

19214
$\$ 290$
(32) +2 201
com
4

4\%

T. H E

City and Countrey Purchafer, A N D

Builder's Dictionary:
 OR, THE

Comvieat wuiloce's Guide. SHEWING

The Qualities, Quantities, Proportions, and Rates or Value of all Materials relating to Building ; with the beft Method of preparing many of them.
AND ALSO
The Cuftoms, and Methods of Meafuring of all Artificers Work, concern'd in Building ; together vith the City and Countrey Prices, not only of Workman/hip, but of Materialsalfo: The which will be extraordinary ufeful in making of Bargains, or Contracts betwixt the Workmafter and Workman; and likewife in computing the Value (or Charge of Erecting) of any Fabrick, great or fmall.

LIKEWISE

The Explanation of the Terms of Art ufed by mof Workmen. TOGETHER
With Aphorifms, os neceiflary Rules in Building, as to Situation, Contrivance, Compactnefs, Haiformity; Conv́eniency, Firmnefs, and Form, $\delta \sigma c$.

> By T. N: Philomath.
LONDON:
Printed for \mathcal{F}. Sprint at the Eell, G. Conyers at the Ring, and T. Ballard at the Rifing.Sun in Lattle Brittain. 1703.

Digitized by the Internet Archive in 2010 with funding from
Research Library, The Getty Research Institute

TO HIS

Molt Honoured Friends'

THE

Truly Worthy Gentlemen,
John Barker, Eff; of Mayfield-Tlace in Su/fex? Mr.RobertKnights Treafurer of the Honour table Iri/b Society in London, and Mr. Robert Barker, of Birchden-Place, in Suffix.

Worthy Sirs,
TE an Author in this Age appears in Publick without a Dedication, be is but very little efteemed or regara led: And therefore, becaufe I isouild

The Dedication.

not Sem to run counter to the weal Cu from, I prefumed to lay this Ireatife at your Feet. Tho' perhaps it may form a piece of Arragancy, in fo mean an Author, to dare to Dedicate a Treain fe that is fo far from being free from Defects, as this Tract is, to Perfons of fuck Judgment and Experience in Matters of this nature : Tet the presceding Notions which Sem to denounce this Dedication to be a piece of Prefumpion, do juftifie it at the fame time, because it plainly implies a Neceffooty of foch a Dedication. For inhere the Author is obscure, and the Tract not fo compleat as it might bare been, were it to be done again, there is certainly a great occafion to shelter it under the Hings of fore worthy Patronages.

For bow can it but be expected, but that foch a Irectife as this, (that has nothing but the Truth of its Obfervatiowns, aud its mefulnefs, to procure it Merit ${ }_{\text {, }}$

The Dedication.

Merit, or Efteem ;) when it is emitted to the World, gould in some measure b protected against the Afperfions of th CenSorious Age.

And I have no caufe to doubt, bn that Perfons of fuck Candor and Conde. fcenfion, as you are, Worthy Sirs, will allow Neceffity to be a sufficient Argomint, by wobich an Action of this natire may be juftified; which otberwife. might jufly have palfed for a Crime; and that too committed againft the beet of my Friends, from whom 1 have received many Signal, and never to be forgotten Favours: For I have been brought up, Educited, and have ace quire that little Knowledge which I bave of this and other Arts, under the Favour ant Roof, (as it were) of the first of you, my Honoured WorthyFriends. From the fecond of you, I have received n" Small number of Favours, tho I mos woolly a Stranger to bim, until the fo loft Years.

The Dedication.

And by the Kindness and Liberality of the third, I have been very much encourage and affifted in my Matbematical, and other Studies.

I could not forbear without Ingrateaude (to you Worthy Sirs,) to tell the World of the fe your extraordinary $F a$ ours; which peeing I am not in a Ca pacity to requite thess, feem to Poftulate from me at leaf a Publick Recognotion, which this Dedication of the Fruits of my Labours, gives me a fair Opportunity to make. What 1 have here prefented you with is but a Mite; yet I have endeavoured to make it as woeful as I poffibly could, (confidering it is but a Manuel.) by avoiding Prolixities, and bare omitted ncthing that is Remarkable, or USeful, * near as I could; for I bave comprehended as much in this Tract, as my defined Brevity would adwitt of f for I did not defign to make it

The Dedication
it a large Volume, (as I could have done) at first committing it to the World, but a Compendium of the Art of Building rather, till I fee bow this will be accepted by the Publick.

What lay flattered up and down in diverfa Volumes, I have comprifed under their proper Heads, and that to, in a Method wholly new ; and I do hope not an obfcure one. I have intermit a great many new things, which were ObServations of my oo making, and lome were Communicated to me by my Friends, many of which were experienced Trades, or Handicrafts Men, woof Imployments robotby depended on Building; and Some Notions I had from forme observing Gentlemen, and others that wore formetimes Mafters of Such Buildings, mont of which was never (10 my knowledge I am fire) made Publick before. All wobich I hope will make it in Some maSure prove ufefultothe Publick: And A 4

The Dedication.

I hope for the fame Reafon it will gain your approbation, robach I am confdent roil not a little contribute to the Credit of the Book.

But one thing I think it nece \int dry, to declare to the World polish is this, wiz. That none but way self bad the Perital before it was Printed, (that I liner of,) So I alone am jufly chargebile with the Errors therein; for I, dint fuppofe it to be apholly free, after all the Diligence and Care wobich was taken about at.

But I amfatisfied that your Candor, sud Exquifitenefs of Judgment is fuck, that of you find the Matter of this Ireatije to be rueful, and to anfiver the Tefl of Experience, you will deafly overlook any Imperfections, that forme rigid Criticks may cenfure in the manner of proofing it.

1 bate nothing mare to trouble yous saith here, but to Petition you, (Warthy

The Dedication.

thy Sirs) ever to continue your Opinion of me, and to oren both ibis and me, fo far as you find truth in us both, and no further. And (tho' I have nothing in me to deferve it at your kind bands; yet,) I fall make it my Study and Care, by all due Acknowledgments to. preserve it, and remain always,

Worthy Sirs,
Your Humble,
Faithful, and mort
Obliged Servant.

$$
\mathcal{T} . N .
$$

Exor.

－

EXORDIUM

In Laudem

ARCHITECTUR压:

 BEING
The Prelude or Proœm

TO THIS

TREATISE.

Shewing the Antiquity, Excellency, Emolument, and Neceffity of ARCHITECTURE.

AMongft thofe many Arts which Divire Providence hath been pleafed to endow Mankind with the Knowledge of, this of Architeflure is none of the leaft, and therefore may well challenge a place amongt the Primary, and moft neceffary, if not the Preeminency of Rank.

Firft, For its Antiquity ; it being almoft Coxtancous with the World it felf ; for it was practis'd in the very Infancy of the World,

P R O OE M.

by the ift. born of Mankind, viz, Cain, as ydu may find it Recorded, Gen. 4 1\%. You may further obferve that this is the fecond Art which the Divine Pestongo hath left us upon Record: For we muft allow Egriculture to be the moft Ancient, and mont neceffary Art of allothers: It mult certainly be the Senior Art; becaufe we find in Gen. 2. 15. That Almighty God did place Adam in the Garden of Eden in the time of his Innocency, and was there ordered to perform the Office of a Georgick, [or Husband-man.] Agriculture muft alfo as certainly be the moft neceffary, becaufe Men can, and do fubfilt (in a great meafure) without Clothing, Houfes, Soc. in fome Climates and Countries; but there is no part of the World where Men can live without Food.

But neverthelefs, where People are fo barbarous as to be quite ignorant of Architecture, or Building, they are alfo for the moft part wholly deftitute of the Knowledge of Agrichlture, or Tillage of the Earth; for Agri. culture without Architecture, would be but of fmall ule; becaufe it would be to but little purpore for the Husbandman to Plow and sow, and Plant Fruit-trees,' and the like, if when Harveft comes, he hath neither Barms, nor Granaries to preferve his Corn in; nor Confervatories, or Storebboufes to lay up his Fruit in.

$P R O O E M$.

Secondly, As to the Nobility, or Excellency of this Art, it may be obferved from the following Circumftances, That

The Holy Ghoft has been pleafed to honour this Art fo far, asto grant it the Privilege to be enroll'd (in the Holy Scripture) among the Actions of the firf Monarchs of the World, yiz. From Adam to Noab, there is no nention made of the Military Actions of the Antidiluvian Sovereigns : All that is noted concerning them, is that they lived fo many Years, and taught their Progeny to keep Sheep, to Till the Ground, to Plant Vineyards, to dwell in Tents, to Build Cities, to play on Organs, and Harps, to Work in Brafs and Iron, ©̛́c.

The Divine Archited of the World hath been pleafed to honour this Excellent Art fo far, as to vouchfafe to give neceffary Precepts and Rules concerning fome Buildings, of which I will here give fome Inftances. And,

Firf, Of the Diluvian Ark, mentioned, Gen. 6. 14, 15 and 16 Verfes. Where he was pleafed firft to give Directions for chuling the Materials for it. Secondly, He gives Order for the Dimenfions. And Thirdly, For its Form, both External and Internal.

The Second Inftance fhall be of the Santua ry, confifing of the Ark' of the Covenant, the Mercy Seat, the Tabernacle, and the Altar, as you may find in the $25,26,27$, and zo Chapters of Exodis.

Ү K O OE M.

The Third Inftance that I thall produce is concerning the Bualding of Solomon's Temple at ferxfalem, as you may find it upon Record in I Cbron. 28: 29.

Tho' fome have been fo bold as to aflert that the Ground of ail Arts are tobe found in the Holy Scriptures; yet I think none of the Civil Arts can pretend to fuch Documents from Scripture, as the Art of Building can: For we may obferve from the precteding Inflances, and fome other Texts of Scripture, (which I fhall by and by refer you to,) that the Ominfient Archite Cl of the World did direct Men to Build by Defign, viz. By a Prototype, Model, Draught, or Pattern: As you may find it in Exodus 25. 40. $N_{u m .8 .4}$ I Cluron. 28. 11. 12, 18, 19. Alts 7. 44. Heb 8. 5.

It is alioobervable that the Divine Aro chiteal did not only direct to the Form by a Pattern, or Draught, bat alo by giving the Dimenfions of tach farticular as you may obierve from Gen 6. 15 and 16 . and Exod 25. 10. alfo in the 26, 27, and 30 Chapters of Exodus, 2 Chron. $3 \cdot 3$, E゙c. He allo gave Directions for chuling Materials for each particular ufe, as you may find in the afore cised 6 Chapter of Gen. and Exod. 25. 26,27 , and 30 Chapters ; not only fo, but was pleafed to direet to the Quantity by Weighr, as yo! may fee it in the but now mentioned Chapters of Exodus, and in the 28 of the firlt Book of (bronicles, \& C .

$P R O \quad O E M$.

And let me further add, tho' Architecture be contemned, and flighted by fome, becaufe ir depends upon Mechanicks, or HandicraftsMen's Practice; yet it is not defpifeable as they would fain make the World believe it is: For I muft, and will tell fuch Men the plain Truth, that they muft certainly be Infidels, and do not deferve the Title of a few, and much lefs a Cbriltian: For if fuch Perfons were fews, I think they muft needs be very ignorant of the Pentateuch, or Writings of Mofes, or elfe they would have been convinced of this their Error from the 3 r of Exodus 3 and 6 Verfes. Where the Holy Gboft ftiles the Mecbanick Knowledge of Bezaleel, and Aboliab, \&c. the Spirit of God, Wifdom, EGc. And if they were Chriftians, they were very mean ones to be ignorant of the Books of Mofes; and the Govpels of St. Matthew, Mark, and Luke ; for we may Iearn out of St. Matthew 13. 55. and Mark 6. 3. and Luke 2. 51. That our Bleffed Redeemer did not think the Knowledge and Practice of Architecture and Mechanicks of Handicrafis fo abject as fome would reprefent it tobe; for from thefe Texts we may learn that be was pleafed to exercife this Art of Architelture, and to be a Mechanick, viz. A Carpenter, for fome part of the time, that he was here Converfant with Mortals; which I muft tell you, is no fmall Honour to the Ms. chanicks and Arcbitecture.

$P R O$ OE M.

I proferf, I can difcern no more Reafon why the Sordidnefs of fome one Workman, or Mecbanick, fhould be the caufe of Reproach to Haxdicraft Arts, than that moft excelient Invention of raifing Water at London bridge (for the Service of many Families in the City,) fhould be difefteemed and neglected, becaufe there may fometimes happen to be a blind, (or otherwife defective) Horfe imployed in the Operation.

And tho' Mechanick Imployments be by fome reckopd fo very Ignoble and Scandalous, yet it is very well known that many Gentlemen of grod Rank and Quality in this Nation, are often converfant in Handicrait Imployments: And other Nations exceed us in the number of fuch Gentlemen, of which I fhall give you an Inftance. In France the making of Glafsat the Glafs Houfes is performed by Gentemen of no mean Extraction, viz. Moft of them of the great Glafs Houle defeending from Prince Anthony Broffard, Natural 'Sun of Cbarles of France.

None but Gentemen are imployed in the Art of making Glafs in France, and thefe Gentemen bear Honourable Coats of Arms, and both they, and their Servants, and De puties are exenipt from paying of Taxes, Qua;tering of Soldiers, ©Gc.

This Noble Art makis Marble, and other Stones become the Delights of Men, of which are made our Glorious Palaces, and the Ornaments
naments of our molt Splendid Churches, and the molt durable Monuments which the Ambition of Men could ever invent, whereby to render themselves and their Grandure known to future Ages.

This Art hath always been had in great Efteem; for it is become familiar in the Courts of Kings and Princes, for. The pres rent King of France has Eftablifhed an Arab demy for promoting this noble Art.

Another thing which proves the Excellency of this Art, is that it is always pofferfed and practifed molt by the molt Civilized and Learned Nations.

Almoft every Nation (that are Civilized, efpecially) have shewed ample Teftimonies of the Refpect they had for this Art. For the Jews boat much Solomon's Temple, the Aflyrians of great Babylon, the Egyptians of their Pyramids, Fec. The Ionians of their Ephefian, or Diana's Temple; and the other Greeks of the Temples of their Gods : Rome boafts of its Temples, Amphitheaters, Mriumphant Arches, and rio Stately Palaces SOc. France glories in its Louvre, NoftrcDame,Verfailles Palace, of St. Germains.en lay, Fountainbleau, \&c. Spain of its Efcurea!, Soc. Holland of its Stately Churches, Stadthouse, Ec. And England of its Hampton Court, Windfor-caftle, Weftminfter-abby, Royal Exchange, St. Paul's, Salisbury Church,

r R O OE M.

Scc. It would be endlefs to inftance in things of kind. And therefore I fhall conclude with this of the Excellency of this Art, and proceed to that
$2 d l y$, Of the Emolument and Neceflity of this Art of Building.

As to the Profit of this Art, I think I need not to fay much ; tor all know, (that know any thing) that Merchants and other Traders, cannot fubfift without their Ware-houfes, nor Tradelmen withour their Shops, nor the Husbandman without his Barns, Granaries, ©̛c. For withour thefe Buildings to preferve their Goods in, none of thefe diflerent Ranks of Men would make much Profit of their Commodities.

Befides there can be no pretence to any kind of Profit withour Buildings; for there are no Nations in the World where the Air is fo ference, as that there is no need of Buildings to protedt theManufactures of it fromithe lnjuries of corroding Tinte and Air:Add to this, that it is no fanall Profer that accrues to a State, or Nation, by thofe many Trades that depend purely upon Building, viz. Carpenters, Joyners, Mators, Brickiayers, Sawyers, Glaziers, Plumbers, Painters, Carvers, Smiths, Brick and Tile-makers, Stone-cutters, §orc. For I have made it appear above, that other Trades cinnot fubfift without thefe, yiz. Becaufe they cannot fubfift without

PR O OE M.

out Buildings. Alfo where there is no Architecture in a Nation, there can by confe: quence be no Princely Government; for where the Pcople are to barbarous as to live in Caves, and in Hutts made of Boughs, Erc. There is mon Mechanicks amongt them, and by conlequence no Improvement of Manu: factures, and from thence it will follow, there will be little or no Revenues fir to maintain a Regal Power; and for the mont part, where fuch a Pow'er is wanting, People are fo favage and barbarous. that they live more like Brutes than Rational Men; living by Rapine, Murder, ש̌c. So that no Man can properly call any thing his own, for they live (as it were) in a dally expectation of teing rob'd, and deprived of that little which they have, by thole which are fronger than the mfelves. Which alfo implies a Neceflity of Building, to which may be added that Complaint which Ariftotle faith was made by fome, wiz. That Man was worfe dealc with by Nature than other Creatures, whereas they have fome of them Harr, fome Shells, ! me Wool, fome Feathers, and fome Scales to deiend rhem from the Injuries of the Weather, Man alcne is born naked, and without any Covering: But to this it msy be anfwered, that Divine Providence hath endowed every Man with 2 fuch Superlative Inftruments, viz. The Hands, (thofe admirable Inftruments of A.

P R O OE M.

ction) in Conjanction with that Faculty of the Soul, call'd Reafon, it fully fupplies in Man what ever may or can be fuppofed to be wanting in humane Crtatures, as'tis unwifely objected by fome, that they are not lent into the World uncovered, and expofed to all Extreams of Weather, as Heat, Cold, Drought, and Moifture, Efc. By this Inftrument of Inftruments, the Hand which is adapted (by the Divine Architect of the World, to fupply the moft neceffary and ufeful Services of Man's Life, viz. Building, Husbandry, Military Altions, Cbirurgevy, Writing, Engraving, Playing on Mufical Instiuments, and all the neceffary, as well as the Recreative Arts and Employments of humane Life. For indeed, if Man had wanted this Member, (as the I.earned Mr. Ray obferveth,) then we mult tave lived like Brutes, without Houfe or Shelter, but what the Woods and Rocks afforded, without Cloaths or Covering, without Corn, or Wine, or Oil, or any other Drink but Water; without Warmth and Comfort, or other ufes of Fire, as Baked, Boiled, and Roafted Meats, but we muft have fcrambled with the wild Beafts for Acrons, Crabs and Nuts, and fuch other Fruits as the Earth produces of her own accord. We had lain open and expofed to Injuries, and had been unable to refint, or defend our felves againf almont the feebed

PROOEM.

feebleft Creature. Altho' Men were endow: ed with this incomparable Inftrument the Hand ; yet Hiftory informs us, that in the Infancy of the World Men lived almoft like wild Beafts, in Caves, and fed on Fruits and Roots of the Earth; but after they perceived the neceffary ufe of Fire againft the Extremity of Cold: Some began to edifie Cottages with Boughs, Efc. and fome dig. ged Caves in the Mountains, and finding the Conveniency, and Neceffity of it, at laft by Practice they attain'd by degrees to a greater Perfection in Building. So that now there is but few Nations but that practice it in fome gree, (having found the ufefulnefs, and neceffity of it, to protect them from the Injuries of the Weather, and in fome Countries from the Affaults of Rapacious Beafts.) Tho in fome Countries, where the People are in Subjection to a Governour, and in a great meafure Civilized; yet their Buildings for want of Art are very imperfect and detective, in comparifon of ours in the learned part of Europe, of which I will give an Inftance or two. At Puna, an Illand in the Weff-Indies, their Houles flands on Pofts, 10 or 12 Foor high, with Ladders on the out-fide to afcend up to them by. Alfo in the Ine of Mindanao, one of the Philippine Iflands in the Eaft Indies, their Houles fland on Pofts, 14, 16, 18, or 20 Foot high, they have bat one Floor,

$P R O O E M$

but many kuoms in it; under the Houles there is a clear Paffage like a finza, buta filthy one commonly, for fume make this Place the Draught of their Hoves, but they Build by the Ruvers monly, and the Floods cleanfe thofe Places. At the Nicnbar Mlands, their Honfes are built after the marner of thofe at Mindanado, only hee the Rools are Arched, butat Mradana they are ridged ; but in the Nicabar theschey late tar one Romm in a Houle. Thefe fort of Buildings areall the Mode amongt the Malayans in the Eafl Indies.

I thatl add one Inatance more of the neceffity of Building, and that from the Obfervation of the ignorant Iadians in New Eng?ned, \&ec. What fee that there is a neceffity of laying up fome Com for a Winter Store, and for Seed for the neys Seaton; and therefore whey make them tarms for that parpofe, tho? very poor oness for they are ondy great Holes digged in the Ground, and Ceiled with the Batls of Trecs.

I caneet bere bat commend our compleat Mand of Bulding, now wed in Exgland, ov much to be prefer'd before the ancient Prabict here, or that now ufed in many Nations. The Principal Qualities of this Modern Method, are thefe, viz. Compactnofs, Uniformity, and Conveniency.

$P R O O E \quad M$

This Arr, iike moft others, hath in this Age been much improved; Mer being now more Mathematically inclined than formerly, having likewife better Opportunity to attain it, from the many Treanfes that have been made Publick of thefe Arts from time to time, in this la!t Age. For as an ingenous Man well obferves, there is farce any part of the Mathematicks, but is fore way lubfervient to Architecture. Geometry, and Arithmetick, for the due mealure of the feveral parts of a Building, the Plans, Models, Computation of Materials, Time and Charges; for ordering right, its Arches aud Vaults, that they may be both firm and beautiful: Mechanicks for its itreng:h and firmners, tranfpofing and raifing Materials : And Op ticks !or Symmetry and Beauty. He further adds, I would not bave any one affume the Character of an Architeit, without a comperent Skill in all of theie. Vitruvius requires the le, and many more to make a compleat Archite Z.

In the infuing Treatife, I have indeavour'd to affift all fuch as have a defire, (or have an occafion) to underfland the Grounds, and Rules of Archirecture.

- I was firlt induced to undertake this Task of Compofing a Treatife of this nature, purely for my own ufe, for by daily Experience, I found that fuch a Tract was very much

PRO OE M.

wanting, and that if I did compofe fuch a picee, it might prove exceeding ufeful to others, as wellas to my felf, an Ingenious Bookfeller being informed of my defign, was for my carrying it on.

I have been in a great meafure excited to it of late, out of pity to fome poor Workmen; for I have been informed of feveral, that for want of Skill, and Forefight, undertaken Buildings by guefs, by which they have been almoft ruined, or at lealt kept very low in the World; tho they have been very indutrious in their Callings,) and that purely by the means of unadvifed Contracts. And shen again on the other hand, it hath been an Oblervation made by others as well as my felf; that fome honett well-meaning Gentiemen, (and others) that have had occafion io Build, Esc. They have been ftrangely overreaclid by fome Fraudulent Crafty Workmen. But I hope this finall Treatife may be a means to promote difributive Juo fitice (in fuch things as relate 10 Building) gnd iike a jult Arbicrator, whereby both Maner and Workmen llal! have what is Juftice grd Equity betwixt them : For

The infuing Treatife contains not only the Prees that mot Materials are ufually valued pit, and foid for in different parts of the Kingdom. and alfo the ufial Rates of all forts of Pordment sorth, bothin the Gity, and allo.

$\boldsymbol{P} \boldsymbol{R} O$ OE M.

in different parts of the Countrey. But alfo
2. It contains Informations, as to the Qua: lities, Quantities, Proportions, and Methods of preparing and making many of the Maserials relating to Building.
3. Alfo the Cuftoms, and Methods of Mea. furing all forts of Artificers Works.
4. An Explanation of the Terms of Art made ufe of amongft Workmen.
5. In the following Tract, is alfo comprehended, Confiderations as to the Choice of a Surveyor, Workmen, Madel, or Draught, E'c.
6. Aphori/nms, or neceffary Rules in Building, as to Situatios, Contrivance, Receipt, Firmuefs, or Strength, and Form, or Figure, and Beauty.
7. The Method of Surveying of Buildings, as to entring Dimenfions in Pocket-books, and making Bills of Meafurement, ©̌c.
8. Of Valuing Buildings when they are erected.
9. A Method of Cenfuring, or paffing ones Judgment on a Building (that is already compleated or finifhed) as to its Commodious. nefs, Firmeefs, and Delightfulnefs, which are the principal Qualities in a good Fabrick.

In the Compofing of this Work, (befides my own, and fome Friends Obfervations; which

$P R O$ OE M.

Whath together confifted of feveral Sheets of Paper, which were never yet made publick) I have inade ule of the beft Authors extant, to the number of about 50, great and fmall; wherein the Task was not fmall; what in Reading, Comparing, Chufing, Correcting, Revifing. Difpoling, and Tranforibing in refpect of Matter, Form, and Order: By reafon I was obliged not to mate this firft Impreffion too large: For to peak the Truth, I muft tell youl found I had nofmall Difficulties 10 wrefte with; by reafon I had defign'd to Collect the Heads of all fuch things as were mof materiai from fo many Authors, and from my own Notes which wruld have Compofedarmill Treatile of it felf; (for I muft tell you they are not a few, nor they have been no fmall time a Coliecking, nor from none but experienced Men, and my every Diys Opfervarions almoft, my Bufinefs being frequently amongft Workmen of diverfe Profentons, and different places; fo that the Reader will here have a great number of Obfervarions which are wholly new.) So that i was oitentimes more folicitous, and concerned to confider what, than what not to Write: Yet I have diligenily endeavoured to infert the moft important things, that nothing material might be wanting to prefent you with a Satisfactory Account of the Art of Building in all its parts, fo as to make good

$P R O E O M$.

good our Title. Some pertaps may think it too fmall, and the Difcourfe too Brief (for a Subject of this Nature) indeed I think fo too; tut then I mult tell you that it was my defign to be as briet as I could convenientiy (in this firt Edition, if this be kindly recetved in the World, I may perhaps much inlarge it hercafter; having a Siore purpofely relerved for that ufe, if I can find incouragement.) But, Friendly Reader, I have confuited your Advantage, by rendring the Book poth more portable, and lefs chargeable; fo that every one that defircs to look into the Precepts, Eir. of this Ari, may here find Satisfaction without great Expence, either of Time or Money.

The Method of this Treatife is wholly new, but the whole Art is bere ranged under certain Heads, and brought to a certain Method, and limited to practical Rules; and that fo perfpicucus, as to be underitocj by the meaneft Capacity.

One great Reafon of my making choice of this Method, of Compofing it under Alphabetical Heads was this, viz. In a Subject of this nature there would unavoidably have been a Neceffity to have made ufe of abundance of Terms which are uled by Archi. tects, and Workmen, which would not have been underftood by Gentlemen, and young (and ignorant) Handicrafts-men, (for whom
this
this Treatife is chiefly defign'd,) unlef we had explain'd thefe Terms as they fell in, by Confequence in the Difcourfe; but if 1 had done fo, I fhould too often have been neceffitated to make large Excurfions, or Degreffions from the Matter in hand, which would have fo disjointed the Difcourfe, that it would not have been fo eafily underfood by young Tyro's in this Art, efpecially in a Compendious Difcourfe, as this was defign'd to be ; and put the cale any one had wanted at any time to know the meaning of fuch Terms when they had beard them ufed, it would have been no finall trouble to have found them in continued Difcourfe.

All the Treatifes that I ever yet faw on this Subject, (which are not a few) were either continued Difourfes, or branched into Cbores, or the like) containing the Parts, Members, and Materials relating to Building, or elfe comprifed under the Titles of Mechanick Trades, as Carpenters Work, Bricklayers, \&c. or elfe in a Dialogue, which i like worft of all; becaufe in asking of Queftions, commonly there is a Neceffity of ufing more words than any other way of Wrising: I daee to maintain it that none of the aforeraid Methods are fo fir for a Sulject of this Nature that relates to to many Orders of Men;
parts of Buildings, Members of Parts, and valt variety ot Materials, Efc. As this which I have here chofen, (and I have heard fome others wifh for it, not only in this, but other Arts alfo.) For here either Gentleman, or Workman may immediately find (by the Letters at the top of each Page) any thing that he hath occafion to be inform'd about, without the trouble of reading over whole Chapters, or the like.

Courteous Reader, I will aflure you, that you have here Epitomized the Subftance, or Marrow, of all, or moft of the known Authors that have Treated of this Art ; befides a great many new and neceffary Obfervations, Forc. which I hope will prove ufeful to the Publick, tho' it be Compofed after a new Method, viz. an Alphabetical Order; and upon that account it may perhaps be objected againft as a very broken and imperfect Subject. But I muft here inform fuch, that many times each particular word (or Head) is a compleat Difcourfe by is felf, and where it is not, you are referr'd to another place which will make it compleat, by only turning over a few Leaves.

Having thus briefly hinted at the Reafon of Compofing it in this Method; I will next advertile you a word or two
for the better apprehenfion of the Scope, and ufe of the Book.

Firft, That it is intended for beginners, and fuch as have not had occafion to fludy this Art, and not for Accomplifhed Atchitects, and therefore adapted to the mea. neft Capacities.

Secondly, In feveral places the Derivation of the Word is hinted at, (which affifts the Memory, and informs the Underftanding) as well as the Meaning and Senfe it is commonly ufed in; and feveral other Things or Circumftances, according to the Nature of the Word; of which I will here give fome Inflances. As fuppofe, $1 f$. The Word Arch, there you have $1 / \lambda$. its Derivation, then an Explanation of 5 different Kinds, and the Method of making them, and then 5 Theorems concerning them, and the Method of Meafuring them, and lafly, the Price.
2. Then next initance fhall be of the Word Bricks, where you have an account what, and wherefore made, and then a Defcription of 18 forts, with their Dimenfions, Price, Weight, and Form of them; with the Method and Price of Making, Burning, alfo Directions for Buying, Choofing, and Laying of Bricks, ©̛c.
3. Of the Material, call'd Glafs after a general Definition of it, you have an account

P R O OE M.

count of 13 forts, and the Price of moft of them, Ers.
4. Of Lead, where you have 14 Particulars, too many to repeat here.
5. Of Mortar, you have 13 Heads.
6. Of Nails, you have 25 Particulars.
7. Of Painting, where are 18 diflinct Heads: All other Tradts having their proper Heads alfo.
8. Of Stair.cafes, there is an account of about 25 forts.
y. Of Tiles, there are more than 40 Particulars. I hall forbear to enumerate any more, but refer you to the Book it felf, where you thall allo find a Defcription of all the Members of the 5 Orders of Columns, with their Dimenfions and Proportions. If this Treatife find a kind Reception in the World, I thall be encourag. ed to Publith my Compleat Tutor to the Practick Part of Architecture, which will be a Treatife purely for Directions, and eafe to Workmen.

Laftly, I do declare, that if any thing which I have fet down in the infuing Treatife, be objected againft as a Miitake, or that it is not fo pain and exprefs as it might have been, upon the leaft Information thereof, I thall be very ready to revoke it. And therefore if in any thing I have been befide the Matter in hand, or made a falfe Step, or Blunder: I do carnefly intreat the courteous good natured

PROOEM.

Reader, either to inform me of it, (and upon Eviction I thall freely yield,) or elfe that he would freely remit the Fault ; fince all know Hkmanum eft errare.

THE

Citr and Country

Purchafer \& Builder's DICTIONARY.

$A B A \subset V S$

IT'S a rquare Table, Lift, or Plintli, in the upper part of the Chapters of Columns, efpecially thofe of the Corinthtan Orders, which feryes inftead of a Drip or Corona to the Capital. It fupports the nether Face of the Architrave; and whole Trabeation. In the Corinthian and Compound Orders, the Coronets of it are call'd the Horns; the intermediate Sweep and Curvature the Arch, which has commonly a Rofe carv'd in the middle.

The Sieur Mauclerc, in the Ionick Order, defigns an o-.G witha Filletover it for an Abacus; and this Fillet is half the Latitude of the O-G, the which he calls the Fillet of the Abacus.
And in the Corinthian Order, he defcribes the Abacus to be one 7th. part of the whole Capital, which he divides into three parts, and the uppermoft of there is a Boultio, and re of the next third below, is the Fillet of the Abacus, and the reft below being I and $\frac{2}{3}$ is the Plinth of the Abacus.
Andree Palladio in the Tufcan Order, calls the Plinth above the Boultin, (or Eebinus) Abacus; which from its form, faith he, is commonly call'd Dado, or Dye, the which is $\frac{\pi}{3}$ of the whole heighth of the Capital,

In the Dorick Order, he alfo calls the Plinth above the Boultim of the Capital, the Abacus; above which he places a Cimatium, for the upmof Member of the Capital.

In the Ionick Order, he defines it to be the fame with the Sieur Mauclerc.

In the Coriathian and Compofite Order, he defigned it to be the fame almoft with the Sieur Mauclerc, only his is a large Cafement, inftead of the Plinth. But Vincent Scamozzi gives the Title of Abacus to a Cafement, or Hollow, which is the Capital of the Pedeflal of the Tufcan Order. V. Capital.

Abrewvoirs.

A Term in Mafonry, by which is to be underftood the Intervals, or Spaces between the Stones in laying them, commonly calld the Joints wherein the Mortar is placed.

Acroteria.

Are fharp and fpiry Battlements, or Pinacles, that ftand in Ranges, with Rails and Ballifers upon flat Buildings. Alfo Io mages fet on the tops of Houfes, are fo call'd by fome.

Acroteres.

F Are Pedeftals upon the corners and middle of a Pediment to Gupport Statues ; they may properly be called Pinacles.

Aditon V. Cbauncel.

Alabafter.

F. What 〕' Tis a kind of foft, clear, white Marble; if it be fo foft as to becut, it is call'd Gyp/um.
2. Where found, or dig'd] Some is brought to us out of the Indies, and from Egypt, Syrix, \&c. There is alfo fome found in Lincolnfire, and in Staffordfhire.
3. It's ufe] It's chiefly ufed for Monuments in Churches, dee. where thereare any Figures in Relief, or in Bafs-relief, foc. carved. In's alfo fometimes ufed for a Coat of Arms, when a Gentleman will have his Coat of Arms cut in Relief, to fet in Brick or Stone-work in the Frout of his Houfe.

Alcove.
By the Staniards call'd Alcobar; "tis a Recefs within a Chamfer for the fetting of a Eed ont of the way; where for State
many times the Bed is advanced upon 2 or 3 Alcents, with a Rail at the Feet. Thefe Alcoves are frequent in many Noble Men's Houfes in Spain, and other parts beyond Sea:

Alder.

1. What] 'Tis an Aquatick Tree, fo very common that it beeds no Defcription.
2. It's $U f e$] Thofe which were large; were formerly made ufe of in building of Boats: So now are very large Alders fought after for fuch Buildings as lie continually under Water, where it will become as hard as a Stone; but being kept in an unconflant Temper, it decas sin a little time.

Vitruvius tells us, that the Moraffes about Ravera in Italy were pil'd with this Timber, to Superftruct upon, and he highly commends it. It was allo ufed under that famous Bridge at Venice, the Rialto which paffes over the grand Canal, bearing a vaft weight.
3. Poles] Of this Wood are extraordinary ufeful for Pumps, Water-pipes, (Troughs and Sluces alfo if large.) Thefe Poles I have known ufed (in the Countrey) for Water-pipes, to convey Water thro' Eays; and Dams, and alfo to carry Water from any Spring; to fupply a Houfe with this neceffary Element; large Poles of this fort of Wood I have known ufed for Ground-guts, to convey the Water out of Stews, the Poles were about 8 or 10 Inches Diameter, and the Concavity in them about 4 n , or 4 ; for in boreing, and fitting, of which fize they have about 3 s .6 do per Rod for Workmanfhip.
4. But for Water-pipes] the Poles need not be above 4 or s Inches Diameter, for the Cavity is commonly about $1 \frac{1}{4}$, or $1 \frac{1}{2}$ Inch Diameter.
5. Of the Method of boring Alder Poles.] The Order in which they proceed, inthis Operation, is this: Being furnifhd with Poles of a fit fize, not too fmall (nor too large, if for Waterpipes.) They procure Horres, or Truffels, of a fit Altitude, to lay the Poles, and reft the Auger on whilf they are boring, they alfo fet up a Lath, to turn the leaft ends of the Poles to adapt them to the Cavities of the greater ends of the others; their Lath being up, and yout Poles cut to the lengths they will conveniently hold, viz. 8. 10 , or 12 Foot; they proceed to turn the fmall ends of the Poles, abour 5 or 6 Inches in length, to the feize they intend to bore the greater ends, about the fame depth, viz. sor 6 Inches ; (this you muft note is to make the Joint to Ohut each pair of Poles, together, the concave part is the Female, and the other the Male part of the Joint.) In turning of the Male part, they turn a Channel in it, or fmall Grove, at a certain diftance from the end, and in the Female part they bore a mall hole to fit over this Chanuel; for what
purpofe you flall hear when they fet the Poles together: They havigg thus far Proceeded, they then thorough bore their Poles, and becaufe they will prevent boring out at the fides, they ftick up great Nailsat each end to guide them right through; but they commonly bore it at both ends; and therefore if a Pole be crooked one way, they can bore him through, and not fpoil him : The Poles being bored, they proceed to form them into Pipes in the Ground, for which purpofe they have a Trench digg'd, and prepared with Clay, to ram them in the Female part, being prepared with an Iron Ring round it, to prevent its, fplitting ; they drive in the male Part, till the Grove in it is juft under the hole, which is bored in the upper fide of the female Part; and then having fome melted Pitch ready, they pour it into the hole in the female Part, which flows round in the Grove which was turned in the male Part; by which means it is made very ftanch, and clofe: And thus they proceed till they have placed all their Poles in their order.
6. Of the Charge of thefe Pipes.] For Workmanllip only, they ufually ask about 2 s .6 d . or 3 s . per Rod, viz. only to bore andfit them; butthe Charge of all Work, and Materials, viz. Boring, Diging the Trench; laying and Raming in the Clay, brc. And the Charge of Poles, Clay, Pitch, and Iron Rings will be 4 s . 6 d . $5 \mathrm{~s} . \quad 5 \mathrm{s}$.6 d . or 6 s . fer Rod; according as the Materials can be procurd.
N. B. I could here have added the Defcription of an ingenious Contrivance, which thefe Workmen have, to make the fame Auser to bore a Concavity of different fizes; but this, and fome other Curiofities, I hall defer till I fec how this firf Eflay will be accepted in the World.

Amplitbeater, or Anphitbeatre.

Is an Edifice, or Building of an Oval, or Circular Form, with rows of Seats, one above another, where Spectators might fit to behold Stage-plays, and other publick Spectacles, as Sword playing, fighting of wild Beafts, ơc.

Andbathrumi.

A^{\prime} Place that is afcended to by Stepso

Ancbors.

In Architectare, is a certain fort of Carving, romewhat sefembling an Anchor, or Arrow-head; tis commonly part of the Enrichments of the Bouttins of Capitals of the Turcan, Dorick, and Tonick Orders, and alfo of the Boultins of Bed Mouldings, of the Dorick, Ionick; and Corinthian Coraifhes. Thefe An-
chors, and Eggs being alternately carved throughout the whole Buildings.

Annelet, or Annulet.

From the Lat. Annulus,a Ring, in Architecture, 'tis ufed to fignifie a narrow flat Moulding, (of which v. Capital,) which is zommon to divers places of the Columns, as in the Bafes; and Capitals, foc. 'Tis the fame Member as the Sieur Mauclerc, from Vitruvius calls a Fillet, and Palladio, a Liftella, or Ceincture; and Brown ex Scamozzi, a Supersilium, Lift, Tince, Eye-brow, Square, and Rabit.

Antechamber.

1. What.] From the Lat. Ante-camera, an outer, or ForeChamber, a Room in Noble Men's Houfes, where Strangers flay cill fuch time as the Party to be fpoke with is at leifure.

2 Of it's Proportion in length, \&cc.] A well proportion'd Anter chamber, ought to have in length the Diagonal Line of the Square of the Breadth, and not to excel the breadth and $!$ at moft.
3. Of their beight.] They are made either arched or flat, if they are flat, ${ }_{3}^{2}$ parts of the breadth fiall be the height from the Eloor to the Joifts.

Eut if you would have it higher, divide the breadth into 7 parts, and take 5 for the heighth. Or divide the breadth into 4 parts, and three of thofe fiall be the heighth.

In great Buildings, the Ante-chamber, Hall, and other Rooms of the firft Story may be Arched, which will make them handfome, and lefs fubject to Fire; and in fuch Buildings, the height may be $\frac{5}{6}$ of the breadth, which will be the height it ought to be from the Floor to the bottom of the hey of the Arch.

But if this Altitude be thought too dwarfifh, the height may be zof the breadth.

Or $\leq \frac{1}{2}$ of the breadth, which will make it yet more flately.
4. Of their Situation.] Ante-chambers, and others alfo ought to be fo pofited, that they may be or each fide of the Entry, and of the Hall: And likewife it ought to be obferved, that thofe on the right Hand, mayanfiver, and be equal, (or nearly fo) to thofe on the left, to ithe end, that the Euildings may on all fides bear equally the Burden of the Roof.

Antick, or Antique-work.

A Term in Sculpture, and Painting, being a confufed Compo: fure of Figures of different Natures, and Sexes, δc. As of Men, Beafts, Birds, Flowers, Fifhes, \&oc. And fuch like Fancies as are pot in Rerum Natura. Of which I will give fome Inftances, and
firft of human Creatures, wiz. How ftrangely deform'd, and confufed fome of the Heathens, reprefented their Gods, either in Painting, or Scultturr.

And 1. of Saturn, he is defcribed by fome with 3 Heads, viz. A Lions, a Dogs, and a Wolfs; others pourtrayed him with 2 Wings on a humane Head.
2. Of fupiter, him the Lacedamonians Pictur'd with 4 Faces. The Argives had his Reprefentation in Sculpture with 3 Eyes, siz. One in his Forehead.
3. Of Apollo, him the Lacademonians depicted with 4 Hands, and as many Ears.

The Perf $j_{\text {ans }}$ defcribed, Phoebus, [or Apollo] with the Head of 1 Lion.

The Egypticns had his Statue in the likenefs of a Man, with the Head of a young Ram, with fmall Horns on his Shoulders.
4. Of Merchry, the Ancients defcrib'd him like a young Man, with Wings behind his Shoulders and his Ears.

The Egyptians fram'd his Jmage with the Head of a Dog on his Shoulders.
5. Of \mathcal{F} anus, by fome he was depicted with 2 Faces, by others with 4. Numa King of the Romans, caufed his Statue to be hewed out with 365 Fingers.

The Pisenicians form'd his Image like a Serpent, with her Tail in her Mouth.
6. Of Neptune, fome reprefent him in his upper part like a Man, and the lower like a Fifh, in his right Hand he holds a Trident, or 3 pointed Spear.
7. Of Pan, the Ancients depited him from the middle upwards, like a Man with a ruddy Comple.ction, being very hairy, (his Skin and Breaft covered with the Skin of a fpotted Doe, or leopard, holding in one Hand a Shepherd's Hook, in the othes a Whifte,) and from the middle downwards, the perfect fhape ofa Goat.
8. Of Fiuns, Sylvans, Fairies, and Satyrs, as to their corporal Shape, they were defcribed like Pan, only they had fhort Horns on their Heads, with fmall Ears, and thort Tails.
it woald be a Task too tedious to enumerate all the Antick Forms, and Fancies by which the Heathens did reprefent their Several Gods; and their Poets, and Painters, and Carvers did defcribe them, and the Powers, Paffions, Vertues, Vices, Nymphs, Mufes, toc. They not only had ftrange and monftrous Fictions of humane Creatures; (in Poetry and Sculpture Painting alfo:) but of Erutes As. I. Of the Syrens, or Maremaids, "half a Woman, and half \nexists Fiifh, Griffins, half Eeafts, and half Birds ; Pegafus was alfo another of the fame Fictitious Kind; Harpyes alfo which ivere part women, and part Birds; Centaurs, half Men, and half Horfes, Sagitaurs, halfMen, and half Beafts; Dragons, alfo part Serpents, and part Birds. 2. They had alfo fome Heprefontations
of twiform'd Creatures, as the Amphisboena, a Serpent with a Head at each end; the Spread Eagle with 2 Heads on the fame Neck. And likewife they fometimes have the Reprefentation of divers forts of Fruits, and Flowers, growing on the fame Plant ${ }_{\text {, }}$ drc. With many fuch like Figments which we have good Realon to believe, there are really no fuch ftanding Species of Animals, and Vegetables in Nature, tho' the belief of fuch feinds hath been propagated by Orators, upon account of their fitnefs to be made ufe of in the way of Similitude.

This Work which we call Antick, the Italians call Grotefca, (of which V. Pl.) and the French Grote $\int q u e$,) ${ }^{\text {which fignifies Comi- }}$ cal, Pleafant, apt to make one laugh; alforidiculous. And their word Grotefques, fignifies foolifh, idle Fancies.

Anticus.

From the Lat. a Porch before a Door, the fore Door, Hatch.

Artipagmerts.

The Ornaments, or Garnifhing in carved Work, fet on the Architrave, (Jambs, Pofts, or Puncheons of Doors ;) whether of Wood, or Stone.

> Apertions.

1. What] From the Lat. fignifying opening. Eut in Architecture "tis ufed to fignifie, Doors, Windows, Stair-cafes, Chimnies. or other Comdicts: In fhort, all Inlets, or Outlets, of ment, Light, Smoak, \&ec. To which belong 2 general Cautions, vizo 1. Of their Number, and 2. Their Pofition.
2. Of their Number and Dimenfions.] Let them be as few in number, and as moderate in Dimenfion, as may Poffibly confift with ather dụe Refpects; for in a word, all openings are W'enknings.
3. Of their Pofition.] Be fure to let them not approach too near the Angles of the Walls; for it were indeed a moft effential Solecifor to weaken that Part which muft frengethen all the reft.

Aqueduat.

From the Lat. Aquedufus, a Conveyance made for the car rying of Water from one place to another.

Arches.

1. Whence derivod.] It comes from the Latin, Arcus, a Bow. 2. What] In Architecture 'tis us'd to fignifie an intern Sup: port to the Superftructure; and it is either Ciicular, Eliptical, or Straight. Of Circular Arches, there are 3 Kinds; Semicircular, Scheme, or Sleeen, and Arches of the 3d. and 4 th. Point of thefe, and of Elliptical, and Araight Arches, I fiall treat in their order.
2. Semicircular.] Thefe Arches are an exad Semicircle, and have their Centre in the middle of the Diameter, or right line that may be draiwn betwixt the Feet of the Arch. Of this Form the Arches of Bridges, Church-windows, and great Gates are fometimes made in our modern Buildings.
3. Scheam, or Skeen.] Thefe I underftand to be fuch, as confif of lefs than a Semicircle, and conicquently are flatter Arches. Sorne of thefe contain an Arch of about 90 Degrees, others about $7 \dot{C}$, and ofhers (which are yet flatter) about 60 Degrees; thefe laft are very fit. Now, 'tis very eafic to diftinguifh between Semicircular, and Scheme Arclies, for the Chord, (or right Line) drawn between the Ficet of a Semicircular-arch, is juft double to its beighth, (meafur'd from the middle of the Chord, to the Key piece, or top of the Arch ;) wheress the Chord of a Scherre-arch of 90 Degrees with be above 4 times its height. and the Chord of a Scheme-arch of 60 Degrees, will be above 6 rimes its heighth.
4. Of the 3d. and 4th. Point.] So our Eng!ifh Authors call 'ern, but the Tufcan Authoss calls them di tarko, fo di guarto aciuto, becaufe they always concur in an acute Angle at the Top. They confint of 2 Arches of a Circle, (meeting in an Apgle at the top) drawn from the divifion of the Chord, into 3 , or 4 , or more parts, at pleafure. The particular Method of drawing which, and all other Arches, amd Mouldings, Jcc. I muit at prefent onit; but if this find Acceptance, and I any Encouragement, the next Impreffion fhall contain thefe; and many other Curiofities, not to be found in this. I have oblervid many of thefe Arches, in old Stone Buildings, both Houfes and Churches. Bat If Say, (Gyys that great Architect, Sir Henry Wotton) that thefe kind of Arches, (both for the natural Imbecility of their acute Angle, as likewife for their Uncomeli-: nefs) ought to be exild from all judicious Eyes, and left to their firf Inventors, the Goths and Lombards, among other Reliques of that barbiarous Age.
5. Elliptical] Thefe kind of Arches confift of a Semi-Ellipfis, and were formerly thuch us'd inftead of Mantle-trees in Chim. neys. They are commonly defcrib'd on 3 Centres; but they may be drawn otherwife. Thefe confiff of 3 parts, viz. 2 Hanles, and a Scheme, now Workmen call each end of thefe Arches the Hanfe, which Hanfes are always the Arches of fmaller Cirthes thun the Scheam, which is the middle part of thefe Ar-
ches, and confifts of a part of a larger Circle; which is drawn betwixt the 2 Hanfes to conjoin them all together, to make, as it were one Helical Line, and by confequence an Elliptical Arch. Thefe Arches have commonly a Key.ftone, and Chaptrels, (the Key-ftone, is that which is the very fumnity, or top of the Arch, which is equally diftant from both ends, and the breadth of this Key-ftone at the top, ought to be equal to the height of the Arch, (which is commonly about 14 Inches, when made of Brick) and Sommer (or point with its 2 edges) to the Centre of the Scheam, the Key-ltone fhould break without the Arch, fo much as the Chaptrels Project, or Sate over the Jambs. The Chaptrels I underfland to be the fame, which moft Architects call Impotts; and 'tis that on which the Feet of the Arches ftand, whofe height, or thicknefs ought to be cqual to the breadth of the lower part of the Key-fone, N. B. That each other Courfe in thefe Arches confift of 2 Stretchers, which are 7 Inches long apiece, (when the Arch is is Inches deep) and the other Courles betwixt thefe of 3 Headers, and 2 Clofers; the length of the Headers muff be $3 \frac{1}{2}$ Inches, and the Clofers, $1 \frac{3}{4}$ Inches; thus one Courfe of the Arch will be divided into 2 Stretchers, and the other alternately into 3 Headers, and 2 Clofers, throughout the whole Arch.
6. Strait] Thefe Arches have a ftraight, upper, and under edye, as the former had carved ones; and thofe 2 edges are parallel, and the Ends, and the Joints, all point toward a certain Center: They are generally ufed over Windows and Doors, and 'tis a certain Rule among f Workmen, that according to the breadth of the Peers betwixt the Windows, fo ought the Skew-back, or Sommering of the Arch to be; for if the l'eers be of a good breadth, as 3, or 4 Bricks in length, then the flaight Arch may be defcribed from the oxi, (as 'tis vulgarly calld) which being but part of the word Oxigonium, fignifying an Equilateral Triangle; but if the Peers are fmall, as fometimes they are bat the length of 2 Ericks, and Sometimes but one Brick and a half, then the breadth of the Window, or more, may be the Perpendicular (to the middle of the under fide of the Arch) at whofe end below, fhall be the Centre for the Skewback; or Sompering to point to. Thefe fraight Arches are commonly about i: Brick, which when rubb'd, makes abcut 12 Inches high, tho fometimes they are but in Inckes, or thereabouts, which anfwers to 4 Courfe of Bricks; but they may be made more or lefs in height, accordingeas Occafion requires.N.B. That by the word Skew-back, is meant the leveling end of the Arch, and by Sommering, is to be underftood the level Joints betwixt the Courfes of Bricks in the Arcll. Thefe Arches commonly confift of a Stretcher, and a Header in height, the Stretchers being a whole Ericks length, and the Headers a Bricks breadth.

Now the whole Bufinefs of building Arches, (faith Sir H.W.) may bereduced into thefes following Theorems.
8. Theorem the 1/t.] All folid Materials, free from Impediment, do defcend Perpendicularly downwards, becaufe Ponderofity is a matural Inclination to the Center of the Earth, and Nature performeth ther Motions by the Morteft Lines.
9. Theorem the ad.] Ericks moulded in their ordinary Rectangular Form; if they be laid on by another in a level row, between any Supporters, fuftaining their 2 ends, then all the pieces between will necelfarily fink, even by their own natural Gravity, and much more if they fuffer any Preffure by a fuperincumbent Weight; becaufe their fides being parallel, they have room to defcend Perpendicularly, without Impeachment ; according to the former Theorem: Therefore to make them Itand, either the Pofture, or their Figure, or both muft be changed.
10. Theorem the 3d.] If Bricks moulded, or Stones fquared, Cuneatim, (i. c. Wedge-wife, broader above, than they are below) fhall be laid in a row level, with their ends fupported, as in the precedent Theorem, pointing all to one Centre; then none of the pieces between can fink, till the Supporters, or Butments give way; becaufe they want room in that Figuration to defcend lerpendicularly. But this is yet a weak piece of Structure, be caufe the Supporters are fubject to too much impulfion, efpecially if the Line be long; for which Reafon this Form, (viz. ftraight Arches)is feldom ufed, but over Doors,and Windows that are narrow. Therefore to fortifie the Work, as in this third Theorem, we have fuppred the Figure of all the Materia's, different from thofe in the $2 d$. So likewife we muft now change the Pofition, as will appear in the following Theorem.
II. Theorem the 4 th.] If the Materials be figured Wedge-wife, (as in the preceeding Theorem) fhould be difpofed in the Form of fome Circular Arch, (and not fraight or level) and pointing to fome Centre, (or Centers.) In this cafe, neither the pieces of the faid Arch, can fink downwards for want of room to defcend, (as in the ifr. Theorem) Perpendicularly: Nor the Supporters, or Butments of this Arch, can fuffer fo much Violence, as in the precedent flat Pofture, for the Convexity will always make the Incumbent weight, rather to reft upon the Supporters, than to fhove them; whence may be drawn an evident Corollary, that the fafeft of all Arches is the Semicitcular, and of alf Vaults the Hemifphere; tho not abfolutely exempted from Tome Weaknefs, (which is the fole Prerogative of Perpendicular Lines, and right Angles) as Bernardino Baldi, $A b$ bot of Guaftalla hath obferved in his Commentary upon Arifoftle's Mechanicks, where let me note by the way, that when any thing is Mathematically demonftrated weak, it is much more Mechanically fo. Errors ever occurring more eafily in the management of grofs Materials, than in Lineal Defigns.
12. Thesem the sth.] As Semicircular Arches, or Hemifpherical Vaults, being raifed upon the total Diameter, be of all other the roundeft, and confequently the fecureft by the prece-
dent Theorem: Sothofe are the comelieft, which keeping precifely the fame heighth, fhall yet be diftended, one $4 t \mathrm{~h}$. part longer than the faid Diameter, which Addition of Diftent will confer much to their Beauty, and detract but little from the ftrength.

I did not intend here to have had the different Proportions of Arches, \&c. According to the 5 Orders of Architecture; as they have been obferved, and fet down for a certain Rule, by diverfe famous Architefts : But fearing. I hall too much exceed my limited Bounds, I Thall defer it till another Opportunity ; becaufe the Bookfeller would not have this Firft Edition too large.
13. Of Meafuring Arches] In meafuring of them, whether they are Straight, or Circular ; they muft be meafured in the middle, i. e. if a ftraight Arch be 12 Inches in height, or depth, the length muft be meafured in the middle of the 12 Inches, which length will be no longer than if it were meafured at the under fide, next the head of theWindow, by fo much as one fide of the fpringing of the Arch is skew'd back from the upright of the Jambs, Peers, or Coins of the Windows.

Alfo in Circular Arches, 'tis to be obferved, that the upper part of the Arch is longer, (being girt about) than the under part, becaufe it is the Segment of a greater Circle, cut off by the fame right Line that the leffer is, and therefore it muft be girt in the middle,
14. Price] For the WorkmanMip of fraight Arches, well rub'd, and handfomely fet ; (of Brick) in London, about 8 d . or 9 d . per Foot; but in fome parts of Su! fex, and Kent, they will not do it under 12 d . per Foot, running Meafure. But in London, if the Workmen find Materials, then tis about 10 d . or 12 d . per Foot.

Skeen, or Scheam Arches, and Elliptical ones; of rub'd Brick, are common about the fame price with flrait ones. But Scheam Arclies of unrub'd Bricks, are commonly included with the plain Work, unlefs the plain Work be done at a reafonable Price: But you muft here note, that the Mafter of the Building, (or Owner) is at the charge of the Centers to turn the Arches on; and not the Workman, unlefs he be allow'd for it in the Price of the Work.

Architectonick.

Belonging to the chief Overfeer of Buildings, alfo to an

Architett.

A Mafter-workman in a Building; 'tis alfo fometimes taken for the Survegor of a Bailding, viz. He that defigns the Model, or draws the Plot, or Draught of the whole Fabrick; whofe turinefs it is to confider of the whole Manner, and Method of the

Building,

Building, and alfo the Charge, and Expence: In the management of which, he mult have refpect to its due Situation, Contrivance, Receipt, Strength, Beauty, Form, and Materials. All which are to be duly deliberated of by the Superintendent, (or Surveyor) of a Building; it being wholly committed to his Circumfeeftion, and therefore it will be his Prudence to manage the whole Affair advifedly, and with great Caution, that all may befo order'd, and difpofed (in all Circumftances) that it may anfiver the Defign, and be confentaneous to Reafon. Eut tho' the whole Fabrick be the Care of the Superintendent, yet Sir H. Wot ton, would have a fecond Superintendent, (or Officinator, as Vitruvius calls him) whofe Care it flould be to choofe, (or examine) and fort all the Materials for every part of theStructure.

Arcbitcture.

A Mathematical Science, which teacheth the Art of Building, being a Skill obtain'd by the Precepts of Geometry, by which it gives the Rules for defignigg, and raifing all forts of Structures, according to Gcometry and Proportion. Containing under it all thofe Arts that conduce any thing to the Framing of Houfes, Temples, drc. V'itruvius branches it into 3 parts, viz. Edification, or building Houfes, fec. Gnomonica, or Dialling, and Mechinatio, the My ftery of Machines, or Engines.

Arcbives.

A Place where ancient Records, Charters, and Evidences are kept.

> Architrave.

1. Whence derived I fuppofe it to come from the French, for the word is purely fo.
2. What]'Tis ufed in Architecture, to fignifie the Moulding, or Ornamenr next above the Capital of a Column : it being al. ways the next grofs Menter below a Frieze. The word is alfo fometimes ufed to fignifie the chief, or principal Beam in aBuilding;now I cannot conceive what they mean by the principal Beam in a Building, becaufe I do not fuppofe it can properly be applied to all Buildings, but only to fome peculiar kinds, as what we call Forticoes, Piazza's, or Cloyfers, (by which we underfland a long kind of Galleries, or Walking-places, whofe fupern part of the Structure, is born, or fupported by Columns, or Pillars, at leaft at one tide.) The which, if they confift of wooden Columns, or Pillars, have not Arches rifing from them to bear the Superincumbent part of the Fabrick, but have a Beam refting, or lying on the tops of the Columns, by which the fuperiour part of
the Edifice is fupported, upon which account fuppofe it to be alled the chiefor principal Beam.

In Chimneys, the Architrave is the Mantle over the Jambs of Doors, and Lintels of Windows; 'tis calld Hyperthyron.

There are alfo Architrave Doors, and Windows; thole are call'd Architrave Doors, which have an Architrave on the Jambs, or Puncheons, and over the Door, upon the Cap-piece, if ftraight, or on the Arch, if the top be carved. The form of thele Architraves about Doors, are not always the fame ; for fometimes they are according to one of the s Orders of Architecture. But 'tis fometimes done according to the Workman's Fancy; for I have feen fome have put for an Architrave round a Door, 1 If. next the Door a fmall Bead, then abroad Plinth, or Fatio, above that on O-G, and Lif. There are Stone and Brick Architraves, as well as Timber ones. Architrave Windows of Timber, are commonly an $\mathrm{O}-\mathrm{G}$, rais'd out of the folid Timber, and a Lift above, but fometimes they are ftruck, and laid on. Brick Architraves are ufually cut in the length of a Brick, but fometimes they are cut in the length of a Brick and $\frac{1}{2}$, then each other courfe alternately confifts of the breadth of 2 Ericks; the upper one on which the O-G. is cut, and part of the upper Fatio; they call Header, or Heading Architrave, and the breadth, or head of Ericks on which the lower Fatio, and part of the upper one is cut, they calla fak Architrave of Stone. v. Door, N. 4 .
3. Kinds] Architects diftinguifh them into 5 kinds, wiz. Jufcan, Dorick, Ionick, Corinthian, and Compofite, according to the 5 Orders of Columns.
4. Parts, or members] Are more numerous than the Kinds, becaufe fome of the Orders liave 2 different forts of Architraves, and what yetmore increafes the number, is, that fome Authors differ from others in their Forms, of the fame Ordiers. Of all which I fhall give a particular account, in the following order.
5. Tufcan] According to Vitruvius, ought to be $\frac{1}{2}$ a Modaie in Altitude; this general Member, he hath defcribed in two Forms, the 1. Confifting of 3 parts, or Members, viz. 2 Fatio's and a Cimatium, and is thus divided, the whole height is divided into 6 parts, 30 , or so, which is fubdivided in this manner, viz. the upmoft 6 th, part is the Cimatium, which being fubdivided into 3, the upper part fhall be the Fillet, and the 2 lower ones the O-.G. The 5 grand Divifions which remain, muft be divided into 9,5 of which fhall be for the fuperiour Fatio, and the other 4 for the inferiour one. His 2 d : Form confifts of but 3 Members, or Parts, viz. a large Plinth, or Planchier, a Calement, and a large Fillet, and is thus fubdivided, the whole heighth is divided into 6, the upper part is for the Fillet, (which projects in fquare beyond the Plinth) the sth. part is for the Cafement, (which rifes from the Plain of the Plinth, and terminates in a Quadrant, at the lower corner of the gillet.) The
other 4 parts remaining, are for the Plinth, or Planchier, or Fatio.

Palladio hath affo 2 diftind fhapes for the Tufcan Architrave; the sf. which we Thall mention, confifts of 2 Pafia's, (or Fati0 os) and a Lift ; the lower Fatio is $12 \frac{1}{2}$ m. high, the upper Fa$t i o$ is $17^{\circ} \mathrm{m}$. which terminates with a Quadrantal Cafement, rifing from its Plain, and terminating with the lower corner of the Lift; the Lift is $s \mathrm{~m}$. high; fo the whole heighth of the Arclitrave is 35 m . His 2 d. Architrave is only a plain Fatio of 35 m : high. Scamozzi, according to his Delineations, makes the Tufcan Architrave ${ }^{1}{ }_{2}^{2} \mathrm{~m}$. high. the which he divides into 4 parts, or Members, viz. 2 Fatio's, a Liff, and a Plinth; his 1 f. Fatio he makes ro m . his $2 \mathrm{~d} .16 \frac{\frac{2}{3}}{\mathrm{~m}}$. his Lift $1 \frac{1}{2} \mathrm{~m}$. and his Plinth $3^{\frac{2}{2}} \mathrm{~m}$. all which make $31 \frac{1}{3} \mathrm{~m}$. tho' according to his Verbal account of it, he faith it muft be $32 \frac{1}{2} \mathrm{~m}$. except it fhould be a Typographical Erratum.

Vigmla defcribes it with the fame parts, heighth, and form, with Vitruvius's $2 d$.
6. Dorick] This Architrave, according to Vitruvius's, is half a Module in Altitude, the which he delineates in 2 Forms; the 1 ft. (which I Thall mention) he divides into 7 parts, the uppermoft of which is the Tenia, the other 6 remaining parts, he makes a Fafcia under the Tenia, he placeth Drops, whofe heighth are ${ }^{\frac{1}{7}}$ of the Architrave; $\frac{1}{4}$ of this $\frac{1}{4}$ is the Fillet, to which the Drops hang; the Drops are 6 in number, placed under, (and of the fame breadth with) the Trigliphs. His 2d. Figure of his Architrave, confifts of the fame Members with tire \mathbf{x} ft. and the whole hight is equal to the $1 / f$. but he divides the Altitude into but 6 parts; the upper one of which is his Tenia, and the other 5 the Fafcia, the upmoft of which is the Altitude of his Drops, which have a Liff, which is $\frac{1}{4}$ of their heighth, as before.

Palladio, compofes this Architrave of the fame heighth, with V 'itrutius, but of a different Fafhion, for he makes it to confift of 3 parts, or Members, viz. 2 Falcia's, and a Tena, or Tenia; he divides the whole heighth into 6 parts, one of which being 5 m . he affigns for the Gutte, Bells, or Drops; the Liftella of the Drops, is $\frac{8}{3}$ of the whole heighth ${ }^{1}{ }^{2} \mathrm{~m}$. and the Drops $2 \frac{2}{8} \mathrm{~m}$. The Tenia above the Drops, (or of the Architrave rather) he makes $4 \frac{1}{\geqslant} m$. and the Prima (or upper) Fafcia, he makes $14: \mathrm{m}$. and the Sccurda. (or lower) Fafcia, he allows irm. for, in all 30 m . which is the whole heighth.

Scamozzi, (according to his Portraicture of this Architrave) makes it 35 m . in Altitude, and he makes this grand Member, to comprehend 3 petty Members, viz. 2 Fatio's, and a Lilt; whofe Dimenfions are as follows (beginning at the top, and fo defcending) the Lif to be 5 m . the upper Eatio, 18 m . and the biver one 12 m . in all 35 m . The Drops, or Bells, he thus divids, the Lift above them he defigns to be $1_{i}^{1} \mathrm{~m}$. and the Eells,
or Drops themfelves $4 \frac{1}{2} \mathrm{~m}$. fo that your whole heighth is 6 m .
Vignola, delineates this Architrave, 30 m . in heighth, the fame with Vitruvies, and Palladio ; both which he allo imitates in the leffer Member, for he hath 2 diftinct Forms, one like Vitruvius, containing 2 Members, or Parts, one a Lift, the other a Fatio ; his other Form is like Palladio's, comprehending 3 petty Members, viz. a Tenia, and 2 Fatio's.
7. Ionick] According to Vitruvius's Order, this grand Member ought to be $\frac{1}{2}$ a Module high; he hath defcribed 2 Forms of Arcbitraves, in the Ionick Order, viz. one for the Ionick Column, without a Pedeftal, and the other with a Pedeftal, and 1/t. I will defcribe that without a Pedeftal; the which he compofes of 4 minuter Parts, viz.' 3 Fafcia's, and a Cimatium; which is thus divided, the whole Altitude is divided into 7 parts, the appermoft of which is alloted to the Cimatium, which is fubdivided into 3 parts, the uppermoft of which is for the Liff, and the 2 remaining, for the 0 .-G. The other 6 remaining parts, they divide into 12, 5 of which he makes the upper Fafcia, 4 the middle one, and 3 the lower. The other for the Ionick Column, with a Pedeftal, he thus proportions, viz. He reckons the whole heighth of the Architrave, Friefe, and Cornifh, to be 7 Modules, the which he divides into 10 parts, 3 of whichare for the Architrave, (which is 36 m .) the which he diftinguifues into 6 Minuter Parts, or Members; the which he thus names, (beginning at the top, and fo defcending) vir. A Fillet, a Cima, a Thorus, and 3 Fafcia's; all which fmaller Members he thus finds, viz. He 1ff. divides the whole heighth into 6 equal parts, the upmof of which parts, he fubdivides into 4 parts, the higheft of thefe 4 is for the Fillet, the 2 next of the 4 are alloted to the Cima, and the 4 th. remaining, is for the Thorks. The s grand Divifions remaining, he fubdivides into 12, which are thus diftributed, viz. s for the upper, 4 for the middle, and 3 for the lower fafcia. Palladiq, affigneth 34 m . for the Altitude of this Architrave, according to his Scheme of this Member, it is compofed of 7 parts, viz. A Liff, a Cima, 3 Fafcia's, and 2 Aftragals; the which the thus proportions, viz. To the Liff, (which is above the Cime, for I will defcend with the Defcription) he allots $2-\frac{3}{-} \mathrm{m}$. the Cima, $4 \cdot \frac{3}{5} \mathrm{~m}$. To the upper Fafcia, he allows $10 \frac{1}{8} \mathrm{~m}$. to the Aftcagal at his Foot $\frac{1}{3} \mathrm{~m}$. the middle Fafcia, is to contain $7 \frac{57}{6} \mathrm{~m}$. and the Aftragal at his foot $1 \frac{1}{3} \mathrm{~m}$. to the lower Fatia, he affigns $6 \frac{9}{10} \mathrm{~m}$. all which being added into one Sum, amounts to $34!$ m. Scamozzi makes the Ionick Archi-trave, 35 m . high,and of the fame thape with Vitruvius's fecond, viz. To confift of 6 parts, viz. A Lif, Cima, Aftragal (or Thorus) and 3 Fafcia's, which he thus proportiens, he allots to the Liff, $2 \frac{t}{2} \mathrm{~m}$. to the Cista, 4 m . to the Tharks, 2 m . to the upper Fafcia, 1 I $\frac{1}{2} \mathrm{~m}_{\text {。 }}$ to the middle one $8: \mathrm{m}$. and to the lower one $6: \frac{\mathrm{m}}{}$.

Fignola, allows 3? : m. to the Ronick Arsbitrawe in heighth and

as to the Form, his is much the fame with Vitruvius's $\mathrm{J} f$ t. of this

 Order.8. Corinthian] According to Vefuvius, ought to be a Module high; but you muft note this is for the Corinthian Column, without a Pedeffal; this Member he divides into 7 parts, the uppermoft of thefe is the Cimatium, the 6 remaining parts he divides into 12, 5 of which he allots to the upper Faftia, $\frac{1}{3}$ part of this Fafcia is to be allow'd for a Bead at his Foot, 4 of the 12 parts he allows to the middle Fajicia, and $\frac{1}{8}$ of this Fafcia, he makes the Bead of at the foot, and the 3 parts remaining, he makes the lower Fafcia. The Architrave for the Corinthian Order with a Pedeftal, Vitruizus alloweth a larger Altitude, than that without ; it confifts of the fame Members, both for Number and Form, with the former Architrave, but they differ in Dimenfions. The Divifion, and Subdivifion of which take as followeth: The whole heighth of the Architrave, ought to be $\frac{1}{4}$ of the heighth of the Column, (nearly to $\frac{2}{4}$ of the Body of the Column below) which is -to $40: \mathrm{m}$. This Altitude he divides into 7 equal parts, and at the uppermoft of thefe 7 , he maketh a Cimatium, and the 6 renewing, he divides into 12 e qual Divifions, s of whichare alloted to the upper Fafcia, 4 to the middle one, and 3 to the lower one: The upper, and middle Fafcia, he fubdivides into 8 parts each, one of thefe 8ths he allows for a Bead at the Foot of each of there Fafcia's.

Palladio makes this Arehitrave to contain 8 parts, viz. i Liff, 1 Cime, 3 Beads, and 3 Fafciats, the heighth of all which, he orders to be 36 m . high, which he thus fubdivides, viz. To the (upper Members, or) Liff, he allows $2 \frac{3}{4} \mathrm{~m}$. the next in order, is a Cima, and the next in order is of 2 m . high, at the foot of the which is a Eead, then follows the upper Fafcia with his Bead, at his Foot, both which contains about $13^{1}: \mathrm{m}$. then comes the middle Fafcia, and his' Bead, which contain $8{ }_{3}^{1} \mathrm{~m}$. and laft of all the lower Fafcia, of $6 \frac{1}{4} \mathrm{~m}$. High.
Scamozzi, reckons the whole heighth of this Arehirrave to be 40 m . the which he fubdivides into 9 fmall Members, qiz. (be ginning at the top defcending) a Lift of 2 m . a Cafement, $3 \frac{1}{4} \mathrm{~m}$. and O-G. of $2{ }^{3} \mathrm{~m}$. a Bead of $1 \frac{1}{2} \mathrm{~m}$. a Fafcia of 12 m . and his Bead of 2 m . titt middle Fafcia $\frac{1}{2} \frac{1}{2} \mathrm{~m}$. and his Bead $1 \frac{5}{3} \mathrm{~m}$. and lower Fafcia of $6 \frac{1}{2} \mathrm{~m}$. in all $40 . \mathrm{m}$. as before faid.

Vignola, makes the Corinthian Architrave to be 45 m . high, the which he fubdivides into 8 fmaller Members, viz. as Palladio doth, viz. a Lift, a Cima, 3 Beads, and 3 Fafcia's.
9. Compofite, Compound, or Roman] Vitruvius makes the $A r$ chitrave in this Column, and the Friefe, and Cornifh, all of an equal heighth, viz. Each of which is equal in heighth to the Diamiter of the Column, above, juft under the Capital; which is. $\frac{12}{2}$ of a Module, -50 m . This-Architrave vitruvius divides into σ parts, one of which is for the Crmatium and its Boultin undes
it; this upper 6th. part he divides into 4 , and one of thefe 4 , he allows for the Fillit above the Cima, the 2 next for the Cims it felf, and the $4 t$ h. remaining he allots for the fmall Boultin under the Cima; the other 5 grand Divifions, he fubdivides into 12 Minuter Parts, 5 of which parts he affigns for the upper Fafcia, 4 for the middle one, and 3 for the lower; fthe upper and middle Fafcia's, he fubdivides into 8 parts each, and one of thefe 8 ths he allows for a Bead, at the foot of each of thefe Fa/cia's.

Palladio makes this Architrave 45 m . high, the which he diftributes amongtt 7 particular Minuter Members, which I will thus reckon upin order, (beginning at the top, and fo defcending) And t f. to the Lilt, he allows $2 \frac{1}{8} \mathrm{~m}$. to the Cafement. $4 \frac{1}{8}$ m. to the O. G. $9 \frac{1}{4}$, to the Bead $1 \frac{1}{4}$ to the upper Fafcia, 15 ml . to an O. G. at his Foot $2 \frac{1}{4}$, and to the lower Fafcia 11 m .

Scamozei makes this 40 m . high, the wilich he divides amongh thefe 8 following Members, or Patts, viz. (defcending) 1/f. a Litt of 3 m . 2dly. an $\mathrm{O}-\mathrm{G}$ of $4 \frac{1}{2} \mathrm{~m}$. 3 dly . an Aftragal of 2 ml . 4 thly. the upper Fafcia of in $\frac{3}{4}$ m. sthly. a Bead at his foot of $2 \frac{1}{4} \mathrm{~m}$. 6 thly, the middle Fif(ia of $8{ }_{2}^{3} \mathrm{~m}$. 7thly. his at his foot : ${ }^{2}$ m. 8thly. and laftly, the lower $\boldsymbol{P a f c i a}$ of $6 \frac{1}{2} \mathrm{~m}$.

Vignola makes this Architrave, 45 m . in Altitude; the which he divides into 7 Members, a Lijt, a Cajement, a Boultin, a Fil. let, a Fajcia, a Bead, and a Fafcia.
10. Meafuring.] As to meafuring of Architraves, in Buildings, (whether of Brick, or Stone) they are commonly done by the foot Lineal, and therefore the length being taken in Feet, the Content is alfo had at the fame time.
11. Price.] As to their value; they are different according to their breadth, or widenels; Architraves of Stone, about Doors. and Windows, Mr. Wing faith, they are commonly reckon'd $1 d$. per Inch broad, at i Foot: E. G, if it be 9 n . broad, it's worth 9 d. per Foot, $10 \mathrm{n}, \mathrm{IQ}$ d. \&c.

A / b

Of Sasing. In fome places they have 3 s. per hundred, in 0 thers 3 s . 6 d . and other fome 4 s . The Price varies in this, as it doth in other Bufinefs, viz. Aceording to the Cuftom of the Place ; but it is certainly worth 6 d . per hundred (at leaft) more than it is to faw Oak,
A/blar.

1. What.] I underftand by Workmen, that by this word, they mean common, or free Stones, as they come out of the Quarry, of different lengths, and thickneffes. Mr. Legbourn faith, that $\rho \mathrm{n}$, is the comino thicknefs.
2. Price.] Mr. Wing faith, in Rutland, they commonly value them at 3 d . or 4 d . per Foot at the Quarry.

About us (in Suffex and Kent thiey toll them, being a common ordinary fort of Stone) by the Load, about 18 or 20 Foot makes a Load, which cofts, if they come rough from the Quarry, about 3 d.per Foot; being laid down at the place, where they are to be ufed; but if they are ready fcapted, then they are ralued at about $4 d$. per Foot. But if they are bought rough at the Quarry, then they are valued at about $2 d$. per Foot; but if fcapted, then about $3 d$.per Foot. But in fome other Places in Kent, and Sufex, I have known them fold rough at the Quarry for about $1 \frac{2}{2} \mathrm{~d}$. per Foot, and for $2 \frac{1}{2} \mathrm{~d}$. per Foot fcapted; but if they were laid down at the place for ufe rough, then they were ufually valued at about $2 \frac{1}{2} d$. per Foot, and if ready fcapted, at about $3 \frac{1}{2}$ per Foot.

Eut as to the real value of Stones, or Ahllar, in all Places, it's impoffible to give a certain Rule to know it: Eecaufe the Price differs, ift. According to the different Cuftoms of the Places. And $2 \mathrm{~d} l \mathrm{y}$. The Circumftances of the Quarry. And 3 dly . Goodnefs of the Ahlar. To all which 3 Heads I hall briefly fay fomething. 1 if . Of the Cuftoms of Places, by which I mean as to Carriage; I have known Stones carried above a Mile for x s. $8 \mathrm{~d} . \operatorname{per}$ Load, at one Place, and again at another Place the ufual Price to carry a Load but about: a Mile was 2 s. which is 4 d. per load more than at the 1 f. Place, tho they were carried but: fofar.
$2 d l y$. As to the Circumflunces of the Quarry, which 1 fhall confider under 2 Heads. And iff. Whether the Stones are drawn in inclofed Land, or on the Lord's Wafte, (viz. In the High-ways, or on Cominons, erc.) For if they are drawn within Iand (as they commonly cail it) he that is the Proprietor of the Land, will be paid well for damaging his Ground, both by drawing, and carrying the Stoncs out of his Land. Whereas, if they are drawn on the Lord's Wafte, the Lord hath only (commonty a fmall Acknowletgment by the Load, or fo forth) for Trefritfong upon his Wathe.
gdiy. As to the Goodnefs of Stones, tinat may be confider'd of under 2 Hads, ziz. Durability, and Magnitude. And 1 ff . Of Durability; this wholiy depends on Experience, for none can certainly tell whena new Quarry is 1 f . opened, how the Stones may prove; for fome Stones, when they are taken out of the Quarry, are very foft and frisbie, and being but a few Years explfed to the Weather, moulder into Sand; tho' fome of thefe foft Stones are indurated by being expofed to the open Air; but as for hard Stones, they are generally durable, being of a more folid and firm Confiftence. 2 dly. As to their Magnitude, I need not fay much, for all know that large Stones muft needs be better, and make fismer Work thas fmall, which are only fit
for filling Work in thick Walls, or to ufe in fuch Places where the Country affords no better. But 'tis too often through the Stone Drawers Carelefnefs, of Ignorance, that Stones are broken up fo fmall in the Quarry; and therefore to promote (in fome meafure) fo ufeful an Art;; I fhall, when 1 come to feeak of Stones, lay down fome Precepts to be obferved in drawing of Stones, as I received it from an ancient experienced Stone draw. er, who always drew the beft Stones on our fide the Countrey.

I might have added a 3 d. Head to the Circumftances of the Quarry ; which becaufe I did not think of then, I hall here annex it; tho' it beout of its proper place, but in another Edition it may be Corrected: Which 3 d. Head is this, viz. There is a great difference as to Quarries, in refpect of the Pofition of the Stones in the Ground, which may be again confidered under 2 Heads, viz. As to their depth in the Ground, and their manner of lying there. And $\mathrm{m} f$. As to their depth : When they lie a confiderable depth, it requires a great deal of Iabour to remove the Earth over the Stones, or uncope it, as Workmen call it : $2 d l y$. If they liealmoft even with the Surface of the Ground; then it will require but little work to uncover them. And $2 d l y$. As to their manner of lying in the Ground, that is alfo different, and that in 2 Refpects; for if the Quarry confint of a Rock, it will require more Labour to raife the Stones, and break them fit for ufe, than if the Stones lie feparate, and difunited. All which forecited Cireumftances, being duly confider'd, will make the Price of Stones very uncertain; for I have known Stones drawn for 9 d. per Load, and I have known 3 s. Ter Load given.

Before I conclude this of Ahlar, I fhall add fomething to the 3d. Geoeral Head, of the goodnefs of Stones, and that hall be the $3 d$. Divifion of that Head, viz. The Form of Stones ought to be confider'd, as to their being raifed Square, and not with obtufe, and Acute Angles, which requires more work in Scapiing, and wafts more of the Stores, V. P. Stones of drawicg.

A/blering.

Quartering (to tack to) in Garrets about $2 \frac{1}{2}$, or 3 Foot high, Perpendicular to the Ploor, up to the under fide of the Rafitats; 'tis from 4 to 6 s. per Square Workman@ip.

> Aftragal.

Y. Capital N. 2. 45.

Attick.

In Building a little Order, placed upon another much greaier ; for in inftead of Pillars, this Order has nothing but Pilafterys

> Attick, or Atbenian Bafe.

The Game as Palladio's Ionick Bafe, which fee.

$$
B a c k,
$$

Or Hip-molding, is a Term in Carpentry, by which they fige sifie the outward Angle of Hips, or Corners of a Roof; which in Iquare Frames, where the Roof is $\frac{3}{4}$ Pitch, contains an Angle of 116 Degrees, 12 m .

It's alfo a Term ufed by Iron-mongers, to fignifie a certais Cort of Nails, V. Nails. N. 2.

Bake-boufe.

T. What]. It's a Room of Office, in all noble Buildings, where the Oven is placed, $\& \delta c$.
2. It's Pofition.] According to the Rules of Sir Henry Wotton, it ought to be placed on the South-fide of any Building.

Balcony.

1. What, Is a kind of open Gallery, (without the Walls of a Houfe, or Building) for People to ftand in, and behold any Action, as Pageants, and the like, in Cities, or to take the Air, \&c. This Jutty, or projective Building commonly is in the midft of the Front of a Houfe, if there be but one Balcony to it ; and for the moft part level with the 1 ff . Floor above Stairs. And they are fometimes of Wood, and fometimes of Iron; the wooden confift of Rails and Ballifters, and fo do the Iron ones fometimes, but not always, for they are fometimes made of caft Iron of various Figures in femi Relief, and others of wrought Iron, in crail'd Work, or flourifhes, of different fhapes, according to the Eancy of the Mafter, or Workman.
2. Price.] Wooden Balconies ase commonly done by the Xard, viz. From 3 to s s. per Yard, Workmanfhip, according as what Work the Carpenter beftows on it.
 ones) from $4 d$, to 8 d . per it. according to the Cuniofity of the Work.

Baldachin.

It's a perfect french word, and they pronounce it baldaquim, which properly fignifies a Canopy ; 'tis ufed by Architetts, to fignifie a piece of Architecture, built in fafhion of a Canopy, or Crown, fupported by feveral pillars to ferve for a covering to an Altar; fome alfo ufe it to fignifie a Shell over the front Door of a Houfe.

Balkes.

Great pieces of Timber coming from beyond the Seas by Floats.

Ballon.

French, a Term in Architetture, fignifying the round Globe of the top of a Peer, or Pillar.

Ballufter.

A Term in Architecture, ufed to fignifie the lower part of the Ionick Capital. Alfo an Inclofure of Pillars fet about the Beds of Princes, or to rail in the Communion Table.

Balluftrade.

A Term in Architectare, ufed to fignifiea row of little turn'd Pillars, fo high as for a Man to reft his Elbows, fixed upon ${ }^{3}$ Terrafs, or upon the top of Building, or to make any feparation.
Ballifter, or Bannifter.

1. What.] It's a fmall Column, or Pillar of different Sizes; viz. from $1 \frac{3}{4}$ Inches, to 4 n . Square, or Diameter: their Dimenfions, and Forms are various, according to the Fancy of the Workmen ; the French give them various Names, viz. Balauftrade, Ballauffer.
2. Their Tfe.] They with Rails are placed on Stairs, in the Fronts of Galleries in Churches, \&c. Round Altar-pieces in Churches, on Terrafs Walks, and in Balconies, and Platforms, bec.
3. Their Price.] With Rails, ecc. of Wood on Balconies, Plato forms, Stairs, of co according to the Work, wiz. About 4 s. per Yard, running Meafust.
4. Of Turning them only] Id.per Inch Workmanliip, is the ufual Allowance.
5. Of Painting them.] They with what belongs to them, are ufually puinted by the Yard ; the Cuftom of Meafuring which is this, wiz. Both fides of the Ballifters are meafured as if it were flat Meafure, including the Vacuity betwixt the Ballifters; which being caft upin Feet and Parts, it's reduced into Yards, as other Plain Painting is. Mr. Leybourn faith, that he hath feen the Experiment tryed, by girting the Ballifters, to find the diffe: rence betwixt that way, and meafuring them, and the Vacuity on both fides, as if it were flat, and he found that the difference would not counter-value the trouble of Girting. But this flands to Reafon it fhould be nearly the fame, becaufe it's the Cuftom to fet them but their Square or Diameter afunder, and then the Flanks make good the Vacuities.

Bandelets.

'Tis derived from the French, Bandelette, a little Fillet, of Band ; 'tis ufed by Architelts, to fignifie the 3 Parts that compofe an Architrave.

> Banniffer.
V. Ballifter.

Barbican.

