Gage
The Coccidae of lllinols

THE COCCIDAE OF ILLINOIS

THESIS

FOR THE

DEGREE OF BACHELOR OF ARTS

IN

ENTOMOLOGY

COLLEGE OF LIBERAL ARTS AND SCIENCES

UNIVERSITY OF ILLINOIS

1916

UNIVERSITY OF ILLINOIS

THIS IS TO CERTIFY THAT THE THESIS PREPARED UNDER MY SUPERVISION BY John Howard Gage

ENTITLED The coccidae of Illinois

IS APPROVED BY ME AS FULFILLING THIS PART OF THE REQUIREMENTS FOR THE

DEGREE OF Bachelor of Arts

alerentheotillivay
 Instructor in Charge

APPROVED: Stghlun a.

> HEAD OF DEPARTMENT OF....... Entomology

Historical.

The first systematic subdivision of the Coccidae was attempted by Signoret in 1868. He divided the group into four subfamilies; the Diaspidae, Brachyscelidae, Lecanidae, and the Coccidae. During the same year Targioni-Tozzetti published his work, the Stidii Sulle Cocciniglie", in this publication four subfamilies are also described, however, the work of this writer differs from that of Signoret's in that he has divided the family into the Ortheziniae, Coccinae, Lecaninae, and the Diaspinae.

Little was done towards arranging tables for the classification of the family after this time until Maskell published in the " Transactions of the New Zealand Institute", Vol. 28, 1895, the results of his study of the family. In this work he divides the Coccidae into the following subfamilies: the Diaspidiniae, Lecaninae, Hemicoccinae, Acanthococcinae, Dactylopinae, Idiococcinae, Monophlebinae, and Brachyscelinae.

In August, 1896, Professor T. D. A. Cockerell published a check list of the Coccidae, in the Bulletin of the Illinois State Laboratory of Natural History, Vol. 6. In this work he divides the family into ten subiamilies; the Monophlebinae, Porphyrophinae, Coccinae, Hemicoccinae, Ortheziinae, Asterolecaniinae, Brachyscelinae, Idiococciinae, Lecaniinae, and Diaspinae. Three years later the same author published in the Canadian Entomologist, Vol. 31, "Tables for the Determination of the Genera of the Coccidae". In the later work this writer has included his former subfamilies Hemicoccinae, Idiococcinae, and Asterolecaninae in the Coccinae; the Brachyscelinae are included in the Tachardinae,

THE COCCIDAE OF ILISITNOIS.

page.
I. INTRODUCTION
Families of the Homoptera 3.
Cicadidae 3.
Fulgoridae- 3.
Cercopidae 3.
Jassidee 3.
Membracidae 3.
Psyllidae -4.
Aphididae 4.
Aleyrodidae 7.
First Nymphal stage- -7.
second Nymphal stage 8.
Coccidae 8.
Adult Male Coccid -9.
Adult Female Coccid 10.
First Nymphal Stage 11.
second Nymphal stage 11.
Historical -13.
II. OBJECT -16.
III. MATERIALS 16.
IV. METHODS AND TECHNIQUE 17.
Treating 17.
Chloroform Ifethod 17.
Glycerin-Jelly Method 18.
Caustic Potash Method 19.
Other Bethods 20.
Staining 20.
Dehydration 20.
Clearing 20.
Mounting 21.
Remarks 21.
V. STA IINING 22.
stains 23.
Picric Acid 23.
Safranin- 24.
Surufuchsin 25.
Defination of Terms- 26.
Tabulation of Experiments With Stains 29.
Results of the staining Experiments 39.
Chemistry of Staining- 41.

Digitized by the Internet Archive in 2013

page.
Characters Revealed by stains -42.
VI. EXPLANATION OF TERMS 44 .
VII. CIASSIFICATION OF THE COCCIDAE OF IIIIMOIS.-.........48.
Pseudococcus longispinus 50 .
Gossyparia ulmi 52.
Parlatoria perigandii 54.
Aulacaspis rosae 57.
Chionasjis americana $6 n$.
Chionaspis corni 63.
Chionaspis furfura 66.
Chionaspis gleditsiae- 69.
Chionaspis pinifolia 72.
Chionaspis salicis-nigrae 75.
Diaspis auranticolor 78.
Iepidosaphes ulmi 81.
Aspidiotus ancylus 85
Aspidiotus forbesi 88
Aspidiotus fernaldi 92.
Aspidintus hederae 95.
Aspidiotus juglans-regiae -98.
Aspidiotus ostreeformis 1~2.
Aspidiotus pernicosus 1~5.
Aspidiotus ulmi 108.
Chrysomphalus obscurus 111.
VIII. ACKIVOTHEDGEMENT: 115.
PIATES 116
Plate No. I 116.
Plate No 117.
IX. BIBLICGRAPHY 118.
I. INTRODUCTICN.
scale insects, mealy bugs and bark lice, as they are commonly called, belong to the family Coccidae of the order Hemiptera, This order includes three suborders; the Heteroptera or true bugs; the Parasitica or lice; and the Homoptera or plant lice, leaf-hoppers, and scale-bugs. This latter suborder contains forms that show a very wide departure from the true homopterous type; the Coccidae are perhaps the most highly specialized family of the suborder. The Hemiptera have an incomplete metamorphosis, that is, after leaving the egg they do not undergo a complete change of form. Yet one finds in the Coccidae a very wide divergence from this type of transformation. In fact, entomologists are not agreed upon the type of metamorphosis of the male coccid. About ten per cent of the writers of this subject say that the male coccid has a complete metamorphosis, or undergoes a complete change of form after hatching; while on the other hand, the remaining students of the family contend that the transformation is incomplete and that the males have an incomplete metamorphosis. Since there is a complete change in the body form of the insect and since the wings are developed from wing-pads, one might have reasons for thinking that the metamorphosis is complete. The eyes of the adult male coccid also show a distinct change of form from the nymphal ejes; this characteristic might also be taken by some students of this family as being an indication of complete metamorphosis.
However, there are exceptions to these types in other species of the family, and one would have reasons equally as good for
$2+2=\frac{1}{4}$ $4-110-2 x+2$

\square
-a CRE
\qquad
 4

: $\quad . \quad \ldots$.
$2+2$
 $=$
\square -

- -
 0
m $=$ -2
- ,
0 $2 \cdot d e$ +
1 \square
- .

 - \cdot
- . .
 1 . :
$\rightarrow \frac{10}{2}$
- : F
 $2 x=1+3$ E
-

$+$ \square

\qquad
 \qquad1
saying that the transformation is incomplete. Whether scientists wish to accept the incomplete type of metamorphosis for the group as a whole and consider those forms which have an apparent complete transformation as more highly specialized, or vice-versa, is not the purpose of this study. But for the sake of clearness we shall in this paper consider the metamorphosis of both male and female of this family as being incomplete.

Before going further into this study, let us take a brie? resume of the suborder Homoptere. The suborder includes insects that have a somewhat triangular head and a rostrum which arises from the hinder part of the lower surface. The mouth-parts are formed for piercing and sucking, and are attached adjacent the first pair of legs. They usually appear as a slender pointed rostrum arising at the base of a shorter pointed upper lip or labrum. This rostrum consists of a fleshy, jointed sheath which encloses four bristles. Two of the bristles represent the mandibles and two the maxillae. The rostrum oroper is formed by a modification of the lower lip or labium. The antennae are awlshaped and consist of only a few segments, the ejes are usually compound, and ocelli are frequently present. There is usually a distinct constriction between the head and the thorax: The thorax bears five pairs of appendages; three pairs of legs which have tarsi consisting of three segments, two pairs of wings which are usually membranous. The name of the suborder is derived from two Greek words: homos, same; pteron, a wing. That is the wings are of the same thickness throughout.

Families of the Homoptera.
The Homoptera is usually divided into nine fomilies as follows:

Cicadidae.- Insects with three ocelli, and the males usually possesing musical organs. The members of this family are usually large and possess wings that are entirely membranous.

Fulgoridae.- Insects in which only two ocelli are present, the males are without musical organs, and the antennae are inserted on the sides of the cheeks and below the ejes. This family contains the lantern flies.

Cercopidae.- The members of this family have two ocelli, the males are without musical organs, and the antennae are inserted in front of and between the eyes. The prothorax is not prolonged above the abdomen. The hind tibia is armed with one or two stout teeth and the tip is crowned with short spines. This family includes the spittle-insects or frog-hoppers.

Jassidae.- In this family the members also have two ocelli present, the males are without musical organs, and the antennae are inserted in front of and between the ejes. The prothorax is not prolonged above the abdomen. the hind tibia have a row of spines below, but are without teeth. These insects always have a rather slender body. The family includes the leaf-hoppers.

Membracidae.- The ocelli in this family may or may not be present, but when present are always twc in number, the males are without musical organs, and the antennae are inserted in front of and between the eyes. The prothorax is prolonged into a point or horn above the abdomen. The family includes the tree-noppers.

Psyllidae.- The psyllids usually have three ocelli present, the compound ejes are prominent and globular. The antennae are present, they are usually very prominent and thread-like and consist of nine or ten segments. The rostrum arises between the prothoracic legs, and is borne on the ventral surface of a somewhat triangular-shaped head. These insects have three pairs of legs, the tarsi of which have two segments. The metathoracic legs are fitted for jumping. The psyllids have two pairs of rather delicate and transparent wings. The members of this family are commonly known as jumping plant-lice, and resemble a very small cicada.

Aphididae.- The members of this family usually possess three ocelli, and compound eyes which are prominent and globular. The antennae are attached on the front of the head and consist of from three to seven segments. The rostrum arises between the first pair of legs, it varies greatly in length, but is always composed of three segments. The wings may or may not be present, but when present always consist of two pairs and are very delicate, transparent, and contain a few simple veins. The first pair of wings is always larger than the second pair; the two wings of each side are usually connected by a compound hook which is a part of the hind wing and fits into a pocket on the caudal margin of the fore wing. The legs are long and slender and are not fitted for jumping. The tarsi consist of two or three segments. On the dorsal surface of the sixth abdominal segment, in many species, there is a pair of tubes througn which a wax-like
material is excreted. These tubes may be entirely absent in some genera, while in others they may be very highly specialized. The members of this family are commonly know as aphids or plant-
1ice. These insects are quite well known and may be found on nearly all kinds of vegetation in all parts of the country. Perhaps the most common form we are acquainted with is the green aphid. These are minute, soft, green bodied insects heving long legs and antennae. As a rule, these aphids may be found in abundance on nearly all of our house and field plants. Among our common species are found both winged and wingless forms. Aphids excrete a substance commonly knom as honey-dew. This substance is excreted from the posterior end of the alimentary canal. Where plant-lice are numerous the honey-dew is sometimes produced in such great quantities that it forms a glistening coat on the leaves and branches of the host plant. Honey-dew is eaten by ants, bees, and wasps; hence one generally finds great numbers of ants near an aphid colony. In addition to the honey-dew some species of aphids secrete a white waxy substance which is usually scattered over the body; in some genera, however, this powder may be collected so that it forms large flocculent and downy masses.

Most plant-lice exhibit a very remerkable mode of development, and the species vary widely in the details of their transformations, however, the following generalizations may be made.

There are several distinct forms in each species, each one of these forms plays a peculiar part in the life history. If one should examine a colony of plant-lice during the summer
months, there would usually be found a very large number of wingless individuals, these are the female aphids, which reproduce without the intervention of the males. Entomologists call this stage of the insect the wingless agamic form. Upon a study of these forms it will be found that in many cases the females give birth to living young, instead of laying eggs. Since this is true, the process of reproduction becomes so rapid that it would be disasterous to the life of the colony; for the host plant would be destrojed and the individuals starve if another form of the species did not arise. But at various intervals joung are produced which are winged, thereby providing for the spread of the species. This winged form consists of females, and is known as the winged agamic form. These migrate to a new locality and in turn produce femsles of the wingless agamic form, hence, we have a new colony of aphids formed. When the supply of food becomes low or cold weather sets in, there is produced a generation of males and females known as the sexual forms. The males may or may not be winged but the females are never winged. These sexual forms pair and the female produces one or two eggs which are known as the winter eggs. In the spring an agamic female hatches from these winter eggs and this femsle is termed the stem mother since she is the stock from which the summer generation springs. This peculiar method of the reproduction of wingless agamic forms is often called budding. Not only do plant-lice vary in their vary
methods of reproduction, but they also/in their maner of living and in their habits. Certain species burrow in the ground and Ilve on the roots of plants, while other forms live exposed on

the tender shoots and leaves of their host.
Aleyrodidae.- The members of this family have compound eyes, which are oval in form and are located on the sides of the head. The antennae are present, tiney consist of seqen segments, and are inserted in front of and between the eyes. The rostrum arises between the prothoracic legs, it is short and consists of three Very distinct segments. The head is triangular in form and is bent downard so that it appears to be on the ventral surface of the body. There is a distinct constriction betmecn the head and thorax. The thorax bears five pairs of appendages; two pairs of wings, and three pairs of legs. The wings are alvays present in both male and female, they are long, slender, and membranous; both of their surfaces,as well as the body itself is covered with a wax-like powder which renders them ovaque. The wings are carried horizonally when at rest and their inner margins never overlap. The legs are always present, and they bear tarsi consisting of two segments. The wax cornicles are wanting.

The young aleyrodids show two very distinet nymphal stages.

The First Nymphal stage.- The insect has a greenish glosiy appearance. Neither the eyes nor the ocelli are present. Whe antennae are manting. Whe rostrum is present and is very distinctly segmented. There is no indication $0 f$ a head, consequently, the constriction between the head and the thorax is wanting. The wings and legs are also absent. The body is oval in form. There is no wax-like secretion present at this stage. On the caudal portion of tie insect there is a distinct opening known as
the vasiform orifice. This orifice is always present and. characteristio of the family.

Sscond Jiymual Stage.- During this stage of development trel and the antennae are absent. The mouth-parts are the same in this stage as in the first nymphal stage. There is no indication of a head and the thorax is also wanting. The wings and legs are wanting, however, one finds indications of the developing appendages of the adult. The body form is plump and is some larger than in the preceeding stage. The wax secretion is present and comes from a series of pores arranged around the margin of the body in the form of plates which tend to fasten the insect to the host plant. The vasiform orifice is always present in this stage. The members of this fomily shom a very great resemblence to the Coccidae and until recently were classified as such. In their immature stages they resemble a species of the genus Lecanium. but in their mature stages they exhibit such a great difference from the coccids, that the group has been seperated as a distinct family. The adults are insect-like in form; having three main body divisions; head, thorax, and abdomen.

Coccidae.- This family shows the most remarkable variation from the true homopterous type. The wings of the typical Homoptera are carried roof-like, that is, they slope upward and inward and their inner margins meet above the middle of the back and do not overlap. In the Coccidae, however, we can judge this character only in the winged males, and in these the wings are carried horizonally above the back of the insect when they are at rest. Furthermore, the wings are not only carried horizonally, but they
frequently overlap each other. This is a very distinctive character of the Heteroptera, or true bugs; and is found in no other family of the Homoptera.

