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FOREWORD 

The interests of the Office of Naval Research in arranging for the pub- 

lication of the collected hydrodynamical papers of Sir Thomas Havelock 

have a dual nature. First, we take great pleasure at this opportunity to 

express our respect and admiration for Sir Thomas, whose intellectual and 

scientific achievements in hydrodynamics have served as a source of inspi- 

ration and guidance for those researchers who are following him. Second, 

we feel that the increased accessibility of these important contributions of 

Sir Thomas which bear directly on many of today’s urgent problems will 

prove to be of great value to the hydrodynamic research community. 

Our sincerest appreciation is extended to the many persons who as- 

sisted in the preparation of this volume. We should like to express our 

thanks specifically to Sir Thomas himself, for his gracious permission to 

undertake this work; to the late CAPTAIN H. E. Saunders (USN, Ret.), for 

his continued interest and encouragement; to Mr. C. Wigley, for his efficient 

and careful task of editing; to Messrs. W. H. Ramey and I. S. Rudin and 

other staff members of the Technical Information Division, Naval Research 

Laboratory, for the preparation of the material for publication; and to Mr. 

J. W. Brennan, Navy European Patents Program, Office of Naval Research 

Branch Office, London, for obtaining copyright releases from the various 

publishers involved. Our thanks must also be extended to the following 

organizations for the copyright releases which made the publication of this 

volume possible: 

Andrew Reid & Company, Ltd., former publishers of “‘Proceedings of the 

University of Durham Philosophical Society”’ 

The Royal Institution of Naval Architects, publishers of ‘“Transactions 

of the Institution of Naval Architects’’ 

The Clarendon Press, publishers of ‘‘Quarterly Journal of Mechanics 

and Applied Mathematics’”’ 

The Royal Society, publishers of “‘Royal Society Proceedings, Series 
A? 

Taylor & Francis, Ltd., publishers of “‘Philosophical Magazine”’ 

North East Coast Institution of Engineers and Shipbuilders, publishers 

of “Transactions of the North East Coast Institution of Engineers 

and Shipbuilders”’ 
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Society of Naval Architects and Marine Engineers, publishers of “‘Trans- 
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Schiffstechnik, publishers of “‘Schiffstechnik”’ 

T. & G. Allan, Ltd., present publishers of ‘“‘Proceedings of the Univer- 

sity of Durham Philosophical Society”’ 
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PREFACE 

The editor was very honoured and delighted to receive the invita- 

tion of the Office of Naval Research to edit the collected edition of Sir 

Thomas Havelock’s hydrodynamical papers. Since his first introduction 

to hydrodynamical research many years ago, the editor has always re- 

garded Professor Havelock’s work with the greatest admiration and re- 

spect. And, for nearly forty years, after making personal acquaintance 

with Professor Havelock, the editor has received much very kind advice 

and assistance from him, which he is very glad to acknowledge here. 

Nearly all the mathematical analysis in these papers has been re- 

worked, and a number of minor misprints have been found. In one or two 

papers more serious changes have been made, either by Professor Have- 

lock himself, or with his agreement. The papers are arranged in chrono- 

logical order, without reference to their content. The subject receiving 

the most attention in the papers is the development of the mathematical 

theory of wave resistance and wave formation for a moving body. The 

papers in the following list deal with this and show the development of 

the theory from elementary methods to a complete solution for any body, 

subject only to the assumption of small wave height, that is, of a lin- 

earised potential. 

Paper Nos. Pages in this Collection 

lto 4 lto 80 

6 94 to 104 

7&8 105 to 131 

10 146 to 157 

15 to 27 192 to 329 

29 to 36 347 to 428 

44 500 to 511 

46 to 52 520 to 582 

509 615 to 616 

Paper No. 20 (pages 249 to 264), Paper No. 32 (pages 377 to 389), 

and paper 51 (pages 563 to 574) give a summary of the practical results 

to be deduced from the theory at their respective dates 1925, 1934, and 

1951). 

All but five of the remaining papers deal with various motions of a 

ship by similar methods, i.e., with rolling, pitch and heave, motion in 

a seaway, etc., and their individual subjects are sufficiently specified 

in their titles in the List of Contents. 



The remaining five papers, numbers 5, 9, 12, 13 and 28 deal with cer- 

tain mathematical questions which arise in hydrodynamical analysis. 

Finally the editor’s thanks are due to Professor Lunde of Trondheim 

for his kind advice on one difficult question, and also to Dr. T. Francis 

Ogilvie and to Dr. J. N. Newman, both of the David Taylor Model Basin, 

for their kindness in verifying some of the references to American papers. 
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C. WIGLEY 

11th March, 1963 
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[Reprinted from the PROCEEDINGS OF THE ROYAL Socrrty, A. Vol. 81] 

The Propagation of Groups of Waves in Dispersive Media, with 
Application to Waves on Water produced by a Travelling 
Disturbance. 

By T. H. Havetocx, M.A., D.Sc., Fellow of St. John’s College, Cambridge ; 
Lecturer in Applied Mathematics, Armstrong College, Newcastle-on-Tyne. 

(Communicated by Prof. J. Larmor, Sec. R.S. Received August 26,—Read 
November 19, 1908.) 
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§ 1. Introduction. 

The object of this paper is to illustrate the main features of wave propa- 
gation in dispersive media. In the case of surface waves on deep water it 
has been remarked that the earlier investigators considered the more difficult 
problem of the propagation of an arbitrary initial disturbance as expressed 
by a Fourier integral, ignoring the simpler theory developed subsequently by 
considering the propagation of a single element of their integrals, namely, 
an unending train of simple harmonic waves. The point of view on which 
stress 1s laid here consists of a return to the Fourier integral, with the idea 
that the element of disturbance is not a simple harmonic wave-train, but a 
simple group, an aggregate of simple wave-trains clustering around a given 
central period. In many cases it is then possible to select from the integral 
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the few simple groups that are important, and hence to isolate the chief 

regular features, if any, in the phenomena. 

In certain of the following sections well-known results appear; the aim 

has been to develop these from the present point of view, and so illustrate 

the dependence of the phenomena upon the character of the velocity function. 

In the other sections it is hoped that progress has been made in the theory 

of the propagation of an arbitrary initial group of waves, and also of the 

character of the wave pattern diverging from a point impulse travelling on 

the surface. 

§ 2. Definition of Simple Group. 

We have to consider the transmission of disturbances in a medium for 

which the velocity of propagation of homogeneous simple harmonic wave- 

trains is a definite function of the wave-length. The kinematically simplest 

group of waves is composed of only two simple trains, of wave-lengths A, 0’, 

differing by an infinitesimal amount dA; then with the usual approximation 

we have for the combined effect 
9 

y = Acos s @—Vi)+A cos 7 (e—V't) 

dn 2a 
= 2A cos a («— Ut) cos =e (w— Vb), (1) 

ner Gey". (2) 
dn ° 

The expression (1) may be regarded as representing at any instant a train 

of wave-length A, whose amplitude varies slowly with « according to the first 

cosine factor. Thus it does not represent a form which moves forward 

unchanged ; but it has a certain periodic quality, for the form at any given 

instant is repeated after equal intervals of time 4/(V—U), being displaced 

forward through equal distances X\U/(V—U). The ratio of these quantities, 

namely U, is called the group-velocity. It has also the following significance : 

in the neighbourhood of an observer travelling with velocity U the disturb- 

ance continues to be approximately a train of simple harmonic waves of 

length 2. 

The most general simple, or elementary, group may be defined in the 

following manner. Let the central form bea simple harmonic wave of length 

2qr/xo, and let the other members be similar waves whose amplitude, wave- 

length, and velocity differ but slightly from the central type; then, with 

similar approximation, we have 

y = XA cos {« (z—Vt)+ a} 

= ZA, cos {xo (#—Vot)-+ (w@—Uot) Senta}. (3) 
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The range of values of « being infinitesimal, the group as a whole may be 

written, as in the previous case, in the form 

¥ = $(a—Upt) cos {xy (e—Vot) +8}, (4) 
where ¢ is a slowly varying function ; and the group-velocity Uy is given by 

Uo = = (eV). (5) Ko 

The group, to an observer travelling with velocity Up, appears as consisting 
of approximately simple waves of length 27/x. The simple group is, in fact, 
propagated as an approximately homogeneous simple wave-train ; the impor- 
tance of the group-velocity lies in the fact that any slight departure from 
homogeneity on a simple wave-train, due to local variation of amplitude or 

phase, is propagated with the velocity U. 

§3. The Fourier Integral regarded as a Collection of Groups. 

An arbitrary disturbance can, in general, be analysed by Fourier’s method 
into a collection of simple wave-trains ranging over all possible values of «; 
thus after a time ¢ the disturbance will be given by an expression of the type 

[ $0 cos « (vx—Vi+a) de, (6) 

where V is a given function of x. 

The method adopted with these integrals is based on Lord Kelvin’s* treat- 

ment of the case, in which the amplitude factor ¢ («) is a constant, so that 

WY -& | cos K (w— Vt) dk. 
0 

An integral solution of this kind is constructed to represent the subsequent 

effect of an initial disturbance which is infinitely intense, and concentrated in 

a line through the origin; Lord Kelvin’s process gives an approximate 

evaluation suitable for times and places such that —Vé is large, and the 
argument may be stated in the following manner :— 

In the dispersive medium the wave-trains included in each differential 

element of the varying period are mutually destructive, except when they are 

in the same phase and so cumulative for the time under consideration, this 
being when the argument of the undulation is stationary in value. Thus 
each differential element as regards period, in the Fourier integral, represents 
a disturbance which is very slight except around a certain point which itself 
changes with the time. 

Now if we apply this method to the more general integral (6), we obtain an 

* Sir W. Thomson, ‘ Roy. Soc. Proc.,’ vol. 42, p. 80 (1887). 
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expression for the total disturbance, attending only to its prominent features 

and neglecting the rest, provided we assume the change of the amplitude 

factor @(«) to be gradual. On this hypothesis the resulting expression 

contains the amplitude of the component trains simply as a factor; and in 

this way the trains for which it is a maximum show predominantly in the 

formula, which exhibits the main features of the disturbance as they arise 

from place to place through cumulation of synchronous component trains. 

The argument shows that in some respects the integral (6) may be more 

conveniently regarded as a collection of travelling groups instead of simple 

wave-trains ; when ¢(«) is a slowly varying function, the groups will be 

simple groups of the type (3). The limitations within which this is the case 

will appear from the subsequent analysis; one method of procedure would be 

graphical: to take a graph of the fluctuating factor and see that the other 

factor, which is taken constant, does not vary much within the range that is 

important for the integral. 

In the cases we shall examine, the effect is due to a limited initial 

disturbance, and the salient features are due to the circumstance that ¢ («) 

has well-defined maxima; thus the prominent part of the effect can be 

expressed in the form of simple groups belonging to the neighbourhood of the 

maxima. 

Before considering in detail special cases with assigned forms of the velocity 

function V, two illustrations of interest may be mentioned. 

(a) Damped harmonic wave-train—lIf f (x) is a function satisfying the 

conditions for the Fourier transformation, we have 

f (2) =| a AO) eae =a. 
TJ0 —o 

For an even function of z, this gives 

i(@) = =| $(x)cosxadk, where (x) = | J (@) cos kw do. (7) 
T 10 0 

Now let f(x) be an even function of a, defined for all values, and such 

that it is equal to e~“* cos «’a for w positive ; then we find 

(8) 26(«) = 2 sat —e #6) = Eee ea ee) 
Consider this function f(«) as the initial value of a disturbance y which 

occurs in a dispersive medium; then the value of y at any time can be 

expressed, in general, by 

vie [¢ (x) cos « (2— Vt) dk +B [ $ (x) cos x (a+ Vt) dk, (9) 
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where A, B are constants which need not be specified further in the present 

connection. 

These integrals are of the type (6), and represent infinite wave-trains 

travelling in the positive and negative directions respectively. We see from 

(8) that when pw is small, the amplitude factor $(«) consists practically of a 

single well-defined peak in the neighbourhood of the value «’. Hence, when 

the damping coefficient ~ is small, the wave-trains in question may be 

considered as travelling in the form of a group «’ of unchanging waves of 

this specified structure. 

This example serves to illustrate the propagation of a very long train of 

simple harmonic waves subsiding as they travel owing to a small damping 

coefficient, and is of interest in connection with Lord Rayleigh’s general 

proof that the group-velocity U is the velocity with which energy is being 

propagated.* A small damping coefficient ~ is introduced by him, so that 

the energy transmitted is determined by the energy dissipated; the argument, 

which of course loses its meaning if w is actually zero, shows that when yp is 

diminished indefinitely the rate of transmission of energy approaches U as a 

limiting value. Similarly, although the Fourier transformation is inapplicable 

when yp is actually zero, we infer from the above analysis that when yu is 

diminished indefinitely, the disturbance is representable as a simple group of 

unchanging waves of definite structure. 

(b) Interrupted simple wave-train—Consider an initial disturbance 

defined by 
i (@) = (-—d<a<d) 

= ¢#* sin «’ (2—d), (a > d), 

= —cH sink’ (z@+d), (a < —d). 

Then the disturbance is given by an expression of the form (9), in which 
foe) 

26 (x) = af e * sin k'(w —d) cos kw dw 

Be (e+x’) cos K d=pam wd (K’—k) cos cs app Sa K a (10) 

pe+(K+ Ke) pet (« —K) 

Now suppose » and d very sinall, so that the initial disturbance approxi- 

mates to an infinite simple harmonic form with a narrow range of 

discontinuity ; we see that the graph of the amplitude factor ¢ («) is then 

reduced to a single peak in the vicinity of the value x’. We infer from this 

example that a very long simple harmonic wave-train which is interrupted 

for a short interval is kinematically equivalent to a group of unchanging 

waves, of definite structure ranging round the value 27/x’ of the wave- 

length. 
* Lord Rayleigh, ‘ Proc. Lond. Math. Soc.,’ vol. 9, p. 24 (1877). 
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§ 4. Features of the Integrals Involved. 

The integrals we have to consider in such problems are of the type 

= | $ (u) cos { f(u)} du. (11) 

All such integrals we can treat in the same manner, adopting the method 

employed by Lord Kelvin for the particular case referred to above (§ 3). 

This method consists in supposing that f(w) is large, so that the cosine factor 

is a rapidly varying quantity compared with the first factor; thus, much as in 

the Fresnel discussion of the diffraction of light waves, the prominent part of 

the graph of the integral is contained within a small range of w for which 

7(u) is stationary in value, so that the elements are then cumulative. In 

other words, we select from (11) the group or groups of terms ranging round 

values Uv of uw which make 
f (%) = 0. (12) 

In such a group of terms we may put 

Su) = FU) +3 (w= wo)? P" (Uo). 
Then if we write o? for }(w—w) jf’ (wo). the contribution of the group to the 

value of (11) is given by 

yo = {ar} | 6 (uw) cos { f (uo) + 02} do, (13) 

where the limits of the integral may be in general extended, as in diffraction 

theory, to +00, provided w does not coincide with either limit of the integral 

(11), and also provided that /’’(w) is not zero. 

Thus we have, from (13), 

w= { wale (uo) [eos {f (vo)} sin {F (wo) }] 

=f 57 TGR mt $ (uw) cos { f (uo) +477}. (14) 

This is the sum of the contributions of the constituents of each group 

around a central value w given by (12), provided the value % comes within 

the range of values of uw in the integral (11). 

If 7’’(w) is negative, the Sere a result may be written 

Wo = | rap f # le) c05 {/ e0) 4}. > 
We write down for reference the similar pair of results for a group of terms 

from the integral 

— | (w) sin {f(u)} du. (16) 
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If f’ (uo) is positive, 

Bo = 4 Girt } (0m) 008 {7 (Ho) — In} 5 a7) 
and if f’’ (a) is negative, 

ti 2ar 4 | ap = { =) $ (wo) cos { (to) +477}. (18) 

The chief form in which such integrals occur is 

y= | $ (x) cos x (w—Vt) dx, where V =f(c). (19) 

The principal groups are given by the values x such that 

d @  @ ne 
aE {x(a—Vt)} =0, or ae («V) = U. (20) 

The aggregate value of the group can be written down from one of the 

previous forms ; if OU/0« is negative, we should have 

Yo = {= a0 [oe ie co) (Ko) cos {ko (a— —Vt) +47}. (21) 

As an illustrative example we may suppose a disturbance y to be given at 

time ¢ by the expression* 

y= | cos « (e— V#) de. (22) 
0 

When z—V¢ is large, the elementary waves given by (22) reinforce each 

other only for the simple groups given by values «) for which the argument 

of the cosine is stationary, so that 

x—Ut = 0. (23) 

This equation (23) defines a velocity U such that to an observer starting 

from the origin and travelling with this velocity the complex disturbance has 

the appearance of simple waves of length 27/. Or again, we may regard 

(23) as giving the predominant value of x at any position and time in terms 

of zand¢. The features of the disturbance will depend on the form of the 

velocity function V ; we proceed to consider some special forms, 

§5. Initial Line Displacement on Deep Water. 

We consider surface waves on an unlimited sheet of deep water, the only 

bodily forces being those due to gravity. Let the z-axis be in the undisturbed 

horizontal surface, and the y-axis be drawn vertically upwards. Let 7 be the 

elevation of surface waves of small amplitude with parallel crests and troughs 

perpendicular to the zy-plane. It can be shown that for an initial displace- 

* Lord Kelvin, loc. cit. ante. 
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ment given by 7 = cosx«z, without initial velocity, the surface form at any 

subsequent time is given by 

n = cos« Vi cos xx = 4 {cos « (w—Vt) +cos x (w+ Vt)}, 

where V = (g/x)® (24) 

Let f(z) be any even function of « which can be analysed by Fourier’s 

integral theorem. Then, corresponding to an initial surface displacement f(z), 

without initial velocity, there is a surface form given at any subsequent 

time by 

mes e| $ (ic) cos x (e—Vt) de +— | $(«) cos (a+Vé) de, (25) 
47 0 0 ar 

where $ (x) = {7 (@) cos kw dow. (26) 

If we suppose the initial elevation to be limited practically to a line 

through the origin and assume that | J (@) dz = 1, so that ¢(«) = 1, we can 
—_—oO 

use, as an illustration of the procedure, the form 

n= Za | cos (e— VE) det 5 | cos x (2+ Vt) dk. | (27) 
4/04 0 ATT 0 

We select from these integrals the groups which give the chief regular 

features at large distances from the original disturbance. This cumulative 

group from the first integral is given for a given position and time by the 

value of « for which « (c—Vf) is stationary, where V = ,/(g/«), so that 

Lo Oi J 8; 
i ee ra 

and, similarly; from the second integral by 

Thus there are symmetrical groups of waves proceeding in the two directions 

from the origin; for z positive we need only consider the first integral in 

(27), and for x negative the second integral. Thus the predominant wave- 

length at a point « at time ¢ is given by 

K = gt? 4a. (28) 

Evaluating this predominant group by means of expression (21), we obtain 

the known result 
3 2 

i ~$! eos (7-17). (29) 
~ Qarhad 4x * 

At a given position, far enough from the source for the train to be taken 
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as unlimited, this indicates oscillations succeeding each other with continually 
increasing frequency and amplitude; also if we follow a group of waves with 

given value of « the amplitude varies inversely as #4, or inversely as the . 

square root of x.* 

§ 6. Initial Displacement of Finite Breadth. 