A Tcrm in ArchiteGure, derived from the French, and made ufe of to fignif̂e an Outwork in a Building.
Bargecourge

Is a Term ufed by Workmen, by which they fignine a pari of the Tyling, which projects over without the Principal Rafters, in all Buildings, where there is either a Gable or a Kilkinziead.

Barn

Is a Word that needs no Explanation, becaure tis a Building that every one knows; they being fo common: Eut Jflall add 2 thiags concerning them, and the

1. Sha!l be what Mr. Worlidge advifes, coacerning piacing them, which is this, That it is very inconvenient to build Barins, or Stailes, or fuch like Places, too near to a Houfe, becaufe CatIle, Joultry, foc, requise to be kegt near to Barns, foc which
would then annoy a Houfe: I had fome Thoughts to have ad ded here Pliny's Obfervations, concerning the manner of Building Barms ; but for the Reafon already mentioned, I fhall onit it in this 1 Ift. Edition, and proceed to my $2 d$. Head, concern the Price of tiraming, \&fc. the Carcals, \&fc. of a Timber Barn.
2. Of the Price of Framing, \&c.] I have known the Carcals of a Barn Framed for 3 s. 6d. per Square, Carpenters work only, and I have known 8 s . per Square given for Carpenters Work, he Felling, Hewing, and Sawing his Timber and Boards, and finding Nails.

I have been inform'd by fome Workmen, that the Charge of a Square of Building of the Timber Work of a Timber Barn, may be thus computed, viz. 4 s. per Square for Sawing the Boards, (confidering their laping one over another, and the Staving the Logs) 2 s . per Square for Sawing the Timber Members, 3 s. $6 d_{\text {d. }}$. per Square for Framing the Carcafs, and from 4 s. to 7 s. Fer Square for the value of the Timber, reckoning the Price of the Timber from 12 s. to 21 s." per Tun; and one Tun to make 3 s. Square of Frame in Barn-work. He reckon'd rough Timber, viz. Unhew'd, or Squar'd, and that a Tun of rough Timber. (which is equal to a load of hew'd: From thefe Computations, we may reckon the whole value of a Square of huch Timber-work to be worth from 3 s. 6 d . to 16 s .6 d . ier Square:

> Bar's

Of Iron for upright ones for windows, their ufual Price is 3 d. $\frac{1}{2}$, or 4 d. per it. in London.

Bar pofs

Are a neceffary fort of Pofts, maci ufed in the Countrey, 2 of which, and 5 Ruils or Bars, ferve inftead of a Gate, for an Inlet to Fields, and other Inclofures; each of thefe Pofts confift of 5 Mertices, aud thofe Fofls are commonly about 6 . Foot, or $6 \frac{1}{2}$ Foot long, 4 f . of which flands above Ground. Thefe $P_{0} f t s$ are in fome Places made by the Piece, viz. 1 d. or I $d_{0} \frac{1}{2}$ per Poft Hewing, and $\frac{1}{2} d$. per Hole for Morticing them.
Bafe.

1. Whence derived.] I have good Reafon to think'tis derived from the Latin Word Bafis.
2. What.] 'Tis ufed in Architecture, to fignifie the Molding. next above the Pedefial of a Column, it being always the grand Member (or Ornament) at the Foot of the Body of a Column : Tis alfo ufed to fignifie the Ground-work, or Foundation of a

Euilding, alfothe Pedeftal, on which aStatue ftands, is callid the Bafe.
3. Kinds.] They are diftinguifhed by Archite 2 ? s into 5 Kinds, viz. Tufcan, Dorick, Ionick, Corinthian, and Compofite, according to the s Orders of Columns.
4. Parts, or Members] Exceed the number of the Kinds, becaute that fome Authors differ from others in their form ; of each of which I fhall give you the following Account.
5. The Tufcan] According to Vitruvius, muft be a Module high; this crofs Member confifts of 3 Minuter Members, or Parts, viz. a P'linth, a Thrrus, and a Fillet, and is thus divided, and fubdivided; the whole Altitude being-30, is dividedinto 2 equal pir's, the lower one of thefe is for the P linth. and the upper part of the 2 is to be fubdivided into 3 equal parts, the lower of thefeare for the Thorus, and the upper one for the Fillet.

Palladio alloweth this Bare to be 30 Min . highallo; the which he diftributed amongt 3 fmaller Members, viz. a Plintin, or Orlo, a Totus, and a Lillella, or Ceinflure. The Plinth is 15 m . the Toius $12 \div \mathrm{m}$. and the Liffella $2 \frac{1}{2}$ min. high.

Scamozzi alfo alloweth this Bafe 30 m , in heighth, but then he reckons but 2 Members, or Patts to it, and they are a Plinth of 18 m . and a 2 borus of 12 m . altho' at the fame time he places above the Thorus a Lift of 3 m . which in all (I think) makes more than a Module by 3 m .

Vigiola alfomakes the Bafe of 3 Parts, viz. a Plinth, Thorus, and Fillet; all which he reckons 30 m . ${ }^{1}$ a Module.
6. Dorick.] This Buje Vitruvius reckons to confin of 6 Parts, viz. a Plinth, 21 horufes, \& Scotia, and 2 Lifts; the whole Weishth of all thefe, he allows to be 30 m . which he thus divides, viz. It into 3 Parts, the lower one of thefe is for the Plinth, the 2 Parts remuining, he fubdivides into 4, the upper one of which 4 , he allots to the upper Thorus, the 3 lower parts of thefe 4 , he divides into 2 , the lower of which 2 is for the lower Thorus, then he fubdivides the upper part of thefe 2 into 7 equal parts, the upper and lower of thefe 7 , are for the 2 Lifts, and the s betwixt them is for the sootia. But amongft all there 6 Members, or Parts of the Bafe, there is one Jarge Fillet, which is $\frac{-1}{-1}$ part of the Modele, but this Fillet he reckons to be no part of the Pare, but a part of the Body of the Column.

Palladio, affizneth 30 mm . for the Altitude of this Bafes According to his Scheme of this Member, it is compored of 7 Parts, viz. a Plinth, 2 Thorufes, 3 Annulets, and a Seotia, or Cavetor the which he thus proportions, viz. To the Plin:th, (the which I think he may more properly call a Scotia, or Cafement) which is wrought hollow, he allots 10 m , to the lower Thorus $7 \frac{1}{3} \mathrm{~m}$, to the lower Annulet $1 \frac{1}{4} \mathrm{~m}$, to the Cavetto $4 \frac{2}{3} \mathrm{~m}$, to the middle Arnulet $1 \frac{1}{4}, \mathrm{~m}$. to the upper Thorus, $4 \frac{1}{4}$, and to the upper Annulet $1 \frac{t}{4}$.

Siamozai makes the Donilebafs 30 m . high, the which he
fubdivides amongit 6 fmall Members, vir. (beginning below, and So afcending) if. A Plinth, to which he allows $10 \frac{1}{2} \mathrm{~m} . \quad 2 . \mathrm{A}$ Thorus of 8 m . 3. A Liff of 1 m . 4. A Scotia of 4 m . 5.A Lifl of 1 m . And 6 . A Tharus of $5 \frac{1}{2} \mathrm{~m}$. Above all thefe he places a Lift of 2 m . which he doth not reckon into the Baje, but to be part of the Body of the Column.
Vignola alfo reckons the heighth of the Bafe ? the Diameter of the column below, but he makes it to confift of but 4 parts, viz. A Plinth, a large and fmall Thorus, and a Lift.
7. Ionick,] According to Vitruvius's Order, is $\frac{7}{2}$ a Module high; he defribes 2 forts of Bafes in this Order, one for the sonick Column without a Pedeflal, the other with]; each of which Bafes confift of fmaller Members; but the Bafes differ in the Dimentions of their Parts. The Members whereof they confift, are thefe following, viz. A Plinth, 4 Fillets, 2 Scotia's, $2 A$ firagals, and a Thorus. I thall f f. defcribe the Dimenfions of the Parts of the Inick Bafe, without a Pedeftal. This Bafe he thus divideth and fubdivideth, viz. He divideth the whole heighth of the Bree into 3 equal Parts; the lower one of which is the heigth of the Plinth, the 2 upper, and remaining Parts, he fubdivideth into 7 equal Parts, the upper 3 of which make the Thorus, the 47 th. remaining, he fub. divideth into 8 equal parts, $\frac{1}{2}$ of the lower 8 th. makes the lower Fillet, the other ! , and the 2 d .8 tb . and $\frac{3}{3}$ the 3 d .8 th . makes the $\pm f$. Scotia, and the upper $\frac{1}{2}$ of the 3 d . 8 tb . makes the $2 d$. Fillet, the 4 th. and 5 th. makes the 2 Afiragals, $\frac{1}{2}$ the $6 t h$. $8 t$ th. makes the 3 . Fillet, the upper $\frac{+}{\tau}$ of the 5 th. 8 th. and all the 7 th. and $\frac{1}{3}$ of the laft, or upmoft 8 thb. makes the fecond Scotia, the $\frac{2}{3}$ of the laft 8 th. remaining, makes the upper Fillet. which fubjoyns to the Thorus: Above the Thorus he places another Fillet, which he doth not reckon any part of the Bafe, but part of the Body of the Column, which Fillct is $\frac{i}{i}_{5}$ of the Body of the Column, - 5 m .

The Ionick Bafe with a Pedeftal, he thus divides into parts, viz. $\mathbf{1} /$ f. Into 3 equal parts, the lower one of thefe is the heighth of the Plinth, the ${ }^{2}$ remaining, he divides into 3 equal parts, the upmoft of which he affigns for the Tborus, the $\frac{2}{3}$ remaining, he fubdivides into 12 equal parts, $\frac{3}{2}$ the lower $\frac{1}{2}$ he affigns for the Fillet, above the Plinth, the remaining of $\frac{1}{1}$, and the 3 next 12 ths. make the firft Scotia, the sth. $12+6$. makes the $2 d$. Fillet, the 6 and 7 th. makes the 2 Afragals, and $\frac{3}{2}$ the 8 th. makes the next Fillet, the other $\frac{1}{2}$ of the $8 t h$. and the gth. soth. and inth. make the 2d. Scotia, and the 12 th. and laft part makes the upper Fillet, which is under the Thorus.

There is alfo a Fillet above the Thorus, which is of the fame heighth with that without a Pedeffal.

Palladio affigneth 30 m . for the Altitude of this Bafe, and according to his Scheme of this Member into 6 \{maller Members

1fl. A Plinth, (or rather as he delineates it a Calement) of 10 m . 2. A Thorus of $7 \frac{1}{2} \mathrm{~m}$. 3. A Lift of $1 \frac{1}{4} \mathrm{~m}$. 4. A Scotia of $4 \frac{3}{4} \mathrm{~m}$. 5. Another Lift, or Ceinflure of $1 \frac{1}{4} \mathrm{~m}$. 6. A Thrus of $5 \frac{\mathrm{~m}}{4}$. all which makes $3 \circ \mathrm{~m}$. which compleats his Bafe. Above which on the Foot of the Body of the Column, he places an Aftragal of $2 \frac{1}{4} \mathrm{~m}$. and above that a Ceinftuie of $1{ }^{\frac{3}{4}} \mathrm{~m}$. all which makes $33 \frac{1}{2} \mathrm{~m}$. Scamozzi makes the Ionick Bafe 30 m . high alfo, and of the fame number of parts and form with Palladio, viz. 1/t. A Plinth, (which is concave) of $10 \frac{1}{2} \mathrm{~m}$. 2. A Thorus of 8 m . 3. A Lifl of I Min. 4. A Scotia of $4 \frac{1}{2} \mathrm{~m}$. 5. A Lifl of 1 m . 6. Another Thorus of 5 m . all which makes the Bafe of 30 m . above which on the Column, are 2 fmall Members more, ziz. An Allragal of $2 \frac{3}{2} \mathrm{~m}$. and a $L \mathrm{ijf}$ of $1_{:}^{\frac{1}{2}} \mathrm{~m}$, all which added together make 34 m . in heighth.

Vignola Compores his lonick Bafe, of the fame number of fmall Members, and of the fame form with Vitruvius.
8. The Corinthian,] According to Vitruvius, is $\frac{1}{2}$ a Module hinh, both in the Corinthian Column, with Pedeftal, and without a Pedeftal; that without a Pedefal, he makes to confilt of II fmaller Members, viz. A Plinth, 2 Thorufes, 4 Fillets, 2 Scotiia's, and 2 Aftragals: This Bafe, viz. 1f. He divides the whole heighth into 4 equal parte, the lower one of thefe Divifions he diffgns for the Plinth, the 3 parts remaining, he again divides into 5 equal parts, the upper one of thefe s he allots for the upper Thorus, (which is the higheft Member in the Bafe) the Jower Thores, he maketh to contain squarters of one of thefe sth. parts, viz. All the $1 j$. or lower sth part, and $\frac{1}{4}$ of the $2 d$. fo that $\frac{1}{5}$ be taken for the upper Thorus, and one stho and a quarter of;' below for the lower Thorus, there remains but 2 of thefe sths, 3 of one 5 th. the which he fubdivides into 12 tqual parts, of $\frac{1}{2}$ of the lower $12 t h$. he makes the $1 / \mathrm{f}$. or (lowent Fillet,) then of the other $\frac{1}{2}$, and all the $2 d .33^{d}$. $4^{\text {th }}$. and $\frac{1}{2}$ the 5 th. lie makes the lower Scatia, of the remaining $\frac{1}{2}$ of the 5 sh. 12th. part he makes the $2 d$. sillet, of the 6 and $-\frac{t}{2}$. parts he makes the $=4$ tragals, of : the 8 rh. part he makes the 3 d. Fillet, of the c, ther of the 8 , and all the 9,10 , and 11 and the 12 th. he makes the 2.1. sersta and of the laft 5 of the $12 t h$. pirt, he makes the 4 th or laft F:llet, which fubjosns the under fide of the upper Thorus. Ahove the Bafe he adds a Fillet, which is the Diameter of the Column, in heighth, which is - $2: \frac{\mathrm{m}}{\mathrm{m}}$.

The Baie for the Corinthian Column, with its Peáeftal, is of the fame heighth, and number of parts, and each part hath the fame Dimenfions, with that which hath no Pedeftal.

Falladio, makes this Bafe to contain a fmaller Members, viz. 1 Oris, 2 Tisrufes, 2 Aftragals, 2 Ceinctuies, andı Scotia. TTis my Thoug hes, that exther the Author, or the Ingraver, have made a geeat blunder in the Divifion, and Subdivifion of this Baft, which I flall exhibit to you as I found it, tho' I do do not fup-
pofe it to be falfe: The Orlo he makes $9{ }_{3}^{2} \mathrm{~m}$. the lower Thorus 7 m . the lower Aftragal $\frac{3}{4} \mathrm{~m}$.(the which 1 am confident is too little,) the lower Ceincture $\frac{3}{4} \mathrm{~m}$. the Scotia $3 \stackrel{\Im}{3} \mathrm{~m}$. the next Ceincture has nothing fet to him, but he appears about the fame fize with the other Ceinsture; then comes the next Aftragal of $¥ \mathrm{~m}$. and then the upper Thorus of 5 m , above all thefe 8 Members of the Bafe, he places another Aftragal of $2 \frac{1}{2}$. and above that a Ceincture: Thus 1 have given you a yery lame account of this Member, but may thank the Author, or Graver of both for it, that it is no better.

Scamozzi, according to his Portraicture of this Eafe, makes it $3 \circ \mathrm{~m}$. high, and he divides this grand Member into 8 petty Members of the fame Form with Palladio, viz. I. Orlo of ${ }_{9}{ }_{2}^{\bar{\Sigma}} \mathrm{m}$. then a Thorks of 7 m . next an Afragal of 2 m . next a Li f t of Im . then a Scotia of $3 \frac{1}{2} \mathrm{~m}$. next another Lift of 1 m , and then another Afragal of $1 \frac{1}{2} \mathrm{~m}$. and laft of all another Thirus of $4^{1} \mathrm{~m}$. all which makes 30 m . Above the Bafe he places 20 therimembers on the Foot of the Column, viz. An Aftragal of $2 \frac{x}{2}$ m . and a Lift of Im . Vigrole allows this Eafe to be 30 m . alfo; and as to the Form, he makes it much the fame with Vitruvius.
9. Compofite, Compound, or Roman.] Vitruvias makes this Bafe to contain 30 m . in Altitude. This grand Member he divides into 10 frmaller, viz. A Plinth, 3 Thoiufes, (one of which is in the middle where the 2 Aflragals are in the Corinthian Order) 4 Fillets, and 2 Scotia's. This Member lie $1 /$ t. divides into 4 parts, the lower one of which is for the heighth of the Plinth, the other 3 parts he fubdivides into 5 , of the upper one of the s he makes the upper Tborus, the lower Thorus lie makes of the lower sth. and $:$ of the 2 d . 5 sth . (fo. that the lower Thorus is ${ }_{4}$ high; the $2 d .5 t h$. pirts, and $\frac{3}{4}$ remaining, he fubdivides into 12 equal pirts, of the lower 12 th. he makes the 1 ft. Fillet, of the other $\frac{1}{2}$, and all the 2 d .3 d .4 th . and $\frac{x}{2}$ the sth. he makes the iff. Scotia, of the remaining $\frac{1}{2}$ of the sth. he makes the $2 d$. Fillet, of the 5th. and 7 ih . he makes the middle Thorus, then of $\frac{i}{2}$ the 8 th. he makes the 3 d. Fillet, of the remaining $\frac{1}{2}$ of the $8 t h_{0}$ and all the gth. roth. and 1 ith. and $\frac{2}{2}$ the $12 t h$. he makes the 2d. Scotit, of the remaining $:$ of the 12 th . he makes the laft Fillet, which is juft under thie upper Tborus. Above the Bafe, on the foot of the Column, he makes a Fillet, which is $i^{\frac{1}{4}}$ of the Diameter of the Column below.

Palladio makes this Bale 30 m . high, which he divides into into 1 I fmaller Members, viz. An Orlo, 2 Thorufes, 4 Lifts, 2 Sootia's, and 2 Aftragals, to the 1 f. Member, being an Orlo, (which is Concave) he allows 9 m . then follows 2 Thorufes of $7 \mathrm{~m} \mathrm{~m}_{0}$ then a Lift of $\frac{3}{2} \mathrm{~m}$. next a Scotia of 3 m . then another Lift of $\frac{1}{2}$ m. then the 2 Aftragals, each of 1 m . apiece, then a Fillet, or Lift of $\frac{1}{2}$ mi. then a Scotia of 3 m . and then another L ift of $\frac{1}{2} \mathrm{~m}$. and then the upper Thorus of 4 m . above which on the Foot of the Column, he places another Aftragal of 3 m . and above that Lift of $1 \mathrm{~m}_{0}$
$28 \quad \mathrm{BA}$

Scamozzi makes the Raman Bafe 30 m . high, the which he divides amongt 7 fmaller Members, viz. 10 m to a Concave Plinth, 7 m . to the 1 fl . Thorus, 2 m . to an Afragal, 1 m . to the 1 f. Liff, 4 m , to the S Cotia, 1 m . to the 2 d . Lifl, and sm . to the upper Thorus, which is the higheft Member in the Bafe; but above the Bafe, he places 2 Members, viz. An Aflragal of $2{ }_{2} \mathrm{~m}$. and a Lift of $1 \frac{1}{4} \mathrm{~m}$.

Vignola makes his Roman Baje very much like Vitruvius's, only he places 2 Aftragals in the middle betwixt the 2 Scotia's where Vitruvius has a Tborus.

Batement.

A Term ufed by fome Carpenters, fignifying thereby to abate, or wafte a piece of Stuff, by forming it to a defign'd Purpofe. Thus inftead of asking how inuch was cut off from fuch a piece of Stuff, fome Carpenters will ask what Batement that piece! of Stuff had.

Batten

Say fome is a Scantling of Stuff, of 2, 3, or 4 Inches broad, and but feldom ahove i lach thick, and the length unlimited. Eut I muft tell you what Senfe I have obferved Workmen to ufe it in, (by Workmen, I mean Carpenters and Foyners) which is this, viz. In Doors, and Windows of Shops, \&oc. which are not framed of whole Deal, or $1 \frac{1}{4}$ Inch Oak, with Stiles, Rails, and Panmels (as Wainfoot is framed) and yet they are made to appear as if they were, by means of pieces which are bradded on (upon the plain Boards, which are joyned together for) the Door, or Window, all round the edges, and fometimes crofs them, and up, and down, foc. According as how many Pannels the Workman defigns the Door, or Window fhall appear to have. Thefe pieces which are thus bradded on to reprefent Stiles, Rails, and Montans are of different breadths, according to the Defign of the Artificer, as from 2, to 6 or 7 Inches, and commonly on one edge of thofe which reprefent the Stiles, and the upper and lower Rails, and on both edges of thore which are to appear like Montans, and middle Rails, there is commonly fome Moulding fruck, as a Bead, an O. G. or the Uke.

Batten Doors.

1. What.] Batten Doors are (as I faid before) fuch as feem to be Wainfcot ones, tho' they are not fo; for Wainfcot ones the Pannels are groved into the Framing, but here they firf Joint, and Glue the Boards, which are cut to the full length, and
breadth of the Door-cafe, which Gluing being dry, they traverfe them over, both in length, and breadth with a long Plane, and then fmooth them, and then fit on the Battens on the Frontfide. And this is what they call fingle Batten-dors : for you muft note, there are doubie Batten-doors, viz. Such as are Batten'd on both fides, tho' that is but feldom ufed.

But there are commonly ufed Batten'd Doors, which are calld double Doors, viz. Such as are front, or outer Doors; they are commonly made of whole Deal, and then Batten'd on the outfide, and pieces of 4 or 5 Inches broad, miter'd round on the Edges, on the infide of the Door, and then crofs the Door betwizt thefe pieces, it is lined with flit Deal, which makes it level with the miter'd pieces. I have feen fome Doors that have been lined with pieces put Bereling, and not at right Angles, but near Miter to the fides of the Door, and when all is plained off level, it hath been divided out in Rhombures, and ftruck with a Pencil, and at the Angles of the Rhombufes, were round headed Nails driven, which added fomething of Beauty to the Work: This way of Lining upon the Doors, viz. Pointing from the lower corner behind, toward the upper corner before, I believe may be a good way to prevent a Door from fagging, or finking at the fore corner, when ever the Joints fhall happen to unglue.
2. Price.] As to the Price of fuch Doors, vid. Dorrs N. 4. where you will find Price of Materials, and Workmanfhip; but I hall here add, that for Workmanfhip of making Batten'd-doors of Slit Deal, about an Inch thick, (or of thin whole Deals) Glued, and Batren'd on one fide, 4 s . per Door, is a good moderate Price: But fuch as are mentioned above, (which are for Front, and other outer Doors) viz. both Batten'd, and Lined, are worth 7 s. per Door Workmanfhip.

Batter.

A Term ufed by Workmen, to fignifie that a Wall, a piece of Timber, or the like, doth not ftand up right, but leans from-you-ward, when you ftand before it ; but when it leans towards you, they fay it over-bangs, or bangs over.

> Bay.

This word is ufed, to fignifie (as it were) the Magnitude of a Barn; for if a Barn confift of a Floor, and 2 Heads, where they lay Corv, they fay a Barn of 2 Bays; thefe Bays are from 14, to 20 Foot long, and Floors from 10 (which is the fmalleft fize) to 12 broad, and ufually 20 long, which is the breadth of the Barn:If a Bay be 20 Foot long, then there is commonly a pair of Prick.pofts in the middle, and a Beam to hold in the Rod from bending the Raifons; but if the Bays are not ghros. 36 Foot,
and the Timber ftout, then there is no Poffs, but at the end of each Bay, where there is always hanging Braces, Framed into the Beam, and Pofts, and alfo a crofs Cell to hold in the fide Cells from tlying out when the Barn is fill'd, and 'tis common for large Barns to confift of divers fuch Bays.
Bay-window,

I underftand to be fuch a one, which is compofed of an Arch of a Circle, and fo by confequence fuch a one will fland without the ftrefs of the Suilding. By which means Spectators may the better fee what isated in the Street:

Bead.

A Moulding, fo call'd, which is commonly made upon the edge of a piece of Stuff; as for Example, 'tis common to fee Joyners make a Moulding, which is about a quarter of z Circle, on the upper edge of a Skirting-board, alfo on the Liningboard of a Door-cafe, of the like, allo on the inner, or lower edge of an Architrave. A Bead, and a Boultin, differ very little, only in Magnitude; for when they are large, Workmen commonly call them Boultins. Sometimes a Bead-plain is fet on, upon the edge of each Fa cia of an Avchitraze, and fometimes alfo this Moulding (efpecially in the Corintbian, and Roman Order) is cut, or carved, in fhort Emboffments, which refembles Women's Beads in Semirelief; and fometimes likewife an A. firragal is thus Carved, in both which, thefe Carvings are callid Beads.

> Beam,

1. Whbat.] In Building, is a piece of Timber, which always lies crofs the Building, into which the Fect of the principal Ralters are Framed; no Euilding Fiath lefs than 2 of thefe Beams, viz. one at each Head; into thefe Beams the Girders of the Garretfloor are Framed; and if it be a Timber Building, the Teazle Tennons of the Pofts are Framed. The Teazle Tenrans are made at right Angles to thofe which are made on the Pofts to go into the Raifons, and the Relifh, or Cheats of thefe Teazle Tennons fland up within an Inch and a: of the top of the Raifon, and the Beam is cauked down [which is the fame as Dove-tailing a Crofs] till the Cheeks of the Mortices in the Beam conjoyn with thofe of the Teazle Teman on the Poffs.
2. The Size.] The Beams, according to an Act of Parliament, for the Re-building of the City of London, atter the dreadful sire, were appointed to be of the following Scantiatis, niz.

$$
\left.\begin{array}{c}
\text { Foot } \\
\text { In length }\left\{\begin{array}{l}
15 \\
16 \\
17
\end{array}\right\} \begin{array}{l}
\text { min that }
\end{array}\left\{\begin{array}{c}
7 \\
8 \\
8
\end{array}\right\} \text { Inches. } \\
10
\end{array}\right\} \text { and }\left\{\begin{array}{l}
5 \\
6 \\
6
\end{array}\right.
$$

And fo proportionably to their lengths. Fut in the Countrey, where Timber is more plentiful; they generally make their Beams Stouter.

Sir Henry Wotton advifes, that all Beams, Girders, and Summers, ought to be of the frongeft, and moft durable Timber.

Bear.

Timber is faid to bear at its whole length, when neither a Brick-wall, or Pofts, \&cc. fland between the ends of it. But if either a Brick-wall, or Pofts be Trim'd up to the Timber, then it is faid to bear only at the diftance between the Brick-wall, or $P_{\theta} f$, and either end of the Timber. Thus Carpenters ufually ask what
Bearing ?

The Anfwer to fuch a Demand, or Queftion, fuch a piece of Timber has, is $10,12,15, \notin c$. Foot, according to the length of the whole Timber, or elfe according to the diftance between either end of the Timber; and a

Bearer.

Vir. A Poft, or Brick-wall, that is Trimed up between the ends of a piece of Timber to forten its bearing.

Beam.flling

1. What. $]$ Is Plafterers Work, "tis only filling up the vacant fpace betwixt the Raifon and the Roof, whether Tiling, Thatching, or any other Roof; 'tis a fort of Work that is very cuftomary in the Countrey, where they do not Parge, or (which is all one) Plafter their Garrets, they thus pertorm this fort of Work, viz. They take fome pieces of Stones, or elfe Bricks, and lay them betwixt the Rafters upon the Raijon, and then Plafter upon it with Loam, or elfe they fet fome Tiles, with one edge upon the Raifon, and the other leans againft the Roof, and then upon thefeTiles they Plafter with Loam.
s.Price.]
2. Price.] The ufual Price for Workmanhhip only, in the Countrey, is $\frac{1}{3} d$. per Foot, or $\frac{1}{2} d$. per Yard, Lineal Meafure.

Bed.
Of Stone, What. V. Stone, N. 4 .

Bed.moulding,

Or as fome will have it,

Bedding-moulding,

Is a Term ufed commonly amongft Workmen (but I didne; ver mind it in any one of the Treatifes of the Greek; or Itslicn Architells. But however our Modern Artificers, make ufe of this Compound Word, to fignifie, thofe Members in a Cornice, which are below the Caronet, or Crown, E. G. 'Tis now common for Foyners to have their Bed moulding to confift of thefe 4 Members, viz. I. (below) an O. G. 2. A Liff. 3. A large Bultin. And 4. and Laftly, under the Coronet, another Lift. This is what they frequently call a Bed-moulding.

Bevil.

Any Angie that is not fquare, is call'd a Bevel Angle; whether it be more obtufe, or more acute than a Right Angle; but if it be $\frac{x}{2}$ as much as the Right Angle, viz. 45 Degrees, then Workmen call it Miter, they have alfo a Term, balf Miter; which is an Angle that is a $\frac{7}{4}$ of a Quadrant, or Square, viz. An Angle of $22 \frac{1}{2}$ Degrees, this they call $\frac{1}{2}$ Miter.

Bill.

All know a Bill to be an Account of Work done, Materials wifed, dor. As for the Method of drawing up Trades-men's Bills, we fhall give fome Examples, under the following Heads, vit. Bricklayers Bill, Carpenters Bill, Glaziers Bill, and Smiths Bill, all which V_{0} in their proper places.

Binding Foyfts.

r. What.] Binding Foyft, are thofe Foyfts in any Floor, into which the Trimmers of Stair-cafe (or Well-hole for the Stairs) and Chimney-ways are Framed; thefe foyfts owght to be fouter than common Foy?s.
2. Scantlin, or Size.] The Size of thefe, as well as all other Timber Members was fettled by an Act of Parliament, before the Re-building of London. According to which At, Binding-Foyfs,
\(\underset{Which contain}{ }\left\{\begin{array}{l}Foot

in length

9

9

II or 12\end{array}\right\}\)| Inches Inches. |
| :--- |
| in their |
| Squases |\(\left\{\begin{array}{l}6

7

8\end{array}\right\}\) and 5

So large they were order'd to be, and no lefs. They might (I fuppofe) be as much bigger as they pleafed.

Boarding of Walls:
V. Weather-boardity.

Boat.

A Term üfed among Iron-mongers, to fignifie a certain fort of Nails; for which V. Nails.

Bolts
Of Iron, are of various forts. In Navigation they have 6 Kinds, for which they have diftinct Names, which we fhall not here flay to defcribe. Some Jron-mongers diftinguifh thofe for Houfe-building, into but 3 forts, viz. Plate, Round, and Spring Bolts. Plate, and Spring-bolts are made ufe of, to faften Doors and Windows, and thefe are of different Sizes, and Prizes. I have known fmall Spring-bolts fold at $3^{2} d$. per piece, others at 9d. others at I 4 d . and fo likewife Plate. bolts, fome are 9 d . rod. bec. per piece. There are alfo Brafs-knob'd-bolts, fhort, are about 10 d . per piece long for Folding-doors, about 18 d. per Piece. Iron Balcony-bolts; about i s. There are alo ro Brafs-plate-bolts, at about rod. per piece. There are alfo Round-bolts (or long Iron-pins) with a Head at one end, and a Key-hole at the other, thefe are commonly fold by tlie tt. viz. $3 \frac{1}{2} d$ or $4 d:$ per $4 t$ 。

Bond.

A Term uled amongit workmen; for when they fay make good Bond, they mean faften the two, or more pieces of Timber well together, cither with Tenanting, and Morticing, os Dove-suiling, eic.

Botban,

Is an Iron-mongers Term, which they ufe to fignifie a certain fort of Nails; for which V. Nails, N: 2.

Boulder-ziolls.

1. What.] That is Walls made of round Flints, or Pebble, which are found where the Sea hath a Beach caft up, and alfo at fome other places where there were plenty of Flints.
2. The Method of building them,] As I am inform'd by a Bricklayer that hath been ufed to fuchWork, 'tis their ufual way(if they can fo fit it) for two to work upon it at a time, one at one fide of the Wall, the other at the other fide, and one to be righthanded, the other left; for two fuch fit beft to work together in this fort of Work: They have a Hodd of Mortar pourddown on their Work, and fo they part it betwixt them, fpreading it each toward himfelf, and then they lay in their Boulders, or Flints. But he faith, they alway's work with a very fliff Mortar, and had need to have a good length of Work before them; for they work but one courfe in heighth at a trme; for fiith he, if we fhould domore, it would be apt to fivell out at the fides, and run down; and therefore we are forced to work continually in length: He faith likewife, that if it chance to be milty Weather, tis very difficult to make the work thand.
3. Prici:] He teilsme, that their Cuftom is to work by the Sq:are, or 100 Foot ; for which their ufual Price is 125 . fos W orkmandip only.

> Boislts.

ن. Bolts.

Soultin,

In an ArchiteCture, is a Convex-moulding, that confifts of ars exatt $\frac{1}{4}$ of a Circle ; being the Member next below the Plinth in Tufan and Doidk Capital.
Brace,

In a Building, is a piece of Timber, which is framed in with Bevel Joints. Its ufe is to keep the Building from fwerving, cither this, or that way; they are fometimes calld Strutts, viz. When they are Fram'd in the King-piece, and principal Rafccis.

Brads

1. What.j Are a fort of Nails without Heads, fome Ironmongets diftinguifh them into fix Species, as followeth, riz.
2. Joyners,] Plain for hard Wood-wainfcot, from i Inch to $2 \frac{1}{4}$ in length,
3. Batten] For foft Wood-wainfcot, the forts are, Id.2 d .3 d . Ditto, large 4 d. Ditto large, 5 d .6 d .
4. Flooring,] Plain for foft Wood, Joyfts, the forts are 14. is, $18,19,20,21,22,23,28,32$, and 36 It . per M .
5. Ditto fliong,] Fit for hard Joyits, the forts ate $15.18,19$, 24 , and 32 ff . per M.
6. Quarter-hcads,] For foft Wood the forts are 10.13, 15, 18, 19, 20, 22, 23, 28, and 32 lt per M.
7. Ditto flrong,] For hard wood Joyfts, the forts are 14. 20, 34,44 , and $544^{\text {th }}$ per M .
N. B. All Bill-brads, alias Quarter-beads, are very fit for Ghallow Joyfts that are fubject to warp, or for Floors laid in haft, or by unskilful Perfons, becaufe the Bill to the Head will hinder the Boards from ftarting from the Joyfts, but doth not make fo fmooth Work as the plain Brads

Laftly, As to the Prices of Brads, I flall fet down but a few at prefent, which thall be thefe following, wix.
I. Of Batten-brads, in the Country they vulgarly call 'em' Foyner's Brads, the ufuat Price

$$
\text { of } \mathrm{M} \text {. of }\left\{\begin{array}{l}
2 \\
1 \frac{3}{2} \\
1
\end{array}\right\} \text { Inch is }\left\{\begin{array}{l}
20 \mathrm{~d} \\
15 \\
i 1
\end{array}\right.
$$

2. Of Quarter-beads, or Bill-brads for foft Wood-flooss, the qual Price

$$
\text { of a M. of }\left\{\begin{array}{l}
15 \\
18
\end{array}\right\} \text { it is }\left\{\begin{array}{ccc}
4 & \text { s. } & 9 \mathrm{~d} . \\
s s_{0}^{\circ} & 6 d .
\end{array}\right.
$$

Break in.

Is a Term ufed by Carpenters, when they cut, (or rathe break) a hole in Brick-walls with their Ripping-chiffed,

Breft,

A Term in Architedure, made ufe of by fome to fignifie the fame Member in a Column, that others call a Iborus.

> A Brewhoufe.

None need be told what it is; but what I here mention it fors is becaufe it is a neceffary part in all Dwelling-houfes, efpecia!ly in the Country: Now Sir H. W'otton in his Elem. Arch。faith, That allOffices that requireHeat, as, Brew-hules, Baleo boufes, Wafbboufes, Kitchins, and the like, ought to be placed in the Meridional part of the Building, if the Pofition of the Houre, in refpeet of the High-ftreet, or the like will admit of it; for it would be but an odd Contrivance, if a Houfe flood on the North fide of a HighSreet, to place all the Offices in the Front of it; and it would be very ridiculous to pals thro a Bake-houfe, Brew-houle, or Wafh-houfe, intoRooms of Entertainmenr, in a Noble Man's, or Gentieman's Houfe: And therefore we may fee the old Prowerb holds good fill, vit. That there is no general Rule, without fome Exception.

In a Timber Building, are pieces into which the Girders are Framed, in all the Floors, but the Ground-floor (then they call it a Cell) and Garret-floor, (then it's call'd a Beann) As to their Size, or Square, 'tis the fanse by the Att of Parlianent with Girders, which fce. You muft note by the way, that II do not mean all the pieces which have Girders Firamed into them, (and are not in the Garret, or Ground-floor.) But I mean all fueh pieces which are in the Esterior part of the Euilding, whether in the Front, Flanks, or Rear of the Building; for you muft mote the pieces in the internal part of the Building, into which the Girders are Framed, are call'd Summers. The Breft-fummers in London, Mr. Leybourn faith, are ulfd to be meafured by the Foot, running Meafure; but whether he means only for the Work, or Timber, or hoth, I do not know: Now Com. Comer fith, That Breftofrumeres, in London are valued by the folint Foot, if of Oak 3 s. per Foot, if Fir, 2 s.
Bricks.

1. What.] All know them to be a Factitious, or Artifeial kind IS Stone, of a reddifu colour, aud as to their Form and Magni-
tude 'tis various, as alfo their Ufes, of both which, and likewife their Confiftence, we fhall fpeak in their due places.
'II. W'bereof made.] I will ift, tell you what Pliny fiith of this Matter': he faith, That if you would have good Bricks, they muft not be made of any Earth that is full of Sand or Gravel, nor of fuch as is gritty and ftony, but of a grayifh Marl, or whitifh Chalky Clay; or at leaft a reddifh Earth. But in cafe you are forced to ufe that which is Sandy, be fure to make choice of that kind of Sand which is tough and ftrong. The beft Seafon (faith Pliny) is in the Spring, to make Bricks, for in the middle of the Summer, they are fubject to crack and be full of chinks. He further addeth, that the Lome of which Bricks are made, ought to be well fteeped, or foaked, and wrought with water.

Mr. Inco. in Mec. Ex. faith, that Bricks are made of Earth, of which the whitifh Chalky fort of Earth and the reddifh are beff.
at Lunenburgh in Saxony, they make them of a fat Earth full of Allom.

Alfo there are good Bricks made at Patane in Afia, of a Pumice fort of Earth, which being dried, will fwim in Water, and not fink.

The Ancients likewife made them of Earth which was Sandy.

Eut here in England, they are made for the moft part of a yellowifh colour'd fat Earth, fomewhat reddifh, [vulgarly call.j Lome.] Mr. Leghourn faith, Bricks are made of a reddifl Earth, which ought to be dirged before Winter, but not made into Ericks till the Spring Scafon.
-1I. Of their Kinds, and Appellations.] The Sorts or Kinds of Bickes are as various as their Appellations, and their Appellations are attributed to them, for diftinction lake (as the names of all other things are) thereby to be known. And thefedifferent Names were at iff . impored upon them, according as the f t. Donors of thefe Names, thought they did fee a Reafon to beftow fuch Numes on them, either from fome Accident in their making, or from their Dimenfions, or from their form or Figure, or from Cuftom, or from Method in making, or From the Place where, or by whom made, or from their Ufe, erc. Now thefe which derive their Names from Accident are Clinkers, Samel. or Sandal: Thofe from their Dimenfions, are the great and fmall (or Statute) and Didoron, Tetradoron, and Pentadoron: Thofe irom their Form and Figure, are Compals, Cono cave, Feather edgy, and Triangular; thofe from Cuftoms Statute, and Cogging. Thole from the Method of making are Place, and Stock-bricks. Thofe from the Place where, or by whom, are Dutch, or Flemiff; and thofe from their ufe are Buttrefs, or Pilafter, Coping, and Paving. Of all which we Mall treat in their order. And,

D 3

1. Cam:
2. Compa $[$ s.bricks.] Thefe are of a Circular Form, their ufe is for Steenins of Wall;, the which I was told by an ancient experienced Workman, he uied to perform thus, viz. He having $\mathbf{3 f}$. haid a good Bed of Clay, for the bottom, they Maved it with common, or Statute-bricks, only laid down on it, and wel! fetled thereon, and then they began their Compals-work with the Compafs bricks, and as they carried up their Courres, they rammed Clay in behind them (for they had rcom left behind for the purpofe) which made all the Joynts of the Bricks pen clofe and rizht together. He faith, he hath done $\mu \mathrm{ch}$ Work, where the Walls have been but a little depth in the Ground, and in a loofe ope: Mold (where the Water hath been brought in by Concavebricks) and hatli known fome which he did betwipt 20 and 30 Years ago to do very weil.

As to the Pice of thefe Bricks he could not certainly tell me; but he thought mot much dearer than common or Statute-briches;but then he faith, he that hath them made for his ufe, is commonly at the Charge of a Mold mas le according to the Circumference of his Wall.
2. Concave, or bollow Bricks] Theie are like a Statue, of common Brick on one fide, but on the other fide they have a Concsvity, which is Semicylindrical. This Cavity is about ? n. deep, and $x_{2}^{?} \mathrm{n}$. broad, fo that when 2 of thele Bricles are placed witt their hollows rogether, they are like a Pipe of I' Bore; they are ufually about ! 2 n . long, $4 \frac{1}{2}$ broad, and $2{ }^{2} \mathrm{n}$. thick.

As to their laying them in the Ground, they generally do it in Clay; but an ancient Workman did inform me that there muff be care taken, that there do not grow any Trees, Bufhes or Erambles over thefe Ericks where they are laid to convey Water, nor yet very near them; for if there do, their Koots are apt to get in betwixt the loynts of the Ericks, and there dilate themfelves with Fibrous fioots, which meet together like a Ball of Hair, in the Concayity, which will endanger the froping of it, and hinder the Current of Water. Now if this Annoyancecould be infallibly prevented, it would be the cheapefe way 1 know of to convey Water to a Houfe; for 6 or 8 s. werth of Bricks would do about 6 Rods, and then fuppofe that the Ditch digging, and luying the Breses, the Charge of Clays and raming upagain, fhould be as much more, diz. 6 or 8 s . for of kods; according to this Propofal, I Rod would coft but 2 s . n: $2 \mathrm{~s} . \mathrm{o} d$. and if the fore-cited objection, could be removed, this Work would laft (lhad almoft faid) for ever ; it would not be the 6th. part of the Price of Lead-pipes, and every whit as ferviceable, if not to be preferr'd before them; becaufe I do not fuppofe the Frofts would hurt this (tho it often burfts Leadenpipes;) for put the cafe the Water ohould be frozen up in them, the Fce would then, I do bekere, by it's Expanfion open the loynts of the Bricks; but we may well fugpore from the Na-
ture of the thing, that they will come together in their due Places when the Froft is gone, by the natural Gravity of the Earth; for then there will be no folid Body betwixt the Joynts, to hinder the clofing again of the Bricks.

Altho' Alder-pipes be much cheaper than Lead, thefe Bricks, will not be much above (if they are at all) half the Price of A!-der-pipes.

As to the Price of thefe Bricks, I have known them fold in Kent for 4 s. per hundred, and in Suffex for 35.200 of thele Bricks at a footlong will lay σ Rods.
3. Cogging bricks,] Are a kind of Bricks which are in ufe in fome Parts of Suffex to make their Tonthing, or Indented Work under the Copeing of Walls, built of great Brices.

They are about 10 n . long, 4 n . broad, and $2 \frac{1}{4} \mathrm{n}$. thick; they are commonly fold at the Price of common Ericks.

In ufing them, they lay them on the top of the Wall, juft under the Coping-bricks, in an Oblique Pofitions fo that one Corner, or Angle projects over about $2: \mathrm{n}$. on one fide, and tile Oppofite Diagonal Angle at the other, and projects as much over the other fide.
4. Copeing-bricks,] Arẹ neceffary Concomitantsto great Bricks for Building Fence-walls, and are much ufed in fome Parts of Suffex.

The size and Form of thefe Copeing-bricks, is as followeth, yiz. They are about 12 n . fquare, and $4: \mathrm{n}$. thick. having one flat or plain fide, and 2 flat ends, the 2 edges and upper fide, are all comprehended under one Curvelinear Surface, the 2 edges confifting of 2 Boultius, join'd by 2 Cajements, or Hollows, toan Affragal, which is the top of the Brick, after this Form. \approx

Their ufual Price is from 12 to 16 s . per hundred.
5. Dutcls, or Flemifb Bricks.] I am informed by one, that they are $5 \frac{1}{4} \mathrm{n}$. long, 2 broad, and $1 \frac{1}{4} \mathrm{n}$. thick; another tells me that they are 6 n . long, 3 n . broad, and 1 n . thick, as for my own part, I never meafured any of them.

They are of a yellowifh Colour.
The Paving with thefe Bricks, is neater and fronger than common. They mult be layed in Sand.

They are commonly ufed here in England, to Pave Yards and Stables withal. and they make a good Pavement, and are very durable, and being hid edge-ways, look handfomely, efpecially if laid Herring-bone fafhion.

They are alfo ufed inSoap-boilers Fats, and in making ofCifternse
If we allow ${ }^{2} \mathrm{n}$. for the Joint, then 72 of thofe which are $6 \frac{1}{4} \mathrm{n}$. long, and $2 \frac{1}{2} \mathrm{n}$. broad, will Pave a Yard Square, but if they are fet on edge, it will require 113 to Pave a fquare Yard.

But of the other Size 6 n. long. 3 i, broad, and in. thick, being laid the flat way, 63 will Pave a fquare Yard, but being fet cdge-ways, it will eequire ibs to Pave a Superficial Yard.

Thefe Bricks are ufually fold for 2 s , per Hundred at Londom.
6. Clinkers,]Are fuch Bricks as have much Nitre, or Salt-peter in them, which with the violence of the Fire runs and Glazes them.
7. Didoron] Were a fort of Bricks ufed by the Ancientss which were 1 . Foot long, or 2 Spans, [the word Dorn being Greek for a Span, or the fpace betwixt the top of the Thumb, and little Finger extended] and a Foot broad: Thefe were the fmalleft fort of Bricks ufed by the Greeks about their private Buildings; they having 2 larger Sizes for their publick Buildings, as you will find by the Sequel of the Difcourfe.
8. Feather-edge,] Areafort of Brickes formerly ufed in fome parts of Kent and Suffex, they being of the fame Size with Stalute-brices, but madethinner at one edge, than they are at the other, on purpofe to pen up their Brick-panmels (as they call'd them) in Timber Buildings, and they were ufually fold a. rrongft the Statute-bricks for that Purpore.
9. Great Bricks.] They are a fort of Bricks that are 12 n long. 6 n . broad, and 3 n . thick. The weight of one of thefe Erickis being examined, it was found to be about 15 ft . Fo that 100 will weigh about 1500 Ht , and a Thoufand 15000 it . which is 6 Tun 13 c .3 q .20 ft . So that about 150 will be a Tun weight.

The ufe of thefe Bricks, is to build Fence-walls, together with pilafter, or Buttrefs-bricks, and Copeing Bricks: I know one Place in Sufex, where they are much in ufe for that Purpofe. Thefe Walls are but 6 n. thick, only at the Pilafters they are 12 n. thick, and they ufually fet a Pilaffer nat every 10 Foot. I know a Wall of about, Foothigh, of thefe fort of Bricks thax ftands very well, which hath been buile near 30 Years: I am informed they are much cheaper than Brick, and Walls, or ${ }^{4} 4$ 12. Walls of Statute-bricks; of which V. Walls N. IV.

Thefe Bricks are ufually fold at 21 . per Thoufand, which is 4% per Hundred.
30. Paving-bricks.] They are by fome calld Paving-Tiles. Of thefe fort of Bricks, there are various Sizes, accordine to the Fancy of Workmen, and the Cuftom of Places. Thefe, fuith Mr. Ley! ourn are of feveral Sizes, viz. $6.8,10$. and 12 д. Square, in value from 6 to 20 s.per Hundred, and if you would know kow many of either fort will pave a Room, or the like,

$$
\text { Note that }\left\{\begin{array}{l}
35 \\
21 \\
13
\end{array}\right\} \text { Ericks of }\left\{\begin{array}{l}
6 \\
8 \\
10 \\
12
\end{array}\right\} \begin{aligned}
& \text { Inches Square } \\
& \text { will Pive a }
\end{aligned} \text { Square Yard. }
$$

In Surrey, and feveral Counties of England, are made Rating-
 phick, 10 n . (quare, and $\frac{1}{4} \mathrm{n}$. thick) and 8 n . fquare, and 1 no thick, either of thefe forts being Pollinhed. or rubbed with fharp Sand ou the Surface, and well joyno sd, and the ordes made equal by hewing them with a Erick-ax, urd subbiog them on a rubbing Stones gith harp Samd, makes
an excellent Pavement, and very pleafing to the Eye, efpecially when laid Arras-ways.

I have feen Experiments made on fome Suffex Paving-brictes, which were $6 \frac{1}{2} \mathrm{n}$. Equare, $1 \frac{7}{8} \mathrm{n}$. thick. 2 of them weighed 11 tt . Tere, fo that 100 of them would weigh $\$ 50 \mathrm{lt}$. and 2 10005500 it . and by confequence about 407 of them would weigh a Tun.

I have known fome made of $9 n$. fquare in Suffex, which ufe to be fold for about 8 s.per Huadred.

An experienced old Workman told me he had made PavingBricks of Clay that were 15 n . fquare, which he was very much troubled to prevent their warping. Thefe Bricks, when burnt were of a pale red Colour, as were alfo fome which he made 6 n . fquare of another fort of Clay, fome Miles diftant from the former.

He faith, that Paving bricks, made of Lome, have the reddeft Colour, when burnt : Eut they ought to be made of better Earth than common Rricks, tho they feldom are, by thofo that make them for Sale.

He faith alfo, that befide the goodneis of the Earth in PavingBricks, there ought to be a great deal of care taken in the drying of them, to prevent their warping, and alfo when they are dry, to take them and drefs them fmooth and firait, on that which is to be the upper Surface, and alfo to pare the edges ftraight, and a little under, making an acute Angle with the upper fide, and to fee that they be exactly fquare, and then put them in the hiln, and burn them.

The ufual Price of 9 , or 10 n. Paving-bricks is from 8 to 12 s 。 per C. in the Country. I have known 10 n. pnes from Surrey brought by Water to Sea-port-towns in Kent and Suffix, and fold for 10 s . per C .
11. Pentudoron,] Are a fort of Bricks in ufe formerly anfong the Greeks, being 3 f. on. long, and 1 f . broad, with theie they did build their publick Edifices. V. Didoron.
12. Place-bricls.] This is a general name for all forts of Briclss that are made after the infuing Method, froin whence they derive their Name. Now Workmen tell me they are forced to have above one Method in making of Bricks, not for Fancy fake, but out of pure Neceffity; the Reafon of which proceeds from certain different Qualities, inherent in different Earths. But to proceed, Place-bricks, and Stock-bricks are the 2 Kinds that receive their Names from the Method of their making.

Place-bricks are generally made in the Eaftern part of Suffex; To calld, becaufe there is a Place juft by where they Strike for Mold) their Bricks, which is a level fmooth piece of Ground, prepared for the Bearer-off (who carries the Bricks from the Striker) to lay them fingly dornnia Rows (which they call Ricks; दss foon as they are Molded, and there they are left till they are a
little dried, aiz. Till they are ftiff enough to be turned on their Edges, and Drefl (that is, cut off their Inequalities, and Rugofities) and when they are dry, they carry them to the Hackes (or Places where they Row them up, like a Wall of 2 Bricks thick, with fome fmall Intervals betwixt them, to admit the Wind and Air to dry them.) When the Hack is filld they are covered with Straw on the top, till they are dry enough to be carried to the Eiln to be burne.
13. Filafter, or Buttrefs-byicles.] Thefe Bricks are of the fame length, breadth, and thicknefs with the great Bricks, 6. 9. they differ from them only in this, they have a notch at one end, which is half the breadth of the Brick, in breadth, and alfo in the length; they are made in the fame Mold with the great Bricks, anly when they make Pilafter-bricks, they put into one ceroce of the Mold, a Cube of Wood of 3 n. fquare; which piece caufes the notch in the Bricks when they are Molded.

The ufe cf thele Bricks is to Bond the Work at the Pilafters of Fence-xalls, built of great Bribs. Thefe Pilafters are made a Foot fquare, viz. A Brick inlength, or 2 Bricks a breadth, pilternately throughout the whole heighth of the Pilaffer. So that the Pilafter flands out 3 n . beyond the Surface of the Wall on eacle fide.
14. Sume!, or Sandal-bricks,] Are thofe which lie out mont in a Kiln, or Clamp, where the Salt-peter is not digefted for want of heat, and thefe are very foft, and will foon moutier to dirt.
15. Stocl-bricks,] Thefe differ not from Place-bricles in Form ; their difference lying conceal'd in the Quality of the Earth; they are made upon a Stock, viz. The Mold is put on a Stock, after the manner of Molding, or Striking of Tiles, and when one Brick is Molded, they lay him on a little piece of Board, a little longer than the Erick, and on chat Erick they lay another piece of Board, like the $1 /$. and on that another Brick, Atter this maner, they lay 3 Ericks on one another, and fo they contmue to flrike and place them on the Stage, as they do Tiles, till the Stage is full, and then they take each 3 fucceffiveJ, and carry them to the Hacler, and turn then down on their codges; fo that there will be the thicknefs of a thin piece of Eoard betwist eacis Brick. When the Hack is tilld with heighth of Ericks, from one end to the other, then they begin to fet tloen up upon thofe which were $1 /$. laid on the Hack, by that time they will be a little dried, and will bear the others; for they are Mo!ded of very fliff Earth; when they fet a fecond or third, ofc. Heighth, or Courfe, they cater them a little, as they call it, to prevent their reeling: When the Hack is as high as they think fit, they cover them with Straw, asithey do PlaceBricks, till they are dry enough to burn. This way Workmen
tell me, is more trouble than the other way, vix. Of making place-bricks, and for making and burning (befides the digging of the Earth) they have 6 s . per 1000 , which is I s. per 1000 more than they ufually have for making of Place-bricks. But they are forced to make them fo, becaufe if they lay them abroad in a Place to dry, as they do Place-bricks, the Nature of the Earth is fuch, that they will burft to pieces.

I very well remember an Initance of this kind, that was told me by an ancient experienced maker of Ericks and Tiles; one that ufed to make Bricks about the Country (in Kent and Suflex) for Gentlemen: This Man was fent for to Rumford in Effex to make 100000 of Bricks there for a Gentleman ; he having procur'd his Materials and Utenfils, went to Work (unadyifedly, not knowing the Quality of the Earth) and having ftruck about a 1000 , when they had layen in the Place to dry, (according to the way of making Place-bricles) till about 10 a Clock, when the Sun began to Thine very hot, his whole 1000 of Bricks burft to pieces, fo that he was forced to throw them all away, and then went to work again, and truck more, and then before the Sun flone too hot, he Thackt them, (i.e. cover'd them) over with Straw till the next Morning, and then he raked off the Straw with a Rake, and they did very well when they came to be fet on the Hack, and when they were burnt, they were curious rid Brick, that wouid ring, when they were hit with any hard thing. They did always ufe to make Stock-bricks at this Place, before he found the way of making Place-bricks of this Sort of Earth.
16. Statute, fmall, or comman Erichs.] Their Dimenfions, viz. Of the Mold by the Staiute, ought to be, as follows, vir. In length within 9 n . in breidth 4 n , and in thicknefs $2 \frac{1}{4}$ a. Bricks made in fuch a Mold (the Earth being iff. well temperd) dried, and burnt, they will be lefs and lighter, yet they farink in thicknefs, bat little in breadth lefs, and in their length not difcernable: The weifht of Bricks is uncertain, the Gravity of Earths being very different alfo ; yet commonly one Brick will weith about 5 It. aith Mr. Leybourn, and will contain go Cubick Iaches, and from fome Molds 100 . I once made an Obfervasion on the weight of Statute-brichs, I took 4 , and meafured them, and weighed them, I found each Erick to be 9 n . long, $4 \frac{7}{4}$ n. broad, and $2 \frac{1}{1}$. thick, and I found that the 4 weighed 22 lt . fo that one did weigh $5-3$. and 100 of thefe would weigh 550 Ht . and a 10005500 H . and about 407 will be a Tun weight. Thefe were Suffex Ericks, of which they commonly reckon 500 to the Load, which number of Bricks, according to this Proportion, will weigh about 24 hundred and a half.

Thefe Ericks are frequently ufed in Paving of Cellars, Wafhhoufes, Sinks, and Fire-hearths, and the like, 30 of thefc made; ancording to the Statute, will Pave a Yard fquare, and 330 of
them will Pave a Square, or 100 f. Eut you muft note, 'tis here meant, when the Ericks are laid the flat way, and not fet on theis Ediges ; for then it will take up near as many more.

Eut I have it from Obfervation, that there mult be 32 Bricks laid that to Pave a Yard, and σ_{4} Bricks fet an edge to Pave a Yard Square.

I find alfo by Computation, from an Obfervation, that there muftibe 4500 statute-bricks to make a Superficial Statute-rod of Brick-work, at a Erick and ', thick, and by confequence 1700 to. the Square, and iss to the Superficial Yard ; on a wall of a I. Brick thick, V. P. Num. VIII.

Movtar, the quantity to a Rod of Brick-work.] Some allow mort than others do, and the truth is, they may well enough do fo, for fome Workmen have got a habit of making larger Joints than others. Some ufually allow about a Load of Lime, and a Load and ' of Sand (at 35 Bufhels to the Load of Sand) to a Rod of Brick-work, or 4600 of Statyte-bricks. And tome 0 thers allow a load and half a quarter of Lime, and 2 Load ot Sand, i. e. 2 Euflels of Sand, to one of Linte; and others will atlow but $1 \frac{1}{3}$ Load of Sand, to a Load and $\frac{1}{8}$ of Lime.

Price of theje statute, or common Bricks.] This is various, for in different Parts of the Kingdom, they commonly lave a different Price, which is not al! neither, for Bricks in the fame K iln, thall have a different Price fometimes, if the maker of them be to lay them in at a greater diftance than ufual, and as Mr. Leybours faith, fomething ought to be confidered, in refpect to Workmen's $W_{\text {dges }}$, and the Price of Fuel to burn them with. Eut, \{ath ne, I never knew them cheaper than 9 g . nor dearer than 18 s . ger 1000, deliver'd in any part of London.

In fome parts of Suffex and Kent, I have known Statute, or common Bricks, fold for 16 s . per 1000, laid in a Mile or 2 diflant from the Kiln, and at others for 20 s. at another place in Suffex they fell themat 25 s . fer 1000 , if they lay them inabout 2 or 3 Miles diftant, that within this 10 or 12 Years, they didfell than there for 20 s. per rooo, but fince the late War began, the Iron-works in that part of the Country, has devour'd a great quartity of their wood, fo that Fiel of late Years is got to be a fourth or more dearer than it did ufe to be; upon this account they liave now raifed their Brices to 25 s . per EOOD.

Mr. K'ing tels us, that in Rutlan' Ericks are but 12 s. fer 1000 at the Kiln.

The Price of maling Statute bricks. 7 In the Country their ufual Price is $6 \mathrm{~d} . \operatorname{ter} 1000$ one Molder hath, the Bearer off hath $4 d$. and he that 'Tempers the Earth ready for ufe hath $4 d$. per soco, and he that diggs it hath $6 d$. per 1000 ; for making the Earth ready (after it is digged, the dizging being not reckon'd into the making) Molding, Bearing off, dot nod Burbing, their wiua! Price is 5 s. fer 1000 .

Mr. Leybourn tells us, that about London, they allow the Molder $4 d .5 d$. or $6 d$. per 1000, and that Bricks made at home will ftand the maker of them in (befides the value of the Earth) betwixt s and 6 s . per 1000. But I am fenfible it will be more in Kent and Suffex, at leaft fome parts of thofe Countries.
17. Tetradoron] An ancient fort of Greckih Ericks, which were 3 f. or 4 Spans long; and If. broad, being one of their larger Size, with which they built their publick Euildings, V. Didoron.
18. Triangular Bricks.] This Form of Bricks is defcribed by Daniel Barbaro, Patriarch of Aquileia, in his largeft Edition of his Comment upon Vitruvius. He would have thefe Triangular Bricks confift of an equilateral Triangle, each fide to be a Foot, and the thicknefs but an Inch and $\frac{1}{2}$. This fort of Bricks he highly commends to us for many good Properties, as iff. That they are Commodious in the Management. 2dly. Of lefs Expence. 3 dy. Of fairer flew, adding much Beauty and Serength to the mural Angles, where they fall gracefully into an indented Work : So that Sir Henry Wotton wonders that we (in England) have not taken them into ufe, being propounded by a Man of fo good Authority in this kind of Knowledge; but the truth is, that all Nations are apt to flart at Novelties, and are very apt to be wedded to their own Ways and Methods.

IIII. Of the Method of maling.] Of this V. Stock, and Placebricks. Mr. Worlidge in his Syff. Agricul. is for exciting Brick-makers to try their Skill, in making a Compofition of Clay and Sand, of which they may form in Molds, Window frames for Houfes, of different Forms and Magnitudes, and alfo Chimnegpieces, and Framesfor Doors, \&c. in feveral pieces made in Molds, that when they are burnt, they may be fet together with a fine red Cement, and feem to be as one intire piece ; whereby may be imitated all manner of Stone-work now ufed in Building, and it will very well fupply its Defeat where Stones are wanting, or fearce and dear, and alfo fave very much Timber, which is now ufed in Brick Buildings, and appear mach more Compleat and Beautiful, and be of greater frength, and more durable for lafting, than Timber, or ordinary Brick; and one would think it fhould be very feafible, as we may perceive by the Earthen-pipes, made fine, thin, and durable, to carry Water under Ground at Portfmouth in Hamp/hire, and by the Eartherbacks, and Grates for Chimneys, made by Sir fobnwinter, formerly at Charing-crofs, of a great bignefs and thicknefs, which are evident, and fufficient Demonftrations of the Poffibility of making Work tine, thin, and light, for Tiles, either plain or curved, and for making of greater Work in Molds, and through burning of them, for Doors, Windows, and Climney-frames, \&ic.

This faith he, is one of the moft feafible, and beneficial Operations that I know in England to be negketed.

It is really my Thoughts, much might be done concerning making of Chimney-pieces, Stone-moldings, and Alchitraves for Doors, and Windows, and Architraves, or Fafcia's for Fronts of Euildings, \&rc. if that Men of this Profeifion would but fet their Minds to work, to contrive fome good Compofition of Earth, and a way to mande it well in Molding, Eurning, © cos But (the more is the pity) Men of this Profeffion are like the Materials they work upon, ziz. heavy and lumpifh.

It might be made a Query, whether a Compofition of Earth; fomething like to common Crockers Earth, would not in fome meafure anfwer the Defign, ince it is apparent, that whatever Form the Crockers are p'ealed to put their Earth into; it retains it after drying and burning, altho' Crocks, and fuch like things are formed verythin: Now, fuppofe that Chimney-pieces, or the like, were made in Moids, and dried and burnt, when they came to be fet up, if they were not thought fmooth enough, they might be Polifhed with fharp Sand and Water, or a piece of sharp Sand, Stone, and Water. Or were there but Care taken of fuch things as thefe (whichare for Ornament, as well as Ufe) when they were half dry, or more in the Air, then to let them be Polifhed over with an Inftrument for the Purpofe, either of Copper; or Iron, or fome hard Eody, and then leave them till they were dry enough to burn; 'tis my Thoughts fuch would not want much Polifhing aftetwards.

And let me further add, I an: verv apt to think, that Ingenious Men of this Profeffion, might make very handfome and beautiful Chimney pieces, Stone Moldings for Doors, \&c. fit for No-ble-men's Houfes, and all others that would be at the Charge.

What I would here propofe, is by way of Glazing, as Potters do their fine Earthen Ware, either white, or any other colour, of it might be Vein'd in imitation of Marble, or be Painted and Anneal'd with Higures of various Colours, or fome Hiftory, Perlpective, or the like, which would be much cheaper, if not alío as durable, and every whit as beatiful as Marble it felf. And had I time, and room in this fmall Treatife, I could here have added the Methods of Glazing, and Painting of various Colours, to have encouraged the lovers of fuch Arts, to fet their Heads to work at it. So that I am inclined to think, we rather want Art, or Ingenuity, and Induftry, than Materials to fatisfic our greateft Curiofity in Building. 'Tis not the Eafenels of our Englifh Materials, but want of Skill, and Diligence in manaying them, that makes our Englif) Buildings in the leaft meafure inferiour to any foreign ones. I well remember an Inftance of this nature, which was an Obfervation of an Englifh Embafiadour, which was this, viz. That we ought not to be difcouraged with our ignoble Materials for Building, which we ufe in England, in comparifon of the Marbles of Afla, and Numidia: For faith be, I haye often at beniee viewed with much pleafure, an Antiporcl.
porch, after the Greek manner, erefted by Andreas Palludio upon 8 Columns of the Roman Order, the Backs of Stone without Pedeftals, the Shafts or Bodies of mere Brick, 3 : Foot in Diameter below, and confequently 35 Foot high, as himfelf hath deferibed them in his fecond Book. Than which faith the Ambaffadour, mine Eyes never yet beheld any Colamns more ftately of Stone, or Marble, for the Bricks were $1 / f$. formed in a Cir: cular Mold, and were cut before they were burnt, into 4 Quarters, or Quadrants, or more than 4 Parts, for he could not certainly tell how many the fides were afterwards in laying, jointed fo clofe and nicely, and the Points concenter'd fo exactly, that the Pillars appear one intire piece.

And therefore I would not have Englifh Men be difheartned; that we do here want thofe firm and folid Stones, which Nature hath furnifhed other Nations with; but rather to exercife their Ingenuity, to fupply our felves by Art, with thofe things which Providenee hath thought fit we fhould want, unlefs we would do fo. And if we can but bring fuch things to perfection which have been here hinted at, it may hereafter redound to the Honour of the Englifh Nation. I mention thefe things here purely to flir up inquifitive Perfons, to endeavour after an Improvement of fuch Arts, and that they might not be fo ftupid, as to fuppore that either they, or their Fore-fathers, were arrived at the ne plusultra of this, or any other Art ; and to perfwade thems, (if poffible) to throw off that flothful and dangerous Principle, of refting contented with heing poffefled with the fame degree of Knowledge, which our Predeceffors had before us; and of thinking that they have skill enough, tecaufe the barbarous part of the World, doth not practice fo much as they : But I would very fain, (if it lay in my Power) prevail upon Mechanicks, to fea what Improvements in their Profeffions they can bring forth.
V. Of the Method of Burning Bricles, \&c.] All Bricks that are burnt, are burnt either in Kilns or Clamps.

An experienc'd old Brick-burner, or maker, tells me, thait his (and fome other experienced Brick-burners) Method in burning of Bricks and Tiles, was thus, viz. The Kiln being fet, and coverd with pieces of Bricks, they 1 ft. put in fome Cord, (or great) Wood tc dry the Ware, with a gentle, even Heat or Fire ; which Fire they continue till the Ware is pretty dry; which they know by obferving the Reek which afcends out on the top of the Kiln, for when it is changed from a thick Vapour, betwixt a whitifh and darkifh colour, to a kind of a black Smoke, which is more tranfparent than the Vapour which $1 /$ t. arofe from the Kiln; 'after this blackifh Smoke hath afcended for fome time, they put in no more great Wood, but proceed to make ready for burning; which is performed, either with Spray, Buh ${ }_{5}$ Furz, Heath, Brake, or Fern Faggots; but before they
put in any Faggots, they damm up the Mouth of the Kiln (or Mouths; for fome Kilns have more than one Mouth) with their Shinlog, as they callit (which is pieces of Bricks piled upon each other, with wet Erick Earth, inflead of Mortar.) This Shinlog they make fo high, that there is but juft room above it to thruft in a Faggot, viz. Betwixt a $1 \frac{1}{2}$ f. and 2 Foot, for the whole Meighth of the Mouth is abcut 3 f . the Mouth being thus Shin$\log ^{\circ}$ d, they proceed to put in raggots, till they make the Kiln and its Arches look whire with Heat, and the Fire begins to appear at the top of the Kiln, and the Kiln and Arches below beyin to change from white to a greyifh Colour ; then he faith they flacken the Fire for fome time, viz. for about $\frac{1}{2}$ an Hour, or an Hour, as they think fit; that the Fire, or Heat may afcend to the top of the Kiln, by the Motion of the Air in at the Mouth, and alfo that the lower Ware may fettic and cool, and not be burnt more than that above it. Thus they continue to do, heating and flacking alternately, till the Ware be through burnt, which It will be (he faith) in about 48 Hours: According to this Method, he faith he hath burnt many Kilns of Ware fo equally, that thofe on the top were almoft as hard as thofe below (if not altogether.) He told me he had burnt feveral Kilns of Tiles and Bricks together, wiz. About 3000 Ericks, and 10 or 11000 of Tiles, and hath not had above so wafte, broken, and Sandal Tiles in all (which I will affure you is very rare;) whereas, faith he, fuch Brick-burners as continue their Fire without any intermiffion, make their lower Ware extream hard; and that on the top of Samel-bricks, or Tiles, nay, and which is worfe, they make the lower ones run fo with the exceffive heat, that they are almoft united into one intire Body, fo that they are forced to get them out with Wringers (or Iron-bars) and each Bolt of Tiles, fhall be one intire Mafs (which I have obferved my felf.)

And theri as to cooling of Kilns of Ware, fome unwife Burners, as foon as the Ware is burnt, they immediately fop up the reft of the Mouth of the Kiln, which was left open above the Shinlog, by which means it is long in cooling, fo that they (viz. Such Indifcreet Burners) are commonly a Fortnight, or almoft 3 Weeks, in Setting, Burning, and Cooling, and drawing of a Kiln of Ware. Whereas, faith he, I have Set, Burnt, Cool'd, and Drawn a Kiln a Week for feveral Weeks together. Ent then I never ftopped up the reft of the Kilns Mouths above the Sbinlog, but left it open for the Air to pafs in and cool the Ware.

He alfo told me, that 600 of Faggots would burn a kiln of 10 or 11000 of Statute-bricks. Mr. Wing informs us, that a Chaldron of Coals will burn about 4200 of Bricks.

I have been informed that their Method of burning Bricks in Clamps, is fomething after this manner, viz. They build their Clamps of the Ericks that are to be burnt fomething like the

Method of Building the Arches in Kilns, vix. With a vacancy bétwixt each Éricks breadth, dic. for the Fire to afcend by; but with this difference, that inftead of Arching, they trufs, or fpan it over, by making the Bricks Project over, one beyond the other, on both fides the place for the Wood and Coal to lie in till they meet, and are bonded by the Bricks at the top, which clofes up the Arch; this pisce for the Fucl; they carty up ftrait at both fides, or which is the fame thing, upright at both fides, till'tis about 3 f . high, and then they beyin to lay the Bricks, projecting over inwards till they meet in the middle, which they will do in ahout 3 or 4 Courfe of Ericks in heighths the wideth of the Mouth being but about $2 \frac{1}{2}$ f.Above this Arch they lay the Bricks in the order they do in a Kiln, to 8 or io fo in theighth, according as the Clamp is to be in bignefs; for they ufually burna great many Thoufands in a clamp at a time ${ }_{\text {}}$ to that they build them 8 or 10 f. above the Arching.

Eut you muft further note, that after they have begun to make the Place (or Places) to receive the Fuel, before it is clored up at the top, it is almoft filled with wood, and on that they lay a thicknefs of Sea-coal, and then they over-fpan the Aitch; but they flrew Sea coal, all over the clamp from bottom to top, viz. Betwixt all the Rows of Bricks; for they are not laid Contingent in theit Vertical Rows, and one Courfe of Ericis is laid one way, and the other another, fo that there is fmall Interftices betwixt all the Bricks, for the Coal to beflrewed into from the bottom to the top: This being done; they fire the Wood, and that fires the Coal; the which, when 'tis all burne ouit, they conclude the Clamp of Bricks to be burnt:
VI. Of the quantity of Earth io make a İboufand of Bricks? \&c.] I am inform'd that i Load of Lome (a Load heing in Bufhels) will make about 200 of Statute-bricks, and then by confequence, s Load will make a ioco. Alifo that 19 Load of Lome will make 1600 of great Bricks; and 12 will be $\begin{aligned} & \text { affi- }\end{aligned}$ cient for a 1000 of the fame.
VII. Of the Choice of Bricks, \&cc.] Pliny advifes in making choice of Bricks for Building, to be fure (if poffible) to procure fuch as are Years old at leaft. There are commonly, and generally in all Kilns anid Clamps, 3 Degrees of Bricks, in goodnefs, vir. The $1 /$. and beft fort are thofe which lie next the Fire, (viz. Thofe are beft for lafting) and have, as it were, a Glors on them, which proceeds from the Salt-peter, which is inherent in them, and which by the Violence of the Fire; runs and glazes theri; thefe are call'd clinkers.

The fecond and mont general fort for Building, are thofe which lie next in the Kiln, or Clamp, to thofe before mentioned.

The 3 d. and woift fort, are thofe which lie on the out-fiden of the Kilns and Clamps, where the Salt-peter is not digefted tof wat of a due Heat, and thefe when they come to be expo
fed to the Weather for fome time, will moulder away like Dirt; and thefe Worknen call Samel, or Sandal-bricks. 'Tis an Obfermation, That whilft Bricks are Burning, thofe on the Windy Aide of a Clamp, are the worft of all.
VIII. Of Obfervables in Bxying and Lajing Bric范, \&oc.] And ifto Of Buying, the laft Number will diredt any Mafter or Workman (that doth not underftand it) how to choofe good Bricks; and in the 15 g . of Ericks, wiz. Under the Head Statutcobricks, you have fome Direations, as to the Number of Bricks; but you muft note, tis impoffible to be certain (to know) hew many will be wanting exactly; besaufe in fuch Cafes there can be no infallible !yy difcovered; and that for feveral Reafons, eizo (altho' the Ericks were all made in the fame Mold, and: Burnt in the fame Clamp, or Kiln) the Bricklayers Hand may vary in laying his Mortar. adly. Many Bricks warp in Burning (and the Scller will bring you fome fuch, ist Spight of all jour Care in chuaing. 3 dty. Some mifcarry, and are fpoiled in every Carriage. दrbly. The Tally, or Tate is for the moft part too little, if not well looked to. And befides all thefe Luncertainties, when Ericks are dear, and Lime cheap; (which fometimes happens fo) if scu put your Work out by the Great, orby Meafure, and he is to find Materials that dettr the Work, the Workman without good looking after, will certainly we the more Mortar, and make very great Joints; whicis is a defectin any Euilding.

Second:y, Of laying Ericks, which is a thing of ro fmall Confeguence in a Building; for the well Working, and Donding of Zirck-work (or as foree Workmen call it, beeaking of Joint,) conduces very much to its Foritude; I think therefere it may not be am: F to add fome particular Notes about it, which experienced Workmen hate thought conveniene to commend to die Publick, as well worth their chfervation.

Firft. Let me ecmmend to your Care, to be fure to procure good flitng Mortar ; of which V, Mortat.

Secon:/\%. If your Bribes are lid in Winter, iet thiem be kept and lida de dry as ponible; if they are laid in Summer-time, it wili quit col to imploy Bojs to wet them; for they will unit: with the forortar much better, than if they were !aid ary, and will mate the Work inach tronger. Eut perhaps it may be veit olgeted, that it will be too much trouble to wet all the firices sby dipning thers in Water) if the Euilding be large sand hefides, it maes the Wermen's Fingers fore. To prevent there Enconveniencies, theremay be Witer throw'd on each Courfe of Brichs after thev are lisic, as I am inform'd was done at the Building of Fer finas College in Wamme-! ane, by order of the Surevor, the Ingenious Nir. a deet Hoke.

Thirdly. If your Bricksare laid in the Summertime, be fure So cover them, to prevent theirdrying too falt ; for if the Morour diy ton hantiy, it doth hot cement ío frmly to the Bricks, as

Fourthly. If Bricks are laid in Wiater, be fure to cove, them bery well, to protect them from Kain, Snow, and Froft, which' laft is a mortal Enemy to all Mortar, efpecially to all fuch as have taken Wet but juft before the Froft aflaults it.

Fifthly. Let Care be taken that Bricks be not laid Joynt on Joynt, in the middle of Walls, as feldom as may be; but let there be good Eond made there, as well as on the out-fides *: for fome Workmen in working Brick and Wall, lay the Header on onefide of the Wall, Perpendicular on the Header on the other fide of the Wall, and fo all along thro the whole Courfe, which indeed neceflarily follows, from the unadvifed fetting tup of the Quoin at a Toothing; for tis common to Tooth in the ftretching Courfe 2 Inches with the Stretcher only, and the Header on the other fide to be Perpendicular over the Header on this fide, which caufes the Headers to lie Joynt in Joynt in the middle of the Work.

Whereas, if the Header on one fide of the Wall, were toothed as much as the Stretcher on theother fide, it would be a ftronger Toothing, and the Joynts of the Headers of one fide; would be in the middle of the Headers of the Courle they lie upon on the other fide.

All that canbe pretended to excufe this ill Cuftom of Work. ing thus, is this; That the Header will not hang 2 n . over the Bricksunderneath it. This indeed I do grant to be an Objection, but not fo great, but that it may be removed, and that without much difficulty, viz. Thus, By having a piece of Wood of the thicknefs of a Courfe of Bricks, and 2 n. broad, and lay it on the laft 'Soothing Courfe to bear it, or a Brick-bat pat upon the laft Toothing, will bear it till the next Quoin is fet upon it, and then the Gat may be taken away.

Sixthly. The fame Inconveniency happens at an upright Quoin in a Brick and $\frac{3}{2}$ Wrall, where tis ufual to lay a Clofer next the Header on both fides of the Wall, and info doing, 'tis Joynt in Joynt all the length of the Wall, except by chance a 3 quarters Bat happen to be laid.

To prevent which Inconvenienty, and thereby make the Wall much firmer, lay a Clofer on one fide, and none on the other fide; but laya 3 quarter Bat on the Qucin in the Stretching-courfe, and in the Heading-courfe, adjoyn an Header next to the Header at the Quoin.

Alfo in a beiceralis, it is the beft way in Stretchingcourfes, wherein they lay ftretching on both fides the W'alls; next the Line, fo alfo tolay fretching in the middte of the W'ill, and Clofers next to each Stretching-courfe that lies next the line.

A Bricklayer and his Labourer (having all his Materials ready) will lay in a Day about :coo Bricks, in whole Work on a folid Plain, and fome very expeditious Fellows will lay 12 or 1500:

E 2
X. of
18. Of Facing Timber-buildings with Bricks.] In Come Places this Method of facing Timber-building is in ule, but I think it mould be calld Cafeing; for 'tis covered allover on the outGide with Brick, fo that no Timber is to befeen. The which is performed after this manner, viz. All betwixt the Timber the Wrall is a Brick a length thick (or 9 n . Wall of Brick, but againft the Timber, the wall of Bricks is, but $4 \frac{2}{3} \mathrm{n}$. or half a Brick ${ }_{3}$ or the breadth of a Brick thick (befide the Timber.)

But this Method is not approved of by able Workmen, bee eaufe the Mortar doth fo extreamly corrode and decay the Timber.

For I remember an experienced Bricklayer told me, that he did pull down fuch Work at Eridge-place (which is one of my Lord of Abergaveny's Country-feats) and the Timber was ex: treamly corroded, and eaten with the Mostar.

Bricklayer's.

P. Work.] The Bricklayer's Work in the City is of various kinds, viz. Tyling, Walling, Chiwney-work, and Paving with Bricks and Tiles. But in the Country 'tis common for the Bricklager's Trade, tocomprehend the Maifons and Plaifterers alfo. All which Particulars will render it too large to be comprehended under the general Head of Bricklayer's-mork; 1 therefore think it will be more convenient to rank it under its particular Branches, or Parts, viz. W'alling Tyline Chimneg. work, Paving, \&ic.

Bill of makine.] A Bricklayer's Bill may be Compofed after this Method.

Mr. Robert Rich of Rochefter his Bill of Materials, bad of, and Work done by Benjamin Benact, Bricklager, Otober so -702.
l. s. d.

For 8 Thoufand of Tiles at 20 s . Fer M. $08-00-00$
For 17 Hundred of Lime at 14 s . per C. $\quad 11$ - 18 -
For 15 Load of Sand at $25.6 d$. per L. $02-05-\infty$
For so Hundred of 9 n . Paving-tiles at ros. 6 d. $\} 09-05-00$
per Hundred.
For 40 Ridge-tiles at $1 \frac{3}{4} \mathrm{~d}$. per piece._ $00-05-10$

For 27 Days for my Man at 2 s .6 d. per Day. -03-08-09
For 2 Labourcr $27 \frac{2}{2}$ Days at is. 8 d.per Day.-02-0s-10
Sum Total is $45-11-05$
But note, if Bricklayers do not work by the Day, then they ufe a different Method in Writing their Bills; for then they cither take their Work by the Great, viz. to do all, and find all belonging to Bricklayers Work, lor elfe he is to do it by Meafure, and to find all Materials and Work, at fuch a Price by the Rod for Walling, by the Square for Tiling, and by the Yard for Paving, oce. But if he find no Materials, he may alfo work by Meafure, and then the bill muft be made after this manner, viz. For fo many Rods of Walling, at fo much (according to their Agreement) per Rod, \&c.

Note alfo that in fome Buildings Climneys are put out to the Bricklayer by the Hearth, either only to build, or to find Materials alfo, and then the Bill is made according to the Agreement,

There are fome other things which come into a Bricklayer's Bill, viz. All kind of ornamental Work in Brick, which is corsmonly fet down, or rated at fo much per Foot, or fo much per Piece, except a good Rate be allowed by the Rod, \&rc. Or there be a Sum of Money over and above the Price, or value of the Rod-work allowed, and fo the Ornamental Work be included in it. By ornamental Work, is to be underftood, ftreight, or circular Arches, over Windows, or Doors; Fafciass, with, or without Moldings, Architraves, round Windous, or rubbed Returns, Frieze.s, Cornices of all forts, Water-tables wrought, and Water-courfes: All which are valued by the Foot running Meafure ; to which I mult add Bafe-mouldings, and Plinths, and
tie Splaying of the Fambs of Windows and Doors on the infide of Buildings. Alfo Pilafters, Peers, Pediments, Gyotto's, and Ruffick 2uoits. Thefe 5 laft mentioned, are valued at fo much per piece, according to the hargenefs, and goodnets of the Work and Materials; and thus all Ornamental work, ought to be valucd. Ey the word Ornamental work, is to be underflood in Bricklayers Work; all kind of Brickerorb, that is hewed with an Ax, or rubbed on a Rubbing-ftone, or of Stone wrought with Chijfels, or rubbed with Stones, or Cards, all fuch is orna. mental Work, and ought to be paid for, befides the Rod-work, doc. I hall now proceed to fpeak of that part of Bricklayer's. work, which is called

Brick work.

1. Some Notes abut Meafuring, \&ec.] Sometimes Brick walls are wrought 2 n . thicker than the reft of the work, part of the way, which 2 n . ferveth for a Water-table to the Wall, which is ufually fet off about 2 Foot above the Ground; and therefore the Brick work may be meafured at the fame thicknefs that is ahove the Water-table, and then the 2 n . Work may be thus added to it.
suppofe a Viall 20 f. in length, and 2 Bricks thick above the Water-table.

After the Dimenfions of the Wall is taken (from the bottom, to the heighth it is to be taken at 2 Ericks thick) then add 20 f. in length by the heighth of the 2 n . Work, viz. From the bottom to the fetting off, or Water table, which being halfed, is fo much 4 n . Work, and then reduce it to a Brick and Work.

As for ornamental Work, we need not to mention that hece; it beins mentioned above.
2. The Meafuring of Gable ends in Brick-work, is done after the fame Method that Carpenters meafure Gables, (only this is reduced into Rod-work) V. Gable-end, NJ. 2.
3. Be fure to obferve, in taking Dimenfions of Walls that joyn to an Angle, that the length of one Wall be taken at the out-fide of the Angle, and the others length to the in-fide of the Ansle.
4. If there be a Gab'z end to meafure, and the width of the Houfe be given (or known) which is the Eale of the Gable eni, , and the length of the Perpendicular" is required, shere is "a hrief way wed amongt Meafurers to find it. To make it the plainer, I will propofe an Example, viz. Suppofe the Bare of the Galle te 24 f. and the length of the Perpendicular is required; take the tongth of the Rafter (whicli will be) 18 f. to which add : it felf, viz. 9 Foot, it makes 27 , the $\frac{1}{2}$ of it is 13 fo on the length of the petpendicular. But tho this way be cumnonly practifed, it is not exact, for it makes the perpendicular a liftle toomuch. This you mult note is practifed for Roofus,

Roofs.that are $\frac{8}{4}$ pitch ; and therefore I would not advife any to make ufe of this Method in any other Pitch. Now I am uson Difcourfing of Gable-ends, $\$$ will here add 2 exact ways. of finding the Perpendicular ; the aft. Ghall be by Rooportion, thas, wir. As 30 to 22,35 , fo is the length of the Rafter te the Perpendicular reyuired; or Subfirad the 3 quare of width of the Houfe, from the Square of the iafters length, there will remain a Number, whofe §quase Roor is the length of she Perpendicular.
5. In taking out the Deductions for the Doors, and Windows, \&rc. if any happen in Brick-work, of 2 ! Bricks thick, or in 2 Bricks thick, then add ${ }^{2}$. to the length, for thofe in the 2^{\prime}. Brick-work, and $\frac{3}{3}$ to the lengths of Doors, or Windows, in
 according as which will be fooneft divided) and then the lenctins. and breaths being maitiplied one into the other, the Froduct is the proper Deductions in Brick $!$ work, without any further trouble ; and it will neither wrong Mafter nor Workman.
6. Our $6 t h$. Note glould have been on Chimneys, but of that v. Cbimneys.
 have inferted here feveral other things appertaining to Britswork, vix. The Metkod of Meafuting, Reducing to Standardthicknefs, finding the value of any odd Foot, Price of this Work, in aiverfe farts of the Kingdom, of saying Foundations of Walls, drc. But finding E. will be a very cofious Leiter, I Thall zefer it to Walls of Brick, which V. N. iV.