Adult male coccid.- The eyes of the adult mele coccid have undergone a remarkable change. The true ejes have apparently disintegrated and formed a series of simple ejes ranging in number from two to sixteen. These small eyes resemble ocelli, and might easily be mistaken for them; however, upon a detailed study they are found, not to be ocelli, but single simple ejes. Their position on the head varies among the subfamilies. In some cases where they are very few in number they may all be located on the dorsal sarface of the head; in other cases they may be distributed upon the dorsal, ventral, and lateral surfaces. The antennae ate present and consist of seven to ten segments, and are inserted upon the cephalic aspect of the head. The rostrum is very small, and the mandibles and maxillae are wanting. There is a distinct constriction between the head and the thorax. The thorax bears five pairs of appendages; three pairs of legs, one pair of wings, and a pair of club-shaped organs znown as halteres; these are probably derived from the second pair of wings. These halteres are provided with small hook-like bristles which fasten into a pocket on the caudal margin of the front wings. The front wings are very delicate, membranous, and contain a very few simple veins. While the above generalizations as a rule are true, nevertheless a few apterous male forms have been found and described. Newstead lists the male of Ponscolombia fraxinii in Vol. II, of his work." The Monograph of The British Coccidae", While in

Vol. 23, "Transactions of The New Zealand Institute", pages 8,9 Maskell gives the following list of apterous male coccids:

Aspidiotus ($? 7$ sabalis, Comst., Necond Cornell Uni. Rep. 67. Chionaspis salicis, Jinn.. Bouche Stett. Ent. Zeit., I\&84,294. Chionaspis Iraxinus, sig., Newstead.

Chinnaspis alni, Sig., Newstead.
Chionaspis dysoxli, Mask.,New Zealand Trans.. Vol.22, 163.
Ieucaspis pusella, Ibw Wiener Ent. Zeit., Vol.2, 1893.
Ericoccus (Acanthococcus) aceris, LBw. Wiener Ent. Zeit.,

$$
\text { Vol. 2, } 1883 .
$$

Lecanium hesperidum, Moniez Comptes de l'Academy des sciences, Feb. . 1887.

Ericoccus hoheriae, Mask., New Eealand Trans.. Vol. 23.
Sometimes only rudimentary wings are found in the following forms:
Gossyparia ulmi, Sig., Essai sur le Cocc., 320.
Lechia zelandica, Mask.. Now Zealand Trans.. Vol. 2z."
The legs are always present, the metathoracic legs are not modified and the tarsi always consist of one segment and a single claw. However, an exception occurs to this in the genus Ollifiella described by Professor Cockerell, and in the genus Exaereptopus; in these two cases the tarsi have two segments. The cornicles are always wanting.

Adult female coccid.- In the female coccid the eyes may or may not be present, but when present they are always simple and two in number. The antennae may or may not be present, but when present they always consist of a very small number of segments, or they are represented by a small tubercule. The rostrum arises
between the prothoracic legs; the mandibles and the maxillae are very well developed. There is no constriction between the head and the thorax. The wings are never present; the legs may or may not be present, when present, they rarely project beyond the margin of the body. The tarsi always consist of a single segment armed with a single claw. The body-form varies in the different subfamilies from a globular to a very thin plate-like structure. The females are usually provided with a series of wax glands and it is from these that the waxy substance is secreted. The plan or the arrangement of the gland orifices, and their secretions varies among the subfamilies. The females in some species are active throughout life; while in others they become fixed to the surface of the host and do not move after the first nymphal stages. The vasiform orifice is always wanting.

First, Nymphal stage.- In this stage of the development the eyes may or may not be present, but when present they are always simple. The rostrum arises between the prothoracic legs and bears the well developed mouth-parts. The antennae are always present and are provided with rather long, stiff setae. The head is present but there is no constriction between the head and the thorax. The wings are never present; while the nymph always has three pairs of long legs which are provided with long setae. The body form is cenerally oval, and in comparison to the length of the legs is very small. The abdomen at this stage is distinctly segmented.
second Wyphal stage.- During this stage in the development of the female the ejes are present as in the first nymphal
stage. The antennae are wanting or are eepresented by a tubercule. The rostrum and the mouth-parts remain as in the first nymphal stage. There is no further modification of the head. The wings are not present, and the legs have become very much shorter, in comparison with the size of the body. The segmentation of the abdomen is much less distinct.

The number of moults and nymphal stages varies among the subfamilies. In the subfamily Diaspinae the males become quiescent at the end of the second nymphal stege, while in the Erriococcinae they do not become quiescent until the third nymphal stage, and in the Monophlebinae quiescence begins during the f̛nurth nymphal stage. The period between the aymphal stages is spoken of as the period of moulting. About the time the male nymph goes into the quiescent stage it spins a coconn $\cap f$ wax filiaments about itself and then moults or casts its skin, after this the nymph becomes quiescent. During the perind of quiescence there appears a great transformation in the insect, it looses its mouth-parts, its legs and antennae are developed externally, wing-pads also begin to insect appear externally and gradually the quiescent/ takes the form of an insect pupa. In a short time it emerges from the quiescent stagel an adult coccid. The life history and the degrees of specialization of certain parts are quite noticable between various groups of the family, thereby afiording a systematist a good basis for dividing the family into sublamilies.
and the Porphyrophorinae are included in the Margarodinae. While it will be noticed that Professor Cockerell has combined some of his former subfamilies, he has nevertheless, presented three additional subfamilies, the Conchaspinae, Tachardinae, and the Margarodinae. The subfamilies, then, that he describes are: Ortheziinae, Monophlebinae, Margarodinae; Conchaspinae, Diaspinae, Tachardiinae, Lecaninae, and Coccinae. Hence, it will be seen that in this later work Professor Cockerell has decreased the number of the subfamilies by two.

During the same year that Professor Cockerell published his "Check List of the Coccidae", Mr.t.:. Green published his work "The Coccidae of Ceylon". In this work Mr. Green divides the family into the following subfamilies: Conchaspinae, Lecaniinae, Eemicoccinae, Dactylopiinae, Tachardiinae, Coccinae, Idiococcinae, Brachyscelinae, Ortheziinae, Monophlebinae, and later in the fifth volume of this work he divides the Dactylopinae into the Dactylopiinae and the Astreolecaniinae.

In 1900 Newstead published his work, "A Monograph of the British Coccidae". In this work Mr. Newstead bases the division of the family on the characters of the adult male insect, and describes twelve subiamilies, namely; Diespinae, Conchaspinae, Lecaniinae, Brachyscelinae, Ortheziinae, Largarodiinae, Hemicoccine, Dactylopiinae, Tachardiinae, Idiococcinae, coccinae, and Monophlebinae. In the same year Kuwana published tables for the identification of the Coccidae in his work on" The Coceidae of Japan". Kuwana desoribes five subfamilies, however, he divides these subfamilies into tribes. It is evident from his work that this writer did not think
the characters used by some of the previous writers were of sufficient importance to warrant their separation as subfamilies. This writer describes the following subfamilies: Monophlebinae; Margarodiinae which he divides into two tribes, the Margarodini and Xylococcini; Coccinae which he divides into four tribes, the Asterolecanini, Kermesini, Eriococcini, and Dactylopini; the Lecanilnae, and Diaspinae.

In 1903 Mrs. M. E. Fernold published the first catalog of the family, " The Coccidae of the Forld", and in this work she divides the family into nine subfamilies. In her worik she also bases the distinctive choracters on the adult male insect. The subfamilies she describes are ionophlebinae, Margarodiinae, Crtheziinae, Phenacoleachinae, Conchaspiinae, Dactyloviinse, Tachardiinae, Coccinae, and Diaspinae.

From the foregoing résumé of the division of the family one can easily see that entomologists are not at all agreed upon the number, and the characters for dividing the family into subfamilies. It is beyond all doubt that a more detailed study of specimens that have been prepared in a more modern way. I refer to the use of stains), will disclose a number of characteristics that will tend to clear away some of the doubt that is in the minds of the students of the family. In this paper, however, the Writer will follow the subdivisions as proposed by Hrs. Fernald.

II. OBJECT.

The original object of this study was to identify the Coccidae of Illinois, and as far as possible, to determine the number of species and their distribution tnroughout the state, also to identify the host plants upon which each species occurred. But owing to the fact that nearly all of the specimens collected were members of the subfamily Diaspinae, the study has been confined almost wholly to this sublamily. It was not the original intention of the Writer to include in this study any of the green-house species, but owing to the rather common occurrence of some species, a few of the more common forms have been studied. In addition to the above stated object, the writer had in mind to devise some means, it posinible, to make the study of the members of this family less difficult and more accurate.

III. MATERIAIS.

Collecting and preserving the specimens.- Specimens of scale insects were collected at large over the state during the summer months of 1913, 1914, 1915, and in the early part of 1916 at which time the writer was engaged in nursery inspection for the Cffice of the state Entomologist. It would seem' therefore, that practically all of the species of coccids, at least those that are of economic importance, would be contained in such a collection. The specimens were removed from the host plant and sealed in small specimen envelopes. On these envelopes the locelity, owner of the hogt, the host plant, the extent of the infestation, the date of collection, and the collector were written. The specimens were
then packed in empty cigar boxes. Then these boxes were full, three of four napthaline balls were placed in each box and the covers were then firmly fastened. The napthaline balls mere used to insure the specimens against the destructive work of museum pests. The specimens were then stored away until a further study could be made.
nther materials.- One who wishes to make a detailed study of this family must have a complete laboratory equipment, includreagents and microscopes. A Leitz binocular was used in preparing the mounts studied in this work, while for a more detailed study of the insect, a Leitz compound microscope with three objectives and a complete set of oculars was used.

In addition to the above stated materials, a student of this family must have an unlimited reserve of patience and perserverance, for the classification of the coccidae is / a small problem and requires the most accurate observation of minute details.

IV. METHOJS AID TECHITUE.

Treating. Before a detailed stuay, that is a microscopic study, of any coccid can be made it is necessery to clean them. During this process all of the soft parts of the body, together with any waxy or greasy secretions that may be present, must be removed. This leaves only the chitin which is more or less transparent. Specimens may be treated in the following manners:

Choloform method.- This method does not destroy the soft parts of the body, for the choloform only dissolves the wax that may be present on the external surface, clears the tissues of the
body and also the thinner parts sufficiently to make them transparent. The method has the disadvantage in that it leaves the thicker parts opaque; moreover, specimens that are dry and shrunken cannot be successfully treated because the choloform does not cause any swelling of the specimen. However, this method has the advantage of requiring a very small amount of handind the specimens, for they are simply placed in the choloform and allowed to remain there until they are sufficiently clear and then mounted in balsam. Since choloform is missible in balsam, the specimens can be mounted at once.

Glycerin-Jelly method.- This method is of little or $n o$ practical use in the laboratory; however, it is useful when one desires to make mounts in the field, for, it admits of a quick preparation. The method can be used to best advantage only with live specimens; however, dryed specimens may be treated if they are boiled in water a few moments to soften them. Specimens to be mounted in this manner are placed on a microscope slide and near them is also placed a small particle of glycerin-jelly, the slide is then gently heated over an alcohol lamp allowing the jelly to surround and completely penetrate the specimens, then a cover-glass is pushed down upon them. The cover-glass should be pushed down as firmly as possible, for in doing so the specimens are flattened out and made more nearly transparent. The method has the advantage of being easily used in the field, and of requiring that the insects be handled but a very little for one does not need to use alcohol, xylol, or balsam. But on the other hand, it is of little or no use with any of the coccids exceot the members of the sub-
family Diaspinae.
Caustic potash method.- This method admits of two modes of procedure, the last and the slow.
specimens that are to be prepared by the fast method are placed in a cold ten per-cent solution of potassium hydroxide. This solution is then heated gently, or it may even be boiled. The heating tends to hasten the process of cleaning; however, there is a great possibility of the specimens being distorted, some of the minute hairs of the pygidial fringe may be broken off, consequently the preparation will be of no taxonomic value. In using this method, one needs to treat the specimen for only a few moments in the in the potassium solution; however, it seems that the disadvantages of this method are so much greater than its one advantage, the economy of time, that it should not be used unless one is in great haste and does not care for a carefully preserved specimen. Aeter the insects have become sufficiently clear, they should be thorovgh Iy washed in two or three changes of distilled water, after which they are ready to be dehydrated.

If one chooses to prepare the specimens by the slow method, a Pew cubic centimeters of cold ten percent potassium hydroxide are pored into a watch-glass, the specimens are placed in this solution and allowed to remain there until they are sufiiciently cleared for study. This process may require only a few minutes in some bases, while in others it may require two or three weeks. After the specimens are sufficiently clear they should be removed from the potassium hydroxide and washed in distilled water as in the fast method. The specimens are now ready for dehydration.

The potassium hydroxide destroys all the parts of the body ezcept the cuticular covering; hence, when one studies a specimen prepared in this manner, he is in truth studying only the skeleton of the insect.

Other methods.- There are several other methods of cleaning insects, however, I shall only mention them. They are the beech-mond-creosote method, the sulfuric-ether method, the alcoincl method, and the acetic-acid method. These are only short cuts and should not be used if one wishes to make a close and detailed study of the specimens.

Staining.- If one wishes to stain the specimens, it can be done, to the greatest advantage, at this point of the preparation. The process of staining will be treated at length later in this pader.

Dehydration.- After the specimens have been thoroughly washed and stained, they should be dehydrated. This is best accomplished by allnwing them to remain in a ninety-five per cent, or,still better, absolute alcohol for an hour or so. This process removes all of the water that may de present in the specimen.

Clearing.- After the process of dehydration is complete, it is necessary to treat the specimens with a solution that is missible in both alcohol and balsam, since the specimen is to be mounted in balsam. Many substances may be used as clearers, but in my experiments and work, carbol-xylene has given the best results. This clearer is prepared in the following manner:

```
Carbolic acid crystals.......... l part.
Xylene......................... 3 parts.
```

This preparation was then set aside to be used as the occasion demanded. Carbol-turpentine, oil of cloves, and oil of wintergreen may also be used as clearers; but they have not given as good results as the carbol-xylene. In order to clear the specimen most successfully, the dehydrated insect should be put in a watchglass containing carbol-xylene and allowed to remain there at least an hour. There is little danger of leaving the specimen in the clearer too long. After this process is completed the specimen is ready to be mounted.

Mounting.- In this process the specimen is removed from the watch-glass containing the carbol-xylene and placed on a microscope slide which has been moistened with a few drops of the clearing solution. Then without allowing the specimen to become dry a cover-glass which has been moistened with xylene-balsam should be dropped uoon the insect, this cover-glass must then be pressed down firmly. The prepared mount is now ready to be set aside to dry. The slides were then labled and numbered, and the data on the specimen envelope carefully recorded under a number corresponding to that on the slide and specimen envelope. The slides were then stored in a regular microscope slide case, containing one hundred preparations, to await further study and to be identified.

Remarks.- Mounts of scale insects, no difference by what method they are prepared, should always be made as thin as possible, inasmuch as they admit of greater ease of study and the use of high power microsconidobjectives. In transferring the specimen from one solution to another or placing them on a slide, a pair of
forceps having a fine curved point, has been found to be the best instrument to use. With these forceps the specimen may be removed with a small portion of the fluid between their points. In specimens that have been handled in this manner there is the minimum danger of their being mutilated.