If 7 is the range within which the initial displacement is sensible, the 
previous results hold with //a small; further, as Cauchy showed, gt l | 4a? 
must be small if the function ¢(«) of (26) is to be taken as constant. 
Prof. Burnsidef has obtained approximate equations for the surface form due 
to certain limited initial displacements not confined to an indefinitely 
narrow strip. From the present point of view, such results can be recovered 
simply by selecting from the integrals the more important groups of waves. 

(a) Let the initial displacement be given by 

Sf (&) = ca /(a? +27), (30) 
where « may be supposed small. 

Then o()=| PO des = eae, 

Hence from (25) the surface form is 

n = tee | e-** cos x (w«— Vt) de+4ca | e~** cos « (a+ Vt) dk. (31) 
0 0 

For points at some distance from the range in which the original 

disturbance was sensible, e~* varies slowly compared with the cosine term ; 
thus we may consider the integrals as made up of simple groups. For « 
positive we need only consider the first integral. 

The predominant value of « is thus connected with w and ¢ by the same 

equation (28) as before. Since the greater amplitudes are associated with 

the smaller values of « and these have the greater values of U, it is clear 

that, at a particular point, the disturbance dies away from its maximum at a 

slower rate than its growth up to it. Using the previous results we can 

write down the disturbance involved in the main group form as 

ta 

n = cart ee ¢ cos (E-2) : (32) 

The following results can be deduced. The cosine term varies rapidly 

compared with the other factors, hence we may obtain the maximum by 

considering the latter alone ; it is easily seen that this occurs when 

a[t = »/(29). 
* Lamb, ‘Proc. Lond. Math. Soc.’ (2), vol. 2, p. 371 (1904). 

+ W. Burnside, ‘Proc. Lond. Math. Soc.,’ vol. 20, p. 22 (1888). 
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Thus the maximum is propagated out with uniform velocity; and we see 

that in its neighbourhood the predominant wave-length is 4crz. 

(>) Let the initial displacement have a constant value A over a range of 

breadth 2c, and be zero at all other points; then we have 

$ («) =o SID KC 

K 

Hence the surface elevation is 

oc . 

4 sin KC 
co. 
sin Ke 

0 K 
Qos cosk(@+Vt)d«. (33) 

T 
cos x (x— Vt) eee | 

0 T 

With the same argument as before, we consider the value of 7 at a point 

as due to the most important of a succession of simple groups, that one, 

namely, for which the argument is there stationary so that the components 

reinforce over a considerable range of «; and we can write down, from the 

previous results, an expression for this group which is valid at least in the 

vicinity of the travelling maxima of the disturbance. We have 

2 2 

n= = (all sing cos (Fi), (34) 

corresponding to Burnside’s result in the paper already cited. 

Here we have a succession of maxima given by those of (a/g¢t?)t sin (gt?/42?), 

that is, at times given by tan @ = 26, where 0 = gi?c/ 42”. 

The period of the group that is thus cumulative is different for different 

localities, and for different times at the same locality; but the accumulation 

is very prominent only for those times and localities which give a maximum 

value to the amplitude, which has been graphed for the next example in 

fig. 1. 

The maxima here diminish continually in value, and are propagated each 

with uniform velocity, namely, the group-velocity corresponding to the 

predominant wave-length in the neighbourhood. 

§ 7. Limited Train of Simple Oscillations. 

Another interesting example is the case of an initial displacement consisting 

of a limited length of simple harmonic oscillations. If f(x) is symmetrical 

with respect to the origin, and is zero except for a range of (2m + 4) wave- 

lengths within which it is A cos «’x, we have 

(22 +4) 17/n! AL y 

p(x) = 2 | A cosk’ coska da = 2«’A Gos osreD aye (35) 
0 

79 > 

Ke — KP 

Hence, from (25), we have the surface elevation 7, of which we write down 

10 
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only the integral necessary for propagation in the direction of a positive, 

that is, 

y= EAL cos Gn a) tele cos x (e— Vi) die (36) 
T Jo UG hol Ke 

If 1 is very large, the main feature consists of the component waves round 

the value «’; but in general it is to be noticed that a series of subsidiary 

components appears whose effects may be of sufficient magnitude to be 

appreciable. But the component waves are cumulative only for values of « 

and ¢ such that 
K = gt? /42?, 

which is the value corresponding to a stationary argument of the cosine; thus 
the prominent effect at time ¢, of any group of parameter «, will be at localities 
where « has the value «’, or, else, a value belonging to one of the subsidiary 
maxima. The result may be evaluated in the same manner as before; 
we find 

Re zit Be ge iE ‘ 7 = 16e'A (2 \ Tear ap oO (204+) 7 Sc0s(S°— yr). (37) 

We can obtain the prominent travelling groups above referred to, which 

this involves, by evaluating the maxima of the amplitude function 

t 

The form of this function is shown by fig. 1; it is obtained by plotting the 

COS (2n +3) 5 ze (38) 

curve 

cos $7ra?, (39) 
a 

YS Tae 

where @ is proportional to ¢, and, further, « equal to 1 corresponds to « equal 
to x’. 

The curve represents the variation of the disturbance at a given point with 

the time, neglecting the local variations of the last cosine factor in (37) ; it 
shows the grouped propagation of an initial displacement consisting of 
4} complete wave-lengths of a simple cosine wave of wave-length 27/«’, 

or 2X’. 

The main undulatory disturbance appears as a simple group around the 
predominant wave-length X’, moving forward with the corresponding group- 
velocity 3\/(g/«’) or 4V. But ia advance of this main group of undulations 
there are two or three subsidiary groups of sensible magnitude with wave- 
lengths in the neighbourhood of 9A/2, 92/4, 9/6, moving with corresponding 
group-velocities of 3V/2,/2, 3V/4, 3V/2,/6. Thus in advance of the main 
group we have slighter groups of larger wave-lengths moving with group- 
velocities which may be larger than the wave-velocity of the original dis- 

11 
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turbance if it were unlimited. In the rear of the main group we have also 

a series of alternating groups, following each other much more quickly and 

with their wave-lengths and velocities less separated out than in the front of 

the main group. Hence the disturbance in the rear, especially at distances 

from the origin not very great, may be expected to consist of small, more 

YJ 

Fie. 1. 

irregular, motion resulting from the superposition of this latter system of 

groups, thus there will be a more distinctive rear of disturbance moving 

forward with velocity $V. These inferences may be compared with some 

results given in Lord Kelvin’s later papers. Starting from a solution of the 

equations for an initial elevation in the form of a single crest, the results were 

combined graphically so as to show in a series of figures the propagation of 

12 
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an initial disturbance consisting of five crests and four hollows of approxi- 
mately sinusoidal shape ; the following remarks are made :—* “ Immediately 
after the water is left free, the disturbance begins analysing itself into two 
groups of waves, seen travelling in contrary directions from the middle line 
of the diagram. The perceptible fronts of these two groups extend rightwards 
and leftwards from the end of the initial statie group far beyond the ‘ hypo- 
thetical fronts,’ supposed to travel at half the wave-velocity, which (according 
to the dynamics of Osborne Reynolds and Rayleigh, in their important and 

interesting consideration of the work required to feed a uniform procession of 

water-waves) would be the actual fronts 7f the free groups remained uniform. 
How far this 7/ is from being realised is illustrated by the diagrams of fig. 35, 
which show a great extension outwards in each direction far beyond distances 
travelled at half the ‘wave-velocity.. While there is this great extension of 

the fronts outward from the middle, we see that the two groups, after 
emergence from coexistence in the middle, travel with their rears leaving a 
widening space between them of water not perceptibly disturbed, but with 
very minute wavelets in ever augmenting number following slower and slower 
in the rear of each group. The extreme perceptible rear travels at a speed 

closely corresponding to the ‘half wave-velocity”. . . . . Thus the per- 

ceptible front travels at speed actually higher than the wave-velocity, and 

this perceptible front becomes more and more important relatively to the 

whole group with the advance of time 2 

This extract will serve to emphasise the importance of strict definition and 

use of the word “group.” A simple group, of whatever structure, has asso- 

ciated with it a definite velocity depending only on the wave-length, but not 

so an arbitrary limited displacement. In various cases we have found it 

convenient to analyse such into its important elementary groups, each with 

definite velocity ; in special cases the disturbance may be equivalent practi- 

cally to one simple group. 

§8. Lnitial Impulse on Deen Water. 

Suppose that initially the surface is horizontal, but that given impulses 

are applied to it. Then for any given symmetrical distribution of impulse 

7 (x), suitable for Fourier analysis, with no initial elevation, the surface 

elevation at any subsequent time is given by 

moon BSE ( «Vd (x) sin x (2—Vt) de—} | KV p(x) sin« (a+ Vt)de, (40) 
0 0 

) 

where o (x)= | 7 (@) cos kw dw. 

* Lord Kelvin, ‘ Phil. Mag., vol. 13, p. 11 (1907). 

. 

13 
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If we assume ¢ («) equal to 1, so that it is confined to an indefinitely narrow 

strip of impulse (cf. § 5), we obtain the result corresponding to (29) for 

initial displacement by multiplying that expression by the value of «V; thus 

we find 

al AS (£ 1 ) Ad 
Lie Snipat Zag ie) 

For comparison with the previous results, suppose that 

ca? f ere 
WO)VS ra b (Kk) = mea *. 

Then we find the surface form as an aggregate of groups, each of them 

cumulative and so prominent only in a limited region, given by 

+ 242 2 2 — mcag*t? — xe (g ) 5 = Cos 5 42 
a Apai © 4a +a C2) 

For a given place the maxima are given by 

£ (Go-stt) = 0, that is, by 7 = 4,/(ga). 

Thus the maximum moves with velocity 4 ./(ga), and consists of nearly 

simple waves of wave-length 27a. Comparing with the result in §6 for an 

initial displacement of the same character, we see that the maximum is pro- 

pagated outwards with slower velocity, the wave-length at the maximum 

being one-half the corresponding value in the former case. 

§ 9. Moving Line Impulse on Deep Water. 

Suppose that the line impulse of the previous section is moving over the 

surface of deep water at right angles to its length with uniform velocity c, 

having started at some time practically infinitely remote. Then we may 

regard the effect at (x, t) as the summation of the effects due to all the con- 

secutive elements of impulse, and we can obtain an expression by modifying 

(40) and integrating with respect to the time. We measure z from a fixed 

origin which the line impulse passes at zero time; then we substitute x—cto 

for z and¢—ty for ¢ in (40), and integrate with respect to ¢ for all the time 

the impulse has been moving. Thus we obtain 

t ce) 

Tgpn = 2 ato | «KV sink {w—cty— V (t—to)} dk 
0 

t co 

—4t f ato) KV sin « {t©—cto+ V (t—to)} de 
—ao #0 

= 1( au KV sin x {o+(c—V) wu} de 
0 Jo 

= i [ae KV sink {o+(c+V)u}dn, (43) 
0 0 

14 
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where « = x—ct, and represents distance in advance of the present position 
of the impulse. We proceed to obtain now the important regular features of 
the disturbance represented by these integrals. 

With the notation of (19) and (20) we have in the first integral 

fe) =e-V = e-V(g/0), 
# (if (e)} = 4/90) 

Hence the required predominant value of «, which corresponds to a stationary 
argument, is given by 

ain LS 8 pees ae ¢ an/2 oo ee (44) 

Thus the first integral in (43) gives 

Lorigi le cos wie + tn} du. (45) o(a+eu)! 4(s+cu) * 

We choose again the principal groups of oscillations by the condition 

a gut 5 } S —— Ph (amt 47 = 0, oF Cu= 2a. 

Now wu must be positive to come within the range of the integral (45); 
hence if w is positive we obtain no contribution towards a regular undulatory 
disturbance. If m is negative we obtain a series of travelling waves which 
we can evaluate from (45). 

We have 

d? 

du? 

Hence, using expression (18), we obtain the value of the chief group from (45), 

_ ge Syeee h = —9 {; ae} De? when cu 2u. 

namely, 

a) sin 2 
G? ca (46) 

which holds when a is negative. 

As regards the second integral in (43), we easily see by taking the principal 
group in « that o+cw must be negative: thus « must be negative and cu 
between zero and w numerically. Then taking the chief group in u, we have 
cw equal to 2m numerically. Hence there is no resulting group of waves 
falling in the range, and the second integral contributes nothing to the regular 
disturbance. 

We have then the well-known result that in front of the travelling impulse 
there is no regular disturbance, while in the rear there is a train of regular 
waves, proportional to (46), with wave-length suitable to the velocity c. 

15 
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The same method can be used for waves on water of depth h, due to a 

travelling impulse system. For in the integrals (43) we should have 

fO=eN ace , (2 tanh Kh). (47) 
K 

The group with respect to « would give a term proportional to 

cos {uwx?f" (x) +47}, (48) 

where « has the value given by 

—a/u=f(k)+Kf («). (49) 

We then select the group with respect to u by 

d / 
Fh uxf’ («)} = 0. (50) 

Using (49) we find this leads to* 

= tanh xh Fie) =0, or Vae= (gh) 4/(2E) (51) 
Since tanh «h/«xh diminishes continually from 1 to 0 as xh increases from 

0 to 20, there is only a real solution of (51) when c? is less than gh. In this 

case we have regular waves of length suitable to velocity ¢ following in the 

rear of the impulse; when c is greater than the maximum wave-velocity there 

is no recular wave form. 

§ 10. Capillary Surface Waves. 

In order to illustrate the propagation of an element of the Fourier 

expression as a limited travelling group of undulations, we consider another 

form of velocity function. If waves are propagated over the surface of a 

liquid of density p under the action of the surface tension T, it can be shown 

that the velocity of simple waves of length 27/« is 

V = /(Te/p). (52) 
Hence in this case the group-velocity is 

U = $V/(Te/p) = $V; 
thus the group-velocity is greater than the wave-velocity, and we shall see 

how this affects some of the previous results. 

(a) Initial elevation consisting of (2n+ 4) simple oscillations of wave-length 

27 /«’'—If we consider the same problem as in § 7 we have 

AN ( (et me cs (e— Vt) de. (53) 
12 

0 K 

* Of. Lord Rayleigh, ‘ Phil. Mag.,’ vol. 10, p. 407 (1905). 

16 
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The predominant value of «, for given time and place, is given by 

K = 4px7/9T??. (54) 

The chief groups, each with approximately constant amplitude, are given by 

nv at3 4irpx? 4px? ) = 
a= B 81T?x«’?t4— 16 p2x4 COS (2n +4) On TE cos ae 4). (55) 

At a given place the maxima of amplitude are those of 

#8 
a (One), 5 SIP 16 pat 8 2" +2) gota D 

Fig. 2 represents the curve 

3 2 
Y= 08 5.2? (57) 

where « is proportional to the time and « equal to 1 corresponds to « equal 
to x’. 

Fig. 2. 

Comparing this with § 7 we draw the inference that in this case the 
perceptible front of the advancing train is more clearly marked than the rear 
and advances with the half-wave-velocity corresponding to x’, in agreement 
with simple observation. 

(b) Moving line impulse—A line impulse at rest leads to 

7 = Catt~4 cos ie + ir) : 
27T? 

Consequently a moving line impulse will give 

=A if (oar): +2) cos { se (eatew) — +40 } du. (58) 

17 
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Then we choose u so that 

cS (eto =0, or u(cu—20)(s+eu)? = 0. 

The value giving a regular wave pattern is the positive root 

cu = 20, for w positive. 

Hence in this case we have a regular train of waves of length suitable to 

the velocity ¢ in advance of the moving pressure system, with no regular 

pattern in the rear. 

§ 11. Water Waves due to Gravity and Capillarity. 

If we take account of gravity and the surface tension together, we have the 

velocity function 
V = (Te+g/«)}. (59) 

= Gh _ _3Te+9 
Hence Us ae (KV) = Sraisneaar (Tet gk (60) 

We have not here a simple ratio U/V, independent of «. The velocity V 

has a minimum ¢m for a certain value Km, equal to (g/T), and for this value 

U is equal to V—as in fact follows from the definition of U. For «<#m, U 

is less than V, tending ultimately to }V; while for «>«m, U is greater than 

V and approaches as a limit $V. 

If we consider a travelling line impulse, the whole problem of finding the 

principal groups is contained in the equations 

wre _pyH 3TK?+9 
Uw > 2 (Tx? + x)3 i (61) 

c= V= (Te+9/«)t 

Actas? ae 2 +(ct—cmt)t 

c8—Cn!t 2T 

where the positive sign is taken for o positive (in advance of the impulse), 

and the negative sign for a negative (in the rear). Thus there is no wave 

Hence Cu = 

pattern unless ¢ is greater than the minimum wave-velocity c,; and if so 

there are regular trains both in advance and in the rear, the smaller wave- 

lengths being in advance. With the ratio c/em large, the results approximate 

to very small waves in front and waves in the rear with « equal to g/c’. 

§ 12. Surface Waves in two Dimensions. 

Suppose that the initial data instead of being symmetrical about a 

transverse straight line are symmetrical around the origin. Let the axes of 

18 
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x,y be in the undisturbed surface and the axis of z vertically upwards; we 
write w for ,/(z2+ y?). Then, corresponding to (25), the surface elevation £ 
due to an initial displacement J(@), set free without initia] velocity, is 
given by 

ee | Dea ea GAMacyas, (62) 
where Aine ( Ow Gaia (63) 

For an initial point-elevation we may take for simplicity $(«) equal to 
1/27; then we have 

1 

Soe { Wh (xa) cos (kV) «dk 0 
1/2 fe 

= 3 “a| cos («aw cos B) cos (« Vt) Kd 
0 0 

1/2 oo) 

cos cos B— Vt) xd, 
27? [ag \, © ji j /2 c} 

ats a {ap [cos k(acosB+Vt) «de. (64) 

For deep water we separate a real principal group from the first integral, 
with respect to x, around the value of « given by 

wos 3/8 

t meas K 

This is replaced by the equivalent form 

343 pm/2 d 2 — B URES ) 65 
Sai Sarita? i cos B cos ( % Cos 8 sa 2) 

Considering now the range for 8, we can again select the principal group of 
oscillations from (65); it occurs at @ equal to zero, so we take one-half the 
result given by the expression (14) and obtain the known result 

oh ea pet 66 
Sea ) 

Similarly, for an initial point impulse we have, instead of (64), the 
expression 

ar /2. Lo - 
t= itl ae | dg | eV {sin « (w cos B—Vt)—sin«(wcos8+Vt)} «de, (67) 

2gpT? J 0 

leading in the same way to the result 

Be Gas NOt 68 
om 2arput ay 4a C2) 
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§ 13. Point Impulse Travelling over Deep Water. 

Let the impulse be moving along Ow with constant velocity c; let B be 

the position at time ¢, A at any previous time ¢,, and suppose the system to 

have been moving for an indefinitely long time. 

/ P[z.4) 

Fie. 3. 

We have OA = chy; OB = ct. 

PB = o = {(ot—a) +9}; 
cos a = (ct—2)/o. 