Brick-walls.

V. Walis, N. TV.

Bridge

Of Timber to Build over any Brook, Gifl, or Imall River, if it do not excced 40 or 50 Foot in length, and that without fetting any of the Timber down in the Water, it being a cheaf and fafe way of building a Bridge of that length.

To perform this piece of Art, the Timber muft be fo joynted, as to refemble (in fome meafure) an Arcit of Stone, or Brick, the Joynts ought to be well made, and muit together flrongly with Cramps and Bogs of Iron. This Bridge muft be made to reft upon 2 frong firm Pillars of Wood, at either end of the Bridge, both being well proped with Spurs or Eraces; there muft be 2 good Buttreffes of Erick for thefe wooden Pillars, and Spurs to fland in, that they may not give way, or flig; this being done, the Eridge may be Elanked over, and

Graveled, and it will laft a long time. This hath been already practifed, faith Sir Hugh Flat.

bring ut\%:

- Tịs a Teim ufed among Workmen, efpecially Carpenters, when they dif:ourfe with Bricklayers, and then they fay Bringup the Foundation fo high, bring up fuch a Wall, bring up the Chimneys, foc. Which is as much as to fay, build the founs: detion fo high, build the Wall, build the Chimneys, doco

> Eroad-ftone.

1. W'bart.] 'Tis the fame with Free-ftone, only this is fo ceitled, beciule they are raifed broad and thin out of the Quarries, cuiz. not above 2 or 3 Inches in thicknes.
2. Ue.] The ufe of thefe fort of Freeofones, which are called Eroad-fones, is for Paving of Yards, and Paftages, and before Shop-doors and Stalls, \&ֻc.
3. Price.] If they are of promifcuous breadtits and lengths, then the ufual Price for the Stone fitting, and lajing in Mor: Yar, from 6 to 8 d. per Foot \{quare, or from 4 so to 6 s. per Súperficia! Yard.

Eur fome of thefe Stones are cut into perfect Squares, as Pa-ving-tiles are, but much larger, as 18,20, and 24 Inches quare, or more, but thofe, as they are neater, fo they are dearer; fome Paving with theefe, being worth I 's. per Foot, but ttis worth 15 or 16 d. per Foot, if the Stones are good and well polithed, as they ought to be, for Kitchins, Dray-houfes, and peat private Places.

Byilding.

1. Conjiderailons aboutit.] Every Man that is difpoled la Build, cither out of Choice, or "thro' Neceffity, fhould 1 ff . §it down, and feriouny confider of the whole Defign, viz. Both of she Manner and Method, as well as the Charge and Expence. And I am fatisfied, that Premeditation is a very neceffary Maxim, or Preliminary to Euilding, becaufe we have it from nolcfs Perfon than our bleffed SAYIOUR himfelf, who faith in \$4ke 14. 23. "Which of you iatending to build a Tower, fitteth tort dow fiyf, and counteth the coft, sopetber be have fufficient to Sififh it ? The Reafon and Necellity of it follows, $v .29$, and 30. Left baply after he hath'laid the foundation, and is nos able go fiath it, all that begold it begin to minck him, Saving, This man

And let me perfwade all Builders, to make choice of fuch Surveyors, and Workmen, as underftand what they are going sbout, before they begin the Work, wix. Such as be Mafters of what they pretend to, as a Surveyor that underfands how to give the Draught, or Model of a Defign; fo as that when it is crected, it may anfwer to the end, which is to Build well; and 2 Euilding is faid to be well done, when it is fo contrived, and perfected, that it is poffeft of the following Qualifications, viz. Accommodation, or Ufefulnefs, Proportion, (Beauty, or Mandfomenefs) and Uniformity in its Parts; Firmule's with Duration. For that Fabrick cannot be accounted perfect, which is ufeful only for but a fiort fase of Time, or not convenient for a longet : and hath not alfo Decency and Beauty, which is derived from Proportion and Uniformity: I would therefore (if it lay in my Power) endeavour to perfwade all Builders to procure fuch Surveyors, and Workmen (if poffible to be procured in the Country, where the Builder lives) as underfood the Thepry, and Practice of Arclitecturt, and alfo of Arithmetick (which is the Ground af all Arts) without the knowledge of thefe 2, the beft Mechanick, or Handicraft Man will be but an imperfect Builder, and fubject to fall into many Errors, and be guilty of committing many Faults, and making many Miftakes. For Gentlemen, and others that are Builders, are too often prevailled upon, and perfivaded by fuch Workmen, as are wedded to their own Wits (tho they were never verft in the Grounds of Architecture, and were wholly ignorant of the meaning of Propartion, Uniformity, and Accommodation in Building) and ticd so their own odd fort of irregular old way; which is no better than a deformed Cuftom, and fuch Men will not (for the moft part) be prevailed on, or perfwaded to a more compleat way, tho it be much more beautiful, and regular, and alfo with lefs Materials, and cheaper, and more convenient than the other: and all the Reafon they will, or can render for it, is, becaufe is is a Novel to them; and they were never accuftomed to fucha way of working ; neither do they underftand it: For fay they, pur Fore fathers did it not before us, which is a very prevaing Argament with fone that know no better; yet perhaps the Mafter Builder is willing to beflow Expences enough on his Houle, Scc. to Enrich, and Adorn it; but his Workmen, thro ignorance perform it with very little'Skill or Art. But I do* think none are fo Senfelefs and Stupid, as to deny, that it is better to ereft fuch a Fabrick, that fhall be more ufeful and neceffary, and alfo more pleafing, both to wife MEn, and Foois, than that (tho done by the fame Cofi and Eypences), which will only pleafe an ignorant Workman or 2, Twh are poffeft with an over-weering Affectation of their owa 5 k:it, which at beff is but conceited Dundring, or Unskilfinefs) and perhaps tit may alfo fatisfer fome few others, that do not underfand the

Methods, and Maxims of Architecture, and fo were eafily presailed upon by thefe abfurd workmen, and Profelyted to be of their Opinion, be it right or wrong. Having thus laid down fome Confiderations about Building, I hall next proceed to speak of certain
11. Aphorifms neceffary tobe lnowsy, and obferved in Building. Dr. Fuller, Prebend of Sarum, faith, He that altars an ola Houfe, is tyed as a Tranlator to the Original, and is confined so the Fancy of the 1 fl. Builder. Such a Man were unwife to pulldown a grod old Building, to erect (perchance) a worfe new one. But thofe that raife a new Houfe from the Ground, are Blame-worthy, if they make it not handfome and ufeful, feeing so them Method and Confufion are both of a Price. In Euilding, Gith he, we muft refpect Situation, Contrivance, Reseips, Strength, and Beauty, to which I will add Form, or Figure.

1. Of Situation.] The Precepts belonging to Situation, faitli Sir H. W'. do either concern the tetal Pofture, or ' Pofition (as I may term it) or placing of the Parts: The !ft. of thefe is ufually reckon'd by Architects, as part of their Profefion, but the Truth is, it is borrowed trom other Faits of Learning, there beEng betwixt Arts and Sciences (as well as betwixt Men) a kind of Society, and Communication of Principles.

For fome of them are purely Phyfical, touching the Suality and Temper of the Air, viz. That it is a good Healthy Air, not fubject to Foggy Noifomenefs, from Fens, or Marfhes, that are adjacent; that it be alfo free from Noxions, Mineral Exhalations. And let not the Place want the fweet Influence of the Sun-beams, nor to be wholly deflitute of the Breezes of Wind, which will Fan, and Purge the Air ; the want of which would make it like a ftagnated Pool, or ftanding Lake of Air (which is very unhealthy,) As faith Alberti, the Florentine Architeft. He alfo warneth us to avoid fuch Places, as are fubjekt to Earthquakes, Contagions, Frodigigus Biiths, and the tike.

Dr. F.'s Phyfical Advice is, viz. chiefly to chufe a wholfance Air; For Air, faith he, is a Difh one feeds on every Minute, and therefore it kad need to be Salubrious. Wherefore 'great Mien (who may Build where they pleafe, and poor Men where they can,) if herein they prefer their Profit above their Health, Irefer them to their Phy ficians to make them pay for it accordingly. Cato faith, Let your Country-houfe have a good Air, and not open to Tempefts, feated in a good Soil ; let it therein exceed, if you can, and let it fand under a Hill, and behold the South, in a healthy Place.

Pliny advifeth not to fet a Country-houfe too near a Fen, or flanding Water, nor yet over-againft the Stream, and Courfe of a River: for faith he, (as Homer faith to this Purpofe) The Fige, and mifts that arife from a geeat River, betimes in the Morning
before Day-light, cannot chufe but be very cold and unwholrome.

Oeconomical,] Sxith Sir H. W. let the Houre, or Seat be well Watered, and well Fuelled, let not the way to it be too fleep, and of an incommodious Accefs, which will be a Trouble to both Friends, and the Family. And fee that it be not Seated too far from fome Navigable River, or Arm of the Sea, which will conduce to the Eafe of the Family, in procuring Provifions, and other Domeftick Neceffaries.

Dr. F. faith, That Wood and Water are 2 faple Commodities, where they may be had. The tormer I confefs hath made fo much Iron, that it muft be bought with the more Silver, and grows daily dearer. But it is as well Pleafant as Profitable, to fee a Houfe Cafed with Trees, like that of Anchifes in Troy.

The worft is, where a Place is bald of Wood, no Art can make it a Perriwig in haft.

And as for Water, the want of it is a great Inconveniency, the Mifchief of many Houles, where Servants muft bring the Well on their Shoulders.

Optical Precepts, or Maxims,] Such I mean, (faith Sir H.W.) as concern the Properties of a well chofen Profpect, which may be filed the Royalty of Sight : For as there is a LordMip (as it were.) of the Feet, whereina Man walketh with much PleaSure about the Limits of his awn Poffeffions; fo there is a Lord. Thip likewife of the Eye, which being a Ranging, and Imperious (I had almont faid) Ufurping Senfe, cannot indure to be Circumfribed within a fmall Space, but muft be fatisfied botha ivith Extent, and variety; yet on the other fide, I find vaft and indefinite Profpects, which drown all Apprehenfions of very remote Objects condemned by good Authors, as if thereby fome Part of the Pleafure (whereof we were fpeaking) did perifl.

A Pleafant Profpect is to be refpected,] Saith Dr. F. A medly Yiew (fuch as of Water, and Land at Gyeerixich) beft entertains the Eyes, refrefhing the weary Beholder with exchange of Objects. Yet faith he, I know a more profitable Profpect, where the Owner can only fee his own Land round about him. To this Head of Situation he adds what follows, viz.

A fair Entrance, with an eafie Afcent, gives a great Grace to :2 Building,] where the Hall is a l'eferment out of the Court, Parlour out of the Hall, (not as in fome old Buildings) where the Doors are folow, Pigmics muft ftoop, and the Rooms fo high, that Giants may fland a tip-toe.

A Political Precept.] I remember (faith that great Architect; Sir. H.W.): One private Caution, which I know not well how to Rank amongef the reft of the Precepts, unlefs I call it PolitiEal, which is this, viz. By no means to Build too near a great Weighbour, which were to be as unfortunately Seated on the

Earth, as Mersury is in the Heavens, for the moft part ever in Combuftion, or Obfcurity, under brighter Eeams than his own. We are next to come to
2. Contrivance.] When the Situation is refolved upon, the zeext is order is Contriwance. The which being a thing of great Woment in this Affair of Buiding, I cannot enter upon it, before 1 have given fome few general Precautions.

And Firft, I would by no means have any one that intends to Euid a Structure (that hall be either ufeful, or ornamental) without the Advice, or Affiftance of a Surveyor, or a Mafterworkisan, that anderftands the Theory of Architefture, and is capstele of Defigning a Draught, or Model, according to the Rules of Art. If a Draught be refolved upon (which may ferve indifferent we!! for fmall ordinary Buildings) there ought to be the Ichnography of each Floor, and alfo the Orthography of each Face of the Building, riz. The Front, the Flanks, and the Rear. But if the Workman be skill'd in Perfpective, then more than one Face may be reprefented in one Diagram Scenographically.

In the Contrivance of thefe Defigns, whether for Draught, of Modet, the Quality of the Perfons,for whom the Euilding is ereeted, muft be confidered, in refpect of the Ichnographical Plots efpecially. For Noble-men have occafion for more Rooms of Office, than others of a meaner Degree; all which mult be designd according to their mofl convenient Occafions, with the lengehs and brcadths according to Proportion; alfo the Ichnograply of all Chimneys, both in length and breadth of the Hearths, and Jambs, Bed-places, Stairs, and the Latitnde of all Doors and Windows, in each Contig. nation, or Floor. And if it were required in Timber Buildings, the Longitude, Latitude, and Craffitude of Groundplates, or Selks, Breft-fummers, and in all (whether Tim. ber, Brick, or Stone) Buildings, the Dimenfions of Summers, Girders, Trimmers, and loyfts. Alfo in the upper Floor, the Santling of the Draggon-beams, Raifons, or Raifing-pieces, or Wall-plates, efc. And alfo the Craffitude of Partitions, Walls, Ec. in Erick, or Stone-fabricks.

All which, and all other Parts (whether in the IChnograpay, or Orthography) of Euildings, ought to be reprefented (as allo Dvens, Stoves, Broilers, Furataies, Colers, Fats for Brewing orc.) with their juft Meafires, for the beft Advantage, as to Commodioufnefs, Health, Strength, and Ornament. All which Dimenfions I would advife to be fet in the pruper Places io which they belong in the Diagrams, in Characters; becaufe unlefs the Schemes be very large, it will be very difficult to take the Dimenfions nicely, of the fmaller parts, if not of the great ones likewife; it will fcarce be practicable to take either of them to an inch, nor perhaps, to 2, 3, nor 4, according as the Diagram may be in Amplitude.

In the Orthographical Schemes, there muft be the true Delio
neations, and Dimenfions of each Face, and all its Concomitants, as Doors, Wiadows, Balconies, Turrets, or Cupuloes, Chim-ney-flafts, Fafcia's, Ruffick 2koins, Architraves, Filezes, Cornifters, Pediments, Pilafters, Columns, Shells over Doors, Lantherns, and all other Ornaments. And if it be a Timber-building, thes ail the Members in that Face ought to have their feveral Sizes in Charaters, and true Pofitions by the Scale. As for Exam. ple, the Ground-plates, or Ceils, Interduces, Breft-fummers. Beams, Principal Pofts, Braces, Quarters, Prick-fofts, of Windoiv-pofts; Jambs, or Door-pofts, or Puncheons, King pisces, or Joggle-pieces, Struts, Collar-beams, Door-heads Principal-ratters, Shreedings, \&c. The Ichnography,Orthography, and Scenogr aphy of the Stair-cafe, may be alfo delincated, and all its Parts, as Hand Rail, Rifers, Nofeing of the cover, or top, String Board, and Mouldings on it, or Cartcules, Billifters, Pendents, \&c. with their true Pofitions, Forms, and Dimenfions, all which being carefully done by an ingenious Surveyor, I think 'tis almoft impoffible for a Workman to miStake, or to Commit any Blunders; tho to my knowledge the are too fubject to do it. More of this V. Draughts. You that next hear what Sir H. W. faith of this Matter ; his Precautions are as follow, viz.

Firft, (faith he) Let no Man that intends to Build, fettle his Fancy on a Draught in Paper (or Vellum) of the Work or De. fign, how exactly foever Delineated, or fet off in Perfpectives without a zidel, or Type of the whole StruCture, and of evety Parcel, and Partition, either in Paft-board, or Wainf om

Secondly, Let the Model be as plain as may be, without Colours, or other Beautifying, left the Pieafure of the Eye, preoscupate the Judgment.

Laftly, The bigger this Type is, it is fo much the better; not that I would perfwade any Man to fuch an Enormity, as that Model made by Antonio Labucn, of St. Peter's Church in Ramen containing 22 Foot in length, 16 in breadth, and 13 in heighth $h_{\text {p }}$ which coft 4184 Crowns, the Price of a reafonable Chappel, yet in a Fabrick of 40 or 50000 Pounds, there may be very well expended 30% at leaft to procure an exact Model, for a littic Penury in the Premifes, may eafily create fome Abfurdity, or Error, of a far greater Charge in the Conclufion.

What Sir H. Wotton doth hese caution, is very proper and sequifite, in large and fumptuous Buildings, whether publick, or private; as for Noble-men's Manfion-houfes, and the like, but it is not worth the while, to be at the Trouble, and Cof to procure a Model for every little Dwelling-houfe that Men Suild for their own Conveniency.

Having thus given fufficient Caveats, I mill next proceed to difcourfe of the Compartition, or Contrivance, whereby to difribute the whole Ground-plot, \&rc. into Rcoms of office, or Entertainment, as far as the Capacity of the Building, and the

Nature of the Climate will correfpond, yed, fo far as it may be both decent and ufeful. But in the mean while we are to confider, whether the Building be to be crected in a City, or great Town of Trade, and whether for a Gentleman, or a Shop-keeper, which is the chief thing to be confidered of by the Surweyor, or Mafter-workman, before he makes his Draught. For a Gentle-man's Houfe muft not be contrived like a Shop.keepers, neither muft all Shop-keepers Houfes be a like; for fome Trades require a decper, others may difpenfe with a fhallower Shop, and fo an Inconveniency mayarife in both; for if the Shop be hollow, the Front Rooms upward ought to be Mallow alfo; becaufe by the ftrict Rules of Architecture, all Partitions of Rooms ought to fland directly one over the other : For if the Shop ftands in an cminent Street, the front Rooms are commonly more Airy than the Back-rooms, and always more commodious for obferving publick Paffages in the Street; and in that refpect it will be inconvenient to make the Frontrooms fhallow; but if there be a fair Profpect backwards of Gardens, and Fields, \&oc. (which feldom happens in Cities) then it may be convenient to make the Eack-rooms the larger for Entertainment, \& \&c.
'Tis obferved by fome, that in Euilding of Houfes long, the ufe of fome Rooms will be loft, and it takes up more for Entries and Paflages, and requires more Doors: And if a Euilding confift of a Geometrical Square, if the Houfe be any thing large, there will be want of Light to the middle Rooms, more than if it be Built like an H,or fome other fuch like Figure(unlefs it have a Court in the middle of it, which was the Nethod of Euilding great Houfes formerly.) This way, like a Roman Capital H, is much applauded by fome; for fay they, this Form maketh it fland beiter, and firmer againft the Winds, and Light, and Air come every way to it, and every Room is near the one to the other. Some affeet this Figure very much, becaufe the Offices may be remote from the Parlour, and Rooms of Entertainment ; and yet in the fame Houfe, which may ferve very well for a Countrcy Gentleman's Houfe: Now the Method which fome propofe for fuch Euildings, is thus, In the Front of one of the long parts of the H is the Kitionn, and the Bakehoufe, Brew-boufe, and Dary-boufe, in the fame part behind it ; the Hall in the middle of the H , which feparates the larlours (which are in the other long part) and Rooms of Entertainment from the Ofices.

I Thall here add a cheap Contrivance in Ruilding, approved of by fome, and then proceed to Sir H.W. Method of contrivins Nobic Euildinss.

Now this chedp way is thus, iiz. Where Liticks may be had, the li'atls of a Euildine mas be beft, and moft fecurely railed with shem, and with lit!te coll, it there be from and frons

Quoins, or Columns raifed at the corners of the Houfe, of fuffio cient ftrength to fupport the Floors and Roof, or the main Beams of it; they may be built Square, and between them the Walls may be raifed of the fame Materials; and they may be worked up together with the Quoins, leaving the one half of the extriordinary breadth of the Quoins without, and the o ther within the wall, whereby there will be much Charge faved, both in Materiads, and Workmanhaip; and yet the Building be frm and flrong.

According to Sir H. Wottons Definition of Contrivance, it confifts of thefe 2 Heads, or Principles, Gracefulnefs, or Decency, and UCefulnefs.

Decency, or Gracefulmes, he alfo faith, confifts in a double Analogy, or Correfpondency. ift. Between the parts, and the whole, whereby a great Fabrick fhould have great Apartments, great Lights, or Windows, great Entranses, or Doors, greas Stair-cafes, great Pillars, or Pilafters; in fine, all the Members, and Parts grear, proportionable to the Building.

The fecond Analogy, is between the Parts themfeives, not only confidering their breadths, and lengths, as where we §peak of Doorsand Windows, which V. Ext here faith Sir Ho enters a third refpect of Heighth, a Point (faith he, mafs confefs) hardly reduceable to any general Precept. The Truth is, the Ancients did determine the Longitude of all Rooms which were longer than broad, by the double of their Latio tude, Vitruvius, lib. 6. Cap. 5. And the heighth by : the breadth and length added together, but when the Room was a Geometrical Square, they made the heighth $\frac{5}{2}$ as much more as the Latitude, which Dimenfions the modern Architects have taken leave to vary upon Difcretion: Sometimes fquaring the latitude, and doubling that Square Number, the Square Root of that Number is the heighth, and fometimes :aore, but feldom lower than the breadth.

But what is here mentioned, Ithink is not now practifes neither, unlefs it be in fome Noble-man's Houfe, who will have a Hall, or the like, higher pitch'd than the reft of the Rooms in the Euilding, and fometimes a Dining.room; or elfe for the moft part, all the Rooms of a floor are of an equal heighth ; and in my Jadgment, 'tis by far the moft commodious-Method, becaufe then there is no Room lof,, (as there mult be where one Room is open almon to the top of the Houle, as I have obferved it in fome old Buildings.) And then the Floor of the fecond Story will lie level and even, and mot in the odd old Meso thod of Steps, out of one Room into the other.

As to the heighth of Rovins, they are various amoñf us, according is what Perfons they are Suilt for, and Cuftom of the Phace in the Country ; ordinary Timber-buildings, are about 7 :fr 8 fiont at moft, betwixt Floors: The fecond fort of than-

Les in the Country, is about 9 Foot betwixt the Floors, which for the mont part is the Pitch of their Rooms at 1 unbridgesells.

The third fort ia the Country, (viz. in kent and Susfex) are Gentlemen's Seats, which for the mont part are 10 or 12 Foot high, fuch as are new Buildings : But 'is common in old Stonc-buildings to be much higher, viz. 14 or 15 Foot.

By AEt of Parliament for the Building of London, there was reckoned 4 Rates of Houf? Ser, viz.
The $\left\{\begin{array}{l}1 \\ 2 \\ 3 \\ 3\end{array}\right\}$ Rate $\left\{\begin{array}{l}2 \\ 3 \\ 4 \\ 5\end{array}\right\}$ Stories, Cellars and Garrett:
 The $\left\{\begin{array}{l}1 \\ 2 \\ 3 \\ 3\end{array}\right\}$ rate a Story $\left\{\begin{array}{l}9 \text { Foot. } \\ 10 \\ 10 \\ 10\end{array}\right.$ at Discretion, \&fo The $\left\{\begin{array}{l}1 \\ 2 \\ 3 \\ 4\end{array}\right\}$ Rate a Story. $\left\{\begin{array}{l}9 \text { Foot } \\ 10 \\ 10 \frac{2}{3} \\ \text { at Discretion, tee }\end{array}\right.$ The $\left\{\begin{array}{l}8 \\ 2 \\ 3 \\ 4\end{array}\right\}$ Rate 3 Story. $\left\{\begin{array}{l}9 \text { Foot } \\ 99^{\frac{8}{i}} \text { at Discretion, Gro }\end{array}\right.$ The $\left\{\begin{array}{l}3 \\ 4\end{array}\right\}$ Rate 4 Story. $\left\{\begin{array}{l}8 \frac{8}{3} \text { Foot high. } \\ \text { at Discretion, } \\ \text { bc: }\end{array}\right.$

As to Sir Hen. 2 d. Point of Contrivance, viz. Vfeffultefs', which will confaft in a sufficient number of Rooms, of all forts, and in their due and apt Coherence without Diffraction, or Confufion: fo as the Spectator may not only call it una Fabrica ben tacolia; (as the It alians ufed to fay of well united pieces of Work) bat likewife that it may appear Airy and Spirituous, and fit to welcome cheerful Guefts; about whish the principal Difficulty will be int Comet:

Contriving of the Lights, and Stair-cajes, whereof I will give you a Note or two: For the $1 /$ t. I ublerve that the Ancient Architedts were at mucts eate; for both Greetes and Romans, (of whofe private Dwellings l'thuvius hath left us fome Defcription) had commonly 2 Cloyliered open Courts, onc for the Womens fide, and the other for the Men ; who perhaps would now take fuch a Separation unkindly. However by this means they had a good conveniency, to admit Light into the Eody of the Build. ing, both from whthout, and from within, which we muft now fupply by fome open Form of the Fabrick, or (among graceful Refuges) by Terrafing any Story, which is in danger of being toodark; or laftly, by Perpendicular Lights ftom the Roof; which are the moft natural of all others. As to the fecond Difficulty, viz. Contriving of the Stair-cafes, which is no hard Point in it felf, the only thing in contriving them, is to make. them handfome, convenient, and in as little room as may be, that they be no hindrance to any other Room, or Rooms. I have, (faith Sir H. W.) obferved that the Italian Architects, are inclined to place the Kitchin, Bate-boufe, Pantery, Wafhing rooms, and the Buttery likewife under Ground, level with the Cellar-floor, raifing the 1 f. Afcent 15 Foot, oi more up into the Houfe; by which Method, befides removing Annoyances out of fight, and having thereby mach more room above. It doth alfo by the Elevation of the Front, add Maiefly to the whole Afpect, and with fuch a Difpofition of the Principal Stair-cafe, which commonly doth deliver usinto the Plain of the $2 d$. Story, where Wonders may be done with a little Room: (I have obferved, that they commonly place all their Rooms fos Office, about 5 Foot under Ground at Tunbridge-wells, the $1 / f$. Stories being about 8 Foot, and then the Lights or Windows to them, be juft above the Ground withor the they yout muft note that thefe Houfes always fland upon an Afcent, that they may have good Sewers to kecp thefe lower Rooms drein'd dry from Water.) But the petty Offices ((uith Sir H.) may be well enough foremote in Italy, yet by the natural Hofpitality of England, the Buttery muft be more vifible, and we haveoccafion for larger Ranges, or Chimneys, and more ample Kitiluias than the Italians, or than perhaps thie aforefaid Compartition will bear 3 and likewife not formote from the Dining room, of clife (faith he) befides other Inconveniencies, perhaps fome of the Difhes may ftraggle by the way.

Here (faith Sir H.) let me note a common Defed that we have in our Englifh Buildings, viz. The want, or negledt of a very uleful Room, call'd by the Italians Il Tinello, 'tis very frequent, nay, almofteffential in all their great Families.
${ }^{\text {D }}$ Tis a place properly appointed for a Confervatory of the Meat that is taken from the Table, till the Waiters are ready to cat, which with us is (according to an old faftion) more unremaly fet by, in the mean time.

Now touching the diftribution of Lodging-chambers, I muft hereprefume to reprove an odd Cuflom they have in Italy, without any ancient Precedent, as far as I can learn by Vitruvius.

Namely, That they fe contrive their Partitions, as when all the Doors are open on a Floor, one may fee through the whole Houre, which doth neceflarily put an intolerable Servitude upon all the Chambers, except the inmoft, where none can arrive but through the reft; or elle the Walls muft be extream thick for fecret Paffages, and yet this will not ferve the turn without 3 Door's to every Room; a thing not to be born with in cold and windy Regions, and every way no fmall weakning to the Work: This Cuftom I fuppofe to be grounded upona fond Ambition of difplaying to Strangers all their Furniture at one view.

There is likewife another Defect, (for Abfurdities are feldom folitary) which will follow by confequence, upon fuch a fervile difpofing of the Inner-chambers. That they muft be forced to make as many common great Rooms, as there fhall be feveral Stories, which (befides that they are ufually dark, a thing hardly to be avoided, running as they do quite thrcugh the Houfe) do likewife devour fo much Place, that thereby they want otker Galleries and Rooms of Recreation, which I have often confider'd amongft them.

Having thus given fome general Hints and Directions, and detected fome Faults, the reft mufl be committed to the Sagacity of the Archited, who will be often put to diverfe ingenious Shifts, when he is to wreftle with fcarcity of Ground.

As fometimes to dam one Room (the Italians call it Una Stanza dannata, as when a Buttery is caft under a Stair-cafe, or the like) altho' of great ufe for the Beauty and Benefit of all the reft ; at another time to make thofe faireft which are mofl in fight, and to leave the other (like a cunning Painter) Chadowed. I will clofe this part (faith Sir H.) of Compartition, with a Chort Defcription of a Feafling, or Entertaining-room after the Egyptim manner, who feem (at leaft till the time of Vitruvius) from the ancient Hebrews, and Phenicians (whence all Knowledge did flow) to have retain'd with other Sciences in a high degree, alfo the Principles and Practices of this magnificent Art. For as far as I can learn, and conjecture by Vitruvius, lib. 6. cap. 5. there being no Form for fuch a Royal Ufe, comparably imagined like that of the aforefaid Nation; which I hall now proceed to explain.

Let us conceive a Floor, or Area of a good length (e. g. at leafl 120 Foot) with the Latitude fomewhat more than $\frac{1}{2}$ the Longitude (the Reaton whereof thall be in its due place given) along the 2 fides and head of the faid Room flall run an order of Columns, or Pillars, which Palladio doth Guppofe Corinthi-
an ones, fupplying that Point out of Greece, becaufe we know no Order proper to Egypl.

The other Head, or $4 t$. Side, I will leave free for Entrance: on the aforefaid Pillars, was laid an Architrave, which is only mentioned by Vitruvius; Palladio adds thereto (and not without Reafon) both firiefe, and Cornice, over which went up a continued Wall, and therein $\frac{1}{2}$ or ${ }^{3}$ Pillars, anfwering directly to the Order below, but $\frac{1}{4}$ purt lefs, between thefe ' CO lumns above, the whole koom was Windowed round abcut.

Now, from the loweft Pillars; there was laid over a Contignation, or Floor, born upon the sutward Wall, and the Head of the Columns with Terrace and Pavement, fub dio, faith l ' i truvius, and fo indeed he might fafely determine the matter in Egypt, where they fear no Clouds; therefore Palladio (who leaveth this Terrace uncovered in the middle, and Ballifter'd about) did perhaps conftrue him rightly, tho' therein differing from others. We muft underftand a fufficient breadth of Pavement, left between the open partand the Windows, for the Heafure of the Spectators that look down into the Room. The Latitude I have fuppofed a little more than $\frac{1}{2}$ the length, becaufe the Pillars ftanding at a competent diffance from the outerwall, will by Interception of the Sight, fomewhat diminifh the breadth in appearance; in which Cafe Difcretion may be more Licentious than Art. This is the Defcription of an Egyptian Room for Feafts, and other Jolities. About the Walls whereof, we muft imagine entire Statues placed below, and illuminated by thejdefcending Light from the Terrace, and likewife from the Windows between the half Pillars above; fo that this Room had abundance of Light, and befides other Garnifhings, it mult needs feem very ftately to the heighth of the Roof that lay over 2 Orders of Columns.

Having thus far confiderod of the Lower parts of the Building, the Houfe may now have his Hat put on; Wlish point, tho it bet the laft in this Art in Execution, (of any part of the bare Shell of the Houfe) yet it is always the 1 f . in Intention; for none would build but for Shelter : I hall now only deliver a few of the propereft, and naturaleft Confiderations belonging to the Roof.

There are 2 Extreams to be avoided in the Cover, or Roof of a. Houre, viz. That it be not too heavy, nor too light, the If. will be objected againft the preffing too much the under Work; the other contains a more fecret Inconveniency; for the Cover, or Roof, is not only a bare Defence, but likewife a kind of Band, or Ligature to the whole Fabrick, and therefore will require fome reafonable weight ; but of the two a Houfe top heavy is the worft: Next, there muft be Care taken to contrive an Equality of the Preffure of the Roof uponall the parts of the Edifice, viz. As much on one fide, as it doth on the other. And here Palladio's Advice is very good, which is
this, viz. That the inward Walls may take their thare of the Burden, and the outer ones be the lefs charged with it. Thirdly, The Italians are very carcful in giving the Roof a graceful Pendency, or Slopenefs, dividing the whole breadth of the Euilding into 9 parts, 2 of thefe Divifions fhall be the Perpen: dicular to the Roof.

But in this Point the Quality of the Region is to be the Rule to walk by, as Vitruvius obferveth; that thofe Climates that are fubject to great Snows, ought to have Charper Roofs than other places, where they are not fubject to the like Accidents; and in all I la ese, Comelinefs muft yield to Neceffity.

I will now add Dr. T. F.'s general Maxims, for Contrivance in Building, which are as followeth, viz.

Let not the common Rooms be feveral, nor the Several Rooms be common.] (by which, I fuppofe he means (by what follows) that the common Rooms fhould not be private, or retired, nor the private Rooms common.) The Hall (which is a Pandochxum) ought to lie open, and fo ought Galleries and Stairs (provided the whole Houfe be not fpent in Paths, Chambers, and Clofet5) ought to be private and retired.

Light (God's eldeft Daughter) is a principal Beauty in a Builing,] Yet it fhines not alike from all parts of the Heavens. An Eaft window gives the infant Deams of the Sun,before they are of flrength to do any larm, and is offenfive to none but a Siuggard. A South-wind, in Summer is a Chimney with a Fire in it, and needs to be skrcen'd by a Curtain. In a Weft-mindow, in Sum-mer-time, towards Night, the Sun grows low, and over familiar, with more Light than Delight. A North window, is beft for Butteries, and Cellars, where the Beer will be fowre, becaufe the Sun fmiles on it. Thorow Lights are beft for Rooms of Erttertaimment, and Windows on one fide for Dormitories.
3. Receit.] As for Receit, a Howfe had better be too little for a Day, than too great for a Yeat. And 'tis eafier borrowing of thy Neighbour a brace of Chambers for a Night, than a Bag of Money for a 12 Month. It is Vanity therefore to proportion the Receit to an extraordinary Occafion ; as thofe, who by overbuilding، their Heufes, have dilapidated their Lands, and their Eftates have been preffed to Death under the weight of their Houfe.
4. Strength.] As for Strength, Country-boufes muft be Subftano tives, able toftand of themfelves,] Not like City-buildings, fup: ported by their Neighbours, on each fide. By Strength, I mean fuch as may refift Weather and Time, and not Invafion, Caftles bsing out of date in England, only on the Sea-coft. As to making of Motes round about a Houfe, 'tis a queftion whether the Fogs that arife from the Water, be not more unhealthful than the Fifh brings Protit, or the Water Defence.

In working up the Walls of a Building, do not let any Wall be worked up above 3 f. high, before the next adjoyning Wall be brought up to it, that fo they may be joyn'd together, and make good Bond in the Work. For there is an ill Cuftom ufed among fome Bricklagers, to carry, or work up a whole Story of the Party-wall (meanisg in London) before they work up the Fronts, or other Work adjoyning, that fhould be bonded, or worked up together with them, which occafions Cracks, and Setlings in the Walls of the Euilding, which weakens it very much.
Sometimes the Strength of a Building is much impar'd, in the erecting of it, by reafon the Mafter did not procure fufficient Stuff, or Materials, and Money before he began to Bull; for when Buildings are erected by Fits and Paufes, now a piece, and then another, the Work dries, and finks unequally, whereby the Walls grow full of Chiuks and Crevices; this puufing Humour is condemned by all Authors.
-5. Beanty.] Let nut the Front look afquint on a franger, but accoft bim right at his entrance.] Unifornity and Proportion, much pieafeth the Eye, and tis obferved that Free-fioze, lise a fuir Complexion, fooneft waxeth old, whilft Bricks keep their Beauty longert.

Let the offices (faith Dr. T. F.) keep their due diffance from the Manfont-boufe.] Thofe are tao tamiliar which prefume to be of the fame Pile with it. The fame may be faid of Stab'es and Barns, without which a Houfe is like a City without Works, it can never hold out long.
'Tis very inconvenient (and rather a Blemifh, than a Beauty t) a Building) to fee the Barns and Stables too near a Houle, becaufe Gattle, Poultry, and fuch like mufl be kept near them, which are an Annoyance to a Houfe.
Gardens alf, are to attend in their place. When God (Geile. fis 2. 9.) planted a Garden Eallward, he made to grow out of the Ground every Tree, pleafint to the figlit, and good tor Food. Sure (faith the Dr.) He knew better what was proper to a Garden than thofe, who now a days therein only feed the Eyes, and flarve both Taft and Smell. Let the Garden (fiith Mr. Worlidge) joyn to one, if not more fides of the Houfe, for what can be more pleafant and Eeautiful for the moft part of the Year, than to look out of the Parlour, and Chamber-windows into Gardens? Por Beauty alfo let there be Courts or Yards kept from Cattle and Poultrev, obr. and planted with Trees, to fhade, defend, and refrefly your Houfe, and the Walls alfo plantedwith Vines, and other Wall.ffuit, all which will add Pleafure and Beauty to your Habitation.
6. Form or Figure.] Figures are either fimple or mixt ; fimple Figures:are either Circular or Angular, and of Circuiar, either Compleat or Deficient, as Oval : The Circle is an unar roitable

Figure in private Buildings, being the moft chargable, and much room is loft in the bending of the Walls, befides an ifl Diftribution of the Light, except from the Center of the Roof, fo as it is not ufed, only in Temples and Amphitheatres. The Oval, and other imperfed Circular forms are fubject to the fame Exceptions, and are lefs Capacious.

Touching the Angular Forms or Figures, it is a true Obfervation, that this Art doth not love neither many Angles, nor few; 1/f. the Triangle which hath of all the others, the feweft fides and corners, is of all others the moft condemned, being indeed both incapable and infirm, and not eafily reduced into any other form, but that of it felf in the inward Partitions: As for Fisures of $5,6,7$, or more Sides and Angles, they are fitter for Military than Civil Architecture; tho' there is a famous piece at Caprano!a, belonging to the Houfe of Farnefe, contrived by Baracci, in the Form of a Pentagon, with a Circle infcribed, where the Architect did ingenioully wreftle with diverfe Inconveniencies in difpofing of the Lights, and in faving the Vacuities: Eut fuch Defigns as thefe aim more at Rarity than Commodity, and are rather to be admired than commended. And therefore by the Frecepts and practice of the beft Euilders, we refolve upon liectangular Squares, as a mean betwist too few, and tcomany Angles, and thro' the equal Inclination of the Sides (which make the Right Angle) flronger than the Rhomb, or any other Quadrilateral Figure; but whether the Quadrat, or Reftangle Paralleilogram, be the better, is not yet well determined, ho' I prefer the latter, provided the length do not exceed the Latituce above $\frac{1}{3}$, which would much diminifh the Aspect.

Of mixt Fipures, partly Circular, and partly Angular ; there is a proper Objection againft them, viz. That they offend Uniformity. Of which (having here mentioned it) I will add fomething concerning Unifomity.

In Arbbitefture, there feems to be 2 oppofite Affectations, Unifomity and Variety; yet thefe feeming Oppofites may be very well reconcil'd; as we may obfcrve in our own Bodies, the great Pattern of Nature; which is very Uniform in the whole Figura: ion, cach fide agrecing with the other, both in Number, Qullity, and Meafure of the Parts: And yet fome are round as the Arms, others Hat, as the Hands, fome prominent, and others indented or retird; fo the Limbs of a noble Fabrick may be Correfpondent enough, tho they be various, provided wo do not run out into extravagant Fancies, when we are contriving how to part and calf the whole work. We ought likewife to avoid coormous heights of 6 or 7 Stories, as well as irregular Forms; and the conerary of low diftended Fronts is as unfeemly: Or again, when the Face of a Building is narrow, and the Flarks deep.
III. Of the Modern way of Building in England, compared woith the Ancient.] When I compare the Modern Englifh way of Building with the old way, I cannot but wonder at the Genius of old Times. Nothing is, or can be more delightful, and convenient than height, and nothing more agreeable to Health than free Air. And yet of old, they ufed to divell in Houfes, moft of them with a blind Stair-cafe, low Ceilings, and dark Windows; the Rooms built at random, (without any thing of Contrivance) and often with Steps from one to another. So that one would think the People of former Ages, were afraid of Light, and good Air ; or loved to play at hide and feek. Whereas the Genius of our Times is altogether for light Stair-cafes, fine $S a / b$-windows, and lofty Ceilings. And fuch has been of late our Builders Induftry, in point of Compaitnefs and Uniformity, That a Houfe after the new way will afford upon the fame quantity of Ground as much more Conveniencies.

The Contrivance of clofets, in moft Rooms, and painted Wainfoot, now fo much ufed, are alfo 2 great Improvements, the ore for Conveniency, the other for Cleanlinefs and Health: And indeed for fo damp a Country as Ergland is, nothing could be better contrived, than Wainfcot to keep off the ill Impreffion of damp Walls. In farrt, for handfome Accommodations, and neatnefs of Lodgings, London undoubtedly has got the Preheminence.

The greateft Objection againft Londm boifes (being for the moft part Erick) is their flightnefs, occafioned by the Fines exatted by the Landlords. So thit few Houres at the common rate of Building, laft longer than the Ground-leafe, and that is about so or 60 Years. In the mean time, if there happens to be a long fit of exceffive Hiat in Summer, or Co'd in Winter, the Walls being but thin, become at laft fo penetrated with the Air, that the Tenant muft needs bsuneafie with it; but thofe Extreams happen but feldom. And this way of Building is wonderful beneficisl to Trades relating to it, for they never want Work in fo great a City, where Houfes here and there are always Repuiring, or Building up again.

The Plaiftered Ceilings fo much ufed in England, beyond all other Countries, mike by their whitenefs the Rooms fo much Lightfomer, and are excellent againft raging Fires. They flop the Paffage of the Duft, and leffen the noife over head ; and in Summer-time the Air of a Room is fometning the cosler for them, and in the Winter fomething the warmer, becaufe it keeps out cold Air then better than the Board-floors alone can do.
IV. Some gene:al Rules, to be obferved in Build ng.] Thefe following Rules were Eftablifhed by Ait of Parliam:nt, before the Re-building of London.

Firf, In every Foundation within the Ground, add one Brick in thicknefs to the thicknefs of the Wall, next above the Foundation, to be fet off in 3 Courfes, equally on both fides.

Secondly, That no Timber be laid within 12 Inches of the fore-fine of the Chimney.jambs.

Thirdly, That all foyfls wil the back of any Cbimney, be laid with a Trimmer, at 6 Inches difince from the back.

Fourthly, That no Timber be laid within the Funnel of any Chimney, upon Penalty to the Workman for cvery Default ios. and 10 s. every Week it continues unccformed.

Fifthly, That no Joyfts, or Rafters be laid at greater diftances from one to the other; than 12 Inches; and no Quarters at greater diftance than 14 Inches.

Sixthly, That no Foyfs bear at longer length than 10 Foot ; and no fingle Rafters at more in length than 9 Foot.

Seienthly, That all Roofs, Windon-frames, and Cellar-floors be made of Oak.

Eightbly, That Tile-pins be of Oak.
Ninthly, That no Skimmers or Girders in Brick Buildings, do Sie over the Heads of Doors or Windoncs.

Tenthly, That no Summers or Girders do lie leis than io Inches into the Erick-work; nor no foyfs lefs than 8 Inches, and that they be laid in Lome.

Sone alfo advife that all Tarjels for Mantle-trees to lie on, or Lintels over Windows, or Templers under Girders, or any other Timber that muft lie in the Wall to lay them in Lome, which is a great preferver of Timber; but Mortar eats and corrodes it. Some Workmen pitch the ends of Timber that lie in the Walls to preferve them from the Mortar.
V. Of Survering of a Building.] I will here briefly touch upon the Methorl of Survesing of Buldings; by which the Manner and Form of taking Dimenfions may be feen, which take as fol: ?oweth.

A Survey of a Building Erealed by R. M. for R. S. the thickne/s of the Walls (as by Agreement) Brick and $\frac{3}{2}$, at 3 l. per Rod, for Mortar and Workmanfhip, the Dimenfions were taken as followeth.

Foot. Parts.

: The length of one fide.
From the Foundation to the Raifing. $\left\{\begin{array}{c}40-50 \\ 16-0\end{array}\right\} 648-0$
2. The breadth at one end. The heighth to the Crofs beam.

$$
\left\{\begin{array}{l}
17-16 \\
16-50
\end{array}\right\} 283-44
$$

3. A Partition-wall within. Height to the iff. Story.

$$
\left\{\begin{array}{l}
17-16 \\
10-50
\end{array}\right\} 180-18
$$

4. The length of the other fide. From an old Wall to the Raifing. $\left\{\begin{array}{c}39-33 \\ 7-00\end{array}\right\} 275-3 x$
5. The breadthat the other end.
From the Floor to the Crofs beam. $\left\{\begin{array}{c}17-00 \\ 4-83\end{array}\right\} 82-1$ is
6. A Water Table 30 Foot reduced to $7-50\}$ From the Foundation to the Table. $\{3-16\}$
```
23-70
```

7. A Setting off on the other fide of $\{16-83\} \quad 16 \div 83$
the Houfe.
8. A Gable-end.

The Total Area, or Content of thefe?
Dimenfions.
S1575-27

Particulars to be deducted.

3. One Door-cafe, $\left.\begin{array}{l}\text { F. P. } \\ \text { 2road }-8-66 \\ \text { High }-9-42\end{array}\right\} 81-58$
4. A Third Door-cafe, $\left\{\begin{array}{l}\text { Eroad-4-33 } \\ \text { High }-5-16\end{array}\right\} 22-34$
5. A Window-cafe, $\left\{\begin{array}{l}\text { Broad-4-50 } \\ \text { Deep-4-50 }\end{array}\right\} 20-25$
6. Another Window- $\left\{\begin{array}{l}\text { Broad-4-5 } \\ \text { Deep }-4-5\end{array}\right\} 20-25$.

The total of there Deductions.
176-55
Taken from the whole Content. 1575-27

There refls due to the Bricklayer.
$176-55$
$1575-27$
$1358-72$

Which reduced into fquare Rods, is s Rods 38 Foot.
And then according to the Contratt, there will be due to the Bricklayer $15 l .-8$ s.- 3 d.

Thus far Mr. Legbourn : We will now fee Mr. Ven. Maudey's Method of Surveying Buildings, and taking Dimenfions; and fetting them down in a Pocket-book.
2. Note, Before you begin to fet down your Dimenfinns, it is convenient to divide the breadth of the Page or Feet, into fo many feveral Columns as you think you flall have occafion for ; either with Lines drawn with Ink, or a Pencil; your Pocketbook being about 4 n . broad, (which is one of the broader fized Pocket-books) you may then divide a Leaf into 4 CoJumns.
3. Before any Dimenfions are fet down, the Work-mafter's and Work-men's Names ought to be expreffed; alfo the place where, the Day of the Month, and Date when you meafure. I will fuppofe, for Example, That you were to meafure Glazing; then obferve if it were Glazed with Square-glafs, you muft write squares above the Dimenfins, and over thofe Dimenfions which are appertaining to Quarry-glafs (if there be any) you muft write Quarries, that when you come to make the Bill of Mea-
furement, you may exprefs them feverally, becaufe they are of reveral Prices.
4 The better to explain the Method, I will here infert a Bill of Mesfurement of claxing.

Glazing done for C. D. in Long.acre, by T. G. of St. Martin's in the Fields; Meafured Octo. ber 17. 1702.

Quarries.	Products.	Squares	Products.
F. I. P.	F. I. P.	F. I. P.	F. I. .P
$\{-8-6\}$	$31-11-30$	$\left\{\begin{array}{l} 04-03-00 \\ 01-02-00 \end{array}\right\}$	04-11-06
$\begin{aligned} & 5-3-6 \\ & 2-4-6\} \end{aligned}$	12-06-09	$\left\{\begin{array}{l} 02-00-00\} \\ 01-06-00 \end{array}\right\}$	03-00-00
$2-6-0\}(3)$	08-09-00	$\left\{\begin{array}{l} 06-00-093 \\ 05-\infty 0-03 \end{array}\right\}$	30-05-03
$\left.\begin{array}{c} 2-1-0 \\ 1-8-6 \end{array}\right\}(i)$	07-02-04	$\left\{\begin{array}{l} \mathrm{CI}_{1}-02-00 \\ 03-00-00 \end{array}\right\}$	7-00-00
	60-5-11		45-04-09

An Explanation of the Columns.

In the $1 / f$. Column towards the left Hand, are the Dimenfions of Glazings done with Squares ; which you are taught to caft up in Crofs Multiplication, which V. N. 2.

In the $2 d$. Column you have the Product of each Dimenfion juft againft it.

In the 3 d. Column you have 4 Dimenfions of Glazing done with Squares.

In the laft you have the Product of each Dimenfion juft a_ gainft it alfo.

At the bottom of the 2 d . Column, you have the Sum Totat of the Products of the Dimenfions done with Quarries, which is 60 Feet, 5 Inches, and in parts.

Airo at the bottom of the laft Column, there is the Total Sum of the Products of thofe Dimenfions of the Glazing that was done with Squares, being 45 f. 4 n. 9 p. As for the odd parts io fignifies but little if they are left out in the Sum Totals of a Bill of Meafurement, for it will amount to but very little in value.
5. N. B. When you are a taking of Dimenfions, and fetting them dewn in ypur Pocket-book, whether it be Glazing, or any other Tradefinan's Work; you muft obferve to leave every other Column vacant, that fo having fet down all your Dimenfions in your Book (which muft be generally done, before any is caft up) when you come to caft them up (which muft be in another Bock, or a Sheet of Paper) you may enter the Product of each pair of Dimenfions, jaft againft them, as you fee before.
6. If there be another to meafure againft you, and there Thould be a miftake in either of your caftings up of the Dimenf f_{2} ous (as it often happens thro Security or Negligence) then one by reading over the Dimenfions in his Book with the Product to each Dimenfion as he goes on, and the orher looking in his own Book, the miftake will be foon difcovered, which muft be rectified between you.

Therefore to be certain in cafting up your Dimenfions, you ought to caft them up twice, if not 3 times, viz After you have caft them all over once, begin and caft them over again, and See whetlier it agrees with your 1 f . cafting up, if not, then caft them up again. When you make your Bill of Meafurement, you muft fet your Name to it at the lower end of the Bill.
7. An Example of a Bill of Meafurement.

Glaziers Work done for G. D. in Long-acre, by T. G. of St. Martin's in the Fields; meafured Ottober 17. 1702.

```
                1. s. d.
For 60 Foot 5 Inches of Gla-
    zing done with Quarries, \(\left\{01-05-1 \frac{1}{4}\right.\)
    at \(s d\). per Foot.
```

For 45 .Foot and 4 Inches of
Glazing done withSquares, $\}$ ar-06- $2 \frac{1}{4}$
at 7 d. per Foot.

$$
\text { Sum Total } 2-1 I-3 \frac{x}{x}
$$

Meafured the Day and Year above W'ritten, by T. S.

For the Satisfaction of the Curious, I will fhew the Method of taking the Dimenfions of Bricklayers-woork, which is the mott troublefome of any Mechanicks work (relating to Building) to meafure.
8. Altho' I faid before, that you might divide a Page or Leaf of your Meafuring Book into 4 Parts, or Columns; yet in mea; furing of Bricklayers-zoork, it will be neceffary to divide a Page into but 3 Columns, one large one for the Appellations, 2 fmal. ler, one for the Dimenfions, the other for the Products.

As in this Example.

Saris of both the Flank-walls. $\left\{\begin{array}{c}\left.2 \begin{array}{c}\frac{1}{2} \\ 3 \sigma^{\frac{1}{2}} \\ 00-02 \\ 0\end{array}\right\}\end{array}\right.$
(2) $\begin{array}{c:c}26 \\ 36 & B_{0}\end{array}$

Both the Flanks.

(2) | 2 B. |
| :---: |
| $795-08$ |

 $1 \frac{1}{2} \mathrm{~B}$.
$113-01$

The falling back of both Chime. $\left\{\begin{array}{c}\text { IB. } \\ 05-00 \\ 04-00\end{array}\right\}$
(2) $\begin{gathered}1 \mathrm{~B} \\ 40-00\end{gathered}$

The 4 Jambs,

The fore part, or Brefts of both Chimneys.

[^0](2) $\quad 2 \mathrm{E}$.
9. The Dimenfions with their Prodults, being fet down, in the next place the Dedultions of the Windows and Doors muft be putdown, and their Products. V. P. of Dimenfions in Brick: work

Deductions.

The 4 Windows.

$$
\left\{\begin{array}{l}
\{06-06 \\
04-00\}
\end{array}\right.
$$

The 2 Doors.

10. The next thing in order to be done is, to add the Proi ducts of each feveral thicknefs into one Sum.

The Produdts of the feveral thickneffes.

The feveral Products of each thicknefs being added.
In the ift. Column on the left Hand there is 2 s Feet of 3 B.

In the fecond 585, 2. of $2 \times \frac{\mathrm{x}}{\mathrm{z}} \mathrm{B}$. drec.
How to find thefe Products V. crofs Multiplication. N. 2.
Having found the Total Sum of the Products of the Deductions; each Total Sum muft be fubftracted from the Total Sum of the Prodults of the Dimenfions, that are of the came Craffitude.

$$
\begin{aligned}
& \text { Deduct. . Piod. }
\end{aligned}
$$

E. G. the Produtis of the Dedurtions in

The Total Product of Ded. in $2=\mathrm{B}$ is
$176-00$
Which 176 Feet of $2 \frac{1}{2} \mathrm{~B}$. Work, being contain'd in the Windows and Doors; muft be Subtracted from the 585 Feet, and a Inches, being the Total Product of all the Dimenfions of that Craffitude, viz. $2 \frac{1}{2}$ B. Work.

This is manifeft to Reafon.
Becaufe when the Dimenfions of the Front and Reat were at: ken; the whole length and breadth was taken over the Dours, and Windons, allowing nothing of abatement for them.
12. N. B. That whatfoever Doors, or Windows, or any other Vacancies, are meafured over when the Dimenfions are taken; you muft remember to make Deduction for them out of the To: tal Product of the Dimenficns of the fame Craffitude whereiti they were Situated.

To make it the plainer, take the following

> Example.

The Doors and Windows, being in $2 \frac{1}{2}$ B. work, I fet down the Total Product of all the Dimenfions of that Craffitude whic

The Total Product of all the Deductiens of that thicknefs, which are to be Subtracted is,

The Remainder is $410-\mathrm{Cz}$
The like Method muft have been practifed, if there had been any other Deductions in any other Craffitude; Subftraftion muft have been made of all fuch Dedultions, out of the Products of the Dimenfions, before you went to reduce your feveral Cralfitudes to the Standard thicknefs of $1 \frac{1}{2} \mathrm{~B}$.

But reeing we have no other Dedulfions in our prefent Example of a Survey; the next thing to be put in practice, will be to reduce the feveral Craffitudes to the cuftomary thicknefs of $1 \frac{T}{2}$ B. But I think it neceffary to refer it to Walls, under the Head of Meafuring them.

More of this Niture, viz. Of Surveying Buildings, or taking Dimenfions, \&ic. may be feen under the different Heads of Carpenters work, Foiners, Bricklaerer, Plaiflerers, Mafons, Puinters; Thatchers, Rec.
VI. Of merruring Buildings] Having briefly treated of taking Dimenfions, Stc. I thall here add but little under this Head of Meafuring : only mention the Artificers relating to Buildingthat ufually work by Meafure, which ate I Bricklayers, 2 Carpensers. 3 Plaifterers, 4 Painters, sGlaziers, 6 Foiners, and 7 Majons. Some of thefe work by the Superficial Yard, fome by the Rod, fome by the Square, and fome by the Foot: Of all which Works the Dimenfions are taken either with a 10 Foot Rod, or a 5 Foot one, or with a 2 Foot Rule, and fometimes with a Line. But let the Dimenfions be taken how they will, they are ufually fet down in Feet, Iaches and parts of Inches; or elfe in Feet and Centefimal Parts of Feet, which laft way is eafieft caft up; the following Table will fhew the Centefimals.

A Table of Centcfimal Numbers, for every Inch, and quarter of an Inch in a Foot.

To ret any number of Feet, Inches, and Parts, as fuppofe 30 Feet, 8 Inches and 2 quarters, you muft $1 f t$. fet down 30 Feet with a Period, or Comma after it,thus, 30 ,and then look in the $1 / f$. Column of the Table for 8 Inches, and at the Fead of the Table for 2 quarters, and then againft 8 Inches, and under a quarters you will find 7 ; which fet down beyoud the 30 to the right Hand, and it will fland thus, 30.7 .

I fiall not incere ftay to treat of the Method of Meafuring all thefe Areificers Works, becuufe they will be all treated of under their proper Heads. But fhall now proceed to fpeak fomething.
Vii. Of Valuing Buildings] To eftimate the Charge of Erecting any Houre near the Truth, or to value one that is already built, fo that you come fomething near the Matter, (provided it be burit of Brick and Timber, as they ufually build in Londan, and Gentlemen in the Countrey) there muft be given.
(i.) The Dimenfions thereof, not only in length and breadth, bat alfo in heighth, in refpect of the number of Stories: For,
(2.) By the length and breadth, the quantity of Squares upon each Floor may be found, and alfo the Squares of Roofing in the Carpenters Work, and alfo Tyling in the Healers, or Bricklayer's Work. And,
(3.) by the heightl, one may give a near Eftimate of the Kows of Brick-mork, contain'd in the Walls round about, and in the Partition-malls, if there be any; and alfo in the Chimneys: Then,
(4.) Confider how many pairs of Stairs, and of what fort.
(5.) What Partitions of Timber with Doors.
(6.) What Timber Front.
(7.) What number of Winaow-frames, and Lights.
(8.) What Iron-work; and
(9.) What Lcad, efi.

Of all which V. the particular Heads.
Now fath Mir. Lesbourn, what will be the Charge of Erecting a Fubrick of Brick-walls and Timber, which fhall be 20 Foot in tront, and $4+$ Foot deep (which isthe Method in London (and I believe in moft Cities, ofc.) for the Front to be frorter than: the Flants) and to confift of Cellars, 3 Storics, and Garrets which is one of the $2 d$. Fite Houfes. We will fuppofe the Price of Materials to be as tolloweth, (in Lender,) viz.

As for the Plaifterers Work.

Smitbs IITork.

$$
\text { For }\left\{\begin{array}{l}
\text { Iron Balconies, per } \mathrm{ft} . \\
\text { Folding Cafements, fer Pair. } \\
\text { Ordinary Cafements, per Piece }
\end{array}\right.
$$

> For Painting.
Window Lights-m
Shop Windows, Doors, Pales, per Yard.—00-00-06

Now, faith he, from thefe Rates of Materials for Building, and for Workmanhhip: fuch a Houfe as is here propofed, will amount to about 360 Pounds, which is rear 411 . per Square.

Now Mr. H. Phillips, propofes the following Method to find the value of a Building: viz. Suppore, faith he, a Houfe; which is 1 Rod or $16^{1} \mathrm{f}$. in Front, and 2 Rods deep back in the Flanks; the Compafs of this Houfe will be 6 Rods, and if this Houle ftands in a high Street, having a Cellar, 4 Stories, and a Garret, (which is one of the 3 d . Rate Houfes) the heighth thereof wilt be 50 Foot, or 3 Rods; fo that there 'will'be' 18 Rod of Brickmoork in the Walls; which may be all reduced to a Erick and $\frac{2}{8}$ thick, and fuppofe each Rod of Brick-wourle to contain 4500 of Bricks, and will coft about $7 l$. the Buildiag, viz. Bricks, Mortar; and Workmanlinip ; then the whole 18 Rods of Brickwork will coft about 126 l . The Timber-work for Floors, Windows, Roofs, dJc. about as much more; the Tiling, Plaiftering, Lead, Glazing, and Painting, will be about as much more fo that the whole will amount to 3781. the allowance for the Party-malls will very well pay for the Chimneys. So that this Houfe cannot amount to above 400%. the Euilding, which is not full 73% per Square; but $\mathbf{t} 1$ is is a very great Pric?, in comparifon of Mr. Leybourns, kut he faitls that it will be worth more or lefs, according to the Marketprice of the Materials.

The Friendly Society of London, for Iofuring of Houfes, have 2 Rules by which they value Houfes, ziz. either by the Rent, or the number of Squares contain'd on the Ground.plot. This
laft is the general Rule by which they value all Buildings, which is grounded on att Act of Parlizment for the Re-building the City of London, made about Ampo 18. Car. 2.

The Buildings of the City of London are valued according to their Rates, of which Rates there are 4 , viz.

```
1f. Rate 2)
2-3<-3}3}\mathrm{ Stories,Cellars, and Garrets.
4-5)
```

And the naked Building, or Shell of a Brick-houfe (the Floors being finifhed) is thas valued by the Square of 100 Foot; if in hith Strcettovix.

Eut thefe Rates may be augmented at the Difcretion of the surveyor, or according to the finifhing of the Houfe. I flall not now infift any longer on this Head, but defer it till a better Opportunity: V. fomething more of this nature: Houfe.
VIII. Of Cenfuring Buildings] IThall here draw towards a Conclufion of this Head, with Sir H.W. Methodical Directions, how to Cenfure, or pals ones Judgment on Fabricks already e* rected; for without fome way to contratt ones Judgment, it will be confounded amongft fo many Particulars as a Building confifts of. I fhould therefore think it to be (almoft) a harder Task, to be a good Cenfurer, than a good Architeat: becaufe the morking part may be helped by deliberation; but the Cenfuring part muft How from an Extemporal Habit. Therefore (not to leave this laft Part, or Head without fome Light) I could wifh him that comes to examine any noble (or great) Work. $1 /$ t. of all to examine himfelf, whether the fight of mas ny fine Objects, which te hath feen before, (which remain like impreffed Ideas on the Erain) have not made him apt to think that nothing is good, but that which is the beft, to be thus affected, would relifh too much of a Cynical Humour.

Next before he comes to give his Opinion concerning the Ez difice, let him endeavour to inform himfelf precifely of the Age of the Fubrick upon which he is to give his Sentiments or Opinion. And if he fhall find the vifible Deeays to exceed the Proportion of time it hath been built, he may then fafely conclude, without making farther inquiry, that the Materials were bad, and too nlight, or the Scat is nought, viz. Pofited on a bad

Soil for Foundation, or expofed too much to a Tempeftuous; Corrofive Air, erc.

Now after thefe Premifes, if the Houfe be found to bear his Years well, (which is always a fign of a good Conflitution,) Then let him fuddenly run backwards (for the Method of Cenfuring is coutrary to the Method of Compofing) from the Dinaments (which 1ff. allure the Eye) to the more Effential Members, till at laft he be able to form this Coneluficn, that the Work is Commodious, Firm and delightful: which are the 3 capital Qualities requifite in good Buildings. And this (as I may term it) is the moft Scientifical way of Cenfuring.

But there are two other things which I muft not forget. The Ift, (out of Georgio Vaffari's Pretace before his Labourious Work of the Lives of Architells) is to pifs a ruaning Examination over the whole Edifice, according to the Properties of a well fhapen Man; as whether the W'alls fland upright, upon a gead Foundation; whether the Fabrick be of a comely Stature: whether for the breadth it appear well burnifled; whether the principal Entrance be in the middle of the Front, tike our Mouths; whether the Windows, as our Ejes, be fet in equal number, ant diftance on both fides the Entrance, \&e. Whether the Offies, dike the Veins in our Lodies be conveniently diftributed, drc. For this Allegorical Review, may be driven as far as any wit will, that is at leifure.

The fecond way, is in Vitruvius, Lib. 1. Cap.2. Where he brietly determines fix Confiderations, which accomplifh this whole Art, vix. 1. Ordinstio. 2. Dípofitio. 3. Eurythmis. 4. Symmetria. 5. Decor. And 6. Difributio,

The 2 firlt of thefe may be very well fpared or onitted; for as far as I can perceive, either by his Interpreters, or by his own Text, (which in that very place, where perhaps he ought to have been cleareft, he is moft obfcure) he meaneth by Oritination, nothing but a well fetling of the Wodel or Schense of the whole Work. Norby Difpofition, he meaneth no more than a neat and full Expreffion of the 1 ff . Idea or Defignment thereof, which perhaps does more immediately belong to the Artificer, rather than to the Cenfurcr. The other 4 are fufficient to condemn or approve (or abfolve) any Fabrick whatever. Wherefore

Eurythmia, is that aereable Harmony between the breadt:, length, and heighth of all the Rooms of the Fabrick, which 's very pleafing to all Beholders; which is always fo to all by a fecret Power which is in proportion: Where, let me note this, that tho' the leaft Error or Offence that can be committed zgainft the fight, is excefs of heighth, yet that Fiult is no where of fmall Impertance, beczufe it is the greateft Offence againft the Purfe.

Symmetrin，is a due proportion of each part in refpect of the whole；whereby a great Fabrick fhould have great Apartments or Rooms，great Lights，or W＇indows，great Entrances or Doors，great Stair－cajes，great Pillars and pilafters，\＆c．In fine，all the Members and Parts large， proportionable to the Building．For as it would be but an odd light to fee agreat Man with Jittle Lege，Feet，Arms Mands，dec．So alfo it would be undecent to fee a great Fabrick， confitt ot intle Apatiments，Legh＇s，Stair－cafes，Entrances，\＆c． So on tineother had，as it is ftrange to fee a little Man polfeft of great Membere，and Limus，it is alfo every whit as unfeemly to Jee a fobich that is but fimall，to be contrived into great Rooms，to have great St．air－ciafes，Iarge Entrances，Lights，¿己⿱⿰㇒一乂口灬。 Eut again，as it is an wabefeeming fight，to fee either a great or little Man to have fome of his Members proportionable to his Body，and cther fome folarge as if they did belong to a Mon－ fter or Giant，aud not to him to whom they are afixt：So it is equally as unly to fee a litele Houfe or Edifice，to hive fome of its parts monflecusalfo，viz．great in fome parts of the Apait－ ments，and by confequence others mult be as little，or fome muft be ammililated；and fo by confequence，will be wanting； or great Stair－cafes，great Windows，great Dours，or any other Nemberslarger than they ought to be，in refped of the Sym－ metry of the Parts with the whole．It＇s likewife unfeemly to fee fome of the farts too little，（that they are not proportiona－ ble to the whole Struiture）as to fee a Man have one very fmall Leg，and the other proportionable to his Body，or to have one Intle Eye like a Eird＇s，and the other like（what it Mould be）a Man＇s．dec．Thus we fee there are many Errers which may be committed，（for want of a due Confideration，and Premeditati－ on）in the proportion of tiie Farts，\＆rc．of a Building，and tl is is too often tou well known to fome Gentlemen that are Builders，when they lisht on Workmen that are unskilful in the Fules of Propartion，and the Theory of Architecture，and fuch Minen very oftea ran themfelves into a grand Error ；fo that they are almofl confounded in their Bufnefs，and know not well which wav to winde themfelves cut of it again；asd being thus wandered from the right Road，for want of this neceffary Know－ ledge，they fillblunder on in the dark，not knowing a better way than their old in－artincial one；till they have finifhed their Conffe：rize Compleated，or rather（which is more proper） co cludd，the ir Building；according to their way of Working by Guefs：and thefe Gueffing workmen too often gueís wrong，ard commit many raults，which are eafily detected，by a－ ny one，that has but a iittleskill in judging of a Buildings Sim－ metry，Orc．Eefides their conceald Crimes，which fuch Men are very fubjed to commit，viz．（I mean）their cuttina，mangling， sand Spoiling theia Mafter＇s Materials，when they work upon his

Stuff, as they generally do in the Countrey: Sometimes you may obferve in your Courfe of Cenfuring, a Door, or Chimney fo mifplaced, either to the right or left, fo as to fpoil the intended ufe of a Room, and tho' it be not totally foiled, yet it feems as if the Artificers, (or Surveyor) wanted Inftindt as well as Reafon, that they could not contrive fo well as Beavers, and other Brutes which build their own Houfes, convenient for their Occafions. Perhaps fometimes you may obferve a chimney fo fituated in the Angle of a Room, (tho defign'd for Conveniency, becaufe it could not well be carried up othervife from the Chimney below it) yet this Chimney hall fpoil the intende! ufe (in fome meafure) of 2 Rooms, (viz. that in which the Chimney is, mend the next adjoining to the Chimney-jamb) thus I knew one that did obferve 2 Chambers in a great mafure thus fpoiled; the Chimney was fet in the angle of the inmer one, and the Door came into it from the Chamber without, juft by one Jamb, the which Jamb (and by confequence, that whole Chimney was carried a Foot too far out in the Room, (which they might as well havecarried farther the other way) and by this means the Door was placed too far toward other the Wall of the Rooms, fo that the Partition-wall by this means was made fo Mort betwixt the other Wall and the Door (at the Chimneyjamb) that it was thereby rendred unfit to place any Beds againfl it ;altho' it was the moft becoming Place for Beds in the Rooms: Sometimeslittle fneaking ill-contrived Stair-cafes are built in a good comely large Stirsture, and then again on the contrary, fome fmall (or at moft but midliag) Houfes, flall have a Stair-cafe fo large in 'em that if you were ita. to have feen the Stair-cale, before you had feen any of the other Aparements, you might well conjequre, that the Rooms of that Fabrick (ro be in proportion with the Stair-cafe) to be twice, or 3 times as lurge again as theyara. Nav, perhaps, this is not all the Error neither; for thefe radom Workmen, do fo manage the matter, that they fpoil the Conveniencies of Clofets under them, (or any other Conveniency) tho' it be now Alamode to make fome little Conveniencies under a Stair-cizle; for Clnjets are accounted an Improvement in our modern Way of B.i'ding: Sometimes you may obferve, an ill Pofition of Ligits (or Windows) to a Stair-cafe, not out of neceffity, but thro' want of Skill and Precaution. Again, as to Lights (or W'indows) you may fometimes in your Viewings obferve an ill Pofition (as well as an irregular Difpofition in them) viz. either in refpect of U niformity, or to fecure them from the Weather (I mean by this laft, when they are placed too near the Surface of the Building, that the Walls do not project beyond them, the better to carry the wet from them which run down by the Walls in ftormy Weather. And then, as to Uniformity in placing them, it

Sometimes fo happens, that they cannot place the Windows on the Garrets exactly over thofe in the Stories below; and therefore when they will not be brought into Uniformity with thore below them, they ought to be placed as Uniform as may be within themfelves. What I am now fpesking of, hath been obferved in a Fabrick, which flood in the Form of a Roman Capital L , having 2 Fronts on the out-fide of the L , conironting 2 Streets which crofs'd one another at Right angles; the Foot, or fhort part of the Lin the Pabrck, was not fo wide but it might be fpann'd with onc Roof, but the long part was too wide to be Spann'd with one Roof (unlef: it lad been carried up a vaft deal higher than the other part, which would lave then rendered it very unifemly) and therefore 3 Roofs were fet on the long part of the L, parallel with that or, the fhort part, fo that there was 3 Gutters, and 4 Gable fieads on that Front which was the long part of the L, and in each of there Gable heads there was a Window ; now according to the Divifions of the A partments in the Storics below, the Windows in them would not fit to be placed (none of them) perpendicular under the middle of thefe Gables, the Artificer thinking to make it fomething nearer to Uniformity, places $\frac{3}{3}$ of theic Windows all towards (nay, very near) onefide of the Gables, pretending they were nearer directly over the others, no doubt; and therefore in his judgment it's nearer to Uniformity; whereas in truth it's farther from it, for by this means they are not in a Uniform Pofition, neither in reSpect of thore in the Stories below them, nor yet within themfelves, which laft they would have been, had they been placed in the middle of each Gable, and would have been more decent and comel', in refpect of the Front without, and the Rooms within: Fior Ligints being thus diforderly pofited, makes it look all a fquint, and as deformed (almoft) as to fee a Man have an Eyc in his Temples. Nay, I could inflance in other things, conccrning placing of Lights, or Windows, ziz. of mifplaciag them, in refpect of Altitude, like the Eyes of fome Monfters Fmentioned by Peter Lampagreus) which were feated in the Shoulders, and Breafls, nay, I think almofl in the Knees, or Feer, as it hath been obferved by fome in fome parts of fome $z=$:bricks. Eut thefe are the Effects and Blunders of working without the Affiftance of Forccafting, and Contriving according to Art. And laftly, (for I will not trouble you any longer as prefent, concerning Symmetry) you ought to obferve whether Doors have their due Symmetry, as to their Dimenfions, as well as Pofitions, viz.that they be not too high, as if they were for a Earn, nor too low, as if they were made'for Houfes in Sophia in Bulsavia, where both fews and Chrifians have their Doors of their Houres but a little above 3 Foot high, which is fo contrived, becaufe the Turks fhould not bring in their Horfes, which ethey would do, and make ufe of them for Stables; in their Tra-
vels, if it was not for this Contrivance. In fine, my Meaning is, that thefe, as well as all other Parts of a Building, ought to be Analogous to the reft of the Fabrick. I hall now proceed to fpeak of

Decor. It is the keeping of a due Refpect between the Inbabitant, and Habitation. Whence Palladio did conclude that the principal Entrance was not to be regulated by any certain Dimenfions, but by the Digbity of the Mafter ; yet to exceed rather in the more, than in the lefs, is a Mark of Generofity, and may always be excufed with fome nobie Emblem, or Infcription, as that of the Contè di Bevilacqua over his Gate at Verona, where 'tis likely there had been committed a little Difproportion.
Patet fanua: Cor magis.

Diftributio, is that ufeful Cafting (or Contriving) of all Rooms for Office, Entertainment, or Pleafure, of which I have fufficiently treated before under this Ilead of Building, Num. II. S. 2.

Thefe are the 4 General Heads which every Man ought to run over before he preteuds to pals his Judgment upon the Building, or undertake to Cenfure the Work that he fhall view.

I Thall conclude this laft Head, touching Crncments; againft which (me thinks) I hear an Objection, even from fome well meaning Man ; that thefe delightful Crafts,or Arts, may be various ways ill applied in a Nation. I muft confefs indeed, that there may be a Lafcivious, and likewife a Superfitious Ufe, both of Pittures, and Sculpture: To which Poffibility of Mifapplication, not only thefe Semi-liberal Arts are fubject, but cven the higheft Perfections and Endowments of Nature. As Beauty in a light Woman, Elequence in a mutinous Man, Refolution in a Ruffian, prudent Obfervation of Hours, and Hurmurs, in a corrupt Courtier, Sharfnefsof Wit, and Argument in a feducing Scholar, and the like. Nay, finally, let me but ask, what Art can be more pernicious, than even Religion it felf, if it be converted into an Inftrument of Art. Therefore, $A b$ abuti ad non uti, negatur conlequentia.
IX. I nall finifh this Head of Building with that Conclufion of Dr. T. F. In Building (faith he) rather belicve any Man, than an Artificer in his own Art for Matter of Charges, efpecially if either he, or any particular Friend of his, be like to be concerned about that Fabrick which you defign to erect ; not but that they can tell nearly the Charge, when they know the Defign, viz. Some ingenious Workmen, but there is but few of them in the Countrey, that truly underfand the Method of vaiuing a Building, and thofe that do, if they are like to have any hand in ir, it is very rare if they will give a juft Eftimate of it according to their Judgment ; becaure they thint if they mould
acquaint the Builder with the full coft at $1 /$. it would blaft a young Builderin the Bud, and therefore they footh him up till it hath coft him fomething to confute them.

The Spirit of Building ift. poffeffed Pcople after the Floo ${ }^{\text {A }}$, which then caufed the Confufion of Languages, and fince of the Eftate of many a Man. I have known fome l'erfons that would curfe thofe with whom they were angry (if they were Men capable of it) by wifhing that the Spirit of Building might poffers them.

Butment.

Is a Termufed by Mafons, and Bricklayers, by which they mean the Supporters, or Props, on, or againft which the Feet of Arches reit.

Buttery.

I. What.] In Noble-men's, and Gentle-merrs Houfes, 'tis the Room belonging to the Butler, in which he difpofes all his Utenfils, belonging to his Office, as his Napkin-prefs, Table cloth,and Napkins, Pots, Glaffes, Tankards, Monteth, Ciftera, Cruets, Salvers, Pepper-boxes, Sugar-box, Muftard-pot, Spocns, Kinives, Forks, Voider, or Easket, and all other Niceffaries appertaining to his Uffice.
2. Of its Pofition.] According to Sir Fienry Wotton's Rule, it ought to be placed on the Noith fide of the Building, that is defign'd for the Offices. It is generally with us in England placed near the Cellar, viz the Room commonly juft on the top of the Cetlar-fairs.

Bullen nails.

E. UWhth.] Area fort of Nails with round Ileads, and but Mocrt Sianks, Tin'J, and Lacker'd; I think there is about 3 Sizes ol: tan .
2. There Ufe.? They are ufed in hanging of Rooms, and fittins up of Beds, , vering of ordinary Stools, Chairs, Couches, Deshs, Cuflus, toc.

Buttre/s.

1. What] A Term in Architecture uled to fignifie a Prop, or Support, either of Brick, or Stone, fet to keep the Work the firmer in its Pofition, as againft Brick, or Stone-walls that are high, or have any confiderable weight againft them on the o.
ther fide, as a Eank of Earth, or the like; they are alfo ufed againft the Angles of Steeples, Churches, and other Buildings of Stone, doc. On their out fide, and along the Walls of fuch Euildings, as have great and heavy Roots, which would be fubject to thruft the Walls out, if they were not thick, it there be no Buttreffes placed againft them; Buttreffes are alfo commonly placed for a Support, and Butment againft the Feet of Arches, that are turned crofs fome great Halls, in old Palaces, Abbeys, \&oc. And generally at the Head of Stone-buildings where there are great Crocket-windows, there are for the moft part, Buttreffes, placed for Butments to the Arches of thefe Windows. As to the Theory of Buttrefles, or Butments, I never yet could fee any thing of it. 'Tis my Thoughts, an Ingenious, Sagacious, and prying Architect, that is well grouaded in the Mathematicks (and would but take the trouble upon him, throughly to examine this Matter) he might bring it within the Eounds of Reafon, and liules; whereby to know nearly of what Size, and (by confequence) what weight a Buttefs, or Butment ought to be (which you muft note muft be various) according to the Dimenfions, and Form of the Arch, and the weinht which is fuper-incumbent on it. As to the weight of the Materials, both on the Arch, and in the Buttre/s, or Butment,'tis no difficulty to calculate: But perhaps it may be bere objected, there is a fenfible difference as to the ftrength, and gondnefs of the Mortar, which may in a great meafure compenfate for the weight of the Buttrefs, or Butment; for where there is afftrong firm Mortar made ufe of, lefs Weight (or Magnitude) of Brick, or Stone, flatl be capable to refift the Preflure of an Arch, with its Super-incumbent Materials; than where the Mortar is bid and feeble. To which I anfwer, I could very well experiment the ftrength of Mortar, bath as to a direct, or oblique Force, viz. Either Psoving it out of its Pofition, or pulling it the forteft way from its Adherents, by which I mean lifting directly up. I think it may alfo be feafible (and I am fure it would be ufeful) to make Experiments, to try what Butment would be requifite for Arches of any Dimenfion, or Form, whether Straight, Semicircular;Skeen, or Scheam, or of the 3^{d}. or $4 t h$. Point, or Eliptical, \&c.

The Ingenious Dr. Hook, Reader of Geometry in Greflam-colledge; hath promifed in his Treatife of Heliofcopes, to Publifh fomething of this Nature ; but if ever he did do it, I have not been fo fortunate, as ever to fee it, or hear of it, but only in that Trearife; what he there promifed, was as follows, viz. A true Mathematical, and Mechanical Form of all manner of Arches, with the true Butment neceffary to each of them. A Problem (faith he) which no Architectonick Writer hath ever yet attempted, much lefs performed.

A Treatife of this nature, would be extream ufeful to the Publick: For the want of a certain Rule in Arching, with its
neceffary Butment, hath too often proved the ruin of fome StruIfures, which have been no fmall Charge ; of which I could give an Inftance frommy own Obfervation but very lately, which is of a large Stone-bridge, which was no fmall Charge, to 2 Countries to eredt, not above 10 or a dozen Years ago, which is already fo intolerably gone to decay, that it is almoft ready to tall, and muft be Re-builtagain in a little time; for lome of the Arches are forced to be proped with many pieces of Timber; the chiefeft Fault that I could ever yet obferve (but I did never make any frict fearch into it, but only as I rode over it) feems to me, to be want of a good and firm Butment, for the Materials did not feem to me to be the Caufe of the Defed in the Work. I have only one thing more to add concerning Buttreffes, and that is fomething of the value of fuch Work.
2. Of the Price of Building Buttrefes.] As to the Method of putting out fuch Work, if it be not dune by the Day, it is commonly done by the Cubick Foot. A Gentleman that had an occafion for 2 Buttreffes to be built againft an old Stone-building, defired me to difcourferwith his Workman about it, and to put it out by Meafure to him; when he and I came to treat of the Matter, I found he knew not well what to fay about it, at laft he told me he would do it for $s d$. per Foot Cubick, viz. For Workmanfhip only, it being a fort of Work, that neither he nor I ever knew put out by the Foot; and therefore after a little confidering the Work, I told him I did think lefs than $2 \frac{1}{2}$ the Price would be fufficient, and therefore we came to no Conclufion at that time; and before I fhould fee him again, I knew how to inform my felf from a new Buttrefs which was builf by the Day (by 2 good Workmen) of 5 f . fquare, and 12 high: When I had found the Solidity of this Buttrefs, I found that according to their Days Works, it came to about $2 \frac{2}{2}$. per fo and this I reckon to be a top Price; becaufe the Workmen are caken to be torpid Operators, and the work was alfo very well done; upon which Account for 1 !, or 2 d. per f. as I find by Obfervation (from the Quarry-ftones at 5 s . per Load, Lime 25 s . for 32 Eufhels, Sand at i $s .6 \mathrm{~d}$. for 12 Eufhels to a Load) that fuch Work, Materials, and Workmanfip may be done for $6 d$. or 7 d . jer f. Cubick.

Cabinet,

STrialy taken, is the moft retird Place in a Houfe. But a Cabinet in Palaces, and great Houfes, confins of an Guterchamber, an Auti-chamber, and a Cabinet wîh a Gallery on the fide.

Calidults,

I. e. Conveyers of Heat. The Ancients ufed to warm their Rooms with certain (fecret) Pipes (call'd Calidulls) that were convey'd in the Walls, tranfporting Heat to fundry Parts of the Houfe, from one common Furnace.

Camber-beam.

A Piece of Timber cut Arching (or with an obtufe Angle) in the middle. Camber-beams are commonly us'd in Platforms, as Church-leads, dec. And in other Cafes where there is occafion for long Beams, a Camber-beam being much ftronger, than another of the fame fize ; for he being lay'd (as they generally are) with the hollow fide downwards, and having good Eutments at the ends, is a kind of an arch.

Cames.

The fmall flender Rods of Caft-lead, of which the Glaziers make their turn'd Lead. For their Lead being caft into flender Rods of fome 12 or 14 Inches long each, is called the Came (and fometimes they call each of thofe Hods a Came) which being afterwards drawn through their Vice, makes their turn'd Lead, V. Lead. No 10.

Camerated.

Viulted or Arched.

Cant.

A Term us'd by fome Carpenters, when a piece of Timber comes the wrong way in their Work, they fay cant it, i. e. turn it about.

Cantalivers.

1. What.] Several Ancient and Experienced Work-men tell me, That they are the fame as Modilions, only thofe are plain, but thefe are carv'd. They are both a kind of Cartouzes, ret (at equal diftances) under the Corona of the Cornift of a Buildjag.
2. Price of making] Mr. Leybourn fays, They are commonly made by the Piece, ar different Rates, according to the Curiofity of the Work. And experienced Workmen tell me, They have commonly 2 s .6 d . for making and carving of each. But in London they will carve them for 1 s. 8 d . cach.
3. Price of Painting.] Mr. Leebourn fays, They are commonly Painted by Tale, or lo much per Piece, according to the Colour they are laid in.

Cantaliver-cornifh.