V. STAINING.

Up to the present time the practice of staining Coccidae in toto as an aid to taxanomic study has not been adopted in this country; nor, has it been practiced to any great extent in 玉uropean countries. Jewstead mentions the use of stains in his "Monograph of the Coccidae of the British Isles", and in the preparation of his specimens he used a stein whenever it was possible. Mr. E. E. Green, another Anglish student of this family, also mentions the use of stains in his work " The Coccidae of Ceylon". He says, " I woula strongly recommend the staining of all the more delicate objects. Unexpected characters will often be revealed by this means and it will help to clear up many doubtful points. If there is any question about the number of joints in the antennae, or the hairs on the anal ring, the addition of a stain will usually make them perfectly distinct."

Both Green and Newstead were pioneers in the use of stains so far as the writer has been able to ascertain and their work ghows that they were not able to get the heavier parts to take the stain, especially is this true in the case of the pygidial fringe. In their work they used an alcoholic solution of Grawshams \#agenta; however, Green recommends the use of any of the
aniline dyes or even red ink. It will be seen that both of these writers have divided the family into more permenent subfamilies then any worker who studied the family before them, their contemporaries, or with one or two exceptions, those who have studied the family since the publication of the above named works. This of course may be due to many causes; but it would not be out of place to account for part of their success, at least, to their use of stains.

Most attempts to stain the chitinous covering of insects, as a whole or in part, have given but very little permanent success. Chitin is a very difficult substance to color and in fact only a few of the ordinary stains will effect it. In most cases where the chitin does take the stain there is a general complaint that the color fades, or, on the other hand, that it is not bright, clear, and definite.

Stains. - In his work with the Coccilae the writer has experimented with three staining substances, picric acid, safranin, and salurefuchsin. All of these materials gave a fair degree of color, however, it was not permanent.

Picric acid.- A stock solution of this stain was prepared as folloms:

$$
\begin{aligned}
& \text { Picric acid crystals............... } 2 \text { grams. } \\
& \text { absolute alcohol.................. } 1 \text { no cc. }
\end{aligned}
$$

This solution was then set aside to be used as the occasion demanded. In using this stain the process of dehydration and staining were combined and equal amounts of the solution and alcohol were used. The specimens were allowed to remain in this solution
,
two or three hours, then they were transferred to the carbolxylene clearer. Picric acid gives the specimens a light yellowish green color: however, it produces a rough ground stain and affords but little contrast. It does not color the marginal spines or plates, hence, its chief value is only that of a ground stain. Safranin.- A stock solution of this substance was made as folloms:

$$
\begin{aligned}
& \text { Safranin. } 5 \text { grams. } \\
& \text { Absolute alcohol............ } 100 \text { cc. }
\end{aligned}
$$

In using this stain dehydration and staining were likewise combined; one part of the solution and five parts of absolute alcohol were used. The specimens were left in the solution at least two hours and then removed and the excess of the stain was washel off in absolute alcohol. Safranin is very soluble in alcohol and also in carbol-xylene, hence, it is necessary to remove the specimens from the wash alcohol as quickly as possible and the process of clearing in cerbol-xylene must be reduced to the minimum length of time. which is about fifteen minutes, or otherwise all of the stain would be washed out of the specimen. This stain colors the chitin a bright carmine red, it also colors the marginal spines and plates. The gland orifices become quite clear and distinct, while on the other hand the small tubularia are not saffranin distinctly colored. My experience with specimens stained pith/ has been, that they fade out very quickly and the minute details become very indistinct. In freshly stained specimens practically all of the details are well enough colored to make a detailed study of the specimen quite easy and accurate, but, a great deal
of reliance cannot be placed upon the stain as it becomes aged. Salurefuchsin (Acid magenta).- In preparing a stock solution of this stain the following formula was used:

> sialurefuchsin..................... 5 grams. Ten per cent hydrochloric acid,5 parts. Distilled water................... $1^{n 0}$ ce.

Lee in his " Vade Mecum" says of this stain, "This dye is an 'acid' colour, and it is the soda salt of the di- or tri-sulphoconjugated rosanilin which exists as an acid in the compound, and not to the soda". It is then very evident thet the oresence of an alkali, even in minute quantities, will impair the working of this stain, and it is very important that all traces of the potash should be removed. This requires that the specimens be washed in three or four batis of distilled water. As a further precaution to insure against the presence of an alkali, the hydrocholoric acid was added. This acid will neutralize any of the potash that may be present and throm it down as a potassium salt. Sturefuchsin is not highly soluble in either alcohol or earbolxylene, therefore, the specimens can be left in these solutions a sufficient length of time to insure complete dehydration and clearing.

The time required to stain the specimens varies; however, thirty minutes are usually suificient to give the proper degree of color to most coccids. The ordinary acid-magenta or saurgive fuchsin that can be obtained on the marketna color that has the same difficulty as has the other substances referred to above in this paper, namely, that of fading. It gives a very distinct ground stain, but the coloring in the structures of the pygidium
of the subfamily Diaspinae faded out as the specimen became older. This left the structures almost invisible, as they have approximateIy the same refractive index as the balsam in which they were mounted. This stain is very advantageous when one wishes to malke a study of the specimens soon after they are mounted.

In order to overcome this apparent difficulty of the stain fading, the writer carried on a series of experiments, the object being to find if possible, some stain that would give a distinct permanent color and at the same time as much contrast as possible. In carrying out this experiment,all of the insects that were placed in the same series received the same treatment in the same dishes and at the same time, the only point of difference in the process of preparation was that of staining.

The staining materials used Tere picric acid, magenta or salurefuchsin, and safranin, but the results obtained from the use of picric acid and from wafranin were in no way as good as those obtained from the use of saturefuchsin. As a result of this both the picric acid and safranin were discarded and practically all of the experiments were made with the latter.

Before giving the results of the experiment, it will be nec essary to define the following terms that are to be used in the tabulation of the work:-

Color.- This refers to the uniform ground color of the specimen.

Marginal contrast.- This refers to the contrast of the marein of the insect with the balsam in wich it was mounted.

Degrees of marginal contrast.
Weak.- The contrast is weak when the fringe of
the insects did not take enough of the stain to color them.
Mudy.- The contrast is spoken of as being muddy when the stain did not color the fringe distinctly, that is, the color washed out leaving the balsam also colored. Strong.- The contrast is strong when the fringe took enough of the stain to make it distinct and contrasty.

Internal contrast.- This refers to the contrast of the internal characters with the surrounding parts of the insect.

Degrees of internal contrast.-
Weak.- When the internal characters did not take enough of the stain to make them clearly defined, the stain is designated as being weak.

Distinct.- When the internal characters tools enough of the stain to make them clear and distinct, the contrast is designated as boing distinct.

Overstained.- When the specimen took so much of the stain that the internal characters were rendered opaque, the specimen is said to be overstained.
Understained.- When the specimen did not take enough of the stain in order to show clear ly and distinctly the internal characters, the specimen is said to be understained.

Tabulation of the experiment with stains.

Experiment No. 1.

The specimens were put into the following staining solutions.

$$
\begin{aligned}
& \text { Distilled water } \\
& 60 \text { parts. } \\
& \text { SKurefuchsin stock solution...... I part. } \\
& \text { Time...................................... } 15 \text { minutes. }
\end{aligned}
$$

Results.

> Color. Good.

Marginal contrast..................... Strong.
Internal contrast...................... Teak.
Exporiment No. 1 Ia .
The same staining solution as No. 1 .
Time.................................. 60 minutes.

Results.

> Color................................. Good. Marginai contrast.................. Strong. Internal contrast.............. Distinct.

$$
\text { Experiment No. } 2 .
$$

Time................................... 15 minutes

Results.

$$
\begin{aligned}
& \text { Color.................................. Excellent. } \\
& \text { Marginal contrast................... strong. } \\
& \text { Internal contrast } \\
& \text { Distinct. }
\end{aligned}
$$

Experiment No. 2.
Staining solution the same as in No. 2.
Time 45 minutes.
Results.
Color Excellent.
Marginal contrast Strong.Internal contrastDistinct.
Experiment 110 . 3 .
Dlstilled water 60 parts. Sturefuchsin stock solution....... 4 parts. Time..................................... 15 minutes.
Results.
Color Good.
Marginal contrast Strong. Internal contrast Poor.
The specimen was decidedly overstained.
Experiment $\mathbb{N o}$. 3 a.
Staining solution the same as in No. 3.
Time 35 minutes.
Results.
Color Gond.
Marginal contrast Strong.
Internal contrast. Poor.
The specimen was overstained.
Experiment No. 4.
Distilled mater 60 parts. Ten per cent hydrochloric acid.... l part. Time.. 20 minutes.

Results.

> Color... Poor

Marginal contrast.......................... Weak.

> Internal contrast........................... Teak.

This specimen was understained.
$\frac{\text { Experiment No. } 4 \mathrm{a} \cdot}{\text { Staining solution the same as in } \mathbb{N} 0.4}$
Time... 50 minutes.

Results.

.Color. Poor.
Marginal contrast....................... Strong.
Internal contrast....................... overstained.
The specimen was decidedly overstained.

$$
\text { Sxperiment No. } 5 \text {. }
$$

$$
\begin{aligned}
& \text { Distilled water....................... } 60 \text { parts. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Ten per cent hydrochloric acid.... } 3 \text { parts. } \\
& \text { Time....................................... } 20 \text { minutes. }
\end{aligned}
$$

Results.

Color...................................... Excellent.
Marginal contrast...................... Strong.
Internal contrast.................... Jistinct.
Results in this specimen were not uniform.

Experiment $\mathbb{N O}$. 5 a.

Staining solution.the same as in $\mathbb{N o} .5$.

$$
\text { Time.. } 45 \text { minutes. }
$$

Results.

> Color
> Excellent.
> Marginal contrast
> strong.
> Internal contrast........................ .verstained.

> specimen was decidedly overstained.
Experiment $\mathbb{N O}$. 6.
Distilled water 60 parts.
sturefuchsin stock solution. parts.
Ten per cent hydrochloric acid. 5 perts.Time..................................... 20 minutes.
Results.
Color Excellent.
Marginal contrast strong.Internal contrastDistinct.
Experiment No. 6a.
Staining solution the same as No. 6.
Time 40 minutes.
Results.
Color Excellent.
Marginal contrast Very strong.
Internal contrast. Very distinct.The staining in this specimen is perfect.
Experiment No. 7.
Distilled water 60 parts.Forty per cent formalin................. 2 parts.sHurefuchsin stock solution.......... 2 parts.Time..................................... 15 minutes.
Results.
Color Poor.
Marginal contrast. Very weak.
Internal contrastThe specimen is decidedly understained.
Experiment No. 7e.
Staining solution the same as No.7.45 minutes.

Results.

$$
\begin{aligned}
& \text { Color . } \\
& \text { Marginginct. } \\
& \text { Internal contrast. . . . }
\end{aligned}
$$

Experiment NO. 8.

$$
\begin{aligned}
& \text { Distilled water....................... } 60 \text { parts. } \\
& \text { Forty per cent formalin............. } 4 \text { parts. } \\
& \text { s橴urefuchsin stock solution......... } 2 \text { parts. } \\
& \text { Timo.................................... . . } 15 \text { minutes. }
\end{aligned}
$$

Results.

$$
\begin{aligned}
& \text { Color. } \\
& \text { Interkinal. } \\
& \text { Vargintrast }
\end{aligned}
$$

The specimen appeared muddy and not clear.

$$
\begin{aligned}
& \text { Experiment No. 8a. } \\
& \text { Staining solution the same as No. } 8 . \\
& \text { Time..................................... } 40 \text { minutes. } \\
& \text { Results. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Color................................ } \operatorname{sixcellent.~} \\
& \text { Marginal contrast } \\
& \text { strong. } \\
& \text { Internal contrast.......................Distinct. }
\end{aligned}
$$

In the above series of experiments the specimens treated with the stain were Chionaspis gleditsiae. This species has a very thin body-wall and represents one of the most easily stained diaspids. The specimeñ treated were fresh; therefore,there mas no possibility of theinfeing damaged by fungus or museum pests.

Experiment No. 10.

$$
\begin{aligned}
& \text { Distilled water............................. } 60 \text { parts. } \\
& \text { S\&urefuchsin stock solution............. I part. } \\
& \text { Time.. } 15 \text { minutes. }
\end{aligned}
$$

Results.

> Color. Weak.

Marginal contrast..........................
Internal contrast............................. Teak.
This specimen was not stained at all.
Experiment No. 10a.
Staining solution the same as $\mathbb{N o}$. 10 .
Time.. 4 . 4 minutes.

Results.

> Color
> Good.
> Marginal contrast
> Strong.
> Internal contrast........................... Distinct.

Experiment No. 11.

Distilled weter............................. 60 parts.
saurefuchsin stock solution............. 2 parts.
Time.. . . 15 minutes.
Results.
Color.. Good.
Marginal contrast Strong.
Internal contrast............................ Distinct.

Experiment No. Ila.
Staining solution the same as $\mathbb{H o}$. 11.
Time.. $4 b$ minutes.
Results.
Color.. Excellent.
Marginal contrast............................ Strong.
Internal contrast........................... Distinct.

Experiment No. 12.
Distilled water 60 parts.
Salurefuchsin stock solution 4 parts.Time18 minutes.
Results.
Color Good.
Marginal contrast Strong.Internal contrastPoor.The specimen was decicedly overstained.Experiment No. 12a.Staining solution the same as No. 12.
Time 40 minutes.
Results.
Color Good.
Marginal contrast Strong.
Internal contrast Poor.
Specimen overstained.
Experiment No. 13.
Distilled water 60 parts.
salurefuchsin stock solution. 1 part.
Ten per cent hydrochloric acid. 1 part.
Time 20
minutes.
Results.
Color Good.
Marginal contrast. Strong.
Internal contrast Poor.The specimen appeared to be mudy.
Experiment No. 13a.
Staining solution the same as in No. 13.

```
Time
38 minutes.
```


Results.

$$
\begin{aligned}
& \text { Color. Good. } \\
& \text { Marginal contrast................................ Strong. } \\
& \text { Internal contrast..............................Distinct. }
\end{aligned}
$$

Experiment No. 14 .
Distilled water 60 parts.
s名urefuchsin stock solution 2 parts.
Ten per sent hydrochloric acid 2 parts.
Time 20 minutes.
Rosults.
Color Excellent.
Marginal contrast Strong.
Internal contrast. Poor.
Specimen overstained.
Experiment IVO. 14a.
staining solution the samo as IV. 14.
Time 35 minutes.
Results.
Color Good.
Marginal contrast. strong.Internal contrastpoor.
Speoimen overstained.
Experiment No. 15.
Distilled water 60 parts.
SHurefuchsin stock solution 2 parts.
Ten per cent hydrochloric acid 5 parts. Time 20 minutes.
Results.
Color Excellent.Marginal contrastStrong.
Internal contrast Very distinct.

Experiment No. 15\&.

Staining solution the same as $\mathbb{N o . ~} 15$.
Time.. 35 minutes. Results.

Color.. Excellent.
Marginal contrast. itrong. Internel contrast. Poor.

Specimen overstained.

Experiment No. 16.
Distilled water.............................. 60 parts.
Salurefuchsin stock solution............... 4 parts.
Ten per cent hydrochloric acid.......... 2 parts.
Time.. . 20 minutes.

Results.

Color.. Excellent.
Marginal contrast............................. ... Strong.
Internal contrast........................... Distinct.

> Experiment No. 16a.
> Staining solution the same as No. 16 .
> Time... 45 minutes.

Results.

