantalus and Five Flagers ronl mines, scale 1 in, - 1 In.
1011. Honanza and llunker erpeks. Aurferons gravelx. Brale fi) rhains- 1 in.
ldik. I.ower lake labergi and vielnity, wale \(1 \mathrm{~m},=1 \mathrm{in}\).
1041. Whitchorse Copper beft, wrale \(1 \mathrm{~m}=1 \mathrm{in}\).

102t, 101t-1019. Whitchorte Copper belt. Wetuils.

\section*{BHITISIl COLUMBIA.}
278. Carlboo Mifing diotrict, seale \(2 \mathrm{~m} .=1\) In.
i04. Shuswap (icologin \(n\) l sheet, siale \(4 \mathrm{nI},=1\) in.
*77. I'reliminury Hiftion, lisst liouteray, scale \(4 \mathrm{~m} .=1 \mathrm{ln}\).
7it. (irologi•al Map of c'rowsheat roal-firldx. nrale \(2 \mathrm{~m},=1 \mathrm{ln}\).
\%!1 West Rootemay Mincrals and strise, scale \(4 \mathrm{~m},=1 \mathrm{in}\).

s(M). Nirola coal basin, seale \(1 \mathrm{~m}-1 \mathrm{in}\).
!1!1. I'relininary Gpologiral Map of Rowsland und viclalty, acale 1,600 ft, -1 in.
4.ī. 'rinueton coal basin and Coppur Mountuin Mining camp, wale 40 eh. \(=1 \mathrm{ln}\).
089. Tilkwa river and virfinity, wrialo 's in. \(=1\) In.
097. Nunaimo und New Wextminvier Mining diviston, wale 4 m . -1 in.

1th1. Suveial Map of Rowand. Topogruphical sheet. Scale 40 K ft. -1 in .
1002. Npecial Map of Kossland. Reiloniral shect. Scale \(400 \mathrm{ft} .-1 \mathrm{In}\).
lovi, Rosiland Jining ramp. Topogruphleal shert. Skale \(1,200 \mathrm{ft}\). -1 in .
1004. Ilossand Jlining camp Geolowiral sheet. Scale \(1,200 \mathrm{ft},=1 \mathrm{in}\).

100k. Sheep Creek Mining ramp. (iruloghoal wheet. Srale \(1 \mathrm{~m} .-1\) in
1074. Sheep Creek MIning ramp. Toporaphical sheet. Scale \(1 \mathrm{~m} .=1 \mathrm{In}\).
1005. 1A.-1ledley Dlining dlatri.t. Poprapraplical sheet. Scale \(1,000 \mathrm{ft}\). -1 in .

110.5. 4A.- (indern Zote Mining camp. Srale 600 ft. - 1 ln .
1105. 3.A.-Mincral Clulms on Tlenry ereek. Srale \(\mathbf{N o}\) ft -1 in.
112.5. 1ledley Mining distrlet: Structure Sertions. Srale \(1,000 \mathrm{ft}=1 \mathrm{In}\).

\section*{ALBEKTA.}

5194-596. Peace and Athabaska rivers, scale \(10 \mathrm{~m} .=1 \ln\).
* ius. 1Hairmore-F'runk roal-fields, srale 1 NO (.h. -1 in .

N02. Costigan eonl basin, scale \(40 \mathrm{rlt}=1 \mathrm{ln}\).
(22ب-036. Caseade conl bnsin. Suale \(1 \mathrm{in},-1 \mathrm{in}\).
Mij-966. Moose Mountuin region. Conl Areas. Scale \(2 \mathbf{m}\). -1 In.
1010. Alberta, Saskatchewan, and Manltoba. Coal Areas. Scale \(35 \mathrm{~m} .-1 \mathrm{in}\).
1117. SA.-Eximonton. (Tojnograpliy). Srale \(\frac{1}{2} \mathrm{~m} .=1 \mathrm{ln}\).
1118. tiA.-Fimonton. (Clover lhar (oal Seam). Scale of mi. \(=1 \mathrm{ln}\).
1132. 7A.-fighorn Coal-field. Seale \(2 \mathrm{~nm},-1\) In.

BAsに.ITC11EWAN.
1016. NHerta, Saskatchewan, and Manitobit. Coal Areas. Seale \(35 \mathrm{~m},-1 \mathrm{In}\).

Manitoha
S0.1. F'art of Turtle mountain thowing coal areas, scale 1 f in. \(\mathbf{- 1}\) in.

*lubllcations markel thus are out of print.