1. What.] Is fuch a Cornifh as has Cantaliversunder it.
2. Price.] Mr. Leybourn fays, They are commonly made by the Foot, running Meafure [i.e. by the number of Feet, in length only] at different Rates, according to the Curiofity of the Work. And experienced Workmen tell me, That they commonly have is. per Foot for the Cornifh, it being plain without any Carving in it, and with the Cantalivers, about 3 s. 6 d . per Foot.

Canting Aairs.

Y. Stairs.

Capital.

1. What.] The Orsament that is made on the top of 2 C 0° lumn.
2. Tufcan.] According to Vitruvius, the height of the Tufcan Capital (by the Aftragal at the botiom) muft te half the Diameter of the Body of the Column below. And this height being divided into 3 Parts, the firf, and upperinoft part goes to the Abacus [which is a Square, or flat Moulding] the $2 d$. Part gocs to the Boulrin, and Fillet under it, [the Boultin is a quarter of a Circle, the Fillet a narrow flat Moulding] and this part is fubdivided into 4 Parts, of which 3 go to the Boultin, and 1 to the Fillet, and the $3 d$. and laft Part goes to the Neck, which is flat and fraight. Again, the Neck is divided into 2 parts; one of which is the breadih of the Afragal under it [which confifts of a Semicircle, and a Fillet under it] The Aftragal is again divided into 3 parts, of which 2 go to the Semicircle, and 1 to the Fillet. The Projecture of the Capital fhallbe part of the Diameter of the Body of the Column below. The Aftragal projecteth in a Square.

According to Scammozzi, the heighth of the Capital (by the Aftragal at the bottom) muft (alfo) be $\frac{1}{2}$ the Diameter of the

Column below. And this heighth being divided into 60 parts, 20 of them fhall go to the Abacus (or Plinth, as he ca!ls it) is to the Echinus or halfround (which Vitruvius calls the Boultin) 5 to the Rondel, or Bead-moulding [which is a Semicircle] 3 to the Lift (which Vitruvius calls a Fillet) and 17 to the Neck, or Friefe, (as he calls it.) Again, 7 fuch Parts muft go to the Rondel of the Aftragal, and 3 to its Liff.

According to Palladio, the heighth of the Capital is (alfo) half the Diameter of the Body of the Column below (riz. by the Aftragal, which none of them reckon a part of the Capital, tho in propriety of Speech, it ought to be fo efteem'd.) And this height is divided into 3 equal Parts, the uppermoft of which goes to the Abacus (which he alfo calls the Dado, or Dye) the next part goes to the Ovolo, or Ecbinus (Vitruvius calls it the Boultin) the other part is divided inco 7, of one of which is made the Lifella (Vitruvius calls it the Fillet) under the ovolo, and the other 6 Parts go to the Colloring, or Neck (he alfo calls it the Hypotrachelium, or Frieze of the Capital.
3. Dorick.] According to Vitruvius, the heighth of the Dorick Capital (by the Aftragal at the bpttom) is equal to $\frac{1}{2}$ the Diameter of the Body of the Column below. And this heighth being divided into 3 Parts, the firft and lowermoff goes to the Neck, the next Part goes to the Boultin [by, which Term he here comprehends feveral Members and defcribes this Part in 2 Forms. 1. Of which is a Boultin (as 'tis defcrib'd N. 2.) and 3. Fillets under it, and the other is a Boultin, and an Aftragal under it] and this part is divided into 3 parts, 2 of which go to the Boultin. properly focall'd, and the other to the 3 Fillets, or to the Aftragal ; the Fillets areall of an equal fize, in the Aftragal, the Fillet is $\frac{1}{3}$ of the whole, the 3 d . and uppermoft part of the Gapital is again divided into 3, the 2 lowermoft of which go to the Square, and the other to the Cimatum [which is an O.-G. (with the hollow downwards j and a Fillet overit. An O.-G. is a Moulding, fomewhat refembling an S, which Vitruvilus makes of 2 quarter Circles join'd together; and this Cimatumbeing alfo divided into 3 parts, 2 of ' cm go to the $O \cdot . G$, and it to the Fillet. The Aftrapal under the Capital is coual to $\frac{1}{2}$ the Neck, and made as in N. 2.

Scammozzi makes the Capital of the fame heiphth, which he divides into 60 parts, of which 3 go to the Fillet of the Cimatum, 5 to the O-G of the Cimatum, 12 to the Square, 14 to the Boultin, 5 to the Rondel, and 2 to the Fillet of the Aftragal under the Boultia, and 19 to the Neck. The Aftragal under the Neck contains 10 fuch parts, of which $6 \frac{1}{3}$ goes to the Rondel, and $3 \frac{1}{2}$ to the Fillet. I have defrib'd it by l itiuiius's Terms, for Scanmozai mentions none of tiem.

Palladio (allo) makes the Capital of the lame leighth with Vitruvius, which he divides into 3 parts, the uppernoft of which he fubdivices into 5 parts, 2 of which go to the Cimatium [which Vitruvius calls the Cimatum] and is again fubdivided into 3 parts, one of which goes to the Liffella, or Annulet [which Vitruvius calls a Fillet] and the other 2 to the Scima-rella, [which is an O.-G, as tis defcrib'd in this Number] and the other 3 of the firft Sub-divifions of this part goes to the Abacus [whichVitruvius in this Number calls the Square] The $2 d$. of the 3 grand Divifions of the Capital, is fubdivided into 3 parts, 2 of which go to the Ovolo, or Echinus [which Vitruvius (N. 2.) calls a Boultin] and the other to the Annulets under it, which are 3, and are equal. The 3 d . principal part goes to the Hy potrachelium, or Frize [which Vitruvius calls the Neck] The A ftragal under the Neck, is as high as all the 3 Annulets.
4. Inick.] According to Vitruvius is made thus, divide the Semidiameter of the Body of the Column below into 18 parts, take 19 fuch parts, of which 3 of 'em mult go to the Cimatum, 1 to the Fillet, and 2 to the Cima [or O-G] under it. Then take 4 parts for the Trochilus of the Volute, or Scroll [the Trochilus is that Member from whence the Scroll begins] then take 4 parts from the Boultin [which is $\frac{1}{4}$ of a Circle] which muft be Carv'd with Eggs, and Anchors. Then take 2 parts for the Afragal under the Boultin, the Afaragal is Carvid with Beads, and has a Fillet on each fide of it, each $\frac{1}{4}$ of the whole. Then the 6 remaining parts muft go to the half of the Volute below. Then take 8 more fuch parts, which muft go to make the remainder of the Frieze, or Neck of the Capital, and 3 more fuch parts for the Aftragal under the Neck, of which one part goes to the Fillet.

Scammozzi's Defeription of the Ionick Capital is fo blind, that 1 think none is ever the wifer for it. And Palladio's Defrription agrees with Vitruvius's.
5. Corinthian.] According to Vitruvius, the heighth of this Capital (by the Aftragal at the bottom) is equal to the Diameter of the Body of the Column below, $\frac{1}{7}$ part of which goes to the Abacus (which confifts of a Boultin, a Fillet, and Plinth, [which is but a larger Fillet] the Abacus being fub-divided into 3 parts, I of 'em goes to the Boultin, and a third part of the next goes to the Fillet, and the reft to the Plinth. The heighth of the Aftragal below the Capital, is $-\frac{1}{2}$ part of the Diameter of the Body of the Column below, and is divided into 3 parts whereof the Fillet contains I part, and the Boultin 2.

Scammozzi makes this Capital $1 \div$ Diameter of the Column high, which divided into 75^{\prime} parts, 4 of 'em go the Boultin, I to the Fil'et, and 9 to the Plinth, and the reft to the Neck.

Palladio alfo makes the heighth of this Capital equal to the whole Diameter of the Eody of the Column below and $\frac{1}{2}$ part
more, which is allowed to the Abacus; by which I underftand he means all the Mouldings above the Acanthus Leaves.
6. Roman, or Compofite.] Vitrurius makes, and divides this Capital like the Corinthian ; and fo does Scammozzi, and Palladio; only the Carving of this is fomewhat different from that.
Carcafs.

1. What.] The Timber-work (as it were the Skeleton) of a Houfe, before it is Lathed, and Plaifter'd.
2. Price of Framing.] The Price of Framing the Carcafs of a Houfe (in the Countrey) as Workmen inform me, is about 88: per Square, if the Workman pay for the Sawing ; if not but about 4 s. $6 d$. per Square.

Cariatides,

In Architefture are Statues of Women, which ferve inftead of Pillars.
Carpenter's.

1. Work.] The reveral kinds of Work done by Carpenters, (in relation to Building) with their Prizes, and Methods of Meafuring them, erc. are too many to be comprehended under this fo general word of Carpenter's-woork; and therefore I Thall refer them to their Particulars, (as Framing, Flooring, Roofing, Gc.) where they will much more readily be found.
2. Bill to make.] A Carpenter's Bill Thould be made after this manner.

Mr. William Liberal of London, bis Bill of Materials bad of, and Work done by Tho. Trueman, June 24. 1702.

For 17 Load of Oaken-timber, at 22 s . theLoad. 18-14-00 For 28 Load of Fir-timber, at 35 s . the Load. $-49-00-0$ For 180 Feet of Oaken-plank, 2 Inches thick, at 3 d. $\} 02-05-00$ the Poot.
For 17 M . of 10 d . Nails, at 6 s . the M...For $7 \frac{1}{2}$ C. of Deals, at 6 l . s s. the C.——4-17-06 For $28^{2} \mathrm{itb}$. of Jarge Spikes, at 4 d . the lt . $-00-09-04$ For 8 Weeks Work for my felf, at 3 s . the Day. $-7-04-00$ For 8 Weeks 2 Days Work for my Man, at $\} 05-05-0_{0}$
2 s. 6 d . the Day.

But, Note, If the Carpenterdo not Work by the Day, then he Writes, For fo many Square of Roofing (at what Price they agree upon per Square) fo much Moncy. Likewife for fo many Square of Flooring, at to much per Square, fo much Money. Alfo for fo many Square of Partitioning, at fo much per Square, fo much Money. And for fo many Square of Ceiling-joyfts, \&c. The Windows they fet down either at fo much per Light, or fo much per Window. The Door-cafes at fo much a piece, either with, or without Doors. The Mantle-trees, Taffels, \&cc. at fo much a piece. The Iintelling, Guttering, Cornifh, Win-dow-boards, doc. at fo much per Foot. Stairs, at fo much per. Step, or fo much a Pair, doc.

> Car-toofes,-touzes,-touches,

In Architecture are much the fame as Modilions; only thefe are fet under the Cornifh in Wainfcoting, and thofe under the Cornifh at the Eves of a Houfe. Some Workmen call them Lentils, or Teeth.

Cartridges,

In Architecture are the fame as Cartoozes,

> Cart-nails.
V. Nails.

> Cafeing of Timber-work.

1. What.] Is a Plaiftering of a Houfe all over on the out-fide with Mortar; and then friking it (by a Ruler) with the corner of a Trowel, or the like, to make it refemble the Joynts of Stone; that fo the whole Houfe may feem to be Built of Stone.
2. Of the befl way of doing it.] Experienced Workmen tell me, That it ought to be done upon Heart-laths, becaure the Mortar will decay the fape ones in a little time: And tho' it be more work to Lath it with Heart, than with Sap-laths; yet 'tis better for the Mortar to hang to, becaufe Heart-laths are narroweft, and they ought to be clofer together for Mortar than for Lome. They alfo tell me, that they commonly ufe to lay it on in 2 Thicknefles, viz. the laft before the firft is dry.
3. Of its Price.] I have put out this kind of Work to Plaifterers for 3 d . or 4 d . the Yard, including Doors and Win. dows [i.e. meafuring it as if there were none] and for 6 d. per Yard, excluding Doors and Windows [i.e. deducting them from the whole.]

Cafe of Glafs.

1. Cromen.] A Cafe of Crown-glafs (as a Glazier in Lendon informs me) contains 24 Tables, each Table being Circular, or nearly fo, and (as I obferv'd) about 3 Foot 6 Inches, or 3 Foor 8 Inches Diameter. V. P. Glafs, N. 3.
2. New-caftle.] The fame Gentleman tells me, that they have 35 Tables of Nem-cafle-glafs to the Cafe; and that there hould be 6 Foot of Glafs in a Table: I am fure there is as much (and more) in one of them I faw in his Ware-houfe; for I obferved them to be much of the Form of a Cornerotile fuppos'd to be preft out fat; and by meafuring one of them, I found him to be about $3 \frac{1}{2}$ Foot on the upper or Circular End, and about 18 or 20 Inches on the lower and oppofite en 1, and the Perpendicular heighth about 3 Foot. Mr. Leypokrn (and Mr. Wrags
from him) fays That a Table of New-caftle glass contains about 5 Foot, and that 45 of thee Tables go to a Cafe.
3. Normandy.] Mr. Wring fays, That 25 Tables make a Cafe of Normandy Glass.

Casement,

In Architecture is a hollow Moulding. Some Architects make it of Circle, others $\frac{1}{4}$.

CaSements,

1. What. 7 In Architecture are Windows to open.

2. Mice.] Mr. Leybourn hays they are valu'd (according to their largeness, and the goodnef; of their Workmanfhip in their Locks and Hinges, from 3 s. to 20 s . a Cafement. As Cafemints are about $2:$ Foot long, about 4 s.or 4 s. 6 d.ja piece. Fold-ing-cafements of the like fire, with Bolts, Hinges, \&Jc. about 12, or 13 s . the pair; and large Folding-cafements, 16,18 , or 20 s . the pair. Mr. Wing Cays, they are worth 7 d . or 8 d . the Pound, fame 9 d. viz. Folding-cafements. Some Smiths in London ask'd me $6 \mathrm{~d} . \mathrm{fer}$ Pound for Casements, others Said they were worth more, if they had Locks to them; but 6 d . was their Price, if they made them with Turn boats (or Turn-buckles, as fame called em Jor Cock-fpurs; and Po!!-backs at the Hind-fide to pull them to with. One Smith told mine, he would make them for sd. per Pound. I knows fame Smiths in the Countrey, make 'em by the Foo! (meafurins, the whole Circumference round by the outer edge of the Cafement; thus, if a Cafement be 2 Foot lon 5, and 1 : Foot bond, they reckon him 7 Foot.) A Smith at Rucush'd ines d. per foot for ordinary Cafements, which I think is dear; for mother Parts of Suffix, they proffer me to make 'em tor 6 d. per rose, if ordinary; but if fomething extraordinary (as Lohding-cafements, \&ic.) then $8 d$. per Foot.
3. Of Patination.] Cafements are commonly Painted by the Piece, at three half-pence, $2 d$. or 3 d. a piece, according as they are ot bigness.
4. Of Hanging.] Glaziers in the Country tell me. That 'tic the Smith's Work to hang up the Cafements; and if they don't do it themselves, they pay the Glaziers for doing it; who have 2% a piece for lunging of fonsil cafements, and 3 do a piece for lur.c ones.
s. of lining.] Y. Glazing. N. IV. S. I。

Caft,

In Architedure a piece of Timber, or a Baard, $?$ raid to Caft, or to be Caft, when (by its own Drought, or Moifure, or by the Drought, or Moifture of the Air, or other c. cident) it alters its Hatnefs, and ftraightness, and becomes crooked.

Catadrome.

A kind of Engine like a Crane, which Builders ufe in lifting up, and letting down any great Weights.

Catbeta.

A Perpendicular, cr Plumb-line, falling from the Extremity of the under fide of the Cimatium (of the Ioniç Capital) through the Centre of the Volute.

> Cavetto.

The fame as Cafement.

Cavazion.

A Term of Architecture, fignifying the Under-digging, of Hollowing of the Earth, for the Foundation of a Building. Palladio fays, it ought to be the fixth part of the heighth of the whole Building.

Caulicoli.

The Carved Scrolls (under the Abacus) in the Corinthian Capital.

Ceiling.

1. What.] In Architecture is the I.athing, and Plaiftering as the top of a Room, upon the under-fide of the Joyits of the next Room, or upon Joyfts put up for that purpofe, (and call'd Ceiling-joyfts) if it be in a Garret. Thefe Plaifter'd Ceilings are much ufed in England, beyond all other Countreys; and they have there Conveniencies with em. They make the Rooms much more lightfome; are excellent againft raging Fire; they

$$
\mathrm{H}_{3}
$$

for
ftop the Paffage of the Duft, and leffen the Noife over-head, and in Summer-time the Air of the Room is fomewhat the cooler for it.
2. Of Hexfuring.] This Work is commonly dene by the Yard, (containing 9 Superticial Feet:) Ard in taking their Dimenfions, if the Room be Wainfooted, they confider how far the Cornifh bears into the Room, by putting a Stick Perpendicular to theiCeiling, clofe to the edge of the uppermoft pirt of the Cornifh, and meafuring the Diftance from the Perpendicular Stock to the Wainfoo: twice which diflance they alwas deduet from the length, and breadth of the noom taken upon the Floar, and the Femainder gives them the true length and breadth of the Ceiling; which if it be taken in Feet (as moft commonly "tis) they Multiply one into the other, and divide the Produdt by 9 , and the Quotient gives them the Content in Yards.
3. Frice.] In Landon the Workmanhip (via. Lathing, Plaiftering and Fin:fing, iscommonly reckon'd dbut two Pence Rhree Farthings per Yard. In Rutland, and fome Parts of Kent, (as about Tunbridge-rrells, \&cc.) I know they have 3 d. fer Yard And in rome parts of Suffex, the Wramen tell me they has \& d . per Yard. Eut if the Workmen find all Materials, and Lath it with Heart-oak-laths, then they commonly reckon about 1 s . fer Xad, and with Fir-laths, about 8 d. per Yurt.
Ceiling-joyfts, or Bcams.

1. What.] See Ceiling. N. I.
2. Of Medgaving.] The Work of patting up Cciling ioy fis is meafurd by the Square; and therefore the length in fect being Multiply'd by the breadth in Feet, and 2 places of rigures being cut of on the Righe-hand, what remins 10 the Letr-hand is Squares, and what is cut off is odd Feer, of which 25, make a quarter, so, half, and 75 three quarters of a 3quare.
3. Price.] Putting up of Ceiling joyfts is worth 4 or 5 s fome workmen tell me, they have 5 s .) fer Squate.

Cillurs.

1. Wh.at.] They are the inweft Rooms in a Houfe, the Ceilings of which lie level with the Surface of the Ground, on which the Houfe fands, or at leaft but very little higher.
2. Situation.] Sir Henry Wiotson fuys, They ought (unlefs the whole Houfe be Cellar'd) to be Situated on the North'fide of the Houfe, as needing a cooland frefh Air.
3.0f Diesing.] They are commonly digged by the folid Yard, containing 27 filid Feet; and therefore the length, breadth, 30d dapth in Fett, being all Multiply'd together, and the Pro-
duat divided by 27 , the Quotient will give the Content in folid Yards.

Cement.

1. What.] In Architecture is a frong, flicking, cleaving, or binding Mortar.
2. To make.] There are 2 forts of Cement, which fome Bricklayers ufe in Cementing of Bricks for fome kind of Mouldings, or in Cementing a Block of Bricks (as they call it) for the Carvisg of Scrolls, or Capitals, or fuch like, Gc. One is call'd cold Cement, the other bot Cement; becaufe the former is made, and ufed without Fire, but the latter is both made and ufed with Fire. The cold Cement being accounted a Seciet, is known but to few Bricklayers ; but the bot Cement is common. I hall here fhew how to make them both.

To make the Cold Cement.

Take half a Pound of old Chefhire-cheefe, pair off the Rind, and throw it away; cut or grate the Cheefe very fmall, and put it in to a Pot, put toit about a Pint of Cows-milk, let it flandall Night, the next Morning get the Whites of 12 or 14 Eggs, then take half a Pound of the beft unflack's or Quick-lime that you can get, and beat it to Powder in a Mortar, then fift it through a fine Hair-five into a Tray or Bowl of Wood, or into an Earthen-difh, to which put the Cheefe and Milk, and fir them well together with a Trowel, or fuch like thing, breaking the Knots of Cheefe, if there be any, then add the Whites of the Eggs, and temper all well together, and fo ufe it. This Cement will be of a white colour ; but if you would have it of the colour of the Brick, put into it either fome very fine Brickduft, or Almegram, not too much, but only juft to colour it.

To make the Hot Cement.

Take one Pound of Rozin, a quarter of a Pound of Beeswax, half an Ounce of fine Brick-duft, half an Ounce of Chalkduft, or Powder of Chalk; fift both the Brick-duft, and Chalkduft through a fine Hair-five, (you may beat the Brick, and the Chalk in a Mortar, before you fift it) boil all together in a Pipkin, or other Veffel, about a quarter of an Hour, ftirring it all the while with an Iron, or a piece of Lath, or fuch like; then take it off, and let it ftand 4 or"s Minutes, and it's fit for ufe.

Note, That the Bricks that are to be Cemented with this kind of Cement, muft be made hot by the Fire before you fread the Cement on them, and then rub them too and fro

104

one upon another, as Joyners do, when they glew 2 Boards together.

Cbambers.

1. What. In a Building all thofe Rooms are calld Cbambers, thit are fituated between the lowermoft (excepting Cellars) and the uppermoft Rooms. So that in fome Houfes there are 2, in others 3, or more Stories of Chambers.
2. Situation.], Sir Fenry Wotton tells us, That the principal Chambers of Delight (in a Houre) ought to be fituated toward's the Eaft.
3. Proportions.] The length of a Well proportionate Lodg-ing-chamber, ought to be the breadth, and half the breadth of she fime, or fomewhat lefs; but ought never to exceed that lenetl; for the height three quarters of the breadth will be a conventent heighth.

Cbannel.

Io the Ionick Capital, is that part which is under the Abacus, and lies open upon the Echinus, or Eggs, which has its Centers, of turnings on every fide, to nake the liglutes.
Cbapter,

In Architecture fignines the Top, or Head of yillar.
Chauncel,

Vulgarly Cianie!, the moft facred part of a Temple, or Church, fo calied trom the Cancelli, or Lattices, which anceently us'd to feparate that part from the reft of the Church. The. Siccks callit Adjoin.

> Cbimneys.

1. What.] A Chimney is a particular part of a Houfe, de. fignd for the Conveniency of Fireing, with a Tube, or Tunnel to convey away the Smoak.
2. Of Medfuring.] Tho Erick-idyers, in making of Chimneys, cocommonly agree by the Hearth; yet they fometimes alfo "rok by the Rod, as in ather Erick-work; and thes their Me. Hed ostaking thicir Dinienfions, is thas:

If the Chimney ftand fingly, and alone, not leaning againft, or being in a Wall, and it be wrought upright over the Mantletree to the next Floor; they gird it about the Breff for the length, and take the heighth of the Story for the breadth, and the thicknefs of the Jambs for the thicknefs. Eut if the Chimney fland againft (or in) a Wall, which is before meafur'd with the reft of the Building; then the breadth of the Breft, or tiront, together with the depth of the 2 Jambs, is the length, the heighth of the Story, the breadth, and the thicknefs of the Jambs, the thicknefs. But if the Chimney fland in an Angle of a Room, and have no Jambs; then the breadth of the Breft is the breadth, the height of the Story, the length, and the thicknefs, the thicknefs. Then for the Slaft, [which is that part which appears above the Tyling,] they commonly girt it about in the fmalleft part, for the breadth, and take the length of the Shaft for the length; and they commonly reckon the thicknefs of both fides for the thicknefs, in confideration of the widths, Pargeting, and Scaffolding.
Note. Here is nothing to be deducted for the Vacancy betwixt the Hearth, and the Mantle-tree, becaufe of the widths and the thickning for the next Hearth above.
The Dimenfions being thus taken in Feet, the Work is thus meafur'd : Multiply each Particular length by his breadth, and that Product by its thicknefs in half. Bricks, [i.e. by 2, for x Brick thick, by 3 , for 1 ! Brick thick, and by 4, for 2 Bricks thick, \&rc.] Add thefe Products into one Sum, which divide by 3. and the Quotient will give the Content of the whole Chimney in Feet, at the Standard-thicknefs of a Brick and half. Then divide this Content in Feet, by $272 \frac{\ddagger}{\ddagger}$, and the Quotient will be the Content in Rods. But, beciufe 'tis difficult to divide by 272 , you may do thus.-Add 2 Cyphers to the Right. hand of the Content in Feet, and then divide it by 27225 , and tie Quotient will be the Content in Rods, as before. And, every 100 , of the Remainder is one Foot of Work. Or 6807, of the Remaindcr, is $\frac{1}{4}$ of a Rod, 13613 , is $\frac{1}{2}$ a Rod, and 20419 is 3 of a Rod.
3. Frice.] Mr. Leybourn fays, That Chimneys are fometimes meafur'd, and paid for by the Rod, like ether Brick-work: And fometimes, fiys he, they are paid for by the Fire-hearth s, at fo much the Fire-hearth ; which fays he) is various, frem 20 , to 50 s. the Hearth. And Mr. Wing fays. That building of Chimneys for ordinary Euildings, with Architrave, Frieze, and Cornifh, is worth, from 15s. to 20 s. per Hearth, according ta their heighth, and fubftance; and without Architrave, and Frieze, from to s. to 20 s . But in great Buildings, fays lie, (1 Suppofe he means in his Countrey of Rut land,, they are ufuallv done by the Foot, viz. at about 6%. per Foot. I know they are commonly built in Lordos, and about Tunbridge-mells, for a-
bout is s.per Hearth: But fome Workmen in Suffex tell me, they have 20 s . and fometimes 25 s . per Hearth for building of 'em.
4. Rules about Timbers near ${ }^{\circ} \mathrm{em}$,] 1. Let no Timber be laid within 12 Inches of the fore-fide of the Chimney-jambs. 2. Let all Joyfts on the back of any Chimney be laid with a Trimmer, at 6 Inches diftance from the Back. 3. Let no Timber be laid within the Tunnel of any Chimney.
5. Proportions.] Palladio lays down the following Proportions, for the breadths, and depths of Chimneys, (on the in-fide) and for their heighth to the Mantle-tree.

Chimneys in	Breadth		
Halls,	6, 7, or 8 Foot.	$4{ }^{*}$, or 5 Foot.	$2 \times$
Chambers,	$5 \frac{1}{2} 6$, or 7 Foot.	4, or $4 \frac{1}{2}$ Foot.	, or $2:$ Foot.
Wardrobes.\}	$4,4 \frac{1}{2}$, or 5 Foot.	4, or $4 \frac{1}{2}$ Foot.	Fo

Neverthelefs, in thefe Points, the Workman ought rather to be guided by the Modern Faflions, than by the words of this ancient Architect.
6. To prevent Smoaking.] Mr. Lucar (in bis Solace,) advifeth to leave 2 holes (one over another) on eacly fide of the Chimney, ore flopeing upwards, and the other downwards, or elfe to place 2 Pipes (in the fame Pofition) on each fide of the Chimney. Through thefe holes, or Pipes, fays he, the Smoak will eaflly pals out of any Tunnel, which way foever the Wind blow. I cannot tell how this may take effect; but to me it feems but a Fancy. I think Fbilippe de l'Orme's Advice is better, who propofcs to provide a hollow Brafs-ball of a reafonahle Capacity, with a little hole on one fide for the Reception of Water. (I think it were better made with a §ort Nofe to skrew off, when 'tis filld with Water; and then the hole at the end of this Nofe needs not to be bigger than that at the fmall end of a Tobacco-pipe.) This Ball being fill'd with Water, is to be placed (with the hole upwards) upon an Iron-wire, that fhall traverfe the Chimney (a little above the Mantle-tree, at the ordinary heighth of the greateft Heat, or Flames; and when the Water ishot, it will be rarify'd, and break out of the hole in a windy Vapour; which will force up the Smoak, that otherwife might linger in the Tunnel by the way, and oftentimes revert. It were good to have 2 of thefe Balls, one of them may.
fupply the place of the other, when 'tis exhaufted;'or for a need, blow the Fire in the mean time.

I have feen on the top of fome Chimneys, a for t of Fane, or Weather-cock, (fome call it a beggar-man) whofe back-fide is cover'd with Plates of Tin; fo that which way foever the Wind be, it can never keep down the Smoak in the Chimney; but it always comes out free, and undifturb'd. I have known this laft Contrivance help Chimneys, that before Smoak'd very much. But I believe the ingenious Carpenter, and Bricklayer might prevent the Smoaking of any Chimney, by a due Sttuation of the Doors of the Room, and an apt falling-back of the Eack, and convenient gathering of the Winge, and Breft of the Chimney. But how, and in what manner this is to be done, I muft refer to the next Opportunity.

Chimney.books.

1. Wbat.] Thefe are Hooks of Stcel, or Brafs, put into the Jambs of the Chimney, in each Jamb one, for the handle of the Fire-pan, and Tongs to reft in.
2. Price.] The Steel-hooks are commonly about is. the pair, and the Brafs ones, about 2 s. the pair in London; for fo 1 have there bought 'em.

Cbimncy.jambs.

The fides of a Chimacy, commonly coming out Perpendicirlarly (tho fometimes Circularly) from the Back; on the Extremities of which the Mantle-trec refteth. Alfo, fee Cornerflone.

Cbimney-picces.

1. What.] Certain Mouldings of Wood, or Stone, fanding on the fore-fide of the Jambs, and coming over the Mantletree.
2. Price.] Chimney-pieces of Free-ftone, wrought plain, are worth 10 s. but there may be fuch Mouldings wrought in 'em, as with their Coves, and other Members, may be worth 20, 30, or 40 s. a piece. Chimney-pieces of Egyptian, or black Fleak'dmarble, or of Rance, or Liver-colour'd-marble, are worth (of an ordinary fize) 12, or 141 . a-piece. Chimner-pieces of Wood, are alfo of different Prices, as 10, 12, or 14 s. to 20 s . a piece, more or lefs, according to their largenefs, goodnefs of the Stuff, and Curiofity in the Workmanfhip.

3. Painting.] They are commonly Painted by the Piece, at about 2 s. a piece, more or lefs, according to the goodnels of the Work, and largenefs of the Chimney-pieces.
Chaptrels.
V. Arches. N. 6.

> Cima.
V. Capital. N.4.

Cimatum-tium.
V. Capital. N. 3.

Cimarelfa.
As Scima-reitia.

Cimbia.

V. Pedeftal. N.

> Gincture.
Q. Pedeftal. N.

Cilery.

A Term in Architecture, fignifying the Drapery or Levage that is wrought upon the Heads of Pillars.

Cimeliark,

In Architecture is a Veftry, or Room where the Plate, Veftments, and other rich things belonging to the Church are kept.

Ciferns.

I. What.] They are Veffels, made to rerve as Receptacles of Rain, or other Water, for the neceffary ufes of a Family.
2. To make.] If you defign to make your Cifterns under your Houfe as a Celiar, which is the beft way to preferve your Water for culinary Ufes; then may you lay your Erick or Stone with Terrace, and it will keep Water very well. Or you may make a $C_{e m e n t, ~ t o j o i n ~ y o u r ~ B r i c k ~ o r ~ S t o n e ~ w i t h a l, ~ w i t h ~ a ~ C o m-~}^{\text {Com }}$ pofition made of flacked fifted Lime, and Lin-feed Oyl, tempered together with Tow or Cotton-wool.

Or you may lay a Bed of good Clay, and on that lay your Ericks for the Floor; then raife the Wall round about, leaving a convenient fpace behind the Wall to ram in Clay, which may be done as faft as you raife the Wall: So that when 'tis finifh'd, 'twill be a Ciftern of Clay, walled withia with Erick, and being in a Cellar, the Brick will keep the Clay moift; (altho' empty of Water) that will never crack. This (fays Mr. Worlidge) I have known to hold Water perfectly well, in a fhady place, tho' not in a Cellar. Thus ina Garden, or other place, may fueh a Ciftern be made in the Earth, and cover'd over; the Rain-water being convey'd thereto, by declining Channels running to it. Alfo, in, or near Houles, may the Water that falls from them be conducted thereto.

Clamp.

1. What.] A Clamp is a kind of Kiln built above Ground (of Ericks unburnt) for the burning of Bricks.
2. How made, and how Bricks are burnt in it.] An ancient and cxperienced Workman, that has made and burnt many Tboufands of Bricks, tells me, That they build their Clamps much after the Method that the Arches are built in Kilas, viz. With a Vacuity betwixt each Bricks breadth, for the Fire to afcend by; but with this difference, that ioftead of Arching, they trussover, or over-span, as they phrafe it, i.e. they lay the end of one Brick about half way over the end of another, and 反o, till both fides mect within half a Bricks length, and then a bonding Erick at the top finithes the Arch. They make the Mouth, (where the Fire is to be put in) about $2 \pm$ Foot wide, and about 3 Foot high, and then they begin to trufsover, which they do for 3 Bricks in heighth; which with a bonding Brick on the top, will clofe up the Arch. But after they huve begun, make the Place to receive the Fuel (betore it is clofed at the top) they fill it almofl full with wood, abd upon that lay Sea-coal; thein beigg over-fpan'd like an Arcle, on all the Sirface thy frew

Sea-coal, and then they lay another Courfe of Ericks the other way, laying them at a little diftance from one another, and ftrewing Sea-coal upon them: And thus they continue, laying one Courfe one way, and the other another (and ftrewing Seacoal betwixt each Courfe) till they come to 8 or 10 Foot high, according as the Clamp is to be of bignefs. This being done, they fire the Wood, and that fires the Coal ; which being all burnt out, the whole Clamp of Bricks is burnt.

> Clamp-nails.
V. Nails. N. 3 .

Clappnails.

V. Nails. N. 4 -

Cleaving

Of Laths, Pales, Shingle, and Timber. V. Laths, Pales, $b c_{0}$

> Cleer-flory-window.
V. Window. N .

Clencb-nails.
V. Nails. N. 5 .

Clinkers.

Thofe Bricks are fo calld by fome(which having naturally much Nitre, or Salt-peter in them, and lying next the Fire in the Clamp, or Kiln,) by the violence of the Fire they are sun, and are glazed over.

> Cloifter.

A clofe and feparate Habitation, where Friars, Monks, and Nuns live retir'd from the World. Alfo a long Place cover'd with a Floor, or Flat-fond, fupported by pillars, V. P. Architrave.N. 2.

Clofet.
A general Name for any very fmall Room. The Contrivance of Clofets in mof Rooms, now fo much ufed (and fo ufful) is ons great Improvement of Modern Architecture,

Clout-nails.
V. Nails. N. 6.
Clout-brads.
V. Brads, N.

Cockle.fairs.
As Winding-ftairs, V. Stair-cafe. N. III.
Coins,

As Quoins.
Collorino.
V. Capital. N. 2.

> Colledge.

A Place fet apart for the Society; and Cohabitation of Students.
Collar-beam.

A Beam fram'd crofs betwixt 2 Principal Rafters:

Column

5. What.] A Column, in Architecture is a round Pillas for Support and Ornament.
6. Parts.] Every Column (in the largeft Senfe) confifts of 7 pripcipal Parts, viz. Pedeftal, Bafe, Body, Capital, Architrave, Frieze, and Cornifl ; each of which hall be handled in their proper places of the Alphaber.
7. Kinds.] Architects reckon s Orders or Kinds of Columns viz. Tufcan, Dorick, Ionick, Corinthian, and Roman, Compofita, or Compound Order. I Mall (here) fay fomething to each of thefe, in their Order.
8. Tufcan.] The whole heighth of this Column, and the heighth of each principal Part thereof, according to feveral Aurhers, is, as in the following Table.

Note (r.) That in this, and the 4 following Tables of the heighths of Columns, and their Parts; I have taken pains to reduce all my Author's Dimenfions to Modules and Minutes; reckoning a Module the Diameter of the Body of the Column, juft above the Bafe; and a Minute the 60 th. part of a Module. (2.) That the heighth of the Body of a Column, is reckon'd from the top of the Bafe, to the top of the Altragal under the Capital.
5. Dorick.] The whole heighth of this Column, and the heighth of each principal part thereof, according to Several Authors, is as in this Table.

f. Innick:] The whole heighth of this Column, and the heighth of each principal part thereof, according to feveral Authors, is as in this Table.

7. Corinthian.] The whole heighth of this Column, and the heighth of each principal Part thereof, according to feveral Authors, is as in this Table.

2. 8. Roman Compofita, or Compound.] The whole heighth of this Column, and the heighth of each principal part thereof, accurding to feveral Authors, is as in this Table.

9. Of Diminifhing.] Columns of every Order muff be fo formed; that the upper part of the Body be left than the lower ; which dimenifhing mut be more or left, according to the proportion of their heights; and is to begin from one third part of the whole Shaft upwards, [ie. the lower third part is to be of an equal bigness;] which Philander preferibes (by his own precife meafuring of ancient Columns) as the mot graceful Diminution. And for the quantity to be diminifhed, Architects lay down this Rule.m-

Smaller at the top, juft under the Capital, than below, juft a bore the Bale, i. e, the Diameter of

the Diameter of the Column below.
Colours.
The Principal Colours us'd in Painting of Houses, © rc. Shall be treated of in their proper places.

Compofite Order.

V. Column. N. 3°

Compartition.

By this Term, Architects underftand a graceful, and Weful Diftribution of the whole Ground-plot of an Edifice, into Rooms of Office, and of Reception, or Entertainment.
Eompartment,

In Architedure, is a particular Square (for an Infcription, of fome other Device) marked out in fome Ornamental Part of a Building.

Concamerate.

To make an Arched Roof, as in Vaults, fre to Arch over.
Conclave,

In Architecture, is a Clofet, or Inner-chamber.

Conducts.

Sewers, or Gutters to convey away the Suillage of a Houfe. In thefe (fays Sir Henry Wotton) Art hould imitate Nature, in feparating thofe ignoble Conveyances from the Sight; and (where there wants a running Water,) finould place them in the moft remote, and loweft part of the Foundation, with fecret vents paffing up through the Walls, (like a Tunnel) to the wide Air ; which all Ztalian Artifts commend for the difcharge of noifome Vapours; tho elfewhere to my knowledge little practifed.

Conges,

In Architecture, are the Rings, or Ferrils, heretofore us'd in the Extremities of Wooden-pillars, to keep 'em from fplitting, afterwards imitated in Stone-work.

Contramure,

In Architecture, is an Out-wall, built about the Wall of a City.

Copeing of Walls.

I. What.] The Copeing of a Wall is the Top, or Cover of it, made floping to carry off the Wet.
2. Price.] I have known Brick-walls (of I Brick thick) coped with Stone, for 4 d . per Foot, lineal, (or running) Meafure ; the Workman drawing the Stones into this Price,
3. Drawing of Stones, for-] I have known I d. Ier Foot given for drawing the Stones for Copeing of Walls.

Corbet,

A hort piece of Timber laid into a Wall, with its end nick. ing out fome 6 , or 8 Inches, more or lefs, according as the O:cafion requires: The under-fide of the end fo flicking out, is Cometimes cut into the Form of a Boultin; fometimes of an $0 \cdot G$, fometimes of a Face, and fometimes of other Forms, according to the Fancy of the Workman; the upper-fide is flat and plain. Corbels are commonly placed (for Strengfh-fake) immediately under the middle of the Semi-girders of a Platform, and fometimes under the ends of the Camber-beams; but then they are commonly placed a Foot or 2 below the Beam, and a piece of Timber ftands upright (clofe by the Wall) from the Corbel to the Beam.

Corbets,

Holes left in the Walls of ancient Churches, \&rc. for Images to ftand in.

Corintbian Order.

V. Column. N. III.

Cornertiles.

V. Tiles. N. V.

Corner.fones.

1. Wbat.] Are 2 Stones, (commonly of Rigate, or Fire flone) of which there flands one in each Jamb of a Chimney. Their Faces are hoilow in the brcadth, being a certain Sweep of a Circle. The breadth of each Stone is equal to the breadth of the Jam'); and their heighth reaches from the Fiearth to the Mantle - tree.
2. Price.] I have bought of thefe Stones in London for 20 s . per pair.

> Cor:nice-nifh.

1. What] A Cornifh in Architecture, is the uppermoft of the 7 principal parts of a Column. V.Column, N. 2. Cornifhes are alfo placed on the top of Wainfot, and under the Eves of Houfee, \&fc.
2. Kinds.] There are is many kinds of Cornifhes, as there are Orders of Columns, viz. Tufcan, Dorick, Ionick, Corinthian, and Compofite ; to which may be added, Plain, Cantaliver, Modilion, and Covcing Cornifhes: Of all which I hall treat in their Order.
3. Tufcun.] According to Vitruvius, the whule heighth of the Tulcan-cornifh is a Module; which height being divided into 4 grand Divifions, the uppermoft of 'em goes to the Boultin, and Fillet under it; and this Divifion being fub-divided into 4 parts, 3 of 'en go to the Boultin, and a to the Fillet. The 2 next grand Divifions go to the Corona, or Cromn, [which is flat and plain,] And the loswermoft grand Divifion goes to the Cimatuirt; which being again divided into 3 pacts, the uppermoft oi 'cmgres to the Fillet, and the other 2 to the Cima, or O-G. The Proieture of the whole Corninl, (as a!fo of each Member thereat,) he makes to be equal to its heighth; and the under fide of the Corona he divides into in parts, whereof he gives 2 to the Eillet, and I to the Denticle, and fo Alternately; for "tis fitting (fass he) to have 3 as deep as they are large.

According to Scammozzi, the whole heighth of this Cornifh i. 39 Minutes, and the heighth of each Particular Menber thereof (beginaing at the top, and defcending
orderly,) is as follows; The upper Lift, or Plint of the Cornifh, 3 m . the Supercilium, Lift, Tinea, or Eyebrow $1 \frac{1}{2} \mathrm{~m}$. the upper Scima, or $O-G .8 \mathrm{~m}$. the Lift under it i $\frac{1}{2} \mathrm{~m}$. the Corona, or Crown $9 \frac{3}{4} \mathrm{~m}$. the Lift, $1 \frac{1}{2}$. the Scima, or greater $O-G$ 6 m . (here's $1 \frac{1}{2} \mathrm{~m}$. left betwixt, for the depth of the Dentils) the Supercilium, or Lijt, $1 \frac{3}{4} \mathrm{~m}$. the Scimatium, or little $O G$ 5 m . the Lift 2 m .

Palladio makes the whole heighth of this Corninh 44 m . whereof the Lift at the top is $3 \div \mathrm{m}$. the Scima Rella 10 m . the Lift under him $2: \mathrm{m}$. the Corona 10 m . the Boultin gm . the Lift $1 \frac{1}{2} \mathrm{~m}$. and the Cavetto, or Hollow $7 \frac{1}{2} \mathrm{~m}$.
4. Dorick.] Vitruvius makes 2 different Fa hions of Dorick Cornifhes; the whole heighth of one of 'em is $\frac{1}{2}$ a Module, which divided into 2 grand Divifions,one of ern, (riz. the upper one) is again divided into 8 parts, of which 1 part goes to the Li/t at the top, and the other 7 to the O G. The other grand Divifion is fubdivided into 4 parts, of which the uppermoft, and lowermoft parts go to the 2 Cimatums, and the 2 middle parts go to the Corona, the Lift of each of thofe Cimarum's is 's of the whole Cimatum. The whole heighth of the other faflion'd Cornifh is 40 m . which divided into 9 parts, 2 fhall go to the 2 Facia's, 1 to the Thorus, or Boultin above 'em, 2 to the Modilions above that, 2 to the Cromn, and 2 to the Cima, or $O-G$ at the top. The Modilions, as alfo the Crown being divided, each into 3 parts, one of 'em fhall go to their refpective Cimatum's, of which their Lifts are each $\frac{1}{3}$ of the whole.

According to Scammozzi, the whole heighth of this Cornifh is 42 m . whereof the Lift at the top is 2 m . the great $0 . G 7 \mathrm{~m}$. the Lift 1 m . the little $O \cdot G 3 \mathrm{~m}$. the Corona 8 m . the Lift Im . the Cafement 2 m . the Boaltin 5 m . the Lift m . the Square 7 m . the Lift 1 m . and the Boultin 4 m .

Palladio, in his Verbal Defcription of this Cornifh, makes the whole heighth of him to be 35 m .but in his Figure 'tis but $33 \frac{1}{4} \mathrm{~m}$. Of which the Lift at the top is $2 \frac{1}{4} \mathrm{~m}$. the Scima Recta, or $0-\mathrm{G}^{\text {. }}$ $6 \frac{3}{4} \mathrm{~m}$. the Lift 1 m . the Scima Reverfa $3 \frac{1}{4} \mathrm{~m}$. the Corona 8 m . the Ovolo, or Boultin 6 m . the Lift i m. and the Cafement at the bottom 5 m .
5. Inick.] The whole heighth of this Cornifh, according to Vitruvius, is about $52 \frac{1}{2} \mathrm{~m}$. He defcribes 2 fafhion'd Cornifhes in this Order ; in one of them he divides the whole heighth into II parts, the 2 uppermoft of which goes to the Cimatum, and the Boultin under it; and this fpace being fub divided into 6 parts, 2 of 'em goes to the Fillet of the Cimatum, 3 to the $0-G$, and 1 to the Boultin. The next 2 grand Divifions go to the Corona. The next 3 grand Divifions go to the Cartoufes, and the Cimatum over 'em; and this fpace being divided into 5 parte, I of 'em makes the Cimatum, of which the fillet is $\frac{1}{3}$ of the whole. Then $1 \frac{1}{2}$ of the next grand Divifion goes to the

Boultin, and Fillet over. it, of which the Fillet is $\frac{1}{3}$ part of the whole. Again, I ' of the next grand Divifions goes to the Cafement, and fillet over it, of which the fillet is $\frac{2}{4}$ of the whole. And the laft grand Divifion goes to the Cimatum, of whinch the Fillet is $\frac{8}{3}$ part of the whole. In the other fafhion'd Cornifh, he divides the whole heighth into 6 parts, the uppermoll of which goes to the $O-G$, whereof its Fillet is ' ${ }_{6}$ part, the next grand Diviifon being fub-divided into 3 parts, the uppermoft of 'em goes to the Cimatum, (of which its Fillet is $\frac{1}{3}$ part, and the other 2 to the Corona. The next 2 grand Divifonsare fub divided into 5 parts, the uppermoft of which goes to the Cimatum, (of which its Fillet is $\frac{1}{5}$ part) and the other 4 to the Cartoufes. The next grand Divifion being fub-divided into 4 parte, 3 of 'em go the Boultin, and i to the Fillet under it. And the lift grand Divifion being fub-divided into 4 parts, 3 of ${ }^{\circ} \mathrm{em}$ go to the Cafement, and : to the Cimatum, of which its Fillet jo : patt.

Scammozzi makes the whole heighth of this Cornifh 42 m . whereof the lift at the top is 2 m . the Scima Reta $5 \frac{1}{2} \mathrm{~m}$. the Lift 1 m . the Scima Reverfa $2 \frac{1}{2}$, the Coromat $6 \frac{1}{2} \mathrm{~m}$. the Scitha Reverfa $2 \frac{1}{2} \mathrm{~m}$. the cartoufes 7 m . the Bultin 4 m . the Lift 1 m . the Square 5 m . the $L 2 / t \mathrm{Im}$, and the Boultin 4 m .

Palladio makes the whole heiglith of this Cornifh $46 \frac{3}{2} \mathrm{~m}$. whereof the Liff at the top is $2 \frac{1}{2} \mathrm{~m}$. the Scima Rella 7 m . the Lift I m. the Scima Reverfa $3 \frac{1}{2} \mathrm{~m}$. the Coroma $\& \mathrm{~m}$. the Scima Reffa over the Modilions $3 \frac{1}{4} \mathrm{~m}$. the Modilions $7 \frac{1}{2} \mathrm{~m}$. the Lift 1 m . the Dvolo, or Boultin 6 m . che Lijt $1 \frac{1}{2} \mathrm{~m}$. and the C_{a} vetto, or Hollow s m.
6. Cirinthian.] The whole heighth of this Cornifl according tol'itruvius is about 1 Module. He defribes 2 different famond Corrities in this order; in one of which he divides the whole heightls into s parts, the uppermott of which goes to the $0-G$, of which its fillet is $\frac{3}{6}$ part. Tinen $\mathbb{1} \frac{1}{4}$ of the next grand Divigons goes to the Cormand cmatum over it, of which Space the cinnatum is part, and its Fellet of that. Then $1 \frac{3}{3}$ of the next grand Divifons goes to the Modtlions, and Cimatum over 'em, of whichspace the cinatum is, part. And the laft prand Divifien goes to the Boultin, and billets over and under is; and this being divided inco 3 parts, the lowermont goes to the Fillet, and the other 2 being again divided into 6 . parts, s of 'em go to the Bultin, and the other to the Fillet over him. in the other faftiond Cornifin, he divides the whole beighth into 9 parss, of which the two uppermoft being divided into 4 farts, 3 of em go to the $0-G$, whofe rillet is of the whole) arid the nther to the cimatum over the Coroma, (whofe rillet js $\frac{17}{3}$ of the whole.) The next 2 grand Divifions go to the corona. The nest a grand Divifions so to the Modilicns, and the Cimatum ouver 'cm, ${ }^{\text {a }}$ 'or this fpace goes to the Cimatum, (whofe Fillet is; of the whole Cimatum) and the sell to the Modilions.

The next 2 grand Divifions go to the Boultin, and Fillet over and under it, which Fillets are each $\frac{1}{7}$ of the whole. And the laft grand Divifion goes to the cima at the foot of the Cornifh.

According to Scammozzi, the whole heighth of this Cornifh is $46 \frac{3}{4} \mathrm{~m}$. whereof the Lift of the Scima ReCta is 2 m . the Sci$m a$ Recta $6 \frac{1}{2} \mathrm{~m}$. the Lift of the Scima Reverfa 1 m . the Scima Reverfa $3 \frac{1}{4} \mathrm{~m}$. the Half-round $1 \frac{1}{2}$ ni. the Corona $7 \frac{1}{2} \mathrm{~m}$, the Cimatum $3 \frac{1}{2} \mathrm{~m}$. the Modilions $8 \frac{1}{2} \mathrm{~m}$. the $\mathrm{i} \mathrm{ij} / \mathrm{Im}$. the Boultin 5 m . the Li/t 1 m . andthe Scima $5 \mathrm{~m}_{\text {, }}$

The whole heighth of this Cornifh, according to Palladio, is 50 m . whereof $2 \frac{1}{3} \mathrm{~m}$. goes to the Lift of the Scima Reila; the Scima Reita is $8 \frac{1}{3} \mathrm{~m}$. the Liff $\frac{2}{\div} \mathrm{m}$. the Scima Reverfa 3 m . the Corona $7 \frac{1}{3} \mathrm{~m}$. the Lift of the $\dot{0} \cdot G$ over the Modilions $\frac{2}{3} \mathrm{~m}$. the O-G $2 \frac{2}{3}$ m. the Modilions $8 \frac{1}{2} \mathrm{~m}$. the Boultin $4 ; \mathrm{m}$. the Lift Im . the Boultin $5 \frac{1}{=} \mathrm{m}$. the $L i j \mathrm{I}$ I m . and the $O G .4 \frac{1}{2} \mathrm{~m}$.
7. Roman chinpofita, or compound.7 The whole heighth of this Gornifh, according to Vitruvius is equal to the Diameter of the Column above, which is about $52 \frac{1}{2} \mathrm{~m}$. He defcribes 2 different falhion'd Cornifles in this order ; one of which he di. vides into 2 parts, the uppernoft of which goes to the $0 \cdot G_{9}$ (whofe Fillet is $\frac{1}{7}$ of the whole,) and the undermoft to the corona and Cimatum over it; and this Space being divided into 4 parts, 3 of "em go to the cirona, and one to the cimatum, whofe Fillet is $\frac{1}{3}$ of the whole Cimatum.

Scammozzi makes the whole heighth of this Cornifh 48 m . and Palladio 45 m . but for the heighth of each particular Member, they leave us very much in the dark; for according to neither of them the Sum of the Particulars will never make the whole heighth ; and befides Palladio fets down no Dimenfions to feveral of the Members of this Cornifh. So that I think, a Man is but little the wifer for what any of thefe Authors fay of this Cornifl.
8. Cantaliver.] Workmen tell me, that thofe are call'd Can-aliver-Cornifhes, that have Cantalivers under 'emı. V. Canta. livers. N. I.
9. Modilion.] Workmen tell me, That Modilion-cornifnes are fuch as have Modilions under 'em. V. Modilions.
10. Coving. Workmen tell me, That they call that a Covingcornih, which has a great Cafement, or Hollow in it, which is commonly Lathed and Plaifter d upon Compafs, Sprockets, or Brackets.
11. Price.] Some Cornifhes (fays Mr. Leybourn) are valued by the piece, dearer, or cheaper, according to their largenefs, goodnefs of the Stuff, and curiofity of Workmanflip: O, thers are meafur'd, and rated by the Foot Running-meafure, i.e. by the number of Feet in length only. Experienced Carpenters tell me, That for making of plain Cornifhes (without any Carving) under the Eves of a Houfe, they commonly have is. per

Foot, running-meafure. Mr. Wing tells us, That Cornifhes are valu'd according to their Nature, and Bignefs; a Modilioncornifh (of Free-Rone) of 18 , or 20 Inches thick, is worth, (aays he,) 5 or 6 s . per Foot, runninz-meafure. He alfo tells us, (in Joyners Work,) That a Modilion-cornifl, with its carved Work, is worth 7 s . per Foot. And a plain Modilion-cornifh of 12 , or 14 Inches, (fays he) will be worth 3 s. 6 d . or 4 s . fer Yard, running-meafure. A Brick-cornifh, (as fome Workmen tell me,) 2 s. 6 d. per Foot.

Corona.

V. Cornifh.

> Coving.

1. What. V. Cornifh. N. 10. Alfo, Workmen tell me, That Coring is alfo ufed in this Senfe : viz. When Houfes are built projecting forth over the Ground-plot, and that is (as commonly 'tis) turn'd with a Quadrant of a Circle, (or Semi-arch) of Timber, which is Lathed and Plaifter'd; (under which People may walk dry; as 'tis much us'd at Tunbridge-wells, on the upper Walks;) I fay, fuch Work is commonly calld Coveing.
2. Price.] Mr. Wing (in his Geodetes Pralticus Rederius) fays That the Carpenter's Work of Coveing, is worth 4 s. per Square
Crown,

As Corona.

Crown-poft,

Is that Poft, which (in fome Euildings) flands upright in the middle, between 2 principal Rafters, from which there goes Struts, or Braces to the middle of each Rafter. It is alfo calld a King-piece, or Joggle-piece.

> Crofs garnets.
V. Hinges. N. 2.
Cro/s.grain'd.

Timber is faid to be crols-grsin'd, where a Bough, or fome Eranch fhoots out on that part of the Trunk of the Tree; for the Bough, or Branch mooting forwards, the Grain of that Eranch fhoots forivard alfo, and fo ruans a-crofs the Grain of
the Trunk; and if it be well grown together, it will fcarce be perceiv'd in fome Stuff, but only in Working.

Crofs-Multiplication.

5. What.] Crofs-Multiplication is the Multiplying of Feet and Inches by Feet and Inches; or Feet, Inches, and 12 th. parts of Inches, by Fect, Inches, and (12 th .) parts of Inches. 'Tis fo call'd, becaufe they Multiply a-crofs, as I fhall thew how in the following Number. This way of Multiplication is much us'd by Workmen, in meafuring their Work: but, I think, none of emare fo nice, as to take their Dimenfions to parts of Inches, except Glaziers.
6. How perform'd.] Set the Multiplicand over the Multiplier, as is done in the following Examples, and then Multiply as the Lines Direct ; obferving to fet down the particular Products under Feet, inches, or Parts refpectively, according to thefe Rules.
7. Feet Multiply'd by Feet, produce Feet.
8. Feet by Inches, produce Inches.
9. Feet by (12 th.) parts, produce parts.
10. Inches by Feet, produce Inches.
11. Inches by Inches, produce Primes, (or 12th.) Parts (of an Inch.)
12. Inches by (12 th.) parts, produce feconds, or 12 th. parts of the $12 t h$. part of an Inch.
13. Parts by Feet, produce (12 th.) parts.
14. Parts by Inches, produce Seconds.
15. Parts by Parts, produce Thirds, (or 12 th. Parts of a Sccond.)
But Note, That in fetting down the Products of each Denomination, (except the Feet) you muft fet down only the odd ones above 12 , or 12 's, carrying all the 12 's as fo many Unites to the next greater Denomination.

Example 1.

F. In.

Let it be required to Multiply 5-3 by
F. In. Pa
= F. 4 In. fet riown the Numbers thusoon $\left\{\begin{array}{l}5-3=00 \\ 1+1 \\ 2-4-0\end{array}\right.$
Say 2 times 5 is 10 Feet.
Then 2 times 3 is 6 Inches

Then 4 times 5 is 20 Inches, or 1 F. 8 In .——————o And laftly, 4 times 3 is 12 parts, or 1 Inch.

The whole Sum is
$12-3-0$
or 12 Feet and a quarter.

$$
\text { Example } 2 d \text {. }
$$

Let it be requir'd to Multiply 5 Foot 3 Inches, and 6 Parts, (or a half) by 2 Foot, 4 Inches, and ς Parts. F. In. P. S. T.
Set down the Numbers thus.
Then I fay,
2 times 5 Feet is
2 times 3 Inches is
2 times 6 Parts is
4 times 5 Feet is
4 times 3 Inches is
4 times 6 Parts is
6 times 5 Feet is
6 times 3 Inches is
6 times 6 Parts is-
that is 12 Feet 6 Inches and $\frac{3}{4}$ of an Inch, and $\frac{3}{4}$ of a Twelfth part of an Inch.

Cubicle,

A Bed.c`umber.
Culinary,

Culinary,

Of, or belonging to the Kitchin.
Culvertail,
As Dovetail.

> Cupulo,

In Architecture, is a fmall Room (either Circular; or Polygonal) ftanding on the very top of a building; fome call it a Lanthorn.

$$
\text { Cy-mace-macium }{ }_{2}
$$

As Cimatum.

Dado.

V. Capital. N. a.

Deals.

Of Drefing.] Dreffing of Deals, [i.e. rough-plaining them over with a Fore-plain, that they may dry,] is worth (fays Mr. Wing.) is. per fcore: and fo I know fome Workmen have; tho; others tell me, they have known them done for 9 d. per frore.

> Deal-floors.

Of Laying.] The laying of ordinary Deal-floors, [i. e. plaining, and joyning em, dre.] is worth 5 s. per Square. But if they are laid with Dovetail, or Key joynts, without Pins or Nails, fome Workmen tell me, they have 10 s. per Square. And if the Workman find Deals, and lay them the ordinary way, 'iis worth from 24 to 30 sejer Square, according to the goodnefs of the Deals, But if the Deals are very good, and laid either
with Dovetail, or Key-joynts, (without Nails, or Pins) 'tis worth $35 s$, or 40 s. the Square. V. Pl. Floors.

Deck-nails.

V. Nails. N. 6.

Decor.

This Word is perfect Latin, and fignifies (properly) a good Mein, Gracefulnefs, or Beauty. Vitruvius, (Lib. 1. Cap. 2.) reckons it one of the 6 Confiderations that accomplifhes the whole Art of Architecture: And by this word he defigns the keeping of a due Refpect between the Inbabitant and the Habitation. Whence Palladio concludes, That the Principal Entrance muft never be regulated by any certain Dimenfions; but by the Dignity of the Perfon that is tolive in it ; yet to exceed, rather in the more, than in the lefs, is a Mark of Generofity, and may be excus'd with fome noble Emblem, or Infcription, as that of the Conte di Bevilacqua, over his large Gate at Verona, (where had been committed a little Difproportion:) Patet famua, Cor magis.

Den.tills:tellis.ticuli,

A Member of the Cornifh, in Some of the Orders of Architecture. In the Tufcan Order, they are the Spaces left betwixt the Niches, cut out at certain Diftances, on the under-fide of the corona, which makes it refemble a fet of Teeth, from whence they have their Name. In the Dorick, Ionick, and Corinthian Orders, (without the Pedeftal,) they ftand under the Corona.

Diaftyle,

A fort of Edifice, where the Pillars are placed at the diftance of 3 of their Diameters from one another.

Diamond-glafs.
V. Glufs-çurry.

Diamond-pavement.

V. Paving. N. ${ }^{10}$ 。

Digging.

of Meafuring.] The digging of the Ground for Cellars, and for the Foundations of Buildings, is commonly done by the Yard folid, containing 27 folid Feet ; and that is ufually counted a Load. Therefore the Dimenfions being given in Feet, Multiply the length by the breadth, and the Product by the depth, dividing this laft Product by 27, and the Quotient will give the Content infolid Yards.

Diminifhing.

of Columns.] V. Columns. N. 9:

> Dogg.nails,
V. Nails. N. 7 :

Dome,

An Italian, and French Word, fignifying a Town-houre, or chief Meeting-place of a City. Alfo a Cupulo, a round piece of Architecture, (refembling the Bell of a great Watch,) fet upon the top of a Building, particularly upon Cathedral Churches, where it ferves for the Bell-tower.

Dorick-order.
V. Column. N. 3.

Doors.

1. What.] Doors are thofe parts of a Building, that are ferviceable for the Paffage in and out of Perfons.
2. Situation of.] Firft, See that the Doors of a Houfe be as few in number, and as moderate in Dimenfions, as may poffibly confift with other due Refpetts: for in a word, all openings are reakenings. Secondly, That they do not approach too near the Angles of the Walls; for 'twere a moft efiential Solecifm to weaker
weaken that part, which muft flrengthen all the reft: A Precept well recorded, but ill practifed by the Italians themfelves particularly at Venice. Thirdly, Let the Doors, if poffible, be right over one another, that the void may be upon the void, and the full upon the full; which will bea great ftrengthning to the whole Fabrick. Fourthly, Let them (if poffible) be plas ced oppofite to one another, in fuch manner, that one may fee from one end of the Houfe to the other; which will not only be very graceful, but alfo moft convenient; in refpett 'twill cool the Houfe in Summer, by letting the Air through the Houfe, and in Winter to keep out the Wind, which way foever it fit. Fifthly, 'Tis not only Ornamental, but very fecure to turn Arches over the Doors, which will difcharge them in a great meafure, from the Super-incumbent weight, which might otherwife prefs upon them too much.
3. Dimenfions of] Inner-doors in large Buildings ought to be 3 Foot broad and upwards, and their heighth twite their breadth. And Inner-doors in leffer Buildings, ought never to be lefs than $2 \frac{1}{2}$ Foot broad, and $5 \frac{1}{2}$ Foot high.
4. Price of-] Doors made of plain whole Deal, and Rabited, are for Stuff, Nails, and Workmanfhip, valu'd at 3 d. or 4 dothe Suo perficial Foot; the Workmanhip only, about 2 s . or 2 s .6 d . per piece; as fome Workmen tell me. But double-doors, Batton'd, and made Wainfoot Fafhion, may be worth (for Work manhip and Materials) 7 d. the Foot, and for the Workmanthip alone, about 4 s. or 5 s. per piece. Folding-doors and Cafes, (as fome Workmen tell me) are worth about 20 or 30 s . per pair; and Balcony-doors and Cafes, the fame. Ordinary Doors without Plaining, are worth making and hanging up, about iso per piece. In Stone and Brick-buildings, Architraze-doors Cafes are worth, according to the breadth of the Mouldings, $1 d$. an Inch, i. e. if the breadth of the Moulding, (from the out-fide to the infide of the Frame) be 9 Inches, 'tis worth 9 d . per Foot running-meafure; if io Inches, 10 d . per Foot; and fo proportionable, more or lefs. And Fromi/h-doors in great Buildings, with their Ornaments, as Pilafters, \&oc. are worth, (according to their Magnitude, and variety of Workmanfhip included,) fome 3 l. fome s 1 . Some more, to 10 or 20 l . per piece; and perhaps more. V. Batten-doors. N. 2.

Dormant tree.

In Architecture is a great Beam lying crops.a Houfe, othere wife call'd a Summer. V. Summer,

Dorman-mer,

In Architecture is a Window made in the Roof of a Houfc; it ftanding upon the Rafters. Dormers are commonly ruted at fo much per piece; according to their bignefs, dic.

Dormantiles.
v. Tiles. N. VIII.

Dor-tor mitory.
A Sleeping-place:
Dovetails.
A fort of Joynts, or Hinges, fo callid, becaufe they refemble the Tail of a Dove or Pigeon.

Dovetailing.

In Architecture, is a manner of fafning boards, (or any Timber) tojether, by letting one piece into another, in the Form of a Dove's Tail:
Dirag,

In Architecture, a Ddor is frid to drag, when in opening and flutting it hangs upon the Fioor.

> Dragón beam.

Dragon-beams are 2 frong Braces, or Struts, that fand under a Breffummer, meeting in ani Angle upon the Shoulder of the King piece.
Drapsiz:

ATern in Architefure, and Yuinting, it being a Worf wherein Cloaths are zeprefented. Alfo as Cilery,
Drotygh, or Draft.

1. What.] A Drauht, or Drat, is the Pigure of an intent ded Building deferibed on Paper ; whereon is laid down (by Scale, and Compafs) the devifed Diviions, and partitions óa every Room, in its due proportion to the whole Einibing.
2. Its Ufefulneis.] तs "tis ufual, io "tis (difo) very conventient for any perfon before he beximis to erect a Buildiag, to have Defigns, or Draghits irawn upon Paper, or Veilum; in which. Draughts the Ground pla-, or Ichnogrenhy cs each Floor, of Story, is delineated, and reprefenced: As alo the Form and Fafhion of each Front, together with the Wincows, Doors, and Ornaments, (if they defign any) are to be thewa in the Orthographies, or Diaughts of the Uprights."

Sometimes more Fronts than one are fhewn perfpectively in a Draught, and then 'tis call'd Scenography; but this is noteafily underftood, except by thofe that underftand the Rules of Perfpective. And therefore 'twill be more intelligible to the feveral Workmen, to have a Draughtof each Front, in a particular Paper by it felf;and alfo to have a Draught of the Ground-plot,or Ichnography of every Floor, or Story, is a Paper by it Self; becaufe many times the Conveniencies, or Contrivances in one Story, differs from thofe in another, either in the bignefs of the Chimneys, or Divifions of the Rooms, fome being larger in one Story than in another, and fometimes having more Chimneys in one Story than in another, δc.

All which things being well confider'd, anddrawn on Pdpers, before the Euilding is begun ; thefe Draughts will be a great Guide to the Workmen, and fave them a great deal of time in contriving their Work; and befides there will be no meed of Alterations, or tearing, and pulling the Euilding to pieces after 'tis begun; which, beffides the hindrance of the Procedure, makes the Building lame and deficient; nothing being fo well done, when 'tis put up, and pull'd down, and fet up again, as if it were well done at firf. Bcfides, it makes the Workmen uncafie to fee their Work, (in which they have taken a great deal of Pains, and us'd a great deal of Art) to be pulld down again. V. Building, N. H. 2.

The drawing of Draughts is moft commonly the Work of a Surveyor, tho' therebe many Mafter-workmen that will contrive a Building, and draw a Draught, or Defign thereof, as well as moft (and better than fome) Surveyors. Eut whoever makes a Draught of a Euilding, ought to be very well skill'd in the Theorical Part of Architecture. I muft at prefent omit the particular Directions for making a Draught, (the Bookfeller requiring haft; and fearing leaft this firft Edition Thould be too large;) but this, and feveral other Curiofities, not yet made publick, may find a place in a fecond Edition.
Drips,

In ArchiteCture, are certain kind of Steps (made on a flat Roof) to walk upon, a way of Building much us'd in Italy. The Ronf is not quite flat, but a little rais'd in the middle; and thofe Steps, or Drips, lie each a little inclining to the Horizon.
Drops,

In Architedure are an ornament in the Pillars of the Dorick Order, underneath the Trigliphs, reprefenting Drops, or little Sells.

Dutch Bricks:
Y. Bricks. N. 5.

Eaves,

IN Architecture, is the Margin of the Roof of a Houfe; that part of the Reof that hangs over without the Walls.

Eaves-lath.

That thick feather-edg'd-board, generally naild round the Eaves of a Houfe, for the lowermoft Tiles, Slate, or Shingles to reft upon. Eaves-laths are commonly fold for $1 d . \frac{1}{2}$ or 2 do a Foot, (running-meafure) according as they are of goodnets.

Echinus.

Ү. Capital. N. 2.
\%. Anchors.
Eggs.

Elaboratory.

A Place to Workin; properly a Chymift's Work-houfe, of Shop.

Emboofing,

In Architecture, is a kind of Sculpture, or Engraving, where: in the Figure fticks out from the Plain whereon it is Engraved, and according as it is more or lefs protuberant, is calld by the Italians Baffo Mezzo, or Alto-relievo, and by the Englifho Baf-relief, Mean-selief, or High-relief.

Embrajure,

In Architefture, is the Enlargement that is made in a Vỉali, on the in-fide of a Window, or Gate, to give the more Light ${ }_{\text {a }}$ or for the more Convenience of the Gate, or Window.

Entallature,

In Architefure, fignifies the Architrave, Frieze, and Cor aifh. Y. the Words Architrave, Crc.

> Entry,

In Srchitecture, is a Room defignid only (or chiefly) for Paffage to and fro betwixt other Rooms, or from the outer Doos into the Houfe.

As Frieze.

Epiftyle tylium.

Eurithmia.

A Term of Architecture, us'd by Vitruvius, by which he intends only. That agreeable Harmony, that ought to be between the length, breadth, and heighth of each Room in a Fabrick.
Eye-brozi.

As Lift, or Fillet. V. Capital.
Eye,

In Architefure, is the middle of an Ionick Volute, or Scrol, cut in the Form of a Kofet

Eabrick.

1. What.] A Church, a Houfe, or any other Build-
2. Of Ceifuring.] I am defirous, (fays Sir Henry Wotton) to niut up thefe Elements of Architecture with fome Methodical Directions for Cenfuring of Fabricks already rais'd ; for indeed, without fome way to contract cur Judgment, which among fo many Particulars, would be loft by Diffufion; I hould think it harder to be a good Cenfurer, than a good Architect; becaufe the nonking fait may be helped by Deliberation, but the Judging muft fion from an Extempry Habit. Therefore, (not to leave this laft piece of Architedure without fome Light.) I could winh liim that conses to examine any noble Work, firf of all to examine himielf, whether the fight of many brave things before, (which remain like impreffed Forms in his Mind, have nor made him think nothing good, but that which is the beft; for this Humour were too fowre. Next, before he fettle any Opinios upon the work, let him by all means feek ro inform himelf of the Age therenf. And if he find the appasent Decays to exceed the Proportion of Time; then let him conclude, That either the Materials were too flight, or that the Seat is nought.

Now, after thefe Premiffes, if the Building be found to bear his Years well, then let him fuddenly run backwards, for the Method of Cenfurimg is contriary to the Method of Compofing) from the Ornaments, (which firft allure the Eye) to the more Efential Members, till at laft he beable to form this Conclufion; That the Work is Commodious, Firm, and Delightful; which are the 3 Capital Conditions requir'd in good Euilding, by
all Authors, both Ancient and Modern. And this is, (as I may term it,) the moft fcientifical way of Cenfurng. There are 2 other ways which I muft nor forget. The firft, which jou may find in Georgio Vaffari, before his laborious Work of the Lives of Architects,) is to pafs a running Examination over the whole Edifice, according to the properties of a well Shapen Man. As wherher the Walls fland upright upon a clean Footing and Foundation; whether the Fabrick be of a beautiful Stature; whether for the breadib it appear well burnifhed; whether the principal Fntrance be in the middle of the Front, or Face; whether the Windows, (as our Eyes) be fet in equal number and diftance on both fides; and whether the Offices (like the Veins in our Bodies) be ufefully diftributed, for. The fecond way you may find in Vitruvius himfelf, Lib. 1. Cap. 2. Where he fummarily determineth 6 Confiderutions, that accomplifh this whole Art, viz. Ordinatio, Difpolitio, Eurythmia, Symmetria, Decor, \&o Diffributio, each of which fee in their proper places.

Face,

In Architecture, is any Member that has a great breadth, and but fmall Projefture, as the Architrave in the Front of a Building.

Face of a Stone.

By the Face of a Stone, Workmen mean that Superfice or Plain of the Stone that is to lie in the Front of the Work; which is very eafily known when the Stones are fcap:'d; for the Face is always oppofite to the Back, and the Back goes rough as it comes from the Quarry. But in rough Stones, Workmen generally choofe to make onc of thofe fides the Face, which in the Quarry lay Perpendicular to the Horizon, and confequently the breaking (and not the cleaving) way (f the Stone. For a Clearer underftanding of this V. Stone, N. 4.

Faceing

Of Timber Buildings with Brick] Some Workmen tell me, That they have fometimes faced Timber-buildings with Brick; which, fay they, is thus done,-All betwist the Timber, the Wall is a Brick's lengeh thick; (or a 9 Inch Wall, and againft the Timber but ${ }_{2}^{1}$ a brick, or $4{ }_{2}^{\frac{-1}{2}}$ Inch Wall. Eut .Workmen do not approve of this way of Facing of Timber-buildings, by reafon the Mortar doth fo extreamly burn the Timber.

$$
F_{a,-c i a}, \cdot c i o,-f h a,
$$

In Architecture, is no more but a broad I.iff, or Fillet, (V. Fillet.) They are commonly made in Architraves, (V. Architrave,) and in the Cornifh of Pedeftals, V. Pedeftal.. In Erickfuildings, Facia's are certain Juttings out of the Bricks, over
the Windows of each Story, except the upper one. And thele are fometimes plain, like thofe of Columns; but fometimes they are Moulded; which hews very handfome: And this Moulding is commonly a Scima-reverfa at the bottom, above which are 2 plain Courfes of Bricks, then an Aftragal, and laflly a Eoultin, or as Workmen (by Corruption) call it a Boultrel, or Boltel. In Stone-buildings 'tis the fame as in Brick, and they are alfo fometimes Plain, and fometimes Moulded with a Scimareverfa, or O-G. The Price of Facia's, if the Workmen find Materials, is commonly about 10 d . per Foot running-meafure, and the Workmanhhip only about $6 d$. or $8 d$. per Foot.

Feather edg'd.

Eoards, or Planks, that are thicker on one edge, than on the other, are call'd Feather-edg'd-boards, \&cc.

Felling of Timber.

V. Timber.

Fencing.

r. With Pale.] Some Workmen reil me, That for Paleing with 3 Rails, Cleft-pails, Rails, and Pofts, cleaving and fectin's up ; they have 3 s. 6 d . per Rod, felling the Timber and all. But then their Materials are laid down to their hand.
2. With fingle Rail and Polls.] Some Workmen tell me, That Fencing with fingle Railand Pofts, Felling, Cleaving, and fetting up, is commonly done for 8 d . or 10 d . per Rod; but then their Materials muft be laid down to their band, that they may have no carrying. Cthers tell me, That they have known it done for $4 \mathrm{~d} . \mathrm{s}$ d. or 6 d . per Rod, Felling, Clesving, and fetting up; but then the Fence muff be crofs a Field, or the like, where it is eafie digging the Poft-holes, (and where there is a pretty many Rods together, and the Materials mult alfo be laid pown to their hand, jand nct in Gaps, in Hedges, and the like, where 'tis difficult digging, and but a little at a place; for there "tis warth of d. so d. or i s. per Rod.

Fence-roalks.
Walls of Erick, or Stone, made round Gardens, éc. P. walls, N. V.

Fillet.

V. Capital, Numb. 2.
Eire fone.
?. What.] Rigate-ftone, commonly calld Fire-ftone, is a fort of frone very goods (and much us'd) for Chimney-fire-hearths, Quene Stores,
2. Price.] Mr. Miller, Stone-cutter in cold-barbour, London, tells me, That they ufually fell Fire-flone-hearths, at is. per Foot. And Chimney-corner-ftones of Fire-ftones at 20 s . per psir. And Elocks to fet up Coppers, each being about 3 f. longo I^{1} f.broad, and 8 or 9 Inches thick, at 6 s .8 d . per piece.

> Flat-bead-nails.
V. Nails. N.

Flat-point-nails.

Flemijh.bricks.

1. What.] They are a fort of Bricks brought out of Flanders, and ufed for Paving; being much nearer and flronger than common, or Clay-bricks. They are of a yellowilh Colour, and each Brick is $6 \frac{1}{4}$ Inches long, $2 \frac{1}{2}$ Inches broad, and $1 \frac{1}{4}$ Inch. thick. Now allowing $\frac{1}{4}$ of an Inch for the Joynt, 72 of 'em will Pave a Yard Square; but if they be fet edge-ways, then to Pave a Yard Square will require 100 Bricks.
2. Price.] They are commanly fold for 2 s. the Hundred.

Flint-zalls.

V. Walls. N. VH.

Elcors.

1. What. $]$ a Floor in Architecture is the under-fide of a Room on which we walk. floors are of feveral forts; fame are of Earth, fome of Brick, fome of Stone, and fome of VJood. Carpenters, by the word Florr, underfand as well the fram'd Work of Timber, as the Barding over it.
2. Earthen. $]$ Earthen-floors are commonly made of Lome, and fometimes (for Floors to make Malt on) of Lime, and Erook-fand, and Gurduft, or Anvil-duft from the Forge ; the particular Method of both which I muft at prefent omit ; but I cannot pals by that Receit (given us by the Infenious Sir Hugh Plat, (To malee an Artificial Compofition, wherewith to make (m)th, gliflering and bard Floors, and which may alfo ferve to Plaifter Walls with. Take, (fayshe) Ox-blood, and fine Clay, and tempering them well together, lay the fame in any Floor, (or Wall,) and it willbecome a very ftrong and binding Subftance ; as I have been told by a Gentleman and Stranger, who affirm'd to me, that the fame is of great ufe in Italy.

In the next Edition, I mav give you particular Directions for making of feveral kinds of Earthen Floors.
3. Brickand Stone.] Thefe I Thall prefer to Paving. V. Paving. N. I. to 9.
4. Ënorded.] Concerning Boarded-floors, 'tis to be obferv'd; shat tho' Carpenters never Floor their Rooms with Boards sill the Carcafs is fet up, and alfo enclos'd with Walls, leaft
the Weather flould wrong the Flooring; yet they generally rough-plane, their Euards tor Flooring, before they begin any thing eife abcut the Buiding, that they may fet them by to jeafin; which they do thus. They lean them one by one on end a flunt with the edge of the Eoard againtt a Baik, (or as 'tis call'd in forre parts of Suffex a Perch;) fomewhat above the heighth of halt the length of the Board, and fet another Board in the fame pofture on the other fide of the Balk, fo that above the Balk they crofs one another; then on the firft fide they fet another Board in that poflure, and on the fecond fide another, and fo alternately, till the whole number of Boardsarefet on end: Being fet in this pofture, there is leit the thicknefs of a Burd between every Eoard all the length, but jufs where they crofs one ancther, for the Air to pals throuala to dry and Ahrink em, againft they have occafion to ufe'e:m : Eut they fet them under fome coverd Shed, that the Rain or Sun comes not at them: For if the Rain wet "em, inftes! of frinking'em, it will fwell 'em; or if the Sun Thnetiercely upon 'en, it will dry 'em fo taft, that they will : ar or flate "em, as they Phrafe it, thit is, in plain Eng'th, frtit or crack. They have another way to dry and feafon their Boards for floors, viz. By laying them tlat upon 3 or 4 Ealks, each Board about the breadth of a Board afunder, the whole leazthof the B.athes. Then they lay amother Lay of Eoandsathwart upon them, each Board alfo the breadth of a Board afunder; then another Lay athwart the laft, and fo till all are thus laid. So that in this Pofition alio they lie hollow for the Air to pley between them.
5.0) Weriming] Tionrs Eoarded are commonly meafurd by the Square (of 100 superficial Feet, by Multiplying the length of the Room in Feet, by the breadth afect, arid the Product is the Content in Feer; theth meafure the Chimney-ways, and Well holes for Stairs by themelves, and deduct their Content in Feet from the whole Contenc in Feet, and from the Remainder cut off 2 Finures on the Right-hand, and what remains on the letthand is Squares, and what is cat offis oud beet of the ConEent of Filoorins in that Room.
6. Pruce.] The Framing of flows in ordinary Cuildines, (fass Mir. Whg) is wordh 7 or 8 s. per Square, in great Buidinss 10 or 115 . But feveral Workmen in Sijfex tell me, Thit they commoniy have but 4 s . Fer Square, for Eraming of thoos in ordinary Euildings. and Come Workmen (in Suficx) tell me, That if they trame the loyfts the whole diepth of the Eirder, and pay for having the Timber, they haves or 10 s. fer sgare.

The Price of Arying, [i. e. Doarding] of Ficors (favs Mro Reybuth, is various, accurding to the poodnefs of the Sruff, fom 1250 . 1020 s. the Square; but if the Eoarsis be found by the Euilder, then the commonly allowfor fluing, Joynting:
and laying of Boards, 4 or 5 s . per Square, befides Nails, of which 200 is a competent Allowance tor one Square of Hooring. Eut fome Workmen in Suffex tell me they will lay Deal. Floors Braded, and plain Joynts broken at every' 4 or 5 Eoards, for 3 s.per Square; and if they break Joynt at every Board, then 6 s. others lay 6 s. 8 d. or 7 s. per Square.

Plaifter-floors running, the Workman finding all, is worth, (fays!Mr. Wing,) is. 4 d . per Yard, but the working part only is worth 4 d. 5 d. or 6 d.per Yard. V. Pl. Deal-Hoors.

Flooring.brads.
V. Brads. N. 4 .

Fluted,

Made witl:-

Flutes,

In Archirecture, are the Hollows made in the Body of a Column. The Dorick, Ionick, Corinthian, and Compofite Columns are commonly Hiuted, or made with Flutes or Hollows, running along the Body of the Column, from the Bafe to the Capital. Each Column has 24 Flutes, and each Flute is hollow'd in, exadty a quarter of a Circle. The exact Method of drawing the tlutes thall be Shewn (Deovolente) in the next Edition: In the meansime you are to know, That ia the Dorick Column, the Fhites join tozether, without any Inter fpace; lat in the fonick, Corinthian, and Compofite columns, there runs a Lift betwixt every 2 Flutes.
Fiyers,

Are Stairs made of an Oblong-fquare Figure, whofe fore and brek lides !and paraflel to eacliother ; and fo are their Ends; the fecond of thefe Flyers ftands parallel behind the firft, the third behind the fecond, and fo of the reft. If one Flight carry them not to the intended heightit, then there is a broad half-puce, from whence they begin to Hy again, as at the firft.

Foliage,

in architefture ard Sculpture, is Work wrought in Bran. ciles and Leaves.
Foot-pace,

Or as fome call it, Half-pace, is a part of a pair of Stairs, whereon, atter 4 , or 6 Steps, you arrive to a broad Place, where you may take 2 or 3 paces before you afcend another feep, thereby to sale the legs in afcending the reft of the fer:

Fornication,

In Archite Ature, is an Arching, or Vaulting.

Foundation.

r. What.] The loweft part of a Building, (generally laid under Ground) upon which the Walls of the Superftructure are ras'd. This word is alfo fometimes taken for a publick: Building, erected for pious ufes.
2. Digging for, and laging of.] Concerning Diging for, and laying of the Foundation of a Building, there are feveral things to be well confider'd and taken notice of; the moft material of which I hhall extract from the beft Architeets, Ancient and Modern.
(1.) This, (fays that great Archited, Sir Henry Wotton,) resuires the exacteft Care ; for if the Foundation happen to dance, 'twill marr all the Mirth in the Houfe: Therefore, that we may Found our Habitation firmly, we muft firft examine the Bedof Earth, as I may call it,) upon which we Suild; and then the Subfrultion, as the Ancients calld it. For the former we have a general Precept in Vitrui ius, twice refeated by him, as a Point indeed of main Confequence. Firft, Lib. 1. Cap. 5. And again, Lib. 3. Cap. 3. in thefe words, (as Philander does well correat the vulgar Copies,) Subftrultiones, Fundatio fodiantur, (fays he) fi queant inveni, ad folidum, \&J in folido. Ey which words I underfand him to cornmend to us, not only a diligent, but even a jealous Examinafion of the Soil, and to fee that it be fit for our Purfofe; in order to which, Architeds ought to ufe their utmoft Diligence; for of all Errors that may happen in Building, thofe are the moft pernicious which are committed in the Foundation; becaufe they bring with'em the Ruin of the whole Fabrick; nor can they withont great difficulty be amended.
(2.) If the Foundation happen to be on a Rock, or hard Gravel; thefe (without digeing, or other artificial Helps,) are - of themfelves excellent Foundations, and moft fit to uphold the greateft Buildings.
(3.) If the Place where you Build, be firm folid Earth, you may dig for the Foundation, fo far as a difcrect Archited fhall think requifite for the Quality of the Building, and foundnefs of the Earth ; but how deep we fould dig, Vitruvitus has no where to my Remembrance determin'd, as perhaps depending nore upon Dificetion than Regularity, according to the weight of the Bullding; yet Palladio has fairly ventur'd to reduce it to Rule, allowing for the Cawazione, (as he calls it, i.e. the hollowing of the Earth for the Foundation) a fixth part of the heighth of the Fabrick; and if the Building be Cellard, he would have us. (as it flould feem) to dig fomewhat lower.