Color.. Excellent.
Marginal contrast. Strong.
Internal contrast......................... Poor.
Specimen overstained.

Experiment No. 17.
Distilled water
60 parts.
Ten per sent potaisium hydroxile....... 4 parts.
Sưureťuchsin stock solution............. 3 parts.
Time.. 2 . minutes.

Results.

$$
\begin{aligned}
& \text { Color. } \\
& \text { Marg. } \\
& \text { Internal contrast. }
\end{aligned}
$$

Experimant $170.17 a$.

Staining solution the same as $\mathbb{N o . ~} 17$.
Time... 45 minutes.

Results.

$$
\begin{aligned}
& \text { Color....................................... . } \mathbb{N o n e} \text {. } \\
& \text { Marginal contrast.......................... Nono. } \\
& \text { Internal contrast......................... }{ }^{\text {None. }}
\end{aligned}
$$

The specimen did not show any color whatever.
The specimens used in this series of experiments were Chionaspis salicis-nigrae. nhis species has a very thick and heavy body=wall and represents one of the most difficult coccils to stain. The results of this series of experiments were impaired beaause the specimens were damaged by the presence of a parasitic fungus.

Experiment IVO. 20.

Results.

Color....................................... Good.
Marginal contrast. Strong. Internal contrast.......................... Distinct.

Experiment No. 20.
staining solution the same as No. 20.
Time
30 minutes.

Results.

Color Excellent.
Marginal contrast Very strong.Internal contrast......................... Very distinct.
Experiment No. 20b.
Staining solution the same as No. 20.
Time 45 minutes.
Results.
Color Very good.
ilarginal contrast Very strong.Internal contrastVery distinct.
Staining perfect.
Experiment No. 21.
Distilled water 60 parts.
Sưurefuchsin stock solution 3 parts.
Ten per cent hydrochloric acia 5 parts.
Time 15 minutes.
Results.
Color Gond.
Marginal contrast Strong.
Internal contrast. Distinct.
Experiment No. 218.
Staining solution the same as No. 21.
Time 30 minutes.
Results.
Color. Excollent.
Marginal contrait Very strong.
Internal contrast Very distinct.
staining perfect.
The insects stained in this series of experiments were thePseudococcus longispinus. These insects are soft bodiea and be-long to that group of scale bugs commonly kown as the unarmored
scales. The body wall of this species is very thin and delicate and when properly cleaned becomes nearly transparent, this makes a study of the subfamily difficult. These insects mere treated mith the same stain and in the same manner as were the mombers of the genus Chionaspis. Owing to the character of the body wall of this species, it is one of the easiest coccids to stain. In this experiment only those formulae were used that gave a favorable result in the previous experiments.

Results $0 f$ The Staining Experiments.
The specimens used in these experiments were taken from the potassium hydroxide and washed in three changes of distilleá water, then they were treated with the stain. It will be seen from the above results that in series $\mathbb{N} 0$. I in which Chinnaspis gleditiiae, a very thin walled coccid, was used the best color was obtained in experiment No. 6a, ani the staining formula was:

In series No. II in which Chionasnis salicis-nigrae, a very thick walled heavily chitinized insect, was used, the best results were abtained from experiments tio. 15 and 16 . The formulae for these solutions were.

results obtained were not all uniform, some of the specimens were decidedly overstained and none of them mere understained; while, in experiment tio. I5 none of the specinens were overstained or seriousIf understained. The results in this series were not as good as they might have been because the specimens were damaged by the presence of a fungus.

In series No. III in which Pseudococcus longispinus, a very thin walled unarmored scale. was used only those formulae were triedi that gave the best results in the preceeding experiments. In this series all of the specimens were well colored, but, ITos. 2na and 2la geve decidedly the best results. The formulae used in these experiments were,

In this experiment it will be seen that the only difference in the staining solutions was one part of sturefuchsin. The specimens in 2la were all coloreà a deeper carmine tnan those in 2 a: however, specimens stained by both of the solutions show distinctly all the characters used in the identification and classification of the insect.

A little study of these formulae will show that the relative thickness of chitinization of the body wall has but little to do With the amount of the strin required, for in the case of one of the most heavily chitinized and the least chitinized of the coccids the same strength of the staining solution gave equally as good results, and the sixty parts of water, two parts of sadure-
fuchsin stock solution, and five parts of ten per-cent hydrochioric acid is strongly recomended for vese in staining the members of this family. The time limit should be a few minutes longer in staining a heavily chitinized insect than one less heavily chitinized. The results of the experiments show that twenty to forty minutes are required to get a mell stained specimen.

In experiments $\mathbb{N o}$. 17 and $17 a$ in which the staining solution was made strongly alkaline, it will be observed that the results are worthless. This is due to the presence of the alkali which caused the color to fade, in fact, when the specimens were removed from the staining solution all the color had faded from the solution in the watch-glasses.

Chemistry of staining.- Most of the fading, if not all of it is caused by the resence of minute particles of alkali in the specimen. To remove the alkali sufficiently that the working of the stain will be unimpaired will require much more than the customary three washings. The presence of an alkali was first detected by finding small crystals of some substance, presumably potassium chloride, in the specimens that had been treated with hyarochloric acid. Then a test was made in which a specimen was taken from the potassium hydroxide and without washing, was treated with hydrochloricl This specimen,after being mounted, apneared to be stuffed with small crystals, evidently of potassium chloride: furthermore the specimen was rendered worthless for study. If one removes the larger part of the potassium hydroxide by washing the specimen, the small ameunt of crystals present do not at all im-
pair its study. By using a distinctly acid staining solution the presence of these minute particles of alkali is insurel against, for, hydrochloric acid neutralizes the alkali and forms a salt and water with it thus:

HCl in excess $+\mathrm{KOH} \rightleftarrows \mathrm{KCl}+\mathrm{HOH}+\mathrm{HCl}$.
Potassium chloride is highly soluble in water, but, since all of the water is removed during the process of dehydraticn there remains nothing but the small amount of potassium chloride and the hydrochloric acid. Bince there is an excess of the acid in the specimen, it is then mounted as an "acid" specimen and sealed in With balsam as an "acid" specimea; therefore, the possibility of its fading has been eliminated. This fact was proven by a study of slides which were prepared early in the autumn of 1915. The specimens that were stained in a noutral solution have become almost colorless, while others prepared soon aftermards and stained in a strongly acid solution have retained their color and are now as bright carmine-red as when freshly removed from the staining bath.

Characters Revealed By stains.- All of the characters that are visible in an unstained specimen and many characters that are not at all plain or visible become very distinct in specimens that have been properly stained. In the more generalized coccids the anal ring, its setae, ani the rows 0 cell $\begin{aligned} & \text { clike structures around }\end{aligned}$ it, the number of joints in the antennae, the antennal setae, the abjominal labiae, and che numerous wax pores, are made very distinct and plain. In the more specialized coccids the segment tion of the body is distinctly shown. But most, of all, the internal
characters of the pygidium are colored so that they are the most conspicuous objects on the specimens. The tubularia of the dorsal pores and of the micropores are made visible, and it is possible that this character may be of considerable taxonomic value. The structure of the circumgenital gland orifices as compared with that of the dorsal glands is clearly shown. In unstained snecimens the basal thickenings in most cases cannot be seen, yet, in a stained specimen they are shom with a wonderful degree of clearness. The shaoe and arrangement of these thickenings may be of considerable taxonomic importance in the ganus Aspidiotus in which they occur. The mocifications of the pygidial fringe are so clearly shown that there can be no doubt as to the relation of the various parts.

VI.EXPIATATION OR TERMS -

In order to make the following descriptions clear, it will be necessary, before describing the Illinois Coccidae, to explein the terms that are to be usec in the descriptions. Nwo plates representing the typical form of the body in Asnidiotus and Chionaspis will shom the form of the pygidium, its parts,and their identity. It will be seen from an examination of the descrintions that the characters of the nygidium serve in a large way to determine the systematic position of the species.

The following technical terms have been used:-

Anus, Anal 6pening.- The terminal opening of the alimentary canal. More or less circular in form; located on the dorsal surpee of the body, Lowever, the location varies, and it is usually found on the fifth to the nineth segments.

Anal jobes.- The anal lobes are projections of the body-wall and are found on either side of the anal opening in the Coccinae and Eriococcinae.

Anal aing.- The anal ring is an oval or circular structure which surrounds the anal opening in the more generalized subfamilies of the coccidae. It is usually composed of one or two rows of cell-like structures.

Anal Setae.- The setae borne on the anal ring are the anal setae. 3asal Thickenings.- These are thickened places in the chitinous exoskeleton of the insect. Thoy are located mesad of the anterior and posterior groups of circumgenital pores. They have been found only in the genus Aspidiotus.

Callus (pl. Calli).- These are chitinous thickenings, usually four in number, forming a transverse row across the pygidium cephalad of the anus.

Cerari.- The cerari are spine-like structures found along each lateral portion of the body in some subfamilies. They tend to hold the body away from the host plant, thus providing for an air supply.

Circumgenital Gland Orifices.- These are the nonings no the glands arrangel around the vaginal opening. They are usually arranged in groups.

Dorsal Pores.- The dorsal pores are oval orifices, however, in some species the orifices may be round. They are Incated on the dorsal surface of the pygidium, usually arranged in more or less transverse roms, each row consisting of ton groups, an anterior and a posterior one. The roms are designated oy nurnvers beginning with the one nearest the median lobes. L the secretions which form tine scales are discharged from these openings.

Exuvia.- This is the anorsal integument of the early stages which has been cast off at moulting. The cast off integument is fastenel to the scale by wax threads. The uppermost exuvia is called the first and the larger one underneath it is called the second.

Gland Orifico.- Whe external ovening through which a gland emits its secretion is called a gland orifice.

Incisinns.- These are the notchew along tho margins of the pygidium. They are considered, oy some autiors, as marking
the position of the conjunctiva between the original segments of the pygidium. They are designated as follows; the one between the melian lobes is the first, the one between the melian and second pair of lobes is the second, the third Qae is the nne between the secnd and the third lnues, etc. Lobes.- The lobes are projections f the boly-mall, they usually mark the divising line betmeen the transformej segments of the pygidium. The lobes are designated as follnws; the Dair at the posterior extremity of the boky is callei the median pair, and the nairs cephaln-laterad them are numoered second, third, and fourth, as they occur.

Lovule.- nne of the lnbe-like structures of a lobe formed when it is deeply incised.

Narginal Pores.- The openingi ni the marginal glands are called the marginal pores. They are arranged around the margin of the pygidium, tieir function is the same as that of the dorsal pores.

Median Lobes.- These are the lobes located at the caulal extremity of the body near the meson.

Mouian Incision.- This is the incision at the nosterinr extremity of the body between the median lobes. This incision is very distinct in : Aulacaspis and Phenacaspis. ivicropores.- These are the small round pores loeated on the posterior part of the pygidium of the Diaspinae; they are much smaller than the dorsal pores.

Paranhyses.- The paraphyses are heavy chitinous thickenings extending into the body-wall from the margin of the pygidium.

Pectinae.- These are broad bifurcated, trifurcated, or polyfurcated plates.
Plates. The plates are projections of the body-wall, they are considered by some writers as being develoved from setae. There is usually a gland orifice at their tins. The plates are designated as the first or median; the secnind pair between the median and secnnd pair of loves', the third, betmeen the second and tine third pairs of lobes, and so on. They are represented by the following formula;1-2; $1-2 ; 1-2 ; 1-2 ;$ 3-7.

Pygidial Fringe.- Mhis is a collective term and is applied to the entire outline of the pygidium.

Pygidial Margin.- The pygidial margin is that portion of the pygidium on each side cephalad the cephalic pair of lobes. Setae of the Pygidium.- These are small hair-like structures on the dorsal and ventral surfaces, those on the dorsal surfoce are called dorsal setae and those on tie ventral surface are called the ventral setae.

Tuuvlaria.- These are the chitinized ducts winich lead from the glands that supply the dorsal, mareinal, and micronores of the body. There are three distinct forms of tubularia as follows:

1. Those with long narrow ducts.
2. Those with long wide ducts.
3. Those with short and very wide ducts.

Vaginal Opening.- The vaginal opening is the terminal opening of the vagina, it is usually Iocated cephalad of the anus on the sixth segment.
$=-2$
\qquad

[^0]$x+\frac{1}{4}=$

VII. CIASSIFICATICN CE THE CNCCIDAE NE IIIINOIS.

This work is offered only as a partial list of the Coccidae which occur within the state of Illinois. A large part of the work has been done in the two genera Aspidiotus and Chionaspis. species of these two genera largely composed my collection of the Coccidae, owing to the fact that most of the specimens were collected from growing nursery stock. Practically none of the species inforsting our native trees and shrubs were collected. The soecies are arraneed beginning with the most generalized and proceeding to the mosit specialized types:

Due to the remarkable success with stains and the reveqlation of new characters by the process of staining, attention should be called to the fact that several nev: characters have been used in describing the species. These new characters mere constant to a remarkable degree in the same species and were very useful in differentiating the species studied.

The basal thickenings are thickened places in the chitinous exoskeleton of the insect, and have been foumd only in the genus Aspidiotus. They are faintly visible in unstained specimens, but they are very distinct and clear in a stained specimen.

The dorsal pores that have not been consilered as being important by most studenus of this -amily were found to te very useful in differentiating the species. The form, number, end arrangement of these prres are clearly shom in a well stained specimen.

In the uhionaspis a series of small round microvores mas discovered within the circumgenital gland ring. The arrangement of these pores and their relation to the anus is cons ant witnin a apecies. This cnaracter may be of consiaerable taxonoric importance.

The ducts or tuoularia which extends from the glands to the orifices are invisible in a specimen that has not been stoined: but in a snecimen that has Deen stained tney are mede clearly Visiole, and the student is able to see considerable variation in their form, ariangement, and numbers in the different suecies. Cne thing that is especially noticaole ls that the more hignly specialized a member of the femily is the longer the tubularia become.

Pseudococeus longispinus．

Dactylopius longispinus，Nig．Ann．Soc．Ent．Fr．（5）5，1875，306． Dactylopius longispinus，Ckell．，Ann．Llag．T．H．（6）16．189b， 61 Dactylnpius adoniaurn，lomst．，Rept．U．．．Deot．Agri．，lesn，341． Dactylonius longispinus，News．，Jr．Roy．Hor．Snc．，23，19n0， 29. Covering of Female．－Insect unarmored，body so二゙t，covered with／white fluffy secretion of wax．

Female．Body color white or pinkish－yellow in living indivia－ uals；convex；elongated， 2.50 to 3.10 mm in lengigh and l．40 to 2.10 mm in width；uniy distinctly segmented；each segment with a weries of wax fili申ments，longer near posterior end of body；antennae witi eight segments，eighth wegment the longest and tie seventh one the shortest；each segment with several short setae；legs long and slender；trochanter with a group of pores on either side，also with two stiff spine－like setae，one long bristle－like seta，and many smaller inconspicunus ones；the tibia about twice as long as the tarsi；lateral margin of the vody with seventeen cerari；a nir of triangular loves on the onsterior end of the ondy；lobes with a long slender seta at the apex；inner margin of each looe mith a group of cerari，several short setae，ana many wax pores；anal ring not projected from the body，large，egg－shaped，with six long slen－ der setae；a single row of cells along the siles of the ring，roms of cells on either side of the ring not meeting at meson，setae outside of the ring of cells．

Hosts．This species is found on almost all of the common green house plents．
soecimens collected at ihamorign and Bloominguon were wudied． It is found generally over the state in greenhouses．

Gossyparia ulmi.
Gossyoaria ulmi, Howerd, Insect Life, 2, 1889, 34.
Gossyparia ulmi, sig.. An. de la soc. Ent. Fr. (5) 5, 1875, 21.
Covering of remale.- Insect with scale covering absent; dorsal surface of the body covered with a thin wax-like seretion; oval; margin of insect completely surrounded with a border of white wax-like sujstance.