Then in (67) we have to substitute {@?- 2c w(¢—t,)cos a+ c(t - ty) a\h 

for &,¢—¢, for ¢,and integrate with respect to 2) from —o to ¢; we obtain 

= TPIS ye 2y2\h— c= cS se [a w {eV [sin «(cos 8 {ew 2cum cos a + c7u?}t— Vw) 

—sin «(cos B {w?—2cum cosa+c?u?}t4+Vu)] «de. (69) 

With V = (9/«)}, we select the group around the value of « given by 

«1 = 4 cos? B (w?— 2cum cos a + ¢7u?)/ gu. (70) 

By using the formula (17) we find 

pao Mala 
l6p7? J » cost B (a?— 2cua cos «+ cu?) 

cos caren SUSU, oe ean in| > (al) 
4 cos B (w?— 2cus cos a+ c?u")t 

Selecting from this the chief group which occurs near 8 equal to zero, we 

find 
eas WG wdu ge (72) 
~ — Barp ),, (w?—2cwm cos eee "(ae — 2cum cos «+ c?u?)t 

Finally we choose the chief groups of terms in w from the condition 

g tgu? (w?— 2cus cos a+ c?u?)-t = 0; (738) 
2 
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that is, from cu? — 3cum cos a+ 2n7 = 0, (74) 

or cu = 40 {3 cosa+(9 cos? a—8)*}, (75) 

We have then different cases to consider according to the nature of these 

values for cw, remembering that cw gives a position of the moving impulse, at 

time w previously, for which the waves sent out reinforce each other at the 

point (w, «) at time ?¢. 

(i) In the region where 9 cos?« < 8, both roots are imaginary; thus the 

previous position is non-existent, and there is no principal group in the 

integral (72). Hence all the regular wave pattern is contained within two 

straight lines radiating from the point impulse, each making with the line of 

motion an angle cos~! 2,/2/3, or approximately 19° 28’. 

(ii) When 9 cos?«<8, there are two different real roots for cu. Thus we 

have two chief groups in the integral (72), corresponding to two regular 

wave systems superposed on each other. 

At any point P within the two bounding radii the disturbance consists of 

two parts: one part sent out from A at time w previously, where 

OA = 4a {3 cos 2+(9 cos? a—8)*} and uw = OA/c; (76) 

and another part sent out from B at time wz before, where 

OB = 4m {3 cos 2—(9 cos?#—8)*} and uw, = OB/c. (77) 

Fig. 4. 

We have then two wave systems, which may be called the transverse 

waves and the diverging waves; we shall examine them separately. 

(a) The transverse wave system—Taking the larger value of cw in (76) 

we find 

w?— 2cum cos a+¢cu? = 30? {3 cos?«—2+cos a (9 cos? «—8)}}, 

f(u) = uw — 98/2 18 cos? a—8 + 6 cos « (9 cos? a—8)t 
4 (w?—2cus cos a+ c?u*)t 16c? {3 cos?a—2+ cos @ (9 cos? a—8)}t 

(78) 
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Further, when /” (wv) is zero, we have 

FT (w) = Ageu (2cu— 3a cos a)/(w?—2cus cos a+ cu?)3, (79) 

Using the formula (17) we obtain the particular group of terms from the 

integral (72) as 

pan, ue Qa \ 3 
= ~ Ber (w? — 2eum cos a+ 2u?)? iF ih CEN) ce) 

in which the special value of w must be substituted. 

Evaluating this expression we obtain 

pee of {3 cos «+(9 cos? a—8)"}4 

2* pc w* (9 cos?a—8)* {3 cos? a—2+4 cos « (9 cos? oy 

1a gu/ 2 {8 cos a+(9 cos? a—8)*}? —in} (81) 

16 {3 cos?a—2+4 cos a (9 cos? «—8)'}4 

This represents a system of transverse waves travelling with the 

originating impulse ; the amplitude for a given azimuth « diminishes as o7?, 

On the central line, where « is zero, this reduces to 

93% 

B= a (G-1), 62) T pew G 

corresponding to simple line waves of length suitable to velocity ¢ on deep 

water, but with the amplitude factor o~?. 

Following the crest of a transverse wave we have 

gean/2 3 cos a +(9 cos? « — 8)*}? —hor = (2n+1)z, (83) 
16¢? {3 cos? a—2+4cos «(9 cos?a—8)*}4 iow 

where 7 is a positive integer. The crests cut the axis in points given by 

w= (2n+4)r/9, (84) 

and cut the radial boundaries given by « = + cos 2,/2/3, in the points 

w = 2c? (2n4+4) r/g,/3. (85) 

Consider the variation of amplitude following a crest; we substitute for a 

from (83) in (82) and obtain 

const. {3 cos a+(9 cos? a—8)*}# 

(2n+ 5) (9 cos? «—8)*{3 cos? a —2+ cos « (9 cos? a—8)*}? 
(86) 

This becomes infinite at the outer boundary, when « is approximately 

19° 28’; this is due to the failure of the method of approximation and we 

shall consider it later. For the present the following table of values and 

curve show that the approximation holds up to angles very near the limit. 
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Table I. 

¢ = relative amplitude, along the same crest at different azimuths. 

a w 

SS OC oa 

IS © © 

8 Kard 

° 7 2 aT one {¢) 4 8 12 16 19e820 

Fia. 5. 

(b) The diverging wave system.—By taking the smaller root for cu given by 
(77), we obtain the system of diverging waves; we need only change the 
sign of the radicle in order to write down the corresponding results in this 
case. 

The crests of the waves are given by 

ga/2 {8.cos «—(9 cos? «—8)*}? 
16c? {3 cos? a—2—cos a (9 cos? a—8)}* 

= (2n+4)r, (87) 

When « is zero, w is also zero; thus all the crests diverge from the point of 
impulse. Further, we have 

3S C097! D/AYS 2 w= 20? (2n+8)/g/3. (88) 
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The law of amplitude along the same crest is given by 

__const. {3 cos a—(9 cos? «—8)'}# 
(2n + 5)? (9 cos? «—8)* {3 cos? a —2—cos a (9 cos? «—8)'}? 

(89) 

In this case, and for the same reason as for the transverse waves, the 

expression for the amplitude tends to infinity at the outer end of each 

diverging crest ; we shall find an approximation in the next section. But 

(89) becomes infinitely large for small values of « From (88) we see that 

w also becomes small, so that the approximation fails; further, we should 

expect the expression to become infinite near the impulse on account of its 

special character. We can show how the infinity disappears if we remove 

this cause. Consider, as an example, a finite impulse, of constant intensity 

over a circular area of radius d round the origin, and of zero value outside 

this circle. Then, as we see from (63), we shall have the same expressions as 

before, with a new factor given by 

g(x) = [r@ Jo (Ka) a da 

ZG [ IG ade = Od WGA) 

Now in the final group for the diverging system we have 

ae] {3 cos a—(9 cos? «—8)?}? 
8c? 3 cos? «—2—cos « (9 cos? «—8)? 

Hence the additional factor due to ¢(«) is proportional to 

3 cos? a—2—cos a (9 cos? a—8) 5 { gd {3 cos a—(9 cos? —8)?} } 
{3 cos «—(9 cos? «—8)?}? * 82 {3 cos? a—2—cos a (9 cos? a—8)!} J* 

(90) 
When « approaches zero, the argument of the Bessel’s function increases 

indefinitely and we may use the asymptotic expansion; then (90) is 

proportional to 
{3 cos? «a—2—cos «(9 cos? «—8)* }# 

91 
{3 cosa—(9 cos? a —8)*}4 

(91) 

If now we multiply (89) by (91) we obtain a limiting value of the 

amplitude of the diverging system near the axis; it is proportional to 

(2n+4)-= {3 cos a—,/(9 cos? «—8)}#, 

and the infinity near the axis has disappeared. 

(c) The line of cusps—We shall consider now the infinity which occurs 

at the outer boundary of the two wave systems, when « is cos”! 2,/2/3. At 
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any point P the lines of constant phase in the two wave patterns cross at an 
angle ¢, which is easily seen to be given by 

tan @ = 4 cosec a (9 cos? «—8)}, (92) 

As P approaches either radial boundary the two waves ultimately have the 
same direction, and they will also have the same phase when they meet; 
consequently an abnormal elevation is to be expected along the two outer 
boundaries, where the two systems unite in lines of cusps. As we see from 
(75), the two points A, B coincide for a point P on the line of cusps ; and it 
is on account of this fact that the previous approximations fail for both 
systems. We have in fact a double root of the equation for finding the 
chief groups of the integral (72). 

Consider the integral 

y= | d(o)sin (/@)} du, (93) 
when wp is such that 

F (uo) = 0; J” (to) = 0. 
Following the previous method, we have 

FU) = fu) +5 (U= Uo) fF (to) 5 
(uw) is not small, we can write the value of the group for 

AG and provided f 

the double root as 

Y= 1 pray} | $ewsin (fet) der (94) 

= {om | $ (UW) sin f (2) [ cos a do. 

Now at the line of cusps the integral (72) becomes 

Rae whe NA ur du ce gu? 95 
f 23arp |, (w?—4cum,/24 u?)? sae (w?—4cum,/24 u?)2 ) 

And we find that Cy = w/2 

makes J’ (w) = 0; JF (Mm) = 0; 

Fo) = 9ar/3/22; Fu) = Bgex/6/ 200% 
Also we have | cos a? do = 27/1 (2). 

Hence, substituting these values, we have 

x9 : GB / 3 S = 96 °=— Tanja Be ) 
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We notice first the difference of phase of 4a between this and the 

expressions for the separate systems where they cut the outer boundaries ; 

this is analogous to the change of phase along an optical ray in passing a 

focus. We saw that the separate transverse and diverging crests converged 

towards points of equal phase on the outer boundaries given by 

wo = 2c? (2n+ 4) r/9\/3, 

but with the result given in (96) we see that the actual crests on the line of 

cusps are given by 

w= 2c? (Qn+3) w/q,/3. (97) 

The amplitude of the cusped waves diminishes at a slower rate than the 

transverse waves, so that their size becomes relatively more marked towards 

the rear of the disturbance. The amplitude of successive crests is given by 

(96) and (97) as 

me = 3 I a 98 

s 2°T (2) (24 3)4xr? cp ee) 

The amplitude of successive crests of the transverse waves where they cut 

the axis are given by (82) and (84), and we find 

92 
See er RY 99 

oma (2n+4)*0r ctp (99) 

Taking the ratio of these two quantities we have an expression for the 

magnitude of the crests at the cusps compared with the transverse crests on 

the axis ; approximately 

Gre (2n+4) sae — 199) SS 100 Ena Ont) ae 
The following table and curve show how the successive crests at the axis 

and outer line diminish, and exhibit their relative magnitudes for different 

values of n.* 

* On August 3, 1887, Lord Kelvin delivered a lecture “On Ship Waves” before the 

Institution of Mechanical Engineers at Edinburgh, in which he appears to have shown a 

model to scale of the theoretical wave pattern produced by a ship. Only a diagram of 

the crest curves has been published (‘Popular Lectures,’ vol. 3, p. 482); the form of the 

crests agrees with that deduced above, except of course near the disturbance or the 
radial boundaries. It has, in fact, been verified that on substituting his expressions for 
x, y in terms of a parameter w in the present equations, the latter are satisfied identically. 

The law of amplitude along the waves is not stated by Lord Kelvin: as Prof. Lamb 
conjectures, his result seems to have been obtained by an application of the idea of group- 

velocity (H. Lamb, ‘Hydrodynamics,’ 1932 edn. pp. 406/7.) 
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Table II. 

n. Gas Coca Grell 

5 15 35 2:3 
10 10°8 28 °6 2°6 

15 9 25 PAY 
20 asi 23 3 
50 & / 3°74 

| 100 3°6 13 °6 3°8 

eid 

ne 4 
J 

G wa al 
pee a 1 Nl =; poke | 

7t \00 85 65 45 25 5. @ 

Fie. 6. 

§ 14. Point Impulse for Different Media. 

Consider a point impulse moving with uniform velocity ¢ over the surface 

of a dispersive medium for which U and V are respectively the group- and 

wave-velocity for a value « of 27/2. 

A Cz d) 

Fig. 7. 

Let the disturbance from the impulse when in the neighbourhood of 

a point A combine so as to produce waves « at P at the present moment 

when the impulse is at O. Then the problem of finding the possible 

persistent wave systems is contained in the equations 

JX 10h ramets 
AO LE ccos@=V; (101) 

that is, in (w?—2cum cos a+ cu*)?/u = U, (102) 

¢ (cu—o cos «)/(o?— 2cun cos a+c7u*)? = V. (103) 

The wave pattern depends upon the character of the positive roots of 

these equations for cw and «; each such value of cw defines a wave system 
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with wave front through P at right angles to AP, and each system can be 

expressed in the form 

£ = F(o,2) cos {x (w?— 2cum cos a+ c?u*)? + e}, 

with cw and « as functions of o and a. 

Suppose the medium is such that the group-velocity bears a constant ratio 

to the wave-velocity, that is, suppose 

U=3("4+1)V, (104) 

where 7 is independent of x. 

Then the equations (102) and (103) lead to a quadratic for cw, namely, 

(1—n) @v?+(n—3) cum cos a+ 257 = 0. (105) 

Hence we have the roots 

uh = Taw —n) cosat,/{(3—n)? cos?a—8(1—x)}]. (106) 

We shall examine some special cases. 

(a) O<n<1.—There are two positive values of cw which are real, provided 

cos? a >8 (1l—n)/(8—n)?. 

Thus there are two wave systems, transverse and diverging, with a line of 

cusps corresponding to the double roots, and the whole wave pattern is 

included within an angle 

2 cos! {8 (1—n)}?/(8—n), (107) 

which increases with n. 

The previous section on deep-water waves is the case of n zero, 

(b)x=1. This is a critical case, implying coincidence of wave-velocity 

with group-velocity, and consequently no dispersion. 

(c) n= 2. This is the case of capillary surface waves. We see that there 

is only one positive root of the quadratic, and it is real for all values of a; 

the root is 
cu = 30 {(cos?«+8)?—cos a}. (108) 

There is only one wave system, but it extends over the whole surface ; 

along the line of motion « is zero in the rear, while in advance of the 

impulse it is of value suitable to simple waves moving with velocity c. 

(d) n = 3. This holds for flexural waves on a plate; there is one system 

of waves extending over the surface, corresponding to the root cw = a. 

The crests, and other lines of equal phase, are given by the curves 

o sin? se = constant. 

(ce) Gravity and capillarity combined—tThe relation between U and V is 
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not a constant ratio in this case; we had in §11 the expressions for the two 

velocities as functions of «. It can be shown that in certain cases the 

equations for cw lead to four possible roots, giving four wave-branches through 

the point. 

§ 15. Point Impulse moving on Water of Finite Depth. 

With the same problem we have now, if the water is of depth h, 
1 
a 

5) WV = (4 tanh Kh) 
K 

sinh 2ah (We) 
p— (2 tanh eh) (1+ : isl ): 

K 

If we write 
U=4(~41)V, 

nm varies between 0 and 1, being dependent upon the value of «. We use the 

notation 

_ gh _ tanh ch _  2kh 110 

rcs ae eet akG ~ sinh 2xh’ oD) 

Then m and n are monotonic functions of « with the following limiting 

values : 
i—HOn ih = is Te = 1. 

Ki— cons i= 0? n= 

The two equations for cu and « become 

Gyan, 27)2)8 Fi 
(oie ta cose teey = 4(pm)? (14+), (111) 

MSGS @ = (pm). (112) (w?—2cusm cos a+ cu?) 

From these we obtain 

2, — {1—tom(+n)}?. 
00s" * = 1 Tom (1+) (3—2)’ ur) 

cu = F0=m) [(3—n) cos «+ {(8—n)? cos? a—8 (1—n) }}]. (114) 

Combining the last two we have the values of cw as 

me = (1—4pm (142) (8—2)}3, (115) 

or cu = w/{1—jpm(1+2) (8—n)}. (116) 

We have two cases to consider according as p > or <1. 

(a) c<a/(gh); p>1—From (114) we see that the equal values of cw, 
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defining the lines of cusps within which the wave pattern lies, are given by 

such values of « that 
8 (1—n) 

(3 —n)?" 

Whatever the value of «, can only lie between 1 and 0; hence « can 

only lie between cos~12,/2/3 and 7/2, or between 19° 28’ and 90°. The 

smaller value is the limiting angle for deep water, when 7 is considered zero 

for all values of x. 

We see from (115) and (116) that the equal values of cw occur when 

1—lpm (1 +n) (8—n) = 3 (1—n), 

cos? a = (117) 

or when m(3—n) = 2/>p. 

The greatest possible value of m (3—7) is 2; hence we have the limitation 

p>1. Only in this case is there a double wave system with a line of cusps. 

As p decreases to 1, that is as the velocity ¢ approaches the critical value 

s/(gh), mand n at the line of cusps both approach their limiting value 1 ; 

and at the same time the cusp angle widens out, approaching a right angle. 

Further, along the axis we have 

(oi = I, m =1/p =e] gh. 

Hence on the axis the transverse waves are the simple waves travelling 

with velocity c on water of depth 4. As p decreases to 1, the wave-length 

increases indefinitely ; m, and consequently n, approach unity on the axis. 

Now if 2 is 1, the group-velocity U equals the wave-velocity V, and the 

medium is non-dispersive. Thus at the critical velocity c, equal to ,/(gh), 

we have a source emitting disturbances and travelling at the rate of propa- 

gation of the disturbances ; we see that the whole effect is practically concen- 

trated into a line through the source at right angles to the direction of 

motion. This agrees with observations of ship waves when approaching 

shallow water at the critical velocity.* 

(b) c>,/(gh); p<1.—We may now have the greatest value, unity, of m ; 

it is easily seen that for less values of m and n the values of a given by (113) 

become smaller. 

At the outer limit we have 

cos? « = 1—p, si@a = p = gh/c?. (118) 

Consequently the wave pattern is contained within two lines making with 

the axis an angle which diminishes as ¢ increases. 

* ‘Trans. Inst. Nav. Arch.,’ vol. 47, p. 353 (1905). Compare also the motion of an 

electron with the velocity of radiation. 
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Further, since equal values of cw are given by 

m (3—n) = 2/p, 
we see that there are no cusps, for the left-hand side cannot be greater than 2. 

The values of cw given in (115) and (116) correspond to the transverse and 
diverging waves respectively. If we substitute (116) in equations (111) 
and (112) we find that they are satisfied identically ; hence there is always a 
diverging wave system. On the other hand, if we substitute (115) we find we 
must have 

l—pm 

1—}pm (1+n) (3—n)’ 
But the greatest possible value of the left-hand side is unity. 
Hence there can be a transverse wave system only so long as p is greater 

than 1; when ¢ exceeds ,/(gh), the transverse waves disappear. 
At the outer line given by 

sin?a = p, =o = il, 

1 pm = or m(2—n) ==. 
: ip 

we have, for the diverging waves, 

uUu=s (l—p)? = @ SEC a. 

Hence the outer line forms a wave front of the diverging wave system. 
We see also that the other wave fronts (lines of equal phase) are now concavet 
to the axis, instead of being convex as when p>. There is no definite inner 
limit to the system; as the axis is approached, the wave fronts become more 
nearly parallel to the axis, and the wave-length diminishes indefinitely. 
Finally, as the velocity c is increased, the angle « diminishes, and the regular 
waves are contained within a narrower angle radiating from the centre of 
disturbance. 

The following tables (III) and (IV) and the curve in fig. 8 show how the 
angle # varies as the velocity cis increased up to and beyond the critical 
velocity. maa 

able III. 
ee ee 

kh at cusps. Pp. a. e/ (gh). 

10 7 19 28 0°38 
8 5-4 19 28 0:42 6 4 19 29 0°5 
5 3°38 19 30 0°55 
4 PACH f 1@) By/ 06 
3 2 20 18 0-7 2 15 23 42 0°82 
1 1-18 39 19 0-92 0-5 1-08 59 27 0-96 0-2 1-01 78 0:99 0 1 90 1 

a = cos-1/8 (1—n)/(3—x). 