Pall adiolays down feveral Rules, to know if the Earth be firm enough for the Foundation (without Artificial Helps,) by Obfervations from the digging of Wells, Cifterns, and fuch like, (which he would have to be done in the firft place.) and froma Herbs growing there, if there be fuch as ufually frring up only in firmGround; alfo, if a great weight be thrown on the Ground, it neither founds nor flake:, or if a Drum being fet on the Groun 4 , and lightly touched, it does not refound again, nor hake the Water in a Vefiel fet near it; thele, (fays he) are figns of firm Ground. But the beft way to difcover the Nature of the Soil, is to try it with an Iron Croe, ar clle with a Borer, fuch as Well-digeers ufe,
(4.) If you Build upon Moffie, and loofe Earth, then you muft dig till you find lound Ground. This found Ground (fit to uphold a Building) is of divers kinds; for (as alberti well obferves) in fome places 'tis fo hard, as hardly to be cut with Iron, in other places very fliff, in others blackin!, in others whitifh, (which is accounted the weakeft.) in others like Chalk, and in others Sandy; but of all thefe that is the beft which is cut with mofl Labour, and when wet does not diffolee into Dirt.
(5.) If the Eath you build on be very foft, as in moorim Grounds; then you muft get good pieces of Oak, whofe length muft be the breadth of the Trench, or about 2 Foge longer than the breadth of the Wall ; thefe muft be laid crofs the Foundation about 2 Foot afunder; and being well ram'd down, lay long Planks upon them; which Planks need noc lie fo broad as the pieces are long, but only about 4 Inclies of a fide wider than the Bafis or Foot of the Wall is to be, and pinn'd or fpiked down to the pieces of Ok, on which they lie. But if the Ground be fo very bad, that this will not doe, then you muft provide good Biles of Osk, of fuch a length as wiit reach the good Ground, and whofe Diameter muft be abous 'is part of their length; thefe Piles muft be drove or forced down with a Commander, or an Engine for that purpore, and mult be placed as clofe as one can ftand by another; then liy long Planks upon them, and Spike, or Pin them down faft.
(6.) If the Earth be faulty but in here and there a place, and the reft be good Ground, you may turn Arches over thole loofe Places, which will difcharge them of the Vieight. You muft obferve to place your Piles, not only under the outer Walls, but alfo under the inner Walls that divide the Building; for if thefe hould fink, 'twould be a means to make the cuter Walls crack, and foruine the whole Fabrick.
(7.) Thus much for the Bed of Earth on which we Euild. We are next to confider the Subfruction, as the Ancients called it; but modern Artifts generally call it the Formdation. This is the Ground-work of the whole Edifice, which muft fuftain the thalls, and is a kind of Artificial Foundetion, as the other
was Aatural: About which thefe are the chief things to be rememberd. Fiff, That the bottom be precifely level, where the Ancients us'd toliy a Platform of good Planks. Secondly, That the lowelk Courfe or Row be meerly of Stone, (the broder ti:e better) clofely laid mithout Mortar ; which is a general Caution for all parts of a Building that are contiguous to Burrat or Timber ; becaufe Lime and liond are utter Enemies; and it any where unfil Confiners, then moft efpecially in the Foundation. Thirdly, Thiat the breadth of the Subffrulfon, be at leaft double to the breadth of the Wall to be raifed thereon. Yet here Difcretion is freer than Art, and you may make it brozier o: narrower, according as the goodnefs of the Ground, and the weight of the Fabrick fhall require. Fourthly, That the Foundation be made to diminifh as it rifes; yet So, as that there may be as much left on one fide, as on the other; to as the middle of that above may be Perpendicularly over the middle of that below: Which ought to bealfo obfervidin diminifhing the Walls above Ground ; for fo the Euilding becomes much ftrongerthan it would be, by making the Diminution any other way. Fifthly, That younever build upon the Ruins of an old Foundation; unlefs you are very weil affur'd of its depth, and that its ftrength is fufficient to bear the Building. Laftly, I find (in fome ancient Architeets) a curious Precept, That the Stones in the Foundation fioula be laid as they lay naturally in the Quarry: They fuppofing them to have moft Strength in their natural Pofture. But this Precept is generally obrervod by all good modern Artifts, not only in the foundation, but alfo in all parts of the Supeiffru. Cture; and that for a better Reafon than bare Conjecture, viz. Eecaufe they fiad the Stones to have a cleaving Grain, for be iubject to cleave) chat way of the Stone that lay Horizontal in the Quarry: And therefore, it the Horizontal Pofition of the Stone in the Quarry fhould be placed Vertical in the Building, the Sunerincumbent weight fhould he apt to cleave them, and io render the Fabrick Ruinous. V. Stone, and Bed, and face of a Stone.
3. How to value.] There are feveral ways, (fays Mr. Phillips,) by which Men value the Foundations (or Ground-plois) of Houfes. (1. Suppofe he means, in Cities and great Towns.) As

Firft, Some value them by their length or breadth toward the street, reckoning every foxt in front to be worth $\ddagger, 5,6$, 8, or 10 s. Yearly, according to the Strect, or Piace they ftuad in ; and this Yedrly Value they reckon at 20 Years' Parfine, and to every boot in front is worth $4,5,5,8$, or 10 Pounds. Eut this is a verv uncertain way, by resfon of the grent diference ie the depth of Houfs, Soc.

Secondly, Others value Foundations by their length and breadth, meafurd by the Eoot; reckoning every Foot to be worth 3, or 4 s . But this way will deceive you as much, or more than the other, if you don't fet a geod Rate upon each Foot of Ground. For Ground being fcant in a City, each Foot of it there may be worth 8 or ros. which in the Countrey is not worth ' a Farthing; tho' you reckon Land at 20 s . an Acre, and 20 Years Purchafe; for fo 'tis worth but one Penny a Yard, and every Yard has 9 Feet.

Thirdly, But the way that I hall prefcribe, (fays my Author,) as more general and certain, to value thefe Foundations, is to get a true and indifferent Eftimate of the Yearly Rent thele Houfes formerly went at, at a moderate rack Rent, without any Abatement or Diminution thereof by Fines, or any other Confiderations: Which being known, you may reckon the true value of thefe Fourdations to be 4,5 , or 6 Years Purchafe, according to the faid Yearly Rent, that is about the third part of the full worth or purchafe of the Fce fimple of the Houfe. Eut if you will more exactly judge of, and determine the true worth of thefe Foundations; it will be beft to range them into 3 forts, reckoning the firft and loweft fort of Houfes which yield leaft Rent, at 4 Years Purchafe; the $2 d$. fort which yield a moderate Reat, at 5 Years Purchafe, and the 3 d. fort which yield the biggeft Rent, at 6 Years Purchafe. My Author, (the afore-mentioned Mr. Wing.) demonftrates the Meliority of this way of Valuing Foundations, above any other ; but I have been already too long upon this Theam, and therefore I fhall defer the reft of his Ingenicus Difcourfe on this Subject to another Opportunity.

Fountain.

An artificial Spring of, (or Well to contzin) Water-in a Gurden; whither the Water is brount in Pipes of Lead, foc. and commonly made to fpout out of tie Mouths, or other parts of Images.

Framing.

1. Of Hufer.] I know fome Workmen in Sufex that doall the Framing in a Houfe, viz. The Carcafe, Flooning, Partithoning, Roofing, Ceiling-beams, Athtoring, dec. all topether, and make the Windows, and Lantherns, and hew and faw the Timber for 12 s. per Square.
2. Carcufe of a Houfe.] Mr. Leeboairn fays, That Carpenters cominonly work by the Square of 10 Foot, in crecting the Carcafe, that is, (fays he,) Framing and fetring up with the Partitions, Floors, Kafters, and fuch life; for which (Puys he.) they have (ia running Euildings) from 15 to 20 s . the Squre, and fome may leferve 30 s . or more, (and to a Equare of good Carcafe, (fuys he, $=0$ Font of Gromad rough Timber may be allow'd. Bu I know no: whether le means that the

Carpenter Fells,and hews and faws the Timber in to that Price; for fome Workmen in Suffex tell me, That for Framing the Carcafe of a Houre, and fawing the Timber, they have but 8 so per Square, and withnut fawing the Timber, but 4 s. 6 d . others fay but 4.s. per Square.
3. Carcafe of a Barn.] Some Workmen tell me, That they have for Framing of Barns 3 s. 6 d . per Square. They alfo tell me, That the Charge of the Carcafe of a Baromay be thus computed, vir. 4 s. per Square for fawing the Boards, confidering the Slabbing, and the Eoards lying one over another, 2 s. per Square for fawing the Timber, 3 s. 6 d. fer Square for Framing, and 4 s . per Square for the Timber, reckoning af 12 s. fer Tun, and i Tun to make 3 Square of Framing. So that the whole Charge of the Carcafe will be at leaft 13 s. 6 d . per Square; for if the Timber be more than 12 s. per Tun, then will the whole Charge be more than we have computed.
4. Partitions.] Tho fome Woikmen reckon Partitions into the Carcafe, as was faid, Num. 2. yet others reckon them by themfelves, for which, and fawing the Tiniber, they tell me, they have 6 s . or 7 s .per Square; and for the Workmanhip only, 2 s. 6 d. per Square.
5. Roofs.] Mr. Legbourn [ayt, That Carpenteis commonly reckon 4 or 5 s. in the Square more for Framing of Roofs, than for the refl of the Building. I knownot how he means; for I am fure fome ingenious Workmen in Suffex tell me, That for Framing of Roofs, and Sawing the Timber, they have but 8 or 9 s. the Square, and for the WorkmanKhip only but 4 s. Gid. per Square.
6. Finors.] V. Floors. N. 6.
7. Thirough.] Some Workmen tell me, That for Thorougho framing, (as they call it, that is Framing all, and making Doors and Windows,) they have 5 s.jer Square, for the Workmanfhip only.
8. By the great Square.] Some Carpenters tell me, That in Brick Buildings they fometimes work by the great Square; and then befides framing the Floors, Partitions, Roof, doc. they alfo make Doors, Windows, Cornifhes, Staireafes, and (in general) all that is Carpenters Work, and fawiny of Tim. ber. Yet I think they told me, they were particularly paid for making the Modilions, or Cantalivers. And for this Work they have 6 Pound fer Square. But 'tis to be noted, That in this way of working, they meafure only the Ichnography, or Ground-plot, only to the Dimenfions they add one of the Projectures in Front, and one in Flank, and fo caft it up.
9. Of Mersuring.] This kind of Work is meafur'd by the Square, as Fioors. V. Floors. N. s.

Fret.zoork.

V. Plaftick-Art.

Free-Mafons Work.

$\dot{\mathrm{V}}$. The Particulars in their proper places of the Alphabet,
Freeze, or Friese.

1. What.]A Freeze in Architecture is the uppermoft but one of the 7 principal parts of a Column. V. Column. N. 2.
2. Kinds.] There are as many kinds of Freezes, as there are Orders of Columns, viz. Tufcan, Dorick, lovick, Corinthian, and Compofite; of all which in their order.
3. Tufcan. Jlitruvius makes this Freeze flat and plain, and is heighth 30 Minutes. Vignola allo makes it that and plain, but in heighth 35 Minutes. Palladio makes it convex or fwelling, and in heighth but 26 Minutes. Scammozzi makes it plain, and in herghth 42 Minutes.
4. Dorick.] Litruvius, (and fo alfoVignola) makes this Freeze flat, only Carv'd with Trigliphs and Metops, and its heighth 30, or 45 Minutes. Palladio and Scammozzi alfo make it like Vitruvius, and in heighth 45 Minutes.
5. Ionick.] Vitruvius makes this Freeze flat, but commonly Carv'd with Acanthus Leaves, Lions, and Men, bc. And in heighth 30 Minutes. Vignola makes him fat alfo, and in heighth 45 Minutes. Palladio makes him Convex or Swelling, and in heighth but 27 Minutes. Scammozzi makes him flat, and in heighth 28 Minutes.
6. Corinthian.] Vitruvius makes :his Freeze flat, but Carv'd with Acanthus Leaves, and Men, δc. and in heighth 37^{3} Minutes. Vignola makes it like Vitruvius, but in heighth 45 Minutes. Palladio, and Scammozzi alfo make it like Vitruvius, but Palladio makes it in heighth 28 Minutes, and Scammozzi, $31 \frac{3}{4}$ Minutes.
7. Compofite.] Vitruvius makes this Freeze flat, but befet with Cartoufes, and Carv'd betwixt cach Cartoufe, and in heighth $52 \frac{1}{2}$ Minutes. Vignola makes it like Vitruvius, but in heighth but 45 Minutes. Palladio makes it convex, or Swelling, and in heighth but 30 Minutes. Scammozz makes it like Vitruvius, and in heighth but 32 Minutes.
Frefco.
8. What.] A way of Painting or Plaiftering, (or rather both) upon Walls, toendure the Weather, and reprefenting Birds, Beafts, Herbs, Fruits, לcc. in relief.
9. Of Painting in--] Painting in Frefoco is thus perform'd. Grind your Colours with Lime-water, or Milk, or Whey, and fo temper and mix them together in Pots, as in Size-coleuring.

Alfo, take the Powder of old rubbifi Stones, mix it with well burnt Flints, (or Lime) and Water; but walh out the faltnefs of the Lime, by otten pouring out the Water, and putting in frefh, the oltner the better ; and this makes the Plaifter of Compoft. Avoid moift Weather, for that has great influence on the Walls: And to make the Work the more durable. flrike into the Joints of tne Erick or Stone W:ll, ftumps of Horfe-nails, about 6 Inches afunder; for this will keep the Plaifter from pealing oif.

Then, with this Compoft Plaifter the Wall a good thick: nefs, letting it dry; then (your Colours being ready prepard and mingl'd,) Plaifter again over the former, the'thicknefs of a Half-crown, fo mach as you intend prefently to work upon; and whilft it is wet, work your Colours therein, which will, mix and incorporate with the Plaifter, fo as never to wafl out.

Work your Painting quick with a free Hand; for there can be no altcration after the firf Painting; and therefore make your Colour high enough at the firft ; you may deepen; but not eafily hcighten.

Avoid Mineral Colours, Earthy Colours are the beft, as all Olers, Spanifh-brown, Terra-vert, Spanifl-white, \&ic.

Your Bruftes and Pencils muft be long and foft; otherwife they will rake and rafe the Painting; your Colours muft be full, and flowing from the Bru/h; your Defign perfect in the Image, or Paper Copy; for in this Work you cannot alter or add upon any Colour.
3. Hiltory.] This kind of Painting was the ancient Grecian way of Painting, and fince much us'd by the Romans. Plutarch tells us, That Aratus the great Comminder under Ptolemy King of Egyt, (in a Complement to the Emperours Affections that way,) (pared the facking of a wealthy City; meerly for the Excellency of the frefos Painting upon the Walls of the Houfes.

There have been feveral whole Towns of this Work in Gers mave, rarely done, but now ruin'd by War.

At Kome there are = Chambers (in the Pope's Pallace) of Fielco, done by Rathacl Urbin, and Julio Komano (his Difciple) who finitied his Mafter's Work, which is yet call'd Ras placl's Defigns. Other Places there are done by Andrea det Sexto, and Ahichatel Argels, and fome other Artifts.

At Fountain-bleau in Fiance is moft excellent Fiejo-monk. It is the continu'd Travels of Clyfees in 60 pieces, done by Bols lames, Mintin Roule a Florentine, and otherio
Ficncleglafs.
V. Glafs. N. III.

Friefe.

As Freeze.

> Frigeratory.

A Place to make or keep things cool in.
V. Stone. N. I.

Free- Jtone.

> Front, or FrontiJpiece.

1. What.] The Face, or Forefide of a Foufe.
2. Of Serting.] The Setting, [that is making] of the Fronts of great Buildings, ziz. Afhlar, [or Stones,] Architrave, Windows and Doors, with the Ground-table, Fafhia's, and other Members, is worth from 3 l. 10 s. to $5 l$. per Rod, (fays Mro Wing, according to the goodnefs of the Work.

Frontijb.doors.
V. Doors. N. 4 .

Frowy.

Timber is byfome Workmen faid to befrow, when it is e: venly temperd all the way, and works freely without tearing,

Funnels of Chimneys.

1. What.] The Funnel of a Chimney is the Shaft, or fmalo lefk part of it, from the waft (where 'tis gather'd into its leaft Dimenfions) upwards.
2. Of making.] Palladio tells us, That the Funnels of Chimo nies muft be carri'd through the Roof, 3, 4, or s Foot at leafis that they may carry the Smoke into the Air. And here you muft take care, (fays he,) That they be made neither too wide ${ }_{\text {i }}$ nor too narrow; for if they be too wide, the Wind will drive back the Smoke into the Room; and if they be too narrow, the Smoke (not having free paffage) returns back alfo. Therefore 'tis that Chamber-chimneys are not made narrower than 10 or II Inches, nor broader than 15, which is the ordinafy depth of the Funnels of great Kitchin-chimneys; whofe Ereadth is 4 or 5 Foot within the Work, from the place whete the Breft ends to the top of the Funnel. Now the faid Brefl reach ${ }^{\circ}$ es from the Mantle-tree, to the Ceiling, or pitch of the Arch; always diminifhing within the Work, till you come to the Meafures of Depth and Breadth, beforementioned; ard from thence to the end of the Funnel, it muft be carri'd up as even as you car poffibly; for failing in this, it often happens the Suriole is offentive;

Furiss

Furrs.

Furrings.

In Architecture, Furrings is the making good of the Rafter ${ }^{3}$ Feet in the Cornifh. That is, when Rafters are cut with a Rnee, thefe Furrings are pieces that go ftraight along with the Rafter from the top of the Knee to the Cornifh. Allo when Rafters are rotten, or funk hollow in the middle, and pieces (cut thickeft in the middle, and to a point at each end) are naild upon them to make them ftraight again ; the putting on of thofe pieces is call'd Furring the Rafters; and thofe pieces fo put on are call'd Furrs.

Gable.cnd.

2. $\mathbf{W}^{\text {Hat.] }}$ In Architefture the Gable-end of a Houfe is the upright Triangular end of the Roof.
3. To meajure.] To meafure a Gable-end, Multiply the breadth at the bottom, by half the Perpendicular, or Line from the Angle at the top to the middie of the bottom; or Multiply half the former by the whole of the latter, and the Product will give the Content in fuch Meafures as the Dimenfions were taken in.

Gain.

The bevelling Shoulder of the Joyft, or other Stuff. 'Tis alfo us'd for the lapping of the end of the Joytt, foc. upon a Trimmer or Girłer, and then the thickness of the Shoulder is cut into the Trimezer alfo bevelling upwards, that it may juft receive the Gain, and so the Joyft and Trimmer lie even and Ievel upon their Superficis. This way of working is us'd in a Floor or Hearth.

Galleries,

Are long nazrow Rooms made on the Sides or Fronts of Houfes; they ferue for Walking, Eating, and other Divertifements. Theirlength (fas Palladio) ought to be at leaft s simes their breadth; tiey may be 6,7 , or 8 times theis breadth, bat muft not exceed.

Gardmanger.
Etors-Lioure, or Room to Set Meatin

Gates.

I. What.] 'Tis a thing fo well known, that it needs no Defcription, for all know it to be a place for Paffage of Perfons, or Horfes, Coaches or Wagons, djc.
2. Of their Proportion.] The principal Gates for Entrance, through which Coaches and Waggons are to pals, ought never to be lefs than 7 Foot in breadth, nor more than 12 Foot, which laft Dimenfion is fit for large Euildings.

As to the heighth of Gates, it ought to be $1 \frac{1}{2}$ the breadth or fomerhing more.

But for common Gates in Inns, where Wagons loaded with Hay and Straw go under, their heighth may be twice the breadth.
3. Of the Price of fome foits.] As to the Price of Gates, it is various accordiag to the ferts of Gates, which again will differ according to the Dimenfions and Workmanflip. Thofe which we flaill inention at prefent will be only Pallifads, and Pold Gates.

And firft of Pallifado Gates, Mr. Wing Gith, in Rutland, that if the Gates be 6 or 7 Foot high, and athe Workman find Timber and Workmanhip, they are worth about 9 or 10 s. per lineal Yard; but it hefind only Workmanhip, then "tis worth 6 or 7 s . per Yard.

I have obferved, that if they are Semi-polijato, with Knee-ling-rails at the top, handfomely Mouldect on both fides, and fquare Pallifados, Raifed Pannels, and Bulcation Mouldings on both fides, the Gates about 8 Foot high, and the Pofts a Foot Square, open'd in the Front, or sevalied with a Moulding ftruck in it on both fides the Revail, a Eafe and Capital laid on the Pofts, and the Heads cur into one of the Platomick Bodies; as fuppofe an Icolaedron, and the P ois wer about 10 or II Foot above Ground, the Workmanhip is worth 12 or 13 s. fer Yard lined; but if the Workmen find Timber, it will be worth more than 20 s. per lineal Yard, in lach Gates, to find all Iron-work, Painting, boc. it would be worth above 30 s. per lineal Yard.

Secondly, Of Pold Gates, (which are fuch as are fet in Fences for to chut up the Paffages into Pields, and other Inclofures.) Thefeare of 2 forts, either of fawed, or cleft Timber; for to make a fawed one, and fet him up, and his Pofts, the Price in different Places is from 3 s. 6 d . to 5 sor but if the Carpenter pay for the fawing, then the Price is-.from 5 s. to 6 s .6 d . Such a Gate, Timber and Work is worth.from 7 to 10 s. according to their goodnefs; but with Pofts from 12 to 15 s . But Gate and Iron-work from 10 to 13 s. But Gate, Iron-work, and Poits, from 15 s. to $18 s$ sut Cleft Pold Gates,clesving, and making, and hanging from 4 to $5 s$. and So proportionably for
all Timber, Iron, and Pofts, \&fc. The Reafon why the Prices are thus different, is, becaufe tis according to the Cuftoms of different Places where I had my Information. Perhaps the Reader may here expect that I fiould here fay fomething concerning Gates, and their Impolls, and other Ornaments according to the 5 Orders of Architedure; but I finding that I fiall make this 1 ft . Impreffion toolarge, I muft therefore defer it till another Opportunity.
Gavel,'

A word ufed by fome, by which they mean the fame as Guble, which V.
v. Glafs. Num. V.

> Germanglafs.

> Girding beams.
'Tis ufed by fome Architeds, to fignifie the fame as
Girders.

1. What.] Are fome of the largeft pieces of Timber in a Floor, the ends of them are for the moft part Framed into the Summers or Brefl-fummers, and the foyfts are framed in at one end to the Girders.
2. Of their Size or Proportion.] The Scantlings, or Size of Givders and Summers, upon the Re-building of London, after a Confultation of experienced Workmen, were reduced to an Act by the Parliament, and are thus fet down, as fit for all Fabricks, great and fmall, riz.

3. How to be la'd in the Brick-work.] No Girder, or Sum. mer cught to lie lefs than 10 Inches into the Wall, and their ends muft be laid in Lome.
4. That Girders and Summers be of good hearty Oak, as free fromknots as may be; becaufe that will be leaft fubject to break, and may with more fafety be relied on in this crofs and tranverfe Work.

Girt.

V. Fillet.

$$
G l a f s
$$

1. What.] All know it to be a diaphanous, or tranfparent Body made by Art, of Sand and Nitre, faith Pliny: 'Tis alfo made of white gliftring Flints, mixt with Sal-Alkali, or the Salt of the HerbGlafs-mork, or Sale of Fern-afhes for common Glafs, fome fay. Monfieur Blancourt faith, that the Venetians alfo ufe white Flints, and alfo a rich Sand, and likewife a fort of white Marble ; he alfo faith, that all white tranfparent Stones that will not burn to Lime, are fit to make Glafs; and that all Stones that are fit to ftrike fire, are capable to be made into Glafs.

I could here give you an account of the manner and method of making of divers forts of Glafs, and likewife the Hiftorical Account of its Invention, \&๘c. and many other Curiofities relating to Glafs; which perhaps might be Satisfactory to the Reader; but I wanting both time, and room in this fmall Volumn, I muft defer it till I have a better Opportunity.
II. The forts of Glafs. There are various forts of Glafs which are made ufe of in the World, but at prefent I hall confine my felf to fpeak only of thofe forts which Glaziers commonly work upon here in England, which are thefe following, viz. Crown Glats, which is of 2 forts, Lambeth and Ratcliff. 2. French or Normandy Glafs. 3. German Glafs of 2 forts, White and Green. 4. Dutch Glafs. 5. Newcafle Glafs. 6. Staffordfliere Glafs. 7. Briftol Glafs. 8. Looking.glafs. 9. Fealous Glafs; of which forts I fhall fuccinctly treat in their order.
III. Of Crown-glafs.] Is of 2 ' forts, Ratcliff and Lambeth Crown-glafs, of both which forts I will briefly treat. And
I. Of Ratcliff Crown-glafs.] That fort of Glafs which goes by this Name, is the beit and cleareft fort of Crown-glats s_{3} which fort was at firft made at the Bear-garden on the Bankfide. In the Year 1691, Ihad it Publifhed in the Gazette for Fune 15 , δc. where it is commended in this manner, and called Crown-window-glafs, wuch exceeding FrenchGlafs, in all its Qualifications. But now at the Bear-garden Looking-glafsplatesare made; the maker of this beft fort of Crown-glafs, being now removed to Ratcliffe, and upon that account it now bears the Name of Ratcliff Crown-glafs, as it did at firft of Bear-garden Crown-gla/s.

This fort of Crono-glafs is of a light Sky-blew-colour, which may be very diftinctly feen, if it be laid on a piece of white Paper.

I have been informed that an Englifh Glafs-maker went over into France, on purpofe to learn the Freach way of making

Glafs, which when he had attained to, he came over again into England, and fet up making of Crown-glafs, and therein much out-doins the Eremb his Teschers, as Englighen ufually do. I have been told by fome Londn Claziers, that there is 24 Tables dithis Crown-glafs to the Cafe, the Tables being of a Circular Firm, of about 3 Foot, 6 or 8 Inches Diameter, and by confequerice, each Table will be in Area about 9 or 10 Foot, and the Cafe hetwist 220 , and 240 Foot. This Gla/s is brought from Ratcliff in fuch kird of Frames as Nencaftle-glafs is brousht up into the Town, only the Newcaflle-glafs is brought on Shipboard, and this Ratcliff-giafs upon a Staff betwixt 2 Men, according as they carry a fmall Veffel of Eeer, or the like.

I have known this Ratcliff-crown-glafs fold aboun $g d$. per Foot in London, ready cut into Squares. And when wrought in Lead, and fet up, for about 18 d . per Foot.
2. Of Lambeth-crown-glafs.] This fecond fort of Crownglafs takes its Name alfo from the Place where 'tis made; "tis of a darker colour than Ratcliff-crown-glafs, inclining fomething to a Green.

This fort is fold in London for about 8 d . per Foot cut into Squares, and being wrought and fet up in Windows with Lead, its Price is about 16 d . per Foot.
IV. Of Fiencl-glafs,] By tome call'd Normandy-glafs, becaufe it was former!y made at Cheibourg in Normandy. But I am informed that the Work-houfes have within thefe few Years been removed, for certain Reafons of State to Auxerre in Burgundy. They alfo make Glafs at Nevers in Orleans, and likewife at St. Gobinnear La Fere in Picardy;but from which of thefe places cur Fiench glafs comes which we ufe in England, I camot certainly tell. But 'tis a thinner and more tranfparent Sort of Glas, than our Nemeafle glafs, and when tis laid on a piece of white Paper, it appears of a dirtyilh Green Colour. It ufed to be of a middle Price betwist Crown and Newcaftleglafs, and I have known it fold for 12 d . per Foot, wought in lead, and fet up; but fome fay 'tisnow (we have War with France, near as dear as Cromoglafs.

Of this Glais there is but 25 Tables to the Cafe.
V. Of German.glafs.] Of this fort of Glats there are 2 kinds, viz. Whate and Green.

1. White German glafs.] This Glafs is of a whitinh colours and free from thofe fpots and blemilhes which our Nerrafteglafs is fubject to, but it hath commonly fome fine or fimall curved Strcaks, or Lines. as the Newcaftle-glafs hath.
2. Green German-glafs.] This you may well fuppofe to be of greenilh Colour by its Name; it is fubject to have thofe fne Lines, or Streaks as the white is; but both this and the white German is ftraighter, and not fo crooked and warped as Evewafle-glafs is: Eoth thefe torts of Glafs are brought over
from Germany, and yet it is generally as cleap as Nercaffleglafs.
VI. Dutch-glafs. 3 It differs not much from Neemcaflle-glafs in its Colour, and I have obferved fome of it that hath been very crooked; I am informed that the Tables of this fort of Glafs are but fmall, 'tis not much ufed now in England. This Clafs bath its Name alfo from thofe that make it, $v i z$. The Dutch, for I am told 'tis brought out of Holland; 'tis alfo about the fame Price with Nemcaflle-glafs.
VII. Nemcaflle-glafs.] This fort of Glafs is of a kind of an Afh-colour, 'tis the Glais that is moft in ufe here in England, but tis fubject to have Specks, and Bleminhes, and Streaks in it, and 'tis very often warped crooked. Of this Gla $/$ s, Mr. Leybourn fays there is 45 Tables to the Care; but if 1 did not miffake, a Landon Glazier told me they had but 35 Tables to the Cafe, and Mr. Leybourn alfo faith, that each Table contain'd s Superficial Feet, and by Confequence a Cafe of 45 Tables to the Cafe will contain 225 Foot, the Glazier beforemention'd faid there was 6 Foot in a Table, and if but 35 Tables to the Cafe, that would amount to but 210 Foot. But 1 svas informed by one that told me he had taken the Dimenfions of fome Tables of Newcafle-glafs, and he found them to contuin 7 Foot at leaft ; for faith he, they are of this form; the upper edge as they ftand in the Cafes or Frames is Circular, about the 4 tb . or sth. part of a Circle, the Cord of which laith he was about $3 \frac{1}{2}$ Foot, the lower fide was ftrait, about 18 or 19 Inches, the Perpendicular from the bottom to the top about 3 Foot: From this Obfervation, a Cale of 35 Tables would amount to 245 Foot. Thefe Tables of Glafs are brought in Cafes, or flight Frames of Sticks fixed at fome diftunce one from another, into 4 corner pieces which are fouter. The ends of thefe Frames are made tapering nearer oue ansther at the bottom than they are at the top, according to the Form of the Glafs; but the fides are parallel, the Glafs is fet in on fome Straw. which is laid on the bottom of the Frame, and there is fome Straw atio put on the fides, and topof each Cafe, but none betwixt the Tables. Thefe Cafes are brought to London in the Coal-hips, they being fet on end in the Coles more than half its depth, by which means they are kept fteady from falling and being broke by the motion, and rowling of the Ship.

Mr. Leybourn faith, that a Cafe of 45 Tables, 5 Foot to a Table equal to 225 Foot, doth weigh about 200 lib. and by confequence 9 Frot will weigh about 8 it .

He alfo faith, the Price of Nexcafle-g!a/s is uncertinn, for when Coals are Plenty, then Glais is chicta, and when the Coals are dear at Landon, then Nemcaftit-blaf: is fo likewife, not that they want Coals at Newcaflle ; Wut becaufe they have
no other Conveyance for it to London. So that fometimes it is at 30 s . per Cafe, and other times 40 s .

But I was informed by a London Glazier, that the moft conflant Price was 34 s. per Cafe.

To cut a Cafe of this Glafs into Quarries Diamond fafhion (with halfs, and quarters, and 3 quarters of Quarries, as the Glafs falls out) fome fay it is worth 6 or 7 s . but I did hear a Glafs-cutter fay he would do it for 3 s . or 3 s .6 d .

Niercaftle-glafs cut into large Squares are fold for 22 to 25 s . per $: 00$ Foot, according to their Size.

And fmall Squares, from 19 to 22 s. per 100 Foot.
And Suarries, of Nencaftleglafs for about 16 s . per 100 Foot.
Glazing done with this Newcaflle-glafs with Quaries, banding, Soddering, pinning the Cafements being included, the ufual Price is $s d$. or $6 d$. per Foot in London, and there abouts, but in feveral parts of the Countrey they have 6 d . per Foot, and will be paid for pinning of the Cifements befides.
VII. Glazing in fome Places of England, as in Rutland, and other Northern Parts they Glaze with Quarries of Newcaftleglafs for $4 \frac{1}{2} d$ or $5 d$. per Foot. And Squares wrought into Lead, and fet up for 6 d . per Foot.

But then again in Suffex and Kent, the South Parts of it they will not work fo cheap, becaufe their Glafs is fomething dearer to them; in thefe Southern Parts; there they commonly recKon $7 d$. per Foot for Glazing with Squares of Newcaftle-glafs, befides they will be paid for Pinning of the Cafements.
VIII. Staffordjliire glafs.] This fort of Glafs which is made in $S t$ uffordf ire, I could never yet learn any certain Account of it; for 'tis a fort of Glafs tut feldom ufed in thefe parts of theKingdom
IX. Briflol glass.] This is made at the City of Bripol; but b reafon they hive not the Conveniency to fend it by Sea, (as they have from Newc.afle be Coal-Ships,) 'tis very rare to have any of it in London, tho' it be as cheap, and better than Neariaftle glas.
X. Looking-gl.i's.] As to Lonling.gluts-plates, they are made at the Beargardin on the Bank-fide, London, (where Crownglafs was $1 / 7$. made.) [do not certainly know whether this fort of Glafs be not made with the fort of Sand, mentioned by Dr. Grem in his Mafalm Regalis Secietatio, 345 P. Fine Sand, faith he, roma sar pit near Bromley in Kent, of this is made the clearcft and beft Engl: h -glafs; it confifteth of fome Grains as cluar as Cryftal; with which others obfcure being mixed, give a whitifl Affecolour to the whole Mafs.

Thefe Looking g'afs-plates are ground finooth and flat, and Polifhed, they arc fometines ufed in Saflies or Safh-windows; but 'tis a dear fort of Glafs; for they ask 4 s. per Foot for fuch Squares, and if they are large'tis much more.

There is (a way) which fome ufe to try, which is the whireft and clearefl Glafs, which is thus, viz. they take it up clofe
by one edge, betwixt the edges of the middle and Fore-finger, and then looking againft the cur, or broken edge, the Eyes being thus skreen'd by the edges of the 2 Fingers, they fay 'tis eafie by this Method to difcern which is the whiteft and cleareft Glafs.

Looking-glaffes foild being in vogue for Ornaments over Chimneys in Parlours. 6 ce, I ihall briefly fay fomething concerning them. Sir William Petty faith that the value of Looking-glafs-plates confifts in a duplicate propertion of their fides to their Squares. Becaufe you fhall not be left quite in the dark as to this matter, I will cxhibit the Price which I have known fet upon 2 Sizes of Looking glaffes, viz. One of 5 Inches long, and 12 broad in a Frame to place uver a Chimney 40 s . fome of 10 and 8 Inches, in Walnut-tree-frames forabout 4 s.perpiece, if they have Diamond-cut; but if not, this fize is about $6 d$. per piece cheaper. I could here have fhew'd the Method of Grinding, Polifling, and Foiling of thefe Glafjes : But I fear I hall offended the Stationer in making this firft Impreffion too large, and therefore I muft at prefent pafs this, and feveral other Curiofities; which I had thought to have inferted here, for the Satisfaction of the Ingenious and Inquifitive Reader.
XI. Fealous Glafs.] This is a fort of wrinkled Glafs of fuch a Quality, that one cannot diftinctly fee what is done on the other fide of it ; but yet it admits the Light to pafs through it. 'tis made of the fame fort of Materials, as Looling-glafsplates are. This fealous-glats is caft on a Mold, and is compofed allover its Surface with a multitude of Oblong Circular Figures, (which are Concave,) fomewhat refembling Weavers Shuttles, this is on one fide of it, but the other fide confifts of fuch Figure which are a little Convex, and this laft fide is the fide they cut it on, when the Squares are too big for the prefent ufe, it being found to be very difficult to cut it on the Concave fide. Some forts of this Fealous-gla/s, hath a Convexity rifing in the middle of the Concavity; fo that one fide, or Surface of it doth much refemble the Boats which Boys ufed to make by folding of Paper; oniy in this Glafs the Concavities, and convexities are both more obtufe and blunt. But there are various forts of this Glafs, in refpect either of the Form or Size of the Figures, of which this Glafs is compofed; for I have feen fome of this Gla/s have the Shuttle-like Figures, much larger than other fome, and fome of it which the Points (as it were) of the Shuttles are very curved, and fometimes thefe Figures are in a Pofition Perpendicular to one edge of the Square, and other fome are oblique to ir.

I am informed that this Glafs is about 18 d .per Square, each Square being about 12 or 14 Inches broad, and 15 or 16 Inches long. The reafon why they are fodear, is, (as I am informed,) becaufe theLooling-glafs-plate-makers, do not care to make there

Sort oi Squares, but only when their Pots of Metal are almoft out, and they are a little at leifure; for they fay it waftes Glafs too much for their Profit. I heard a London Glazier fay, that hehath fometimes flayed a Month for fome of it, before he could have it to ufe. This fort of Glafs is commonly ufed, in and about London, to put into the lower Lights of Salhwindows, bc. Where the Windows are low againft the Street, to prevent People's feeing what is done in the Room as they pafs by: It is fometimes fet in Lead in fuch Places, where they would not have their Actions feen by the Paffers by.

Now it is very plain (to any reafonable Man, that knows any thing of Refractions, that this fort of Glafs muft needs prevent People's feeing through it, into a Room, as they paîs by; becaufe the Rays, or Species of a vifible Object, are by reafon of fuch a variety of Refractions, (caufed by the inequaFity of the Glaffes Surface, broken and confufed when they arrive at the Retina, or Fund of the Eye.

XII .Ifooluich, or I'oolledge.] This alfo was one kind of our Englifh Glars, which did receiveits Name from the Place of its snake; but by reafon they met with fome difcouragement in fheir Proceedings there, they have laid it down there for fome cime, and do not now make there.
Gluzier's-work, or Glazing.

1. W\%at.] Glazier's-work, or Glazing all know to be a manual - 4 st, whereby pieces of Glafs(by the affiftance of Lead,) dre fo fitted and compated together by firaight or cuized Lines, that it Serves as well for the interded ufe, (almoft) as if it were one sutire piece, noy in fome reipeats far better and cheaper, viz. in cale of breaking, efr.

Thefe : Heads of Straiglet or Curred, will admit of reveral Gub-divifions, and firf of Straight, which contains I fquare Work whofe Angles are right, as almoft all Window-lights are in Timber Window-irames, and fo likewife are the Squares, (if it is Glazed with fuch) of which the Lights are compofed.
2. Miter, or making an Angle of 45 Deg. this but feldom happens in this Profeffion, unlefs it be in fome places of Fretnorl.
3. Beve!, this is the mof common, efnecially in the Counirev, and ordinary Houfes, (which all know to be moft numerous, for mofe fuch are Glazed with fuarries, which is Bevel Wurk, fo likewife is a grest deal of Fret, and all Snip-werk.

Cuived Work, confifts either of Circles, Dvals, or fome diftorted Arches; Circles and Ovals are commonly ufed for Lishts at fome particular place in a Building, as in a Pediment,
or over a Door, or the like, in the middle of a Fiont, \&rc. I have alfo obferved a Light over a Door in the Front of a Building that did confift of 2 Arches of a pretty large Circle like a Weavers Shuttle, lying along, and the whole Light was Glazed with one piece of Glafs. Both Parts, Circles, and Ovals, and fometimes fome diftorted Arches are made ufe of in crocket Windows, dec. And alfo both whole and parts of Circles, and Ovais in their Eret, or Ornamental Works.
II. Of Glazier's Diaughts,] the moft ingenious fort of Glaziers, both in City and Countrey work by Defign, (and not by Guefs, like the common Blunderers in moft Profeffions relating to Building;) for theymake a Diaught of all their Windows on Paper, in which they fet down the Dimenfions of each Light, boeh of heighth and breadth, and the number of Squares, both in breadth and heighth, in each Light ; and alfo the number of Lights in each Window, after the following manner, viz.

N. B. Note, that here are 6 diftinct Windows, viz. the 2 upper ones are 3 light Windows, and of the four lower ones there is I, 3 Lights, 2 fingle Lights, and 1 double one.
N.B.That the number ftanding at the top (of the Oblong Figure in the Scheme above,) is the heighth of the Light; that at the bottom the breadth, and that number in the middle, the upper one for the number of Squares in heighth, and the lower one for the number in breadth.

N B. Alfo that the I and 2 Windows, (which are 3 light Windows, have their Dimenfions fet down in Feet, and Duodecimal Parts of Feet, E. G. in the 17 . Window you have this number, 3. 6. o at the top, which fignifies the heighth of the Light to be 3 Foot, and 5 Duodecimal Parts of a Foot, in the middle there is $\frac{5}{4}$, which fignifies 6 Squares in heighth, and 4 in breadth, (equal to 24 in the whole Light,) and beLow their ftands 2. 1. O which fignifies I. Foot, and I Duo. decima!
decimal Part of a Foot: In the recond, or middle Light there is a C fet to fhew that there muft be a Cajement in that Light, and by confequence the upper Squares, and lower ones muft be cut fomething fhorter, becaufe of the Frame of the Cafement, and the fide Squares muft be cut fomething narrower, and the 4 corner ones both fhorter and narrower.

Now by fuch a Draught, the London Glazier when his Countrey Cuftomer fends to him for fuch a certain parcel of Glafs, he knows immediately how to cut it to fit his Work, and the Countrey Glazier knows how to work up his Glafs by it, fo that it fhall fit each Window, tho' he be 40 Miles remote from it, as well as if he were by it.

The London Glafs cutters commonly mark (with a Letter, or Figure over them,) all the Windons that are of one Size, and Write the fame Mark on a piece of Paper, the which is put in among that parcel of Squares which belong to thofe Lights which are all of one Size, this piece of Paper is fo put in, that the Charatter is vifible above the edges of the Squares:By which diftinguifhing Character the Countrey Glazier readily knows which Squares to take for any Window.

I flall only add one thing more to this of Draughts, and fo conclude with this Head: And that is, that fuch Glaziers as underftand it, fet down their Dimenfions in Decimals; which fits as well or better for the London Gilafs-cutters, becaufe they have their Rules Centefimally divided for the Purpofe. I have here therefore, (for fatisfaction to the curious,) fet down the Dimenfions of the 4 lower Windows, in Feet and Centefimal Parts. As for Example, in the 3d. Windnee at the top you have thefe numbers 4. 50, which fignifies the height of the Light is 4 Foot and 50 Centefimal Parts, and at the bottom there is this Number, 1. 50, which is 1 Foot 50 Centefimal Parts, and fo of the reft.
III. Of Meafuring Glaziers Work.] In difcourfing of this, I flall do thefe 2 things; 1/f. Confider the Cuftoms ufed amongft them, (for Cuftom is to be the greateft Guide in all manner of Meafures.) And $2 d l y$. of taking the Dimenfions, and computing the Quantity.

1. Before we proceed to taking of Dimenfions, which one would think fhould be the $\mathrm{i} f$ t. thing, in order to meafure any Supericies or Solid. Yet before we can pretend to take thefe Dimenfins, we muft be inform'd of all Cuftoms that are claimed, and have been tolerated by long !tanding, foc. in any Profeffion. And therefore,

Note, I. That in Glazing when Windows have a Semicircular top, (or any other Curved Form) the Cuftom is to take the full heighth as if it were fquare.
2. That all Windows confifting of intire Circles, Ovals, or any other Curved Form, the Dimenfions are taken the 2 longeft
ways at Right Angles one to another, (which we may call the Diameters, and from thefe Dimenfions the Areas are found the fame as if they were Square.
3. That all Crocket-windows in Stone-work are all meafured by their full Dimenfions in heighth and breadth, as if they were. Square and not Curved.
4. That there is very good Reafon for all thefe Cuftoms, if we confider the trouble in taking Dimenfions to make them by 2 the wafte of Glafs in working it to thefe Forms, and 3 the extraordinary time expended in fetting it up, more than in fquare Lights. I fay if thefe things be duly weigh ${ }^{\text {d }}$ and confidered, they will befound of more value than the Glafs which would cover a Square Superficies of that Dimenfion. Having thus difpatched the Ift. thing, viz. Of Cuftoms, I fhall now proceed to the
2. Of takiñ Dimenfions, \&x. In doing of which, in this Profeffion of Glazing, it is generally taken to parts of Inches, and fo computed to the Nicety of a Fraction of an Inch, which may be done feveral ways, 4 of which being practifed by fome Surveyors and Workmen, I fhall juft mention here, viz. I. By vulgar Fractions, 2. By Crofs-multiplication of Feet, Inches, and Parts, 3 By Duodecimals, and 4. By Decimals. There is another way by Logarithms, which is more expeditious than either of the former; but I cannot here flay to treat of thefe, which will require too much time and room for this prefent Undertaking, or Defign.

But becaufe in Claziers Work, they ufually take the Dimenfions to the Parts of an Inch, the beft and readieft way to compute the Area's, is to take the Dimenfions with a Sliding-rule, fuch as the Glaziers generally ufe ; which Rule is divided Centefimally, the Dimenfions being thus taken, and fet down, are Multiplied one into the other, as eafily as Vulgar Arithmetick in whole Numbers is.

As to the Method of taking Dimenfions, and fetting them down in a Pocket-book, or the like, Vid. Building, Nunı. V. S. 2, 3, 4, 5. wherealio you will find a Bill of Meafurement of Glazier's Work.

And for the manner of Computing the Quantity, vide Crofs Multiplication.
IV. Of the Price of divers forts of Clazier's-work.] The different forts of Glazier's Work which we fhall here mention, are thefe following, viz. Glazing with Squares, and with Ruarries.

And I. Of Glazing with Squares for the Price of Cromn; French, German, Dutch, and Englifh Glafs wrougit in Lead, and fet up. V. Num. III. doc. of Clajs.

As to the Price of Square-work, the Mafter finding Glafs, and the Glazier, Lead, Sodder, and Workmanhhip, 'tis worth about $2 \frac{1}{2} \mathrm{~d}$. per Foot, But they will be (in the Countrey):
paid 3 d. per Cafement for pinning of them, (which is putting of Lead-pins thro' the Iron-frame, and Soddering them, thereby to fix the Glafs to the Frame,) viz. Cafements of 4 Foot long, and fo proportionably, if they find Lead or Sodder for it.

Eut to work up Squares and fet it up, finding nothing but Workmanthip, it's worth about id. or $1 \frac{1}{2} d$. per Foot.
2. Of Glazing with وuarries, which is for the moft part done with Newcaftle glafs, which fee for the Price of new Work and Materials. Num. VII.

But if the Glazier find only Lead, Sodder, and Work, 'tis worth about 3 d.per Foot. But if they find nothing but Work, then $I^{\frac{1}{2}} d$. or $2 d$. is a fufficient Price.

For taking down Quarry-glafs, Scouring it, and Soddering it anew, and Banding, and fetting up again, the ufual Price is $1 \frac{2}{2}$ d.per Foot.

But if it be in Churches where they fay they have ufually more Banding, \&vc. their Price is $2 d$.per Foot. They have alfo $2 d$. fer Foot for taking down, Scouring, Soddering, Banding, and fetting up again of the old falhion'd Work, which is compofed of pieces of Glafs of different Sizes and Figures.

As to the quantity of Lead ufed in any number of Feet of Glafs. vid. Lead, Num. 10.

I find by Mr. Leybsirn, that in Lonion they generally ufe that Size of 2 uaries, calld 12 s . the which he thus defcribes. Qxarries, (faith ine,) for the moft part are 6 Inches in length from one acute Angle to the other, and in breadth from Obcufe Angle to Obtufe Angle 4 Inches; fo that each Quarry, faith he, contains I2 Superficial Inches; which fort is that which thev call long Quarries. V. P. Quarries.
N. B. That there are feveral A ppellations given to the various Dimenfions, \&x. of Quarries, viz. 1. The Range, which is a Perpendicular let fall from one of the Obtufe Angles to the oppofite fide. 2. And the Lergt's is the longeft Diagonal from one acute Angle to the other. 3. The Breadth is the fhorteft Diagonal, which is drawn between the 2 Obtufe Angles, as for the Sides and Area of a Quarry, I think all know that.

You will find in the word Quarries, that there have been, or fill are 12 forts of harries; from whence there arifes divers Propofitions, of great ufe to Clazier's. As I. To find av ny of the s fore-cited Dimenfions, as Range, Side, Length, Ereadth, and Area, of any of the forts of Quarrias. 2. To find the Area of any fort of Quaries. 3. Having any of thefe Dimenfions given, riz. Ronge, Side, Breadth, or Length, to find the Name, or Denomination of the Size, tiz. Whether 8 s. 105 . 12 s . doc. 4. Having the Area of a Quarry given, to frad of what fort or fize he is. 5. To find whether a Window
be Glazed with thofe they call \{quare Quarries or long ones; for you muft note there is 6 forts of fizes or fquare 2 Quarries, and 6 fizes of long Quarries, which makes 12 forts in all, as 1 told you before. Altho' I am fenfible that there s Propofitions (but juft now mentioned,) would be acceptable to Glazier's, and fome other ingenious Perfons, yet I muft here evade them, till a better opportunity, for Reafons of mentioned, in this Book. Glazier's Bill. V. Building. V. 7.

Gradatory.

'Tis derived from the Latin, and is ufed to fignifie a Place to which we go up by Steps, particularly an Afcent from the cloifter to the Quire in fome Churches.

Granary.
A. Place to lay up Corn in, Sir $H . W$. advifes to make it to. ward the North, as much as mas be ; becaufe that Quarter is moft Cool and Temperate,

Mr. Worlidge laith, that tho beft Grararies are built of Brick with Quarters of Tin ber wroupht in the in-fide, whereto to nail the Boards, with which tue in-fide of the Granary muft be lined fo clofe to the Ericks. that there be no room for Vermine to fhelter thernelves. There may be many Stories one above another, and let thein be near the one to the other, for the !ladlower the Con lieth the better, and it is the eafier turned, which it muft be fometimes.

Some have had 2 Grannaries, one above the other, and filled the upper with Whear, or other Corn; this upper one had a fmall hoie in the Floor. by which the Corn defcended into the lower one like the Sand in an Hour-glafs, and when it was all come down i: to the lower Granary, it was then carried upagain into the upper one; and fo it was kept continually in motion, which is a great Prefervation to the Corn.
A large Granary full of fquare Wooden-pipes may keep Cornlong from heating.

> Grange,

From the Latin word Grant, a Building which hath Baras, Stables, Stalls, and other neceffiary Places for Husbandry,

Grates.
V. Iron. Num. 4.

> Great Bricks.

Y, Bricks. Num, IV. §. я.

Grotesque, or Girotefca.

v. Antick.

Ground

To Build on.] V. Foundation. Nam. 2. S. 1. 2. 3. 4. 5. and 6.

Ground guts.
V. Alder. Numb. 3.
Ground flat, or Plot.

1. What.] A piece of Ground a Building is to be erected upon.
2. Of Valuing] V. Foundations. Numb. 3.
Ground-plate.
V. Sell.
Grove,

A Term unfed by Joiners, to fignifie the Channel that ${ }^{s}$ made by their Plow in the edge of Molding, or Stile, or Rail ${ }^{j}$ dc. to put their Panels in in Wainfcotting.

> Gull.
V. Architrave. Numb. 6.
Gutters.

1. What.] Those which we fall here treat of, are Tallies in the Roofs of Buildings, and thee are of 2 kinds in refpect of their Pofition; for they are either fomething near a Parallelifm with the Horizon, or inclining towards a Vertical Pofition to the Horizon.

Of the first kind of Gutters, which for distinction fake I will call Parallel,) there are 3 forts which are cover'd with Lead; for 1 If. either it is a Gutter betwixt 2 Roofs which flan Parallel to each other, being made upon the Feet of the Raftess of 2 Roofs which meet together. Or, Secondly, A Gutter where a Building hath a Cantaliver, or Modilion Corning, which projects i $\frac{1}{2}$ Foot, or 2 Foot, (according to the Defign of the Building) beyond the Walls, then the Roof is fer with the Feet of the Rafters, no farther out than the Walls, but rather within it; fo that the Joints of the upper Floor lie out beyond the Walls, and also beyond the Feet of the Rafters which is yet cover'd with Lead. The $3 d$. fort of there Parallel Gutters, are in thee Roofs that are Hat, commonly called Platforms, where are alfo Gutters for the Water that runs from the Platform to defend to, which is from thence conveyed off from the Bailding, either by Spouts or Pipes.

Having defcribed the Parallel Gutters', we are next to treat of the Vertical Gutters. Ey Vertical Gutter, I mean lun a one as is made by two Roofs meeting at Ripht Angles, one to the other, or which is the fame thing (but in other words) it is made by the end of one Roof joyning to the inde of another: As for Example, if a Building be crected in the Form of a Roman L, "tis then common tohave 1 Gutter on the infide of the L. But if it refemble a T, it hath 2 Gutters, but if like an II, then 4. Thefe Gutters alfo are of 2 forts, viz. Eilher Legd or Tile. Of all which we thall fpeak in their Orders. Having given the definition of Gusters, I fiall now proceed to treat
2. Of laying Farallel Lead Gutters.] In fpeaking to this Head, before I proceed to treat of laying the Lead, I muft here give a necelfary Caution, which is this, viz. To take care that the Gutter Boards, coc. lie niot too near a Parallelifm with the Horizon, but in fuch a Pofition that it may hive a good Current, (as Workmen phrafe it ;) for if it be lide tos near a Level, the Water is very fubject to ftand in folafies, if the Gutter chance to fink a little in the middle, which fome Gutters are moft apt to do; but this is fomething according as they are pofite on the Building.

I have obferved fome Gutters to have a Lair of Sand for the Lead to lie upon, but this way I c'o not approve of for 2 Rea: fons, whichare thefe, vix. 1. Becaufe fome forts of Sand it have obferved does corrode and decay the Timoer thar lies near it) very much. 2. When tis laid on Sand, a very little Squating, viz. by jumping upon it with the Heals of ones Shooss will dent it, and there the Water immediately ftands, which is a means to decay the Lead the fooner.

In laying of Lead for Gutters upon Boards. if they are fo long that one Sheet of Lead will not reach them, then etis conmon (for fome Plumbers) to fodder them; for which purpofe they cut a Channel crofs the Gutter-boards at the end of the Sheet where the Soddering muft be; and into this Channe: they beat down the ends of both the Sheets (that are to meet there) into the Channel; which when they have done, there will remain a little Cavity, which the Sodder fills up leve? with the reft, when it is foddered.

The Lead which they commonly lay in Gutters, is that which weighs about 8 or 9 lit to the Foot. Of thefe Gutters. V. P. Lead. Num. 6.
III. Of Vertical Gitters.] Thefe Gutters, as I told you before, are of 2 forts, vix. Lead, and Tile: As to the Lead ones I hall lay nothing here, being almof the fame in effect as the Parallel ones. Only unlefs the Euiider will be at the charge, the Lead need not be altogether so thick for the le fertical ones; for if they are laid with Lead of but 5 or 7 lit.
to the Foot, thefe t'e, tical Gutters will laft as long as the Parallel ones with Lead of 8,9 , or 10 Jt . to the Foot.

Gutterslaid with Tiles, are alfo made of 2 kinds of Tiles, viz. Concave, (or Gutter,) and plain Tiles; I fhall here fay little of the Concave, or Gutters, but refer you to the Defcription of Gutter-tiles.

PlainTile Gutters, are allo diftinguifhed into 2 forts, viz. 1. Plam-tile-gutters, (properly fo calld,) and $2 d$ ly, 3 Point Gutters, of both which I will treat in their order. And,

1. of Plain-tiles-gutters, (properly fo call'd) in thefe plain-tile-gutters, there is a Gutter-board laid which raifes them from Pointing to an Angle: And in laying on the Tiles, the Workman begins at one fide of the Gutter, and fo works crofs it as if it were plain Work, and then brings the next row of Tiles back again; fo that he work; forth and back, or to and fro from right to Jeft. So that Gutters laid after this Method are not Angular, but of a kiad of diftorted Curvelinear form ; by which means they are not fo fubject to be furred up with the Mortar which wafhes out of the adjacent Tiles.
2. Of 3 Point-gutters.] This is the fecond fort of Gutters which are laid with plain Tiles: In laying of which, they begin and lay one Tile on one part of the Roof, (it matters not which part 1/f.) and lay one corner of the Tile juft in the middle of the Gutter, and then they lay another on the other patt of the Roof, with his corner juft in the middle of the Gutter allo; fo that the corner of the fecond Tile is contingent with the 1/7. And then lay another Tile in the Gutter, with his corner, (as it were) betwixt the other 2, and to them: Having fo done, they perfift in their Work, and lay a Tile on each part of the Roof, as before, and another betwixt them in the Gufter: After this manner they goon with their Work, till they have finified the Gutter: And this is what they call a 3 Pnitit Gutter; for there always come 3 Points, (or Angles) of Tiles together, (wiz. I Angle of 3 diftind Rules,) which makes it very uniform and handfome. You are here to note, that cnly 3 "Inches fquare of the middle Tile is vifible, (if the Gage be 7 laches, the reft of that Tile being cover'd with the nest row of Tiles abcue it.

Tho' thefe Guttis are very handfome, and if well done very fecure alfo; yet if they let the Water into the Houfe, (by reafon of fome Stoppage, or broken Tile in the Gutter,) they are very troublefonc to mend.
IV. Of Mroafuring Gutters,] or Callies. In different parts of the Eingdom thereare commonly diverfe Cuftoms, as to this matter of meafuring Vallies, or Gutters in Tiling: For, 1 if. At fome Places they but feldom. or never allow any thing for theffutters, but include it with the reft of the Rof, at fit and half: I am informed, that at London they but feldom meafire the Cutters; but only as they are purt of the Ruof,
fo they are included in the Flat and: Meafure. And I know fome Workmen at Tunbridge-wells never demand any other, but only as it is included in the Plain Meafure; which is ani Area found by Multiplication of twice the length of the Rafters by the length of the Building. Or which is the fame thing (when it is $\frac{3}{4}$ Yitch;) the Flat and ${ }^{2}$ Flat.
2. In laying of Gutters with Concave-tiles, the Workmen in fome parts of Suffex and Kent;, have gotten a Cuftom to be allowed fo many Foot more than the plain Meafure, as there Gutter-tiles, (and alfo including Cornier-tiles, Ridgé-tiles; Dor-man-tiles) in the whole Roof.
2. At fome othet Places, I know they claim fo many Feet more to be added to the Plain-meafure, as the Gutte's, fand alfo corners) are in length, including Gutters at the fides of Dormans and Lutherns, if there be any Dorman-tiles ufed.
4. In fome Places the Workmen claim a cuftom of having double Meafure for Plain-tile, (efpecially 3 Point) Gutters, e. g. If there were but 1 Gutter in a Roof, and this Gutter 15 Foot long, then their Cuftom is to have 30 Foot more than the Area of the Roof amounts to; and this Method fome Workmen claim as a Cuftom in both forts of Gutters with Plain-tiles: Either of thefe Plain-tile-gutters are cheaper to the Mafter Builder, than Concave ones; becadfe Plain tilest are cheaper than Gutter-tiles, being not above $\frac{1}{4}$ part-of the Price in many Places. And then again, in cafe the Workmen be allow'd fo many Foot more (than the Area of the Roof,') as thereare Gutter tiles, that will be $\stackrel{x}{ }$ as much more as the double Meafure ; for if it be gaged fo flight as 8 Inches, than in a Gutter of 15 Foot long, there would be 45 Tiles, which will be reckon'd 45 Foot; whereas at double Meafure it did amount to but 30 Font.
5. I find there is yet another way of computing double Meafure; for the account of which I will refer you to Slating: Num. 5.

I aminformed, that at London Plain-tiles are afed mach for Gutters:

> Guttering,

In Carpentry, is cemmonly done by the Ineal Foot, whict fome Londaners value at 1 s . viz. Materials and WorkmaxShip.

Gutter.tiles.

t. What.] Are whilf they are flat and plain, (before they are bent fir for the Work for which they are defign'd,) feeminsly at a diftance a kind of a Triangle with one Convex fideBut tho' they feem fo at a diflance; they are not really fo; for they are Quadrangular Figures, corfinting of 2 ftraight fides of about 10 or $10 \frac{1}{2}$ Inches long(they ought to be)and of 2

Circular fides, one Convex, the other Concave, the Convex fide is about 14 Pnches, and the Concave one about 2 Inches, this is their Form as to their edges or fides, and I will next defcribe the form of them in refpect of the Plain; at the little end they are bent Circular, and fo likewife at the Convex great end, at firft like a Corner-tile, but then they bend the corners of the broad end back again; fo that if one look againft the broad ends edge, it confifts of a Circular line betwist 2 ftraight ones, like the upper part of the Charater for the Sign of Libra, thus \approx, this you muft note is when you hold the Concave fide of the Tile downwards. Thefe Tiles are laid with their broad ends, and hollow fides upwards.
2. Of their W'eight.] An Experiment was made to find the Gravity of fome of thefe Tiles, and I found by Compntation that 100 of thefe Tiles, whofe Dimenfions were as followeth, viz. 10 Inches on the flraight edges, 14 Inches on the greater Convex edge, when preffed down flat, as when they were in the Mold, and 2 Inches at the Concave edge, and about : Inches thick: I fay 100 of thefe weigh'd about 32 I , or 322 Ht . and by confequence 1020 will weigh about 3210 , or 3220 ft . which is near 29 C weight. So by confequence about 682 would be a Tun weight.
3. Of their Price.] Mr. Leybourn faith that at Londin they are fold at $1 \frac{1}{2}$. or $2 d$. per Tile, or between. 10 and 15 s . per 100. in fome Places their conftant Price. is I $\frac{1}{2} d$. per piece, or 12 s. per Hundred.

Hack.

$\mathbf{W}^{\text {Hat. V. Erifles. Nam. } 12 .}$

Hair.

1. What.] The Hair here mentioned is Eullocks, ec.afor to put in mibite Mortar of the quantity to a certain quantity of Lime, vide Mortar. Num. 4 -
2. The Pitce.] As to the Price, "cis various, according to the Plenty or Scarcity of ir. At fome Places in Kent I have known it fold tor $7 d$. per Bufhel, and at other Places, viz. in Sufex, I havcknown it fold for 10 d . and I 2 d . per Bufhel; fo that its Price by the Load (for a Horfe,) which is 60 Bufnels, is from 30 to 60 s .

> Half-round.

[^1]
Halls.

Of their Dimenfions.] According to a noted French Architect, ought to be in length twice and $\frac{1}{4}$ its breadth, at leaft, and in great Buildings, he faith you may wellallow the length to be 3 times the breadth: He further adds, that this laft length will be the moft beautiful and convenient.

As to the heighth of Halls, it may be $\frac{2}{2}$ of the breadth, or about 16 or 18 Foot in noble Buildings.

In great Buildings, the Hall, and other Rooms of the 1 ff . Story may be Arched, by which meansthey will become muci handfomer, and lefs fubiect to Fire: The heighth is found by dividing the breadth of the Hall into 6 parts, and 5 of thofe thall limit the height of the Room from the Floor to the under fide of the Key of the Arch.

Hangs over.
What.] V. Batter.
Hanse.

What.] V. Arches. Num. 6.

> Heads.

What.] A Term ufed by Bricklayers, by which they mean $\frac{1}{2}$ a Tile in length, but to the full breadth of a Tile; thele they ufe to lay at the Eaves of a Roof.

> Heading Architrave.
v. Architrave. Num. 2.

Healing.

Wh.rt.] Ey this word is underflood the covering of the Roof of any Euilding, which is of various kinds, viz. 1. Leead, 2. Tiles. 3. Slate. 4. Horfham Stone. 5. Sbingles. 6. Reed. 7. Straw. An account of all thefe forts of Healing, you may find under thefe Heads, vir. lead, unoer that Head. Tiles, under Tïling, Slate, under Slating, Worflam-fone, V. the fame word; Sbingles, and Sbinglings, Reed, and Straws V. Tbatching.

> Hearth Iones.
V. Fire-flones.

> Hcwing of Timber.
v. Timber. N. VII.

Hinges.

1. What.] Are thofe neceflary Irons, by means of which, all Doors, whether of Houfes, (or other Buildings,) or of Pews, Cupboards, dec. All Lids of Boxes, Chefts, Trunks, \&ec. Folds of Tables, Beds', Buro's, Scrutores, \&rc. Make their Motion, whether of opening or flutting, or of Folding, ©ec.
2. Theforts or kinds.] The Species of Hinges are many, vix. Bed, Box, Butts, Cafement, Lancafhire, and fmooth filed ; Cajting, Cheft black, Lancafhire, fmooth filed, Coach, Desk, Dovetails,' Effes. Folding, Garnets, Dozen-mare-long, Dozen-ware-fbort, Weighty-long, Weighty-long, Weighty-fiort, Lambheads, Port, Side-Lancaflire, Side-fmooth-fled , Side with rifing joints, Lancaflire and Smooth filed, Stde with Squares, Screw, Scuttle, Shutter, Lancafhire, and Smooth-filed, Stall, Trunk offundry forts. Foints, Lançaßire, Dozen-ware, with Hooks, Dozen-ware long, Dozen-ware fhort, weighty Jong, weighty long, weighty fhort.
3. The Price of fome forts of Hinger.? As to the value of Hinges, T Mall not now flay to infift upon the ufual Price of all forts, but fhallgive the Reader a brief account of fome forts that are prctty commonly ufed: And $1 / 1$. Of Butts, of which there are different fizes, and by confequence of various Prizes, viz. from 25 . or 2 s. 6d. to 5 s . per Doz.
4. Bed-hinges, from 5 to 7 s. per Doz.
5. Box hinges, from 12 d. to 4 s. pic Doz.
6. - Small Brafs ones, from 2 s. to 2 s. 6 d. per Doz.
7. Dovetails, from 12 d . to 4 s . per Doz.
8. Hooks and Finges, ©rc. per tt. from $3 \div d$. to $4 d$.
9. Sidc-linges, from 3 s. to 16 s . per Doz.
10. With a Square, from 20 s . to $3^{6} \mathrm{~s}$. per Doz.
11. Screw-hinges, from 30 s . to 48 s.per Doz.
V.Iron. N. 4.

Hip.

1. What.] Are thofe pieces of Timber which are at the corners of a Roof, they are a great deal longer than the Rafters, by reafon of their Oblique Pofition, and they are placed not with a Right or Square Angle, buta very Oblique one; and by confequence they are not, (or at leaft ought not to be) fquare at any Angle, (as Rifters are not at all,) but bevel at every one of them ; and which is set more, as Rafters have but 4 Plains, thefe commonly have 5. They are commonly by Countreyworkmericall'd Corners; and yome callthem Frincipal Rafters, and others Slesfers. The truth is Hips and Sleepers, are almof the fane; only the Sleepers lie in the Vatlies, (and join at the top whth the Fip's:) But thofe Surfaces, or Plains which make the back of the tiif are the under-fides of the \$leeper.
 you are to and rland, is mant the fe 2 Superficies, or Plains in th: ontefide of the Hit, which lie !arallel, (both in refpect
of their Iength and breadth, with the Supericies of the adjoining fide and end of the Roof.
2. Mould what.] By the word Hir-monld, fome mean the fame as the backof the Hip. But fome others underfand it to mean, the Prototype, or Pattern, (which is commonly made of a piece of thin Wainfcot,) by which the back and fides of the Hip are fet out.

4 Of finding the Lengibs and Backs of Hips, \&ic infquare Frames.] I hall here, not only give you the Method of findins, the length of Hips, or Sleepers; but alfo of the Rafters, Diagonals, $\frac{1}{2}$ Dityonal and Perpendicular. And that in a bief A. nalogical Table. Sy',

Foot
As $20\left\{\begin{array}{l}15,00 \\ 18,60 \\ 18,18 \\ 28,28 \\ 16,63\end{array}\right\}:$: Breadth of theHoufe $\left\{\begin{array}{l}\text { ten. of the Rafter. } \\ \text { ten. of the Mip. } \\ \text { Perpendicular. } \\ \text { Diagon.I. } \\ \text { Neareft dint. }\end{array}\right.$
Deg.

Hip Angles $\left\{\begin{array}{l}\text { at foot-38-22 } \\ \text { at top }-51-28 \\ \text { at back-115-12 }\end{array}\right\}$ Safter angles at $\left\{\begin{array}{l}\text { top } 4 \text { t-50 } \\ \text { foot } 48-10\end{array}\right.$
The Angles are alvays the fame in all fquare Frames that are true Pitch.

The Reaker may perhips expect the Method of finding thefe things in Eevel Frames allo, but f fuall defer that till another Opportunity, and alfo to another Treatife which I defign to Publifh, (if ic pleafe God to lend ne Life, and this prefent Treatife prove acceptable to the World :) Wherein I defign to fhew how to find the Lengths, and Angles of Rafters, Hips, Callirs, Purlains, foci. In Square and Bevil Frames, 3 feveral ways. viz. A rithmetically, Geometrically, and laftrumentally: Which Treatife mall alfo contion + feveral Methods of drawing all the Members of the 5 Oiders of Columns.
5. Rool what.] By a Hip Rof, you are to underftand fuch a Ronf, as hath neither Gable-heads, nor Sbread-bead, or Jirkinhead, (by which we mean fuch Heads as are both Gable and Hip at the fame end; for 'tis a Gable, or upright as high as the Collar-beam, and then there is two fhort Hips which fhuts up with their tops to the tops of a pair of Rafters, which Countrey Carpenters callSinglars.) For a Hip Roof hath Rafters as long, and with the Angles at the Foot, drc. at the ends of Building, as it hath at the fides, and the Feet of the Rafters on the ends of fuch Buildings as have Hip-ronfs, ftand on the fame Plain, (viz. Parallel with the Horizon,) and at
the
the fane hichath from the Foundation with the Rafters on the fides orthe Roor. Thefe Hip-roofs, fome call Italian Roofs.
6. Of weatwing Hip-roff.] As to nesafuring of Hip rosfs, if they are ${ }_{4}^{3}$, or true pitch as it is commonly call'd; then 'tis onIv to multiply the lensth of the Building by the breadth, and to the Area thes fourd, add half as much more, or elfe multiply the ler atin by the breadth and ${ }^{2}$; or the breadth by the fong thand ', either of thefe 3 wass will produce the flat and \therefore, which is equal to the Content of the Roof in plain Meafure, if there be ncthing allowed for Hips and Vallies. But if the R) of hive no Cornin, but the Rafters have Feet, then they muft beadded, and allo the Eaves Board in a Bill of Meafure-动•虾.
On to meafure fuch aRoof,you may Multiply the length of it by the length of the Rafter, and it hall give you half its Content; or eife Multiply the lengti of the Euilding by twice the length of the Ruter ; and then you will have the whole Content.
Hip.tiles.
V. Comer-ti'cs, o: Tiles. N. V.
Holiow.

A Term in Architequre, by which is meant a Concave Molding, being about a Qu.drat of a Circle; by fome it is calld a Eafenent, by others an Abacus.
Mooks

Are a neceî́ry Ingredient which are made ufe of for fevein Purpores in Buildings, tec. They are of various forts; fome of Irch, and others of Brafs, i mall here mention the Nimes of forne, which tike as followeth, viz. i. Aimour-boles, (theic are seneraliv of Eraf, and are to lay up Arms upon; as Guns, Muskets, Halberts, Half-pikes, Pikes, Juvelins, © © col 2. Cafement-holes. 3. Chimperyones, which are made both of Brafs and Iron, and of different Faftions: Erafs ones I have known fold from 2 s. to 2 s .6 d . per puir, tile Ironones from' 12 d.to 1 s .5 d . per puir, their ue is po ftt the Tongs and Fire-hovel anainit. 4. Curtain- foske 5. fiojss for Doors, Gates, doi. Thefe are from $3 \mathrm{~d} . \frac{1}{4}$ to 4 d. per it. 6. Double-line-holes, large and imall. 7. Single time-books. harie uad fmall. 8. Ienter-books, of vations forts, vit. $2 \hbar_{0} 2 d .4 d .6 d .10 d .=0 d$, and $40 d$.
Hor fham fone.
r. W'bat.] Is a kind of thin Lood Slate of a greyifn Coiour, much ufed in fome parts of Sujfex formerly, not onh to heal,
or cover Churches and Chancels, but fome great Houfes alfo; it is call'd Horlain-fone, in that County', becaure it is tor the moft part brcught from a Town there callied Hoiflam; this foit of Stone, or Slate rather, is laid of different Sizes, viz. From 8 or 9 Inches, to 24 Inches, or more in length, or breadth, eoc. It is commonly from $:$ Inch, to 1 Inch thick.
2. Of the Price of Horflam.ftone.] The value of them is according to the diflance from the Quarry, viz. From so to 20 s. per L.oad, I have known a Load of them laid in for it or 18 s. at 18 or 20 Miles diffance from the Quarry. A Load of thefe, (as I have been inform'd from thofe that have made fome OUfervations on this Matter,) will cover about $\frac{3}{4}$ of a Square.
3. Of Laying.] The Price of laying a Square and Pointing, (which is friking Mortar under the jower ends Jin new Work, $\$$ or 6 s. But to rip it from old, and new lay and point it, not lefs than 6 or 7 s . per Square, which is the loweft I ever knew it done for.
4. Of the weight of this fort of Healing.] I have been informed by an obferving Mechanick, that a Square of this kind of covering will weigh about 33 or 34 C weight. Whereas, fith he, a Square of Z"̈ling doth not weigh above 16 or 17 C weight. Nut, he is comident not above is C weight, if it be gaed at 5 Iarhes, and the Tils not exceeding 10 Inches long. (Nay, I know that in many Places they fall hort of that.)
5. Of the Properties of this fort of Covering.] From what hath been fuid before, you may eafily gather that this fort of Healing is dearer tha Tiles; for the Charge of a Square of Tyling, is fromabout 23 s . :0 30 s . or as fome will have it from 24 to 28 s . per Square; whereas I find by Calculations from fome Obfervations, a Squarc of Healing with Harflam-fone, will be worth from 32 s. to 38 s . And befides for this fort of Covering, the Timber for the Roof, ought to be confiderably fouter and Reronger, becaufe a Square of this fort of Stone is almoft as heavy again as a Square of Tyling. Now that which If uppore to be the ciufe why thefe Stones have been fo mucle in ule for Churches, dyc. muft be, becaufe they are far more durable than Tiles; whicin makes fome Recompence for the Charge ; for fome fay thefe Stones are very durable, being for the moft part very hard, fo that no Weather will do them any hart, as it will Tiles.

> Houfe.

[^2]In treating of this word, Houfe, I fhall here do thefe 4 things. ift. Difcourfe concerning the Situation of a Coun-trey-houfe. 2dly, Of the Ground-work of Houfes. $3 \mathrm{~d} / \mathrm{y}$, Concerning Building in London. 4 thly, and lafly, Difcourfe of Party-walls.

The Reafon why I Mall add no more under this Title Houfe, is this; becaufe I fufficiently treat of thefe 6 things, viz. Situation, Contrivance, Reccipt, Strength, Beauty, and Form, or Figure, in the word Building.
2. Of the Site of a Countrey-boule.] To what I have faid, conccrning the Situation of a Countrey-houfe, in the word Building, I Mhall here add, that Woods, as well as Water, ought to be near your Countrey Habitation; they being the principal things that adorn a Rural Sest: But if you cannot conveniently Seat your Houfe among the Trees, yet there are but few places, but you may fpeedily raife Trees about your Houfe; according to Mr. Eveljn's, or Mr. Worlige's Directions.

It is far better to a have Houfe, defended by Trees than Hills, for Trees yield a Cooling, Refrehing, Sweet, and Healthy Air, and Shade , during the Hest of the Summer, and very much break the cold Winds and Tempefts from every Coaft in the Winter. The Hills, according as they are Situated, defend only from fome certsin Winds; and if they are on the Noith nide of your Houfe, as they defend you from the cold Air in the Winter, fo they alfo deprive you of the cool refrefhing Ereezes which are commonly blown from thence in the summer. And if Hills are Situsted on the South fide, it then proves alfo very inconvenient. Eefides, they yield not the Yleafures and Contentments, nor the Varieties of Oblectations to the ingenious Ruftick, as the till Plumps of Trees, ahd pleafant Groyes do, Yet Hills which are cloathed with Coppices, or otherwife improved are pleafant Qbjects, if they ftand not too neara Houfe.

Let not your doufe be too low feated, leafl you lofe the Conveniency of Cellars; but if yop wathot avoid Euilding on low Grounds, fet the If. Floor above the Ground, in your Houfe the higher, to furply what you want to fink in your Celler in the Ground; for inf fuch low and moith Grounds, it conduceth much to the drinefs, and liealehinefs of the Air to have Cellars under the Houfe, fo that the Floors be good and cield underneath.

Not to fpeak of the Building of Places, or Seats for the Nobility, or Gentry, bat only of plain and ordinary Farm-beufes. I have thus much obferved, (fuith Mr. Worlige,) that Houfes huilt too high in places obvious to the Wiuds, and not well difended by Hills, or Trees, reçuire more Materials to build them, and more alfo of Reparations to maintain them, and are not fo comrodious to the Inhabitants as the lo:ver built

Houfes, which may be made at a much cafier rate, and alfo as co.npleat and tesutiful as the other.
3. Of the Ground-work of Houfes.] Euildinge, or Houres, that are not above 2 Stories with the Ground-room, and not excceding 20 Foot to the Raifon-place, and upon a good Foundation, the lensth of 2 Bricks, or 18 Inches for the INeading courfe, will be fufficient for the Ground-woore of any common Structure, and 6 or 7 Courfes aboye the Earth to a Water-table, where the thicknefs of the Walls are abated; (or taken in) on either fide the thicknefs of a Brick, namely, $2 \frac{\pi}{4}$ Inches.

But for large and high Houfes, or Buildings, of 3, 4 or 5 Stories with the Garrets: The Walls of fuch Edifices ought to be from the Foundation to the 1ff. Water-table. 3. Heading courfe of Brick, or 28 Inches at the leaft, and at every Story a Water-table, or taken in on the infide for the Summers, Girders, and Joyfls to reft upon, laid into the middle, or $\frac{1}{4}$ of the Wall, at leaft for the better Bond. But as for the innermoft, or Partition-wall, one Brick will be of a fufficient thicicnefs: And for the upper Stories a 9 Inch (or Brick a length) wall will very well fuffice.
4. An AEt concerning Building of Houfesin London.] What here follows is fo much of the Aft only as relates to the Brick-layer's-nurl, viz. The heightis and number of Stories, and thicknefs of Walls of the 4 feveral Rates of Houfes, which is as follows.

Aud be it further Enacted, That the Houfes of the 1 f t. and lealt fort of Euilding, fronting by Streets or Lanes, as aforefaid, nall be of a Stories high, befides Cellars and Garrets, tiast the Cellars thereof be 6 ? Foot high, if the Springs of Water hinder not; and the $1 / t$. Story be 9 Foot high from the Floor to the Ceiling, and the fecond Story be 9 Foothigh from the Floor to the Ceiling; that all the Walls in Front and Rear, as highats the I /. Story, be of the full thicknefs of the length of 2 Bricks, and thence upwards to the Garrets of the thick nefs of one brick and half; and that the thicknefs of the GarretiValls on the back part be left to the Difcretion of the Builder, fo that the fame be not Jefs than one Brick a Jength; and alfo that the thicknefs of the Party-walls between thefe Houfes of the $1 /$ f.and leffer fort of Buildinas be I Brick and $\frac{1}{2}$ as high as the faid Garrets, and that the thicknefs of the Partywall in the Garret be of the thicknefs of the length of : Brick, at leaft.

And be it further Enacted, that the Houfes of the fecond fort of Building fronting Streets, and Lanes of Note, and the River of Thames shall confift of 3 Stories high, befides Cellars and Garrets, as aforefid; that the Cellars thereof be 6 Foot and $\frac{1}{2}$ high, (if the Springs hinder not) that the 1ff. Story con-
tuin full 10 Foot in heiglith from the Floor to the Ceiling : The fecond full to Foot: The third g Foot: That all the idid Walls in Front and Rear, as high as the $1 / \mathrm{f}$. Story, be 2 Bricks and $\frac{1}{2}$ thick. and from thence upward to the GarretHoor, of I Erick and 'thick ; and the thicknefs of the Garret w'alls on the back part be left to the Difcretion of the Builder; 10 that the lame he not Jefs than a Brick thick: And alfo that the thicknefs of the Party-malls between every Houfe of this fecond, and larger fort of Buiiding be 2 Bricks thick as high as the 1 fr . Story, and thence upwards to the Garrets, of the thicknefs of a Brick and a $\frac{1}{2}$.

Alin, that the foufes of the 3 d . fort of Buildings, fronting the high and procipal Streets, fhall confilt of 4 Stories high, befides Cellarsand Garrets, as aforefinid: That the $1 / \mathrm{f}$. Story contain full 10 root in heighth from the Floor to the Ceiling, the fecond 10 Foot and ${ }^{7}$, and the third 9 Foot, the fourth 8 Foot and $:=$: That all the faid Walls in Front and Rear, as high as the $1 f$. Story be 2 Bricks and $:$ in thicknefs, and from thence upvards to the Garret-Hoor, of the thicknefs of i Brick and : That the thicknefs of the Garret-walls on the back part be left to the Difcretion of the Euilder, fo as the fame be not lefs than I Brick: And alfo that the Party-walls between every Houfi of this 3 d. and lareer fort of Euilding be 2 Bricks thick ashigh as the $1 / t$. Fionr, and thence upwards to the Garret-floor, the thicknefs of a Erich alid:.

And, be it further Enacted, that all Houfer of the 4th. fort of Building, being Marion boufes, and of the greateft bignefs, not fronting upon any of the Streets, or Lanes, as aforefaid, the aumber ot Storics, and the heighth thereof, flall be left to the Discretion of thic Buidder, fo as he exceeces not 5 stories.

Alfo, the fame Ait enioyns, that no Timber be laid within 32 Inches of the fore-fide of the Chinany-jambs, and that all Toylt: on the hack of any Chirney be laid with a Trimmer, at 6 Inches riftance from the Back: Alio that no Timater be laid sithin the Tunnel ot any Cbinney, upon Penalty to the Workman, for every Defait 10 s . and 10 Shilliags every Week it continues unref,rmed.

Thus fa the Ait.
Nore further, when vou lay any Timber on Rrict ronk, as Taffels, (or Toriels) in Mantle-trees to lie or, or Lintels over Windows, or Templets under Girders, or anyother Timbers: las them in Loam, which is a grear preferver of Timber; for Mortar eats and corrodes the Timber: L.ikewife tlae Joylk encs, and Giders which bie in the Walls, mult be loamed all nve: in preferve them from the Corroding of the Mortar. Some Workmen pitch the ends of the Timier that lif in the Wails to preferve them from the Mortar.
5. Concerning Party-walls.] In difcourfing of this Matter, I will prefent the Reader with two different Methods of valuing fuch Walls according to 2 different Survejers, viz. Mr. Lejbourn, and Mr. Pbillips.

And $1 / t$. according to Mr. Lefbourn.
Now, (faith he,) forafmuch as the Buildings in London joyn one upon another, and almoft every feveral Houfe hath a diftinct Proprictor, the Parliament hath decreed, that the W'all dividing Proprietors Ground, fhall be built at the equal charge of both the Owners; it will not therefore be impertinent to fhow how thefe Party-walls are to be valued.

All Brick-work, whether it be $1,23,4$, or any other number of Bricks lengths in thicknefs, they are all to be reduced to the thicknefs of a Brick and 1 .

It hath been obferved, (faith he,) that about 4500 of Ericks, 100 and a quarter of Lime, $2 \frac{1}{2}$ Loads of Sand will compleatly raife one Rod of Brick-work, of a Brick and $\frac{1}{2}$ thicknefs.

And thus much will a Rod of Partg-mall, (the Materials only) reduced to Brick and thick, amount unto at the former cup: pofed Rates, to which may be added for Workmanflip.

So that for every Rod that is in a Party. wall, bet:veen Proprietor and Proprietor, they are to allow 3 l. a piece for every Rod of Party-wall. So that if a Party-wall meafured, and the meafure reduced to a Brick and $\frac{1}{2}$, hould be found to contain 16 Rods, that 16 being multinlied by $3!$. giveth 48 l. and fo much is the one l'roprietor to allow the cther.
But note by the way, that altho' this Rule here deliver'd be general, yet the Price of the Party-arall Shall be more or lefs, according as Materials rife or fall. For fometimes a Rod of Wall of Brick and: thick, will coft but s l. ios. and :hen each Proprietor muft pay but 55 s . Per Rod. Thus Car Mr. Le) bourn. I will now add Mr. Phititis's way.

Now, (faith he,) having the Dimenficns, both in length: and heighth of the Celiar, and all other storits in the Howe, thea the following Tables will fhew Caccording to the thick-
nefs of the Wall, how many Ericks your Neighbour is to pay for towards his Party-mall.

For which purpole the infuing Tables will ferve very well; for thefe Walls, according to the Act of Parliament, for this purpofe are to be made part of them of 2 Bricks thick, part of them of I Brick and halt thick, and part of them of 1 Brick thick.