Female.- Body color dark orange to light red in living individuals; elongated, oval, narrower in the nosterior than in the anterior region , convex, and 2.50 to 4.00 mm in diameter; distal margin of the body with a pair of terminal lobes, elongated, sharply rounded at apex, with a long seta at the distal extremities and four shorter setae on the body of the lobes; anal ring cephalad of the lobes; with eight lngg, stiff setae; aegmentation of body indistinct; body covered with max pores with spine-like glind tubes; adult with three pairs of legs; short, slender, and small in comparision to the size of the body; tarsi longer than the tibia; antennae with six segments, the second the longest, and the fourth and fifth the shortest; each segment except the sixth with two or more setae, sixth segment with eight or ten long setac; a distinct protuberance of the body on either side of the antennae.

Host. Ulmus americana.
specimens collected at Chicago and Bowmanville were studied. This species does not commonly occur in Illinnis.

- Iocations where Gossyparia ulmi was collectea.

Parlatoria perigandii.
perigandii, Comstock, Rep. U.s. Dept. Agri., 188n-81, 327. perigandii! Marlatt, Yearbonk U.S. Dept. Agri., 19no, 270. perigandii, Newsteal, Mono. Br. Coccidae, 1, 1900, 143. perigandii, Kuwana, Pr. Ca1.Ac. Sci., (3) 3, 1902, 78. scele of Female.- scale circular to oval, convex, 1.5 n to 1.9 n mm in dismeter; dirty-gray; exuvin located near tine margin, light yellow, naked; ventrel suale delicate.

Female.- Body color light range to yellom in living indiviauals, circular to ovel; pygidium broadly rounded ani with three pairs of Irbes; median pair of loves well developed, oroximal ends narromer than the distal, distinctly notched on meivl and lateral margins, and converging near the apex; second and third airs of lobes slightIy smaller than the median pair, proximal ends narromer than the distal, and with mesal and lateral margins distinctly notched; fourth lobe rudimentary, produced into a spine-like projection; a pair of nectinae between the median neir cf lobes; two between the second and third; three wetween the third and the fourth pairs of lobes; and five laterad of the fourth nair of lobes; a dorsal seta. on the lateral base of each lobe; ventral setae on the ventral surface of the dorsal setae on the second, third, and rudimentary fourth pairs of lobes; four groups of circumgenital oores; anterior leterals six to nine pores, posterior laterels six to eight; tro roms of d roal pores located on the anterirr art of the pygidium, tuoularia shret and wide; a crescent-whaped marginal pore between the median pair of looes, one between the median and second and ne wetween the secona and third wars of lobes, two between the third and the rudimentary fourth Ioses, and tmo between ive fourth lobe and the cep-
halic margin of the pygidium; tubuleria of marginal pores located cephalc-mesad of their corresponding pores, ducts very short ana as wide as the lobes; a row of oores extends arcund the magin of the pygidium cephalo-mesad of the tubularia of the marginal pores, ovel, tuoularia short and as vide as the pores.

Hosts.- Citrus trees.
Specimens collected at Mount Rosewood were studied.
This species is a southern insect and is important in Illinois only as a greenhouse pest.

Aulacaspis rosae.

Diaspis rosae, Comst., Rept. U.j. Dept. Agri., 1880-81, 312. Diaspis rosae, imith, Bull. 159, $\mathbb{1} . \mathrm{J}_{0}$ Experiment st., 1902. Diaspis rosae, Forbes, $22 n d$ Rep. Ins. Ill.. 19n3, 120. Aulacaspis rosae, Newstead, Mono. 3r. Coccidae, 1, 1901, 168. scale of Female.- Scale circular of nearly so, flat, $2.0 n$ to 2.80 mm in diameter, white to jellowish color; exuvia eccentric, light yellow, first nymphal sicin exposed , second covered.

Female.- Body color muady orange to dull crimson in living individuals, pygidium a few shajes darker; elongate, anterior portion wider than tue broadly rounded posterinr portion; pyeidium out
broadiy nollowe ${ }^{\prime}$ at its mesel extremity; pyeidium with three pairs of lobes; median loves in the hollowed out portion of the pysidium, large, mesal margins close together, distinctly serratel, converging near the apex, distal margins bluntly rounded, lateral margins attached throughout their lergth to the body; second peir of lobes incised; mesal lobule larger than the lateral one, distal margins of both lobules bluntly rounded; third neir of lobes inciseaj mesal lobule larger than the lateral one, distal margan bluntly rounied; lateral lobule small and pointed; chitinous thickenings wanting; incisions small and inconspicuous; one between the meaian and second pairs of lobes, one between the second and third, and one laterad of the third lobe; plates large and conspicuous; one between the median and second pair of lnoes, che betreen the second and tairà, one laterad 0 - the third pair of lobes, one one-third and two cnehalf the distance to the cephalic margin of the pygidium; doroal setae located on the lateral base of the median lobes, one on the outer looule oi tre second pair of loves, one on the third loje,

one one-fourth and one three-fourths the distance to the cephalic margin of the pygidium; ventral setae located on the ventral surface slightly mesad of tineir corresponaing dor al ones; five groups of circumgenital pores; medign with sixteen to nineteen orifices: anterior laterals twenty-five to thirty-tinee, posterior laterals twenty-six to thirty-six; three rows of dorsal pores; first row wanting; second row located cepnalad of the aecond pair of lobes wath two to four pores in the cinterior group, poisterion groun wanting; third row located cenalo-laterad of the third pair of lobes with four or \ddagger ive pores in the anterior group ani four to six in the posterior group; fourtin rom located cepnaln-mesad $0=$ the last dorsal seta witn iour or five pores in the anterior and five to seven in the posterior grollp ; marginal pores present; ne in the incision between the meiian and second neir oi looes; tyo in the incision between the second and the third pair of loves; three rows of tubularia; a row for each rom of dorial pores, tuvules wide, short, situated cepinalad of their respective rows of pores; tubules of the marginal pores wide, short, and wituated cephalad of their corresponding pores; four small micropores mesad of tne second dorsal seta on each side of the moson, tubularia long ani slender. Hosts.- Blackberry, red raspuerry, raspoerry, Rosa rugnisa, Rosa (sp.).
specimens collected at Astoria, Chicago, Mount sterling, Onarga, and Texico were studied.

This species is generally distributed throughout the state, but very seldom the infestation becomes bad enough to cause any serious damage to the host plants.

Chionaspis americana.

americana, Johnson, Entom. News; 7, 1896, 150
americana, Bulletin Ill. state Lab. N.H., 4, l896, 340. americana, Cooley, Special 3ull. Mass. Exp. st., 1899, 41. americana, King, Can. Entom., 34, 1902, 62.
scale of Female.- scale elongate, usually widest near the middle portions, convex, neavily armored, snom-white to dirty gray; exuvia in the anterior part of the scale, sometimes niden; ventral scale white, and uwally adneres to oark after insect is removed.

Female.- Body color Jellow or ligint brown in living individuals; widest slightly caudad of the middle; pygidium broadly rounded, with two pairs of lobes; median lobes well developed, mesal magins fused, latro-aistal margins distinctly notchei; second pair of lobes smaller than median pair, incised, mesal lobule three times as large as the lateral, bluntly rounded at the apex, and distinctly notched on the oblique lateral margin; lateral lobule triangular, and pointed at its distal extremity; a pair of club-shaped chitinous thickenings between the median pair of looes, a pair of smaller thickenings in the second incision, and another in the third incision; a small plate between the meaian and the second pair of lobes; two laterad of the second neir of lobes, mesal one simple, lateral one bifurcated or trifurcated, a pair of plates one-half the distance to, and another pair three-fourtis the distance to the cephalic margin of the pygidium, and a grouo of six or eight plates near the cephalo-lateral margin of the pygidium; dorsal setae short, spine-like, and inconspicuous; one on each lateral base of the meiian pair of looes, one on the lat-
eral margin of the mesal lobule of the second nair of lobes, one cephalo-laterad of the lateral lobule, and one one-half the dissetae tance to the cephalic margin of the pygidium; the veatiailare on the ventral surface slightly laterad of the correspondinǧ dorwal setae; five groups of circumgenital pores ; median group with twenty to thirty-six pores, anterinr laterals nineteen to fortyfive, posterior lateralis twenty-one to thirty; micropores arranced in a semicircle cauded of the anus; first and second roms of dorsal pores absent; anterior group of thira row with four to six pores, posterior group with five to nine, located cephalo-laterad of the third pair of plates; fourth row with five to seven in the anterior, six to eleven in the posterior group, Incated near the cephalolateral margin of the pygidium; a group of tubularia for each row of dorial pores, an located cephalad of the corresponding roms of pores; a small tubularia cephalo-mesad of each plate with a small tubule extending to an orifice at the tip of the plate; an elongated marginal pore jetween the median and second pair of lobes, tmo laterad of the second pair of lobes; a short, wide duct or tubule extends into the vygidium cephalo-mesad of each marginal pore.

Hosts.- Ulmus americana, and Uamperdown elm.
specimens collected at Champaign, Uhicago, Onarga, and Urbana were studied.

This species is generally distributed throughout the state. In many cases the infestation becomes serious enough to enianger the life of the host, this is especially true when newly transplanted trees are infested.

Chionaspis corni.

corni, Cooley, special Bull. Mass. Exp. station, 1899, 15. corni, King, Can. Entom.,34, 1902, 62.
corni, sanders, Chio state Uni. Bull. (8) 17, 19C4, 45.
Scale of remale.- ふcale irregularly horn-shaped, broadest near the posterior portions, convex, 1.50 to 2.10 mm in diameter; delicate; snowy-white; exuvia located anteriorly and orange to light yellow in color.

Femele.- Body color light yellow in living individuals; widest posteriorly., elongated; oygidium with three pairs of looes; median lobes well developed, mesal margins fused for about one-half their length, widely divergent, apex rounded, and margins entire; second pair nf lobes well developed, incised; mesal lobule longer than the lateral, margins entire; lateral lobule pyramidiel, and margins not serrated; third pair of lobes broad and 1 lat, incised; mesal lobule larger than the lateral, margins entire; lateral lnoule small; a chitinous process between the median oair of lobes, an indistinct process between the median and second and one between the second and third pairs of lobes; a short spine-like plate between the median and second pairs of lobes, another between the second and third pair of lobes, two one-third and one two-thirds the distance to the cephalic margin of the pygidium; a group of five plates on the cephalo-lateral margin of the pygidium; a dorsal seta at the lateral base of the median lobe, one st the lateral base of the mesal lobule of the second pair of lobes, one one-haly the distance to the cephalic margin of the pygidium, and nne in the last group of plates; ventral setae located on the ventral surface slightly meso-
caudad of the corresponding dorsal ones; five groups of circurngenital pores; the median group with fourteen to sixteen pores, anterior laterals twenty to twenty-eight, posterior laterals ten to eighteen; micropores arranged in a subtranverse row acrosi the pygidium caudad of the anus; the first row and the posterior group of the second row of dorsal pores wanting; anterior group of the second row with five to seven pores located laterad of the anterior lateral group of circumgenital pores; the third row located cephalomesad of the third plate with four to six pores in the posterior and five to eight in the anterinr groun; the fourth row located cephalo-mesad of the fourth plate with seven to nine pores in the posterior and seven to ten in the anterior group; tubularia with wide short ducts located slightly cephalad of their corresponding groups of pores; an elongated marginal vore between tine median and the second pairs of lobes; a pair between the second and the third pairs of lobes; and a pair slightly laterad of the third pair of lobes; tubules of the marginsl pores short and wide; plates with a tubrle extending mesad from the orifice in the plate to the mouth/./ glant;a series of small tuoularia arranged promiscunusly around the margin of the pygidium.

Hosts.- Cornus paniculata, Cornus alteronifolis, and Cornus (sl| specimens collected at Chicago and Joliet were studied. This species has beer found only in the northern part of the state. The infestation seems to be wholly local and the pest is not considered as being serious.

Chionaspis forfora.

Aspidiotus furfura, Fitch, 3rd Rep. Ins. N.Y..1856, 352.
Chionaspis furifura, Comst., Rep. U.s. Dept. Agri.. 1880, 315. Chionaspis furfura, Cooley, Spec. Bull. Hass. Exp. st., 1899, 23. Chionaspis furfura, Newstead, Mono. Br. Coccidae, 1, 1902, 186. scale of Female.- scale elongate, pyriform, flat, thin, $2 . C C$ to 2.50 mm in lengtin, snow-white to light jellow; exuvia located in anterior portion, yellowish brown, and covered; ventral scale delicate.

Female. - Body color pink to orange in living individuals, elongate, pyriform, broadest near midde portions; pygidium not broady rounled, and with three pairs of lobes; median pair of lobes well developed, short, broadly rounded, mesal margins parallel, and the lateral margins entire; second nair of lnves well develnped, incised mesal lobule as large as the median lobe, and the nolique lateral margin finely serrated; lateral lobule small and rounded at apex; third pair of loves small, broad, and flat; a single plete between the median and the second pair of lobes, one between the second and third pair of lobes, one one-third and one two-thirds the distance to the cephalic margin of the pysidium; a group of four to seven plates on the cephalo-lateral margin of the pygiaium; a dorsal seta on the lateral base of the median lobes, one on the lateral base of the mesal lobule of the second lobes, one on the third lobes, one one-third the distance to the cephalic margin of the pyeidium, and one in the last group of plates; the ventral setae are on the ventral surface slightly mesad of the corresponding dorskl setae; five groups of circumgenital pores; the median group with seven to
twelve pores, anterior laterals twelve to sixteen, posterior laterals sixteen to twenty-three; micropores arranged in a transverse row cephelad of the anus; first and second rows of dorsal pores wanting; third row with two pores in the posterior and two or three in the anterior grouo; fourth row with four pores in the posterior and one or tmo in the anterior groups; a grou? of tubilaria located cephalad of each group of pores; tubules short and vide; a marginal pore between the median and the second pair of lobes, two between the second and third pair of lobes, two between the third nair of lobes and tie fourth dorsal 刃etae; tuvularia wide and short.

Hosts.- Apnle, Cornus alis siberica, Cornus vaniculata, Ioes (sp.), pear, worbus quercifolia.
specimens collected at Bloomington, Chamuaign, Chicago, Mount Pulaski, and Normal were studied.

This species is more or less common throughout the state. It rarely becomes a serious pest because of its many enemies.

Locations where Chinnaspis İurfora was collected.

Chionaspis gleditsiae.