TSee Editorial Note on page 33. 
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Table IV. 

a =sin—!4//(p). | ce] / (gh). 

90° 

19°28" 

SSS 

CMGf. 1G. 

F
y
 

|

 

by editor 

on next page. 

Fic 9. 
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With the help of these results, sketches are given in fig. 9 to represent 

the change in the wave pattern, as the critical velocity is approached and 

passed. 

tEditorial Note [The shapes of these wave-fronts have been recalculated by 
Inui (Physico Mathematical Society of Japan, Vol. 18, pt. 2 {1936]) who 

does not agree that they are concave to the axis. | 

HaRRISON AND Sons, Printers in Ordinary to His Majesty, St. Martin’s Lane. 
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§ 1. Introduction and Summary. 

The theoretical investigation of the total resistance to the forward motion 

of a ship is usually simplified by regarding it as the sum of certain 

independent terms such as the frictional, wave-making, and eddy-making 

resistances. The experimental study of frictional resistance leads to a 

formula of the type 
1h, SS SN (1) 

where § is the wetted surface, V the speed, f a frictional coefficient, and m 

an index whose value is about 1°83. 

After deducting from the total resistance the frictional part calculated from 

a suitable formula of this kind, the remainder is called the residuary resist- 

ance. Of this the wave-making resistance is the most important part; the 

present paper is limited to the study of wave-making resistance, and chiefly 

its variation with the speed of the ship. The hydrodynamical theory as it 

stands at present may be stated briefly. 

Simplify the problem first by having no diverging waves ; that is, suppose 

the motion to be “in two dimensions in space,” the crests and troughs being 

in infinite parallel lines at right angles to the direction of motion. Further, 

suppose that the motion was started at some remote period and has been 

maintained uniform. We know that, except very near to the travelling 

disturbance, the surface motion in the rear consists practically of simple 

periodic waves of length suitable to the velocity v of the disturbance. Let 
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a be the amplitude of the waves, and w the weight of unit volume of water ; 
then the mean energy of the wave motion per unit area of the water surface 
is }wa’. Imagine a fixed vertical plane in the rear of the disturbance ; the 
space in front of this plane is gaining energy at the rate 4wa?v per unit time. 
But on account of the fluid motion, energy is supplied through the imaginary 
fixed plane to the space in front, and it can be shown that the rate of supply 
is $wa*u, where w is the group-velocity corresponding to the wave-velocity ». 
The nett rate of gain of energy is dwa?(v—u), and this represents the part of 
the power of the ship which is needed, at uniform velocity, to feed the 
procession of regular waves in its rear. An equivalent method of stating 
this argument is to regard the whole procession of regular waves from the 
beginning of the motion as a simple group; then the rear moves forward 
with velocity ~ while the head advances with velocity v, and the whole 
procession lengthens at the rate v—w. If we write Rv for the rate at which 
energy must be supplied by the ship, we call R the wave-making resistance, 
and we have 

R = fwa? (v—u)/v. (2) 

We notice that R is the wave-making resistance in uniform motion; it is 
only different from zero because w differs from v, that is, because the velocity 
of propagation depends upon the wave-length, 

In deep water, wv is $v, so that R is }wa?. In the application of this to 
a ship at sea, it is assumed that the transverse waves have a certain average 
uniform breadth and height, and, further, that the diverging waves may be 
considered separately and as having crests of uniform height inclined at 
a certain angle to the line of motion; if the amplitude is taken to vary as 
the square of the velocity, it follows that R varies as v4. Several formule 
of the type R= Av‘, or R = Avt+Bv®, have been proposed ; although these 
may be of use practically by embodying the results of sets of experiments, 
they are not successful from a theoretical point of view. Recently many 
such cases have been analysed graphically by Prof. Hovgaard ;* the general 
result is that a fair agreement may be made for lower. velocities with an 
average experimental curve neglecting the humps and hollows due to the 
interference of bow and stern wave systems, but at higher velocities the 
experimental curve falls away very considerably from the empirical curve. 

The method used here consists in considering the ship, in regard to its 
wave-making properties, as equivalent to a transverse linear pressure 
distribution travelling uniformly over the surface of the water. Taking 
a simple form of diffused pressure system and making some necessary 

* W. Hovgaard, ‘Inst. Nav. Arch. Trans.,’ vol. 50, p. 205, 1908. 
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assumptions, we obtain an expression for the amplitude of the transverse 

waves thus originated, and for the resistance R, in which the velocity enters 

in the form e-#”; this function is seen to have the general character of the 

experimental curves. Adding on a similar term for the waves diverging 

from bow and stern, and, finally, in the manner of W. Froude, an oscillating 

factor for the interference of these bow and stern waves, we find a formula 

for the wave-making resistance of the type 

R = ae" 4 B {1—y cos (m/v?)} e-™. 

In this expression there are six adjustable constants ; we proceed to reduce 

the number of these after transforming into units which utilise Froude’s law 

of comparison. We use the quantity c, defined as 

(speed in knots)/,/(length of ship in feet), 

and we express the resistance in lbs. per ton displacement of the ship. An 

inspection of experimental curves, and other considerations suggest that the 

quantities 7, m, 1 may be treated as universal constants ; with this assumption, 

a three-constant formula is obtained, viz., 

R= ae~7558% 4 B {1 —v cos (10°2/c?)} 6-29, (3) 

where the constants «, 8, y depend upon the form of the ship. 

We then treat (3) as a semi-empirical formula of which the form has been 

suggested by the preceding theoretical considerations; several experimental 

model curves are examined, and numerical calculations are given which show 

that these can be expressed very well by a formula of the above type. 

Since the constant « is found to be small compared with 8, it is not 

allowable to press too closely the theoretical interpretation of the first term, 

especially as the experimental curves include certain small elements in 

addition to wave-making resistance. If we limit the comparison to values 

of ¢ from about 0°9 upwards, it is possible to fit the curves with an 

alternative formula of the type 

R = B {1—y cos (10°2/c?)} ee, 

and some examples of this are given. 

The effect of finite depth of water is considered, and a modification of the 

formula is obtained to express this effect as far as possible. Starting from 

an experimental curve for deep water, curves are drawn, from the formula, 

for the transverse wave resistance of the same model with different depths ; 

although certain simplifications have to be made, the curves show the 

character of the effect, and allow an estimate of the stage at which it becomes 

appreciable. 

In the last section the question of other types of pressure distribution is 
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discussed, and one is given in illustration of the wave-making resistance of 
an entirely submerged vessel. 

§2. Pressure System travelling over Deep Water. 

It is known that a line pressure-disturbance travelling over the surface 
of water with uniform velocity v at right angles to its length gives rise to a 
regular wave-train in its rear of equal wave-velocity.* Take the axis of z 
in the direction of motion and let the pressure system be symmetrical with 
respect to the origin and given by p= f(x); suppose that f(x) vanishes 
for all but small values of x, for which it becomes infinite so that 

| J (v)dz=P. The regular part of the surface depression » due to this 

integral pressure P practically concentrated on a line is given by 

wr Vv? 
gE stn, (4) 

The part of the surface effect which is neglected in this expression consists 
of a local disturbance symmetrical with respect to the origin and practically 
confined to its neighbourhood. 

If we suppose P constant, the amplitude in the regular wave-train and 
the consequent drain of energy due to its maintenance diminish with the 
velocity. 

To obtain results in any way comparable with practical conditions it is 
necessary to suppose the pressure system diffused over a strip which is not 
infinitely narrow. 

An illustration is afforded by taking 

p=fa)= (5) 

where # is small compared with the distances at which the regular surface 
effects are estimated. This type of pressure distribution is shown in fig. 1. 

Rane 
om aaa 

Tw a24+ 2? 

P 

Fic. 1 

* For a discussion of the wave pattern, see Lamb, ‘Hydrodynamics,’ § 241 et seq. ; or 
Havelock, ‘Roy. Soc. Proc.,’ A, vol. 81, p. 398, 1908. 
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The effect of thus diffusing the pressure system is expressed by the 

introduction of a factor ¢ (x) into the amplitude of the regular waves, where 

2m/« is the wave-length and 

o(«) = | f) cos Kw da. (6) 

Using (5) in (6), we find 

(Ce) = LGR es LCE 

Hence the amplitude of the waves is given by 

AG eee res 
a= eal (7) 

Further, since « = 2?/g, the group velocity u=d(xv)/de =4v. Hence 

the wave-making resistance R is given by 

2p2 

R = FE ¢-2ag/v*, 8 
wet (8) 

We have to examine the variation of these quantities with the velocity v 

under the supposition that the pressure system is due to the motion of a 

body either floating on the surface or wholly immersed in the water. The 

pressures concerned being the vertical components of the excess or defect 

due to the motion, it seems possible to assume as a first approximation that 

P varies as v?; this is the case in the ordinary hydrodynamical theory of 

a solid in an infinite perfect fluid, and a similar assumption is also made 

in the theory of Froude’s law of comparison. This being assumed, we find 

a = Ae~esi™, 18, == 1g (9) 

We see that both the amplitude and the resistance increase steadily from 

zero up to limiting values. 
If we draw the curve representing this relation between R and 1, there is 

a point of inflection when 

a?R 
7 =), oF v? = Aga. (10) 

Writing v’ for this velocity, we see that dR/dv imcreases as the velocity 

rises to v’ and then falls off in value as the velocity is further increased. 

We can write the relation now in the form 

R = Ben? (11) 

The character of this relation is shown by the curve in fig. 2, which 

represents the case 
1 = Bilbo Ve, (12) 

R being in tons, and V in knots. 
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The values of the constants in (12) have been chosen for comparison with 
an experimental curve of residuary resistance given by R. E. Froude ;* it 
was obtained from model experiments and by means of the law of 

200 

Fic 2 

150 

(0) 4 1 1 r 1 1 

10 15 20 V Knots 25 30 35 40 4s 

corresponding speeds and dimensions the results were given for a ship 
(model A) of 4090 tons displacement and 400 feet length. The actual curve 
is given in fig. 4 and is discussed more fully later; we neglect for the 
present the undulations which are known to be due to the interference of 
the bow and stern wave systems, and we consider a fairly drawn mean 
experimental curve denoted by R’. Table I shows a comparison of the 
values of R’ with those of R calculated from the formula (12). 

Table I. 

Vv. R, 

10 0-02 
14 2 
18 14 
22 38 
26 70 
30 106 
34 132 
38 157 
42 176 
46 195 

From this comparison we see that the point of inflection given by V’ 
corresponds to the point at which the slope of the mean experimental curve 

* R. E. Froude, ‘Inst. Nav. Arch. Trans.,’ vol. 22, p. 220, 1881. 
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begins to fall off. This effect is general in residuary resistance curves; we 

see that it is really an interference effect, the character of the curve being 

due to the mutual interference of the wave-making elements of the pressure 

system. Superposed on the mean curve we have a further interference effect 

due to the combination of two systems, the bow and stern systems. 

From Table I we infer that the mean curve agrees well with the calculated 

values R from about 18 knots upwards, but at the lower speeds the values of 

R are much too small; this suggests the addition of a term to represent the 

effect of the diverging waves. 

§ 3. Diverging Wave System. 

In the example considered above, the calculated values of R are much too 

small at the lower velocities. This might have been expected; for we 

obtained (12) by the consideration of line-waves on the surface, that is waves 

with crests of uniform height along parallel infinite lines. But the model 

experiments correspond more to a point disturbance travelling over the 

surface, with the formation of diverging waves as well as transverse waves. 

In fact, W. Froude* infers from his experimental curves that the residuary 

resistance at the lower velocities is chiefly due to the diverging wave system, 

on account of the absence of undulations; for the latter signify interference 

of the transverse systems initiated by the bow and stern, and these become 

very important at the higher velocities. 

We have to add to (12) a term representing the diverging waves; the 

comparison in Table I suggests for this a term of the same type, e~#V’/V 

with V’” much smaller than the corresponding velocity V’ for the transverse 

waves. With the data at our disposal we might then determine the various 

constants so as to obtain the closest fit possible ; however, we can make the 

process appear less artificial by the following considerations. We know that 

the wave pattern produced by a travelling point source consists of a system 

of transverse waves and a system of diverging waves, the whole pattern 

being contained with two radial lines making angles of about 19° 28’ with 

the direction of motion; a fuller investigation of the effects produced by 

a diffused source must be left over at present. In applying energy con- 

siderations as in the previous sections, the usual method is to suppose that 

the transverse waves form on the average a regular wave-train of uniform 

amplitude and uniform breadth; using the same approximation for the 

diverging waves we suppose that these form on the average a regular wave- 

train on each side, with the crests inclined at some angle 0 to the direction 

* W. Froude, ‘Inst. Nav. Arch. Trans.,’ vol. 18, p. 86, 1877. 

40 



1909. | The Wave-making Resistance of Ships. 283 

of motion of the disturbance. Then the velocity of the diverging wave- 
trains normally to their crests is Vsin@. Now the same features of the 
ship are responsible for the character of both transverse and diverging 
waves; then if V’ is the velocity at which there is a point of inflection in 
the resistance curve for the transverse waves, the suggestion is that V’ sin 0 
is the corresponding velocity for the diverging waves. Taking as a first 
approximation the angle given above, viz., 19° 28’ or sin-14, we test now 
a formula of the type 

R= Ae? BV? 4 Be-a (V/V), (13) 

For the particular example already used (Froude, Ship A) we take V’ 
equal to 26 knots, and determine A, B from two values of V. We obtain 
thus 

R = 45e-3C68V? + 2976-3 26/V)?_ (14) 

With this formula we find as good an agreement as before at the higher 
velocities, and we have now at lower velocities the comparison in Table II :— 

Table II. 

In calculating from (14) we find that the two terms both increase 
continually ; at low velocities the second term is practically negligible, then 
at about 15 knots the two terms are of equal value, and after that the 
transverse wave term becomes all important. 

It must be remembered that the experimental curve was obtained from 
tank experiments, and it is possible that the width of the tank may have an 
effect on the relative values of the transverse and diverging waves. It 
would be of interest if experiments were possible with the same model 
in tanks of different widths; if the methods used in obtaining (14) form 
a legitimate approximation, the effect might be shown in the relative 
proportions of the two terms—provided always that one can make a suitable 
deduction first for the frictional resistance, and can then separate out the 
relatively small effects of the diverging waves, the eddy-making and other 
similar elements. 
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§ 4. Interference of Bow and Stern Wave-trains. 

The cause of the undulations in the resistance curves was shown by 

W. Froude to be interference of the wave system produced by the bow (or 

entrance) with that arising at the stern (or run). His experiments on the 

effect of introducing a parallel middle body between entrance and run 

confirmed his theory, which may be stated briefly. Let the wave-making 

features of the bow produce transverse waves which would have at 

a breadth 6 an amplitude a; owing to the spreading out of the transverse 

waves they will be equivalent to simple waves at the stern of smaller 

amplitude ka, at the same breadth b. Let a’ be the amplitude there of the 

waves produced by the stern. Then in the rear of the ship we suppose there 

are simple waves of amplitude ka superposed upon others of equal wave- 

length of amplitude a’. At certain velocities the crests of the two systems 

coincide in position, giving rise to a hump on the resistance curve; and at 

intermediate velocities there are hollows on the curve owing to the crests of 

one system coinciding with the troughs of the other. 

In developing a form for the resistance, subsequent writers have generally 

taken R proportional to an expression of the form a?+a7?-+ 2kaa’ cos (mgL/v°), 

where L is the length of the ship. This means that the bow is supposed to 

initiate a system of waves with a first crest at a short distance behind the 

bow, and that similarly the stern waves have their first crest shortly after 

the stern; the length mL is the distance between these two crests, and is 

called the wave-making length of the ship. The determination of a value 

for m appears to be doubtful, but from interference effects it is said to vary 

for different ships between the values 1 and 1:2. 

It has seemed desirable here to follow more closely the point of view in 

W. Froude’s original paper already quoted.* We regard the entrance of the 

ship as forming transverse waves with their first crest shortly aft of the bow, 

and the run of the ship as forming waves with their first trough in the 

vicinity of the middle of the run. It is suggested that this distance between 

first crest and first trough, in practice found to be about 0-9L, should be 

taken as the “wave-making distance”; the cosine term in the formula 

is then prefixed by a minus sign instead of a positive sign. We return to 

this point later; we first work out a definite simple illustration in “two- 

dimensional waves,’ and then build up a more complete formula for 

comparison with experiment. With the same notation as in § 1, let the 

pressure system be given by 

1 Pa? P22? ie 

a (aC ee) 
* W. Froude, loc. cit. ante, p. 83. 
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This indicates two pressure systems, one of excess and the other of defect 
of pressure ; each distribution is of the type already used, and their centres 
are separated by a distance 7. Fig. 3 shows the character of the disturbance. 

In the rear of the whole disturbance there is interference between the 
regular wave-trains due to the two parts. With the same methods as before 
we find that the resulting waves are given by 

= 2g?) , ~ age? a Z J (x—3l) lt) 2gP2 e7agl? sin 
we 

g(e@+3l) 
ee ay? uv 

2 a emoglen poe sin SEs P2) sin t cos: ue ae (16) 
CO) 

Hence the average energy per unit area is proportional to 

ov *e~ Peal {P12 + Po? — 2 PsP cos (g1/v2)}. 

Now, assuming as before that P, and P2 vary as v*, we find that as regards 
variation with the velocity the effective resistance R, which is the expression 
of the energy cm to feed the wave-trains, is given in the form 

= {A?+B?—2AB cos (gl/v2)} ¢~ 229!” (17) 
A more general expression might have been obtained by taking two 

quantities a and a in (15), corresponding to some difference in wave- making 
properties of entrance and run; this would have led to different exponential 
factors being attached to the bow and stern waves. However, we find (17), 
with a common exponential factor, sufficiently adjustable for present 
purposes. 

In Froude’s experiments in 1877 the effect of inserting different lengths 
of parallel middle body between the same entrance and run was examined ; 
it was found that a hump in the residuary resistance curve corresponded to 
a trough of the bow waves being in the vicinity of the middle of the run 
and a hollow to a crest being in that position. 
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For the model, Ship A, we have: Length = L = 400 feet; entrance = 

run = 80 feet. 

Hence, in this case we may take, in formula (17), / as approximately 
360 feet. We notice that this gives 7=09L; and in subsequent com- 
parisons, instead of leaving / to be adjusted to fit the experimental curve, 
we find there is sufficient agreement if we fix it beforehand as 0-9 of the 
length of the ship on the water-line. 

Compare, now, the length 7 with the ordinary “ wave-making length” of 
the ship; the latter is written as mL and is defined as the distance between 
the first regular bow crest and the first regular stern crest. From the present 

point of view (17) gives 

mL=1+}rx or m=09+4A/L, (18) 

where ) is the wave-length in feet of deep-sea waves of velocity v ft./sec. 
Calculating from this formula for Ship A, and writing V for velocity in knots 

(6080 feet per hour), we obtain Table ITI. 

We see that the statement that m lies between 1 and about 1:2 would 

hold for this ship if it were measured for ordinary speeds between about 
14 and 22 knots. 