Now knowing the number of Bricks which go to the making of the Wall, you may eafily compute the Charge of the Mortar and Workmanfhip thereof, and from thence find the whole Charge, which you will find, (Gaith he) to be about 30 s . for every 1000 of Bricks, (1 think Mr. Phillip's his Price is too great; for I think 25 or 26 s.per 1000 is very well, but he acknowledges that Bricks then were fomething dear, viz. about 18 or 20 s. per 1000.)

He then proceeds to an Example; fuppore a Houfe of the third Rate, the Party-wall thereof being 30 Foot long, and you would know how many Bricks are to be paid for towards this Party-wall.

Firft, Meafure the Cellar where the Party-wall is to be 2 Bricks thick, the length whereof is 30 Foot, and the depth 7 Foot, find this length in the lide, and the depth in the top of the Table, and in the Square of meeting in the Table for one Brick thick, you will find 2314 Bricks are to be paid for.

Then proceed to the 1 ff . Story, which will be likewife 30 Foot long, and 10 Foot high, and alfo 2 Bricks thick, the fame Table fhews the allowance for this. 3306

The fecond Story alfo is 30 Foot long, and $10 \frac{x}{2}$ high, but the Party-mall is to be but a Brick and $\frac{1}{2}$ thick, the whereof is $\frac{3}{4}$ of a Brick, and this in the Table of $\frac{3}{4}$ of a Brick, yields for 30 Foot long, and 10 Foot high.

2479
And for the : ${ }_{3}^{2}$ Foot more in heighth. 124
The 3 d. Story is 9 Foot high, and 30 Foot long, being likewife a Brick and ${ }_{2}^{3}$ thick; and for this the Table fhews the $\frac{1}{2}$ to pay for is

The 4 th. Story is 8 Foot and $\frac{1}{2}$ high, and 30 Foot in length, for the 8 Foot the Table fhews.

All which added together, make
12559
which are to be paid for the half of the Party-mall, which at 26 s . fer thoufand, comes to 86 l.-6 s.- $6 d$.
Thus you may fee what any Party-wall comes to, tho' your Neighbour's Houle joyns never fo little, or much to yours, as readily as jou can by meafuring by the Rod.

And whereas the Eloors of the feveral Stories add fome-
what to the heighth, jou may add fomewhat for them according as you find them in thicknels.

Laftly, for the Garrets, the Walls thereof being but I Brick thick, you may take $\frac{1}{2}$ the number in the Table of 1 Brick's thicknefs, and add to the reft of the Account.

All the difference that can be between Neighbours herein, will be about the Price of Bricks, and the Lime, and Workmanthip; but if Neighbours Build together, they will eafily determine it ; but it they do not, yet the $\mathbf{1}$ f. Builder is fufficiently provided by his Workmen to reCtifie his Charge, and by Act of Parliament is allowed full Satisfattion, with Intereft from the time of his Building.

In the infuing Pages are thore Tables which we have been treating of.

A Table for I Brick in thicknc/s, or the balf of 2 Bricks.

The Walls beightb in Feet.

	Ericks	$\frac{\text { I. }}{\text { Bricks }}$	$\frac{\mathrm{II} .}{\text { Ericks }}$	$\frac{11 t}{\text { Bricks }}$	$\left\lvert\, \frac{\mathrm{I} \overline{\mathrm{~V}}}{\text { Bricks }}\right.$	$\frac{\mathrm{V} .}{\text { Bricks }}$
1	11	11	22	33	84	55 110
3	16	33	66	99	132	165
4	22	44	83	132	176	220
5	27	55	110	165	220	275
6	33	66	132	199	264	331
7	39	77	154	231	309	386
8	44	88	176	26.4	353	441
9	50	99	198	298	397	496
10	55	110	220	331	441	551
11	61	121	244	364	485	606
12	66	132	264	397	529	661
$\mathrm{nos}_{5} 13$	72	143	286	431	573	716
듣14	77	154	309	462	617	771
- 15	83	165	331	496	661	826
오 16	88	175	355	529	705	882
17	94	187	375	552	749	937
18	99	198	397	595	793	992
19	105	209	419	628	837	1047
20	110	220	441	651	882	1102
21	116	231	463	694	926	1157
22	121	242	485	726	970	1212
23	127	253	507	760	1014	1267
24	132	264	529	793	1058	1322
25	138	275	551	825	1102	1377
26	143	286	573	860	1146	1432
28	154	309	6.7	926	1234	1543
30	165	331	651	992	1322	1653
40	220	441	881	1322	1763	2204
50	275	551	1102	1652	2204	2755

A Table for I Brick in thicknefs, or the balf of 2 Bricks.

The Walls beightb in Feet.

A

A Table for 3 quarters of a Brick thiak; being the. balf of a Brick and balf.

The Walls beigbth in Feet:

	$\frac{1}{\text { Brick }}$	$\frac{\text { i. }}{\text { brick }}$	$\frac{\mathrm{JI}}{\text { Bricks }}$	$\frac{\mathrm{III}}{\text { Bricks }}$	$\frac{\text { IV. }}{\text { Bricks }}$	$\int \frac{V .}{\text { Bricks }}$
-		8 17	17	2	33°	$\begin{array}{r}41 \\ 83 \\ \hline\end{array}$
3	12	25	50	-74	99	124
4	17	33	6.6	99	132	165
5	21	41	83	124	165	207
6	25	50	99	149	198	248
7	29	58	116	174	231	289
8	33	66	132	198	294	331
9	37	74	149	22.3	298	372
10	41	83	165	2.48	331	413
11	45	91	182	273	354	455
${ }^{1} 1$	50	99	198	2.93	397	496
${ }_{5}^{20} 13$	54	107	215	322	430	- 537
$\bigcirc 14$	58	116	235	347	463	578
15	62	124	248	372	496	620
+16	65	132	264	397	29	661
17	70	140	28.1	421	562	702
18	74	149	298	446	595	744
19	79	157	314	4.71	628	785
20	83	165	331	496	66 F	826
21	87	74	347	521	694	868
22	91	82	369	545	727	909
23	95	190	380	570	760	950
24	99	198	397	-595	793	992
25	103	206	413	620	826	1033
25	107	215	430	645	850	\%1074
28	116	231	463	. 694	926	1157
30	124	248	496	744	982	1240
40	165	331	661	992	1322	-1653
501	207	41.3	826	$\mathrm{r}_{2}{ }^{2}$. 6653.	' 2066

A Table for 3 quarters of a Brick thick, being the balf of a Brick and balf.

The beightb of the Wralls in Feet.

	$\left\lvert\, \frac{\mathrm{VI} .}{\text { Bricks }}\right.$	$\frac{\text { VIt. }}{\text { Bricks }}$	$\frac{\text { VIII. }}{\text { Bricks }}$	$\frac{1 \mathrm{X}}{\text { Bricks }}$	$\frac{X .}{\text { Bricks }}$
7	50	58	65	74	83
2	99	116	132	149	165
3	149	174	198	223	248
4	198	231	264	298	331
5	248	289	331	372	413
6	298	347	397	446	495
7	3.4	405	453	521	579
8	394	463	529	595	661
$?$	446	521	595	660	744
10	496	579	66.1	744	826
11	545	636	727	818	900
12	595	691	793	893	992
- $\mathrm{cic}^{\text {a }}$	645	752	860	976	1074
- 14	694	810	926	1041	1157
-15	743	858	992	1117	124
\% 16	793	926	1058	1189	1322
1	843	983	1124	1264	1405
18	893	1041	1190	1339	1488
19	942	1099	1256	1413	1570
20	992	1157	1322	1488	1653
21	104i	1215	1388	1562	1736
22	1991	1273	1455	1636	1818
23	1140	1331	1521	1711	1901
24	1190	1388	1587	1785	1983
25	1240	1446		1860	2065
26	1290	1504	1709	193	2149
28	133^{8}	1520	1851	2083	2314
30	1488	1736	1983	2231	2479
40	1983 2479	2324 2893	2625 3306	2975	3306

6. I fhall bere add an Abftralt of the All.] Being a Table of Proportions for Erick-walls, number and heighth of Stories, doc. In the Building of 3 forts of Houfes, (viz. The 31 ff . Rates) in the City of London, according to the Act of Parliament.

More oncerning buiding of Houfes you may find under the Head Aichiteft; alfo a very ample account under the Head Building, where are thefe following Paragraphs and SeEtions, vi.1.C:nfiderations about Buildings; 2.Aphorifns, which is fub divided into the following 7 Sections.

1. Situation, in refped of the whole.
2. Contrivance, with fome Precautions.
3. Reccipt.
4. Stren ${ }_{3}$ th, with Diredions about it.
5. Beauty, in the whole and parts.
6. Form, Figure, or fiaflion, and what Figure is ftrongeft and molt convenient.
III. The third Paragrapl, contains a Comparifon betwixt the Modern, and ancient way of Building in Eng!and,
IV. Contains fome general Rules which ought to he obferved in Building all Houles, both in the City, and the Countrey.
V. Contains a Method of Surveying of Buildings, or Houfes, and alfo the Method of taking of Dimenfions, and fetting them down in a Pocket book, or the like; and alfo the Form of a Bill of Meafurement.
VI. This 6 th. Paragraph is of the Method of Meafuring all Artificer's Works, relating to Building of Houjes, \&c.
VII. In the feventh Paragraph, there is fhewed a Method how you may nearly value all forts (almoft) of Buildings, whether they are great or fmull.
VIII. Youhave in the eighth Paragraph a Method of Cenfuring Buildings, or Houfes, viz. Directions how to pafs ones Judgment on a Fabrick (that is already Buils,) whether it be well and firmly compacted, and whether well contrived, as to the whole, and all its parts feparately, for Ufe, or Conveniency ; and as to it; Beauty, whether its Parts be placed ian an uniform Order and whether the Defigner, or Mafter Builder obferved a due Symmetry, or Proportion of the Parts, in refpect of one another, \&rc.
IX. And laftly, under the Head Building, you have fome Directions concerning advifing with Workmen about the Charge of Building any Houfe: And how much a Euilder, (or Gentleman that is going to Build) is the wifer for fuch Men's Advice commonly, I mean if he advife with fuch as are to do tire Work: Tho' otherwife perhaps he may be well inform'd by fome ingenious Workmen that underftand the Speculative Part of Architecture, or Buiiding: Eut of thefe knowing fort of Workmen look any further than the Meclianical, Practick, or Working Part of Architellure ; not regarding the Mathematical, or Speculative Part of Building, thinking it to be of little or no ufe; this I know to be true, becaufe I have heard fome Workmen, (who thought themfelves none of the Ignoro's, tho' at the fame time I had the liberty to think as I pleas'd, wnich was in truth almoft quite contrary ; for as they thought themfelves Men of Science [or Skill,] I thought fo too almoft, only I thought that the Particle Ne was wanting before the word Science; for if that had been prefix'd, then it might have been very well applied to have fignified the acquired Intellectual Habits of fuch Men as affirm that the Theory, or Speculative part of Architecture was of no ufe, becaufe, fay they it is falle : Eut 'tis the humour of fome Men to llight and contemn fuch things as they are not Mafters of, and do not know which way to attain them, as being beyoud their reach. Like
the Fox in the Fable, who defpifed Grapes, becaufe they grew too high for him to come at.

Thus I have fhewed you, that what is wanting under this Head, you may find fupplied in the word Building.

Horefing,

A Term ufed by fome Bricklayers, for when a Tile, or Brick is warped, or caft crooked or hollow in burning, they then fay fuch a Brick, or lile is Houfing; they are apt to be Houfing, or hollow on the ftruck fide, (or that which was upmoft in the Mold,) and Bricks on the contrary fide.

Alfo fome obferve that Tiles are always fmootheft, when burnt an the ftruck-fide, by reafon the Sand ficks to the un-der-fide, which they flrew on the Stock of the Mold, to prevent the Earch'sadhering to.it.
Hypertbyron,

The Lintel, or Cap-piece of a Door-cafe, according to V isruvius. 'Tis alfo ufed to fignifie a large Table in manner of a Frieze above Dorick Gates.

Hypotrachelium, or, Hypotrachelion. What.] V. Capital, N. 2. and 3.

$$
\mathcal{F} a c k .
$$

V. Architrave, N. 2.
fambs, or, faums,
Door-pofts, alfo the upright Pofts at the ends of Windowframes, are fo call'd. Alfo, Bricklayers call the upright fides of Chimneys, (from the Hearth to the Mantle-tree,) by this Name.
Icbnography,

A Defcription, or Draught of the Plat-form, or Groundperck of a Houfe, or other Building.
Impoft,

Is a Term in Architecture, which the Writers of this Science leave very mucb in the dark; efpecially as to any account of its ufe: But by what I can learn at prefent, I underftand Impofts to be the Capitals of Pilafters that fupport Arches. There are as many kinds of Impofts, as there are Orders of Columns;
the particular Forms and Dimenfions, of each of which I thall defer till another Impreffion : For tho' I could at the prefent have done this; yet I thought it better to defer it till fuch time as I thall be capable to give a better account of their Situation and Ufe; which I hope fhall be when the Bookfeller has furnifhed me with thofe other pieces of Architecture which he has promis'd me, but has not yet procurid for me.

Intercolumniation,
In Architecture, fignifies the fpace or difiance betwixt the Columns, or Plaifters.

> Inter ties, duces,

In Architecture, are thore fmaller pieces of Timber that lie Horizontally betwixt the Summers, or betwixt them and the Sell, or Refon.

> fobents.
V. Nails. N. 10.
Foggle-piece.

As Crown-poft.

$$
\text { foyners }\left\{\begin{array}{l}
\text { Brids, } \\
\text { Rivets. }
\end{array}\right.
$$

v. $\left\{\begin{array}{l}\text { Brads. N. } \\ \text { kivets. } \mathrm{N} .\end{array}\right.$

Foyners-work:
v. The Particulars in their proper place of the Alphabet.
Foyst,

1. What.] Joyfts, in Architefture, are thofe pieces of Timber (fram'd into the Girders and Summers,) on which the Boards of the Floors are laid.
2. Scartlings.] Joyfts at full length (to bear in the Wall,) I fay, their full length

being $\left\{\begin{array}{l}12 \text { Foot, } \\ 11 \text { Hoot, } 6 \text { Inches, } \\ 10 \text { toot, } 6 \text { Inches, }\end{array}\right\}$ they ought to be in their Squares $\left\{\begin{array}{l}8 \text { Inches and } 3 \text { Inches. } 7 \text { Inches and } 3 \text { Inches. }\} \\ 6 \text { Inches and } 3 \text { Inches. }\end{array}\right.$

And Binding, or Trimming-joyfts being
in length $\left\{\begin{array}{l}7 \text { Foot, } \\ 9 \text { Foot, } \\ 11, \text { or } 12 \text { Foot, }\end{array}\right\}$ ought to be in theit
Squares $\left\{\begin{array}{l}6 \text { Inches, and } 5 \text { Inches. } \\ 7 \text { Inches, and } 5 \text { Inches. } \\ 8 \text { Inches, and } 5 \text { Inches. }\end{array}\right.$
3. Diftance and Pofition.] (i.) No Joyfts ought to lie at a greatci diflance from each other than 10 (or at moft than 12) Inches. (2.) All Joyfts on the back of a Chimney ought to be laid with a Trimmer, at 6 Inches diftance from the back. (3.) No Joyfts ought to bear at a longer length than 10 Foot. (4.) No Joyfts ought to lie lefs than 8 Inches into the Brick. wall. (5.) Some Carpenters Furr the Joyfts, (as they callit,) that is, they lay 2 rows of Joyfts one over another; the undermoft of which are frumd leved with the under-fide of the Girder, and the uppermoft (which lie crofs the lower ones,) lie level with the upper fide of the Girder.

> Ionick Order.
V. Column. N. 3.

Iron.

y. What.] Iron is a Metal fo univerfally known, that Ineither need to, nor fhall fend time it its Defcription.
2. Kinds.] There are feveral kinds of Iron, as (1.) Engli β, which is a courfe fort of Iron, hard and brittle, fit tor Firebars, and other fuch courfe ufes. (2.) Swedifh, which is of 311 forts the beft we ufe in England. It is a tine toush fort of Iron, will heft endure the Hammer, and is fofteft to file, snd therefore moft coveted by Workmen to warli upan. (3.) Spanifh; This would he as good as Swedifh Iron, were it nnt fubject to Red fear, (as Workmen phrafe it,) that is to crack betwixt hot and cold. Therefore when it falls under your Hands, you muft tend it more carefully at the Forge. : But tho'it be a good, tough, foft Iron, yet, for many ufes Workmen remie it, becaufe tis fo ill and unevenly wrought in the Bars, that it cofts them a gireat deal of labour in fmooth it ; but it is sood for all great Works that require Welding ; as the Podies of Anvils, Sledges, Jarge Bell-clappers, large Peftes for

Mortars, and all thick ftrong Ears. \&cc. But 'tis particularly chofen by Anchor-fmiths, becapfe it abides the Heat better than other Iron, and when 'tis well wrought, is tougheft. (4.) There is fome Iron that comes from Holland, (tho' in no great quantity,) but is made in Germany. This fort of Iron is calld Dort-Squares, (only becaufe it comes to us from thence, and is wrought into Ears of ${ }_{4}^{3}$ of an Inch fquare. 'Tis a bad courfe Iron, and only fit for courfe ufes, as Window-bars, Brewersbars, Fire-bars, foc. (5.) There is another fort of Iron us'd for making of Wire, which of all forts is the fofteft and toughe!t : But this fort is not peculiarto any Countrey, but is indifferently made where any Iron is made, tho' of the worft fort; for 'tis the firft Iron that runs from the Mine-ftone when 'tis melting, and is only preferv'd for the making of Wire.
3. Toknow good.] Generally the fofteft, and tougheft Iron is the beft. Thereiore when you chufe Iron, chufe fuch as bows ofteneft before it breaks, which is an argument of toughnefs, and fee it breaks found within, be of a grey colour, like broken Lead, and free from fuch glittering fpecks as you feen in broken Antimony, and no Flaws or Divifions in it ; for thefe are Arguments that otis found, and was well wrought at the Mill.
4. Price when wrought.] Iron being wrought(by the Smith)into Dogs, Iron-hars, Staples, large Hooks, Thimbles, and Hinges or Hides, Grates, \&oc. The ufual Price is three Pence Half-penny, or 4 d. per Pound. Eut for fmall and neat Hooks, Hinges, Bolts, Staples, dec. various, as from $4 d$.to $8 d$. per Pound.
5. To make Blew.] To beautifie Iron with a blew Colour, take a piece of a Grind-ftone, or Whet-ftone, and rub hard upon your Work to take off the black Scurff from it ; then heat it in the Fire, and as it grows hot, you will fee the colour change by degrees, coming firft to a light Gold-colour, then to a darker Gold-colour; and laftly, to a Blew-colour. But Workmen fometimes grind Indico and Salad-oyl together, and rub that mixture upon it with a Woolen-rag, while it is heating, and let it cool of it felf.
6. Of twiffing.] Square and flar Bars of Iron are fometimes (by Smiths) twilted for Ornament; which is very eaffly done: for after the Bar is fquare or flat Forged, (and if the Curiofity of the Work require it truly Fil'd, you muft take a Flame beat, or if your Work be fmall, but a Blood-red-heat, and then you may twift it about, as much, or as little as you pleafe, either with the Tongs, Vice, or Hand-vice, ér.
fuffers,

A Term us'd by fome Carpenters, for Stuff about 4 or 5 Inches fcuare, and of fcueral Lengths.

Kerf,

T
HE Sawn-away Slit in a piece of Timber, or Board, the way made by the Saw, is call'd a K'erf.

> Key.fone.
V. Arch, N. 6.

As Crown polt.
King piece,
K̇nee,

A piece of Timber cut crooked with an Angle, is call'd a Knee-piece, or Knee-rafter.
Keys

For Doors are of various Prizes, according to their Size and Workmanfhip, Mafter-keys, per Price 2 or 35.

Latcbes

FOR Doors are of varicus Kinds and Prizes. Common 1. ron-latches, per piece, $6 d$. if large, $8 d$. or 1o d. long Varniffid-Latches, ahrout $\mathbf{1 0} \mathrm{d}$. per piece. Rim'd-Latches with a fliding Bolt, 2 s. fer piece, Spring-Latches, per piece, 1 s. or $1 \mathrm{~s} .6 d$.
Latbs.

1. What.] Laths are long, narrow, thin flips of Wood us'd in Ty!ang and Willing ; every one knows what they are, without any further Defcription.
2. Kinl; 3.7 There are 3 kinds of Laths, viz. Heart of Oak, Sap laths, and Deal laths; the 2 laft forts are us'd for Ceiling and Partitioning, and the firft for Tyling only. Again, as to their lenath, they are each of them diffinguifh'd into 3 forts, wiz. 5 Foot, 4 Foot, and 3 Foot-laths. All thefe forts of Laths areacelfary, (efpecially ia repairing of old Buildinge, becuufe allRifters are notfused alike, nor yet the Proportion ftiifly cherved in every one and the fame Roof. V. P. gTyling. N 8.

3 nundle of.] A bindle of Laths is fo many as are bound up tosether, and is zenerally call'd a Hundred of Laths; tho' of the 3 Font-laths there goes 7 Score, for 140 to the Handred, or Buntle, and of the 4 Foot-laths, 6 Score, but of of 5 Fout Laths, there gaes but juft 5 Score to the Hundred, or Bundle.
4. Size of.] The Statute allows of but 2 forts of Laths, I of 5 , the other of 4 Foot in length; of either fort, each Lath ought to be in breadth an Inch and half, and in thicknefs half an Inch ; but they are commonly lefs, and are feldom exact, either in their Tale or Mcalures.
5. Of Cleaving.] (1.) Lath-cleavers, having cut their Timber intolengths, they cleave each piece (with Wedges) into 8,12 , or 16 pieces, (according to the bignefs of their Timber,) which they call Bolts; then they cleave thefe Bolts (with their Dowl-Ax) by the Feit-grain, [which is that Grain which is feen to run round in Rings at the end of a Tree,] into Sizes for the breadth of their Laths, and this Work they call Felt. ing. Then, Infty, (with their Chir) they cleave their Latis, into their thicknefles, by the Quarter-grain, which is that Grain which is feen to run in fraight Lines towards the Pitch. (2.) Some Men alfirm, that a Foot of Timber will make a bundle, or Hundred of Laths; but this I know to bea Miftake, (unlefs the Laths are made very flight;) for by feveral Experiments, which I have caus'd to be made, I find that a Tun, or 40 Foot of Round-oaken-Timher, will not make above 30 Hundred, or Bundles of Laths. Of which number about one third part, (viz. 10 Hundred) will be Sap laths.
6. Price of.] (r.) The common Price for cleaving of Laths, is 5 d . or 6 d . the Bundle. But I know a Carpenter (in Suffex) that buys a great deal of Timber,: and has it cleft into Laths, and he tells me, that he ufes to give but is s per Load for the Cleaving of 'em, (reckoning a Load to be 30 Bundles, (which is not full $4: d$. per Bundle.
(2.) The Price of Laths muft needs be various, there being fo great Difparity in the the Commodity, as to its Goodnefs, Plenty, or Scarcity, foc. Eut the Prizes are generally between a Shilling and half a Crown the Bundle: And the common ratefor Heart-laths is about 20 d . per Bundle, and Sap-laths are commonly about : of the Price of Heart-laths, The Carpenter mention'd above, (in this number,) tells me, that he ufes to fell his Laths for $4 l$. ro s. the Carriage: He reckonsa Carriage 60 Bundles, whereof 40 are Heart. and 20 Sup-laths; at which rate, (reckoning Sap-laths to be ${ }_{3}^{2}$ of the Price of : Heart, (he fold his Heart-laths at $20 \frac{1}{4} \mathrm{~d}$. per Eundle, and his Sap-laths at $13 ;$ d. per Eundle.
7. Nails allow'd to a Bundie of.] The common allowance is 5 Hundred, (at 6 Score to the Hundred, that is 600) Niils to a Bundle of Laths.
8. How many to a Square.] Workmen commonly allowa Bundle of Laths to Square of Tyling, which (if the Diftances of the Rafters fit the kengths of the Laths, without anv wait, , is a fufficient allowance; for (then) bbout 90 five Fost, a d $\$ 12$ four foot-Laths, will compleat a Square of Tylizg) (Coma-
ter-1aths and all,) at 7 Inches Gage, and at 8 Inches Gage, a Square will require fewer.

Lathing.

The Price of Lathing, Plaiftering, Rendring, and Wafhing with Size, is about 10 d .12 d . or 14 d . per Yard, Materials and Work.

Lead.

1. What. And its U/e.] Lead is a Material (us'd in Buildings, and) well known, and needs no Defcription. Its chicf Ules are for Covering for Gutters, for Pipes, and for Glafs, Covering with Lead is the moft magnificent, and is generally moft usd for the covering of Churches, Princes Palaces, Caftles, and great Men's Houfes. It is generally laid almoft flat to walk upon, allowing the Water a little fall to the Battlements, thence privately to defcend in Pipes. But in ordinary Tyled Euildings ?tis chiefly us'd for Gutcers to convey the Wdter from the Houfe into fome conventent liace.
2.Sorts of.] There are 3 forts of Lead, White, Elack, and Ah, colour; the White is more perfect and precious than the Black, and the Afh-colour between both.
2. Of Calting Sheet.] I flall here exhibit fome of my Obfervations on the Method of Caftiog Lead into Sheets; as I have often feen it done, and have (for Curiofity) caft fome Sheets my lelf. For this Purpofe thicre is a Mold provided, which is made fomething longer than the intended length of the Sheets, that the end where the Metal runs off from the Mold may be cut off; becaufe 'tis commonly thin, and uneyen, or ragged at the end.

Tinis Mold, (which is juft as broad as the Sheet is to be,) muft ftand very even, or level in breadth, and fomething falling from the end where the Metal is pour'd in, viz. Abcat an Inch, or an 'nch and half in 16 or 17 Forst.

This Mold (commonly) confifts of feveral Treffels, upon which Boards are laid, and nail'd down faft, and upon thefe, at a due diflance, (according to the intended brearth of the Shects,) the Sharps are fixed. Thefe are 2 pieces of well feafon'd Timber, of about 4 Inches Square, and 16, 17, or 18 Foot long, according to the Size of the Sheets. But this Method of fixing down the Sharps, Workmen have found to be inconvenient; and therefore fome do only fix one of the Sharps firmly, nuiling the other but dightly, and then ther fix reveral pieces firmly to the Boards, withcut the nightly fixed Sharps betwixt which and the Sharp, they drive wedges, to make the Sharps come nearer together, as they fee occation : For they find by Esperience, that the moiltn'd Sand, (when it has lain a while on the Eoards,) makes the Eoards fivell fo
much, that in fpight of the Nails the Sharps will be too far a funder.

At the upper end of the Mold ftands the Pan, which is a Concave Triangular Prifm, compos'd of 2 Planks naild together at Right Angles to each other, and 2 Triangular Pieces fitted in betwixt them at the ends. The length of this Pan is the whole breadth of the Mold wherein they caft their Sheets, and the breadth of the Planks whercof 'tis compos'd, may be 12 or 14 Inches, or more, according to the quantity of Lead they have occafion to put into it, to make a Sheet of, and the thicknefs of the Planks an Inch and a half. This Pan Alands with its bottom, (which isa harp edge) on a Form at the end of the Mould, leaning with one fide againft it, and on the oppofite fide is a handle to lift it up by, to pour out the melted Lead; and on that fide of the Pan next the Mold are 2 Hooks of Iron to take hold of the end of the Mould, and prevent the pan's flipping, when they pour the melted Lead out of it into the Mold.

This Pan is lined on the infide with moiftn'd Sand, to prevent his being fired with the hot Metal. The Mold is alfo filld up (from the upper end towards the lower end, about $\frac{2}{3}$ parts of the way) with Sand fifted and moiftn'd, and then a Man gets upon it, and treads it all over with his Shooes on, to make it fettle clofe to the Mould. This being done, they begin to ftrike it level with the Strike, which is a piece of Board about 5 Inches broad, in the middle of which, and towards the upper edge is a wooden Pin (about 5 or 6 Inches long, and 1 , or $1 \frac{1}{4}$ Inch Diameter,) to hold it by when they ufe it. The length of this Strike is fomething more than the breadth of the Mold on the in-fide, and at each end is cut a notch (on the under-edge,) about 2 Inches deep; (o that when the Strike is us'd, he rides upon the Sharps with thofe Notches, and the lower edge of the Strike rides about 2 Inches below the upper fide of the Sharps.

Then, in leveling the Sand with this Strike, they begin towards the lower end of that part of the Mold that was Filld, and taking the handle of the Strike in their Right hand, and laying their Left-hand upon one end of it, they draw the Sand back into that part of the Mold that was enipty. Then they begin again a little nearer to the upper end, and draw the Sand back, (as before.) but not fo far as the empiy pirt of the Mold ; for it is thus leveld at 5 or 5 places in the length of the Mold; (if he be 18 Fuot long, as that was I made miv Obfervations from, fo that when it is thus levei'd the whole length of the Mold, there are as many places that feem to be unleveld, as there are level'd, by reafon of the Sand which is a little drawn back. Then the next Operation is to drawall the loofe and hover Sand, (ris'd in tine haft Opiration of leveling it) into the empty part of the Nod, wiich is tone by be-
ginning at the upper end of the Mold, and ftill as the Sand is drawn back, the level'd part mult be examin'd, to fee if there be nu Cavities in it; for if there be, a little Sand muft be put into 'em, and that muft be fettl'd clofe and faft in the Cavities, by lifting up one end of the Strike, (letting the other reft upon the orher Sharp,) and rapping upon the loofe Sand, which was put in thofe Cavities, and fo it will be fettlid clofe and faft.

This being perform'd all over the upper ${ }^{2}$ parts of the Mold, and all the loofe Sand drawn back into the lower $\frac{1}{3}$ part of the Mold, that is alfo trod on, and fettl'd all over, and level'd in all refpects as the other ${ }_{3}^{2}$ were; and its loole Sand is drawn off the Mold, down into a place 2 or 3 Inches below the lower end of the Mold, where the Sand is made into 2 Concavities to receive the overplus of the Lead.

The Sand being thus level'd, it is next to be fmoothed all over with the Smoothing-plane, (as they call it,) which is a thick Plate of Polifhid-brafs, about 9 Inches fquare, a little turn'd up, on all the 4 edges; fo that the under-fide looks fomething like the Diamond-cut-looking-glaffes, on the upper fide, (which is a little Concave like a Latten-pan,) is a Brals Handle folder'd on, upon which is a wooden one alfo, like a Cafe-fmoothing-iron. With this Inftrument the Sand is fmoothed all over; and where there are any fmall Cavities, there muft be a little Sand put in 'em, (with the 2 Fore-fingers and Thumb, and then fmoothed down.

The Sand being thus fmoothed, the Strike muft be made ready, by tacking (that is 售ightly nailing) on the Notches, 2 pieces of an old Felt-hat, (or elfe by fliping a Cafe of Leather on eachend,) thereby to raife the under fide of the Strike about $\frac{1}{x}$ of an Inch above the Sand, or fomething more, (according as the Sheets are to be in thicknefs, (which will make a middle fiz'd Shect of about 9 or io Pound jer Foot ; as I have obferv'd in the Cafting of Lead for a Plat-form. (Eut for Hips, and Window-foils, and fuch Places where it does not lie flat, the Lead need not be above $i \frac{1}{-2}$ of an Inch thick; but fometimes Plat-form-lead is near . of an Inch thick.)

Then thev T-llow the under-edge of the Strike, and lay him crofs the Mold clofe by the Pan, to prevent drops of Lead from fpattering into the Mold, before it be ready to pour. Then the Lead being melted, (and the pan made ready by being lined with moiftn'd Sand, as was faid above, it is laved into the Pan, and when he is full, (or a fufficient quantity for the prefent Purpofe, then with the end of a piece of Board (2 or 3 Inches broad,) draw off the flosting part, or Scum of the Metal round about to the edge of the Pan, and there let it fettle upon the Sand, which will thereby prevent the Sand from faling out of the Pan into the Mold, when the Metal is pour'd cut.

The Metal being thus prepard, and cool enough, (which it will be when it begins to ftand with a Shell, or Wall round about on the Sand,) then 2 Men muft take tire Pan by the Handle, and pour it into the Mold, and a third Man flands ready with the Strike, (facing of them, and his Right-fide to the. Mold, and as foon as they have done pouring in the Metal, he immediately puts the Strike on the Mold, and runs back the whole length of the Mold, and fo draws off the over-plue of the Lead, into the Cavities made to receive it; and then immediately, (with a Knife) the ragged end is cut off before it is cold.

When the Sheet is a little cool'd, 'tis begun to be rowl'd up, from the upper end downwards, ('tis handl'd with pieces of old Felt-hats,) and as they rowl it up, they rub off the Sand from it.

When the Shect is taken offfrom the Mold, the Sand is immediately rak'd over with the Rake to let it cool, and then if it be too dry, 'tis fprinkl'\{ with a little Water; but care muft be taken that none of the Mold be too wet; for if it be, the melted Lead will ty like Shot when it comes upon it. After the Sand is raked, 'tis all turn'd up-fide-down with a Spade, and when it has lain a while, 'tis again thrown into $\frac{2}{3}$ parts of the Mold, and fettl'd down by treading, as at firft, $\dot{G} c$. To make it ready for the next canting, which is commonly in aus Foor and a half, or 2 Hours, if the Furnare heat well.

Thus much I have obferv'd of the Method of Cafting Lead into Sheets. I have infifted the longer upon it, becaufe 1 know of none that has Written of this fo ufeful a Subject.
4. Weight of a Foot of Sheet.] Every Square Foot of Sheetlead, (if it be defign'd for Gutter, which is commonly run thinner than for Plat-forms,) is reckon'd to weigh 6 or 7 Pound, if old, 8 or 9 Pound, if new. And every fquare Foot of Sheet-lead for Plat-forms, is reckon'd to weigh 8,9, or 1α Pound, if old, and II or 12 Pound, if new, and very good.
5. How much one C. weight will cover.] One hundred weight of Sheet-lead (at 12 Ht . per Foot,) will cover a Square-yard, or 9 Square-foot. And is a lighter covering than Tiles, tha' dearer:
6. Sheet for Gutters.] Sheet-lead defign'd for Gutters; is commonly run thinner than for Plat-forms. And Some Plumbers in-London tell me, That "tis the beft way in laying long Gutters, to make a Drip, (Fall, or Step) about the middle, (of 1, 2, or 3 Inches deep;) for by this Means, fay they, the Lead (ibeing cut into 2 pieces which are forter,) is not fo fubicet to crack, (by being dilated and contracted with Heat and Cold,) as otherwife it is.
7. Sheet, of laying on in Plat-forms.] I have obferved the Wethod of Plumbers in laying down the Lead in Plit-forms,
to be this: Having roll'd open 2 Sheers, they beat them Hat with their Dreffer, [which is an Inftrument of Wood, of 16, 18 , or 20 luches long, (according as they are of Stoutnefs;) and about 3 or 4 Inches broad at the bottom, and in heighth fomething more, in the Form (almoft, of a Parallelopipedon, only the upper-fide is rounded off, and at one end the under-fide is cut away, fo as to leave a handle running out ftraight with the top.] Then (with a Line and Chalk, or with a flraight Ruler, and a pair of Compaffes,) they ftrike a Line about $2 \frac{1}{2}$ Inches diftant fromone edge of one of the Sheets, this is for the Stander. In the fame manner they flrike a line about $3 \frac{1}{2}$ Inches diftant from the edge next to it of the other Sheet; this is for the orlop. LThe Stander is about $2 \frac{1}{2}$ Inches of a Sheet of Lead, which is let upat Right Angles to the Sheet, all along one edge of it. The Orlop is about $3 \frac{x}{2}$ Inches of the edge, (next to the Stander) of the other Sheet, rais'd up in the fame manner as the Stander.] Then with their Pincers, (which are fomething different from common Pincers; for thele have a fmall Cylinder of Iron, (of about $\frac{\frac{1}{2}^{2}}{}$ an Inch Diameter, and 3 or 4 Inches long) fixed to one of the Chaps in fuch a Pofition, that when the Pincers are fhut, they feem to hold it betwixt their Chaps;) they raife up the Stander, and Orlop, by putting the fharp Chap under the Sheet, and the Cylindrical one on the top, near the Line, and fo they bend up the edge of the Sheet, both for the Stander and Orlop. Then they pro: ceed to fet it in better order with the Dreffer, with which they make the Stander and Orlop, as upright and ftraight as they can, by placing one edge of the Dreffer upon the lize which they fruck, and ftriking hard blows on the top of him with a Smith's Hand-hammer.

Having thus made the Stander and Orlop as ftraight as they can, and fet them up at Right Angles to the Sheet; they bring them together, and proceed to make a Seam of them, by firlt turning the Orlop, (which is an Inch broader than the Stander) over the Stander, by the help of the Dreffer, and Seaming-maliet, [which is an Inftrument of Holly, or fome other hard wood: It is made of a piece firft tri'd, to about -. Inches fquare, and about-. Inches long, and then wrought away from the middle to one end, almoft to a flarp edge, and foit is likewife at the other end, only thofe edges ftand at Right Ansles to eachother, like a Crofs-mattock. And into the middle of it is put a Handle like a Mallet.] And then they continue to beat the Orlop, and conftantly work upan him with the Dreffer, till they have reduced him and the Stander into as little room as they can, by wraping them one in another, till at laft it feems to be a kind of Semicircle, and this is what they call a Seam.

Some Plumbers tell me, That they fometimes lay Plat-forms of Lead, without Seams; but then the Joyfir are wrought in
hollow, about 3 Inches broad, and near as deep, in the form of a Semi-concave-cylinder, and when they lay the sheets down, the edge of the firft Sheet lies fo far on the Joyft, that it comes over beyond the Concavity, and fo much of the Shect as lies over the Cavity is Set down into it with the Seaming-mallet, and the next Slieet is laid over that, and fer down into the Chanal alfo; and fo the Water that comes into thofe Chanals, runs down into the Gutter.
8. Mill'd.] One Mr. Roberts, (then Mafter of the 'Company of Plumbers in London,) tells me, That Mill'd-lead is of but little ufe; not only becaufe tis fo very thin; but alfo becaufe by the way of Milling it, 'tis flretched to that degree, that when it comes to lie in the hot Sun it furinks, and cracks, and (confequently) will not keep out the Water. For 'tis, (fays he,) like Cloath firetched on the Clothiers Tenters, which whea taken off, naturally inclines to return to its formet State. He fartheradded, That there was fuficient Proof for what he faid; and if any one defir'd to be fatisfid about it, he might repair to Greenwich bofpital, which is coverd with Mill'd-lead, and has not been done above 4 or 5 Years, and yet it rains in, almoft all over the Hofpital; upon which account the Mafter and Wardens of the Company of Plumbers were fent for to the Parlianent, who order'd them to go and view this Milld-lead-work at Greenxich-hoppital, which they did; and when they returned to the Parianent? they all unanimoully declar'd, That Mill'd-lead was not fit to be us'd : Whereupon the Parliament had thoughts of putting down the milling of Lead: But whether they have actually done ir, I have not vet heard.
9. Pipes of.] I underfland by difcourfing with forme Plumbers in London, that they give diftinct N imes to their Leaden pipes, according totheir weight at a Yard long, e. g. they have 6 it .8 tt .10 t .12 lt .14 tb .20 tt . and 28 it . Pipes and if I mifs remember not, one fize larger; fo thata Pipe of 6 tt . to the Yard, thev call a 6 tt . Pipe, and fo of the reft. I cannot at prefent tell the particular fizes of ill thefe forts of Pipes; but if I mifs remember not, the 10 lt. Pipe was about 1 Inch Diameter, from out-fide to out-fide.
10. For Glafs.] Some Glaziers tell me, that they ufually allow 50 it . of Turn'd-lead to 100 Foot of Quarry-glafs. They. call it Turn'd-letd, when the Came has pals'd through the Vice, and is thereby made with a Groove on each fide to go on upon the Glafs. See Came. Their Turn'd-lead for Quarries is commonly about ${ }^{3}$, (which is almoft $\frac{5}{5}$) of an Inch broad; and for large Square-glass, their Turn'd-lead is $\frac{8}{1}_{1}^{2}$, or ${ }^{2}$ an Inch broad. So that I find (by Difcourfe with Glaziers,) they have it of different fizes, as $\frac{4}{162}$ $5,-\frac{5}{6},-\frac{7}{6}$, and $\frac{x}{6}$ of an Inch broad:
1 have alfo obferved, that fome Glaziers in London have 3
fizes of Turn'd-lead for Glafs-windows, viz. Of $7,-\frac{5}{6}$, and is, of an Inch broad: The largeft fize, (they tell me) is for large Squares, that of $\frac{5}{6}$ for (Quarries, and the $-\frac{4}{6}$ for Crock-et-work, (or Fret-work, as tome Glaziers call it,) it being more pliable for that ufe than broader Lead.

Some Glaziers tell me, they can turn Lead of different fizes in the fame Vice, by changing their Claceks for each fize, and with another pair of Spindles, whofe Nuts almoft meet or touch, they turn Lead for Tyers, which when it comes out of the Vice, is almoft cut afunder in 2 thicknefles, which they can eafily rendafunder. Thefe Tyers are very tough, but they are commonly nade too flight, and therefore fome ufe to caft Tyers, which are ftouter, but not fo tough, being more apt to break in winding.
II. Nails for.] V. Nails. N. II.
12. Of Soddering.] An ingenious Plumher, (whoefteem'd me as his peculiar friend.) told me the Method of Paleing, (as they call it,) or Soddering on of Imboft Figures on Leaden Work; as, fuppofe a Face, or Head in Eafs-relief, were to be l'al'd on a Pump ciftern for an Ornament to it. To do which, (faid he,) the Plate where it is to be pal'd on muft be ferap'd very clean, and fo muft alfo the back-fide of the Figure, that it may fit clofe with a good Joynt. Then, (faid he,) placethat part of the Ciftern (where the Figure is to be fis'd) Horizontal, and frew fome pulveriz'd Rozin on the place where you made your Joynt. Then into the Ciftern, (juft under the plice where your Figure is to ftand,) fet a Chafing-difh of Coile, (till you fee the Rozin is changed Redifh, and begins to rife in Pimples, or Eladders) then take a piece of foft Sodder, (made of a longifh Figure,) and rabbing the end of it round about your Figure, (and at the fame time keeping your Figure fteady in its place,) fo that it may work into the Joynt. And when this is done, your Pigure will be well paldon, and will be as firm, as if it had been caft on there.

But if yourciftern, (rrthe like) be fo thin, as that you havereafonto cear that it will be coo hot, and be apt to run, or bent, and yield before your Figure (which is on the outfide of it) wit be hot enough; youmay then lay your Figure on the hot Cons, till it and the place to receive it are botle in a good temper for paleins, and then fet the Figure on its piace, and proceed with your Soddcr, as before.

By this metiod I Guw bim Sodder on bettoms to Leadenftands, or Imk-ho!ders.

I alfo faw and obfervid bim, in Sodjering the Leads of a Church, thus to manage it, siz. When he Sodder'd the shects of Lead that are fixedinto the Wall oan one edge, and sith the other edge lap over the ends of thofe which are femil in the Patform, at eiery other shaet, in the midde be-
twist the feams, he Soddereth the Lapping-fheet down to the other, thus with one corner of the Scraper, [which is an Inflrument made of a Plate of Stecl, in the form of an Equilateral Ttiangle, in the middle of which is fixed an Iron Strig_{3} on the end of which is fixed a Wooden-knob, or Handl: The Plate is Hat on the fide next the Hande, but on the other fide the edges are ground off with a Bezel ike a Cliizzel, only very obtafe.] He firlt marked out, (partly on the edoc of the Lapping-fhect, and partly on the other)an Oblong Rentangular Figure, of about $\$$ or 6 Inches long, and 3 or 4 broids Then lef feraped the Metal bright, having firft, (becaule it was new Lead, green'd it, (as they phraic it,) all round about, to prevent the Sodder's taking any where tut where they fcrape it. (This Greening is only rubbing it with fome green Vegetable, it matters not what, he did it with Poor-man's-pepper, that being at hand: He told me, that in the Winter they us'd Cabbape-leaves, or any green thing they could get. It being thus ferap'd, he rub'd it with Tallow; then laving an Iron ready hot, (which are much like the Irons us'd by Glaziers,) he took him with a pice of Felt in his Right-hand, and a piece of Sodder in his left, and holding it againft the Iron, till it dropd on the cleanfed place, and when there was enough of it melted, he took a Linnen-clout in his Left-hand, and therewith kept the Sonder continually flow'd up on the cleanfed place, and at the fame time workd it about with the Iron in his Right hand, thes he did, till he thought it was pretty well Incorporsted with the Lead, and then he made it upinto a kind of fivelling torm in breadth, and then crofs the breadth of it, he made it into a kind of Seams with the point of his Iron. This being done. he took their Hnife and a Dreffer to knock him with, and fo cut it fltaight on the fides and ends, and what he thus cut off, by reaion of the Greening eafily peel'd off.

After the fame nianner he fodder'd Holes, or Leaks in nid Lead, only then he made the Sodier flat, and not fwelline, (but lie made it alfo la little Seams,) neither did he green is before he fcrap'd it.
13. Price.] (1.) The Price of Leat in Pigr, (Lays Mro'Leybjurn) is uncertain, as fromso to 20 s . the hundred weight. I know a Plumber (dt Lemis it Suffix, who tells me he gives 12 s. 6d. per hundred for Lead in Pies at Lordo:: Some Glaziers tell mie tliey give but 12 s . per Hundred, if thicy buy but a Hundted. Mr. Wirg tells us, that a Foiderer of Lead is $22 \frac{1}{2}$ Hundred Weight, (iknow not how he reckons; forl am fure, moft Authors reckon a Fodder of Lead but $19 \frac{1}{2}$ Hundred.) and is worth ffom 9 l. to 12 l. which will caft 315 Foct of Sheet, at 8 Pcund per Foot.
(2.) The Price of Sheet-lead,] Mr. Leybourn fays, That in exchange of old Lead for shects new run, there is commonly allow'd 3 s. in every hundred weight, for Wafte and WorkmanShip. I faw Sheet-lead (in 1701.) fold at Lexis for 16 s. per hundred weight, (they fometimes fell it for 17s.) The Tinker who bought it to skirt a Furnace with, faid it was good thick Lead. I computed it to weigh about is $\frac{3}{4} \mathrm{ft}$.per Foot ; for there was 4 pieces of it, each abcut 3 Foot long, and $15^{\frac{1}{8}}$ Inches broad, all which weigh'd 174 ft .
(3.) The Price of Caffing Sheet-lead.] The Tinker above mention'd tells me, that Plumbers commonly reckon 4 s . per hundred, for cafting old Lead into Sheets; but I apprehend that the Plumber (for this price) makes good fo many hundred weight of Sheet-lead, as he receiv'd of old Lead. For Mr. Leybourn tells us, That Sheet-lead is caft out of old Lead, for 3 s . per hundred, allowing for Waft and Workmanhip : And Mr. Wing fays, that there is about 2 s .6 d . (in every hundred) lofs, in cafting old Lead into Sheets: He alfo fays, that Cafting old Lead into Sheets, is worth is. 6 d . per hundred. Yet I know a Plumber that had 3 s. per hundred for Cafting of Sheet-lead; but then it was weigh'd after it was Caft, and he made very great Wages.
(4.) The Price of laying on of Sbeet-lead in Roofing,]Sic. This, (Cays Mr.Wing) is worth 15 or 16 s . per hundred weight, Lead and Workmanhip. And Mr. Leybourn tells us, that covering with Lead is ufually valu'd at 13,14 , or 15 s . per Yard Square, (according to the goodnefs of the Lead,) or between 7 and 8 Pcund the Square of 10 Foot, befides Sodder.
(5.) The Price of Sodder, (fays Mr. Leybourn) is 9 d . or Io d. per Pound, as it is allay'd with Lead, and Scal'd: For Tin is 10 , 11 , or $12 d$. per Pound neat.
(6.) The Price of Leaden pipes is various, according to their different bioncfs. in insenious Countrey-plumber of my Acouzintance, tells me, that for Pipes of Inch Diameter in the Bore, they have 1 s .4 d . per Yard, for ${ }^{3}$ Inch Pipe, 1 s .10 d . for Inch Pipe, and $1 \frac{1}{4}$ Inch Pipe, 2 s. or 2 s .6 d . (for, fays he, they are caft both in a Mould, only the Inch Pipe has a lefs Eore; and I think he faid they were both of a Price; tho I think, for this Reafon the Inch Pipe ought to be the deareft, fince it cont.ins moft Lead, and the Work is the fame in eac'..) For Pipes of $\frac{1}{2}$ Inch Eore they have 3 s. 6d. per Yard, and for 3 Inch Pipe, 5 s. or 55.6 d . The London Plumbers, (I find) rate their Pipes according to the weight of a Yard in length. Their 10 lt . Pipes are 2 s .2 d . per Yard.
(7.) The Price of Turn'd-lead for Gla/s-mindows, is various according to its breadth. I knoiv fome Glaziers in London fell Turn'd lead of $\frac{7}{7}$ Inch broad, for 18 s . fer hundred, that of -f Inch broad for 17 s. per hundred.
14. White- for Painting.] White-lead is a Colour (well known,) much us'd in Painting of Gates, bcc. In London, 'tis commonly fold for $2 \frac{1}{2} \mathrm{~d}$. or 3 d . per Pound un-ground. I have alfo known it bought (in London) for $s d$. per Pound ready ground with Oyl.

> Ledgers.
V. Putlogs.
Lime.
I. What.] A Material us'd in Building, (and well known,) made of burnt Stones, commonly of Chalk.
2. Whereof, and how made.] Mr. Legbourn tells us, out of Palladio, that Stones whereof Lime is made, are either digged out of Hills, or taken out of Rivers: That Lime is the beft which is made of the hardeft, found, and white Stones, and being burnt, remains a third part lighter than the Stones whereof it is made. All digged Stones are better to make Lime of than gather $\cdot d$ Stones, and from a fhady and moift Pit, than froma dry. All Stones are fooner or latter burnt, according to the Fire which is given them; but ordinarily they are burnt in 60 Hours.

The ingenious Sir Henry Wotton, tells us, That to make Line (without any Choice) of refufe Stuff, as we commonly do, is an Englifh Error, of no fanall Moment in our Buildings. Whereas the Italians at this day, and much more the Ancients did burn their firmeft Stone, and even Fragments of Marble where it was plenty, which in time became almoft Marble again for its hardnefs, as appears in their flanding Theaters.

There are 2 kinds of Lime commonly made in England, one made of Stone, which is the flrongeft, and the other of Chalk, both being burnt in a Kiln.

The Lime that is made of foft Stone, or Chalk, is ufeful for Plaiftering of Ceilings and Walls within Doors, or on the infides of Houfes and that made of hard Stone is fit for StruCtures, or Buildings, and Plaiftering without Doors, or on the out-fide of Euildings that lie in the Weather: And that which is made of greafic clammy Stone, is ftronger than that made of poor lean Stone, and that which is made of fpongy Stone, is lighter than that made of firm and clofe Stone ; that is again more commodious for Plaiftering, this for Building.

Alfa very good Lime may be made of Mill-ftone, not courfe and fandy, but fine and greafie. Likewife of all kind of Flints, (but they are hard to burn, except in a Reverberatory Kiln,) except thofe that are rolled in Water, becaufe a great part of its Increafe goes away by a kind of Glafs. Alfo the Shells of

Fifi, as of Cockle;, Oglters, \&oc. are good to burn for Lime.

Acout us in Suffex, Lime is made of hard Chalk, dig'd out of the Hills, and is cisat in Kilns like Brick-kilns; but with this cifference, that tuey have no Arches in them, but only a kind o. Bench, or Eank on each lide, upon which they lay the Jargeft :tones, and fo truls thein over, and make an Arch, aiter the masner o Clampo for Bri ks. (V.Clamp.) And when tive: have thu in te an Arch outh the largelt Stones, they fill up the hila wita the foraller ones.

A Mlabon of ny siquaintance tells me, That the Kentife Lime is far \}etrer than that commonly made in Suffex: For, (fies he,) a Gaion of Water will make as much more Kentigh Lime rum. asit will of Suffex Lime: So that it fhould feem (by twe Confequence of his Difcourie,) that that is the beft Lime whinh will run with the leaf Monfure.

The ingenious Gentteman, Mr. Wilter Burrel, Efq; of Cuckfoeld in Sinjex, was the firft that inttoduced the ule of Fern for burning of Lime. which ferves that purpole as well as Wood, (the taine thereor being very veliement,) and is far c! capir.
3. Hitíred of ham muci] In (and about) Londin, Lime is com nonly fuld by the hundred, which is 25 Eufhels, or 100 Recks, whence it had its Name.
4. Lo.1d of-a how inich.] In the Countrey, Lime is common' foid by the Load, which is 32 Eufliels. A Load of lime, (fay fome) will make Mortar enough for 250 idid Foot o. Sture-work. And 8 Buhbels of Lime, (heaped meafure) is the common allowance to every thoufsind of Bricks.
5. Pime of.] The Price of Lime is various in different Places, as from 3 ta 12 s. the hundred, fays Nr. Leybourn. I know that beture thefe late ivars, (which have made fuel dear and fearce, t time (in fome parts of Suflex) was fold for 20 , or 21 s . per ludi. 3^{3} bufhels to the Lodd; hut now in f me parts of Sugfe tis fold for 24 or $25 s$.fer linad. in $0-$ thers or 32 s . Yet infonce parts of cuffr, tis ti:ll f to my knowiedge) oid our 12 s . fe Load at the Kiln, and fur about is s. od lid in 3 or 4 mines.

Lintels.

I. U'b, It I Inter (in Stone and Erick Euildings,) are the pieces af Timber that lie Horizontally over the tops of Doors and Wiadous.
2. Pricu]. The Carpentor commonly puts in thefe by the Foor rannins: meafure, at 6 d . per Fiote, if Olk; ${ }_{4} \mathrm{~d}$. if Fir, Tinner, and Workmathip. Some Carpenters in the Countrey. (hat do not niad Timber,) ell ine, they have 1 s. fer piece far fariag the Timber, aid futiag them in.

Lift, and Liffella.

V. Capital. N. 2. 3 .

As Anti-chamber.

> L.obby,

Locks

For Doors are of various kinds; as for outer-doors, cal:'d Stock-locks; for Chamber-doors, calld Spring-locks, \&r. Alfo the feveral Inventions in locks, (I mean in the making ard contriving their Wards and Guards,) are almoft innumerable. And as their kinds are various, fo are their Prizes; I fiall at prefent mention only fome of the chief. As Stock-locks plain, from 10 d . to 14 d . per piece, or more, s -bitted Stock-locks with a long Pipe, I s. 6 d. S.bitted and warded Stock-locks very ftrong, 7 s. Brals locks from 5 s. 6 d. to 9 s. Brafs-knobed-locks in Iron cafes, 3 s . double Spring'd-locks is: Cloffet-door locks is. 4 d. Pdd, (or fecret) I.ocks with Slits inftead of Pipes, 1 s . Plate-ftock-locks, 3 s .8 d . fome ditto for half that Price. Plate-ftock-locks in Shute, 4 s. 6 d. Brals-knob'd-locks in Shute, 6 s .6 d . Iron-rim'd-locks very large, 10 s .6 d . The Prizes of Locks are fo various, according to their different kinds, fizes, and variety of Workmanfhip, that 'twere endlefs to mention them all; therefore I fhall fay no more of 'em at prefent, only, that there are fome Locks made of Iron and Erafs of 50 , nay 100%. per Lock, as Mr. Chamberlain tells us in his Prefont State of England.

> Lome,

A fort of redifh Earth, (well known) usid in Buildings, (when temper'd with Mud, Gelly, Straw and Water,) for Paiflering of Walls in ordinary Houfes.

I know one Place in Suffex, (where being well temper'd with new Horfe-dung,) it is us'd inftead of Mortar to lay Tiles with, and they tell me it does very well.

Lome, (as 'tis dig.s out of the Earth,) is commonly fold (in fome parts of Suffex) for Is. per Court load, containing about 12 Eufhels.

Lutberns

As Dormers. Alfo, fee Window. N. -Their Price of making and fetting up, (and fawing the Timber) is various, (according to their bignefs,) from 9 to 20 s . per Window.

Marble.

I. [JTHat.] A hard Stone, beautiful when polifh'd, but hard to cut; much us'd in adorning of Palaces, and great Men s Houfes, \&c.
2. Kinds of.] The kinds of Marble are (almoft) innume. rable, fome white, fome black, fome grey, fome green, fome variegated with Vens, and Spots, frc. It were endlefs to give the particular Nımes and Deferiptions of all the kinds of Marble; however, I may hercafter give you a nuch larger accountof'em, but at prefent I muft pretermit it.
3. V / ce of.] The principal ufe of Marble in Architecture, is for Chimney-pieces, Chimney-foct-paces, Window-ftools, Pavements, \&rc.

The Ancients, (as Pliny and other Authors tell us,) us'd to face their Houfes all over with thin Plates of Marble.
4. Of Polifhing.] An old experienced Mafon tells me, that he has obfervod Stone-cutters polifh Marbles for Hearths in this manner, viz. By laying 3 or 4 of 'em in a row, as cven as they could, and then withanother of thefe Stones fix'd to i broad Eeetle, withahandle put io at Oblique Angles, (and with Sand and Water,) by moving this upper Stone too and fro on the lower ones, they wrought of the Strokes of the Ax, and afterwards with Emmery and l'utty they polifh : m .

I have (allo) my felf, (at Lewis in Suffix) feen and obferv'd them polifhing of Musble for tops of Tomb-Itoncs, which (as I find in my Ader(arin, they did in this manner. They block'd up their Stones to be polified, fo as they lay Horizontalabout $2 \pm$ foot high above the Ground; (I fay they obferv'd to lay them very level,) and then they wrought the upper Surface fmooth and even, witha Tool for that purpofe: This Tool was a piece of whole Deal about 18 or 20 Inches long, and ia Inches broad, and crofs the Grain of the Wood, on the upper lide were naild 2 Ledges, one at each end, and on thele Ledges was naild a Stiff or Handle about 8 or 9 Loot long, (viz. Long enough to reach the length of the Tomb-fone,) alfo at each end on the under-fide was nail'd a Ledge, and between chefe Ledges there was wedged in (with Wooden-wedges) a Hearth-flone of Marble that was alfo rough mad unpolifh'd Then flinging Water and Sand upon the Timi-ftone, they wrought upon it, (by drawing the Hearthflonetne and fro, , till the Hearth-ftone became pretty fmooth, and then thry put in another rough Hearth-ftone, and fo they conti. we tudo, til' hey have wrought the Tomb-flone pretty even and 1 nooth But you are to note, That while the Tomb-fone and Hearth-ftones ase rough, they lay a confide-
rable weight, (as a Stone, or the like,) upon the upper fide of the Tool, to keep it down hard on the Tomb-ftone, but when the Tomb-ftone is pretty fmooth, they make him yet fmoother, by putting into the Tool (one after another,) feveral of thofe Hearth-ftones already begun polifh'd, and this they continue to do, till they lave brought both them and the Tombfone to a more polite Surface; upon thefe they ufe no weight on the back of the Tool, but they ufe Water and Sand, as before. And if they have no Marble-hearth-ftone to polifh, then the Workman tells me, they put a Purbeck-ftone into the Tool.
5. Price of--] Chimney-pieces of Egyptian, or black fleak'd Marble, or of Rance, or Liver-colour'd marble is worth (of an ordinary fize) 12 or 14 Pound a piece.

Window-ftools, of white or black Fleak'd-marble, are worth 2 s. 6 d. per Foot.

Pavement of black, or white Marble, is worth about 2 s. per Foot. Thus Mr. Wing.

A Stone-cutter in London tells me, he fells Englifh white Marble vein'd with red, foc. for 2 s .6 d . per Foot in Squares for Pavements, and Slabs of the fame fort of Marble, (long enough for a Chimney-foot-pace) for 5 s. per Foot.

Egyptian Marble, vein'd with variety of Grecns, in Slabs, he fels for 8 s. per Foot.

Italian white Marble vein'd for Chimney-foot-paces, he
 Black-marble he fells fomewhat cheaper.

Marble.colour.

The Price of Painting ordinary Marble-colour, on new Stuff, is about $1 \mathrm{~s} . \mathrm{per}$ Yard. And an old Colour, about 9 d . per Yard, Colour and Work.

Mafons.

r. Work. 7 The feveral kinds of Work done by Mafons, (in relation to Building, with their Prizes, and Methods of Meafuring them, bc. are too many to be comprehended under this fo general word of Mafon's-work, (efpecially as the word Mafon is accepted in the Countrey, and therefore I thall refer them to their Particulars, (as Walling, fetting of Fronts, Healing, Paving, \&c.) where they will much more readily be found.
2. Bill to make] V. Bricklayer's Bill.

Meafuring

Of Artificers Work.] See the particular kinds of Work, in their proper places of the Alphabet; where they will much more readily be found, than under this general word Meafu. ring.

> Membretto,

A Pilafter that bears up an Arch.
Metops,

In Architecture, are the fquare Spaces left betwixt the Triglyphs in the Frieze of the Dorick Order. Thefe Metops are fometimes plain, and fometimes Carved with the Heads of Beafts, and Plates, or Difhes, riz. In one a Eults-head, in apother a Plate, or Difh, and foalternately.

Mitchels,

Purbeck-ftones for Paving, pick'd all of a Size, from 15 Inches fquare to 2 Foot. Being fquar'd, and hew'd ready for Paving, a Stone-cutter in London tells me, they commonly fell themat about 2 s. 10 d . per Foot.

Minutes. vid. Module.

Model,

An Original Pattern which any Man'propofes to imitate, properly (in Architecture) a fmall Pattern of a Houfe, or the like, (made of Wood, or any other Materials) made by a fmall Scale, wherein an Inch, or half an Inch reprefents a Foot, for the more exactly carrying on a great Defign. Sometimes the word is us'd, (tho improperly) in the fame Senfe with

Module,

A Meafure made ufe of to regulate the Proportions of the feveral Members of a Co'umn. In the Dorick Order, a Module is halfthe Diameter of the Body of the Column below: In other Orders 'tis the whole Diameter. A Module is commonly fuppos'd to be divided into 60 equal Parts, call'd Sinutes.

Modilions.

V. Cantalivers. N. I.

Modilion-cornifh.
v. Cornih. N. 9.

Mouldings.

The feveral Wrought-works made with Planes, ofic, upon Wood, orc. are call'd Mouldings. The particular Rules for drawing all kinds of Mouldings, I muft,(for Reafons already often mention'd, at prefent onit. But God continuing my life and Health, and this Book finding Acceptance in the World, and I any Encouragement, the next Edition Shall contain this, and many other Curiofities, not commonly known.

Moresk-work,

A kind of Antick-work in Painting and Carving, after the manuer of the Moors, (whence it has its Nume,) confifting of feveral Grotefo's, wherein there is no perfect Figure, cither of Men, or other Animals, and wherein there is a wild refemblance of Birds, Beafts, Trees, $\delta \delta c$. intermingl'd.

Mortife,

From the French Mortaife, the hole made in one piece of Wood, to receive the Tenon of another piece. V. Tenon.

Mortar.

1. What.] From the French Mortier, a fort of Plafter, commonly made of Lime, and Sand, and Water, ufed by Mafons and Bricklayers, in Building of Walls of Stone and Brick. For Plaftering of Walls, they make their Mortar of Lime, and Ox, or Cow-hair, tempered well together with Water, and this is commonly call'd white Mortar.
2. Of making cimmon. - JAs for making of common Mortar, and for the Proportions of Lime and Sand to be us'd about it, many Men are of many Minds, 1 hall give you their feveral Sentiments about this Matter.

I'itruvius fays, you may put 3 parts of digged, (or Pit-) Sand to one part of Lime, to make Mortar, but (fays he) if the Sand be taken out of a River, or out of the Sea, then 2 parts thereof, and I of Lime. (He alfo fays, That if to River, or Ses-Cand, you put a third part of Powder of ITiles, or Ericks, it works the better.) But Vitruvius's Proportion of Sand feems too much, tho' he fhould mean of Lime before 'tis Alack'd; for one Bufhel of Lime before 'tis flack'd will be s Pecks after 'tis flack'd.
ibout Londo:, (where for the moft part Lime is made of Chalk.) they put about 35 Bufhels of Pit-fand to 25 Bufhels of Quick-lime,'that is about a Bufhel and a half of Sand, to a Bufhclof Lime.

Some Workmen in suffex tell me, that they commonly put 2 of their Court-loads (that is about 24 Bufhels) of Sand to 7

Load, (that is 32 Bufhels) of Lime, which is but 3 Pecks of Sand to i Bufhel of Lime.

Other Workmen in Suffex tell me, that their ufual Proportion of Lime and Sand, in making of Mortar, is 4 Court-load, (that is about 48 Bulhels of Sand to 1 Load, (or 32 Bulhels) of Lime, which is exactly a Bufhel and half of Sand to one Eufhel of Lime, near the London Proportion. Eut they tell me, 'tis of Stone-lime; for they allow but 3 Load, (or 36 Bufhels) of Sand to one Load, (or 32 Bufhels) of run Lime; (for fay, they, a Load of run Lime is nothing near fo much as a Load of Stone, [or quick-] Lime,) which is but 9 Gallons of Sand to a Eufliel of Lime.

Other Workmen in other parts of Suffex, tell me, that they allow 4 Load (at 18 Euftels to the Load) of Sand, to one Load (or 32 Bufhels) of Lime, which is $2 \frac{1}{\ddagger}$ Eufhels of Sand to one of Lime.

Another Workman (in Suffex) tells me, that (to his knowledge) fome London Ericklayers put as mach Lime as Sand in their Mortar; efpecially for Front-work.

A Gentleman in Sufex, tells me, that the London Erick lijers make their Mortar much more durable than our Countrey ones; for he told me that at his Erother's Houfe, and at another Gentleman's Houfe (which the nam'd to me., the Mrotar was not fcald at all; but at his own Houfe (which was done by Countrey-workmens) it feal'd very much, and fell out of the joynts. But (!aid he,) the Londoners make their Moratr by proportioning their Lime and Sand, viz. By meafuring it all; but the Countrey-workmen, (for the moft part) make it by guefs. Now (laid he), our Coun-trey-workmen do not make their Mortar fat enough; for they put in too little Lime to their Sand. Neverthelefs, his Workman told me, that he did put in, as near as he could guefs (by the Shovels full,) at leaft twice as much Lime as Sand in his Mortar, and took care to fift all his Lime and Sand; and yet, (tomy knowledge) tome of his Walls fcal'd pretty much, efpecially thofe that were done towards the latter and of the Year; tho (faid he) I never made Mrytar fo fat in my life before. But indeed, none of his Walls were coped, they were only cover'd with Straw on the top, and Eoards or Slabs laid on it to keep it on, which fometimes were blown off in the Winter, and folet in the wet ; which, (faid he,) was the caufe of the Scaling of the Mortar; but his Mafler deny'd this, and faid, it did fo where it was never uncover'd all the Winter.

From all thefe various Proportions (of Lime and Sand) above mentioner, all afferted by able Workmen, I think it reafonable tointer, that the Proportion of Lime to Sand in making of Mortar, ought to be various, according to the goodnefs or badnefi of thefe Materials; and therefore is tather to
be regulated by the Judgment of experienced and skilful Workmen in each particular Countrey, than by any flated Proportions. So let this fuffice (at the prefent) tor the Proportions of the Materials I thall next fay fomething of

The Method of making of Mortar.] Some Work men tell me, that 'tis the beft way not to ufe Mortar as foon as "tis made; nor (in making it) to make the Lime run before it is mixt with the Sand, (as fome will do,) but rather to take the Sand and throw it on the Lime whilft it is in Stones, before it is run, and fo to mix it together, and then wet it ; by which means, (fay they) it will be the flronger, and when it has lain a while made before it is us'd, will not be ro fubject to blow and blifter.

Others advife to let Mortar, (when made) lie in a heap 2 or 3 Years before 'tis us'd ; for (o) (fay they) 'twill be the ftronger and better; for the Reafon of fo many infufficient Buildings, (fay they,) is the ufing of the Mortar as foon as 'tis made.

Others tellus, (I.) That when you flack the Lime, you muft take care to wet it every where a little, (but not over-wet it,) and cover with Sand every Laying, or Bed of Lime (being about a Bufhel) as you nack it ; that fo the Steam, or Spirit of the Lime may be kept in, and not fly away, but mix it felf with the Sand, which will make the Mortar much ftronger, than if you flack all your lime at firf, and throw on your Sand altogether at laft, as fome ule to do. (2.) That you ought to beat all ycur Mortar with a Beater, 3 or 4 times over before you ufe it; for thereby you break all the Knots of Lime that go through the Sieve, and incorporate the Sand and Lime well together, and the Air which the Beater forces into the Mortar at every flroak, conduces very much to the ftrength thereof. (3.) That when you defign to Build well, or ufe ftrong Mortar for Repairs, you fhould beat the Mortar well, and let it lie 2 or 3 Days, and then beat it well again when 'tis to be us'd. (4.) That in Summer-time you कhould ufe your Mortar as foft as you can, but in Winter pretty ftiff, or hard.

Mr. Worlige fays, that if you intend your Mortar to be ftrong, where you cannot have your choice of Lime, you may chufe your Sand and Water; for all Sand that is dufty makes the Mortar the weaker, and the rounder the Sand, the flronger the Atortar, as is ufually obferv'd in Water-drift-fand, thas makes better Mortar than Sand out of the Pit.

Therefore, (fays he,) if you have occafion for extraordinary Mortar, wafh your Sand in a Tub, till the Water, after much firring, come off clear, and mix that with new Lime, and your Mortar will be very ftrong and durable. And if your Water be foul, dirty, or muddy, your Mortar will be the weaker.

Healfo tells us, that 'tis a great Error in Mafons, Ericklayers, \&oc. to let the Lime flacken and cool before they make up their Mortar, and alfo to let their Mortar cool and die before they ufe it: Therefore, (fays he,) if you expe(tyour Work to be well done, and long to continue, work up your Lime quick, and but a hittle at a time, that the Mortar may not lie long before it be ufed. So that you fee, that in this Point alfo, Men differ in their Sentiments; fone affirming it beft to ufe their Mortar new, others, after it has hain made fome time.

An old experienced Mafon of my Acquaintance, tells me, that being at work at Eridge-place, (atmy Lord Abergaveny's) at Fant in Suffex, they would have him make uie of fome Mortar that had been made 4 Years. But he, (when lie came to try it,) told them it was good for nothing, by reafon it was fo very hard that there was no tempering of it. Whereupon a Jefuite (refiding in the Houfe, and that had been a great Traveller,) told him, that to hisknowledge, at Several Places beyond Sea, they always kept their Mortar 20 Years before they ufe it; but then (he faith) they keep it in Cifterns for the purpofe, and always keep it moift. Now the old Mafon, (above-mentiond,) tells me, he believes this Method may make the Mortar good and tough.

As for the Scaling, (or Crimbling) of Mortar out of the Joynts of Stone and Brick-walls, fome Mafons tells me, it proceeds from the badnefs of the Sand, or Lime, or both, as well as from the Seafon of the Year when the Work is done.
3. Of making other kinds of-] Befides the common Mortar, (us'd in laying of Stones, Bricks, and Tiles) above-mention'd, there are feveral other kinds, as
4. White Mortar.] This is ufed in Plaiftering of Walls and Ceilings, that are firft Plaifterd with Lome, and is made of Ox , or Cow-hair well mixed and temper'd with Lime and Water, (without any Sand:) The common Allowance in making this kind of Mortar,) is one Buftel of Hair to 6 Bufhels of Lime. The Hair ferves to keep the Mortar from cracking, binding it, and holding it faft together.
5. Mortar us'd in making of Water-courfes, Ciflerns, \&ic.] This kind of Mortar is very hard and durable, as may be feen at Rome at this day. It is ufed, not only in Building of Walls, but alfo in making of Cifterns to hold Water, and all manner of Water-works, and alfo in finifhing, or Plaiftering of Fronts to reprefent Stone-work.

And I find 2 kinds of this Mortar us'd by the Ancients; both of which are compounded of Lime and Hog's-greafe; but to one is added the Juice of Fige, and to the other Liquid Pitch, and is firft wet, or flack'd with Wine, then pounded, or beat with Hog's-greafe, and Juice of Figs, or
with the fame and Pitch; that which has Pitch in it is blacker and earily dift inguifh'd from the other by its Colour, and that which is Plaift er'd with this kind of Mortar is done over with Linieed-oyl.
6. For Farnaces, \&cc.] Some Chymifts in Building their Furnaces, make ufe of a kind of Mortar made with red Clay, not too fat, leafk it be lubject to Chinks; nor too lean, or Sandy, leaft it bind nut enough. This Clay is wrought in Water, wherein fore of Fiorfe-dung and Chimney-foot has been fteep.d and well mingld, by which a Salt is communicated to the Water, binding the Clay, and making it fit to abide the Fire.

Some Metalifts ufe a kind of Mortar to Plafter over the in-fides of their Veffels, (for refining of Metals) to keep the Metal from running out : And this kind of Mortar is compounded, and made of Quick-lime, and Ox-blood, the lime being beat to Powder and fifted, and then mix'd with the Blood, and beat with a Beater.

The Glafs-makers in Fiance ufe a fort of Mortar (for Plaiftering over the in-fides of their Furnaces,) made of a fort of Fuller's-earth, which is gotten from Beliere near Forges, which is the only Earth in France that has the property of not melting in this exceffive Heat. And 'tis of this fame Earth that the Pots are alfo made which will hold the melted Metal for a long time.
7. For Sun dials.]. An excceding ftrong and lafting Mortar to make a Dial-plain on a Wall, may be thus made: Take Lime and Sand, which temper with a fufficient quantity of Linfeed-oyl: this fpread upon the Wall, will harden to the hardnefs of a Stone, and not decay in many Years. Note, If you cannot get Oyl, you may temper your Lime and Sand with Seum'd Milk, (but Oyl is better,) and this will laft 6 times as long as the ordinary Plaifter made of Lime and Hair with Water.

I have known a very flrong and tough Mortar (for a Sun-dial plain,) made in this manner. To about 5 or 6 Gallons of Erook-fand, (which was dry'd on in Oaft, and fifted through at fine Splinted-fieve,) there was put as much, or rather more Sifted-lime, and a Gallon of Boreing (or Gun) Duft fitted alfo; all which was wet and temperd well with 6 or 7 Gallons of Scum'd-milk, and about a Yottle of Linfeed-oyl. This was laid on the Wall firf, well wet with Milk; but the Workman found much trouble to fet it fmooth,", by rcalon it dry'd fo very f.ft; but by keeping it often fprinkl'd with Milk, and fmoothing it with the Trowel, it at laft fet with a very fmooth and hining Surface. But notwithfanding all his Care, it (as it dry'd) crack'd pretty much; wbich I fanfie miser proceed from the want of Hair in it: It did alfo blow in Ei: ifers, the the Lime were fifted; and therefore I fanfie,
that if the Lime had been preprod as it is in Frefo Palnting, it might have been prevented.
8. Extiaordinaiy good for Floors, W'alls, and Ceilings.] If you temper Ox-blood, and fine Clay rogether, and lay the fame in any Floor, or Plaifier any Wall, or Ceiliag with jt, it will become a very ftrong and bindins Subtance, as I have been told, (fays my Author) by a Gentleman Stranger, who affirm'd to me, that the fame is of great ufe in Italy.
9. A profitable and cheap kind of-] A Wile, Wealthy, and ancient Soap-boyler, duelling without Aldgate, has (for the better Encouragement of others, long fince erected a fair and ftately Edifice of Erick for his own Habitation; upon the good fuccefs whereof he lass fince built another Hourc of fome Charge and good Receipt; the Mortar whereof did confift of 2 Load of waft Soap-afhes, one Load of Lime, one Lo.ld of Lome, and one Load of Woslwich Sand.

So likewife, another Gentleman of the fame Faculty, (being likewife of good Credit, and great Experience,) las us'd only Lome and Soap-4hes temperd and wrought togetiher for Mortar ; whereby he has laid both the Foundations, Chimneys; and their Tunnels in his Divelling-houfe in Soutbwark, and they have endur'd thofe Storms already p.ift, which have overturn'd many other Tunnels, both new and old that were built with the ordinary Mortar.

It may be, that many lime-men, (and fome of thore Bricklayers that are in Fee with 'em, may fpeak againtt this Practice, and latour (by all poffible means) to difcredit it; but there is no Redfon can hold againft Experience, nor no Mallice fo great, but $\begin{gathered}\text { ruth } \\ \text { in } \\ \text { her Time will be able to vanquifh. }\end{gathered}$ And if thefe 3 Tryals be not thougit a competent number ito give Credit to a new Lavention; I can, (fals 2 my Author,) back and confirm them with 3 foore more at the leaft, which have been alresdy made within the City of London, and Suburbs thereof.

True, indeed, this kind of Mortar is fomewhat rough in the Jaying, and nore fharp and fretting to the Fingers than ordinary Mortar, which makes it fo much neglected and decry'd by fome Workmen: But (fiss my Author,) I could foon remedy thefe 2 flender Faults; the firf whereof is ise ther an exceilent Quality in Mortar, than a Fault. Yet for the Good-will I bear to all the excellent unitorm Buildings of our time, I will fet down the beft Advice that I can in this Cafe, and fuch as I dare warrant upon my Credit. And firft, concerning the Roughnefs of this kind of Mortar, who is fo blind, as not to fee how to remedy it? (For 'tis rather a Work of Labour than of Skill ;) for the Soap-athes (which are in hard Cakes,) beinj either ga und, or famped into a fine Powder, I sfore they be mixt with tue Sand, will foon be brought to a
fanooth Temper. And here we have no need to fear the Charge that will arife thereby; for I dare undertake, that the Profit of one Days Labour will amwer the Charse of thrce Men's Wages, in the difference of Price that will be found betwixt one Load of thefe Afhes, and one hundred of Lime,

Then, 2dly, The sharpnefs wherewith they offerd the Bricklayer's Fingers, may in fome fort be ayoided by wearing of Gloves, (without which they feldom lay any Brick at all) to avoid the like Effects, which they find in Lime.

But for an affured help in this cafe, (if the Marpicfi be fuch as cannot be endur'd of Workmen,) let thefe Afres be re-imbibed in Water for fome reafonable time, till niore of their Salt be extracted from them, and then, (without queftion) they will find them gentle enough, and much of their fresting Nature taken away from them.
10. For laying of Tiles.] I know feveral Places in Sulfex, where for laying of Tiles upon Houfes, \& σc. They make a kind of Mortar of Lome, and new Horfe-dung, well temper'd and mixt together. This fome Workmen commend for agood, ftrong, and cheap Mortar ; and others tell me, that 'tis more agreeable to the Tiles, than the common Mortar made of Lime and Sand; which, fay they, corrodes and frets the Tiles, caufing them to fcale and fly to pieces, which this does not.

I have taken particular notice of one Houfe, where the Tiles were laid in this kind of Mortar, and had been laid about 4 or 5 Years, and yet the Mortar did flick very well under the Corner-tiles, where it generally lies thickeft.
11. For Plaftering f Fronts of Houfes in imitation of Brick: zoork.] Some Workmen tell me, that they make Mortar, (icr this kind of Work) of Powder of Ericks, fharp Sand, and Lime, and fome Red-oker. I know a Houfe that is Plafter'd with this kind of Mortar; it has been done above 20 Years, and yet looks very: well, and paffes (with common Paffergers) for a Brick Houfe ; tho' it be only Timber Plafter'd over. They have commonly is. fer Yard for doing fuch Work, only Workmanfhip.
12. How much allow'd to a Rod of Brick work, or a Square of Tiling.] Workmen commonly allow a hundred and hile, (or 37 Bufhels) of Lime, and 2 Load, (or 72 Euficls) of Sind to make Mortar enough for a Rod of Brick-wcrk.

And for Tiling, 4 Buhbe's of Lime, and 6 or 8 Eufhels of Sand will make Mortar fufficient to lay 1000 of Tiles, which is about a Square and half. So that a Square of Tiling will take up (for Mortar) about $2{ }_{3}^{2}$ Bufhels of Lime, and about 5 Bufhels of Sand.
13. A Caution about.] 'Tis a general Caution in all parts of a Building that where Stones, or Ericks are contiguous
to Timber, they ought to be laid dry, or without Mortar ; becaufe lime and. Wood are infociable, the former very much corrodeing and decaying the latter.
14. Rough Mortar, which fee in R.
Mofa-ick,ique-ical Work.

A curious kind of Work in Architefture, confifting of fmall inlaid pieces of Stone, Glafs, Shells, or other Muerials, of various Colours, Figur'd at Pleafure. 'Tis an Ornament of much Beauty, and long Life, but of moft ufe in Pavements and Floorings.
Mofs,

Us'd in Tiling. $]$ In fome parts of Suffex they lay Tiles in Mors inftead of Mortar; and when the Workmen get the Mofs themfelves, they are allow d 2 d . in a Square the more for their Work- But fome Workmen contenn this way of Tiling with Mofs; beraufe, (fay they) in Windy wet Weather, when the Wet, Raia, Snow, or Sleet is driven under the Tiles in the Mofs; if there follow a Froft whilft the Tiles are wet, it then Freezes the Mofs, and fo raifes the Tiles out of their Place.

Multiplication

Of Feet and Inches, by Fees and inches.] V. Crofs-multiplisation.

Mlunions,

In Architecture, are the Short upright Pofts that divide the feveral Lights in a Window.frame.

> Muring,

And old Term in Architecture, fignifying the Raifing of Walls.

Nails.