\section*{ONTARIO.}
227. Lake of the Woods sheet, scale \(2 \mathrm{~m},-1 \mathrm{~lm}\).
283. Ralny Lake sheet, scale \(4 \mathrm{~m} .-1 \mathrm{in}\).
342. Ilunter 1sland sheet, scale \(4 \mathrm{~m} .-1 \mathrm{ln}\).
343. Sudbury sheet, scale \(4 \mathrm{in} .-1 \mathrm{ln}\).
373. Ralny Rlver sbeet, scale \(2 \mathrm{~m} .-1 \mathrm{in}\).
s60. Selne lilver sheet, meale \(4 \mathrm{~m} .=1 \mathrm{ln}\).
570. French 1 IVer sheet, scale \(4 \mathrm{~m} .-1 \mathrm{In}\).
*589. Lake Sliebandowan sheet, srale \(4 \mathrm{~m} .-1 \mathrm{in}\).
599. Timiskaming sheet, scale 4 m . -1 in . (New Edition 1907)
605. Manltoulln Imland slieet, scale \(4 \mathrm{~m},-1 \mathrm{in}\).
606. Niplasing sheet, zcale \(4 \mathrm{~m},-1 \mathrm{ln}\). (New Editlon 1907).
600. Pembroke sbeet, scale 4 m . -1 in.
663. Iganee sheet, scale \(4 \mathrm{~m} .-1\) In.
708. 1 ailburton sheet, scale \(4 \mathrm{~m} .=1 \mathrm{in}\).
720. Manltou Lake slieet, seaie \(4 \mathrm{in}-1 \mathrm{in}\).
-750. Grenville sbeet, scale \(4 \mathrm{~m} .-1 \mathrm{in}\).
770. Bancroft sheet, scale \(2 \mathrm{~m} .-1 \mathrm{in}\).
775. Sudbury distriet, Vletoria mines, wrale \(1 \mathrm{~m} .-1\) in
*789. Herth sheet, acale \(4 \mathrm{~m} .-1 \mathrm{ln}\).
820. Sudbury district, Sudbury, semle \(1 \mathrm{~m} .=1 \mathrm{ln}\).

824-825. Sudhury district, Copper (liff mines, seale 1/miti. - 1 in.
852. Northeast Arm of Vermilion Iron ranges, Tim: wani, wale \(116 \mathrm{ch} .-11 \mathrm{a}\).
804. Sudhury district, Elsle and Murray mines, swim tin ft -1 in.
003. Ottawa and Cornwall sheet, satale \(4 \mathrm{~m} .=1 \mathrm{in}\).
944. Prellnilnary Map of Timagami and Kahbit lakes, scale \(1 \mathrm{~m} .-1 \mathrm{fn}\).
064. Geological Map of parts of Algoma and Thunder hay scale \(8 \mathrm{~m} .-1 \mathrm{in}\),
1023. Corundum learing 12ocks. Central Ontario. Scalo \(171 \mathrm{~m} .-1 \mathrm{in}\).
1076. Gowganda Mining Division, scale \(1 \mathrm{~m} .-1 \mathrm{in}\).

\section*{QUEIBEC.}
*251. Sherbrooke sipet, Lastera Townships Map, scale \(4 \mathrm{~m} .=1 \mathrm{In}\).
287. Thetford and Coleraine Asbestos district, scale \(40 \mathrm{cb},-1\) in
373. Queber sheet, Fastern Towaships Map, scale \(4 \mathrm{~m} .-1 \mathrm{ln}\).
*571. Montreal sheet, Hastern Townships sheet, wrale \(4 \mathrm{~m} .-1 \ln\).
\({ }^{\bullet} 665\). Three RIvers sheet, Hastern Townships Map, acale \(4 \mathrm{~m} .-1\) In.
667. Gold Areas in southeastern part, scale \(8 \mathrm{~m} .=1 \mathrm{ln}\).
-688. Graphlte district in l, abelle county, scale \(40 \mathrm{cb} .-1\) in
918. Clibbugamau region, srale \(4 \mathrm{~m} .-1 \mathrm{In}\).
976. The Older Copper-bearing liorks of the Eastern; Townships, scale \(8 \mathrm{~m} .=1\) la.
1007. Lake Timiskaming region, scale \(2 \mathrm{~m} .=1 \mathrm{ln}\).
1029. Lake Megantic and virinity, scale \(2 \mathrm{~m},-1 \mathrm{in}\).

\section*{NEW BRUNSWICK.}
-675. Map of Principal Mineral Occurrences. Scale \(10 \mathrm{~m} .-1\) In.
069. Map of Princlpal Mineral Localities. Scale \(16 \mathrm{~m} .-1 \mathrm{In}\).

NOVA SCOTIA.
*812. Prelininary Mar of Springhill coal-field, scale 50 cin. - 1 In.
833. Pictou coal-fieid, scaie \(25 \mathrm{ch} .-1 \mathrm{ln}\).
897. I'reilminary Geoiogiral Plan of Nictaux and Torbrook Iron district, seale 2.) th -1 in .
927. General Mup of 1 Province showing gold districts, scale \(12 \mathrm{~m} .-1 \mathrm{ln}\).
937. Lelpsigate Gold district, scale 500 ft . -1 in .
945. Inrrigan Gold distrlet, scaie \(400 \mathrm{ft}-1 \mathrm{ln}\).
995. Mulaga Gold diatrict, scale \(250 \mathrm{ft}-1 \mathrm{In}\).
1012. Brookfield Gold district, wrale \(250 \mathrm{ft} .-1 \ln\).
1019. Halifax (ieolodrai sheet. No. 68 . Srale \(1 \mathrm{~m} .-1 \mathrm{in}\).
1025. Waveriey Geologleal sifeet. No. 67. Scale \(1 \mathrm{~m} .-1 \mathrm{ln}\).
1038. St. Margaret 13ay Geological sheet. No. 71. Scale \(1 \mathrm{in}-1 \mathrm{in}\).
1037. Windror (jeologiral sl: eet. No. 73. Scale 1 m - -1 in .
1043. Aspotogan Geological sheet. No. 70. Scale \(1 \mathrm{~m} .-1 \mathrm{ln}\).

Note.-Individual Maps or Reports will be furnished free to bona fida Cunadian applleants.
lleports and Maps may be ordered by the numbers prefixed to titles.
Appiications slould be addressed to the Dlrector, Geologlcal Survey. Depare
ment of Mines, Ottawa.
\({ }^{\bullet}\) Publications marked tbus are out of print.
```