Table III. 

vV | r m 

10 55°5 0:97 
14 110 1°03 

18 180 iL aly) 
22 270 1°24 

26 362 1°35 

30 500 1°35 

We proceed now to modify (14) by introducing into the second term a 

factor 1 — y cos(gl/v?). With 7 = 360, we find gi/v? is approximately 

4080/V*, with V in knots; further, from one value from the experimental 

curve we obtain y = 0:12. Thus for Ship A we have R in tons given by 

R = 4-5¢-2@83¥) 4.297 {10°12 cos (4080/V2)} 220, (19) 

Table IV shows some calculated values for R, and these are represented in 

fig. 4 by dots; the continuous curve is the experimental residuary resistance 

curve given by Froude, that is, the total resistance less the calculated 

frictional part. 

It is the custom to give the results of model experiments in the form 

of a fair curve, so that the positions of actual readings and the possible 
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10 {S 20 VKnors 25 30 3s 40 45 50 

error are not known. The interrupted curve is a curve R = AV‘ sketched in 
for comparison. 

Table IV. 

v R. V. 

10 1°5 30 
14 4-2 34. 
18 15 38 
22 44 42 
26 62 46 

§5. Comparison with Experimental Results. 

Before examining further model curves we must express the previous 
formula in a form more suitable for calculation; we use the system of units 
in which model results are now generally expressed. R is given in lbs. 
per ton displacement of the ship, while instead of the speed V we use the 
ratio V/\/L, V being in knots and L in feet; this is called the speed-length 
ratio, and we shall denote it by c. The advantage of these units is that they 
utilise Froude’s law of comparison; from the experimental curve between 
R and ¢ we can write down at once the residuary resistance for a ship of any 
length and displacement at the corresponding velocity, provided the ship has 
the same lines and form as the model. Thus the constants which are left in 
the relation between R and ¢ depend only upon the lines of the model, not 
upon its absolute size. At present we make no attempt to connect these 
constants with the form of the model, as expressed by the usual coefficients 
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of fineness or the curve of sectional areas, or in other ways; we are concerned 

with the form of R as a function of c, and the constants are chosen in each 

case to make the best fit possible. 

First, as regards the exponential factor, we had e—3(V/™™, with V’ giving 

a point of inflection on the resistance curve; in the case of Ship A we had 

V’ = 26, L = 400, so that c’ = 1:3. Now, it is just about this value of ¢ 

that there is a falling off in most experimental curves, so that we try first 

c’ = 1°3 for the point of inflection on the R, ¢ curve. Then the exponential 

factor becomes e732 °/”, or = 29/07, 

Secondly, as regards the cosine term which gives the undulations, we had 

cos (gl/v"); we have decided to put / = 0:9L, so that we have 

£ = 0:99gL | ( v) = as approximately. 

Hence the previous relation for R reduces to the following general form: 

R = ae 7°39? 4 B(1—rvy cos 10:2] c?) e293, (20) 

where R is in lbs. per ton displacement, and «, 8, y depend upon the form of 

the model. 

There are humps on the curve when 10:2c~? is an odd multiple of 7, 

hollows when it is an even multiple, and mean values when it is an odd 

multiple of 47. For facilitating calculation, some of these positions are given 

in Table V; and, for the same reason, values of the exponentials and the 

cosine factor are given in Table VI. 

Table V. 

Humps | —|] — /1°8} — | — | — /1°-04 | — = — |0°'8 

Means...| — | 2:54] — |1-47| — |1-13| — | 0-96| — | 0-85 | — | 0-76 

Hollows | — — — |1°27| — _— — |09 — —_ —_— 0°73 

Values of c. 

Table VI. 
= 

C. e—2°53/9c?, | e-2°53/c?, | cos (10°2/c?). 

0°6 0 *460. 0 0009 +0°75 
0°8 0 °644 0:019 —0:97 

1:0 0 °756 0 ‘080 —0°71 
1:2 0 °821 0°172 +0°70 
1°4 0 866 0°275 +0°47 
1°6 0-896 0°372 —0°65 
1°8 0:916 0-458 -—1°0 

2:0 0-982 0582 —0°83 
2°2 0 943 0-592 —0°51 
2°4 0-951 0 644 —0°20 
3 0-970 0°756 +0°43 

46 



1909. | The Wave-making Resistance of Ships. 289 

We examine, now, some examples of experimental curves, comparing them 

with the formula (20) ; several of the curves and other data, in particular 

for II, ILI, and V, have been taken from the collection in Prof. Hovgaard’s 

paper already referred to, in which he essays to fit formule involving V‘ or 

V° with the experimental curves. 

I. &. #. Froude, 1881, Ship A. 

Displacement = 4090 tons ; length = 400 feet; cylindrical 

coefficient = 0°694. 

This is the case we have examined in the previous sections, so that we 

have only to change the numerical factors in (19) to cause R to be given in 

Ibs. per ton displacement. We find the result is formula (20) with 

a= 246; @=1626; y= 012. 

Il. W. Froude, 1877. 

Displacement = 3804 tons; length = 340 feet; cylindrical 

coefficient = 0-787. 

The last two data include the cylindrical middle body. The curve is 

given in fig. 5; it was constructed by Hovgaard from the data of Froude’s 

un 

R Tons 

US) wn 
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experiments, and these were such that it was possible to make a mean 

residuary resistance curve, the effects of bow and stern interference being 

eliminated. The curve is given as total residuary resistance in tons on a 

base of V in knots. If we work in lbs. per ton, we find there is a very fair 

agreement with formula (20) if we take 

as PMs == 2s 7S O 

Probably a closer agreement could be obtained by further slight adjustment 

of a and B. Fig. 5 shows a comparison of values of the total residuary 

resistance for the ship (in tons); the calculated values are indicated by small 

circles. 

Ill. D. W. Taylor, 1000 lbs. Model. 

Length on water line = 20°51 feet; cyl. coeff. = 0°680. 

The experimental curve in this case is given as residuary resistance for 

the model in lbs. on a base of V in knots. With the same notation as before 

we find 
a2=2; B=136605 y= 0-14. 

Putting these values in (20), we can calculate R in lbs. per ton, and hence 

R, in lbs. for the model; fig. 6 shows the comparison between R, and the 

corresponding values on the curve; the calculated values Rj are indicated by 

dots. 

Deland ea 37.5 

Fic.6 

30 

: oF 

B} 7S ¢ i] 125 LS 1.75 2 2.25 

o Alte & 
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IV. D. W. Taylor, Model No, 892.* 

Displacement = 500 Ibs.; length on water line = 20:512 feet; longitudinal 
coeff. = 0°68; midship section coeff. = 0°70. 

In this case the experimental curve is given as lbs. per ton displacement 
(It’) on a base of speed-length ratio (c). In the same manner as before, fig. 7 
shows the comparison with the formula (20) when we take 

a=—2; B=825; y=014. 

Since the constant « is small compared with 8, one is not able to lay 
much stress on the meaning of the first term. For as the velocity functions 

are of a suitable type, the constants possess considerable elasticity as regards 
fitting an experimental curve. For instance, if we omit values of ¢ below 
about 0°9, it is possible to represent the previous curves fairly well by a 
formula 

R = B {1—y cos (10-2/c?)} e230, 
In the previous examples we took the value 1:3 for c’. In Case IV above 

we find now the values 

S=S=803 qSOide =i 

For a similar curve taken from the same paper, viz., Model No. 891, dis- 
placement 1000 lbs., we find a good correspondence, except for slightly higher 
values near c = 1:1, with the values 

B=174; y=014; c=14, 

*D.W. Taylor, Trans. S.N.A.M.E., vol. 16, p. 13 (1908). 
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V. I. I. Yates, Destroyer Model C.* 

Displacement = 575 lbs.; length = 20 feet; cyl. coeff. = 0°529. 

The experimental curve is given in Ibs. for the model on a base of V in 

knots, and is a total resistance curve, that is, it includes the frictional 

resistance. The curve is reproduced in fig. 8. 

60 
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This curve is not analysed here so as to compare the residuary resistance 

with the formula (20), but it is included in order to draw attention to certain 

possible complications. It may be noticed that the curve is carried to a high 

value of the speed-length ratio c, and that it continues to rise more rapidly 

after about c = 2°3 than might be expected on the present theory. Now in 

the first place it is possible that the frictional resistance may account partly 

for this rise. The ordinary estimation of the frictional resistance assumes 

that it can be calculated separately from some expression like fSV**; now 

the legitimacy of this is beyond doubt in all ordinary cases, but at high speeds 

it is possible that the form of the expression may change, or even that it 

may not be a fair simplification to divide the total resistance into simple 

additive components. 

In the second place a more important consideration must be taken into 

account, and that is the depth of the tank. For the experiments now under 

* J. I. Yates, Thesis, 1907, Mass. Inst, Tech. U.S.A. See Hovgaard, loc. cit. ante, 
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consideration the depth of water in the tank is not known. The deepest 
experimental tank appears to be the U.S. Government tank at Washington, 
which has a maximum depth of about 14:7 feet. Now in that tank, with 
a 20-foot model, there would be a “critical” condition near the value 
¢ = 2-9; before and up to that point the residuary resistance curve would 
rise sharply and abnormally. This effect is discussed more fully in the next 
section, and curves are given in fig. 11, with which fig. 8 may be compared. 
It appears, then, as far as one is able to Judge, that it is possible the 
resistance curve in fig. 8 is complicated by the effect of finite depth of the 
tank. 

§ 6. The Effect of Shallow Water. 

We saw in the first section that the wave-making resistance R can be 
written in the form 

BR = hwa? (v—u)/2, 

where wis the group-velocity corresponding to wave-velocity v. For deep 
water w = 30, and the formule are comparatively simple. But for water of 
finite depth / the relation between uw and v depends upon the wave-length 
(27/x). We have 

v= WA (2 tanh Kh) 5 
K 

ne ¢ (cv) = $v (1+ 2h/sinh 2xh), 
K 

Consequently we find 
ils o[4___ 2Kh ) 

Be ae (1 sinh 2xh/ (CM) 
As v increases from zero to ,/(gh), R diminishes from 4wa* to 0, provided 

the amplitude remains constant. But as Prof. Lamb remarks,* the 
amplitude due to a disturbance of given character will also vary with the 
velocity. It is the variation of this factor that we have to examine in 
the manner used in the previous sections for deep water. 

If a symmetrical line-pressure system F(a), suitable for Fourier analysis, 
is moving uniformly with velocity v over the surface of water, the surface 
disturbance 7 is given by 

Twn =} [@ [eve («) sin « {z+(v—V) #} de 

—t [a [eve («) sin « {z+(v+V) t} dk, (22) 

where $(«) = | F (@) cos kw do. 

*H. Lamb, ‘Hydrodynamics,’ (1932 edn. p. 415). 
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The method of evaluating these integrals approximately so as to give the 

regular wave-trains has been discussed in a previous paper and it is followed 

now in the case of finite depth.* We take, under certain limitations, the 

value of an integral such as 

y = | 6) sin {9} a 
to be the value of its principal group, viz., 

2a 3 7 
=4—=—5 —4 22a Yo { ares b (uo) cos {9 (uo)—47}, (224) 

where wp is such that g’ (w%) = 0. 

Now in the integrals in (22) we have to find successively two principal 

groups, first with regard to « and then in the variable ¢; and thus we may 

evaluate the amplitude factor in the resulting regular wave-trains. 

For water of depth 2 we may write 

JS(k) = v-V =v y/ (Zianh Kh). 

The group with respect to « gives a term proportional to 

, cos {tx2f’ (x) +4}, 
where « has the value given by 

S(e)+4f («) = —F. (23) 

From (224), this introduces into the amplitude a factor 

T/V/[t {27 («) +f" («)} I. (24) 
Further, the group with respect to ¢ occurs for 

S {bef (sO & f=O. 

Also we have in these circumstances 

CP en caren pea oe con a Cae Ae Bier} = 4 Ler +t} =F (-xf(o) 

= _& ifar Kf _ 1 (f+«f')? = (xf)? (25) 
2 yeaa fe t OF +f” ACH aa) 

Hence from (224), (24), and (25) the selection of the two groups adds to 

the amplitude a factor 1/«/(«), where 

AO=0S0= a/ (Ztanh Kh). 

* Havelock, ‘Roy. Soc. Proc.,’ A, vol. 81, p. 411, 1908. 
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Also if w is the group-velocity for wave-length 2z/« and wave-velocity V, 
we have, in this case, 

ad d 3 y — dn tN? ae {xv—Kf («)} = v—{f(«) +f (x)}. 

Hence, since in the final value /(«) = 0, we have «f’(«) equal to v—w. Thus 
if « is the wave-length of the regular wave-trains in the rear of the 
disturbance, we find that they are given by 

” = const. x ©) SIN Kz, (26) ae 

9 where v= Je tanh Kh), u=thv (1 +a): 

Hence for the amplitude a we have 

BSOx) (|(1 
~ sinh 2eh 

2eh ) 

Substituting now in (21) we obtain for the wave-making resistance, I 
proportional to 

(6(9)*|(1- ee). sinh 2«h 

If we take the same distribution of pressure in the travelling disturbance, 
namely, F(a) = Pa/a(a?+2*), we have (x) = Pe; further, we may 
again assume that the pressure P varies as v, so that we have the resistance 
in the form 

R= Atote-|(1— Zale ) 
sinh 2«h 

: tanhkh — v? tl pe are with = a (27) 

Considering R given as a function of v by these two equations, we see 
that R increases slowly at first and then rapidly up to a limiting value at 
the critical velocity ,/(gh); after this point R is zero, for there is no value of 
« satisfying the second equation with v/gh>1. 

Further, the limiting value of R at the critical velocity is finite, for we 
have 

272 : wh 
Lim 
S25 Cos ED eo 

We see that the R, v curve given by (27) is of the type sketched in fig. 9, 
We may compare this with some of the curves given by Scott Russell for 
canal boats. The continuous curve in fig. 10 is an experimental curve of 
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total resistance,* and the dotted curve is a parabolic curve inserted here to 

represent approximately the frictional resistance ; the difference between the 

two curves represents the residuary resistance, and is clearly of the same 

type as the theoretical curve in fig. 9. 

Fic.9 Fic.10 

Ca 

We can obtain a better estimate of equation (27) by taking an experi- 

mental curve for a model in deep water, and then building up curves for 

different depths. We must first put (27) into a form suitable for com- 

parison with deep water results. 

Limiting the problem to one of transverse waves only, the formula (27) 

must reduce to R = Ae~?*4, for h infinite and c = (speed in knots)/,/(length 

in feet). 

Writing v’ for v/,/(gh) we find ¢ = 11:3v’*h/L; thus although the actual 

critical velocity does not depend upon the length of the ship but only on the 

depth of water, the speed-length ratio (c) has a critical value which is 

proportional to the square root of the ratio (depth of water)/(length of ship). 

In (27) we cannot fix any value of v or ¢ and then calculate Rk directly ; 

we must work through the intermediate variable «xh. The equations may 

now be written as 

R= A (Kh)Pv'se-8 (1 —2eh/sinh 2h), (28) 

v2 =(tanhkh)/eh; 6’ =0218L/2; oc =1130'h/L. 

With h infinite this reduces to the previous form for deep water with the 

same constant A, so that a direct comparison is possible. As the velocity v 

increases from 0 to ,/(gh), « diminishes from o to 0; we select certain 

values of «xh, calculate the values from tables of hyperbolic functions, and 

thus obtain the set of values in Table VII, writing m for 

(«h)2v'4] (1—2ch/ sinh 2h). 

* J. Scott Russell, ‘ Edin, Phil. Trans.,’ vol. 14, p. 48, 1840. 
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Table VII. 

Kh. v] / (gh). L/h. m. —Bxc?. 

(eo) (0) (0) 1:0 2°53 

10 0°316 1:18 1°0 2-53 

6 0°41 1°87 1:0 2 53 

4 0°5 2°82 1-005 2°53 
2 0-69 5°42 1°077 2°43 

al 0-87 8°57 1-287 1°92 

(0) 1:0 11°3 1°5 (0) 

We consider now the experimental curve analysed in Case IV in the 

previous section, a model of 20°5 feet taken up to avalue c= 1:8. Assuming 

that the influence of finite depth was inappreciable in this range, we have for 

deep water 
R = 2e-758/9% + 82'5 {1 —0:14 cos (10°2/c?)} c= 28? (29) 

We leave out of consideration at present the first term, which is supposed 

to represent the diverging waves, and we extend the calculations for R 

(transverse) from the rest of the formula up to ¢ = 3°3 taken at intervals 

of 0-1 for ¢; we obtain thus the lowest curve given in fig. 11. With the 

help of Table VII, we calculate values of R for depths of about 5, 10, 12, 15, 

and 20 feet, taking in the formula (28) A equal to 

82'5 {1 — 0:14 cos (10°2/c?)} 

so that the results apply to the same model at different depths. An example 

of the calculations for one case may be sufficient; Table VIII shows the 

intermediate steps for h = 12°35 ft., L = 20-5. 

Table VIII. 

— Br. R/A. e—2°53/c3. 

3°73 0-024 0-024 
2-26 0-106 0-106 
1°5 0-224 0-223 
0°75 0 508 0-472 
0 °374 0-385 0 687 

0 1°5 1 

a ie [Ee eel 

The results for the five values of h are given in Table IX, and from these 

the curves in fig. 11 have been drawn. 

The general character of the effect of finite depth is clear on inspection of 

the set of curves in fig. 11. If it is required to go to high values of the 

speed-length ratio in a given tank, the ratio of the depth of water to the 

length of the model must be adjusted so that there is no appreciable effect in 
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Table IX. 

0:7 1:0 1°5 1°7 2°33 3 

0°7 7:5 275 39 2 59-2 80°5 

0:7 1:0 1:2 1°4 2 

0:7 U8 13 21°4 q 

0-7 1:0 1°3 1°8 

0-7 WES 17:9 47 °7 

0-7 EO) 1°2 1°65 

0°7 3 13 °1 40 

0-7. 0°8 0:84 1:16 
0-7 1°7 3°3 14:1 

140 

120 

Fic.! 

100 

25 IG 

80 75 

1 

60 

Lyfe 

c 

ES 
o 

gor & 

= 
a fj 

Vp 

20 

° = c 
5 ' is 2 2.5 3 3.5 

the range of the experiments. Since the curves given here are theoretical 

curves for transverse waves only, each of them ends abruptly at the critical 
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velocity—the resistance being zero after that point. In practice, we know 
that there are no such discontinuities in the resistance curves, and there are 
certain considerations which go to account for this difference. First, as 
regards the transverse waves alone, the preceding formule show that the 
amplitude tends to become infinite at the critical velocity, although the 
corresponding resistance at uniform velocity remains finite ; but, even apart 
from the effects of viscosity, there is a highest possible wave with a velocity 
depending partly upon the amplitude. Secondly, we have left out of 
consideration the diverging waves; but these must become more important 
in the neighbourhood of the critical velocity, for we may regard the two 
systems as coalescing into one solitary wave in the limit as the critical 
velocity is reached. After this point the diverging waves persist, so that 
the effect of these would be of the order of halving the drop in the resistance 
as the critical velocity is passed. 

Finally, we must consider the frictional resistance, which increases steadily 
with the velocity ; so that the fall is finally a smaller percentage of the total 
resistance than might appear at first. The curves given in fig. 11 give 
an estimate of a maximum effect of this kind, considering only the transverse 
wave system. 

§7. Further Types of Pressure Distribution. 
The preceding formule have been built up on the effect of a travelling 

pressure disturbance of simple type; we consider now another type which 
we may use as an illustration. 

Let the pressure system be given by 

P =f (2) = A (2%) (0? +H 
The type of distribution is graphed in fig. 12. 