Chionaspis gleditsiae, sands., Oh. st. Uni. Bull. (o) 17,19n4,46.
scale of Female.- scale horn-shaped, onstericr portions wider tisen anterior, convex, 1.40 to 2.10 mm in length; white or dark gray, not easily detected on the host; exuvia located anteriorly, ligit or dark nrange yellow; ventral sc le winte and ielicate. Female.- Body color light yellow in living individuals, pygidium one or two shades darker; segmentation distinct; widest near posterior portions; pygidium with three pairs of lobes; median lobes large, well develnoed, Innger than wide, mesal margins fused about one-nalf of their length, widely divergent at apex, sharply rounded, latero-distal margins finely serrated; second pair of lobes well developed, incised, mesal lobule long and narrom, apex rounded, latero-distal margin finely serrated, lateral lnomle small, angular, and pointed at the apex; third pair 0 lobes rudimentary, oroad, flat, and finely serrated on the margin; a small inconspicuous plate between the median and the second pair of lobes, one between the second and the third pair of lobes, one ne-third and anotiner two-thirds the distance to the cenhalic margin of the pyeidium; a group of three or four vlates on the cephalo-lateral marsin of the pygidium; dorsal setae small; one on the lateral base of the median pair of lobes, one on the lateral base of the masal lobule of the second pair of lobes, one on the base of the third lobe, and one two-thirds the distance to the cephalic margin of the pygidium; the ventral setae on the ventral surface shorter than the dorsal setae and located sligintly laterad of the corresponding lorsal setae; five distinct groups of circumgenital pores; median group with five to
ten pores, anterinc laterals twelve to nineteen, posterior laterals eight to fourteen; micropores arranged in a subtranverse row caudnlaterad of the anus; first and second rows of dorsal pores wanting; pores
third row with three to fivel In the antericr and three to six in the posterine groun, Incated cephalo-mesad of the third pair of plates; fourth romimith one to four in the anterinc and three to six in the osterior group, Incated caudo-mesad of the group of plates on the cephalo-lateral margin of the pygidium; a group of tubularia for each group of pores, tuoules short and wide; an elongated marginal pore between the median and the second pair of lobes, one between the second and the third, and one cephalo-laterad of the third nair of lobes; tuularia wide and short; a small slender tubule extends to the orifice in the tio of each of the plates.

Host.- Gleaitsia tricanthos.
specimens collected at Blonmington, vincy, and Uriana pere studied.

This species is probably not widely distributed throughout the state and it does not seem to be a serious pest.

Chionaspis pinifolia.
pinifolia, sig.,Ann. soc. Tnt. Fr., 1876, (5) 6, 604. pinifolia, Comstock, Rep. U.s. Dept. Agri., 1880-81, 318. pinifolia, Conley, special Bull. Mass.3xp. st., 1899, 30. Scale of Fomale.- scale elnngated, broadest in tho posterior region , convex, 2.90 to 3.80 mm in length; snow-white to dirty gray color; exuvia near the anterior margin, orange red to light brown.

Female.- 3ody color light yellow in living individuals, segmentation indistinct; pygiaium broadly rounded and with three pairs of lobes; median lobes widely separated, mesal margins slightly divergent, apices broadly rounded, and margins entire; second and thiri pairs of libes incised, mesal lobrules much larger than the lateral ones, broadly rounded at their apices; lateral lowules triangular and small; a small plate between the meician and the second pairs of lobes; a lareer one betmesn the wecond and tre
 one fourth and one to three one-inif the distance to the ceprialic margin of the pysidium, and a group of three or four near the cephalo-lateral margin of the pygidium; dorsal setae small and inconspicuous; one on the lateral base of the median nair oi lobes, one on the leteral oase of the mesal lobule or the second pair of lobes, one on the lateral base of the mesal lobule of the third pair of lobes, and one betwe n the fifth and sixth groups of plates; the ventral setae smaller than the dorsal setae and located on the ventral surface slightly laterad of their corresponding dorsel ones; five groups of circumgenital pores; median
group with seven to twelve pores, anterior laterals twelve to fifteen, oosterior laterals twelve to sixteen; micropores arranをed in a subtransverse row cephalad of the anus; the first row and the posterior group of the second row of dorsal pore wanting; the anterior group of the second row with two to four pores lncated laterad of the lateral groups of circumeenital noxes; the third row with three to five pores in the anterior and four to six in the posterior groun ; fourth row with four to sever in the anteraor and five to eight in the posteriur grour ; tuoularia wide and short, Incated cephalad of their corresponding groups of pores; marginal pores distinct, arranged singly around the margin of the nygidium, tubules extending to them wide and short.

Hosts.- White pine, jellow pine, jcotch pine, and jack pine. specimens collected at Chamoaign, Dundee, ond Urbana mere studied.

This species is found generally distributeu over the state. The infestation in most cases is not serious to the life of the host The insect is found only on the leaves of the rost plent.

prres in the anterior and six to aine in the posterinc group ; fourth row cephalo-mesad of the fourth grouo of plates, anterior group with five to seven and the posterior group with seven to eleven pores; a group of circular dorsal nores immediately laterad of the anterinr lateral group of circumgenital pores, with nine to twelve openings; a second group with nine to seventeen pores between the anterior groups of the third and fourth rows of dorsal pores; a third group with sever to thirteen pores cephalad $0_{\text {- }}$ the fourth row of dorsal onres; an elongated marginal pore betmeen the median and the secold oair of lnbes; two between the second and the third pairs of lobes; tubularia of mareinal nores wide and short; tuoularia of the oval dorsal pores wide and short; tuoularia of the round dorsal pores long and slender.

Hnsts.- ialix americana and Popalus carolina.
specimens collected at Bloomington and Urbana were studied. This species has not been found generally distributed over the state, The infestation in most cases being local and not serious enough to endanger the host plant.

Choinaspis salicis-nigrae.
salicis nigrae, Comstock, Rep. U.s. Dept. Agri., Is80, 320. salicis, ३ackard, 5th Rep. U. . . Ent. Comm., 1890, 593. salicis nigree, Cooley, spec. Bull. Mass. Txp. st. 1899, 19. scale of Female.- scale elongate, pyriform, broadest near the midale, convex; 2.50 to 3.8 mm long; snomy-white; exuvia near anterior portions, light to brownish yellow.

Female. $30 d y$ color light orange in living individuals; elong゙ated, broadest posteriorly; nysidum broady rounded and with three pairs of lobes; median lobes wide,short, oroadly rounded, mesal margins slightly divergent, and both margins entire; second inair of lobes subequal to the median air, incised, mesal lobule about twice as large as the lsteral, margins entire or slishtly serratod; the third pair may be wanting or rudimentary; a short plate betmeen the median and the second oar of lobes; two between the second and the third pairs $n f$ lnbes; two immediately laterad of the third nair of lobes; two or three one-half the distance to the ceohalic margin of the pygidium; and a group of five nr eight on the cephalo-lateral margin $0 f$ the pygidium; dorsal setae small, one on the lateral base af each pair of loves, and one one-third the distance to the cephalic margin; ventral setae slightly lnnger than the dorsel aetse and situated on the ventral surface slightly mesed of the corresponding: dorsal setae; five grcups of circumgenital pores; median group with twelve to eighteen pores, anterior laterals twenty-six to thirtyeight, and costerior laterals twenty to thirty; micropores arranged in a transvarse row cephalad of the anus; dorsal nores with nval and circular openings: Pirst and second row of oval pores absent; third row extends cephalo-mess d of the third pair of lobes, five to seven

Diaspis auranticolor.

Diaspis auranticolor, Ckell., Can. Zntom., 31, 1899, $1 \cap 6$. Scale of Female.- Scale circular or oval, slightly convex, $1.3 n$ to 1.80 mm in diameter; dull white to gray: exuvia eccentric, lemon zellow, firsi skin naked; ventral icale delicare and ajheres to the host after insect is removed.

Femele.- Body ovel; 1.10 to 1.30 mm long and .75 to 1.1 c mm wide; four nairs if well develoved lobes ; median loves large somewhat pyramialal, bluntly rounded at anex, both margins distinctiy notched and crenated , proximal enảs meeting but divereent tnms.rd the tips so that there is aunut the width of a looe between them; second pair of lobes daubly incised with three lobules; the mesal one small and rudimentary; jecond lovule long and narrow, rounded at the apex; third lobule about as wide as the second but low and about one-third as long as the second; the third pair of lodes broad and low deeply incised, appear saw-tooth-shoped, and the lat-ero-distal ends distinctly pointed; fourta pair oi lobes dcubly but not deenly incised, lobules saw-tooth-shaped, low and braad, and with their apices pointed meso-caudad; a single :ectinae between the meaian and the second pair of loves; a jingle larger one one between tire second and the third wirs; one between the third and the fourth noir; and about twelve long plates on the margin laterad of the fourth pair of lobes; a vair of smell setae betmeen the median pair of lobes; dorsal setae large and prominent; one on the lateral base of the median pair of lobes; one on the lateral base of the third lobule of the second pair of lobes; on cephalo18terad of the lateral base of the second lobule of the thira pair
of loves; one cephalo-laterad of the fourtn pair of lobes; one one-third and one two-thirds the distance to the cephalic margin of the pygidium; ventral seta shorter than the dorsal and located on the ventral surface slightly cephalo-laterad of their corresponding dorsal setae; five groups of circumgenital pores; median group with nine to fifteen onres, antericr latersis with twentyfive to thirty, posterior latorals witn sixteen to twenty-five; micropores arranged in a subtiansverse rom cephalad of the anus; first and second row of dorsal nores wanting; third row with four to five pores in the anterior and five to seven in the posterior
 row with four to five in tie adaterior and four to six in the posterior groun, ccau-d latcrad of the third row; tuoularia extending to the dorsal nores short and wide; mare゙inal poree arranged singly around the margin of the pygidium with tubularia longer than those of the dorial pores and about one-half as wià; tuvuleria extending to orifices in the vletes small, hair-like, snd loce,ted caudo-mesad of the origin of the plates.

Hosts.- Imported Japanese shrub, provebly nsinanthus illicifolia soecimens studied were collected at Ilount wreenwnod. specimen taken from the collection of crucike the the =ll. state Laboratory of Natural Iistory.

Iepidosaphes ulmi.
Mythlaspis pomorum, Comst., Rep. U.j. Dept. Agri., le8C-81, 325. Mytalaspis pomorum, Howard, Can. Entom., 26, 1894, 353. Lytalaspis ulmi, Cockerell, Pr.Ac. N. sci. Ph., 1899, 275. Mytalaspis pomorum, King and Ckll.. Can. Zntom., 33, 19nI, $2 n 0$. Lepidosephes ulmi, janders, 「h. st. Uni. Bull. (8) 17, 1904, 74. scale of Female.- scale elongated, horn-shaped, midens postericrly, convex, 2.40 to 3.10 mm in length, sniny black to brown; exuvia in the anterior portion, brown to brownish yellow; ventrel scale dirty-white to gray.
remale.- Body color usually white or yellow, pygidum a few shades darker; pygidium with two pairs of lobes; median lobes large, prominent, mesal margins parallel for about one-half the length of the lobe, mesal and lateral mareins distinctly notched near the apex; second pair of lobes broader tnan long, incised, lobules broadly rounded at apex, mesal one about three times as large as the lateral one; two spine-like plates between the median lobes; two unequal plates between the median and the second pair of lobes; two immediately laterad of the second oair of lobes; two one-tnird and two two-thirds the distance to the cephalic margin of the pJgidium; a strongly chitinized marginal pore between the lateral base of the median and tne mesal base of the second pair of loves: two elongated narginal yores iaverad of tie seioll pair of lobes; a pair cephalo-laterad of the fourth pair of plates; and a pair laterad of the fifth pair of plates; dorsal setae long, peominent, and dark; one on the base of each margin of the median nair of lobes; one immeliately laterad of the second pair of lobes; one one-helf the distance between the third and fourth pair of plates;
and one one-hsif the distance between the fourth and ififth pair of plates; ventral setae located on the ventral wurface of the pygidiums one near the base on each margin of the melian pair of lobes; one on the lateral base of the mesal lobule of the second pair of lobes; one one-half the distance between the fourth and fifth pairs of plates; four or five stiff sping near the cephalic margin of the pygidium; five groups of circumgenital pores; median group with twelve to eighteen pores; anterior laterals fourteen to twentythree; and posterior laterals sixteen to twenty-eight; four rows of dorsal pores; first row absent; seconu row with fifteen to twentyone small orifices located caudo-mesad of the seonn pair of marginal pores; thira row with ten to sixteen pores extends caudo-mesad of the fourth pair of plates; the fourth row with six to eight pores extends caudo-mesad of the fifth peir of plates; and the fifth row with six to eight pores extends mesad from the margin cepholad of the fifth pair of plates; tubularia of the marginal nores short, as wide as the pores, and/extends caudo-mesad of each pnre; four distinct rows of tubularia; a row for each rom of iorssl pores, tubules located cephalo-mesad of their corresponding rows of dorsel pores; numerous small tubularia arranged promiscusly around the margin of the pygidium.

Hosts.- Apple, Cornus alba siberica, Cornus paniculata, Cylonia, japonica, Fraxinus alba, Populus carolina, Rosa rusose, Rnsa (sp.), syringa vulgaris, syringe (sp.), symphorecarphus vulgaris, and Ulmus americana.
opecimens collected at Arlington Heights, Chompaign, Chicago, Glenview, Kankakee, Lincoln, Maywood, Peoria, Texico, and Urbana
were studied.
This species is found to be generally distributed over the state. Very often the degree of infestation becones so serinus that the life of the host plant is threatened.

wncations where wepizosaphes ulmi was collected.

Aspidiotus ancylus.
ancylus, Comstock, Rept. U.N. Dept. Agri., 1880-81, 292.
ancylus, Cockerell, Can. Entom., 26, 1.84, 191.
ancylus, Cockerell, Can. Entom., 27.1885, 261.
ançlus, sanders, Ohio Uni. Buli. (8) 17, 1904, 57.
icale of Female.- scale circular or nearly so, convex, I. 0
to 1.50 mm in diameter, body dark grey, periphery light gray; exuvia eccentric, covered, brick-red; ventral scale whtte and delicate.

Female.- Body reddish Jellow in living individuals, oval to circular, segmentation indistinct; only median lobes present, well developed, distinctly notched near the middle of the distal margin, frequently with a smail notch near the midale of the caudo-mesal angle of eacn lobe, mesal margins distinctly separated and parallel for about one-helf their length; incision between the medien pair of lobes small, second incision wide and shallow; thirá incision two-third as wide as and equally as doep sis the second; mesal margins of the medien pair of lobes with chitinous thickenings; \& par in the second and third incisions, the leteral thickening of each pair about two-thirds as wide as the lateral ne; a vair of pectinae between the median pair of lobes; two pectinae in the second incisin dorsal setae at the lateral base of the median lobes, o pair laterad of the second and the third incisions; the ventral setae are on the ventral surface slightly laterad the corresponding dorsal setae; five groups of circumgenital glend ori-ices; the median group with zero to sux pores; antericr laterals with six to fourteen; and the posterior laterals with \quad ive to eight; basal thickenings with the anterolr plates wide, short, and located mesad the anterinr group of circumgenital glands; posterior plates wide, long, mesad the
posterior circumgenital pores, cephalic ends extending slightly laterad between the anterirr and the posterior groups of circumgenital pores; calli with mesal pletes oeparate, lateral plates subequal in length and width to the median neir; four rows of dorsal pores; first row cephalo-laterad of the median pair of lobes, two to four pores; second row cephalo-leterad of the first and contains eight to ten pores; third row with six to nine pores located latead of the second row; and the fourti row with two or four poress Incated laterad of the third and narallel to the margin of the pygidium; four groups of tusularie; first group sutuated caudad of the anus, ducts short, and extend to the first row of dorsal nores; second ond third groups with long ducts which extend to the second: and third groups of dorsal pores respectively; and the fourth group with long slender tubules extends to the fourth row of dorsal pores.