5. $W^{\text {Hat.] }}$ Thefe are a Material fo well known, that (in the general) they necd no Defeription. Eut the particular Kinds of 'em (which are very numerous,) Shall be defribed in the following Numbers.
6. Back- and Bottoin.-] Thefe kinds of Nails are made with flat Shanks, aad to as to hold faft, and not open the Grain of the Wood; being proper for Nailing of Boards to-
gether for Coolers, for Guts to fave Water under the Eves of a Houfe, or for any Liquid Veffels made of Planks, or Boards.
7. Clamp.] Thefe are proper to faften Clamps in Building, and repairing of Ships.
8. Clafp.] Thefe are of 2 forts, viz. (1.) Long, proper for any fine Building with Firr, or other foft Wood: the clarping of the Head brings them into littic compafs, and admits of their finking inro the Wood, makes the Work fimooth, and will admic a smoorhing-plane to go over them when drove. The fizes are $7,7 \frac{1}{3}, 8,10,13,14,15,18$, 21, 22, 23, 28, 32, 36, and 40 tt. per Thoufind.
(2.) Strong, thefe are fit for Oak, and otiser hard Woods. The fizes are is, 18, 28, 32, and 40 tt . per Thoufand.
9. Clench. 1 Tiefe are commonly us'd by Boat, Barge, and Lighter Builders, with Roves, and oft without: They are proper Nails for any Building with Boards, that muft betaken down again, becaufe they uill drive without fplitting the Wood, and draw, (or admit of punching) ont, (if right made) without breaking. The forts are too many to be here enumerated, for fine Work they are made with Clafi-heads.
10. Clout.] Thefe are commonly us'd for nailing on of Clouts to Axxie-trees, but are proper to faften any Iron to Wood ; and (if right made,) the Heads will hold driving home without Hying. The fizes are $4: 7,8,9,12$, and 15 It. per Thoufand.
11. Deck:] Thefe are proper for faftning of Decks in Ships, doubling of Shipping, and Floors laid with P'anks. They are of 2 forts, Dye-headed, and Clafp-headed. The Sizes are $4,4 \frac{1}{4}, 5,5 \frac{1}{2}, 6,6 \frac{1}{2}, 7,8$, and 9 lnches long.
12. Dog.] Thefe are proper for faftning (f Hinges to Doors, for (if made righr) they will hold the Hinge clofe without the Heads flying off, or without the help of botching, by putting Leather betweet the Head and the Hinge. The fizes are $9,12,20,25,30,40,60,80$, and 120 lt . per Thoufand.
13. Flat Point.] Thefe are of 2 forts, viz. (..) Longa which are much us'd in Shipping, and are very proper where there is occefion to draw and hold faft where there is no Conveniency to Cleuch. The Sizes are $7 \frac{1}{2}, 8,9,10,11,12,13$, 14, $16,18,21 ; 22,23,26,40,55,75$, and 110 ft . fer. Thoufand. (2.) Sbort', thefe are fortifid with Points to drive into Oak, or ather hard Wood; and are often us'd to draw the Sheathing bea:ds to, very proper where $O \pm k$ or other hard Wood is us'd. The Sizes are $5,9,18,26,32,40,55,75$, and 110 H. per Thomfand.
14. Fobent.] Thefe are commonly ws'd to nail thin Mates of Ironto Wood, and to nail on (mill linges for Cub-boarddoors, drc. The fizes are 2 and 3 tt. a Thoufand.
i I: Lend.] Thefe are comononly usid to Nail Lead,

Leather, and Canvas to hard Wood. . The fizes are 4年, 7, and 8 it. per Thoufand.
12. Port.] Thefe arc commonly us'd to nail Hinges to the Ports of Ships. They muft be made flrong, becaufe they will not admit of being clench'd, without being prejudicial to the Lining; and therefore care mult be taken that they be demanded of fuch a length, as that they may come near through, (fo as to take fufficient hold,) and yet not fo long as to come quite through. The fizes are $2 \frac{2}{2}, 3,4$, and 5 Inches long.
13. Pound.] Thefe are four fquare in the Shank, and are muchus'd in Effex, Suffolk; and Norfolk; but in feiv other Countreys, except for Palcing. The fizes are 6 d .8 d .10 d . 20 d . and 40 d .
14. Ribbing.] Thefe are commonly us'd to faften the Ribbing, to keep the Ribs of Ships in their place in Building; if thefe Nails are made right, they will hold faft, and draw eafie, without injuring the Ribbing, or Timbers. They are alfo very uieful to faften Timber's to be ufed for a while, and taken down again for further Service. The fizes are $5,5 ?$ $6,6 \div 7.7!8,8$, and 9 Inches long.
15. Rofe.] Thefe Nails are drawn four fquare in the Shank, and commonly in a round Tool, as all common 2 d . Nails are, and moft commonly 3 d . and 4 th. In fome Countreys they make all their iarger fort of Nails in this fhape, but their being fquare drowneth the Iron, and the Nails do not fhew fo fair to the Eye, as thofe laid upon the flat; but if made of tough Iron, they are very ferviceable. The Sizes are $1 \frac{3}{4}, 2,2 \frac{1}{2}, 2 \frac{3}{4}, 3,3 \frac{1}{3}, 3 \frac{3}{4}, 4,4 \frac{1}{4}, 4 \frac{3}{4}, 5,9,10,13$, 14, $16,17,18,24,26,28,30,32,36$, and 40 tt . per Thrurand.
15. Rother.] Thefe are principally to faften Rother Irons to Ships, and require a full Head, and to be made fo as to hold faft in the Wood to the greateft degree, without Clenching.
17. Round-bead.] Thefe are very proper to faften on finges, or for any other ufe where a neat Head is requir'd; and if made of the beft tough Iron, as they ought to be, are very ufeful. The forts are Tacks, $2 d .3 d .4 d .5 d .6 d$. and 2 d. The fame Tinn'd for Coffin-handles, and fine Hinges.
:0. Scupter.] Thefe are principally to faften Leather, and Canfas to Wood, and therefore require a broad Head, that neither may work loofe. The fizes are $4 \frac{1}{4}, 7$, and 8 lt . a rtoufand.
10. Sharp:] Thefe are much us'd in all Countreys, efpecially in the Wejf-indies, being made with fharp Points, the Shank Alt, and is a very proper Nail for ordinary Ufes, where foft Wit.d is us'd. The fizes are $2 \frac{1}{2}, 2 \frac{3}{4}, 3,3 \stackrel{1}{2}, 4,4 \stackrel{1}{8}, 5$, $3^{\prime}, 6,6 \frac{1}{2}, 7 \frac{1}{2}, 8,9,10,11,12,13,14,15,18,19$, $20,21,22,23,28,32,36,40,55$, and 75 lt . fer Thoufand.
25. Sheathing.] Tliefe are commonly us'd to faften Shea-
thing-boards to Ships. The Rule for ufing them, is to have the Nail full 3 times as long as the Sheathing-board is thick, provided the Plank be of a fufficient thicknefs, which ought to be enquird into; for the Sheathing-nail ought not to go through the Plank by half an Inch, leaft it flould make the Ship leaky. The Shank muft not be fo ftrong as to cleave the Board, and the Head muft be well clafped, or died, fo as it may fink into the Wood, and the Ships fide left fmooth. They are alfo a ufeful Nail in doubling of fmall Ships. The fizes are $1 \frac{1}{4}, 1 \frac{1}{2}, 1 \frac{3}{4}, 2,2 \frac{1}{4}, 2 \frac{1}{2}, 2 \frac{3}{4}, 3,3 \frac{1}{4}$, and $3 \frac{1}{2}$ In!ches long.
21. Square.] Thefe are of the fame fhape as fharp Niils, and is a moft ufeful Nail for Oak, and other hard Wood, as alfo for nailing up Wall-fruit, the Points being made fomething flronger than the Points of Marp Nails, which fortifies them to so forward, and not turn back upon a fmall Qppofition, as Weaker-points will do. The fizes are $2 \frac{1}{2}, 2 \frac{3}{4}, 3$, $4,4!, 5,5 \frac{1}{2}, 6,6 \frac{1}{2}, 7,8,9,10,11,12,13,14,15,16$ $18,19,20,22,23,24,28,30,3^{2}, 36,40,55$, and 75 tt , per Thoufand.
22. Tacks.] The fmalleft of thefe are to faften Piper to Wood, midling for Wool-cards, and Oars, and the larger for Upholferers, and Pumps. The fizes are $2 \frac{1}{4}, 5,6,8,9,14$, and 15 Ounces a Thoufand.

There are many more forts of Nails, which for brevity, (and becaufe they are not fo proper for our prefent Bufinefs,) I fhall omit.
23. Allowance of in Lathing.] In Lathing, the common Allowance of Nails is 500 to a Bundle of 5 Foot-laths, and 600 to a Bundle of 4 Foot-laths, at 6 Score Nails to the Hundred.
24. Allowance of in Flooring] In laying of Floors 200, (that is 24°) Nails is a compleat Allowance for a Square of Flooring.
25. To Toughen.] A Neighbour of mine, a Mafon, tells me, that - the Ironmonger at Rotherbridge taught a Kinfman of his, (who is.alfo a Mafon) to toughen his Nails that werebrittle, by heating them hot in the Fire, (ina Firefhovel, or the like,) and putting fome Tallow, or Greafe to 'em, the firft he fays is beft. This Jronmonger keeps a Nailer at Work.
25. Of driving.] There is requic'd a pretty Skill in driving a Nuil; for if, (when you fet the point of a Nail.) you be not curious in obferving to ftrike the flat Face of the Hamme: Perpendicularly down upon the Perpendicular of the Shank; the Nail, (unlefs it have good entrance) will ftart afide, or bow, or break, and then you will be forced to draw it out again with the Claw of the Hammer. Therefore you may fee a Reafon when you buy a Hanmer, to chufe one witia a true Hat Face.

Perhaps it may not be unacceptable to fome Readers, if I here mention a little Trick that is fometimes ufed among fome (that would be thought cunning Carpenters,) privately to touch the Head of the Nail with a little Ear-wax, and shen lay a Wager with a Stranger to the Trick, that he Mall not drive that Nail up to the head with fo many blows. The Stranger thinks he faill affuredly win, but does affuredly lofe; for the Hammer no fooner touches the Head of the Nail, but interad of entring the Wood it flies away, or flarts afde, notivithtinding lis utmon care in ftriking it down-right.
Nave,

In Architcoure is commonly us'd to finnifie the main part, or Eody of a Church; whichby the nearness of the word may rem to be derived from the Latin, Navis a Ship; but it may more fignificantiy be deriv'd from the Greek $v_{\alpha}^{\prime}(\underset{子)}{ }$, (that is Airos) a Temple.

Newel,

The upright Pof that a plir of Winding.faits are turn'd about.

Nicbes or Nices,

The hollow places in a Wall, wherein Statuest or Images, are fer. If thefe Images be of white Stone, orl Marble let not the Niches be colour'd too black; for tho' contraria juxta fe polita mapis illucefcumt, be an old Rule, yet 'tis obferv'd, that our fight is not well pleas'd with fuddain changes, from one Extream to another; therefore let them have rather a cuskimi Tincture, than an abfolute black.

Gak.

1. What.] This is a fort of Timber well known, and needs no Defcription. 'Tis one of the principal Maserials in Euilding, being frong in all Pofitions, and may well be trutted in crofs and tranverfe Work; as for Summers, and Girding, or Binding-beams, doc.
2. Of Siwing.] Oak is worth fawing 2 s .8 d . per hundred, fome 3 s. and upwards to 3 s. 6 d . jer hundred. That is the hundred Superficial Feet.
OG. Ogec, or Ogive,

A fort of Moulding in Architecture, confifing of a round and a hollow; Vithuius makes it 2 Quarter-circles, Scammazi, and fome other A.uthors make the Archisflitter, by friking them from 2 Equilateral Triangles. V. Capital. N. 3.
Orders,

In Architedure are the different Forms and Propertions of Columns, eve. There are 5 Orders (commonly reckon'd) in Architeture, viz. The Tufcan, Dcrick, Ionick, Corinthian, and Comrofite.

Orlo.

The Plinth or Square under the Bate of a Column, or under the Bale of its Pedeflal.
Orthography,

Is a Word derived from the Greek, Orthos, true or right, and graphs, to write or describe. In Architecture, it fignifies the front or (any other) upright Side: of a House; or the Draught on Paper of thole Parts of a Houfe.

Ovolo,
As Echinus.
V. Clamp. N. 2.

Over.jpan.

Painting.

\therefore Fout-door-work in general] Doors, Shop-windows, Window-frames, Pediments, Architraves, Friezes, and Corninies, and all other Timber-works that are exposed to the Weather, ought at firft retting up to be Prim'd with Spanif)-brown, Sjaniflo-white, and Red-lead, (about a filth part) to make the other 2 Colours dry; these well ground with Linfeed-oyl, will make excellent Primer; then afterwards with the fame Colour, (but much whiter) for a fecond Primer, and laftly, with fair White, made of Winite-lead, and about a fifth part in quantity, (not in weight) of Spanif). white.

Out-door-work thus colour'd, may be afforded for 3 d . or 3 d. haif-penny, or 4 d. the Yard Square, for each time laid over.
2. Of measuring.] Painters meafure their Work by the Yard Superkial, and in taking the Dimensions of their Work, they run a String all over where the Eruht goes; for they ray, (and 'tic but Reafon) we ought to be pud for all where the Brufa goes. But fonetimes in Rails, and BanifIfers, they will meafure it as if it were hit Measure. I have feen the Experiment trio, and the difference would not countervail the trouble of girting. So that Fainters-work is meafur'd the fame as Joyners, only Painters never reckon Work and half, but work once, twice, or three times. $\% c$. done over ; or at fo much per Yard, according to the Work. They always reckon double Work for Painting of Window-fhutters, if both fides are Painted alike; otherwife, according to the value of the Painting. But they reckon $S_{d} h_{1}$-frames by thermSelves, (at fo much fer piece, and likewife Mantle-pieces) when there is no Painting about them; but if they flan in the Wainfcot, they meafure them as pain Work, deducting nothing for the Vacancy.
3. Of Wainfot-colour.] If on new Stuff, is worth about $8 d$. per Yard, on old Colour about $7 d^{d}$.
4. Of Walnut-tree-colour.] It is worth 10 d . fay forme, 0 others fay 16 or 18 d. per Yard.
$\mathrm{P}_{4} 5$ Of.
5. Of ordinary branch'd Painting.] Is worth 12, 14, or 1ó d. per Yard.
6. Of oidinary Marble-colour.] If on new Stuff, is worth I so pir Yard, on old Colour, $9 d$
7. Of wibite Colour. Is worth 10 d . or is. per Yard.
3. Of plain fapan, either black or wobite,] Isworth 3 s. 6 d. or 4 s. per Yard.
9. Of Gates, and Outward-doors,] Is worth 3 d . or 3 d . half-penny, or $4 d$, per Yard.
10. Of Shop-windows.] The Came as Gates, and Outwarddoors.
11. Of Window.frames.] is worth from 3 d . or 4 d . te 6 d . or 8 d . each ${ }^{2}$ ight, according to their Size.

I2. Of Salli-lights.] Is worth about id. per Light.
1s. Of Safl-friames,] Is worth about is. per Frame.
it Cf lion-cafements.] Is worth three half-pence, 2 d . or §a. for Cafement, according as they are of bignefs.
15. Of Iron-bars of Windows.] Is worth I d. per Bar, cp more, if verv laric.
16. of cibimny ficees.] Is worth about 2 s. fer Chimneypicc.
17. Of Pules.] Is worth about 10 d . or 12 d . per Yard.
13. Colotirs.] The Colours us'd in Painting, are of feveral finds; as White, and Red-lead, Spanilb-white, and brown, Verdigresfe, Smalt, dec. Of which fee in their proper places of the Alphabet.

Paleing.

1. With Cleftoples, Rails, and Pofts.] Some Workmen pell me, that for Pasing with 3 Rails, Cleft-pales, Rails, and Pufts, cleaving, making, and fetting up, they have 3 s .6 d . or a s. fer Rol, Feling the Timber and all. Eut then their mhaterials are all laid down to their Hand, fo that they have no carrying.
rether tell me thev have 2 s . 6d. per Rot, for (only) mikingand fettios up of Cleft-pofs, Rails, and Pales.
2. With SisodPales, R.itls, ard Polls. I Some Workmentell me they have $1 s$ o d. per hod for maling and fet. tieg up of Saw'd pofts, fails, and Pales.

> Palcs.

I, Price of Chaving.] Some Workmen tell me that they have $2 \therefore$ fer Hundred for Clezving of Pales; but others that Clesve in Brooks, fay they have but $1 s .8 d$. per tiundred. Wate, A Hondred of pales is varinus, according to their lenath; for of 9 Foart Pales. 5 Soare Pules is a Hundred, Lut of 4 foot there exos 6 soure, and ot 3 Foot, 7 Score to the Mandred.
2. Of the Number a Tun will mate.] This is very uncertain, by reafon of the difference in Timber's Cleaving, fome Cleaving much better, (and lefs to waft) than other fome; yet by comparing feveral Obfervations, which I receiv'd from an ingenious Workman, I gather, that a Tun of good Cleaving Timber may make 3 Hundred, (or perhaps fometling more) of 4 Foot Pales, and a Tun of the like Timber may make 4 Hundred of 3 Foot Pales; the Reafon of which is, becaufe Timber generally cleaves better, (and lefs to waft,) in fhort lengths than in Ionger.

But the Number of Sawn-pales (that may be made of a Tun of Timber,) is more certain, than of Cleft-pales; for I have found (by the Draught of a Tree, and Calculations,) that a Tun of Timber will make about 400 Foot of Inch-boards; which (if the Timber fit for length,) being cut out
into $\left\{\begin{array}{l}5-\text { Foot } \\ 4-\text { Foot } \\ 3-\text { Foot }\end{array}\right\}$ Pates, will make

$$
\left\{\begin{array}{l}
80 \\
100 \\
133
\end{array}\right\} \text { Pales, each a Foot broad; which in Paleing }
$$ will reach about 3 times as far as the like number of Cleft Pales willdo.

> Palifade, or Palifado.

1. What.] a fort of flight open Pale, or Fence, fet to Besutifie a Place, or Walk.
2. Pales.]'Some Workmen tell me, that making and fetting up of Palifida-pales, (if the Heads are handromely cut, the Palifades Mortis'd through, the Pofts at the corners higher than the reft, and the Rails, Kneeling-rails,) is worth 14 s. fer Roid, Carpenter's Work, and Sawing.

An ancient and experienced Carpenter informs me, that the Carpenter had 25 s . Fer Rod, (for Timber and Workmanflip) for the Palifado-p.les at the Bowling-green at MountEphrain at Tunbridge-wells; and likewife for the Palifadesat the High-houfe behind the Eowing-green. This old Carpenter told me, he guefs'd the Carpentel's Work of thefe Palifades to be worth about 10 s. fer Rod.
1 amalfo inform'd, that the Carpenter had 30 s. per Rod for the Palifdes at the Walks at Tunbidge-wells. I mention thefe about the Wells, becaufe I fuppofe them to be well known to mof Gentlemen. For there is fuch variety in the Workmanflip of Palifido-pales, that there can be no certain Price for it by the Rod.
3. Gates.] Thefe are as various in the Forms and Fafhions as Palifado pales,and confequently their Prizes are alfo as various, viz.
viz. From 6, or 7, to 10 , or 12 s. per Yard running Meafure, at about 6 or 7 Foot high.
4. Of Irin.] Pulifado-work of Iron in Gates, or otherways, is from 4 d . per Pound, to 8%. according to the Work.

Pallification,

A Term in Architcture, fignifying the Pileing of the Ground-work, or firengething of the Ground-work with Piles of Timber driven into the Ground, when they Euild upona Moift and Marlly Soii,
Pantry,

A Roonito fet Victuals in, a Store room.
Pantiles.
V. Tiles, N. $\%$.
Pargeting.

1. What.] In Architecture, fignifics the Plaftering of Walls; fometimes 'tis us'd to fignific the Plafter it felf.
2. Price] Pargeting, or Plaftering is of divers kinds. As
(1.) White Lime, and Hair-nrortar laid upon bare Walls, at 3 d. or 4 d. the Yard. (2.) Upon bare Laths, as in Partitioning, and plain Ceilings, from 8 d . to 14 d . per Yard. (3.) Rendring the infides of Walls, or doubling Partition-walls, at $2 d$. or $3 d$. the Yard. (4.) Rough-caft upon HeartJathe, from : s. to $3 s$. the Yard Square, Workmanfhip and all Materials. (5.) Maftering upon Erick-work with finifhing Mortar, in imitation of Stone-work, from 1 s . to 18 d . or 2 s. the $Y^{\prime \prime}$ ard Square. (6.) And the like upon Heartpaths, from 18 d. to 2 or 3 s. the Yard, V. more in Plaffer. ing.
Parlowr,

A fair lower Room, defign'd principally for the Reception, and Entertainment of Company.
Partitions.

1. Of Framing.] V. Framing, N. 4.
2. Of Menfuring.] Partitions are commonly meafur'd by the Square; but they commonly make deduct ion for Doors and other Vacancies.

$$
P a f f a g c,
$$

An Entry, or narrow Room, ferving only for a ThoroughFair, or Entrance into other Rooms.

Paving.

1. What.] Is the laying a Floor with Bricks, Tiles, or Stones.
2. With Statute-bricks.] Paying with Statute-bricke, is done it London for about 4 d . jer Yard. But I know fome Workmen in Suffex that hive $5 d$. or $6 d$. per Yard, into which Price they make ready the Floor for the Work, by cleariny out the Earth, and levelling the Floor with a convenfent quantity of sand. (if they lay the Bricks dry, as fometines they do, which they fpread evenly with the Rake; then laying the Ericks level by a Line, they (with a Trowel) put a fufficient quantity of Sand under each Brick, to raife him full as high as (or a little higher than) the Line, and fo knock him down (level with the Line) with the Handle of their Hammer; which being done, they ram in the Sand (on the fide of, and) againft the bottom of the Brick with the handle of their Hammer, to make him lie faft. Having thus laid the whole Floor, they flrew Sand all over the Bricks, to the thicknefs of an Incls, more, or lefs, with a Command to the People of the Houfe, that they Jet it lie for the fpace of 5 or 6 Weeks; now and then fwecping, it too and fro, that thereby, and by their treading on it, it may fill up all the Joynts betwixt the Bricks.

If they lay the Bricks in Mortar, the Price (they fay) is the fame as if they were laid dry.

There are fome Mafons, that having laid the Floor dry, will make a very thin Mortar, which they fpread all over the Floor, fweeping it too and fro with a Broom, to fill up the Joynts of the Bricks.

This kind of Piving (with common or Statate-bricks) is ufual for Cellars, Wafh houfes, Sinks, Fire-hearchs, and for Halls and Kitchins in common Houfes.

Of thefe kind of Ericks, 32 will Pave a Yard Square, if ldid flat-ways, and 64, if edge-ways.
3. With fquare Tiles, or (asfome call them) Pavin? bricks.] The paving with Square-tiles is commonly valuid by the Square, and the dearer the fmaller the Tikes are; for thefe kind of Tiles are of feveral fizes. viz. 6,8 , 10 , and 12 Inches Square, their Price from 6 to 20 s . the hundred. In Suffex thefe kind of Tiles, (or as they call them) Paving-bricks. are 9 Inclies Sjuare, and commonly fold'at 1 d . per piece, or 8 s. per hundred.

If you would know how many of either of thefe fort of Tiles will Pave any Floor, then

$$
\text { Note, that }\left\{\begin{array}{l}
36 \\
21 \\
16 \\
13 \\
9
\end{array}\right\} \text { Tiles of }\left\{\begin{array}{l}
6 \\
8 \\
9 \\
10 \\
12
\end{array}\right\} \text { Inches Square will Pave }
$$

4. With Flemifh-bricks.] The Paving with thefe Bricks is far neater and flronger than common Ericks: They are of a yellowihh Colour, and muft be laid in Sand. Earth-brick is o Inches and a quarter long, 2 Inches and a half broad, and I Inch and a quarter thick.

Now, allowing a quarter of an Inch for the Joynt, then 72 of "em will Pave a Yard fquare, but if they be fet edge-ways, then to Pave a Yard fquare, will require 100 bricks. There Bricks are ufually fold at' 2 s . the Hundred, and the Price ot laying them is 4 d .5 d . or 6 d . the fquare Yard.
5. With Rough, on Rag-fione.] This is the cheapeft of all Pavements, and is valu'd from 12 d . to 15 d . the Yard.
6. With Free-flone.] Paving with broad Stone taken out of the Quarries, (commonly call'd Frce-ftone,) and cut into Lengths and Breadths promifcuoully, (as they will hold) and in thicknefs about 2 or 3 Inches, is ufually rated at 6 d .7 d . or 8 d . the Foot Square, or 4 s .6 d .5 s .3 d . or 6 s . the Yard Square for Scone and Workmanhlip. This kind of Paving is had in common Yards, and Pdifages before Shoptoois, and Stalls, ow.

But if the Stones be fquared all to a fize, (as fometimes thefe Stoines are cut perfeftly fquare, as Paving-tiles are, but much bigger, as 18, 20, and 24 Inches fquare, and upwards;) then, as they are neater, fo they are dearer, as 12 d . or 14 d . per Foot, or 9 s . or 10 s .6 d . per Yard. But if the Stones, thus fquired and fized,) be good and weil Polifhed, (as they uught to be for Kitchins, Daries, and neat private Haces) then they may be worth is or $15 d$. per Foot, or $11 \mathrm{~s} .3 d$. or 12 s. per Yard fquare.
7. With Risate, or Fire-fone.] This kind of Pavement is good for Chimney-ife-hearths, Ovens, Stoves, erc. and is fonewhat dearer than common Purbeck pavement. For the Price of thefe Stones, V. Fire-ftone, N. 2.
8. With Pebble-fioner, or Bolders.] Puving with Pebblefones laid in Gravel, for Miterids and Workmanhip, may be worth 15 , or 18 d . the Yard fquare.
9. With Marble.] Paving with Marble is of all other the moft beautiful, of which there are feveral forts; as white, Black, and Gray: Some Pavements; (as in Foot-paces before Chimneys) ure laid all of note fort, or Colour, and in one intire Stone; others of 2 Colours laid Square, or Cinequerwass, the fide of one by the fide of the other; others are haid Arrace-vife, of 2 Colours, hid Angle to Angle, and thas !ift is the neateft way; but there may be divers Forms conIr v'd to hay them in; as you my fee in feveral Chancels, in the Quireof St. Paul's, and in the Roya! Exclornge in London, and divers other Plices. This kind of Pavement is valu'd from 2 to 3 s. the Font Gquare, and upivards, according as ris weil hid and palind. For the Inice of Marble, V. Mz:-
10. Diamend.] Diamond-pavement, (fays Mr. Wing;) is worth 3 d. or $4 d$ d per Fcot.
II. Random.] Random-pavement, (lays Mr. Wing) at the Quarry, is worth 2 d . half-penny, or 3 d . per Foot.
12. Of Meafuring.] Paving is commonly meafur'a by the Yard Square. And therefore the length of any Pavemeut ia Feet and Inches, being Multiplied by the Breadth in Feet and Inches, (which how it 's' done, V. Crofs-multiplication, N. 2.) will produce the Content in Feet; which being, divided by 9, (becaufe 9 Square Feet make a Square Yard,) will give the Content in Yards requir'd.

Pavement.

V. Paving.

Pediments,

Pediments over Doors are common!y valu'd at fo much per piece, dearer, or cheaper, according to their largenefs, gecdnefs of the Materials, and Curiofity in WorkmanMip.

Pedefal.

1. What.] In Architecture is the Bafis, or Foot of a Pillar ; that part which fupports the Pillar.
2. Kinds.] There are as many kinds of Pedeftals, as there are Orders of Columns', viz. 5. The Tufcan, Dorick, Jonick, Corinthian, and Compofite. The heighth of the Pedefta! in each Order ought to be a third part of the whole Colums, (comprehending the Bafe and Capital, and their upper Adjundts, as Architrave, Friefe, and Cornifh.) This Rule of fingular Ule and-Facility, I find fetled by facobo Baroccio, and I hold him a more credible Author, (as a Man that moft intended this piece of Architecture,) than any that vary from him inthofe Dimenfions, fays cur famous Engligh Archite\&, Sir Henry Wotton.

Neverthelefs other Architeits differ from him in the Right of the Pedeftal. I thall at prefent (for brevity fake) only give the Defcription of the feveral Orders of Fedeftals from Vitruvius.
3. Tufcan.] According to Vitruvius, the whole heighth of the Tufcan Column, comprehending the Architrave, Friefe, and Cornifh, is divided into 9 parts, whereof 2 goes to the heighth of the Pedeftal.

This Pedeftal he defcribes in 2 different Forms, one of which is plain, having only a Plinth for the Eafe, and another for the Cafital; the heighth of each of thofe Plinths is $\frac{1}{6}$ of the whole heighth of the Pedeftal; and the Projesure of each of thefe Plinths is $\frac{2}{6}$ of the ir heighth.

In the other fafhion'd Pedeftal which he deforibes, he atfo divies
divides the whole heighth of the Pedeftal into 6 parts, one of which goes to the Eafe, and one to the Capital.

Again, he divides the Bafe into 2 parts, one of which goes to the Plinth below; and the other to the reft of the Bafe ; and this being fub-divided into 4 parts, 3 of 'em goes to the Scima-rverfa, and the Liff below ir, which is $\frac{1}{2}$ a part; and the other to the Lift above it.
4. Dorick.] The whole of this Column, (comprehending the Architrave, Friefe, and Cornifh,) is by Vitruvius divided inte 8 parts, whereof 2 goes to the heighth of the Pedeftal, which agrees with facoko Barocciofs Rule mention'd above; N. 2.

This Pedeftal is (by Vitrurius) alfo defcribed in 2 different Forms; in both of which the Bafe and Capital are each $\frac{1}{2}$ of the whole heighth of the Pedeftal.

In one of the fafhiond Pereftals, the Bafe is divided into 2 parts, whereof one goes to the Plintis below, and the other to the reft of the Eife; and this part being fub-divided into ? parts, one of 'en makes the lower Thorus; and the other being again fub-divided into 3 parts, 2 of ' em go to the upper Thorus, and the other to the Lift above it.

The Capital of this fafthon'd tedellat is divided anto a parte, whereof the lonermoft makes the Afragal, (whore lifis is of the whole Aftragal, and the other 3 parts o to the Cimatum; whereof the Lift at the top is one of thofe parts.

In the other fafluion'd Pecieflal; the heighth of the Bare is alfo divided into 2 parts, whereof the lowermont goes to the Plinti,, and the other part being fub-divided into 3 parts, a of em make the Thorpis, and the other part the Lift above it.

The whole heighth of the Capital of this fomion'd Yedeft_{s} is divided into 5 parts, wheroof the lowermof gaes to the Aftragai, (whofe Lin is: of the whole,) the next 2 parts go to the O.G; the 2 parts remaining, being fub-divided into 3 purts, tye 2 losermoft of 'em go to the Sguare, and the other to the Cimatum, whofe Lift is ; of the whole.
5. 1mick.] The whole heighth of this Column being divided into 14 parts, the height of its Pediftal, (according to Vitruains) is 3 of thofe pasts.

This Pedeflat ine alfo defribes of 2 diferent Forms, in each of which, rice Bafe and the Cipital are each $\frac{1}{5}$ of the whole heighth of the Pecieftal.

Ill one of tir:fe fanion'd Pedentals, he diwides the heighth of the Eafe in'o 3 puts, wherenf the lowermoft goes to the Plinth, the next part goes to the Scima-icverfa, with its Lift at top and botiom, which are each; of the whoie; the upperinolf grand Diviton being fub divided into 2, the lowermot of 'em goes to the corfiment, or Hollow, with its Lift at the tep, which is one $\frac{1}{5}$ of the whole; the other part goes to
the Thorus, and its Lift above it, which Lift is: of the whole.
The Capital of this faflion'd Pedeftal, is divided iato 2 parts, the lowermoft of which goes to the Scimaz. reverfa with its Lift above and below it; whereof the lower Lift is $\frac{2}{4}$ of the whole, and the upper Lift $\%$ of the remainder. The other grand Divifion being fub-divided into 3 pirts, the 2 lowermoft of ${ }^{\circ} \mathrm{cm}$ go to the Square, and the other to the Cimatum, whereof its Lift is $\frac{3}{3}$ part of the whole Cimatum.

In the other fafhion'd Pedeftal, the Bare is alfo divided into 3 parts, whereof the lowermof goes to the Plinth, the o: ther 2 grand Divifions being fub-divided into 5 , the 3 loivermoft of'em go to the Scima-reverfa, and the Lift under it, which Lift is $\frac{1}{6}$ of the whole ; the other 2 Divifions being a gain fub-divided into 3 parts, the 2 lowermoft of 'em goes to the Thorus, and the remaining part to the Lift above it.

The Capital of this fafhion'd Pedeftal is divided into 2 parts, the lowermoll of which being fub-divided into 4 parts, the the lowermoft of 'em goes to the Afragal; (whereof its Lift is $\frac{1}{2}$ part,) the other 3 of thofe fub-divifions go to the sci -ma-reverfa, and its Lift above it, which Liff is $\frac{1}{\%}$ of the whole ; the other grand Divifion being fub-divided into 3 parts, the 2 lowermoft of 'em go to the Square, and the 0 ther part to the Aftragal, whore Lift is: of the whole.
6. Carinthian.] The whole heighth of this Column teing divided into 9 parts, the height of its Peceftal, (according to Vitruvius) is 2 of thofe parts.

The whole heighth of this Pedeftal being divided into $\%$ parts, the Bafe and Capitalare (each of 'em) in heighth 1 of thofe parts.
The whole heighth of the bafe being divided into s parts, the 2 lowermof of 'em goes to the Plinth ; the remainder being fub-divided into 4 parts, the lowermoft of 'em goes to the Thorus; the 2 next parts make the Scima-reverfa, and the Liff below it, which Liff is ${ }^{\prime}$ of the whole ; the remaining part goes to the Afragal, whereof its Liff is $\frac{1}{3}$ part.
The heighth of the Capital is divided into 2 parts, the lowermoft of which being fub-divided into 4 parts, the lowermoft of thofe go to the O-G, theother 3 fub-divifions being again fub-divided into 2 parts, the lowermof of thofe goes to to the Scotia, or Hollow, and the Lifi above it, (which Lift is a part of the whole ;) the remaining part goes to the Boultin. The other grand Divifion being fue divided into 3 parts, the 2 lowermoft of 'em go to the Corana, and the remaining part to the Cimatum, whofe Lift is 3 of the whole.
7. Cesppofite.] The whole heisht of this Column being divided into 13 parts, the height of its Pereftal, (according to Vitruzius y^{\prime} is 3 of thofe paits.

The Eafe being divided into 7 parts, 2 of 'em go to the Plinth, 1 to the Thorus, 2 to the Scima-reverfa, one to the Scotia, and one to the Aftragal; ; of the Aftragal makes the Fillet above the Scotia.

The Capital being divided into 7 parts, one of 'em goes to the Aftragal, 2 to the Friefe, one to the Boultin and Lift under $\mathrm{it}, 2$ to the Corona, and one to the Cimatum.

$$
\text { Peers. }^{2}
$$

1. What.] In Architecture a kind of Pilafters, or Buttreffes? for Support and Ornament.
2. Scantlings, or Size.] I find the Scantlings of Stonepeers, fet down in an ACt of Parliament for the Re-building of the Cify of London, after the late dreadful Fire, (which Scantlings were well confiderd by able Workmen before they were reduced into an Act,) to be as follows, viz. In the firft fort of Houfes, Corner-peers, 18 Inches fquare; middle, or fingle Peers, 14 and 12 Inches, double-peers between Houfe and Houle, 14 and 18 Inches. In the 2 d . and 3 d . fort of Houles, Corner-peers 2 Foot 6 Inches fquare, middle, or Simgle Peers 18 Inches fquare, double Peers between Houfe and Houfe, 14 and 18 Inches.
3. Price.] Peers are fometimes meafurd and rated by the Foot running Meafure; but they are more commonly rated at fo much per piece, dearer or cheaper, according to their fize, goodnefs of the Stuff, and Curiofity in Workmanflip.

A pair of Stone-pecrs with Seat-arches, 4 or 5 Foot wide, and 14 or 16 Foot high, may be worth 40 or 50 Pounds.

A pair of Ruftick-peers of Stone, may be worth 10, 12, or 14 Pounds, according to their heighth and fubftance; Plainpeers, 8 or 10 Pounds; Revailed and Pilafter-peers, from 10 to 14 Pounds a pair.

Pentadoron,

A kind of Bricks fo call'd, V. Bricks, N. iIf. S.ir.
Piazza's.
V. Architrave, N. 2 .

Piedroit.

In Architefture is a fquare Pillar that is partly within the Wall.

Pillars,

What they are every one knows; they are alfo calld Columns; (for the word amongft Artificers is almoft naturaliz'd,) I could diftinguifh them into Simple and Compound; But
(to tread in the beaten Path,) there are commonly reckon'd 5 Orders of Pillars, or Columns, "according to their Dignity and Perfection, thus marfhalld, viz. The Tufcan, Dorick, Ionick, Corinthian, and Compound Oider, V. Column.
Pilaffers.
i. What.] In Architenture are a kind of half Pillars (ftanding againft a Wall) with Bafeand Capital, as Pillars have; but differing from Pillars in this, that thofe are Iquare , but thofe are (commonly) round.
2. Of their fize, and Situation.] Pilafters muft not, (fays Sir Henry Wotton) be too tall and flender, leaft they refemble Pillars; nor too dwarfifl and grofs, lealt they imitate Piles, or Peers of Bridges: Smoothnefs does not fo naturally become them as a Ruftick Superficies; for they aim more at State and Strength, than Elegancy.

In private Euildings they ought not to be narrower than one third, nor broader than two thirds of the Vacuity, or InterSpace between Pilafter and Pilafter: But to thofe that ftand at the Corners, may be allow'd a little more Latitude by Difcretion for flrength of the Angles.

In Theatres, and Amphi-theatres, and fuch weighty Works, Palladio obferves them to have been as broad as the half, and now and then as the whole Vacuity, or Inter-fpace. He noteth likeivife, (and others confent with him.) That their true Proportion fhould be an exact Square; but (for leffening of Expence, and cnlarging of Room, they are commonly made narro:ver in Flank than in Frent.

Their principll Grace confifts in half, of whole Pillars apply'd to 'em; in which Cafe it is well noted by Authors, that the Columns may be allow'd fomewhat above their ordinary length, becaufe they lean to fo good Supporters. And thas much fhallfuffice at the prefent, touching (the fize and Situation of) Pilafters, which is a cheap, a firong, and a noble kind of Struchure.
3. Price.] Thefe are fometimes meafur'd and fated by the Foot running Meafure; but they are more commonly valu'd at fo muc! per piece, according to their fize, goodnels of the Materials, and Curiofity in Workmanfhip.

Pitch.

By this Term Architeds underfland the Angle a Gable-end (and confequently the whole Roof of a Euilding) is fet to. If the length of each Rafter be $\frac{3}{4}$ of the breadth of the Building, then that Roof is faid to be true Pitch; if the Rafters are longer, 'tis laid to be a bigh, or frarp pitch'd Roof; if fhorter,
(which it feldom is,) then tis faid to be a low, or fat pitch'd hoof.

> Pitcbing,

The fame as Paing, V. Paring.
Pins for Tiles,

What they are every one knows; they ought to be made of Heart-oak, and to every 1000 of Tiles is ufually allow'd a Gallons of Tile-pins, from 3 d. to 6 d . the Gallon, fays Mr. Leybuarn, I know not how he reckons, but I am fure 1000 of Tiles requires but 1000 of Pins, which fome Workmen in Suffex tell me they reckonbut 2 d . or 3 d . for they tell me they fe!l their Pins for 6 d . per Gallon; and that they ufe about a Gallon of Pins to a Square and a half of Healing.

Pinning

Oforiles.] Some Workmen in Suflex tell me, that they commonly reckon 8 d . per Thoufand, for pinning of Tiles, and finding Pins. But for the Workmanfhip only $6 d$. per Thowfund.

> Pilafter-bricks.
V. Ericks, N. 111. §. 13.

Pipes of Llead.
V. Lead, N. g.

Plage-bricks.
V. Ericks, N $111 . \S 12$.

Plair cornish.
V. Cornifl.

> Plaintiles.
V. Tikes, N. 11 I .

> Plancbier.

The Ornment to which the Cornifh is faften'd.

> Plaftering.
8. Of Wralls.] Some Mafons in Suffex tell me, that for Lathing and Plaftering of Walls with Lome on both fides, they have 3 d . per Yard; but if it be done with white Lime, and Huir-mortar on both fides, then they have $4 d$. per Yard.

I am inform'd, that at Tunbridge-reells the Mafons will do Plaftering of Walls (where they Plafter over all the Timber) and Ceilings for 3 s . 10 d . per Square. I know a Gentle-
mas that told me, he had fuch Work done for 2 s. $6 d$. per Square.
2. Of Ceilings.] For Ceilings, our Mafons in Suffex, have (for Lathing, Plaftering, and finifting) 4d. per Yard. In fome Countreys they make their Ceilings with Reed, Linic, and Hair ; for which the Workmaunhip is worth 3 d. per Yard : But if the Workman find all Materials, 'tis worth $5 d$. or $6 d$. per Yard.
3. With rough Mortar, or Rough-cafl.] In fome parts of Kent they commonly Rough-caft, (as they call it) upon old Lome-walls, that is, they give them one Cost (upon the Lome) of Rough-mortar, or Rough-caft, as they c.ll it, tho' it be commonly truck finooth like Lime and Hair. For this Work they have three half-pence per Yard, only Workmanhip: But if the Wall be new, and lathed, and Mafter'd with Lame on both fides, and a Coat of Rough-mortar on the outfide, then they have 4 d . per Yard, only Workmanhip: But if the Rough cafting be wrought in Fourifies, then they have 8 d . fer Yard, only Workmanhhip. But if the Workman find all Materials, tis worth from 1 s . to 3 s. per Yard, according to the variety and goodnefs of the Work.
4. On Laths in imitation of Brick.] I know a Houfe that is Plafter'd in imitation of Brick-work, the Mortar was made of Powder of Bricks, fharp Sand, Lime, and fome Red-oker: This Houfe has been done this 20 Years, and yet looks very well, and paffes for a Brick-houfe with common Paffengers; tho' it be only Timber Plafterd over.

Some Workmen tell me, that they have 1 s. per Yard for fuch Work, only Workmantiip.
5. Of Floors.] Plafter Floors running, (foss Mr. Wing, the Workman finding all, is worth $1 s .4 d$. per Yard, but the Working part only is worth 4 d .5 d . or 6 d . per Yard. Plafter at the Pits may be had for 4 s . or 4 s .6 d . per Load; i!z. 40 Coweight, which will do about 40 Yards of Flooring. 6. Of White mafling.] White-wahing with Size upon Plafterd Wails, is commonly reckon'd at $2 d$. per Yurd.
7. Of Meafuring.] This kind of Work is commonly done by the Yard Square, as Paving, which fec, N. 12. Bet Fote, that in Meafuring of Partitions, if the Workmarime Materials, the Doors and Windows are meafur'd by themfelves, and deduated from the whole; as is alfo $\frac{1}{6}$ part (of the re(t) for the Quarters in rendring Work: Eut if the Work. man do not find Materials, there is commonly no Allowance made for them, the trouble in cutting and fitting the Laths, being quivalent to the vold fpace left for the Doors and Windows. Neither (in cafe of Workmanflip oniv) is there to be any allowance made (in rendring) for the Quarters, Braces, or Inser-ties, the Work being as mach as (if not more
than) if it were all plain. V. more of Plaftering, in the word Pargetting.

> Platebands,

The Lifts, or Fillets between the Fluteings of the Ionick, Corinthian, and Compofite Columns. They are (each) in breadth a quarter of the Flute.
Platform.

1. What.] This word in Architecture is fometimes us'd, to fignifie the Ichnography, or Draught of the Ground-plot of a Houfe; but more commonly for a broad, fmooth, and open Walk upon the top of any Building.
2. Of Covering with Lead.] V. Lead, N. 7.
Plaftique-art, or Plaftick art.

The Plaftique art, is a Branch of Architecture that is not only comprehended under Sculpture, but is indeed very Sculpture itfelf; but with this difference; that the Plafterer (by his Plaftique-art,) makes his Figures by Addition, but the Carver by Subftraction; whereupon Micbael Angelo was wont to fay, (fomewhat plearantly,) that Sculpture was nothing but a Purgation of Supertluities: For take away from a piece of Wood, or Stone all that is fuperHuous, and the remainder is the intended Figure.

Of this Plaftique-ayt, the chief ufe with as is in the graceful fretting of Roofs, (commonly known amongit us by the Name of Fret-work;) but the Italians apply it to the Muntling of Chimneys withgreat Figures. A cheap piece of Magnificence, and as duable almoft within Doors, as harder Forms in the Weather.
Plint, or Plinth,

The lower part of the Foot of a Column, being in the form of a Square Brick, or Tile.

> Plumbery,

An Art belonging to Architecture, it being the Art of Working in Lead.
Porphyry,

A fine reddifh Marble, ftreaked with divers Colours. Pliny, (in Hiff. Nat. Lib. $3^{5 .}$ Caf. 7.) fays, this kind of Marble comes out of Egypt, where there are large Quarries of it.

Portico.

V. Architrave, N. 2.

Portland-fone.

A Stoneocutter in London tells me, that they ufually fell Slabs of Portland Stone, (ready Polifhed for Chimney-foot-paces, $)$ for $1 s .8 d$. per Foot Superficial. 'Tis a Stone much $u^{\text {s'd }}$ in Building, and much fofter and whiter than Purbeck.

> Port-nails.
V. Nails, N. 12.
Portal,

An ancient Termin Architecture, I fay an ancient Term, for the thing fignifi'd by it is grown out of fafhion; it was us'd to fignifie a little fquare corner of a Room, fhifted off from the reft of the Room by the Wainfort. The word feems to come from the French, Portail, a Gate, or Entrance; becaufe through it they enter into the Room.

Pofts.

1. What.] Pretty big pieces of Timber, ftanding upright in a Houfe, brc.
2. Principal.] In Architecture, are the Corner-pofts of a Houfe, bc.
3. Prick.] The Pofts that are Fram'd into Breffummers, between principal Pofts, for the Irengthning the Carcals of the Houfe.
4. Of Preferving.] An ingenious Gentleman, one Mr. Walter Burrel, Efq; of Cuckfield in Suffex, deceafed, ufed to burn (to a Coal on the out-fide) the ends of all the Pofts which he fet in the Ground; whereby they will continue a long time without rotting, which otherwife would fuddenly decay.

> Poft and Rail.
V. Fencing, N. 2. and Paleing, N. 1, 2.

Pound-nails.
V. Nails, N. 13.

Prick-pofts.
Y. Pofts, N. 3 .
Priming.

Ү. Painting, No r.

1. Pofts.] V. Pcfts. N. 2.
2. Rafters,] V. Rafters.
Prizes

Of Work and Materials, V. the Particulars, that you would know the Price of, in their proper places of the Alphabet.
Profile,

A Ierm in Architecture, deriv'd from the ratian, and fig. nifies the fame as Iclongrapty from the Greek, viz. The Flat, or Horizon Figure of any Building. 'Tis fometimes us'd for the figure of any part of a Euilding, fhew'd in any other Pofition; wherein are fet down the Breadths, Lengths, and Leighths of the whole.
Projecture,

In Architecturc, is the jutting out of any part of a Euilding, (or of a Column) beyond the reft. Thus Balconies Prokect into the Street, and thus the Bafe and Capital of a Column project forth beyond the Body of the Column.

$$
P_{u s d l a y s,}
$$

Pieces of Stuff to do the Office of Leavers, or Handpikes.
Pustuinata,

A Fricze fuelling like a Pillow.

Punchins.

8. What. $]$ Short pirces of Timber placed under fome confiderabie weight to fupport it. They commonly fland (upripht) beteveen the Poffs: they are hiorter (and flighter) man eitier Principal-pofls, or Prick-pofis. Thofe that fand on each lide of a Door, are call'd Dopr-pancbins.
9. Price.] Carpenters commoniy reckon id. or three half. pence fer toot for puting in of pew Punchins.

Purlins.

7. Witat.] Thofe picces of Timber that lie a-crofs the Rafters, on the in-fide, to keep thern from finking in in the middle of their length.
8. Size.] By the Act for Re-building the City of London all Furlins in lemgth from 15 Foot 6 mehes, to 18 Foot 6 Inwes, pubte to be in thear Square 9 Inchos, and 8 Inches. And
all in length from 18 Foot 6 Inches, to 21 Foot 6 Inches, ought to be in their Square 12 Inches, and 9 Inches.

Purbeck-ftone.

1. What.] 'Tis a hard greyifh Stone, almoft like Sufex Petties. They are much us'd for Pavements.
2. Price.] A Stone-curter in London tells me, that they commonly fell Purbeck- $L a b s$, (ready Polifhed for Climney-foot-paces, for 2 s . per Foot. And Purbeck-paving of Promifcuous Sizes, only Hew'd and Squar'd, the y fell for $7 d$.per Foot. Aliro Mitchels they value at about is. 10 d . per Foot, V. Mitchels.

Putlogs,

Pieces of Timber, or Mort Poles, (about 7 Foot Iong, us'd by Mafons in Building of Scaffolds to work on. The Putlogs are thofe pieces which lie Perpendicular to the Building, one endlying into it, and the other end refting on the Ledgers; which are thofe pieces that lie Parallel to the fide of the Building.
Pyling.

The Ground for Foundations, V. Foundations, N. 2. §.5.
§uarry.

1. 0F Stone.] A Place whence Stones are diggce out.
2. Of Glafs.] A piece of Glafs cut in a Diamond-form: Quarries of Glafs are of 2 kinds, viz. Square, and long ; and thefe again are of different fizes, as 8 's, 10 's, $12^{\prime} s, 15^{\prime} s, 18^{\prime \prime} s$, and 20 's, [that is, 8 Quarries of 8 's make a Foot of Glafs, and fodoes 10 Quarries of 10 's, 12 of 12 's, éc.] Eut all Quarries, (of what fize foever) are cut to one fort of Angle for the Square Quarries, and another for the long Quarries: The Acute Angle of the Square Quarries being 77 Degrees, and 19 Minutes; and the Acute Angle of the long Quarrics 67 Degrees, and 22 Minutes. See more, Glazing, N.

> शiarters,

In Architecture, all thofe light upright pieces between the Punchins and Pofts, (which ferve to Lath upon,) are call'd Quaiters. They are of 2 kinds, fingle and double: Single Quarters are fawn Stuff, 2 Inches thick, and 4 Inches broad. The double Quarters are fawn to 4 Inches fquare.
iTis a Rule in Architecture, that no Quarters be pladed at greater diftance than 14 Inches.
@iartering,

In Architecture, fignifies the putting in of Quarters. Some: times 'tis us'd to fignifie the Quarters themfelves.
શtarter.bead. .
V. Brads, N. 6.7.
Quirk,

In Archicecture, fignifies a piece taken out of any regular Ground-plot, or Floor. As if the Ground-plot were a Gquare, or an Oblong, and a piece be taken out of one corncr of it, for a Court, or Yard, that piece fo takenout is calld a guirk.

$$
\mathfrak{N}_{\text {liins, }} \text { or } \mathfrak{2} \text { !oins, }
$$

The corners of Brick, or Stone-walls. Alfo the Stones in the corners of Brick Buildings. If thefe Stones ftick without the Erick-work, (their edges being cypher'd off,) they are calld Ruftick-quoins. The Ruftick-quoins, at 2 Foot, one Face, and one Foot the other, are valu'd from is to is. 4 do per Quoin, Stone and Workmanfhip.
शuadrels,

A fort of artificial Stones, (fo call'd from their Form, they being (quare,) made of a chalky, whitifh and pliable Earth, and dry'd in the Shade. They were 2 Years in drying, and were much us'd by ancient Italian Arclitects.

Rafiers.

5. WHat.] Rafters are thofe pieces of Timber, which (flanding by pairs on the Refon.) nect in an Angle at the top, and compofe tle Roof of a Buildin. .,

20 Scantlings, or Size.] In an Ad of Parliament for ifebuilding the city of London, the following Scomtlings, (which were well confulted by able Workmen, before they were reduced to an Act,) we fet down, as fitted for all Edifices, great or fmall, viz.

$\frac{\tilde{z}}{\tilde{z}}$	fro	1	muft be	Top.	and thick.
	F.	F. In.	Inches.	Inches.	Inches.
	12. 6	14. 6	8	5	6
	14. 6	18. 6	9	7	7
	18. 6	21. 6	10	8	8
	21. 6	6	12	9	81
		26. 6	13	9	9

Single Rafters in length $\left\{\begin{array}{l}6 \text { Foot } 6 \text { Inches, } \\ 8 \text { Foot, } \\ 9 \text { Foot } 6 \text { Inches, }\end{array}\right\}$ mult
have in their square $\left\{\begin{array}{l}4, \text { and } 3 \\ 4, \frac{5}{2}, \text { and } 3 \\ 5, \text { and } 4\end{array}\right\}$ Inches.
3. Diftance.] 'Tis a Rule in Architecture, that no Rafters be laid at greater diftance from each other than 12 Inches.

Rag.ftone.
V. Paving, N. 5 .
Rails,

In Architecture, are us'd in various Senfes; as for thofe pieces that lie Horizontally between the Pannels of Wainfcot, and over, and under them. Alfo for thofe pieces that lie over, and under Ballifters, in Balconies, Stair-cafes, orc. Alfo for thofe pieces of Timber that lie Horizontally from Poft to Poft, in Fencing with Pales, or without.
Rails and Ballifers.

1. Price of making.] Mr. Wing tells us, That Rails and Balliflers on Balconies, or about the Platform of great Houfes, are worth (only Workmanfhip) 4 s. per Yard, running Meafure.
2. Painted, of Meafuring.] V. Painting, N. 2.

Rifer,

A Board fec on edge under the fore-fide of a Step.
Raifing-pieces,

Are pieces that lie under the Beams, upon Erick or Timber by the nide of the House.

Random-pavement.
V. Paving, N. IY.
Range,

The fade of any Work that runs ftraight, without breaking into angles, is fid to Range, or Run-range: Thus the Rails and Pannels of one flraight fide of Wainfooting, is fid ta Run-ringe. Sec more in the Note in Glazing, N. 3.§. 2.
Red fear.
V. Iron, N. 2.
Regular,

As Orlon.

> Rendering.
V. Pargeting, N. 2.
Repository,

A Store-houfe, or Place to keep things in; more peculiarly by Architects 'xis us'd to fignifie foch Places as are built for the laying up of Rarities, either in Painting, or other Arts.
Return,

The Side that falls away from the fore-fide of any ftraight Work, is called the Return.

> Ribbing nails.
V. Nails, N. 14.
Rides,

Or Hinges for Doors, orc. are commonly fold for 4 d. fer Pound, V. Iron. N. 4 .
Ridge,

The meeting of the rafters on the kop of the House, is called the Ridge.
Ridge tiles:
\& Tiles, N4.

Rigate-fones.

v. Fire-ftone.

Rondel.

V. Capital, N. 2.

> Roofing.
I. Price.] Roofing in ordinary Euildings is worth 7 or 8 so per Square, but in great Buildings, 10 or in s. per Square. V. Pl. Framing, N. 5 .
2. Of Measuring.] Roofing is commonly meafurd by the Square, as Flooring, V. Flooring, N. 5.

Roof,
The Covering of a Houfe ; but the word is us'd in Carpen. try, for the Timber-work of the Covering.
Rofe-nails:
V. Nails, N. 15.

Rother.nails.
V. Nails, N. 16 .

Rougb Stone.
As Rag-ftone.
Rough- afting.
y. Plaiffering, N. 3 .

Rougb mortar.
In many places of Kent, where they Rough-caft their Houfes, they make their Mortar, (which they call Rough.mortar) of a fort of Sand, when when tis mixt with the Lime, makes it look as red as Blood; butto thefe they put Powder of Cinders which changes it to a kind of blewifh Colour, V. PI. Mortar: N. 1 .

> Round-beads.
y. Nails, N. 17.

Ruftick-peers.
V. Peers. N. 3 .

Rufick.quoins.
Y. Quoins.

Samel, or Sandel.bricks.

V. Bricks, N. 111. S.14.

Sand.

1, Kinds.] What it is every one knows. Its ufe (in Architecture) is in making of Mortar. There are 3 forts of Sand, viz. Pit-fand, River-fand, and Sea-fand: pit-fand is of all the beft, and of all Pit-fand, that which is whiteft, is (by long Experience found to be) the worft. Of all Riverfand, that which is found in the falls of Water is the beft, becaufe it is moft purged. The Sea-fand is the worft of all.

The Pit-fand, becaufe it is fat and tough, is therefore us'd in Walls and Vaults. The River-fand is very good for Rough-cafting of Walls.

All Sand is good in its kind, if being \{quecz'd and handl'd it crackles; and if being put upon a white Cloath, it neither ftains nor makes it foul.

That Sand is bad, which mingl'd with Water, makes it dirty and muddy, and which has been a long time in the Air; becaufe it will retain much Earth and rotten Humour : And therefore fome Mafons will wafh their Sand before they ufe it.
2. Price.] Sand, at London is commonly fold for 3 s. per Load. 36 Euflhels to the Load. In fome parts of Suffex 'tis fold for 1 s . 6 d . per Load, at 12 Bufhels to the Load. In other parts of Suffex'tis fold at $2 \mathrm{s.6d}$. per Load, at 18 Bufhels ta the Load.

Sapbeta's,

The Boards over the tops of Windows, oppofite to the Window-boards ac the bottom.
Safh lights.
V. Painting, N. 12.

Sinf frames.
Y. Painting, N. 13 -

Sawyers-work,

Sawing.

1. By the Hundied.] Sawyers do moft commonly work by the Hondred, that is by the Hundred Superficial Feet, (how meafur'd, Y. N. 12.) For which they have various Prizes,
not only in different Places, but alfo for different kinds of Timber; as may be feenin the following Numbers.
2. Of Oak.] The Sawing of Oak, is in fome Places $2 \mathrm{s}$.8 d . in others 3 s. in others 3 s .6 d . the Hundred.
3. Of Elm.] The Sawing of Elm, is in fome Places 3 s. the Hundred, commonly about the Price of Oak.
4. Of $A f B$, and Beech.] The Sawing of Afh, and Beech, is generally worth 6 d . in the Hundred more than Oak, or Elm. In fome Places 'tis 3 s . in others 3 s . 6 d . in others 4 s . per Hundred.
5. By the Load.] Sawyers do fometimes work by the Load, viz. So much for cutting out a Load, (or so Foot) of Timber ; the Price various, according as what the Timber is cut to. But the common Price is for Ship-planks of 2 Inches thick, 10 s. the Load. And for Building

Timber $\left\{\begin{array}{l}\text { large fize, } 6 \mathrm{s.} \text { or } 6 \mathrm{s.} 6 \mathrm{~d} . \\ \text { middle fize } 7 \mathrm{ss} \\ \text { fmall fize, } 7 \mathrm{~s} .6 \mathrm{~d} . \text { or } 8 \mathrm{s.} .\end{array}\right\}$ the Load.
An old experienced Sawyer tells me, that Sawing by the Load is commonly thus agreed for, viz. The;' have all their fizes fet dorvn which theyare to cut ; and they will cut none fmaller, neither will they Slab any, unlefs they are paid for it by Meafure, over and above what they are to have by the Load. They never cut any thing lefs than Rafters, which are about 4 and 5 Inches, and which is generally the fivaleft Timber in a Frame, except Quarters, and Window fuff, which they generally cut by the hundred. If the Carpenter will have any pieces clear'd by Slabbing, after they have cut them off to their fize, they will (alo) be paid by Meafure for it.

They generally prick off their fizes from the outer edges; and what is left in the middle they lay by till they can fit it to fome other fize, when it is wanted.

This Sawyer tells me, that the Carpenter has a great deal of hewing of out-fide pieces, when 'tis faw'd by the load. He alfofays, that fiwing by the Load is commonly good Work for the Sawyer. The truth is, (as he confeffes) it wafteth a great deal of Timber, it being hew'd away to Chucks.

The loweft rate that any (about us in $S u f f e x$) is cut for by the Load is 6 s . and then it mult be very large Scantlings, or elfe they will have 7 s . which indeed is the common price for fawing a good large fiz'd Timber-frame. But if the Timber-frame be fmall and flight, as they commonly build at Tunbridge.wolls,) they will have 7 s .6 d . or 8 s . per Load.
6. Of Ship planks.] An old experienced Sawyer tells me, that they fometimes cut Ship-planks by the Load for 10 s. per

Loud :

Load: But then the fize of their Planks are (if I much mifs remember not) 2 Inches in thickners.

Sometimes (he fays) they faw them by the hundred, and then they have 3 s . per hundred, and 2 d . for petting of every Log. But if there be nothing allowd for petting the Logs, then they reckon fo many Carves as there are Pieces, which is one Carf more than there really is.

He alfo fays, that they commonly cut Planks from I ${ }^{1}$ Inch, to 3 Inches thick; but they are never paid for breaking Work, till it comes to a 2 Foot Carf.
7. Of Compars-work] For fawing of Compafs-work; (as Mill-wheels, Furnace-wheels, Forge-wheels, Rafters for Compals.roofs, \&c.) Some Sawyers tell me they have $2 d$. per Foot.
8. Of Bevil-work.] Some Sawyerstell me, that in fawing of Bevil-work, (as Hips, and Sleepers, boc. Pofts, \&cc. in Bevil-frames; as alfo Pofts or Punchins in Polygonial Turrets, foc. Alfo Cant-rails, (fc.) they work by the hundred, but they always reckon a Carf and half; that is, they reckon? as many more Feet of Sawing as there is.
g. Of Furnace-bellows.] Thefe they cut by the Foot, Lineal Meafure, at is. per foot.
10. Forge-bellows.] Thefe they alfo cut by the Foot, Lineal Meafure, at 4 d . or 6 d . jer Foot.
11. Of Ground-guts.] Thefe they alfo cut by the Foot, Lineal Meafure; if fmall, for 1 d. per Foor, but if 15 Inches deep, then $1, d$, if 18 Inches, $2 d$. per Foot.
12. Of Mealuring.] Sawyers, (when they work by Meafure,) gencrally Meafure their Work by the Foot Superficial. There is no difficulty in taking the Dimenfions; for they reckon the depth of the Carf for the breadth; and the length for the length. The breacth, (or depth,) and length of a Carf being taken, and Multiply'd tozether, (as is tangit in Crofs-Multiplication, N. 2.) gives the Area, or Superficial Content of that Carf.

Hiving thus found the number of Feet in one Carf; Mustiply it by the Number of Carves of the fame depth and length; and fo you have the Ares of themall.

Note. (1.) That having thus caft up their whole Work in Feet; they are paid for it by the iuntred. [that is 100 Feet] at various hates, of which fee above, N. 1.2.3. and 4.
(2.) That if the Carf be but 6 Inches, (or be lefs than 6 Inches) in depth, they have a Cuftom to be paid for Carf and half; as tiey phrafe it,) that is for hulf fo much more as it comes to by Meafure. The reafon they urge for this Cu fomis, their Trouble in often linding, and removing their Timbers.
3. That for Breaking-work [that is cutting a Log throush the middle,] and Slabbing, [that is cutting off the out-fide pieces,] if the Carf be more than 12, or 13 Inches deep, they are paid by the Foot, Lineal Meafure, at various Prizes, according to the different depth of the Cart, wiz. at

(4.) That in fome places 'tis the Cuftom to allow the Sawyer but one Breaking-carf in a Log, tho' there be never so many deep Carves in the Log: But fome Sawyers claim it as a Cuftom, to have half Breaking-work, and the other half Hundred-work; as if they have 4 deep Carves, then they will have 2 Breaking-works, and the other 2 Hundredwork.
Scantling,

The fize that any Timber is defign'd to be cut to.
Scenograpby,
(From the Greek Skenè, a Tent, or Tabernacle, and Grapho, to write or defcribe,) is a Model, or Defcription of the Front and Sides of a Houfe; or the Art of rightly contriving Draughts in ArchiteCture.

Sclueam.
V. Arches, N. 6.
Scima,

As Cima.

> Scima-tum,-tium,

As Cimatum.

> Scima rella.
V. Capital, N. 3 .

Scima reverfa,
An O.G. with the hollow downwards, V. OG.

Scotia,

A Member of Architecture. -Tis a hollow like a Semicircle. It is particularly plac'd in the Bafes of Columns between the Thorus and the Aftragal, and fometimes 'tis put under the Drip, in the Cornice of the Dorick Order.

Scribe,

A Term us'd by Joyners, when they are to fit one fide of a piece of Stuff againft the fide of fome other piece of Stuff, and the fide of the piece they are tofit it to is not regular : To make thefe 2 pieces of Stuff joyn clofe together all the way, they Scribe it, (as they phrafe it) thus; they lay the piece of Stuff (they intend to frribe) clofe againft the othe: piece of Stuff they intead to fcribe to, and open their Compaffes to the wideft diftance, there 2 pieces of Stuff bear off each other: Then (the Compafies moving fitiff in their Joynt,) they bear the Point of one of their Shanks againft the fide they intend to fcribe to, and with the Point of the other Shank they draw a Line upon the Stuff to be feribed: thus the Points of the Compafles remaining unmoved, and your Hand carried cvenly along by the fide of the piece to be foribed to, that Line feribed upon the piece intended to be foribed, foall he parallel to the irregular fide intended to bc frribed to: And if you Work away your Stuff exadly to that Line, when thofe pieces are put together, they fhall feens a Joynt.
Sculpture,

The Art of Carving in Wood, or Stone: V. Plaflickart.
V. Niils, N. 18 .
Scupper-nails.

Scafoning of I Imber.

V. Timber, N. IV.

Scaers,
In Architefure, are Conduits or Conveyances for the Suil. lage and Filth of a Houfe; which how bafe foever they are in ufe, set for the Health of the Inhabitants, they are as neceffary and confiderable, as (perhaps) any thing about 2 Houfe.

Concerning thefe, I find in our Authors, this Counfel, That Ast Chould imitate Nature in thofe ignoble Conveyances, and feparate them from fight, (where there wants a running Water) into the moft remote, and loweft, and thickeft part
of the Foundation, with ferret Vents puffing up through the Walls (like a Tunnel) to the wide Air; which all Italian Ar. tizans- commend for the difcharge of noifome Vapours, tho ${ }^{\text {b }}$ elfewhere, (to my knowledge) little practise.
Sells.

1. What.] Sells in Architecture are of 2 kinds, viz. Ground:' fells, [which are the loweft pieces of Timber in a Timberbuilding, on which the whole Superffructure is erected;] and Window. fells, (fometimes called Window foils, which are the bottom pieces in a Window-frame.
1 2. Price of putting in.] The putting in of Ground-fells in a House, is commonly rated at 3 d . or 4 d . jer Foot, only Workmanfhip.
Setting.
V. Pitching.

Setting of Fronts.

V. Fronts, N. 2.

Shaky, or Shaken,

Such Stuff as is cracked, either with the ficat of the Sun, ot the Drought of the Wind, is called caky, or Taken Stuff.
Sharp nails.
V. Nails, N. 19.

Sbeatbing.nails.
V. Nails, N. 20.
Súbeet.lead.
V. Lead, N. 3. 4. 5. 6. 7.

> Sbides.

The fame as Shingles.

1. What.] There are final pieces of Wood, or quaticr't Oaken-boards, law'd to a certain Scantling; but they are more ufaally cleft to about an Inch thick at one end, and made like Wedges about 4 or 5 Inches broad, and 8 or ρ, (and in lome places 12) Inches long. They are used to cover Houses with, (but more commonly Churches and Steeple,) inftead of Tiles, or Slates.

This kind of Covering is very chargable, and fellow used, but in covering the Roofs of Churches, and Pyramidal Steepies. Neverthelefs, where Tiles are farce, and you would have your House but lightly cover'd ; Shingles are to be presfer'd before Thatch; and if they are made of good Oak and cleft out, (not faw'd,) and then well feaforid in the Water
and Sun, they become a fure light, and durable Covering.
2. Price of.] Some Workmen tell me, that Shingles are fometimes lold for 20 s . per Choufand but then they are very bad Ware; for if they are good they are worth 30 s . per Thoufand; nay, they tell me, they have known 40 s per Thoufand given for Shingles to lay upon Stecples; for thofe that lie fo high, and hang fo perpendicular, ought to be of the befl fort.
3. Prise of Cleaving and Mdking.] Several Workmen tell me, that the common price of cleaving and making of Shingles, is $10 \mathrm{~s} . \mathrm{per}$ Thoufand.
4. How many made of a Tun of Timbcr.] Some Workmen tell me, that a Tun of Timber will make 3000 of Shingles.
5. Of lixing on.] For covering with thefe, the Building muft be firft well coven'd all over with Boards; which being done, the Shingles are faften'd to thofe Eoards with $4 d .5 d$. or $6 d$. Nails, in every Courfe, at a certain Gage, viz. At $3 \frac{1}{2}$ Inches, or 4 Inches, fromunder one another ; for they commonly make 3 Waters, (as they rhate it,) that is, they commonly hang 3 Shingles in heighth, in the length of one; fo that if the Shingles are 12 Inches lovig, they arelaid at 4 Inches $G a=$.

In breaking of Joynt, they do not obferve to make one Joynt over the middle of the Shingle below; but they fometimes break Joynt an Inch, an Inch and a half, or 2 Inches, according to the breadth of the Shingles; for they, (efpecially if they are cleft) are not all exattly of a fize.
6. Pice of laying on.] For laving them on upon Spirefteeples, where the Work is high and troublefome, they have (commonly) 20 s . per Thoufand; but on low Work, (as upon Houfes and the like,) they will cleave, and make, and lay them on for that Money: Or if they only lay them on upon Houfes, they will do it for 10 s . per Thouland. Some Workmen tell me. that for dreffing and laying on of Shingles upon Churches and Steeples, they have (commonly) 18 s. per Thoufand.
7. Price of drefling old ones.] For drefling of old Shingles, [that is new hewing them, and cutting of the ragged lover ends,] Workmen tell me they have, (I think) 6 s. fer Thourand.
8. How many will cover a Square.] If the Shingles are 4 Inches broad, and laid at 4 Inches Gage, 8i Shingles will cover a Square Yard; and confequently 900 will cover a Square, (or 100 Superficial Feet) of Hesling: Eut, becaufe Shingles feldom hold to be all 4 Inches broad; therefore they commonly allow $10<0$ to the Square, and of Nails as many.

Shingling,

The laying on of Shingles, V. Shingles:
ソ. Bricks, N. 5.

Sbinlog.

Shop. windows,
Thee may be afforded at the fame rate as plain or batfond -doors, befides the Iron-work, as Bolts, Staples, Hinges, Locks, Keys, Latches, Chains, \&c. V. Doors, N. 4 .

Sbrealings,

The fame as Earrings.

Silery,

As Cilery.

> Skew back.
7. Arches, N. 7.

> Skirting boards,

The narrow Bards fitted round the under-fide of Waincot against the Floor.

> Slabs,

The cut-fide Gappy Flanks, or Boards fawn off from the fides of Timber.

> Slating.
I. What.] Slating is the Covering of Houfes with Slate-

This kind of Covering is very neat, efpecially the BlueRate; as for the other kind of Slate, (known in lome places by the name of Horkam-Rone,) V. Horflam-ftone.

This Elue-flate, cut into long Squares, or Efcallops, hews very handfome, and is commonly used in covering of Summer, and Eanquetting-houfes in Gardens; it being a very light and lifting Covering:.

But us this kind of Covering is very handfome, fo alfo'ris very chargable; for Roofs cover'd with Slate, muff be (firft) boarded over, the Slates hanged on Tacks, and laid with finer Mortar than Tiles.

But if thee Slates be rudely cut, and carclefly laid, (in refest of Form,) it is then accounted a cheaper Covering than with plain Tiles; efpecially in thole Countreys where the Earth affords plenty of them.
2. Price of.] This kind of covering is valued by rome from 3 s. to $\sigma \mathrm{s}$. the Yard square, or by the Square of 10 $\mathrm{R}_{2} \quad \mathrm{Foot}_{3}$

Foot, (that is 100 Feet,) from 30 s. to 3 Pounds, or more in ome places.
3. Price of Pointing of Slates.] The Pointing of Slates, [that is he wing them, and making them fit for the Work,] is worth, (fiys Mr. Wimg,) about 12, or 13 d. per Square.
4. Price of Slates.] Slates at the Pits are worth, (fays Mr. Wing,) 12 or 14 s. fer Thoufand, which will nearly do 3^{6} fquare Yards.
5. Of meafuring.] Slating is in fome places meafur'd by the Rod of 18 Foot Square, which contains 324 Superficial Feet, or 36 fquare Yards.

In meafuring this fort of Work, where there are Gutcrs or Valleys, there is commonly an Allowance, which is to ake the length of the Roof all along upon the Ridge; which makes the Gutters double Meafure, viz. as much more as really it is ; which in fome places is allow'd, and in others not; which depends upon the Cuftom of the Place.

Slates.

v. Slating, N.3.4. Sleeper,

In Architeiture is the Oblique Rafter that lies in a Gutter; V. Hip, N. I.

The fame as Plinth.
Slipper,

> Sluces,
> Vents, or Drains for Water, V. Alder, N. S.
Smitbs.

1. W'orE] Smith's Work in relation to Architecture, are of diverskinds, as maling of Cafements; (for which ree Cafements, N. 2.] Pallifado-work in Gates, or other ways, (V. Palifado, N. 4.) For making Dogs, Bars, large Hooks, Thimbles, Hinges, staples, Grates, tics they have in fome places $3 \frac{1}{2} d$. in others $4 d$, ter Pound. But tor fmall and neat Hooks, Hinges, Staples, for they have from 4 d . to 8 d . fer Pound. For Iron Ellconies, 5 d. the Pound.
2. Bill to make. $]$ A Smiths Eill Mould be made afo fer this manner.

Mr. Zachariah Zinthos of London, bis Bill of Materials bad of, and Work done by Sam. Smith. 1702.

June 24. For 8 large Carements, weighing 80 tt . $\}$ 2- $-0-0$
at 6 d . per Pound. Fuly 2. For ro fmall Cafements, weighing 60 lt.$\}_{1}-10-0$
at σd. per Pound. 12. For 10 pair of Hooks and Rides for Doors,
weighing 60 tt . at 4 d . per Pound. Sept. 10. For 2 great Bars tor the Chimney, $30-13-4$
weighing 40 th. at $4 d$. per Pound.

30. For 4 Dogs, weighing 25 tt . at 4 d . per $30-\cdots-5-0$
Pound. Nov. 3. For 3 great Bolts for Doors, weighing
$4 \frac{1}{2}$ 1t. at $4 d$. per Pcund.

Sum

Soils.

Y. Sells。

Solder, or Sodder.

1. W'hat.] There are feveral kinds of Solder; but that which more immediately relates to our prefent bufinefs is Solder for Lead, which is made of Lead, and $\frac{1}{2}$ as much Blocktin. This for Plumbers ufe; for Glaziers ufe it may be fomewhat finer.
2. Price of. 1 This is fold from 8 d . to 10 d . per Pound, according to its finenefs.
3. To know if fine enough for the Glazier's ufe.] Some Glaziers tell me, that to know whether their Solder be fine enough for their ufe; they take a piece of it, and bend it too and fro near their Ear ; for if it be of a fit temper it will crackle like Nits.

> Sommering.
V. Arches, N. 7 ,

Astift.
Spira,

Splaying

Of Windows and Doors, V. Bricklayers, N. 2.

> Springs

For Cafements.] Some Smiths tell me, they have σd. per piece for Springs for Cafements, of the common or ordinary Fifhion. But I have feen fome Springs for Cafements that were fomething extracrdinary in their Workmanfhip; they being a kind of couble Springs, which feem'd as if a right and Jeft-hand Spring had been joyn'd together; for about 3 or 4 Inches from the Shoulder, where thev were driven into the Timber; but at the end where the Scrolls wereat leaft 2 Inchesafunder, thev had a Scroll turn'd both upwards and downwards in each Spring; fo that each Spring feem'd like 2 Springs turn'd back to back. The Smith that made there Springs, toid me, that he had x s. per piece for ' cm .

Square,

A certain Meafure, (made ufe of in Meafuring feveral Artifio ers Works,) confriting of 100 Superficial Feet.

> Square-nails.
V. Nils, N. 2 I

Stairs.

5. What.] Stzirs are the Steps whereby we afcend and defcend from one Story of a Houfe to another.
6. Dimenfins of.] Severd Writers of Architecture, have laid down feveral, and different Rules, for the leighth, breadth, and Iength of Stairs, or Stcps, and that according to the reveral Capacities of the Stair-cafes. Eut (ingeneral) they forbid more than 6 , and lefs then 4 Inches for the heighth of each Stair: and more than $\mathbf{1 8}$, and lefs than 12 Inches for the breadth, and more than 16 , and Iefs than 6 Foot for the length of each Stair.

But here we muft underftand, that they mean there Meafures fiould be obferv'd only in Large and fumptuous Buildjngs: For in common and ordinary Houles, they may be fomething tricher, and narrower, and much morter; yet in thele they ought not to exceed 7, or (at moft) 8 Inches in heighth; for if they do, they will be difficult to afcend ; for our Legsdo latour much more in Elevation, than in bare Horizontal Progreffion. Neither ought they to be lefs than 9 or so Inches in breadth; nor ought their length to be lefs than 3 Feet.

Eoreduce this Dotrinc (of the Dimenfions of Stairs) to jome
fome Natural, or at leaft Mathematical Ground, Vitruvius, (as we fec, Lib. 9. Cap. 2.) Borrows, thofe Proportions that make the Sides of a Rectangular Triangle, which the Ancient School did exprefs (in its lowef Terms,) by the Numbers 3, 4, and 5. That is 3 for the Perpendicular heighth of the Stair, 4 for the Horizontal breadth of it, and 5 for the whole Inclination, or Slope in the Afcent. But this Rule is fo far from being follow'd in our modern Buildings, that the contrary is rather practis'd; for by this Rule, the lower the Stairs are, the narrower they ought to be; and if a Stair be but 6 Inches high, he muft (according to this Rule) be but 8 Inches broad; whereas in this cafe we feldom make 'emlefs than a Foot broad. And if we thould make Stairs fo Iow as 4 Inches, (for fuch the Ancient Architects make mention of,) they muft (by this Rule) be but 5 ; Inches broad; which certainly is too narrow for any Stair.
3. Of making.] Tho' we have haid down Rules (in the foregoing Number) for the heighth and breadth of Stairs ; yet Workmen are not to be fo flriftly ty'd to thofe Rules, as not to vary in the leaft from em : For they muft ftill obferve to make all the Stairs of the fame Stair-cafe of an equal heighth and breadth: To do which, they muft firft confider the height of the Room, as alfo the Width, or Compafs they have to carry up the Stairs in.
Then to find the height of each particular Stair, they ought firft to propore the heighth of eachStair, and by that propored heighth divide the whole heighth of the Room; which done, the Quotient will fhew the number of Stairs: But if the Divifion fall not out exact, but that there be a Remainder; then (in this cafe) take the Quotient, (not regarding the Remainder) for the number of Stairs, and by that number divide the whole heighth of the Room; fo the Quotient fhall give you the exact heighth of each Stair.

Example. Suppofe the whole heighth of the Room be 9 Foot 3 Inches, and fuppore you defignd to make each Stair 6 Inches high, turn the whole heighth of the Room into Inches, 'twill be ini Inches, which divide by 6, the Quotient will be 18, and 3 remaining; therefore take 18 for the number of Stairs, and by it divide 111, the Quotient will be $6 \frac{3}{6}$ Inches, or $6 \frac{1}{6}$ Inches, which muft be the exact heighth of each Stair.

Then, to find the breadth of each Stair, divide the width, or compals (that you have to carry them up in,) by the number of Stdirs, and the Quotient will hew you the exact breadth of each Stair.

There is another thing to be obfery'd in making of Stairs, yix. That they be laid (where they joyn) con un tantino dt
ientra, (as the Italians fpeak:) we may Tranflate it fomeribai (tho' but (ittle) lloaping, (viz. a little hisheft behind,) that to the loot may in a fort boih afcend and defcend together ; which tho' obferv'd by few, is a fecret and delicate Deception of the Pains in Mounting.

Stair-cale.

 ciftere of a pair of Stuirs; whether it be with Walls, or with Walls, and Rails, and Baliffers, erc. And fometimes 'tis uken fer the whole Frame ot a pair of Stairs.
=. SJ making.] To make a compleat Stair-cafe, is a curious niece of Architedure: The vulgar Cautions about it are rete.
(i.) That it have a liberal Light, againft all Cafualties of Slinsand Falls.
(2) That the prace over-head be large and firy, Machithe Ita!ians ufe to call Un hel Sfogin, as it were, good U-ghtion, becaule a Man fpends much breath in mounB:

3 . Tilat themalif-paces, (if there be any) be woll difiribu$r=$ d $2 t$ comperent diftances, for repofing on the way.
(4.) That to avoid Encounters, and belides to uratifie the Yehoder, the whole Stair-cafe have no nicgard Latitude. But - ins ouphe to be regulated in proportion to the Quality of the Fuiloing: For a great Stair-cafe in a little Houfe would be as jomproper, as a little Sedir cale in a great Houfe; both of thern coally Ridiculous.
(5.) That there te great care aken in the well placing time Stain caie: for there is not a little difficulty to find a place Donvenient, fo athe sears mav be diftributed without Premolice, or hindrance in the reff of the Building.
[11. Kinds.] There are many kinds of Stair cales; for in rome the Stairs are made Arai, ots, in others, Winding, in others, mixt of hoth. Of ft aight-lasirs, fome tly direetly forivard, whers are Square, others Trangular ; others are caild French Flights. $\mathrm{O}^{\text {e }}$ Win./ing.llairs, (which in generai are callid Syiral or Cockle-Paire, fome are Equare, iome Cucular, or rourd, and fome Ef iptical, or Oand; and rhele agull are various; for fome wind absut a Solid, others about an pe? Newe!. Stuirsmixt of firaight and winding, are dho of various kinds; frine are calld Dog-legd, others there pre that horh wind alnut a Solid-Newel, and tiy ahout a square Onen-Newel. If frall pirticularly, (tho" briefly) defcribe 4! thefe teveral kinds, in the followink Numbers.
iv. Staight Starrs.] Theft are fuch as always fiy, and ne. ver ivind, and theretore are by fome calid flyers. Of thele west are feyerat kinds, as $=\ldots$

1. Direll-flyers, or plain-flyers. Thefe fly diretly from one Floor to another, without turning to the right or left, and are feldom us'd, unlefs it be for Garret, or Cellar-ftairs in ordinary Houfes.
2. Square-flyers.] Thefe fly round the fides of a SquareNewel, either folid, or open, (fo that there are 2 kinds of ' em ,) and at every corner of the Newel, there is a Square Half-pace, that takes up $\frac{1}{4}$ of a Circle. So they fly from one Half-pace to another ; and the length of the Stairs is Perpendicular to the fide of the Newel.
3. Triangm!ar-flyers.] Thefe fly round by the fides of a Triangular Newel, either folid or open, (fo that there are alTo 2 kinds of thefe, and at each corner of the Newel there is a trapezial Half-pace, that takes up 120 Degrees, (or ${ }_{3}^{2}$) of a Circle. So they tly from one Half-pace to another; and the length of the Stars is Perpendicular to the fide of the Newel.

Palladi, tells us, that Triangular-ftairs are to be feen in Some ancient Edifices; and of this fort, (fays he,) are thofe of the Cupolo of St. Maria Rotund n, which are open in the middle, and receive Light from above. Thofe alfo at Sancto A poffolo in the fame City, are of the fame kind.
4. French-flyers.] Thefe kind of Stairs, firft fly directiy forward, till they come within the length of a Stair of the Wall, and then they have a fquare Half-pace; from which you immediately, (without any Stairs between) afcend to another Half-pace; and from this fecond Half-paee the Stairs Hy direftly back again, parallel to the firft flight.
V. Winding flair..] Thefe are fuch as always wind, and ne= ver fly: There are many kinds of thefe Stairs; for fome wind round a Circle, others round an Ellipfis, or Oval, others round a fquare, and others round an Equilateral Triangle: and of each of thefe, fome wind round a folid Newel, and cthers round an open, or hollow Newel. Again, fome are fet upon Columns, and fome Stairs are double, and fome are Quadruple. I thall defcribe each of thefe in the following Nunibers.
I. Circular-winding-flairs.] Thefe are of 4 kinds. Firft, Such as wind abou: a rolid Newe', and the fore-edge of each stair is a right-fine pointing to the Centre of the Newel. Thefe are common in Church-fleeples, and great old StoneHoufes. Serondly, Such as wind round an open Newel, and the for fide of each Stair is a right Line pointing to the Centre of the Newel. Of this kind are thofe in the Monument of romdon. Thirdly, Such as wind round a Solid Ne wel, but the fore-fide of each Stair is an Arch (of a large) Circle, that points quite by the Centre, (and near to the Circumference) of the Newel. In thefe, the Stairs are much longer than in the common Winding ftairs. Of thefe there
may be 2 kinds: For their Ichnography being drawn, the Stairs may be contriv'd to be either Concave, or Convex on the fore-fide. Fourthly, there are other Stairs, in all reSpedts like thofe laft defrib'd, anly they have an open Newel. Thefe kind of Stairs dre faid to be invented by Mark $A n$ thony B.arbaro, a Gentleman of Venice.

Any of thefe kinds of Winding.ftairs, take up lefs room than in ther ki id of Sruirs whitfoever.

In Stairs that wind round a Solid \cdot Newel, Architects make the Diameter of the Newel $\left\{\begin{array}{l}\frac{y}{,}, \text { or } \\ \left.\begin{array}{l}, \\ , \text { or } \\ 3, \\ 3,\end{array}\right\}\end{array}\right\}$ of the Diameter of the whole Stair-cafe; according as the Stair-cafe is in bignefs; for if the stair-cafe be very fmall, they make the Newel but $\frac{1}{5}$ of its whole Diameter; and if very large, then $\frac{3}{7}$; and fo proportionably of the reft.

In ftairs that wind round an open Newel, Palladio tells us, the Newel muft be; the Dismeter of the whole Stair-cafe. But I fee no reafon, 'why thefe open Newels ought not to be proportion'd to the fize of the Stair-cafe, as well as the folid ones.