Proceeding as in §2, we have 

” h?—w? (x) = 2A | (or PO Ko dw = wAxKe-*, (30) 0 
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Hence the amplitude of the regular wave-trains formed on deep water in 

the rear of this disturbance is proportional to «?Ae-**, and the effective 

wave-making resistance is proportional to «*A%c~***, We make the same 

assumption as before, viz., A proportional to v®, and write « = g/v?; then the 

resistance is given by 
1 = Oo ao- ae, (31) 

We use this expression to show how R varies with the constant h of the 

pressure system. Let v = 10 ft./sec.,and let R = 1 for h = 0; then we find 

the following relative values : 

R decreases very rapidly as # is increased. We have chosen this example 

for the following reason. Consider the motion of a thin infinite cylinder in 

an infinite perfect fluid; if we consider a plane parallel to the direction of 

motion and to the cylinder and at a distance % from it, we find that the 

distribution of excess or defect of pressure due to the motion is of the above 

type. Now, this is not the same as a cylinder moving in deep water at 

a depth h below the free surface, but it is suggested that as a first approxi- 

mation the wave-forming effect is that of an equivalent diffused pressure 

system. The illustration shows how rapidly the wave-making resistance 

diminishes with the amount of diffusion, that is, with the depth 4; this, of 

course, agrees with the experiments on the resistance to motion of submerged 

bodies, and, in fact, with the resistance of submarine vessels. 

In the preceding work no attempt has been made to connect theoretically 

the constants in the pressure formula with those of the model; since the 

theory rests chiefly on the consideration of transverse waves only, this would 

presumably bring into question the length of entrance, run, and so forth. The 

consideration of any “transverse” constants, such as the beam, would need 

a fuller treatment of a diffused pressure system in two dimensions on the 

surface so as to give a more detailed investigation of both transverse and 

diverging wave systems. 

Harrison AnD Sons, Printers in Ordinary to His Majesty, St. Martin’s Lane 
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(Excerpt from the Proceedings of the 

University of Durham Philosophical Society, 

Vol. Ifl., Part 4.) 

Surp-Resistance: A NUMERICAL ANALYSIS OF THE 

DistripuTion oF ErrectivE Horse Power. 

By T. H. Havetocg, M.A., D.Sc. 

[Read January 24th, 1910.] 

Introduction.—The following paper contains, in its second 

part, a numerical study of the distribution of effective horse- 

power at different speeds. The data are taken from some 

recent experiments on models by D. W. Taylor, and are 

expressed for a ship of 400 tons displacement and 250 feet 

length. A theoretical formula is found to fit the experimental 

results, and from it the different terms in the E.H.P. are 

calculated for much higher speeds. In addition to the 

general analysis, attention is directed to the changes in the 

proportion of power which goes in wave-making, and also to 

the variation of the ratio E.H.P./(speed)* with the speed; in 

the latter case a curve is drawn and may be compared with 

the type of curve obtained from high-speed motor boats. 

In the first part, an outline is given of the general theory 

of ship resistance; it is developed so as to lead to the introduc- 

tion of a type of expression which exhibits the variation of the 

wave-making resistance with the speed, but for details of the 

mathematical analysis reference is made to previous papers.* 

One obtains a general formula which is based on theory in so 

far as it depends upon the speed, and with co-efficients which 

should depend upon the form of the ship but whose values 

are at present empirical. No attempt has been made to 

tabulate values suitable for different types of vessels, for 

without further information, it is uncertain whether the 

results would repay the labour; meantime, as already 

indicated, the formula has been used to analyse experimental 

* Proceedings of the Royal Society, A, vol. 81, p. 398 (1908); A, vol. 82, 
p. 276 (1909). 
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results and to extend them to the region where more accurate 

data are needed. 

General Theory.._We obtain a clearer view of the problem 

to be solved if we pass over the idea of resistance and fix our 

attention directly upon the transformations of energy which 

accompany the motion of a ship. Imagine a ship which is 

moving at constant speed and whose engines are developing 

energy effectively at a certain rate. None of the energy 

supplied goes into the motion of the ship, for its speed re- 

mains the same; clearly all the energy goes into the water. 

If we could calculate completely the motion of the water we 

should know the rate at which energy must be supplied from 

the ship and consequently the effective horsepower necessary 

to maintain a given speed. Naturally the problem has 

proved too difficult to solve as a whole. All that can be done 

is to classify the motions of the water into groups which seem 

more or less independent; the results of the separate calcula- 

tions are then added together and the sum compared with 

the total effect in actual experiments. Fora first attempt we 

consider the following groups of motions:—surface waves; 

wake and large eddies; smaller eddies of turbulent motion ; 

rotations and heat-motions of the particles of water. Since 

the rate of supply of energy is equivalent to some resistance 

multiplied by the speed of the ship, we may express the 

results of calculations in terms of effective resistance obtained 

in this way. The latter groups in the above scheme are 

usually taken together, and their effect is expressed as a 

frictional resistance calculated from an empirical formula 

based on experiment. It has been found that a suitable ex- 

pression is SV", where V is the speed and S is the area of the 

wetted surface of the ship; the numerical values of f and n are 

taken from tables of experimental results. After this part has 

been deducted from the total effective resistance, the re- 

mainder is called the residuary resistance; following the 

usual custom, we assume that this is associated almost en- 

tirely with the surface waves, and we proceed to estimate 

the rate at which energy goes into the wave motion. 
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The well-known wave pattern which accompanies a 
moving ship is complicated, as it consists of both diverging 
waves and transverse waves. We begin with the simpler 
wave formation which is obtained by drawing a long rod 
over the surface at a steady speed in a direction at right 
angles to the rod; we observe that the water surface behind 
the rod is undulating, with parallel ridges and hollows suc- 
ceeding each other regularly. The distance between conse- 
cutive ridges is called the wave-length; it is found that the 
waves have definite wave length and a definite height 
(a feet) above the mean water level for a given speed (v) 
of the rod. It can be proved that over the range where 
there are regular waves the mean energy of the wave motion 
is 4wa? foot-pounds per square foot of the surface, where 
w pounds is the weight of a cubic foot of water. 

What is the length of the train of regular waves behind 
the rod at any time? Its front is at the rod, and so moves 
forward with velocity v; its rear depends upon how and when 
the rod was started. Suppose the motion has been steady 
for a considerable time, so that the range of regular waves is 
large compared with the initial disturbances in getting up 
speed ; it can be shown that the rear of the train of waves 
moves forward at a certain speed (wv) less than v. This 
velocity of the rear is called the “group velocity ”; if we 
observe a group of waves advancing into still water we may 
notice the crests moving forward relatively to the group, 
so that the wave velocity is greater than the. group velocity. 
The result in the present connection is that the wave-train 
is increasing constantly in length at a certain speed (v-u); 
hence the energy in the wave motion is increasing at the 
rate }wa? (v-w) per foot-length of the rod. Energy must be 
supplied at this rate in order to maintain the constant speed 
v of the rod. If we write the rate of supply as Rv, then R 
is a force per foot of the rod and is called the wave-making 
resistance. We have then— 

R=} we? (v—-u)v . : } (1) 
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Some imiterestine conclusions may be taken irom this 

equanon. Ris zero 1 w equals 7, and this is m faci ap- 

proximaiely the case m shallow-water; the whole group oi 

iramsyerse waves consists then ot a hump which accompanies 

the ship ai its own speed (rv), and m consequence, once the 

disturbance is tormed, no turiher supply of enerzy is needed. 

Tn deep waier, 1 cam be shown that u is $7: we limit our 

consideration here to this case. 

We musi examine now the variation ot the heighi (@) 

of the waves with the speed. The motion of the ship makes 

ditierences of fuid pressure in iis neighbourhood, so we 

may consider the problem as equivalent dynamically io a 

pressure disturbamce moving over the suriace oi the waier; 

the effecis depend both upon the speed and upon the 

characier ot the disturbance. 

As regards ihe velocity, the differences of pressure in- 

crease wiih the speed, and probably they are proportional io 

iis square. 

The distribution of pressure in the disturbance depends 

upon the form of the ship. To take an extreme ease, if the 

ship were an infinite rait moving over an ininiie sea, the 

pressure would be constant over the surface and there would 

be no waves; on the other hand, if the lines of the ship are 

abrupt the pressure changes may be sudden and concen- 

trated and the height of the waves greaier. A deiailed 

analysis confirms the impression that m general the heighi 

ot the waves is diminished by diftusing the pressure sysiem. 

Bui an merease of speed is equivalent to a diffusion of the 

pressure; hence we have a two-fold effeci, imcrease of speed 

increases the magnitude of the pressures, and is at the same 

time equivalent to diffusmg them over a greaier area. 

Thus, there appear io be two opposing tendencies, and we 

infer that the height of the waves should not merease 

indefinitely with the speed of the ship, for the two effecis 

may tend to balance ai high speeds. 

For a simple type of pressure distribution, a mathemaii- 

cal amalysis shows that the wave-making resistance varies 
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with the velocity according to a certain exponential func- 
tion, namely, 

5 WV? 

peer ig é ) ; : : ‘ (2) 

where A and v! are constants as regards v. 
Before examining this relation we change the variables in 

certain manner. Instead of the speed v, we use the speed- 
length ratio ¢ defined as (speed of ship in knots)//(ength in 
feet); further, the resistance R is expressed in lbs. per ton 
displacement of the ship. The advantages of these changes 
are found in calculating from the results of model experl- 
ments similar quantities for a ship of any dimensions on the 
same lines as the model; R is the same for equal values of ¢ 
in the two cases. 

400 

EY) 

ys 7) 
Fig. 1 represents the type of curve given by R=Ae x : 

The slope of the curve increases up to the value c!, and 
then falls off for higher values of c. I increases continu- 
ally with ¢, and approaches a limiting value equal to the 
coefficient A. If we compare Fig. 1 with any experimental 
curve of residuary resistance we find that the general 
features are the same, but if we wish to obtain a close agree- 
ment over a large range of values of ¢ there are two ways in 
which the formula must be extended. 
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In the first place, in an actual ship there are two chief 

pressure systerns, one associated with the entrance at the 

bow and the other with the run at.the stern. The undula- 

tions caused by these are superposed upon each other, and 

the result is that the resistance curve is sometimes above 

and sometimes below a mean curve, according as the crests 

of one group coincide with the crests or with the troughs 

of the other group of waves. It appears probable that the 

variations from a mean value R can be represented by an 

additional term 61 cos (n/c?), where 6 and n do not involve 

e but depend upon the form and dimensions of the ship. 

In the second place, in addition to the transverse waves 

which we have considered alone so far, there are waves 

diverging from the. bow and stern. Regarding these as 

wave-trains inclined to the direction of motion, certain 

considerations suggest a similar form for the resistance as 

before, but with a value of c! one-third its value for the 

transverse waves. This term is found to have a small value 

compared with the others, and is only of importance 

relatively at lower speeds. 

Summing up the various terms we obtain a general 

formula of the type 

3 A) —3 (2) 
R=ae iC: +B (l-y cos iy )é NG? > ©) 

An inspection of experimental results shows that some 

of the coefficients in this formula may be given fixed values 

provisionally, that is, they are practically the same for 

ordinary types of vessels; thus we find c'=1°3, n=10°2, and 

y=014 approximately. A good agreement can be obtained 

at values of c greater than 1 by using only the second term 

in (3), but if we wish to cover the whole range by one 

formula we must include all the terms.* For present pur- 

poses we use (3) in the form 

_ 2°63 . 2:53 

R=ce % 48(1—0:14 cos ye CH) aay mylyn) 

* Loc. cit. ante, p. 215. 
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A Numerical Analysis——In a paper by D. W. Taylort 
a residuary resistance curve is given for 2 certain model 
(No. 892) from the result of tank experiments up to a value 
of c of 18. This is given almost exactly by (4) with a=2 
and B=82°5. All the results are now calculated in terms 
of effective horsepower for a ship on the same lines as the 
model. In the following table the column headed Ex- 
perimental E.H.P. was obtained in this way from the 
residuary resistance curve, while the calculated E.H.P. 
was found from (4) with the above values of a and B ; In 
both cases the total H.H.P. was obtained by adding a suit- 
able frictional part 0:00307f/SV2°83. 

The data for the ship on the lines of the model are: 
Displacement=400 tons; length=250 feet; wetted surface 
=5,000 square feet; longitudinal coefficient = 0°68 ; midship 
section coefficient —0°70; frictional coefficient—‘00897. 

Taste I.—EFrectivE Horse Power. 
| caer aaa 

Cc. Wa Experimental. Calculated. */, Wave. E.H.P./V*. 

0°5 79 53 54 11 109 
0:8 12°6 227 228 20 “112 
1:0 158 514 510 33 “129 
1:2 18-9 888 898 37 132 
1-4 22°1 1,495 1,495 42 | “144 
16 25°3 2,370 2,370 46 | “147 
1:8 28°4 3,360 3,360 47 147 
2:2 34°8 — 6,400 36 *152 
2°6 41:1 = 8,010 36 116 
3:0 47-4 — 11,160 31 “105 
4:0 63-2 — 22,250 23 088 

The agreement between columns 3} and 4 shows that the 
formula (4) is capable of representing the experimental 
results for this model. In regard to the calculated values 
at high values of ¢, it is of interest to compare these with other 
calculations. Cotterill* states that for certain types of torpedo 
boats the total resistance is approximately 30 c? for values 
of ¢ between 1°5 and 2°5; for the ship under discussion this 
would give the total E.H.P. as 582¢3. 'Uhis formnla gives 

D. W. Taylor, Trans. S.N.A.M.E. (New York, Vol. 16, p. 17 (1908). Cotterill, Applied Mathematics, p. 621. 
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2,380 at c=1°6 and 3,400 at c=1'8; but for higher values 

it increases very rapidly, and gives 15,700 at c=3 and 87,250 

at ¢=4. 

In the last column in Table I. the values of E.H.P./V3 

are given; these were obtained from the calculated total 

power in each case, and the results are graphed in Fig. 2 

on a base of V/VL. The curve is of the same type as one 

which has been deduced from the performances of high- 

speed motor boats.* 

Column 5 in Table I. gives the percentage which the 

wave horsepower is of the total horsepower. It attains 
a maximum in this case of nearly 50 per cent at about 

‘ 

¥ 
7 WE 2 3 + 

e=18. After this value the ratio diminishes, for the wave 

resistance begins to approach its limiting value while the 

frictional resistance continues increasing as V3. If we 

suppose the total power to vary as V" in the neighbourhood 

of any given value of V, we can find how the index n varies 

with the percentage (y) which the wave power is of the total 

power (EK). For we have 

py? pe 100 aye-ss E=F + i992 =j00= CV Si3h 

where C is some constant. 

Since » = V(dE/dV)./E, we find 

=e Vv dp n=2°83 + 100—p aV ‘ 

*R. E. Froude, Trans. Nav. Archi, vol. 48, p. 102 (1906). 
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The index n begins at the value 2°83, increases with in 

creasing values of p, then decreases to a minimum, and finally 

increases again to a limiting value of 2°83; the position of 

the minimum index is not the place where the wave power is 

a maximum proportion (dp/dV=0) but at some velocity 

) VAL 2 3 4 
I 

f £09 V - 2 

greater than this value. Since the equivalent index n is 
given by d (log E)/d (log V), its changes may be exhibited by 
graphing log E upon a base log V; the slope of this curve 
gives the corresponding value of n. This has been done for 
the ship under discussion, and the result is shown in Fig. 3. 
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The scale is not sufficient to show the variations in the 

first part of the curve, but one may notice the short interval 

between c=2 and c=8 for which n drops to values in the 

vicinity of 2; after this the index rises again. The region 

of low values of n depends upon the relation of wave power 

to frictional horsepower; hence it will vary not only with 

the lines of the ship but also with its absolute dimensions. 

This, together with other points mentioned in the previous 

study, must be left to a more detailed analysis and com- 

parison of experimental results for models of different types. 
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The Wave-making Resistance of Ships: a Study of Certain 

Series of Model Experiments. 

By T. H. Havenock, M.A., D.Se., Armstrong College, Newcastle-on-Tyne. 

(Communicated by Prof. Sir Joseph Larmor, Sec. R.S. Received June 7,— 

Read June 23, 1910.) 

1. In a previous communication* I proposed a. formula for the wave- 

making resistance of ships, and showed that it expressed certain general 

qualities of experimental results; further, notwithstanding the limitations of 

theory and the difficulty of interpretation of experimental data, a good 

numerical agreement was found in several cases with the published results of 

tank experiments on models when suitable numerical values were given to 

the coefficients in the formula. 

This paper records the results of a more systematic study of the 

numerical values of some of the coefficients, the data being taken from certain 

recent series of experiments; for the present the discussion is limited to 

those types of model whose resistance-speed curves show clearly the humps 

and hollows which are attributed to interference of wave-systems originating 

at the bow and stern. It has been remarked that although the mode of 

disturbance is different, the action of the bows of a ship may be roughly 

compared to that of a travelling pressure-point, and further, that the stern 

may be regarded in the same way as a negative pressure-point.t This point 

of view originated in the well-known paper of W. Froudet on the effect of 

the length of parallel middle body, and the theory was developed in a later 

paper by R. E. Froude§ ; from an inspection of experimental results it was 

seen that the variations in magnitude and position of the oscillations were in 

directions which agreed with the above interpretation. On account of the 

lack of an adequate formula, the available data have not yet been examined 

numerically in any detail; the present investigation aims at supplying this in 

some measure. Section 2 is theoretical, with some necessary repetition of 

previous work; Sections 3 and 4 contain a numerical analysis of some avail- 

able experimental curves. In Section 5 an attempt is made to estimate the 

effective horse-power of the “Turbinia,” in order to illustrate certain points ; 

while in Section 6 the limitations of the interference theory, in the 

**Roy. Soc. Proc.,’ 1909, A, vol. 82, p. 276. 

TH. Lamb, ‘Hydrodynamics,’ 1932 edn. p. 438. 
tw. Froude, ‘Trans. Inst. Nav. Arch.,’ 1877, vol. 18. 
8R.E. Froude, ‘Trans. Inst. Nav. Arch.,’ 1881, vol. 22. 
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conventional use of the term, are discussed in connection with the residuary 

resistance curves of finer-ended models. 

2. A transverse pressure disturbance travelling over the surface of water at 

right angles to its axis leaves in its rear a procession of regular waves; on 

account of the supply of energy needed to maintain this system, there is an 

effective resistance which may be called the wave-imaking resistance of the 

given disturbance. An illustration of a simple type of disturbance, 

symmetrical fore and aft with respect to its axis, is afforded by the function 

P/(p?+*), where Ox is in the direction of motion. The length p may be 

used to define the distribution of pressure to this extent: when p is decreased, 

the changes are more concentrated and abrupt, and conversely ; we may, as a 

convention, call 2p the effective width 0 of the disturbance. If the dis- 

turbance is made to move with uniform velocity v at right angles to its axis, 

the height of the waves can be calculated, and thence, from considerations of 

energy, the corresponding wave-resistance R. If the quantity P which defines 

the magnitude of the disturbance is supposed an absolute constant, the 

calculation of R as a function of v gives an expression which rises to a 

maximum and then diminishes ultimately to zero with increasing values of 

the velocity.* But if the pressure disturbance is associated with a moving 

ship, it seems reasonable to suppose that P depends upon the velocity, and in 

fact the assumption is that P varies as the square of the speed. 