Hosts.- Apple, Acer (s:.), chestnut oak, Cornus alba siberica, Cornus (sp.), Fraxinus alba, ileditsia tricanthos, juglans nigrae, osage orange, Populus carolina, Ribes flor., Sorbus querquifolia Ulmus americana, and salix americana.
specimens collected at Belleville, Bloomington, uhampaign, Uhicagn, しlayton, Galesburg, Joliet, Tormal, Juincy, springfield, and Urbana were studied.

This species is found generally distributed throughout the state; homever, it is not of any great economic importance. This snecies is very of ten mistaken for aspidiotus forbesi. The tenaency of this insect to collect in groups on the host plent is often considered an characteristic of the species.

Aspidiotus forbesi.
forbesi, johnson, Bnt. News, 7, 1896, 151.
forbesi, Bull. Ill.St. Lab. N.H., 4, 1896, 380.
forbesi, Forbes, 20 Report Ins, IIl., 1898, 16.
forbesi, Felt, Bull. 46, iv.Y. st. Mus., Ignl, $330-34$.
forbesi, Sanders, $n h . j t . U n i$. Bull., (8) $17,1904,60$.
Scale of female.- scale circular, convex, iirty gray, a few shades lighter tian Aspidiotus ancylus. deliceto; 1.50 to 2.40 mm in diameter; exuvia ceatral or nearly so, covered with a delicate film; ventral scale very delicate.

Female.- Body colored nrange red in living individuals, segmentation indistinct, pygidium slightly prolonged; pygidium ith two pairs of lobes; median lobes large, well developed, prominent, converging near the apex, rounded, anâ $\mathfrak{d i s t i n c t l y ~ n o t c h e a ~ o n ~ t h e i r ~}$ latero-distal margins; second oair of lobes one-half to two-thirds as wide as the nedian lobes, distal margin slightly rounded or pointed, oblique lateral margin with two or four distinct notches; a pair of club-sinped chitinous processes between the median lobes, a pair in the incision between the median and the second pair of lobes, the mesal one twice as large as the lateral nne, somewhat gourdshaded, a third pair in tise incision laterad of the second pair of lobes, the mesal process distinctly lareer than the lateral; incisinn between the median lnbes narrow and shallow. incision between the median and the second pair of lobes narrow, and an incision laterad of the second vair of lobes as long as the median incision and sligntly wider; plates or nectinae manting between the median lobes, a pair of inconspicuous plates in the third incision;
pectinae aosent; dorsal setae locatea only at the lateral base of the second pair of lobes, one near the third incision, and one near the middle of the pygidial marein; ventral setae located on the ventral suriace slightly mesid their corresponding dorsal setae, seta on lateral base of the median lobes present; five grouns of circurngenital pores; median group with one to four pores, anterior laterals three to six. posterinr laterals three to five; basal thickening present, posterior pair large, long, subparallel to the meson, located mesad the posterior lateral grouo of circumgenital pores; anterior pair short, not parallel with the meson ana located mesad the anterior lateral group of circumgenital pores; calli with mesal plates fused on the meson forming a low ∇, lateral olates narrower than the mesal, distinctly separated, and parallel with the cephalic margin of the pygidium; three rows of dorsal pores; first row conisist of trree or four pores located cephalad of the second incision, second row of five to ten located caudad of the third incision, and the thiri row of seven to twelve pores located slichtly cephalad of the third incision; three distinct groups of tubularia; first group located cephalo-laterad of the anus and extend to the first row d dorsal pores, second group cephalo-laterad of the first and extend to the second row of dorsal pores , and a third group lies parallel to and laterad of the second group and extends to the third row of dorsal pores.

Hosts.- Apple, cherry, Cornus alba siberica, flowering almond, osage orange, Ilum, Prunus pissardi, peach, ribes (sn), syringa vulgaris, syringa (sp.), Ulmus americana.

Hatiner

Soecimens from Jecatur, Glenviev, Joliet, ivnunt Pulaski, irount sterling, Iexico, and Urbana were studied.

Professor Johnson gave this scale the namel" Cherry scale" and says that it is one of the most dangerous scale insectis of Illinois. Bven though the species reprodnces very ranidly, its progress is held in check by its parasitic enemies and the inability of the insect to withstand the winters in the northern part of the state. However, this insect causes a great deal of damage and it should be rated as one of the chief scale oests of this region. It Is generally distributed from the northern to the southern parts of the state; the greatest damage, homever, is done by it in the southern parts.

Aspidiotus fernaldi.
fernaldi, Cockerell, Ann. Mag. Nat. Hist. (7) 2, 1898, 323. fernaldi, King, Can. Entom. , 31, 1894, 226.
fernaldi, Parrot, Can. Entom.,31,1894, 10.
fernaldi, Newell, Contr. Ia. Agri. Coll., 3, 1899.
scale of female.-Scale circular, slightly convex, 1.80 to 2.10 mm in diameter, dark gray; exuviae orange red, slightly eccentric; ventral scale white, delicate, adheres to the host after the insect is removed.

Female.- Body color light Jellow in living individuals, oval, segmentation indicsted Inng tine margin of the body; pygidium with two pairs of well developed lobes; median pair large, inner margins not parallel, distal margins not broady rounded, and the laterodistal margin distinctly notcned; second pair of loves triankular, distinctly inclined caudo-mesad, and the oblique latero-distal margin with four or five notches; incision between the median oair of lobes with thickened edees; second and third incisions with paraphyses-like thickenings, the mesal ones twice as long as and slightly wider than the lateral ones; a vair of plates between the median lobes; a bifurcated or trifurcated dectinae between the median and the second pair of lobes; a small, inconspicuous pectinae laterad of the second pair of lobes; dorsal setae large, prominent, a pair at the lateral base of each lobe, one ne-tinird and one onehalthe distance to the cephalic margin of the pygidium; ventral setae shorter than the dorsal setae, located on the ventral surface islightly laterad of their corresponding dorsal setae; five groups of circumgenital pores; median gromp with two to seven pores, anterior laterals with eight to fourteen, posterior laterals with

Iive to seven pores; basal thickenings with the anterior pair of plates small, located mosad of the anterior lateral group of circumgenital pores; posterior plates wide, long, ふ-shaped, lncated mesad of the posterior lateral group of circumgenital pores, and with the cephalic end extending laterad between the anterior and the posterior lateral grouls of pores; calli with median plates fused at meson forming a low V; lateral plates thread-like and not parallel with the cophalic margin of the pygidium; four rows of dorsal vores; first row cepialad of the incision between the median and the second pairs of lobes with two to four pores; second row located laterad of the first and cephalad of the incision laterad of the second pair of lobes; third row Incated latero-cenhalad of the second; and the fourth row latero-cewhalad of the third; four distinct groups of tubularis; first row caudad of the gnus, ducts short, tubules extend to first row of dorsal pores; second groun located laterad of the anus, tubules long, slender and extend to the second row of dorsal pores and the third incision; third row located cephalo-laterad of the second, tubules long, slender, and extend to the third row of dorsal pores; the fourth row cephalad of the third and parallel with the margin of the pygidium, tubules long, slender, and extend to the fourtin row of dorsal pores.

Hosts.-Acer (sp.). black locust, cataloa, Fraxinus excelsus, sorbus, Symphorecarphus vulgaris, and Tilia amerisana.
specimens studied were collected at Bloomington, Champaign, Chicago, and Glenview.

Ihas species is more abundant in the northern than in the southern part of the state. There is a tendency to collect in masses on the trunk and larger limos of the host. Scale not a serinus pest.

Locations where Aspidiotus fernaldi was collected.

Aspidiotus hederae.

hederae, Maskell, New Zea. Trans., 11, 1878, 197. nerii, Comstock, iep . U.D. Dept, Agri.. 1880-81, 301. hederae, Newstead, Mono. Br. Coccidae, I, 1901, 120. hederae, King, Can. Entom., 31, 1899, 225.
hederae, sanders, Oh. st. Uni. Bull. (8) 17, 19@4, 62. Scale of Female.- scale oval or irregularly circular, flat, 1.50 to 2.00 mm in diameter, dirty winte to light yellom; exuvia lisit yellow, slightly eccentric, and exposed.

Female.- Body color light yellow in living individuals, oval; pygidium with three pairs of lnbes; median pair elnngate, well develoned, distinctly notched near the distal extremity on both mesal and lateral margins; second oair of lobes elongate, well developed, distinctly notched near the lateral margin of the anex; third pair small and pointed; incisions and chitinous thickenings wanting; pectinae extend beyond distal margin of loves; two distinct pectinge betmeen the median lobes; two between the median and second pair of lobes; three between the second and third pair of lobes; and six laterad of the third pair; three plates laterad of the last group of pectinae; dorsal setae located at the lateral base of each looe, one one-third and one one-half the distance to the cephalic margin of the pygidium; ventral setae on the ventral surface located slightly laterad of their corresponding dorisl setae; four groups of circumgenital pores; anterior laterals with eight to twelve openings; posterior laterals with six to ten; basal thickenings present, narrow, generally curving laterad at their cephslic ends; calli with four distinct plates, arranged in
a subtransverse row across the cephalic portion of the pygidium, parallel with the cephalic margin; dorsal pores arranged in four irregular rows or groups; first group consists of three to five openings cephalad of the median lobes;second group consists of six or seven pores cephalo-laterad of the first group; third group with Iive to seven pores Incated parallel to but sligntly laterad of the second group; and the fourth row of a varying number of opening laterad of the tinird and near the lateral margin of the pygidium; four groups of tubularia; a group located cephalad of each group of dorsal pores; tubules short and wide.

Fosts.- Citrus trees, and most of the common greenhouse plants.
specimens from Ghampaign, 马aybrook, and Tuscola were studied.
This species is more or less common nver the state, but it is found only in sreenhouses, and: therefore, it is confined largely to the northern part of the state where the florist industry is pursued 'with greater vigor.

Iocations where Ápidiotus heūerae was collected.

Aspidiotus juglans-regiae.
juglans-regiae, Comstock, Rep. U.S. Dept. Agri., 1880-81,300. juglans-regiae, Cockerell, Can. Entom.,26, 1894, 131, 394. juglans-regiao, janders, Oh. Uni. Bull. (8) 17, 1904, 62. Nale of fem\&le.- Ncale circular, flat, 2.80 to 3.00 mm in diameter, reddish to reddish-brown, exuvia slightly eccentric, covered with a thin waxy secretion; ventral scale thin, delicate, film-like, and adheres to the bark after the scale is removed.

Female.- Body color pale Jellon in living inaividuals, slightly oval, segmentation indicated along indy margin; pygidium with three pairs of lobes; median lohes well developed, large, broadly rounded, set close together, mesal margins converging at apex, and with a distinct notch on the latero-distal margin; second pair of lobes a about two-thirds as long as and one-half as wide as the median pair of lobes, lateral margins oblique with three or four distinct notches; third pair of lobes rudimentary, little more than a pushed out point in the body margin;a nair of small chitinous thickenings between the inner bases of the median pair of lones, a pair in the margins of each of the incisions, the mesal thickenings of each pain are distinctly larger than the lateral ones; a pair of short inconspicuous plates between the median lobes; a pair of pectinae in the second incision, the mesal one about two-thirds as wide as the lateral one which is distinctly furcated: three or four furcated pectinae in the third incision; dorsal setee are large and prominent, one in the lateral base of each lnbe, one about one-third and another about two-thirds the distance to the cephalic margin of the pygidium; ventral setae situated on the ventral surface slightly
laterad their corresponding dorsal setae; five groups of circumgenital pores; median group of zero to ten pores; anterior laterals eight to sixteen; posterior laterals four to eignt; calli with median plates fused; lateral plates small and parallel with the cephalic margin of the pygidium; basal thickenings with the anterior plates small and located laterad the anterior group of circumgenital pores; posterinr group lnng, slenler, mesad of the posterinr group of circumgenital pores; five grouns of dorsal gland orifides; first group laterad of the median lobes, contains three to five onres; second group laterad of the second lobes, contains twelve to twentyfour pores; third group laterad of the third lobes contains eighteen to twenty pores; fourth group located immediately laterad of the third group contains six to ten openings;and the firth group is a miscellaneous group laterad of the fourth group and near the margin of tine body; five groups of tubularia; the first group caudau and laterad of the anus with short tubules extending to the first incision and the first group of dorsal pores; the second group laterad the first and caudad of the anus with tubules longer tian those of the first group extending to second incision and second group of dorsal pores; third group cephalo-laterad of the anus with long slen der tuoules winich extend to the third group of dorsal pores; fourth group cephaln-laterad of the third, tubules short and extend to the fourth group of dorsal pores; fiftin group laterad of the fourth, tubules short and extend to the fifth group of dorsal pores.

Hosts.- Juglans nigrà, Acer (sp), Populus carolina, salix americana, symphorécarphus vulgaris.
specimens collected at Bloomington, Bowmanville, Gairo, Chicago
Glenview, and Norgan Park were studied.

This scale was first described by Professor Comstock in 1880. It was discovered on Bnglish walnut, but since its iiscovery, it has been found on verious other host plants. This species is not generally distributed throughout Illinois; the heaviest infestation is near Chicago and from this lace the infestation becomes less and less towaru the south. The species is not of any great econnmic importance in Illinois.

Aspidiotus ostraeformis.
Diaspis ostraeformis, Comst., Rep. U.S. Dept. Agri. I8甘ก-81, 311. Aspidiotus ostraeformis, Newst.,Mono. Br. Coccidae, I, 99. Aspidiotus ostraeformis, San.,0h. Uni. Bull. (8) 17, 1904, 64. Diaspis ostraeformis, sig., Essai sur le Coc., Ann. Noc. Ent. Fr.
scale of Pemale.- scale circular or oval, flat, l.nn to 1.55 mm in diameter; body of scale generally ashy-gray, periphery somewhat lighter color: exuvia large, dark-brown, slightly eccentric; ventral scale white and delicate.