Then, as to the number of Stairs in one Revolution, Pal. badio tells us,

That if the Stair-cafe be $\left\{\begin{array}{l}6, \text { or } 7, \\ 8, \\ 9, \text { or } 10, \\ 18,\end{array}\right\}$ Foot Diameter, then there may be $\left\{\begin{array}{l}12 \\ 16 \\ 20 \\ 24\end{array}\right\} \begin{aligned} & \text { Stairs in one Revolution abcut the } \\ & \text { Newel. }\end{aligned}$
2. Elliptical-minding-ftairs.] Cf thefe there are 2 kinds; one winding round a Solid, and one round an open Newel, They are much of the nature of Circular Stairs, only in thofe, the Newel is a Circle, but in thefe an Ellipfis, or Oval. Thefe kind of Stairs are very hand fome and pleafant, (fays Palladi), becaufe all the Wira dows and Doors are commodis ly placed in the middle and head of the Oval. I have made one of thefe, (fays he,) with an open Newel at the Monaftery of Charityat Venice.
3. Squave-winding-fairs] Thefe wind round a SquareNewel, either folid, or open; (and therefore are of 2 kinds,)
and the fore-fide of each Stair is a right Line pointing to the Centre of the Newel.
4. Triangular-minding-?airs.] Thefe wind round a Triangu-hr-Newel, and the fore-fide of each Stair is a right Lings, pointing to the Centre of the Newel. And becaufe the Newel may be either folid or open; therefore there are 2 kinds of 'en.
5. Columnated xindow-ftairs.] Palladin mentions a pair of Stairs belonging to the Portic is of Pompey at Rome, that were fet upon Columns, that the light (which they receiv'd from above,) might diftribute it felf to a!l parts alike. Such anotheer pair were made by Bramante, (an excellent Architect in his time) at Belvedere, the Pope's Palace.
6. Double-xinding flairs.] Scammozzi mentions a Staircafe of this Form, made by Piedrodel Bergo, and Fehan Coffiry at Sciamburg in France in the King's Palace. They are fo contriv'd, that 2 Perfons, one afcending, and the other defcending, thall not come at one another. Mr. Grew (in his Mufeum Regalis Societatis,) gives us the Defcription of a Model of this kind of Stair-cale, (which Model is kept by the Royal Society, in Grefham-college,) thus; The foot of one of thefe Stair-cafes (fays he, is oppcfite to that of the other ; and both make a Parallel Afcent, and within the fame Cylinder. The Newel in the middle is hollow, and built with long Apertures to convey Light from Candles placed at the bottom, and on the fides of the Newel into both the Cafes.
7. Quadruple-winding-ifairs.] Palladio mentions a Staircafe of this Form, which King Francis the firft caus'd to be mide in the Caftle of Chambor near Bloyre: It confifts of 4 Stair-cafes (carri'd up together, which have 4 Entrances, viz. one to each ; and go up one over another in fuch mariner, that being made in the middle of the Building, the $\&$ muv ferve for 4 Apartments; fo that the Inhabitants of one need not go up and cown the Stairs of the other; and becaufe 'tis open in the middle, they all ree each other go us and down without any hindrance to one another.
VI. Mixt Stairs.] Thefe are fuch as do both fly and wind ; and therefore are by fome call'd by the general Name of Flyers and Winders. There are feveral kinds of 'em As

1. Dog-legged.fairs.] Thefe firft fly directly forward then wind a Semicirce, and then fly directly back again. parallel to the firft Hight.
2. Square F'yers, and Winders.] Thefe have a Square Newel, either folid, or open; (and therefore are of 2 kinds, they Hy bv the fides of the Newel, and wind (a quarter of a Circle) it each corner.
3. Sol'd, and onen Neavel'd-fyers, and Winders.] Thefe are of a kinds. for fome do firft wind (a quarter of a Circle,
about a Solid Newel, then fly by the fide of a fquare open Newel, then wind by a folid Newel again, then flyagain, as before, and fo alternately. Others fly firft, and then wind, and then fly again, and foalternately.

Let this fuffice at prefent for the various kinds of Staircales. I might here thew a Method of making all thefe kind of Stairs: But the Bookfeller defiring this firft Edition fhould not be too big, and I having been already very large upon fome of the foregoing Letters; I muft be forc'd (at prefent) to omit it: But if this firft Edition find Acceptance in the world, and I any Encouragement thereby; This, and feveral other Curiofities, (not publickly known to the World, may find a place in another Edition.

However, in the mean time. the bare Defcription of thefe feveral kinds of Stairs, together with what has been faid above, N. V. S. 1. and in Stairs, N. 3. may be a pretty good Guide to the ingenious that have a mind to make any of there kind of Stairs.
VII. Price of Stair-cafes.]. The Price of Stair-cafes is various, according to their various kinds, Sizes, and Curiofity of Workmanfhip. They are fometimes rated at fo much per piece; and fometimes at fo much per Stair.

An ordinary pair of Stairs with Flyers and Winders, of about 6 Foot, and 4 Foot, made of Elm Boards, are accounted to be worth 2 s .6 d . or 2 s .8 d . Fer Stair, the Workman finding all Materials, as Boards, Nails, \& σ. But if the Materials are found by the Owner, then 9 d . or 10 d . Jer Stair, is a good Allowance for the Workmanhlip.

But for Stair-cafes that have an open Newel, with a Landing place at every 6th. or 8 th. Stair, being about 3 Foot all the way: Thefe Stairs, with Rails, Ballafters, String-boards, Pofts, Balls, Pendants, and fuch other Ornaments may very well be worth 4 s. 6d. 5 s. or 6 s. per Stair.

Siancireons,
The frme as Punchins.

> Staples,

What they are everv one knows. For their Price, V. 1 ron, N. 4. and Smith's Work, N. I.

> Steening of Wells.
v, Briciss, N. ini. g.t.

> Stcps,

The fame as Stairs.

Stiles,

In Joynery, the upright pieces that go from the bottom to the top in any Wainfor, or the like, are call'd Stiles.

Stillatory,

The Room that a Still, or Limbeck is fet up in, for Difilling Strong-waters, \&c.

> Stilobatum,

The Eody of the Pedeftal of any Column. Stock-bricks.

V. Bricks, N. III. S. 15.

Stones.

1. Their Kinds.] There are feveral kinds of Stone; as Marble, Fire-flone, Purbeck.ftene, Rag-fione, Alabafter, Freefoone, and Common-flone; of all which, except the 2 laft, I have already treated in their proper places of the Alphabet. As for Free-flone; there is a fort of Stone commonly digged in the peninfula of Portland in Dorfet-fhire, (and commonly known by the Name of Portland-fone,) that is much us'd in Building ; it being much fofter and whiter than Purbeck-ftone, and is commonly rais'd out of the Quarries in bigger Blocks than Purbeck:fone. This Portland-jtone is by fome Authors call'd Free-ftone, tho' there is a fort of Stone found in $O x$ fordflire, that is calld Free.fone: And fome call Rigate, or Fire-flone, Free-fone.

Common Stone needs no Defrription; it being that which is armmonly us'd, and found almoft every where ; and is that of which I fhall principaily fpeak in the following Numbers of this Word.
2. Of their Nature.] If I had leifure (fays the Honourable Efq; Boyle,) I could eafily hiew you, that ways (hitherto unus'd,) may be found out, (as Ihave partly try'd) to examine the Nature and Goodnefs of Marble, Alabafler, and other Stones. A competent Knowledge of the Sap that is to be found in Stones imploy'd for Building, is of fo much Importance, that the experienced Mafter Workmen have confent to me, that the fame fort of Stone, and taken out of the fame Quarry, if digg'd at one Seafon, will moulder away in a very few Winters; whereas digg'd at another Seafon, it will brave the Weather for very many Years, not to fay Ages.
Again, fays the fame irgenious Author in another place, Experienc'd Mafons tell us, that as there are fome forts of Stone that will decay in few Years; fo there are others that will not attain their full hardneff in $\mathbf{3 0}$, or 48 , or a much longer time.

Again, (fays the fame Author,) There are in fome places Quarries of folid and ufeful stone, which is employ'd abous fome ftately Buildings I have feen, and which yet is of fuch a Nature, (wherein divers other forts of Stone are faid to refemble it,) that tho being digg'd at a certain Seafon of the Year, it proves good and durable, as in thofe Structures new. ly mention'd ; yet imploy'd at a wrong time, it makes but ruinous Buildings; as even the chief of thofe Perfons, whofe Profeffion makes him more converfant with it, has himfelf acknowledged (to me) to have found by lad Experience.
3. Of drawing.] An ancient and experienced Mafon of my Acquaintance, tells me, that common Stones have a cleaving Griin, (as they lie in the Quarry,) and a breaking one; the firft, (he fays) runs parallel w:th the Horizon; the othes is perpendicular to it. The Method which he ufes in drawoing of Stones, [that is, gettin them out of the Quarry;] is thus. Having uncoped it, [that is, taken off the Earth from the Stone,] they oblerve (by the Grain) where the Stone will cleave, and there they drive in a good many Wedges, till they have clett him off from the reft of the Rock; and having thus loofen'd him, they next proceed to break bim, which they thus perform ; theyapplying their Rule to him at both ends, mark out the breadth they would have him, (e. g. ruppofe 10 or 12 Inches, or more, according to the ufe they defign the Stones for;) and by thefe Marks they Atrike a Line with the corner of their Stone-axe; and by this Line they cut a little Channel with their Stone-axe, and in this Channel they fet 6 or 8 Iron-wedges, (fuppofing the Stone to be bat 3 or 4 Foot long ;) which they drive very carefally with foft and gentle Strokes, keeping them all forward together, and not one before another, leaft it break the Stone a-crofs, and not by the length of the Channel. Yet, he fays, that this Method of driving the Wedges, is not always to be obferv'd, for fometimes a Stone is not through the whole length of an equal Solidity, but is in fome places fofter, and in others harder; this chey find, (and obferve) in cutting their Channel; and thofe Wedges that flick in thofe fofter places, they venter to drive a little fafter than the oibers. And this, he fays, he has found by long Experience, to be the beft way of breaking Stones.
Having thus broken them in length, which by thismethod they can do to any fize within lefs than an Inch; (which is near enough for rough Stones; they next apply a Square to the ftraight fide, and ftriking a Line, they proceed to break them in breadth, in the fame manner, as before in length; Ifo now they fize them for the length, as before for the breadth.

By this Method of drawing of Stones, he fays one Load of Stones, which will do as much Walling as a Load and half of fuch Stones, as in drawing are broken at random; for in
this laft cafe, one Stone has commotid) a very acute Angle, another a very obtuie one; whence it comes to pals, that they require abundantly more fcapting, and waft much more of the Stones, than when drawn by the Method above mention'd.

The fame ingenious old Man tells us, that fome London Stone cutters have told him, that hard Stones have not a Cleaving grain, as the foft ones (in our (ountrey) have: And therefore when thiey are minded to break up a Stone in fuchQuarries, they have great heavy Stone-axes, with which they work down a deep Channel in the Stone, into which Channel (at the top,) then lay 2 Iron bars, (fuch is Sartios have from the Forge to work out,) and between thefe Bars they drive their Ironwedges to break off the Stone; for their Wedges will not go where there is not a Channel made for them, as they will in foft Stones.

Some in drawing of Stone make ufe of Gun-powder; concerning which, take the foliowing Account (in his own words) from the Honourable Efq; Bnjle. It hus long teen, and ftill is in many places! fays lie.) a Matter of much Trouble and Expence, as well of Time as Muney, to cuc cut of Rocks of Alabafier and Marble, great pieces to be afterwards fquar'd, or cut into other fhapes; but what by fielp of divers Tools and Infruments, cannot in fome Quarries be effected without much Time and Toil, is in other places ealily and readily perform'd, by making with a fit inftrument a fmall Perforation into the Rock, which may reach a pretty way into the Body of it, and have fach a thicknefs of the Rock over it, as is thought convenient to be blown up at one time; for at the turther end of this Perforution, there is plac'd a convenient quantity of Gun-powder, and then all the reft of the Cavity being filld with Stones, and Rubbifh flrongly ram'd in, (except a hitele place that is left for a Train, the Powder, (by the help of that Train) being fir'd, (and the impetucus Flame being hindred from expinding it fli downwards, by reafon of the newly mention'd Obflacle, concurring with its own tending another way, difpiays its Ficree againft the upper parts of the Rock which in making it felf a Paffage, it cracks the Rock into feveral pieces, moft of them not too anweild to be manag'd by the Workmen. And bv this way of blowing up of Rocks a little varid and improv'd, fome ingenious Acquaintance of ours, implo, d by the Publick, to make vaft Piles, have lately. (as I receiv'd the account of themfelves,) blown up, or fcatter'd with a few Earrels of Powder, many hundred, not to fay thoufand, Tuns of common Rock.
4. Load of Store, bow much.] Some Mafons tell me, that 25 Foot of Stone nswe a Load. Bu' (notandum eff, they do not mean 25 folid $\overline{\text { feet, }}$, but Superficial meafur'd on the Face of the Stones, and 2ot on any of the Beds.

For a clearer underftanding of this, it muft be noted, that every fquared Stone has 6 Plains, or Sides, viz. The upper, and under Bed, the Face, and the Back, and the 2 Heads, or Ends. Of thefe 6 Plains, thofe 2 oppofite ones that are the cleaving way of the Stone, (and which in the Quarry lay parallel to the Horizon,) are calld the Beds; and of the beft of the 4 Plains that are perpendicular to thefe, fand confequently are the breaking way of the Stone,) they make the Face, and the Plain oppofite to the Face, (and which commonly goes rough as it comes from the Quarry, they call the back of a Stone; and the other 2 perpendicular Plains are call'd the Heads, or Ends.
5. Cord of Stone, how much.] In fome parts of Kent, Stones are fold by the Cord, confifting of 27 folid Feet, viz. 3 Feet long, 3 broad, and 3 high.
6. How mucb Walling a Load of Stones will do.] An old and experienced Mafon, tells me, that a Load of Stones will build about 20 Foot of 18 Inch Wall; this he reckons a Medium, the Extreams he reckons 15 and 25 .
7. Soft Stones, bow wrought fmosth.] An old experienced Mafon, tells me, that fome Stones are too foft to bear a good edge ; for when they are fcapt'd, and wrought fmooth their edges crimble off; and therefore (in this Cafe) to make them fmooth, they proceed thus: After they are fcapt'd, they take an old Card, (fuch as Wool is Carded with,) and with it they work out the Strokes of the Axe, then they bring it to a better likeing, by rubbing it with a piece of the fame Stone. And thus our Countreymafons manage all foft Stones.
8. Price of draxing and catrying of Stones.] The old Maion mention'dabove, Number 3 d. tells me that he has 3 s. the Load for drawing of Stones, after the Method mention'd, Number the 3 d. and for the carriage of a Load, (tho'it be not above $\frac{1}{2}$ a Mile) he has $2 s$. the Load.

Another Maion tells me, that he has drawn Stones for 9 d . the Load; but then they lay almoft level with the Ground, and r equir'd but very little uncopeing. He alfo told me, that another Mafon, which he nam'd to me, (and whom I allo knew,) ufed to draw Stones for Id. per Foot.

Alfo a Suffex Gentleman of my Acquaintance, tells me, that he can have very good Stones drawn for $2 s .6 d$. per Cord, and have them carryod almoft a Mile for 3 s. $6 d$. per Cord.

But as the Price of drawing Stones is various in different places, according to the different manners of drawing them, and according to the different Circumitances of Difficulty, or Fecibility of drawing them, d δc. So alfo is the Price of carrying them very various in different Places, according to the

Cuftom of thofe Places. See more concerning this Matter, in the word Afhlar.
9. Price of Scapling Stones.] Several Mafons tell mie, that they commonly give $\leq s$ s. for Scapling 100 Foot of Stones; this is Journey-man's Wages, out of which (they fay) the Mafter has but fmall profit. They alfo tell me, that they reckon 50 Foot a Days Work, tho fome Workmen will do 50 Foot in a Day: But (notandum eft,) the Meafure is Superficial, and they meafure only the Face of the Stone, tho they fcaple 5 fices to each Stone, viz. A Face, 2 Beds, and 2 Ends; fo the back goes rough as it came out of the Quarrys But in Scapling, they always, (if they can conveniently,) choofe that for the Face of the Stone which will be moff for their Advantage.

Stoñe work.

Of Meafaring.] In fome parts of Suffex, Mafons have a Cuud flom to meafure their Stone-work thus; they apply one end of a Line to the top of the Copeing, and fo carry it along the flant of the Copeing, and prefs it under the Toothing; (if any be,) and from thence they carry it to the Water, of Ground-table, (if any fuch be in the Wall) where they prefs it in likewife, and then carry it over the Table to the bottom of the Foundation; and this Dimenfion, thus taken, they account for the heighth; which multiply'd ints the length; gives the Content.

Eut (I think,) in moft places they are not fo nice, as'to take the heighth by a Line, bat are contented with the perpëncio cular heighth.

Stove.

A Hot-houfe, or Rioom. Palladio obferves, that the Ancients us'd to warm their Rooms, with certain fecret Pipes that came through the Walls, conveying Heat, ras I conceive it, Cays Sir Henry Wotton,) to ieveral parts of the Houfe fromi one common Furnace. Whether this were a Cuffom, ot a Delicacy, (Cays Sir Henry Wottöñ,) it was certainly, both for Profit, and Ufe, far beyond the German Stores.
Strait,

A Term us'd by Ëricklayers, it is lialf, cor moré; or tects than half) a Tile in breadth, and the whole length. They are commonly used at the Gable-ends, where they are laid at every other Courfe, to caufe the Tiles to break Joont, as they phrafe it ; that is, that the Joynts of one (Courfe) may not aniwer exaitly to the Joynts of the next Courfe, either aborie; or below it ${ }_{\text {d }}$

Straigbt-arch.
V. Arch. N. 7.
Stru7ure.
V. Building.

Struts.
V. Dragon-beams.
Stuff,

The wood that Joyners work upon they call in general . 3 tuff. Stretchers.

V. Arch. N. 7.

Subptruction.
V. Foundation, N. 2. 5. 7.

Summers.
*. Brefsofummers. Alfo V. Girders, N. z.
As Lift.
Supercilium.
Symmetry.
Is the Conveniency that runs between the parts (of a Buif ding) and the mobole.

> Table, or Glafs.

V. Cafe of Glass.

a Cellar.

> Tabern,

Tacks.
*. Nails. N. 22.
Taper,

All forts of Stuff, or Work that are fmaller at one end than the other, and diminifhing gradually from the biggeft sod, is faid to be taper.

Tarrace, or Tarras.
An open Walk, or Gallary. Alfo a flat Roof on a Houfe。 Alfo a kind of courfe Plafter, durable in the Weather.

> Taldels,

Tafels,

Pieces of Board that lie under the ends of the Mantle: tree.

> Tectls.

As Dentils.
Templets:
Y. Houre, N. 4°

Tenia.
As Lift.
Tennon.
A fquare end of a piece of Timber fitted into a Mortef, ${ }_{9}$ Mortels.

As Tarrace:
Terrafs.
Tetradoron,
A kind of Brick fo calld, V. Brick, N. III. §. i8:
Tbackitiles.
As plain Tiles, V. Tiles, N. In i:
Thatching.

1. Wbat.] Thatching is the covering the Roof of a Houfe or Barn, with Straw, or Reed.
2. With Straw.] Thatch, (fays Mr. Worlidge,) is a comznon Covering in many places, yet is fome to be prefer'd before other fome; the beft which I have feen, (fays he,) is that which is call'd Helm, that is long and ftiff Wheat-ftraw, (with the Ears cut off,) bound up in bundles unbruis'd; which well laid; lies thin, lafts long, and is much neater than the common way.

Thatchers commionly allow about 2 good Loaid of Straw for isquare of Thatching, or one Load to $2 \frac{1}{2}$ \{quare.

A Thatcher of my Acquaintance, tells me, that one Rubble a Mafon of Rootham in Kent, proffer'd (for a fmall matter) to teach hiti how to Thatch a Roof fo, that no Moufe nor Rat fhould come into it : But he was not fo thoughtful then, as to get the Receit of him, tho' it would have been of no friall ufe tohim; for the Rontham Mafon faid, he knew a Thatcher that had $4 d$. per fquare more for doing it fo. It is a thing worth inquiring after.

In fome parts of Kent they ufe no Withs to bind on their Thatching-rods, but (inftead thereof) they ufe Rope-yarís, (as
they call it,) which is a fingle Strand-line, a bout the fize of a Penny Cord ; it is Pitched with Pitch, according as fome do their Well-ropes. A Kentifh Thatcher told me, that one Pound of it (which cofts 2 d.) will do about a fquare of Thatching. He had about 18 pound of it for 18 fquare and 90 Foot of Thatching on a Barn; and I think he had but 40 pound for 48 〔quare and 88 Foot: He tells me, 'tis more durable than Withs; for they when they are grown fear, will fly and break; but this will not, V. P. Withs.
3. With Reed.] In fome parts of Suffex and Kent, they Thatch with Reed inftead of Straw. Some Workmen tell me , that this kind of Thatching will indure 40,50 , or 60 Years. They alfo tell me, that Reed is fold by the Thoufand, viz. A Thoufand handfuls, each handful being about 8, 9 , or 10 Inches in Circumference, bound up in a little Band; a Thoufand of which will coft 15 or $16 s$. and will cover about 3 fquare of Roofing. For laying of which they have 4 s . per fquare.
4. Price of.] Common Thatching is done in fome places for $25.6 d$. per Square; but in otker Places they have 25 8 d . and in others 3 s . per fquare. And for Thatching with Reed they have 4 s. per \{quare.
5. Of Mealuring.] Thatching Is meafur'd by the fquare as Tiling: And in fome places they are allow'd fo many Feet more as Corners and Cables are Feet in length. In other places they are allow'd (only) fo many half Feet more to the whole, as the Gable heads are Feet in length; and the Reafon they urge for this Cuftom, is, becaufe they have more trouble in turning the Straw (at the Gables) that it may be cut, as it is at the Eves. If one fide of a Roof (only) be Thatched, and not the other; they (then) take their Dimenfions over the Ridging, as far as the new Straw goes.

Thimbles.
V, Iron, N. 4 •
Thorougb framing.
V. Framing, N. 7 -

Througb.lighted.
Rooms are faid to be Through-lighted when they have Wiodows on both ends.
Tiles,
V. Tyles:

Timber.

1. What.] All thore kinds of Trees, which being cut down and feafon'd, are ufeful for the Carpenter, Joyner, or other wooden Tradefman to work upon, are call'd Timber when they are cut down, and Timber Trees when they are growing.
2. Kinds.] There are many kinds of Timber; it were tedious to mention 'em all. I fhall content my felf at prefent, briefly to fhew the moft common ufes, and of the moft common kinds of Timber; as I find it Set down in Mr. Evelin•s Sylva, and Mr. Worlidge's Syftema Agriculturs. As follows.
3. Oak.] The feveral ufes of Oaken-timber for Euildings, and other Mechanick Ufes, is fo univerfally known, that 'twere needlefs to enumerate them. To endure all Seafons of the Weather, there is no Wood comparable to it ; as for Pales, Shingles, Pofts, Rails, Boards, erc. For Waterworks alfo'tis fecond to none; efpecially where it lies obvious to the Air as well as the Water, there is no Wood like it.
4. Elm.] If the Elm be fell'd between November and February, it will be all Spine, or Heart, or very little Sap, and is of moft fingular ufe (in the Water,) where it lies always wet, and alfo where it may be always dry. It is alfo of great ufe for its toughnefs, and therefore us'd by Wheelwrights, Mill-wrights, bc. It is alfo good to make Dreffers, aud Planks to chopon, becaufe it will not break away in Chips like other Timber.
5. Beech. 7 Its ufe is principally for the Turner, Joyner, Upholfterer, and fuch like Mechanick Operations, the Wood being of a clean, white, and fine Grain, and not apt to rend, or flit : Yet it is fometimes us'd, (efpecially of late Years) for Building-timber. And if it lie always wet, (as for Ground-guts, and the like,) 'tis thought to endure longer than Oak will in that Cafe.
6. Afh.] The ufe of Afh is almoft univerfal, good for Building, or any other ufe where it may lie dry; ferves the Occafions of the Carpenter, Plough-wright, Wheel-right, Cart-wright, Cooper, Turner, 'Oc. For Garden ufes alfo, no Wood exceeds it; as for Ladders, Hop-poles, Palifadehedges, \& δc. It ferves alfo at Sea, for Oars, Hand-fpikes, \& δ.
7. Fir.] This kind of Timber is commonly known by the name of Deal, and is of late much us'd in Building, efpecial. ly within Doors, for Stairs, Floors, Wainfcot, and moft ornamental Works.
8. Walnui-tree.] This Timber is of univerfalufe, (unlefs for outward Edifices:] none better for the Joyner's ule, it being of a more curious brown colour than Beech, and not fo Rubject to the Worms.
9. Cbeftrut-tree.] This Timber is (next to Oak) one of the moft fought after by the Joyner and Carpenter, and of very long lafting, as appears by many ancient Houfes and Barus built of it about Gravel-end in Kent.
10. Seivice-tree.] This Timber is ufeful for the Joyner, it being of a very delicate Gidin, and is fit for divers Curiofities: It alfo yields Eams of a confiderable bignefs for Buildings.
11. Poplar, Abel, and Afpen.] Thefe ninds of Timber differ but little from one another; and of late they are otten us'd inftead of Fir ; they look as well, and are tougher and flionger.
12. Alder.] This is ufeful for Ladeer and Scaffold-poles, as alfo for Sewers, or Pipes to convey Water; for if it lie always wet, it willharden like a very Stene; but where it is fometimes wet, and fometimes dry, it rots immediately.
13. Lime tree.] I have known, (fays my Author,) excellent Ladders made of Lime-tree-poles, and of a very great length.
III. Time of Felling.] The Time of the Year for this Work is not ufually tiil about the end of April, (at which Seafon tire Balk does commonly rife freely, and if there be any quantity of Timber fell'd, the Statute oblizes us to fell it then, the Eark being neceflary tor the Tamer.) But the Opiaions and Practice of Men have been very diferent concerning the beft time to fell Tin:ber: Vitruvius is for an Autumnal Fall; others advile December and Fanuary: Cato was of Cpinion, that Trees fhould liave firft born their Fruit, or at, ?eaft it fhould not be Fell'd till the Fruit was full ripe, which agrees with that of the Architect: And tho Timber unbarked be indeed mofl obnoxious to the Worm, yet we find the wild Oak, and many other forts Fell.d over late, (and when the Sap begirs to le proud,) to be very fubject to the Worm; whereas being cut about Mid-winter, it neither cafts, rifts nor trines; becaufe the cold of the Winter does both dry and confolidate: Happy therefore were it for our Timber, if fome real Invention of Tarning without fo much Bark, (as the Henourabie. Mr. Charles Howard, has moft ingeniouly ofier'd,) were become univerfal; that. Trees being more car': Felld, the Timber might be the better feafond, and concition'd for its various ufes.

Tien for the Age of the Moon, it has been religioully obferv'd ; and that Lima's Preredency in Sylzis was zit in muth ccelehatid to ciedit the Falticns of the Rests; is fic: the Domision of that moift planet, and
her influence over Timber: Formy part, I am not fo much inclin'd to thefe Criticijms, as to Fell Timber slogether at the Pleafure of this mutable Lady; however there is doubtlefs fome regard to be had, Nec fruftra fignorum obitus /pecula. mur co ortus.

The old Rules are there: Fell Timber in the Decreafe, or 4 Days after the New Moon; fome fay in the laft Ruarter, Pli$n y$ fays, (if poffible,) in the very Article of the Change; which hapaing, (fays he, in the laft Day of the Winter Solftice, that Timber will prove immortal : Columella fays, from the 20th. to the 3oth. Day: Cato, 4 Days after the Full : Vegetius, from the 1 sth. to the 25 th. for Ship.timber, but never in the Increafe, Trees then moft abounding with Moifture, which is the only Source of Putrefation.

Then for the Temper and Time of the Day; the Wind low, neither Eaff nor Weft; neither in Frofy, Wtt, or Demy Weather ; and therefore never in a Forenoon.

Laftly, Touching the Species; Fell Fir when it begins to fpring; not only becaure it will then beft quit its Coat and Strip; but for that they hold it will never decay in Water; whicl howfoever The phrafius deduces from the old Bridge made (of this Material, cut at this Seafon, over a certain River in Arcadia, is hardly fufficient to fatistie our Curiofity. E / m (fays Mr. Worlidge.) is to be Fell'd between November and Jank ary ; for then, (lays he,) it will be all Heart, or at leaft will have but very little Sap. And this he alio fays is the on, ly Seafon for Felling of Aph.

Some Authors advife ia Felling of Timber, to cut it but into the Pith, and fo let it ftand till it be dry, becaufe, (fay they.) by drops there will pafs astay that Moitture which would canfe Putrefaction,
IV. Of Seatonins.] Timber being Felld, and Sawn, is next to be feafon's; for doing of whicil, fome advife, that it be laid up very dry in an airy place, yet out of the Wind, or Sun ; at leaft, (lay others,) it ought to be free from the Extremities of the Sun, Wind, and Rain; and that it may not cleave, but dry equally, you may daub it over with Cow dung. l.et it no: fund uprisht, but lay it along one piece upon another, interpofing fome fiort Blocks between chem, to preferve them from a certain Mosildinefs, which they ufually contratt while they fiveat, and which frequently produces a kind of Fungus, efpecially if there be any frepy parts remaining.

Others advife to lay Boards, Planks, drc. In fome Pool, or Ruaning-Itream for a few Days, to extrat the Sap from 'em, and afterwards to dry'em in the Sun, or Air ; for by fo doing, (fay they,) thay will neither chap, caft, nor cleave;
(Mr. Evelen particuarly commends this way of Seafoning of Fir,) againit farinking there is wo Remedy.

Some dasin commend Buryings in the Earth, others in Uhent; and there oe Seafonings of the Fire, as for the frorching and hardniug of Piles, which are to fland either in the Water, or the Earth. Thus do all the Elements contribute to the Art of Seafoning of Timber.

Sir Hugh Plat informs us, that the Venetians ufe to burn and fcorch thicir Tinber in the flaming Fire, continually curning it round with an Engine, till they have gotten upon it a hard, black, coally Cruft; and the fecret carries with it great probability ; for that the Wood is brought by it to fuch a hardnefs and drynefs. ut citm omnis putrefalio incipiat ab bumid, nor Earth nor Water can penetrate it. I my felf, (fays Efq; Evelin,) remen ber to have feen Charcoals dug out of the Ground, amongt the Kuins of ancient Euildings, which have in all Probability lain cover'd with Earth above 1500 Years.
v. Of Freferving.] When Timber, or Boards are well fea. fon'd, or dry'd in the Sun, or Air, and fix'd in their places, and whit labour you intend is beflow'd upon 'cm. The ufe of Linfegd-oyl, Tar, or fuch like Oleaginous Matter, tends mich to their prefervation and duration. hefiod preferibes to hang your Infirunents in the Smosk, to make them Itrong and lationg; temonen: in fum pmeres: Surely then the O) of Smoak, for the vegetable Oyl, by fone other means obtain'd,) munt needs be cffectual in the Irefervation of Timber. Alio Virgil ady: ifes che fame, et fuppeafa fopis exploret Roborafumits, dayshe.

The Iractice of the ithlmate is worth our notice, who, for The Prefervation of the ir Gites, Port-cullis's, Draw-bridges, Shaces, and other Timbers caposd to the perpetall Injuries of the Weather, Cost ticincuer with a mixaure of Pitchand Ter; apon which tiee: flrew fail pitces of Cockle, and other Sonlls, beatein amoft to Powder, and ningl'd with Serefand ; which monufe, and arms it after an incredible manoer, againtal the shialts of wind and Westher.

When Timber is felind before the sap is perfeetiy at reft,
 prevent, or cure this in Timber, I recommend the following Secret, as moft approved.
$\mathrm{L}_{\mathrm{r}} \mathrm{t}$ cormon yellaw Sulphur he put isto a Cucurbit-glafs, ypon which pour fo mucin of the flengent Aquifortis, as may overit 3 Firgersleep; aintltis eo drinets, which is done by 2 or 3 Reitificuticas: Let the Sulphur remaining at the potzom, Fheing of a blackifa, or fos Red-colour,) be laid on Marbie, ger pet into a Ghais, where it will eanily difiolve fato Gyl: With this a aont what Timbers is either infeft yith worms or to be nrefryed from em. It is a great
great and excellent Arcanum for tinging the Wood of no unpleafant Colour, by no Art to be wafh'd out ; and fuch a Prefervative of all manner of Waods, nay, of many other things alro, as Ropes, Cables, Fijhing-nets, Mafts, or Ships, \& c. That it defends them from Putrefaction, either in Waters, under, or above the Earth, in Snow, Ice, Air, Winter, or Summer, \&c.
'Twere fuperfluous to defcribe the procefs of making the Aquafortis; it fhall fuffice to let you know, that our common Coperas makes this Aquafortis well enough for our purpofe, being drawn over by a Retort: And for Sulphur, the Ifland of St. Chriftophers yields enough, (which hardly needs any refining) to furnifh the whole World. This Secret (for the curieus,) I thought fit not to omit, tho' a more compendious way may ferve the turn, three or four Ancintings with Linfeedoyl, has prov'd very effectual: It was experimented in a Wainut-tree-table, where it deftroy'd Millions of Worms immediately, and is to be praftis'd for Tables, Tu bes, Mathematical Inftrumenis, Boxes, Bed-fteads, Cbairs, \&ic. Oyl of Walnuts will doubtlefs do the fame, is fweeter and better Varnif; but above all is commended Oyl of Cedar, or that of Juniper.

For Pofts, and the like, that fand in the Ground, the burning the out-fides (of thofe ends that are to fland in the Ground) to a Coa^{\prime}, is a great Prefervative of 'em. I have already, (in the fore-going number,) mention'd the Pra\&ice of the Venetians in a like caie, mention'd by Sir Hugh Plat; to which headds, that a Kentijh Knight of his Acquaintance, did ufe to burn (in this manner) the ends of the Pofts, for Railiag, or Paling: And this was likewife practis'd with good Succefs by a Suffex Gentleman, Walter Burrel of Cuckfield, Efq; And this Practice was probably deduced, from the Obfervations made by feveral that digeed in the Earth they have found Charcoal, which they conjectur'd might have, lain there about 100 Years, (nay, Efq; Evelin fays 1500 Years, V. above in the fore-going Number, and yet was not in the leaft inclin'd to Putrefaction, but was very firm and folid; which plainly demonflrates, that Timber thus calcin'd, will refift Putrefaction much fonger than it can do without it.

This of burning the ends of Pofis, is alfo practifed in Germany, as appears by the Abftract of a Letter, written by David Von-der-beck a German Pbilofopher, and Pbyjician at Minden, to Dr. Langelot, regiftred in the Pbilofophical Tranfaltions, Num. 92. Page 1585 , in thefe words, hence alfo, they flightly burn the ends of Timber to be fet in the Ground, that so by the Fufion made by Fire, the lolatile Salts, (which by acceffion of the Moifture of the Earth, would eafily be confumed,

Sum'd, to the Corruption of the Timber,) may catch, and fix one another.
VI. Of clofing the Chops, or Clefts in green Timber.] Greer-timber is very apt to fiplit and cleaveafter 'tis wrought into Form, which in fine Euldinss is a great Eye-fore. Eut to clofe the Chops, and Clefts in Green Tumier, I find this Expepedient, to anoint, and fupple it with the Fat of Powder'd-beef-broth, with which it mult be well foak'd, the Chafms filld with Spunges dip'd into it: this to be done twice over. Some Carpenters make ufe of Greafa, and Saw-duft mingl'd ; but the firft is folgood a way, (fays my Author.) that I have feen W'ind frock-timber fo exquifitely clos'd, as not to be difcern'd where the Defeits were. This maft be us'd when the Timber is green.
VII. Of Meajuring.] Timber is commonly meafur'd and fold by the 1 mn, or Lsad, which is a folid Meafure, containing 40 or 50 folid Feet, viz. 40 Feet of round Timber, and 50 Feet of hewn Timber is call'd a Tun, or Ladd; which Denomination,(Eonceive) it receives from the Suppofition, that 40 Feet of round Timber, or 50 Feet of hewn Timber weighs about a Tun Weight, (i.e. 20 Hundred,) which is commonly accounied a Cart-load. Now

For Meafuring of ro:nd Timber, the Cuftom is, to gird the Tree about in the middle of the length, and folling the Line twice (to take a quarter of it,) they account thiat for the true fide of the fouare; then for the length, 'tis counted from the But-end of the Tree, fo far up as the Tree will hold balf a Font Givt, (as they phrafe it,) i. e. The Line half a Foot, when twice folded.

The Dimenfions thus taken, the Timber may be meafurd ; either by multipling the fide of the fouare in it felf, and that Poduct by the lenoth, by the Mechod of Crofs multiplication, (V. Crofs multiplication,) or more cafily and fpeedjly. By Gumter's Line, by extending the Compuffes from 12 to the frde of the Squtre in Iaches; for that Estent turn'd twice (thefme way from the leagth in Feet, will reach to the Content in Fect.

If the Trea have any ereat Bol: hs which are Timber, (as they phraie i.,) z.e. which will hoid half a foot Girt; they commonly midare then, and add them to the whole: The Solidity of the whole being thus found, they civide it by 40, which brings it juta Tuas.

But (nitandamef.) If round Timber be meafur'd in Order for 3 le; they commonly (for Oal) caft away an Inch out of the Syenre for the Eirk; [i.e. if a Tree be 10 Inches Square, they menfure him as if he we:e but 9,] but for $A f_{\text {k }}$ Elm, and Beech, an Inch is too much to be allow'd for the Eark. (2.) Fhat this way of taking $+\frac{1}{}$ of the Circumference
for the true Square, is erroneous, and always gives the Solidity lefs than the truth, by about a fifth part.

For meafuring bewn or fquar'd Timber, their Cuftom is to find the middle of the length of the Tree, and there to meafure the breadth of him, by claping 2 Rules, or other ftraight things) to the fides of the Tree, and meafuring the diftance between them, and in the fame manner they meafure the breadth the other way; which if they are unequal, they add them together, and take half their Sum, which they account the true fide of the Square.

The Dimenfions thus taken, it is meafur:d in the fame manner as round Timber. So the Content being found in Feet, they divide it by so to bring it into Tuns,

But notandum eft, ['tis to be noted.] (I.) That if the Timber be unequal fided, this Method of taking the Dimenfions, always gives the Content more than the Truth, and the greater is the difference of the fides, the greater is the Error. (2.) That tho' the Method of taking the Dimenfions, both of Iquare, and round Timber, are both erroneous yet Cuftom has made them currant.
VIII. Price of Felling and Hewing.] Carpenters about us in Suffex, and Kent, have about is. or is. $2 d$. per Load for Felling of Timber, and about 3 s . per Load for Hersing.
IX. How much to a Square of Praming.] Mr. Leybinurn tells us, that 20 Foot of folid Timber, (cut into convenient Scantlings, will compleat a Square, (i.e. 100 Superficial Feet) of Framing in any Building, great or fmall. I mean, (fays he,) of the Carcas, viz. the out fide Frame, Partitions, Roof, and Floors.
X.-Buildings of facing with Brick] V. Pacing, alfo V. Brick, N.g.

> Tinea,

As Lift.

> Tondino,

As Aftragal.
Top-beam,

As Coller-beam.

$$
\begin{aligned}
& \text { Torcus, } \\
& \text { Torus, }
\end{aligned}
$$

Totus, or Thorus,
A Member in the Eafe of a Column, in the Form of a Semicircle.
$268 \quad \mathrm{~T} \mathrm{U}$

Torfels,

As Tafiels.

> Trammel,

An Iron moving Inftrument in Chimneys, whereon they hang the Potover the Fire.
Tranfom.

1. What.] The piece that is fram'd acrofs a double Light. sindow.
2. Windows.] Tranfom-windows in great Buildings, are worth making, (fays Mr. Wing:) Is. gd. per Light, or 7 s . per Window.

$$
\text { Traver } \int c_{2} \text {, }
$$

A Termin Joynery, fignifying to plain a Board, (or the like) acrofs the Graia.
Traverfetile.
V. Tile, N. 1 o.
Triglyph,

A Term of Architecture. The Word is Originally Greek, and fignifies a bollow Graving like 3 Furrows, or Gutters. In Architecture, Triglyphs are thofe kind of ftops, (in the Dorick Freeze) between the Merops, V. Metops.
Trim,

When Workmen fit a piece into other Work, they fay they trim in a piece.
Trimmers,

In Architeiture are thofe pieces of Timber fram'd at right Angles to the Joyfls againft the Ways for Chimneys, and Well holes for Stairs.

> Trocbilus.
Y. Cupital, N. 4.
Tırn'dlead.
V. Lead, N 10.
Tufcan order.
V. Column, N. 2.
Tusk,

A Eevel Shoulder, made to ftrengthen the Tenon of the Joj \sqrt{n} which is letinto the Girder.

Tyles.

1. What.] What they are every one knows: Yet Bp. Wilkins defines them to be a fort of Artificial Stones, (of a laminated Figure,). us'd about the Roofs and Pavements of Buildings.

They are made of Clay, kneaded together, then \{queez'd flat in a Mould, and then bak'd in a Kiln.
II. Kinds of.] There are many kinds of Tiles, and thofe known by feveral Names; as Plain, Thack, Ridge, Roof, Creafe, Gutter, Pan, Crooked, Flemifh, Corner, Hip, Dorman, Dormar, Scallop, Afiragal, Traverfe, Paving, and Dutch Tiles: Of which I hall treat in the following Numbers.
III. $\left\{\begin{array}{c}\text { Plain- }- \text {] } \\ \text { Thack-_ }\end{array}\right\}$ Of which I fhall give

1. Their Defcription.] They are the common or ordinary Tiles (of an Oblong Figure,) us'd about covering of Houfes, \&c.
2. Their Dimexfions.] By the Statue of the 17 th. of Edw. Cap. 4 th. Plain Tiles ought to be in length $10 \frac{1}{2}$.Inches, in breadth $6 \frac{1}{4}$ Inches, and in thicknefs half an Inch and half a quarter at the leaft. But by obfervation, I find our Suffex Tiles to be of different Dimenfions; for fome I find to be 10 Inches long. $6 \frac{3}{4}$ broad, and $\frac{5}{x}$ of an Inch thick. Others I find to be but $9 \frac{1}{i}$ Inches long, $5_{\frac{3}{4}}^{3}$ broad, and about $\frac{1}{2}$ an Inch thick.
3. Their Weight.] Mr. Leybourn fays, that one plain Tile weighs about $2 \frac{1}{2}$ Pounds; whence 100 of 'em will weigh 250 Pounds, and 1000 of 'em will weigh 2500 Pound. But by my Obfervations one of the largeft fize of tho'e I meafur'd, (viz. thofe of 10 Inches long,) will weigh but about 2 Pound 3 Ounces, fo that 100 of 'em will weigh about 220 Pounds, and 1000 of 'em about 2200 Pounds. And one of the other fize that I meafur'd, weigh'd about 2 Pounds; fo that 100 of 'em will weigh about 200, and 1000 of 'em about 2000 Pounds.
4. Their Price.] They are in fome places dearer, and in others cheaper, according to the Scarcity, or Plenty of the Earth whereof they are made, and of the Wood wherewith they are burnt. Mr. Wing fijs, they are from 25 to 30 s. the Thoufand in Rutland-ghive; Mr. Leybouin fays 25 s. the Thoufand in London; but about us in Suffex they are fold from is to 17 s . the Theufand.

1v. $\left\{\begin{array}{l}\text { Ridge- } \\ \text { Roof } \\ \text { or } \\ \text { Creafe一 }\end{array}\right\}$ Of thefe I fhall alfo give
i. Their Defcription.] Thefe are fuch Tiles as are used to co: ver the Ridge of a Houfe; they being made Circular breadthwife, like a half Cylinder.
2. Tiveir Dimenfions.] Thefe, by the fore-mention'd Statute, flould be in length 13 Inches, and in thicknels the fame with plain Tiles. I have meafard fome of thefe, and found one of 'em to be 13 Inches long, about 16 broad by. the Compais on the out-fide, and ia breadth ffrom fide to fide) on the in-fide about II Inches, fome not above g or 10 Inches.
3. Their W'eight.] I weigh'd of efere kind of Tiles, and found him to weigh about $8 \frac{3}{4}$ Pounds. Whence 100 of 'cm will weigh about 875 Pounds, ant 1000 about 8750 Pounds.
4. Their Price.] In fome places, fay, Mr. Legbnum, s, 6, or 7 of thefe Tiles are allow ind every Thoufand of plain Tiles; but if bought by themfelves, they are fold from 20 to 25 s. per Hundred. About us in Suffex; they are fold at 3 d. per piece, or 16 s. the Hundred.

V. $\left.\left\{\begin{array}{l}\text { Hip-- } \\ \text { coiner- }-\end{array}\right]\right\}$ Of there I fhall allo give

I. Their Defcription.] Thefe are to lie on the Hips, or Cor: ners of Roofs. As to their form, they are at firf made Hat like plain Tiles, but of a Quadrangular Figure, whofe 2 fides are right Lines, and 2 ends Arches of a Circle, one end being a little Concave, and the other Convex, which Convei End is about 7 times as broad as the Concave End ; fo that they would be of a Triangular Figure, were not one cornce taken off. Then before they are burnt, they are bent (apon a Mould) in their breadtin, after the minner of Ridge Tiles: They have a hole at their narrow end to nail them on by, and are laid with their narrow ends upwards.
2. Their Dimenfions.] By the Statute above mention'd; (Num. III. §.2.) The Tiles ought to be 10 ! Inches long, with convenient thicknefs and breadth. I have meafur'd fome of 'em, and find them to be in length 10 Inches, in breadth (according to their Compais) at the narrow end 2 Inches, and at the broad end I4 Inches; and the Right-lined breadth at the broadend, about $\& 1$ Inches.
3. Theirw'eight.] I found the weight of one of thete Tiles to be about 3 Pounds, and 3 or 4 Ounces; V. F. Num. 6. s. 3.
4. Their Price.] They are ufually fold, (fays Mr. Leybourn) at Three-half-pence, or 2 d . fer Tyle, or from 10 to 15 s. per hundred. About us in S. Pix, they are ufually fold for Three-half-pence a piece, or is s. the hundred.
VI. Gutters.] Ot thefe I flall alfo give,

1. Their Defcription.] Thefe are to lie ia Gutters, or Valleys in crofs Euidings. The vare mode hace corner Tiles, only the corners of the broad end are turn'd back again with 2 Wings; fo that the bread end refembles the upper part of the Character from the Sign Litra. Thefe have no holes in 'em, but are laid (with their broad ends upwarcis, and) without nailing at all.
2. Their Dimenfiors.] I fuppofe thefe are made in the fame Mould as corner Tiles, for they have the fame Dimenfions on the out (or Convex)fide. Their Wings, (mention'd in the foregoing s.) are each about 4 Inches broad, and 8 Inches long, pointing out fhort of the narrow end, about 2 Inches.
3. Their Weight.] Thefe, (for the Reafon mention'd in the foregoing §.) are of the fame weight with corner Tiles. So that 100 of either of thefe kinds of Tiles will weigh about 321 , or 322 Pounds, and 1000 of 'em will weigh about 3210 , or 3220 Pounds.
4. Their Price.] They are of the fame Price as cornes Tiles, V. above, N. 5. 5. 4 -
VII. $\left\{\begin{array}{l}\text { Pan- } \\ \text { Crooked_- } \\ \text { or } \\ \text { Flemigh- }\end{array}\right\}$ of thefe I hall give
5. Their Defcription.] They are us'd in covering of Sheds, Lean-too's, and all kind of His foof d Euildings. They are in the Form of an Oblong Parallelogram, as plain Tiles; but they are bent (breadth-wife,) for:vard and backward in the Form of an S, only one of the Arches is at lean 3 times as big. as the other; which biggeft Arch, or Hollow of the Tile is alway laid uppermoft, and the leffir Arch, or Hollow of an other Tile, lies over the edge of the great Hollow of the former Tile. They have no holes for Pins, but hang (on the Laths) by a knot of their own Earth.
6. Their Dimenfions.] Tiey are ufually in length 14 : loches, and in breadth 10 Inches.
7. Their Price.] The Price of thefe Tiles in moft places is about 7 or 8 so the hundred.

$$
\text { viII. }\left\{\begin{array}{l}
\text { Dormar }-] \\
\text { or } \\
\text { Dorman-] }
\end{array}\right\} \text { Of thefe I fhall give }
$$

1. Their Defcription.] Thefe Tyles confift of a plain Tyle; and a Triangular piece of a plain Tile ftanding up at right Angles to one fide of the plain Tyle, and this Triangular Piece at the broad end is about the breadth of the plain Tyle; and fiwept withan Arch of a Circle from the other end, which other end terminates in a point, or has no breadth; and of there kind of Tyles there are 2 forts, for in fome the Triangular piece ftands on the right, in others on the left fide of the plain Tyle; and of each of thefe there are again 2 forts, for fome have a whole plain Tyle, iothers but halfa plain Tyle; but of all thefe forts, the plain Tyle has 2 holes (for the Pins) at that end where the broad end of the Triangular piece ftands.
2. Their $V_{/}$e.] They are ufed to be laid in the Gutters betwixt the Roof and the Cheeks, or fides of the Dormars, the plain Tyle part lyingupon the Roof, and the Triangular Part Itanding Perpendicularly by the Cheek of the Dormar. They are excellent to keep out the wet in thofe places, which 'tis very difficult to do without either them, or fome Sheet-lead. Thefe Tiles are much us'd in fome parts of Suffex, the Bricklayers not caring to do any Healing (where thereare Dormers) without 'em ; tho' to my knowledge, in fome parts of Kent, they know not what they are; and I bes lieve they are ignorant of 'em alfo in moft other parts of England ; For I never faw any Author that fo much as mention'd 'em.
3. Their Dimenfions.] As to their Dimenfions, the plain Tile part is of the fame Dimenfions as a plain Tyle, both as to its length and breadth ; the Triangular part is of the fame length, and its breadth at one end 7 Inches, and the other nothing.
4. Their Weight.] I have weigh'd one of thefe Tyles, and found him to weigh about 4 ? Pounds; whence 100 of 'em will weigh about 450 , and 1000 about 4500 Younds: This was a whole one, a one weigh'd 3 tt. 2ξ.
5. Their Price.] They are commonly fold at Three-halfpence, or 2 d .per piece, or 12 or 16 s . the hundred.

$$
\text { IX. }\left\{\begin{array}{c}
\text { Scaliof } \\
\text { or } \\
\text { Altragal- }
\end{array}\right\} \text { Of thefe I mall gize }
$$

Their Defription.] Thefe are in all refpects like plain Tyles, only their lower ends are in the form of a Aftragal, viz. a Semicircle with a Square on each fide. They are in rome places us'd for Weather Tyling, and look very handrome.

I have not yet learn'd their Price, Wéeight, or Dimenfions ; but I think the latter is the fame as plain Tyles.
X. Travers.] Thefe Tyles are (by our common Bricklayers) call'd Trazis, or Travas Tyles; but I fuppofe it hiculd rather te Traver's Tyles; for the word 7 raversis perfect French, fig. rifying Irregularity; and thefe Tyles which they call Travers Tjles, are ouly istegular plain Tyles, viz. Such as have the Pin-holes broken out. or one of the lower Corners broken off. There they lay (with the broken ends upwards) upori Eafters, where pin'd Tyles cannot hang.
XI. Paving.] Thefe are by fome calld Paving Bricks, V: Bricks, N. 3. §. ro.
XII. Dutch.] Of there I haillgive

1. Their Deicription.] Of thefe there are 2 kinds, which 1 flall diftinguifh by the Appellations of Ancient and Modern; The Ancient Dutch Tyles were us'd for Cbimney-fost-paces: They were Painted with fome Antick Figures, and fometimes with the Poftures of Soldiers, fic. And fometimes with Coinpartments, and in them fome irregular Flourifhes; but in general they are nothing fo well done, (nor, with folively Co lours) as the Modern ones. The Modert Dutcll Tyles are commonly us'd inftead of Chimney-corner-ftones, (being Plafler'd up in the Jambs, (v. Corner•ftones.) There Tyles feem to be better glazed, and thofe that are Painted, (for fome are only white,) are done with more curious Figures, and more lively Colours than the ancient ones: But both thefe forts feem to be made of the fame whitifh Clay as our white glazed Earthen Ware. The modern ones are commonly Painted with Birds, Flowers, \&c. and fometimes with Hiffories out of the Nes Tefament.
2. Their Dimenfions.] Thofe which I call Ancient Dutch Tyles are 5.1 Inches fquare, and about $\frac{3}{4}$ of an Inch thick. The Modein Dutch Tyles are $6 \frac{1}{2}$ Inches fquare, and $\frac{3}{4}$ of an Inch thick.
3. Their Weight.] I have weigh'd fome of both thefe forts of Tyles, and I found one of
 of them will weigh $\left\{\begin{array}{l}125 \\ 159, \text { and } 1000,5250 \\ \text { it , and } 1000,1690\end{array}\right\}$ Pound

XIIF. method of Making and Rurning.] Tyles, (fays Mr. Leyboutn) are made of better Earth than Brick Earth, and fomething near the Potters Earth. According to the Statute of 17 Edw. 4. Cap.4. Earth for Tyles fhould be caft up before the firlt of November, fhired and turned before the firft of February, and not made into Tyle before the firft of March, and fould likewife be tried and fever'd from Stones, Marle, and Chalk.

In Suffex and Kent, Tyles are commonly made of a kind of Clay: But as to the particular Method of making 'em, I muft at prefent omit, for Reafons often already mention'd. But for the Method of burning them, V. Bricks, N. 50 where you will find it at large.
XIV. Frtce of Making and Burning.] For making 1000 of plain Tyles, (fays Mr, Leybsuin) 2 s . or 2 s . $6 d$. is the ufual 1rice: But I know not how, or where he means; for an experienced Workman tells me, that for cafting the Clay, and Chireing it, and making it into Tyles, and burning them, they have 6 is per $\mathbf{1 0 0 0}$.
XV. How many will cover a Square.] This is various, according to the width they Gage for the Laths: At 5 Inches Gage, about 800 will cover a Square $6 \frac{1}{2}$ at Inch Gage, 740 Tyles will cover a Square; at 7 Inch Gage, 690 ; at 7 Irch Gage 640, and at 8 Inch Gage 600 Tyles will cover a Square, or 100 Superficial Fect. Thefe Numbers fuppofe the hreadth of the Tiles to be 6 Inches; for (if they are Statute Tyles) they will be there abouts when they are burnt, allowing : of ${ }^{1}$ Inch for their fhrinking with burning. If your Tyles are broader than 6 Inches, then fewer wi!l cover a Square, if they are marrower there maft be more.
Tyling.

1. U"A.j By Tylimg, is meant the covering the Roof of a Euilding ward Tyles.
2. of herafuring.] Tyling is meafurd by the Square of 10 Foot, i, e. 100 Superficial Feet. And in taking their Dimenfrons, they meafure to the middle of the Gutters, Corneis, and Ridgettis; and having caft up the Area, they have a $\mathrm{Cu}-$ fom tomake an Addition for ail bollow Wrare, (as they call Ridge-tyles, Comer, Gutter, and Dermar-tyles., and this Addition (I think) is in Lomion one Supericinl Foot for every Lineal foot of fuctr hollow Ware. Eut I am fure, in fome parts of Sufex, tis the Cuftom to rechon one Saperficial Foot for every fuch Tyle; 100 of which they reckion one Squari of Work, and add it to the Area before found.
3. Price of-] Tyling is commonly done by the Square, which in newo Wort, (fays Mr. Lesbourn,) and the Workman Guding allmatcrials, as Tyles, Morar, Laths, and Nails, is io
fually valu'd at 30, or 32 s. per Square. (Mr. Hatton reckon but 28 s. fer Square.) And for ripping of old Work, and new Covering, and making good the old, they recten 12 or 14 si the Square, according as they find the old Tyling.

But for Workmanfhip only, they reckon for new Work $5 s$. per Square at London, in the Countrey various. Mr. Wing fays 3 s . in Rutland, in fome places, fays he, 2 s. 6 d. In feveral parts of Suffex, I know tis commorly done for 3 s per Square, and I am inform'd (at fecond hand,) that in forme parts of Kent they do it for 2 s .6 d . per Square; but then their Tyles are large; and they lath wide, at 8 Inches Gage, and pin but half their Tyles, the other half they lay Travers Tyles.

And for Ripping, and Healing again, (only Workmanlaip,) our Suffex Bricklayers reckon 3 s. 6 d . per Square, and if they Counter-lath it, then $3 \mathrm{~s} . \mathrm{gd}$. or 4 s . But in fome parts of Kent, they Rip, and Heal, and Counter-lath, for 3 s. fer Square; which is very cheap; but then 'tis fupposid theis Work is done accordingly.
4. Laths and Nails to a Square of-] For the number of Laths and Nails, commonly allow'd to a Square of Tyling, V. Laths, N. 8. and Nails, N. 23.
5. Mortar to a Square of - - Mr. Lesbouin fays, that about a quarter as much Mortar as is allow'd to a Rod of Brick-work; will do for a Square of Tyling, V. Morrar, N. 12.
6. Pins to a Square of - 7 Mr. Lesbourn fays, they ufually allow a peck of Tyle-pins (fiom 2 s. to 4 s. the Buhhel) to ei very Thoufand of Tyles; but furely this muft be a nimfake, for an Experienced Workmen telis me, he ufes but about a pect of Pins to 3 Square of Healing, which at 7 Inch Gage; (the fize he commenly Gages) is more than enough for 2000 Tyles. And 1 think this Workman told me, he reckon'd Tyle-pins at 6 d. the Gallon.
7. Without Moriar-] Some lay Tyles without Mortar; or any thing elfe, laying them dry as they come from the kiln. Others lay them in a kind of Mortar made with lome and Horfe-duns, (V.Mortar, N. 20.) Jn fome parts of Kent they have a way of leying Tyies in Mofs; when the Workmen get the Mo's themflves, they are ailow'd $2 d$. in Square the more for their Work. But an old Workman of theirs condemns this way of Tjlins with Mofs; for he tells me, that in windy wer weather, when the Rain, Snow, or Slect is driven under the Tyles (in the Mofs) if there follow a froft while the Mofs is wet, it then freezes and raifes the Tyles cint of their places.
8. With Pan-tyles.] Thefe Tyles are for the noof part laid dry without any Mortar ; yet fometimes pointed wishin fide.

The laths whereon they hang, are 10 or 12 Foot long, an Inch and a half broad, and an Inch thick. They are ufually fold at 2 d . or 3 d . the Lath, or at 10 or 13 s . the Hundred.

The Gage for nailing on thefe Laths (with $4 d$. Nails) is ten Inches and a half, and the breadth of a Tyle when laid 8 Inches; whence about 170 Tyles will cover a Square, (or 100 Foot of this kind of Tyling.

A great Covering with thefe fpends but little Mortar (if pointed) and but little time in laying. Mr. Wing reckons it worth about I s. 8 d. per Square, Workmanfliip.
9. Of its Weight.] V. Horfham-ftone, N. 4.

> Valleys.

IH E Gutters ove: the Sleepers in the Roof of a Euilding, V. Gutters.

> Vauit.

A Cellar Arched over.

> Under-pinning.

1. What.] Ey this Term is meant, the bringing it up with Stones under the Ground-fells of Building. Sometimes it fignifies the Work it felf, when done.
2. Price of.] In feveral parts of Suffex, I know the ufual Price (for the Workmanfhiponly) is id d. per Foot Superficial. In fome parts of Kent they have three Hilf-pence per Foot. In fome places 'tis the Cuftom (in Meafuring it) to take in half the Sell iato their Meafure.
Tolute,

The Spiral Wreath, or Scroll in the Capital of the Ionich Column, V. Capital, N. 4.
Wainfcot,

THE Panneld Work sound (againft the Walls of) a
Room. ITrainfcotting.

1. What.] The making, and fetting up of Wainfoot is call'd Wainfcottirg.
2. A Note in-] Some Joyners, (as I am inform'd,) put Charcoal behind the Pannels of their Wainfcot, to prevent the Sweating of Stone, and Brick-walls from Ungluing the Joynts of the Pannels, which otherwife, (efpecially in fome places) 'tis very apt to do ; and others make ufe of Wool in the fame manner, and for the fame purpofe; yet neither of thefe ways will prevent their ungluing in fome Houfes: But the moft effectual way to prevent it, is by priming over the Back-fides of the Joynts well with White-lead, Spanijh-bromn, and Linfeed-oyl.
3. Of Meafuring.] Wainfcot is generally meafurd by the Yard fquare, i.e. 9 Superficia! Feet. Their Cuftom is to take the Dimenfions with a String, preffing it into the Mouldings ; for they fay, (and 'tis but Reafon,) we ought to be paid for all where the Plain goes.

Therefore when Joyners would taike the Dimenfions of a Room they have Wainfcotted; they take up a line on the sop of the corner of theRoom, and as they carry it down to the bottom, they prefs it (with their Fingers) into all the Moaldings; this they account the breadth, and (they meafure) the Circumference of the Room from the leugth: Some Joyners will meafure this alfo with a String, but others do not. The Dimenfions being thus taken in Feet, they multiply the length hi: the breadth, and the Product is the Content in Feet; which being divided by 9 , the Quotient is the Content in Yards. But-

Note, (I.) That you muft make Deduction for all Windore Lights, and meafure the Window boards, Cheeks, and Sapheta's by themfelves.
(2.) That for Window-flutters, Doors, and fuch things as are wrought on both fides, they reckon Work and half; for indeed the Work is half more.
(3.) That Cornifles, Bafes, and Sub-bafes are fometimes meafur'd by the Foot Lineal Meafure ; fo alfo are Freezes, Architraves, and Chimney-pieces meafur'd; unlefs agreed for by the Great.
4. Frice of 一] The Price of Wainfotting is various, according to the variety of Suff and Workmanflip.

Wainfcotting with Normaz Oak, the Workman finding Stuff, is worth 6 or 7 s. per Yard. The Workmanhip only is abous 2 s . in London, in Rutland 3 s . 6 d . or 4 s . per Yard; and if the Mouldings are large, 5 s. fays Mr. Wing.

Plain-fquare Wainfcotting, (the Workman finding Deal) is worth $\}$ s. or 3 s. 6 d. per Yard. For only Workmenhip about is. per Yard.

Ordinary Eifection Wainfcotting, (the Workman findins Deal) is worth in London 3 s. 6 d . in the Countrey, 4 s. 6 d . lard.
Large Eifetion-work is worth 6 or 7 f . fer Yurch of Danizick Stuff.
5. of Painting of Wuinfiot,] V. Painting.

Itcilis.

1. W'b.ts.] Ey this Term in Architegure is meant the Inciofures of whole Houfes, or particular Rooms; as alfo of Gardens, Oichards, boc. if miute of Erick cr Stone.
II. Kinds of--] There are [everal kinds of Walls, diftionguintable by ditterent buares, according to the fubftance whereof they are made, as Plofter'd or Mud-walls, Brickpalls, Stome-malls, Flint, or Boilder-malls, and Buarded malls; of all which inall difcoarse in the fol'owing Numbers.
III. Flufte'd, or Mud-7 Thefe kind of Walls are common in Timber Buildiage, cipecially of ordinary Euildings; for fometimes the Walls are made of Elick betwixt the Timber: But this is accounted no goct way; becaufe the Morter corrodes and decays the Timber.

Thefe Mud walls. (as they are calld in fome places) are thus made. The Walls being quarter'd and Lathed between the Tinber, (or fometimes lathed over all) are Platterd with Lajer, (V. Lome, alfo, V. Nortar, N. 8. and 11.) which being almoft dry is Plafterd over again with white mortan, (V. Miortar, N. 4.)

This kind of Verk is conmon':y meafurd by the Yard. Fcr slee Price of it, V. Pargeting, N 2. and Maftering, N. 1.
13. B.ick-] Here I Aall fiy fomething

1. Of Euilding them,] and tere are feveral things to be confiderd and takennotice of; as finf, That all Walis ought to be moft (xadily Perpendicuar ro the Ground-work; for the riathe Angle (thereen depending) is the trpe caule of all Stahitity, both in sertiticial and masu al Pontions, a Nisn likewife fandigg itmon whathe tands urighten.

Secom.ty, That the matfent and heavieft Waterials be the loweft, as fitecr to bear than to be born.

Thirily, That the Woul's as they iffe, dininith (proportionally, in thicktices, for eafe bonli of tieight and Expence.

Ruarh/s, Tlat centain Curics, or ledses (or Quoins) of anore fremgth than the ict ${ }^{2}$ be interlay'd like Eones to ferengtion tiue whole rabrick.

Fiftht, That (allalong) care he taker! in laying the Ericks, conceraing wlich, V. Bricks, N 8.

Siathely, That the Antes be firmly bound, which are the ivarves of the whole Edifice. Atad therefore in working up phe if cills of a Euiding, do not work any Wa!l above 3 Foot
high before you work up the next adjoyning Wall, that fo you may joyn them together, and make good Bond in the Work: For tis an ill Cuftom among fome Ericklayers, to carry, or work up a whole Story of the Party-walls, before they work up the Fronts, or other Work adjoyning, that Mould be bond ed, or work'd up together with em, which occafions cracks and fetlings in the Walls.
Seventbly, That if you build (a Houfe) in the City of London, you muft make all your Walls of fuch thickneffes, as the Act of Parliament for Re-building of the faid City enjoyns; (which Alt you may fee in Houfe, N. 4.) but in other places you may ufe your Difcretion; yet for fome Directions in this Matter, V.Houfe, N. 3.

Eighthly, It may be worth your Notice, that a Wall of a Brick and half thick, with the Joynt, will be in thicknefs 14 Jnches, or very near; whence 150 , or 160 Bricks will lay a Yard Square, meafurd upon the Face of the Build ing, and to the Square of 10 Foot (which is 100 fquare Feet) are ufually allow'd 1700 , or 1800 Ericks, and 4600 , or 5000 Bricks will compleatly lay, (reA, or build one Rod, Pole, or Peren §quare ; which Rod, Polc, or Perch, (for by all there Names 'tis call'd) contains in length, (according to the Statute) $16 \frac{1}{2}$ Feet ; whofe Square is $272 \frac{1}{4}$ Feet, fuperficial Meafure, which is 30 Yards and a quarter.

But tho' Ihave here laid down the number of Bricks for each of thefe Squares, yet thefe Numbers are not to be rely'd on as abfolutely exact; for no exat nefs can be difcover'd as to this Particular, and that for feveral Reafons: For tho' the Ericks were all made in the fame Mould, and burnt in the fame Eiln, or Clamp; yet the Niture, or Quasity of the Earth whereof they are made, (whercby fome fhrink more than other fome,) and the Ericklayers Hand and Mortar, may caufe a confiderable variation, and befides fome Bricks are warp'd in burning. (whe reby they will not lie fo clofe in the Work, Some mifcarry, (or are broken,) in every L.oad, or 500 Bricks, and the Tally, or Tale is (for the moft part, if not look'd after) too little : And befides all there Uncertainties, when Bricks arc dear, and Lime cheap, the Workman (by the Great) will ufe more Mortar, and make the ampler Joynts, which is much worfe for the Building.
Nintthly, It may be alfo noted, that (when all Materials are ready) a Workman with his Labourer will lay in one day 1000 Sricks, and fome 12 or 1500 .

Tentbly, All Brick-work, according to thefe Rules, is fuppos'd to be one Brick and half thick, which is the Standard Thicknefs. If they are thicker, or thinner, they in in be reducd to that thicknefs, as fhall bs thewn how in tis nerit Sction of this Number.

1. Of Meafuring them.] Ericklayers moft commonly Meafure their Walls by the Kod fquare, each Rod, Pole, or Perch, (for by all thefe Names 'tis call'd) being (by the Statute) 16^{4} Foot long; fo that a fquare Rod contains $27^{\frac{1}{4}}$ Superficial Feet.

Therefore, hawing taken the Dimenfions, (viz. the length, and heighth) ot a Wall in Feer, they multiply the length by the heighth, (V.Crofs-multiplication, N. 2.) and divide the Product by $272 \frac{1}{2}$, and the Quotieni fhews the number of fquare Roc's in the Superficies of that Wall. But it being fomething troublefome to divide by $272 \frac{1}{4}$, Workmen commonly have a Caftom to divide by 272 only, which gives the Con'ent fomething more than the Truth, which notwithflanding they take for it.
Hivirg thus found the Area, or Content of the whole Superficies of a Wall, they next confider his Thicknefs; for they have a certain Standard Thicknefs, to which they reduce all their Walls, and this Standard is one Brick and a half thick, as they phrafe it, (i.e. the length of one Brick, and the breadth of another, fo that a Wall of 3 Ericks (length) thict: of the farme height and leng th with another of 1 ! Erick thick, the former will contan twice as many fquare Rods as the lata ter.

Now, to reduce any Wall to this Standard Thickners, take this plain and eafe Rule: Say, as 3 is to the thicknefs of the Wall in half Ericks, [that is in the breadth of Ericks, the breadth of a Erick being always $\frac{3}{2}$ his length,] fo is the A reabefore found, to the Ared at their Standard Thicknefs of I Brick.

Thus, if the Wall be all of cue thicknefs from the Foundation to the top, it is eaffly reducd to the Standard Thicknefs of s, Brick. Eut if the Wall be of different thickneffes, (as in Brick Houfes they commonly are, being made thickeft below, and thinner at every Story;) then the beft way is to meafure every difforent thichnefs by it felf, and reduce it to the Standard Thicknefs; then add all thefe Ceveral Area's into ore Sum, out of wich deduct the Doors and Windows (meafur'd by themelves,) and to the Remainder will be the true irea, or Content of the whole Wall.

See more (concerning imesforing of Brick EValls,) N. V. of this word, vize in Fence-whis. Alifo, fee Buck-wat.

Ncete, In fome Places tis the Cuftom to meafure by the Red of 13 loot long, in others by thie Rod of 15 Foot: In the former cale, yoa muft divide the Area in Ceet by 324 , in the latter by 35 .
3. of their Price] The Price of Euilding of Walls is vafious ia difierent Places, according to the various Prices of thecriats, Mr Le)busn (ass, (and with him agrees Mr. Hat-
ton,) that the ufual Price in London, for Building a Brick and half Wall, (the Workman finding all Materials, is five Pound, or five Pound ten Shillings fer Rod fquare. And fos the Workmanfhip only 30 s. fer Rod fquare, which is about 1 s. per Yard fquare.

Mr. Wing fays, that the ufual Price in Rutland, (the Workman finding all Materials,) is for a Erick and half Wall 3 s. per Yard fquare, [which is but about $4 l .10 \mathrm{~s}$. per Rod,] for a 2 Brick-wall 4 s. for a $2 \frac{1}{2}$ Brick-wall 5 s. per Yard Square: And for the Workmanflip only (of a Brick and half Wall) 8 d. per Yard fquare, which is but about 20 s. ter Rod, Statute Meafure. So that ycu fee Mr. Wing's Prices are much cheaper than thofe about London; the Reafon of which, I conceive proceeds from thie Viisority of Commodities in his Countrey.

About us in Suffex, a Rod of Brick and half wall, Workmanhip and Materials, will coft at leaft eight Founds. For the Workmanihip only, the ufual Price (about us) is 24 , or 25 s . per Rod fquare in a Erick and half Wall.

It fhould feem, that in or about London. Workmen do fometimes and only Mortar and Workmantip in building of Walls; for fays Mr. Leybourn,) is the Ericks are laid in at the Euilder's Charge, then 2\%. 10s. pe Rod is the ufual Price. Eut, (fays he,) tocrect new Struitures, by taking down old Walls, it may be worth 3 Pounds, or a Pounas 10 Shillings per Rod; becaufe in taking down the Walls, and clearing the Bricks, there is much Time fpent, and alfo more Mortar usid in laying them again, than in new Work.
V. Fence:] Walls built round Courts, Gardens, Orchards γ orc. are commonly calld fence-malls. Of thefe, fome are made of Stonc, fome of Finis, or Boulders, and fome of Erick: Of the two former, I fhall Ipak in the two following Numbers, vix. Num. 's and 7 . Of the latter I fhal! Speak here, and therein I fall fay fomething,

1. Of their making.] Thefe are commonly made (of Statute Ericks) a Brick and lalf thick.

But in Some parts of Sufex they are commonly made of a fort of great Bricks which are 12 Inches long, 6 Inches broad, and 3 Inches thick. I have very often difcours'd with the old Man who firft introduced, not only thofe fort of Great Bickes. but alfo their neceilary Concomitants, Pilafley and Coteing Bricks, and the Method of making Fence-walls of em, V.P. Éricks, N 3. §. 4.9. and 13.

Thefe Walls are but the breadth of a Erick, (or 6 Inches; in thicknefs, on!y at the Pilafters, where they are the length of a Brick, (or 12 Inclies thick.) They ufually fet a piafter at every ro Foot. I know a Wall of thefe fort of Bricks, (of about 9 Foot high, that has been built near 30 Years, and fands very well.
2. Of Meafuring them.] Fence-walls built of Statute Bricks, arc commonly meafur'd, as is taught above, N.4.8.2. But I Thill here add, that fome Workmen which I know, meafure 'cm by the Rod in length, and I foot in heighth, which they account a Rod of Meafince. And in taking their Dimenfons, they io it with a Line, going over the Pilafters; this for the lendth; fo haewife for the heighth, they meafure it (alfo) by a Line, going over all the Mouldings, (after the manner of Joyners Meafuring their Work,y even to the top, or middle of the Copting.

1 mull further add, that forme Workmen (in Fence-walls of Statute Bricks) will, (it they can perfiwade their Mafter to it,) meafure allothat is above 1 . Brick thick, (viz. The Projecting of the Pilafters, or Euttreffes, and all below the Wa-rer-table) by the folid Foor, which afterwards they reduce to Hods. Eut this way is a confiderable advantage to the Workman, and a lofs to the Mafter Euilder; for it makes $\frac{1}{3}$ part of Meafure more than the Truth; becaufe a Erick and half Wall is 14 Inches thick.

Fence-walls built of great Ericks, are generally mesfurdd by the Rod in length, and a Foot in heighth, (which they account a Rod of Mealure,) the Dimenfions beiag taken by a Line, as was faid above.

3 of their Price.] For the Price of Erick-walls, V. (above,) N. 4. S.3. Eut fume Workmen in Saffex reckon for Euilding of Fence-walls, (the Workmanhip only) of Statute Fricks (a Erick and half thick) is. 6 d . Jer Rod, at a Rod long, and a Foot high, taking their Dimenfions by the Line, as was fiewn how in the preceed ints 5 . of this Number. Sometimes the build thefe kind of Walls by tine Square of 100 Foot, at 8 s . fer Sçuare, which is but about id. per (Super: ficis) Foor.

For Euiling of Fence-walls with great Ericks the com mon Yrice (for the Workmanhip only) is a ser Rod, at ons Fod long, and one Foct high, the Dimenfinus talen by the Lille, as above.
4. Of Coing them.] Fence-wal's bu't of Statute Bricks, are fometimes coped with Sione, fometimes with Brick: If the former, the Copeing is left out in the Meafure, and rated hy it leif, for the Price of which, V. Copeing, N. 2. If the lefter, it is mesfurd into the reft of the Work. And this lind of Copeing is done thus; on one f 'e the wall is carry'd upriaht to the top, and on the other fide there is 2 Courfes of Bricks fuanding on end ia an Oblique Recliaing, or Slant pofition, and a firctching Courte on the top finifhes the SHill

But Fence-walls built of great Bricks, are coped with Copeing Bricks, of which, V. Bricks, N. III. S. 3. And this Copeing is alfo meafur'd and rated with the reft of the Wall.
VI. Stome-] Stone-walls Perve not only for Walls of Houfes, \&cc. but alfo for Fence-walls round Gardens, \&c. Of thefe I fhall fay fomething.

1. Of Meafuring them.] Thefe are in fome places mea. fur'd by the Rod of 18 Foot Square: But in moft places (I think they are meafur'd by the Foot Superficial. Concerning Meafuring of Walls, there are thefe three things to be further taken notice of, viz. That if the length of the walls at the ends (of a Garden, or Houfe) be taken on the out-fide (of the Garden, or Houfe, then the length of the Walls on the fides (of the Garden, or Houfe,) ought to be taken on the in-fide. (2.) That when the Walls of a Houle are meafur'd, the Doors and Windows are likewife to be meafur'd, and deducted from the whole. (3.) That in Meafuring Fenceswalls, they commonly meafure the heighth by a Line, (prefs'd into all the Mouldings) from the top of the Copeing, to the bottom of the Foundation.
2. Of their Price. Mr. Wing tells us, that Fence-walls, and Walls of ordinary Euildings, are each (only the WorkmanMip) from $16 s$. to 3%. s. per Rod of 18 Foot Square, which (fays he) depends upon the goodnefs of the Work. He alfo tells us, that the fetting of Fronts in great Buildings, viz. Ahlar, Architrave, Windows, and Doors, with the Ground-table, Faflia's, and other Members, is worth from 31. 10s. to 5 l. per Rod, which (fays he) depends upon the heighth, and well performing of the Building. The Truth is, I- don't well underftand what he means by all this Tattle; for he never tells us any thing of the thicknefs of the Walls; and befides $3 l$. 10 s . per Rod, is but little above $2 \frac{1}{2} \mathrm{~d}$. per Foot; and $5 l$. per Rod, is but little above $3 \frac{1}{2}$. per Foot; either of which is certainly too little for fuch Ornamentad Work, as fetting of Fronts in great Buildings. And then, for his Fence-walls, or Walls in ordinary Buildings; 1 can't fee how the goodnefs, or badnefs of fuch plain Work can 'vary the Price from 16 s. to 31.10 s . per Rod; but furely it muft be very ordinary Work that is worth but 16 s . per Rod, which is but little above a Half-penny a Foot.

Mr. Hattontall s much after the fame manner ; for, fays he, one Foot of plain Work, (as Walls, erce) is worth about 8 d . working and fetting. He mentions nothing of the thicknefs neither.

But I thall leave thefe Authors in the dark, as they have left us, and procced to tell you, what fome experienced Workmen in Suffex tell me; namely, That for building a 12 Inch Wall, they have $2 d$. per Foot, for an 18 Inch Wall $3 d$.

284

and for a Wall of 2 Foot thick, they have $4 d$. per Foot. Thefe Prizes are to be underfood of Walls that have 2 fair fides; for if they have but one fair fide, (the other ftanding againft a Bank,) they have a lefs Price; for in this cafe, I have known fome Workmen build a Wall 2 Foot thick, for $2 \frac{x}{2} d$. per Foot.
${ }^{2}$ VII. Elint, or Boulder-] Walls of Flints, or Euulders, are muctis us'd in fome parts of Suffex and Kent, where I have feen, not only Fence-valls round Cuurts, Gardens, doc. but alfo Walls of Stables, and other Out-houfes built of them, which fhew'd very handfome.

To build Walls of flint, (fays Sir Henry Wotton,) is, (as I conceive, fays he,) a thing utterly unknown to the Ancients; who obferving in that Material a kind of Metallick Nature, (or at leaft a Fufiblity) feem to have refolv'd it to nobles ufes; an Art now utterly loft, unlefs perhaps kept up by Chymifts.

Some Workmen tell me, that for bailding of Flint, or Boulder Walls, they ufe to have 12 s. per Hundred, ffor fo they phrafe it,) by which they mean 100 Superficial Feet; but I forgot to ask them at what thicknels, or whether they have but one thicknefs for all their Walls. They alfo tell me, that a right and left handed Man fit sell together for this fort of Work; for they have a Hod of Mortar pour'd down upon the Work which they part betwixt them, each fpreading if cowards him feit; and fo they lay in their Flints. They alfo eell me, that their Mortar (for this Work) muft be very ftiff, and that 'tis beft to have a good length of Work before 'em; for they work but one Courfe in heighth at a time; for if ehey thonld do more, it would be apt to fwell out at the fydes, and run down. They alfo fay, that in mifty Weather "is very difficult to make the Work ftand.
VIII. Boarded -] Sometimes Walls are boarded, particufarly the Walls of fome Earns, Stables, and other Out-houfes. Sut of this kind of Work, V. Weather-boarding.

> Walling,

The making of Walls (of what kind foever) is calld Walling. Therefore, for the Price, erc. of Walling, V. Walls.

Walnut-tree.painting。

$$
\text { Y. '1at N. } 4
$$

Whafb boule,

A Room to Wafh in.
Water-table,

In Stone, or Brick-walls, is a fort of Ledge left in the Wall, Come 18 or 20 Inches, (more or lefs) above the Ground, at which place the thicknefs of the Wall is abated, (or taken in) on each fide the thicknefs of a Brick, (in Brick-walls,) namely, 2 Inches and a quarter; thereby leaving that Ledge, or Jutty, that is call'd a Water-table. Thefe Water-tables. are fometimes left plain, and fometimes theyare wrought with Mouldings; if the latter, (befides the plain Meafure of the Wall,) they are rated at fo much per Foot, running Meafure.
Water.coures,

Thefe are commonly rated by the Foot running Meafure; wix. If the Workman find Materials at about 10 d. per Foot, if he find no Materials, at about $8 d$.

Weather-boarding.

1. What.] A Term of Architecture, fignifying the nailing up of Boards againft a Wall, (V. Walls, N. 8.) Sometimes 'tis us'd to fignifie the Boards themfelves, when naild up. This Work is commonly done with Feather-edg'dboards, (Y. Feather-edg'd.) In plain Work they nail the thick edge of one Board, an Inch, or an Inch and half over the thin edge of another: But if the Work is to be a little extraordinary, they fet an O-.G on the thick edge of every Boaid.
2. Price.] The Price of plain Weather-boarding, (virz. fitting and nailing up the Eoards,) is from 8 d . to 12 d . the Square, according to the length and breadth of the Boards, and Conveniency of the Place. But if the lower, (yiz, the thicker) edge of the Boards be wrought with an O-G, it may be worth 8 d. per Square. This for the Workmanflip only. But

If the Workman find the Materials, (wiz. Boards and Nails,) it may be worth 12, or 13 s. per Square, or about three Halfpence per Foot.

Weather-tyling.

1. What.] Is the Tyling, (or Covering with Tyles) the upright fides of Houres.
2. Price.] In fome places Weather-tyling is done at the fame Price as other plain Tyling. V. Tyling, N. 3. But in other places they have more, in confideration of Scaffolding; for fome Workmen tell me they have 4 so per Square for Workmanfhip only.

Well-bole,

The Hole left in \& Floor for the Stairs to come àp through,

> Wbite Painting.
V. Painting, N. 7 •

Wind-beant;
The fame as Collar-beam.

Windows.

1. What.] Every one knows that Windows are thofe parts of a Building that are made to let in the Light.
2. Situation of -] Concerning the Situation of Windows, obferve, firft, that they be as few in number, and as moderate in Dimenfions, as may poffibly confift with other due Rerpects: For in a word, allopenings are weakenings. Secondly, Let 'em be placed at convenient diftance from the Angles, or corners of the Building; becaufe that part ought not to be open and infeebl'd, whofe Office is to fupport and faften all the reft of the Building. Thirdly, Befure take great care that all the Windows be equal one withanother in their Rank and Order; fo that thofe on the right Hand may anfwer to thofe on the left, and that thofe above may be right over thofe below; for this Situation of Windows, will not only be handfome and uniform, but allo (the void being upon the void, and the full upon the full,) !twill be a great ftrengthning to the whole Fabrick.
3. Dimenfions of -] In making of Windows, you muft be careful,' not to give them more, or lefs Light than is needful, that is, make them no bicger, nor leis than is convenient; where-
wherefore you ought to have regard to the bignefs of the Rooms that are to receive the Light; it being evident, that a great Room has need of a greater Light, and confequently of a greater Window, than a little Room, \& écontra.

The Apertures of Windows in middle fizd Houfes, mas be 4^{\prime}, or s Foct between the Jambs, and in greater Euildingsthey may be $6:$, or 7 Foot, and their heighth may be double the length at the leaft. But in high Rooms, or larger Buildings, their heighth may be a third, a fourth, or half their breadth more than double their length.

Thefe are the Proportionsfor Windows of the firft Story; and according to thefe mult all the reft of the Windows in the upper Stories be for their hreadth; but for their heighth they muft diminifh: For the fecond Story may be one third part lower than the firft, and the third Story one fourth part lower than the fecond.
4. Price of making.] Window-frames are ufually agreed for by the Light, (fays Mr. Leybourn.) fo that if a Window have 4 Lights, and it be double rabitted, (as the Workmen call it,) it may be worth 12 s . that is 3 s . a Light for Materials and Workmanfhip. But if the Builder find Timber and Sawing, then I s. a Light is fair.

Tranfom-windows, (hays Mr. Wing) are worth making (for great Buildings) is. 9 d . per Light, or 7 s . per Window. Some Workmen tell me, they make'em for $12 d .14 d .16 d$. or 18 d . per Light, according to their bignefs.

Luthern Windows, (fays Mr.Wing, the making and fetting up, is valu'd from 9 to 14 s . per window, according to their bionefs. Some Workmen tell me, that (if they fav the Timber) they commonly have 20 s . per Window.

Shop windows, (fays Mr. Leybourn) will be afforded at the rame rate as plain or batton'd Doors, V. Doors.
5. Price of Painting.] The Pdinting of Window-frames, (fays Mr. Leybourn) is not ufually meafur'd, hue valu'd at 3 d. $4 d$. or $6 d$. per Light, according to their biznefs, and Cafements at three Half-pence, or 2 d . peir piece, and Irun-bars ato ld. or more, if very large, V. Painting.

Witbs,

Thefe are us'd by Thatchers to bind their Thatching-rods to the Rafters. They are commonly fold at σd. tre Hundred, and a hundred of 'em will do about 3 Squere of Thatching; for fome Workmen tell me, that they ufe about 33, or 34 Withs, and as many Thatching-rods, (which are of the fane Price with the Withs) in a Square; for they bied vowntheir Straw at every foot, or thereabouts, viz. at every orher Latl:

Lath; (for they Lath but 2 Laths in a Foot, and each Courfe of Thatching (bound down with one length of Rods,) is about 3 Foot in breadth.
Zacco

THE lower part of the Foot of a Column, (or of the Fedeftal of a Column,) in the form of a fquare Erick, or Tylc.
Zoporis,

Ele fame as Erceze.

$$
\dot{E} \quad 1 N I S
$$

-

[^0]: $\left\{\begin{array}{c}288 \\ 1=00 \\ 5=00\end{array}\right\}$

[^1]: What.] V. Capital. Num.z.

[^2]: 5. What.] 'Tis a thing fo well known, that every one that iknowsany thing, is fenfible of the Contrivance whereby Men preferve themfelves and their Goods from the Irjuries of the Weather, and other Inconveniencies.