In this way we obtain the result 

R = Ber, (1) 

where B is independent of v. According to this expression, It increases from 

zero up to a limiting value B; at any given speed R is a certain fraction of 

the value B, and if the quantity ’ were increased the same value of R would 

only be reached at some higher speed. Further if we have a second 

expression R, with constants Bi, d, greater than B, 6, respectively, the curve 

for R, will intersect the curve for R at a certain velocity; at lower speeds 

Ri <R, while at higher values Ij > R. 

Suppose now that a similar negative pressure system, with a different 

coefficient P, but with the same width 6, is situated behind the first system, 

with a fixed distance 7 between the two axes. The wave-making resistance 

of the combined system is given by an expression B(1 — y cos gl/v*)e~'9™, 

where 8 and y are independent of v. In applying this result to the case of a 

ship, we can of course only expect agreement if the type of model is such that we 

may imagine distinct, but mutually interfering, wave-systems originating at 

the bow and stern; it is, in fact, an attempt to describe the wave-making 

* Of. Lord Kelvin, ‘ Math. and Phys. Papers,’ vol. 4, p. 396. 
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properties of a ship in terms of the coefficients of a simple equivalent pressure 

distribution of the type specified. Another point which must be noted is that 

the previous expression is obtained by considering two-dimensional motion 

only; but the bow and stern of a ship act more like point disturbances than 

as transverse line systems, hence there are diverging, as well as transverse, 

waves. In default of a fuller analysis, I have suggested for certain reasons 

the addition to R of a term ae~%9/®*; it is retained for the present, because it 

indicates the necessity for some expression of the diverging waves and it 

agrees with certain general properties of them, and also in several cases it 

allows us to obtain better numerical agreement at lower speeds. 

We suppose that R is expressed in pounds per ton displacement of the ship, 

also V is the speed in knots, L the length of the ship on the water line in 

feet, and ¢ is equal to V/,/L; then we have 

1 = ae-37 + B (1 — cos ne) e-® Ibs. per ton, (2) 

where m = 11°30/L and n = 11°31/L. 

In the following examples attention is directed chiefly to the variations of 

8 and m, and incidentally to those of y and ». The length d cannot be taken 

directly as the length of the entrance or run of the ship, for it will depend also 

on the lines of the model; but one may expect the ratio b/L to decrease as 

the slope of the model at the bow is increased, and conversely; similarly the 

number x will vary in a direction which may be predicted. In the previous 

paper sufficient agreement was found when m and m were assigned fixed 

values; in many cases the mean curve of residuary resistance appeared to 

havea point of infiection near c = 1°3, and for this we had m = 2:53; further, 

the humps and hollows agreed with n = 10:2 for the angle n/c? in radians, or 

n = 584 for the angle in degrees. With none of the coefficients fixed before- 

hand, it is necessary to adopt some method of approximation. Drawing the 

experimental curve of residuary resistance on a suitable scale, a fair mean 

curve was sketched in and an equation R = Ae~”/” was found, generally by 

graphical methods, to fit this as closely as possible ; in fact it was the original 

intention to limit the study to the two leading coefficients A and m so deter- 

mined. The value of m is now fixed, and from the intersections of the mean 

curve with the actual oscillating curve one could assign a value to m with 

sufficient accuracy. Finally the three remaining quantities were found from 

three points on the actual curve, for example, at c = 0°6, 1:2, 18, if the curve 

extended so far. In practice the lowest point determines «, for the term in 8 

is negligible there ; for the same reason the values of 8 and y are more satis- 

factory when fairly high values of ¢ are available. In all cases the 
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approximation was not carried further than the circumstances seemed to 

warrant ; the values of the coefficients are given generally in round numbers, 

and the theoretical curves were calculated throughout their range from 

the formule so obtained. 

3. The first series is taken from a paper by D. W. Taylor* on the influence 

of the shape of midship-section upon the resistance of ships; from the 

curves in that paper I have taken four, which form a series having the same 

midship-section coefficient, but with different displacements. The data and 

the results are given in the following table :— 

Table I.—Models I to IV. 

Displace- | Displace- 
No. ment |ment-length | Beam. Draft. a. B. Y- m. N. 

in lbs. coefficient. 

i 500 26 6 1°365 0°467 16 81 O14 | 2°7 584 
II 1000 53 °2 1-930 0 660 2°0 160 0:18 | 3°0 540 
Til 1500 “79:8 2 °364 0-809 2-0 240 0-18 | 3:2 540 
IV 2000 119°7 2 895 0-991 2°5 360 0-18 | 3°5 540 

Cylindrical coefficient = 0°68 ; midship-section coefficient = 0°90; 
water-line length = 20°51 feet; beam/draft = 2-923. 

The curves in fig. 1 indicate the results of the analysis; in each case the 

continuous curve is the experimental curve of residuary resistance; the 

points marked by circles have been calculated from the formula (2), while 

the broken curve is a mean curve graphed from the expression 

ae m9 + Be-mlc’ The calculated curves have been extended as far as ¢ = 3, 

in order to include the highest theoretical point of intersection of the mean 

and oscillating curves. 

The third column in Table I refers to a coefficient of fineness used by 

Taylor in the paper referred to; it is defined as D/(L/100)*, where D is the 

displacement of the model in salt water in tons, and L is the water-line 

length in feet. It is a method of estimating the proportions of a model by 

the displacement of a ship of the same lines and of 100-feet length. 

From the numbers in Table I, 8 appears practically proportional to the 

displacement. The resistance R has been calculated in pounds per ton 

displacement, so that dimensionally 8 is a pure number. In this series 

certain quantities are constant, namely, with the ordinary notaticn, L, B/H, 

(Bx Hx L)/D, and (area of midship-section)/(B x H). As far as this series 

is concerned we might regard £ as proportional, for instance, to (B x H)/L? 

or to the displacement-length coefficient. 

*D.W. Taylor, ‘Trans. Amer. Soc. Nav. Arch.,’ vol. 16, p. 13 (1908). 
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The index m of the exponential increases slightly with the displacement, 
that is, with increasing beam and draft; this variation is in the direction 
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one might anticipate, as it indicates a greater diffusion of the pressure 
changes. In regard to the coefficients specifying the interference between 
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the bow and stern systems, y is larger at the higher displacements, while x 

is less; both variations are consistent with a diminution of the distance 

between the axes of the simple equivalent pressure distributions. 

To illustrate the smaller changes which are possible at the same displace- 

ment, three models are taken from the same paper, having different midship- 

section coefficients with the same area of midship-section; thus smaller 

coefficients are associated with greater beam and draft. One of these three 

is No. 1 of Table 1: midship-section coefficient = 0:9, @=81, m= 2°7. 

Another of the set I had already used in my previous paper with the results: 

midship-section coefficient = 0°7, 8 = 82:5, m = 2°53. For the third of the 

series the same coefficient is 11, and there is a good agreement by taking 

B = 79-5, m = 2°87. 

4. The next sets of experimental results are taken from a paper by 

D. W. Taylor* on the influence of length of parallel middle body. One must 

notice that the problem investigated is not quite the same as in the paper 

by W. Froude referred to above. In the latter case the bow and stern of 

the model were unaltered, but varying lengths of parallel middle body were 

inserted between them, so that the special effect was isolated as far as 

possible. In Taylor’s experiments the models have constant length and 

displacement, but varying proportions of the length are occupied by a 

parallel middle body, and, of course, the bow and stern vary in form so as to 

keep the displacement constant ; the effect is thus more complex theoretically. 

We may anticipate the direction of variation of some of the coefficients 

with increasing percentage of parallel middle body under these conditions. 

Since the ratio of the length of entrance and run to the length of the ship 

becomes less, the index m should decrease ; also the effective distance apart 

of the bow and stern systems becomes greater, so at the same time y should 

decrease and 7 increase. 

Table II.—Models V to VIII. 

Percentage of | Cylindrical 
No. parallel coefficient a. B. Y- m. n. 

middle body. of ends. 

Vv 10) 0-740 2°5 135 0°17 2°53 584, 
VI 24 0 658 2°0 145 0°16 2°45 584 
VII 36 0-594 2°0 155 0°14 2°35 605 
VIII 48 0 ‘500 2°0 165 0:12 2°10 650 

Displacement = 1000 lbs. ; length = 20°51 feet; beam = 1°682; draft = 0°673; displacement- 
length coefficient = 53°2; midship-section coefficient = 0:96 ; beam/draft = 2 °5. 

*D.W. Taylor, ‘Trans. Amer. Soc. Nav. Arch.,’ vol. 17, p. 171 (1909). 
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Table II contains the results for a set of four models of 1000 lbs. displace- 
ment, together with other data; the corresponding curves are shown in fig. 2 
in the same manner as before. 
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From the curves in fig. 2, it will be seen that the calculated curves express 
the general variations in the manner anticipated above. The numerical 
agreement is best throughout the range for Model V, while for the other 
curves the agreement at lower values of cis not so good; this appears to be 
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associated with the change in shape of the ends of the model. Although for 

the whole length of each model the cylindrical coefficient is 0°74, on account 

of increasing proportion of parallel middle body the ends become finer; this 

is indicated in the third column of Table II. The formula (2), in its present 

form, gives best numerical agreement for models with fuller ends, that is, 

with fairly high cylindrical coefficients; this point is examined further 

below. 

The same remarks apply to a second set of four models, taken from the 

same paper, having a displacement of 1500 lbs. The results are given in 

Table III and the curves in fig. 3. For Curve XII, a point in connection with 

the interference-coefticients y and m may be noticed. Whatever value of n 

is used, if the simple theory is to be adequate, there must be certain relations 

between the values of ¢ at which the humps and hollows occur ; beginning 

with the highest values and working down to lower speeds, the successive 

values of ¢ at which hollows, humps, and mean values occur must be 

proportional to the reciprocals of the sequence 

JO, (OR ail, VER) A By cow dc0000 

In all the curves given here the graphs have been extended to ¢ = 3, so as 

to include, in most cases, the highest mean value, corresponding to the second 

term in the above series. In most cases it was possible to choose n so that 

this relation was approximately satisfied, but the difficulty increases apparently 

at higher displacements, such as in Model XII. The mean curve shown for 

this case in fig. 3 represents the curve R = 255e-*/"; determining the value 

of » from the intersections of this with the actual curve, the numbers 

obtained from the higher positions are larger than those from the lower 

speeds. In consequence, the circles showing the theoretical continuation 

of the curve have been calculated with y= 015 and n= 610, without 

attempting a fit over the whole curve. 

Table I1J.—Models IX to XII. 

Percentage of | Cylindrical 
No. parallel coefficient a. B. Y- m. n. 

middle body. of ends. 

IX (0) 0-740 2°5 200 0°19 2-7 584, 
xX 24 0-658 2°2 210 0:17 2°64 584 
XI 36 0 °594 2°0 235 0°14 2°6 610 
XII 48 0 500 — 255 —_ 2°3 = 

Displacement = 1500 lbs.; length = 20°51 feet; beam = 2°060; draft = 0'824; displacement- 

length coefficient = 79°8 ; midship-section coeflicient = 0°96 ; beam/draft = 2°5. 
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5. The curves in the previous sections have been examined chiefly from a 
theoretical point of view, that is, with the object of testing in these cases 
the general adequacy of a certain type of simple equivalent pressure 
distribution. One might try also to classify the coefficients of the formula, 
so as to obtain empirical expressions for them in relation to the form of 
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the model. The latter is frequently specified by various coefficients of 

fineness, which of course give only an approximate estimate of form, and 

in any case do not make a set of independent variables; no attempt is 

made here beyond giving all the available data for each model. With the 

results given above and in the previous paper, one can find an approximate 

estimate of the leading coefficient 8, at least for forms similar to those already 

examined. It was noticed that, other things being equal, 8 was proportional 

to the displacement-length coefficient; also for given values of the latter 

8 appears to be approximately proportional to the ratio of beam to draft. 

This seems reasonable, since wave-making is largely a surface effect ; that is, 

for a disturbance travelling below the surface the wave-making falls off 

rapidly with its depth. In several of the cases already examined, it 

happens that @ is numerically only slightly larger than the product of the 

two ratios mentioned, that is, @ is a little greater than (B/H) x D/(L/100)*, 

with all the quantities in the units specified above. This result is used now 

to make an approximate estimate of total effective horse-power for a 

certain ship, as it affords opportunity for introducing other points of 

interest. The data for the ship are those of the “Turbinia,” as far as 

they are available from the published record of trials.* 

Turbinia.—Displacement = 444 tons; length = 100 feet; beam = 9 feet; 

draft = 3 feet; cylindrical coefficient = 0:66; speed = 31 knots. 

The displacement-length coefficient is 445, while the ratio of beam to 

draft is 3; since the cylindrical coefficient is less than those already 

examined, we take 8 as about 5 per cent. greater than the product of these 

two ratios, that is, @ = 140. Following out the indications of the previous 

cases, m should be nearly 3; as we shall calculate quantities for ¢ = 3-1 

the exponential e~”/’ only varies slowly with m, so that m = 3, with suffi- 

cient approximation. Under the same conditions we take »/c? = 60° and 

y = 0:15, also a= 2. Calculating from formula (2) with these values, we 

obtain an estimate of 410 for the effective horse-power of the ship at 31 knots 

due to wave-making, 

any of the usual approximate formule, with simple powers of the speed, when 

with the possibility of this being slightly in defect ; 

extended to this high value of ¢ give possibly twice this estimate, a result 

which is much too high. If we take the area of wetted surface (S) as 

970 square feet and the frictional coefficient (7) as 0°0095, we may calculate 

the frictional effective horse-power from the expression 0:00307/SV**®; it is 

470 at 31 knots. We obtain thus an approximate estimate of 880 for the 

total effective horse-power of the ship at 31 knots. It is stated in the record 

referred to above that the total effective horse-power at 31 knots is 946, 

* C. A. Parsons, ‘Trans. Inst. Nav. Arch.,’ 1897, vol. 38, p. 232. 
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obtained by Froude’s method from tank experiments on a model of the ship ; 

no details of the calculation are given. Although the estimate above is only 

approximate, another possible factor should be noted; this is the influence of 

the finite depth of the tank. It has been stated that, from recorded experi- 

mental data, this effect becomes appreciable when the length of the waves 

exceeds twice the depth; this means approximately when c>1-9h/L, 4 being 

the depth of water and L the length of the model. This appears to agree 

with the curves of fig. 11 of my previous paper, which were obtained from 

theoretical considerations. The effect of shallow water is an excessive 

increase in the resistance for a considerable range, but if the speed is made 

high enough the resistance may become even less than in deep water at the 

same speed. It seems possible that the tank experiments quoted above come 

within the range of excess of transverse wave-making resistance. It is stated 

that, assuming a propulsive coefficient of 60 per cent., the value of 946 means 

a corresponding indicated horse-power of 1576; it may be noted that the 

estimate of 880 corresponds to the same indicated horse-power with an efficiency 

of about 56 per cent. In this connection the following remark may be quoted 

from a recent discussion: “Is it possible that this is one contributing cause 

to the large propulsive coefficients obtained by torpedo craft compared with 

those obtained in full-sized vessels, viz., that the tank effective horse-power of 

torpedo craft models is over-rated, because of excessive transverse wave- 

making resistance in the ‘shoal water’ of the tank ” ?* 

6. It must be noted that all the preceding calculations refer to rather full- 

ended models, that is, with a cylindrical coefficient of about 0°68 and 

upwards. It was upon such a type that the original experiments of Froude 

were performed, and it seems that the characteristic interference effects occur 

specially in such vessels ; the latter are associated with the idea of two fairly 

distinct systems of pressure disturbance at bow and stern respectively. Now 

if the ends are made finer it is reasonable to imagine the two systems 

coalescing into what could be more accurately interpreted as one pressure 

system. This would be more diffused over the length of the ship, so the 

equivalent index m should be larger; further, since for constant displace- 

ment finer ends mean larger beam and draft, the limiting coefficient 6 should 

be larger. Consequently, for decreasing cylindrical coefficient, at constant 

displacement, the curves of residuary resistance should be intersecting curves, 

lower at low speeds and then ultimately higher. This is illustrated in the 

curves in fig. 4, which have been superposed to show the point in question. 

The curves are taken from a series of 1000-lb. models by D. W. Taylor, of 

* E. Wilding, ‘Trans. Inst. Nav. Arch.,’ 1909, vol. 51, p. 160. 
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constant midship-section coefficient 0°926, and with the ratio of beam to draft 

2:923 ; the cylindrical coefficients are 0:68, 0°60, and 0°48. 
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The curve with a coefficient of 0°68 is represented quite well by formula (2) 

with a=2, B=155, y=014, m=29, n= 584; the circles represent 

calculated points. The typical oscillations are clearly visible in this curve 

but they appear to be absent altogether from the other two curves; the 

general character of the latter curves is in accordance with the remarks made 

above. One may even obtain some numerical agreement with y zero and 

larger values of 8 and m, but it is unsatisfactory without a further examina- 

tion of intermediate stages and their equivalent pressure distributions ; 

another point is that with a larger value of m the first term in the formula, 

which represents the diverging waves, becomes more important, and adds 

another reason for deferring the study of finer-ended models. 

HARRISON AND Sons, Printers in Ordinary to His late Majesty, St. Martin’s Lane. 
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Tur DISPLACEMENT OF THE ParricLes IN A CASE 
A eeu cates eae creat eae Dafa 

or Fium Morton. 

By '[. H. Havecock, M.A., D.Se. 

[Read March 3rd, 1911.] 

The leading features of the motion induced by the passage 

of a cylinder through a perfect fluid are well known, but 

certain aspects of the permanent displacement of the fluid 

particles are less familiar. The following notes on these 

were suggested by an unexplained paradox which is men- 

tioned in recent treatises, such’as Lanchester’s Aero-dynamics 

and Taylor’s Speed and Power of Ships; it was found later 

that the same difficulty is mentioned by Maxwell in a paper 

on the paths of the particles. The present remarks are 

arranged as follows: 

1. From the ordinary theory of the fluid motion is 

deduced a simple proof of Rankine’s formula for the 

radius of curvature of the path of a particle, and the 

solution is then completed in terms of elliptic 

functions. 

2. After drawing paths of particles, curves are obtained 

for the subsequent positions of lines of particles 

which were abreast of the cylinder at certain times. 

3. A graphical study of the deformation of a group of 

particles as it passes near the cylinder suggests a 

difference between the behaviour of an ideally con- 

tinuous fluid and one which is molecular. 
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4. A discussion of the paradox that the fluid appears to 

have a permanent forward displacement ultimately. 

The difficulty is shown to arise from the introduction 

of infinities without precise definition of conditions. 

Analytically the ambiguity occurs in the form of a 

double integral whose value depends upon the order 

of performing the integrations. 

1.—A circular cylinder of radius a and of infinite length 

moves through an infinite fluid with uniform velocity wu at 

right angles to its axis. The fluid is assumed to be perfectly 

continuous, frictionless, and incompressible; and under 

these conditions a certain continuous motion is determined 

in the fluid. Let the diagram in Fig. 1 represent a section 

at right angles to the axis of the cylinder, the circle with 

centre O being a section of the cylinder at any instant. 

zy 

FIGURE I. 