Female. - Body color light yellow in living individuals, circular, segmentation indistinct; pygidium with two pairs of lobes; median lobes large, well develnped, lateral margins broadly rounded, masal margins parallel, and latero-distal margins distinctly notched; second pair of loines as wide as and one-nalf as long as the melian pair of lobes, bluntly pointed, and distinctly notched on the oblique latero-distal margins; incision between the median lobes with thickoned edges; a pair of paraphyses-like thickenings in the incision between the median and the second pair of lobes, the mesal process larger than the lateral; a subequal pair in the incision laterad of the second pair of lobes; a pair of short pointed plates in the incisinn between the median lobes; a plate and a pectinae between the median and the second pair of lobes, the plate located mesad of the pectinae; two coarsely furcated pectinae laterad of the second pair of lobes; dorsal setae large, long, prominent, situatea at the lateral base of each lobe, one one-hrlf the distance to the cephalic margin of the pygidium; ventral setae situated on the ventral surface sligintly laterad their corresponding dorsal ones; five grouvs
of circumgenital pores; median group with four to eight orifices; anterior laterals with ten to fourteen; posterior laterals with eight to twelve; basal thickenings with anterior plates wide, heavy, and prominent, situated mesed of the anterior lateral group of circumgenital pores; posterior plates long, narrow, and situated mesad of the posterior group of circumgenital pores; calli with median plates at the meson forming an are of a circle; lateral nlates long, narrow, extending beyond the latergl extremity of the meian plates, and parallel with the cephalic margin of the pygidium; four rows of dorsal pores; first row with two or three pores situated cephalad of the incision between the median and second pair of lobes; second row with eight to fourteen pores situated cephalad of the incision laterad of the third pair of lobes; third row with six to twelve pores situated one-third the distance to the cephalic margin of the nygidium; and the fourth row with four to five pores situated tro-thirds the distance to the cephalic margin of the pygidium; four groups of tubularia; first group with short ducts extending to the first row of dorsal pores and the second incision; second group laterad of the first, ducts long, extend to the second group of dorsal pores and the third incision; third group laterad of the second, tubules of two kinds, long, coarse, and short, fine ones, extend to the third group of dorsal pores; and the fourth group lies lateral of the third with two kinds of tubules, and extends to the fourth group of dorsal pores. Hosts.- Acer lanefolis, Fraxinus alba, Ribes (sp.), osage orange, Tilia americana, filia europea, and Viburnum opulus sterilis , pecimens studied were collected at Chicago, Glenview, Maywond, and Urbana.
this species is common around Chicago, and in northern Illincis.

Aspidiotus pernicosus.
pernicosus, Comstock, Report U.s. Dept. Agri., 1880-81, 304. pernicosus, Comstock, 2 Rep. Ent. Cornell Uni., 1883, 05. pernicosus, Howard, Can. Entom., 26,1ن94, 353. permicosus, Felt, Bull. 46, IN.Y. St. Mus., 1901, 304. pernicosus, lebster, Bull. 73, Ch. Exp. St., lu96, 21\%. pernicasus, sanders, Oh. st. Uni. Bull. (8) 17, 1904, 65. scale of female.- scale circular, slightly convex, l. 10 to 2.00 mm in diameter, in great part gray or dark gray, with a central reddish, covered nipple-shaped exuvia surrounded by a depressed ring. The depression surrounding the exuvia is characteristic of this species.

Female. Body color light orange or yellow in living individuals circular in outline, segmentation indicated along margin by slight indentations: pygidium with two pairs of well developed lobes, median lobes large, prominent, broady rounded, notched at each corner, and convergent at the apex; second pair of lobes one-third to nnehalf as wide as and two-thirds as long as the median lobes, located adjacent to the median pair, distinctly notched near the middle of the oblique distal margin, caudo-mesal angles pointed and converging toward the median lobes; mesal margins of the median lobes with club-shaped thickenings; incisions with margins with thickened edges lateral thickening one-half to two-thirads the size of the mesal one; medien incision with two plates or pectinae; second incision with two pectinae, third incision with three pectinae; a peg-shaped projection of the body-wall immediately laterad of the third incision; three wide flat extensions of the body-wall cne-third the distance to the cephalic margin of the pygidium, the caudal one trifurcate,
\qquad

Hylem
cephalic ones bifurcate; dorsal setae situated at the lateral base of each lobe, one one-third and one twe-thirds the distance to the cephal. ic margin of the pygidium; ventral setae on the ventral surface locat ed slightly laterad the corresponding dorsal setae; anterior and posterior basal thickenings of each side fused forming an S-shaped process; calli with the transverse median plates fused with the meson; lateral plates smaller and narrower than the median plates; circumgenital pores wanting; two rows dorsal pores; first row contains three to five pores, second row two to five; three paired groups of tubularia; median group of six tubules located cephalad of the anus with ducts leading to the incisin betmeen the median loves; second group laterad of the anus, ducts lead to the second incision and the first row of dorsal pores; third group laterad of the second, ducts long and lead to the third incision and the second row of dorsel pores

Hnsts.- Apple, canoe birch, Cydonia japonica, Camperdown elm, Coraus alba siberica, cornus (sp.), grape, juneberry, nsage orange, peach, pear, plum, Prunus pissardi, Rosa rugosa, Ribes (sp.). Rhamnus frangula, Rhamnus (sp.t, mountain ash, sweet cherry, Ulmus americana, sumac, Wheatleii elm, and Tilia americana.

Specimens from Astoria, Belleville, Bloomingtnn, Champaign, Chicago, Dalton, Danvers, Jecatur, Dix, Glenview, Hopedale, Joliet, Kankakee, La salle, Kell, Moline, Mount Pulaski, Mount sterling, Nashville, Nauvoo, Nebo, Normal, ?almyra, Quincy, Roseland, Springfield, Texico, Virginia, Waverly, and Testern springs were studied.

This species is very destructive to the host plant and is of great economic importance. The species is generally distributed throughout the state, however, it is most serious in the southern ore-half.

Aspidiotus ulmi.
Aspidiotus ulmi, Johns., Bull. Ill. St. Lab. NT.H., 4, 1696,388. Aspidiotus ulmi, sanders, Oh. st. Uni. Bull. (8) 17, 1904, 67. Aonidelle ulmi, Leonardi, Gen. e spec. Jiaspiti, Asp., 190n, In. Scale of Female.- scale circular or nearly so, slightly convex, 1.30 to 1.60 mm in diameter, light gray to tan color; tanned only when found under an overhanging fragment of bark; exuvia orange red, dirty gray in old snecimens, slightly eccentric, covered; ventral scale well developed, snow-white; adheres to bark alter insect has been removed making presence of scald quite conspicuous.

Femaie.- Body color light yellom in living individuals, in very old specimens the bodyl few shades darker, circular to oval; pygidium with two pairs of lobes; medien lobes large, well developed, prominent, about as wide as long, mesal margins parallel for almost the entire length of the lobe, leteral margin distinctly notched; second pair of lobes small or rudimentary; incision between the median lobes small; second incision laterad the median lobes deep and narrow; third imcision cophalo-laterad of the second, as wide as but much more shallow than the second; a pair of small chitinous thickenings in the incisicn between the median pair of lobes; a pair of paraphyses-like thickenings in the second incision, the mesal one about three times as large as the lateral, and balloon-shaped; a nair in the third incision, mesal one distinctly curved at its mesocephalic end, and much lonfer and wider than the lateral one; plates and pectinae absent between the median pair of lobes; a vair of plates extending meso- cadad of the second incision; and four plates cephalo-laterad of the third incision; dorsal setae large, nrominent
one at the lateral base of the median lobes, one between the second and the third incision, and two laterad of the third incision; the ventral setae located on the ventral surface slightly laterad of the corresponding dorsal setae, except the one on the median pair of lobes; circumgenital pores wanting; vasal tnickenings with the anterior and postericr plates of each side fused, the cauda portion a distinct arm extending cavdo-laterad; calli with median pletes separate, arranged in a subtransverse rom parallel with the cephalic mergin of the pygidium; three roms dorsal pores; first row with three or four pores located cephalad of the second incision; second with five to eight pores located cepholad of the third incision; and the tird row with four to six pores located caudo-mesad of the fourth dorsal setae; three distinct groups of tubularia; first group situated caudo-mesad of the basal thickenings, tubules long, slender and extend to the first row of dorsal pores; second group laterad of the basal thickenings. tubules long, slender, and exvent to the sec-
ond row of dorsal pores; third group cephalo-laterad of the second tubules long, slender, and extend to the third row of dorsal pores. Hosts.- joft maple, catalpa, Ulmus americana.
specimens collected at Champaign and Urbana were stuiled. This species was found in Champaign and Urbena near the University campus heavily infesting the trunk of the host. The presence of the scale is made very conspicuous by th presence of the white ventral scale which adheres to the bark of the host after the insect has been removed. The species is probably not generally distributed over the state, and is not of any great economic im-

Chrysomphalus obscurus.

Aspidintus obscurus, Comst.. Rep. U.w. Dept. Ag., I880, 303. Aspidiotus obscurus, Hunter, Lans. Uni. Quarterly, 8, 1099.7. Aspidiotus obscurus, Eunter, ans. Uni. âuarterly, 9, lgrn, le7. Chrysomphalus obscurus, san., Oh. Uni. Bull. (80 17, 19n4, 72. scale of remale.- scale circular, slightly convex, 2.75 to 3.00 mm in diameter, dark gray in color, exuvia sligntly eccentric, nipple-like and surrounded by a rather indistinct ring, ventral scale distinct.

Female.- Body reddisil brown in living individuals, $2.5 n$ to 2. 80 mm long, 2.00 to 2.30 mm Wide, segmentation 0 f ine body 2 n distinct, distinct divisinn Dotween the pygidium and the remainder of the body; pygidium with three vairs of well developed lnives; median lobea large, broady rounded at the apex, mesal margins fused for about two-tnirds their length, distal margin witi a slient lateral notchi second pair of looes subequal to the median pair, distal margin bluntly pointed, lateral margin oblique and with four or five distinct notches; third pair of lobes as long as but sligintly narrower than the seconi nair, distal margin uluntly poanted, lateral margin oblique witil tiree small indistinct notches: pyEidial margin with a thickened dentate lobe-like projecticn laterad \because the third pair of lobes; pygidium with seven paraphyses on each siae; two jetween tie median and the second pair of lobes, tine mesal nne twice as long as the lateral, three between the second and the thind pair of lobes, the lateral and mesal ajout one-half as long as the midde one, and a pair of subequal ones laterad oI the third pair of lobes; a pair of thickenea porevnyses-like prosesses between
the bases of the median lobes; a single bifurcated or trifurcated pectinae vetween the median lobes, one betmeen the median and the second pair of loves, two between the second and third pair, and two coarsely furcated ones laterad of the third pair of lobes; a dorsal seta at the lateral base ci the inedian loje, one at the base of the second lobe, one laterad the third incisinn, and one near the midale oi the pjgidial margin; ventral setae located on the ventral surface laterad ol their corresponding dorsal setae; five grovos of circumgenital pores; median groun of tiree to six orifices, anterior laterals eigint to twelve, posterior laterals five to seven; three rows of dorsal nores, anterior group of the first row wanting, posterior group consists of four to six orifices, second row consiste of twelve to thiry-four orifices, divided into two groups , pores in the postericr group are round and those in the anterior gromp are oval, third row conteins four to eight orifices divided in to two grouvs; three oaired groups of tucularia, the median group witin short ducts which extend to tne first $\mathfrak{f l o u v}$ of dorsal pores, ducts of the second group are long and extend to the second group of dorsal pores and the second incision, and the tirird group consists of about one-half es many tubules as the second, ducts similar in form to tiose in the second group and extend to the third gruo of dorsal pores and the third incision; basal tickeniras indistinct and in two grouns; calli with median piates lont, straigit, and transverse, lateral plates sinuate, subequal in length to the median and oblique to them.

Hosts.- Chestnut nak, hickory, white akk, black aak, aak (ip.)
specimens from Macomb, Millstadt, Mormal, Riehl, Starved Rock, and Texico were studied.

This species id found generally throughout the state and occurs abundantly in the forests. It does not appear to do a great deal of damage or even to seriously retard the growth of the host plant.

Locations where Chrysomphalus obscurus was collected.

VIII. ACKINOTLEDGEMENTS.

This investigation was carried on under the direction of Dr. A.D. MacGillivray and to him I am indebted for many valuable suggestions and the unlimited use of his unpublished table for the classification of the Coccidae. To Dr. J.T. Folsom I ome many thaniks for the assistance he has at times given me. I am especially indebted to Dr. S.A. Forbes for the free access to the collection of Coccidae in the Illinois state Jaboratory of Natural History. I arn also indebted to Irr. P.A. Glenin for specimens of the Coccidae which he has given me.

Explanation of Plate Io. I. (Aspidiotus
sp.)

```
    I_---------------- anus.
    2-------------- bas&l thickenings.
    3--------------- calli.
    4-.--.---.--- circumgenital pores.
    5--------------- dorsel pores.
    6--------------- incisions.
    7--------------- lobes.
8--------------- marginal pore.
    9-------------- melian lobe.
ln-------------- median incision.
1l--------------- paraphyses.
l2-------------- pectina0.
13--------------- seta.
14-------------- tubularia.
15-------------- \nablaagina.
l6-------------- spiracle.
17-------------- mouth-parts.
```


Explanation of Plate NO. 2. (Chionaspis sp.)

```
    I-------------- rudimentary antenna.
    2----------------parastigmatic pores.
    3-------------- spiracle.
    4-------------- rostrum.
    5------------- mouth-parts.
    6--------------- circumgenital pores.
    7--\infty------------ dorsal pores.
    8--------------- vagina.
    9--------------- &nus.
10-------------- micropores.
ll-------------- tubularia of dorsal pores.
12-------------- dorsal pores.
13-------------- seta.
14------------- chitinous thickenings
15-------------- plate.
16-------------- plate.
17------------- median lobe.
l8-------------- median incision.
19------------ tmbularia of the micropores.
2\cap-------------- tubuleria.
```


IX. BIBIIOGRAPHY.

Ashmead, W.H.,- A Generic synopsis of the Coccidae.
Trans. Am. Entom. Soc.,18, 1891, 92---102.
Cockerell, T.D.A.,- Tables for the Determination of the Coccidae.
Can. Entom., 31, 273.
Comstock, J.H. and A.B.,- A Manual for the Study of Insects.
Ithaca $\mathbb{N} . Y ., 7 t h \mathrm{Ed} .1907,8^{0}$, 148--174.
Comstock, J.H.-Rept. U.S. Dept. Agri., 1880--8I, 276--349.
Second Report of scale Insects.
Rept. Cornell Uni. Exp. St., II, 1883, 47--147.
Cooley, R.A.-The Coccid Genera Chionaspis and Hemichionaspis. Hatch Exp. St. Mass. Agri. Coll., 1899. Spec. Bull.

Fernald, Mrs. H.E., - A Catalog of the Coccidae of the World.
spec. Bull. Hatch Exp. St., 88, 1903, 1--360.
Authors Ed., Same title, Amherst, Mass., 1903.
Green, R.E.,- The Coccidae of Ceylon. Pts. I---IV, Jondon, 1896---1904.

Hunter, S.J.,- Coccidae of Kansas.
Kans. Uni. Quart., 8, 1, 1899.
Kuwana, S.I.,- The Coccidae of Japan.
Pro. Cal. Ac. sc., (3) 3, 1902.
Marlatt, C.L.,- New Species of the Diaspinae scale Insects. U.S. Dept. Agri., Bur. Entom., Tech. Ser., 16 pt. $2--4,1908$.

National Collection of Coccidae.
U.s. Dept. Agri., Bur. Entom., Tech: Ser., 16, pt. 1, 1908 .
Newstead,R., - A Monograph of the Coccidae of the British Isles. Ray soe, London, London, 2 Vols. $8^{\circ}, 1900 \ldots 1902$.

Maskell, W.M.,- Notes on the Coccidae.
Trans. New Zea. Ins., 28 and following volumns.
Sanders, J.G.,- Coccidae of Ohio?
Ohio State Uni. Bull., (8) 17, 1904,
Signoret, V.,- Essei sur les Cochinelles. Ann. Soc. Ent. Fr. , 1868---1876.

[^0]: $+1$