The fluid at any point P(7,6) is moving with velocity 

ua? /r? in a direction making an angle 26 with Oz, that is 

tangentially to a circle through P touching the axis of « at 

O. Thus the fluid at points on a circle such as OPA is 

moving tangentially to the circle at each point at a given 

instant. his solution gives the actual velocity of the fluid 

at any point at any time; it does not follow the motion of a 

given particle of the fluid. If we fix attention upon a fluid 

82 



4 

particle at P in Fig. 1, we could trace its path relatively to 
the cylinder by superposing on its actual motion a backward 
velocity w parallel to Oz. It can be shown that this relative 
path is a curve PBC whose equation in terms of y and 7 is 

(1 ==) =, « : 3 : d (1) 

where 6 is the distance of the particle from the axis Ox when 
at an infinite distance before or behind the cylinder. These 
curves, given by different values of 6, would be the actual 
paths of the fluid particles if the cylinder were at rest and 
the fluid were streaming past it. In the case under con- 
sideration the cylinder is moving and the fluid is at rest at 
infinity; hence the actual path of a particle may be imagined 
as the path in (1) referred to axes moving with uniform 
velocity w. ‘The equation of the path was first obtained by 
Rankine! in the form of a relation between the ordinate y 
and the radius of curvature p. It can be deduced from 
Fig. 1. 

We have pd(26)ldt = velocity of particle at P = ua?/r?, 
By writing down the velocity of P relative to O in a direc- 
tion at right angles to OP we have 

° 

2 Sin 6. o =u sin 6 + 

From these two equations, with y for rsin6, we obtain 
2py(1 + a?/r?)=a2. But relatively to the cylinder the 
particle lies on the curve given by equation (1) above; hence, 
substituting for a?/r? we find the result 

5 =a — 3) Er eT restn cee Wis, Hos 
As Rankine pointed out, this represents in general a case of 
the ‘elastic curve’; and, in fact, the path of a particle is one 
loop of a coiled elastica. We can complete now the solution 
of (2). For any given particle, fixed by the value of b, if 6 

'W. J. M. Rankine, Phil. Trans. A., vol. 154, p. 369, 1864. The result is erroneously attributed to Maxwell in the article on hydremechanics in the Encyclopedia Britannica, 11th ed. 
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is the angle between the tangent to the path and the axis 

Ox, we have on integrating (2) 

y = hb + (4b? + $a? + 4a? cos 6)? (3) 

We choose the axis Oy so that x is zero when y is a maximum, 

and measure the arc s from this point. Then 
2 268 

L= (1 — zs + Spam(=*); y =%b + Gane); (4) 

where the modulus of the elliptic functions is =(1+6?/4a?)-?. 

In terms of elliptic integrals which are usually tabulated, 

namely F(i,¢) and E(4,) and the corresponding complete 

integrals K and E, we find the following results: the letters 

refer to the symmetrical] curve in fig. 2. 

(i) At the point B. y=3b+a/k; p= fka. 

(ii) At C, the widest part of the loop. y= bo +2V (1 —k?); 

2 Oy or eeikka \ (1 — SFU 45% + GE 45°) } 

p= Ha/V 0 — 3). 
D) 9 

(iii) Atanend pointA. y=b; 7= biea\(1 — 7K +25} ; 

p= a?/206. 

These data are generally sufficient for drawing the curve 

with considerable accuracy. From the periodicity of the 

elliptic functions we can also’ write down the total length of 

the path ABCD; it is equal to kKa. As a numerical 

example, one finds that the total distance covered by a 

particle initially at a distance a from the axis, as the cylinder 

_moves from an infinite distance behind to an infinite distance 

in front of the particle, is approximately 2a; this is the 

curve denoted by 1:0 in Fig. 2. It need hardly be pointed 

out that although the limiting length of path is finite, the 

time involved becomes infinite. 

In Fig. 2, some curves are drawn for various values of the 

ratio of 6 toa; except in one case, only half of each complete 

path is shown. For 6 zero, the path is infinite in length and 

Is given by 

x=atanh(2s/a)—s; y =asec h(2s/a). 
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The cross-marks on the curves indicate the spaces covered in 
successive equal intervals of time by particles which were 
simultaneously at similar points (B) of their paths. 

2.—With the help of these curves we can trace the 
changes in any line containing always the same particles. 
For this purpose we draw the relative stream lines given by 
(1), for the same values of }/a as are shown in Fig. 2. We 

superpose this diagram on 

Fig. 2, with the axes of «x 

coinciding, and draw a curve 

through the intersections of 

corresponding actual and rela- 

tive paths; displacing one 

diagram parallel to the direc- 

tion of motion, we mark again 

the intersections and obtain 

the displaced position of the 

same set of particles. For 

instance, with the actual 

paths as in Fig. 2, we obtain 

by this method the successive 

positions of a line of par- 

ticles which at some instant 

Figure 2 formed a straight line abreast 

of the cylinder; these curves are shown for one quadrant in 
Fig. 3. 

The diagram can also be described in another manner. 

The cylinder moves from left to right. At the instant repre- 

sented in Fig. 3, AB is a line of particles abreast of the 
cylinder; the successive curves to the left are the present 
positions of particles which were abreast of the cylinder at 
certain equal intervals of time previously. The unit of time 
T is that taken by the cylinder to move through one-quarter 
of its diameter. Thus the curve C!D)!E! represents the 
present position of particles which were abreast of the 
cylinder at CDE at a time 5T previously. It_may be 
noticed that the circumference of the cylinder forms part, 
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in the limit, of one of the relative stream lines; so that the 

same particles are always in contact with the cylinder, as 

the ordinary ideal theory requires. 

3.—To trace out the deformation of other lines of 

particles, it is necessary to adjust first the curves in Fig. 2. 

For instance, to obtain curves which have been drawn by 

Maxwell, we arrange the paths in Fig. 3 so that the initial 

points (A) lie in a straight line perpendicular to Oz; then 

by the same process as before, we obtain the successive forms 

of a line of particles which lay in a straight line initially 

| 

FiGurRe 3 

when at a great distance in front of the cylinder. We could 

trace similarly the deformation of groups of particles. 

Fig. 4 was obtained by this method; it illustrates the 

extreme deformation which occurs near the cylinder. Con- 

sider for a moment that the cylinder is at rest and the fluid 

streams past it from left to right. The three enclosed areas, 

equal in magnitude, are successive positions of the same 

group of particles. 

It has been mentioned already that the ordinary solution 

of this problem assumes that the fluid is infinitely divisible 
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into parts retaining the characteristie properties of a fluid. 
We introduce other limitations when we regard the fluid as 
made up of a large, but finite, number of particles or mole- 
cules which retain their identity during the motion. For 
such a molecular fluid, it is known that solutions obtained 
by continuous analysis imply that the molecules move in 
such a way that their order of arrangement does not alter. 
Also if we consider a group of molecules forming an element 
of volume round some point at any time, the same molecules 
will form an element of volume in the neighbourhood of some 
other point at any subsequent time; that is, the deformation 
of an element of volume must be infinitesimal. An inspec- 
tion of Fig. 4 shows that this condition is not fulfilled in the 

a 
vicinity of the cylinder. One can imagine a curve drawn 
round the cylinder, not symmetrical fore and aft, within 
which the conditions are certainly not satisfied. These 

FIGURE 4. 

considerations may help to remove an apparent absurdity. 
If we examine curves, as Maxwell’s, showing the successive 
forms of lines of particles originally straight in advance of 
the cylinder, we notice that the cylinder never penetrates 
through any such line, all of them being looped always round 
the cylinder. Quite apart from other considerations which 
enter in the case of an actual fluid, we are relieved from this 
conclusion by remembering that, on account of molecular 
constitution alone, there is a region round the cylinder 
within which the solution obtained by continuous analysis 
does not represent the true state of motion. 
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4.—We consider now the paradox to which reference has 

been made above, returning to the solution of the first two 

sections. If we imagine the fluid to be contained within a 

fixed vessel it is clear that, as the cylinder is moved forward, 

an equal volume of fluid must be displaced backwards. The 

same argument should hold continuously as we suppose the 

containing vessel increased indefinitely, and hence in the 

limit, when we eonsider motion in an infinite fluid subject to 

its being at rest at infinity. Thus there should be a per- 

manent displacement of the fluid backwards on the whole. 

But, according to the paths drawn in Fig. 2, we find that 

every particle comes to rest ultimately at some point D in 

advance of its initial position A; so that there appears to be a 

displacement of the liquid forwards. The interest of this 

paradox lies partly in its recurrence in various writings. 

Lanchester! states the difficulty and leaves it with the 

remark: “it is evident that some subtle error must exist in 

Rankine’s argument, the exact nature of which it is difficult 

to ascertain.” Taylor? points out how with a finite displace- 

ment of the eylinder it can be verified that the fluid is dis- 

placed backwards, but with an inflnite displacement one has 

the curious result of a permanent forward displacement. 

Maxwell? raised the same problem many years ago; he 

admits it as a real difficulty and disposes of it thus: “It 

appears that the final displacement of every particle is in the 

forward direction. It follows from this that the condition 

fulfilled by the fluid at an infinite distance is not that of 

being contained in a fixed vessel; for in that case there 

would have been, on the whole, a displacement backwards 

equal to that of the cylinder forwards. The problem actually 

solved differs from this only by the application of an 

infinitely small forward velocity to the infinite mass of fluid 

such as to generate a finite momentum.”’ 

The difficulty arises chiefly from a loose use of the idea of 

“FW. Lanchester, Aerodynamics, vol. 1, Aerodonetics, p. 20, 1909. 

?D.W. Taylor, Speed and Power of Ships, p. 10, 1910. 

“tio Os Maxwell, Scientific Papers, vol. ii., p. 210, 1870. 
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infinity as if it implied a definite state or time, rather than 
the limiting value of a process which must be defined 
precisely in each case; unless this is done the problem is 
really indeterminate. From this point of view, Maxwell’s 
statement seems inadequate, in that it accepts the forward 
displacement as definitely proved; on the other hand it 

points to a root of the matter, 

namely, the conditions at infinity. 

Leaving this till later, we discuss 

the previous solution as it stands, 

first stating the possibilities in 

general terms and then treating 

them analytically. 

In Fig. 5, O is the centre of the 

cylinder; the curved line represents 

the particles which were abreast of 

the cylinder when the centre was 

/ at O!. The flow of fluid backwards 

l is given by the difference between 

the areas behind and in front of the 

i Figure 5, line AO'B. As O!O increases, the 
| 

3 
points C move outwards along the 

line AO'B; the dotted curve, 

which is entirely in front of AO'B, 

shows the ultimate position of the same particles, according 

to the paths in Fig. 4, when O!0 becomes infinite. 

(A) Let 2, y be co-ordinates of any point P on the line 

AO'B referred to the centre O. If we fix any value of y, 

however large, we can make P be within the range O10 by 

making 2 large enough. This is the argument which leads 

to a permanent forward displacement. It clearly lays more 

stress on the infinity of extent of liquid fore and aft of the 

cylinder. 

(B) On the other hand, if we fix z, no matter how large, 

we can make the point P be beyond C on the line O!A by 

making y large enough. By giving more weight to the 

infinity of liquid abreast of the cylinder, this argument 
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denies that the limit of the dotted curve in Fig. 5 can ever be 

attained. ‘These two arguments can, of course, be stated 

simply in terms of the flow of liquid at any instant across a 

line behind the cylinder. If we draw lines OQ, OR at 45° to 

the line OO!, then at any time the flow across AO'B is 

forwards in the range QO!R and backwards beyond Q and 

R. According to (A), the range QO!R can be made infinite 

by taking w large enough; while the argument (B) points to 

the region within lines at 45° and 90° to the axis OO!. 

Analytically, the matter reduces to the evaluation of a 

double integral which gives different values according to the 

order in which the integrations are performed. We can see 

this by writing down an expression for the total momentum 

of the whole liquid in the direction of motion of the cylinder. 

Referring to Fig. 1, we have wa?r-? cos 26 for the component 

fluid velocity at any point, or wa?(a? — y?)/(z? + y?)? in terms 

of rectangular coordinates. Thus with s for the density of 

the fluid, the total momentum forward is given by 

z2 — y2 

M = ua? 2s [, @ ae ;drdy, 

where the integration extends throughout the fluid. 

We divide the integration into two parts, writing f for 

(v? —y*)/(@? + y*)*. First, the region abreast of the cylinder, 

extending to infinity in both directions, gives without 

ambiguity 

M,= suars fide f fay =—7sau. 
Var — 

For the rest of the fluid, fore and aft of the cylinder, we 

have 

Why = 4ua?s ff fdedy, 

where 7 ranges from a to o0, and y from 0 to 0. 

The integral M, has difterent values according to the 
order in which the integrations are performed. We have 

2» =4ua* Siy J fle = 2Qrsa?U. 
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This evidently corresponds with argument (A) above. 
Adding M, and M,, we have a total momentum forwards of 
msa°U and this agrees with the permanent forward displace- 
ment. 

On the other hand, we have 

M, = 4ua?s de f fay =0. 

This is the argument (B), and it gives a total momentum 
of wsa?u backwards. 

We may write the integral M, as a limit in the form 

M, = Liga dive s ae [fdy. 

In this integral with 8, ¢ finite and a not zero, the order of 
integration may be inverted without changing the value; we 
have in either case 

M, = 4ua?s Lim (tan? = tan"), 2 SS ¢ c 

This form brings out the indeterminateness of the prob- 
lem, for the limit can have any value we please between 
7/2 and O according to the limiting value of the ratio b/c. 
The argument (A) above supposes that 6 and ¢ are both 
infinite in such a way that 6 is infinitely greater than ¢; 
while we obtain the result of argument (B) by supposing 
c/b infinite in the limit. Another special case would be to 
suppose 6 and ¢ to become indefinite in a ratio of equality. 
Then M, is zsa?u and the total momentum of the fluid is 
zero. In this case we picture the fluid as of equally infinite 
extent in and at right angles to the line of motion. Up to 
the present we have taken the solution of the fluid motion 
without considering the conditions under which it was 
obtained. These included the condition that the fluid should 
be at rest at infinity, that is, the velocity should become 
infinitesimal as the distance from the cylinder increased 
indefinitely. If we could imagine the fluid to be contained 
in a fixed boundary at infinity, the condition to be satisfied 
there would be the vanishing of the normal component of 
velocity. At first sight, there would not seem to be much 
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difference between the two cases, the latter being included 

in the former. But we have seen that it is necessary to 

define conditions more precisely in order to avoid ambiguity. 

We may illustrate this by a definite problem in initial 

motion for which the solution is known. 

Let the fluid be contained within a fixed concentric 

cylinder of radius c, and let the inner cylinder be suddenly 

started with velocity wu. If ¢ is the velocity potential of 

the initial fluid motion, the boundary condition at the outer 

cylinder is that d¢/dr should be zero. The value of ¢ is 

The second part of ¢ represents the fluid motion already 

studied, with an additional factor c¢?/(c2—a?). Superposed 

on this there is a uniform flow backwards of amount 

ua? (c2—a?). The total momentum can be found by integ- 

rating throughout the liquid as before. In this case there is 

no ambiguity and it is easily shown that the second term in ¢ 

contributes nothing to the momentum. Adding the part due 

to the uniform flow, we find the total fluid momentum to be 

asa’u backwards; this result is independent of the radius 

of the outer cylinder, and, of course, agrees with elementary 

considerations. 

Now suppose the radius ¢ to become infinite. The fluid 

motion then differs from that studied in the previous sections 

only by a superposed uniform flow backwards of infinitesimal 

magnitude; but when integrated through the infinite extent 

of liquid it gives use to a finite momentum sau backwards. 

Further, in any finite time the additional term makes no 
more than an infinitesimal difference to the paths of the 

particles; but if we attempted to extend the solution to 

“infinite ” time we should be faced with various ambiguities 

in making any allowance for the extra term. 

The velocity potential ¢ for a finite extent of fluid is 
determinate when the values of ¢ or 5¢/dn are given over 

all the boundaries. If the outer boundary becomes infinite 
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and ¢ is said to vanish at infinity, the solution is indeter- 

minate by an infinitesimal amount. Consequently the total 

momentum or flow may be indeterminate to a finite amount. 

On the other hand, the total kinetic energy of the fluid 
motion, involving a summation of the square of the velocity, 
is only indeterminate to an infinitesimal extent. 

In conclusion, it appears that the problem is indeter- 
minate unless the infinite boundary of fluid can be defined 
as the limit of some particular form, and further in that 
case the conditions satisfied at the boundary must also be 
considered. At the best the question of what happens in an 
infinite fluid after an infinite time leads to unreal difficulties; 
the above discussion may serve to show in what way these 
arise when we attempt to force to this extent ordinary solu- 
tions which give consistent results when treated in a 
legitimate manner. 
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Ship Resistance: The Wave-making Properties of Certain 

Travelling Pressure Disturbances. 

By T. H. Havetock, M.A., D.Se., Armstrong College, Neweastle-on-Tyne. 

(Communicated by Sir J. Larmor, F.R.S. Received October 7,—Read 

November 27, 1913.) 

1. In previous papers* I have investigated the wave-making resistance 

of a ship by comparing it with a certain simple type of pressure disturbance 

travelling over the surface of the water. In a recent papert on the effect 

of form and size on the resistance of ships, by Messrs. Baker and Kent of the 

National Physical Laboratory, reference is made to this point of view. The 

main work of these authors consists in the examination cf model results and 

the deduction of empirical formule of practical value. In addition, they 

connect the wave-making properties with the pressure distribution and have 

obtained graphs of the latter for various ship forms under certain conditions ; 

these curves show a range of negative pressure, or defect of pressure, between 

the positive humps of excess pressure corresponding to the bow and stern. 

The authors remark that this will have an effect upon the wave-making, but 

conclude that it is sufficient for their purpose to be able to state that such 

pressure disturbances, as they have shown to exist when a ship is in motion, 

will produce waves which will vary more or less in accordance with the theory 

referred to above. 

Under the circumstances it seems advisable to extend the mathematical 

* ‘Roy. Soc. Proc.,’ 1909, A, vol. 82, p. 276 ; also 1910, A, vol. 84, p. 197 ; also ‘ Proc. 

Univ. Durh. Phil. Soc.,’ 1910, vol. 3, p. 215. 
+ G.S. Baker and J.L. Kent, Trans. Inst. Nav. Arch., vol. 55(ii), p. 37 

(1913). 
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theory by working out the wave-making properties of other distributions of 

pressure. Although no attempt has been made to connect the distribution 

directly with ship form, the following examples have been chosen with a view 

to general inferences which can be drawn in this respect. In particular, the 

distributions graphed by Baker and Kent can be represented, in type at least, 

by a mathematical expression for which the corresponding Fourier integral 

can be evaluated, so that one can compare the result with that obtained from 

simpler forms. Although the expression for the wave-making resistance 

becomes more complicated, it is not essentially different from that obtained 

previously ; it appears in general to be built up of terms involving the same 

type of exponential e~*”, together with oscillating factors representing inter- 

ference effects between prominent features of the pressure distribution. 

2. We confine our attention to two-dimensional fluid motion. We may 

imagine it to be produced in a deep canal of unit breadth, with vertical sides, 

by the horizontal motion of a floating pontoon with plane sides fitting closely 

to the walls of the canal but without friction. We assume that, as regards 

transverse wave-making, this is effectively equivalent to some travelling 

distribution of pressure impressed upon the surface of the water. 

Let Ox be in the direction of motion of the disturbance, and let y be the 

surface elevation of the water. Suppose the distribution of pressure to be 

given by 

p=f(). (1) 
For a line distribution we may suppose the disturbance to be inappreciable 

except near the origin and to be concentrated there in such a manner that the 

integral pressure P is finite, where 

Des | VOU (2) 

When this disturbance moves along the surface of water, of density p, with 

velocity v, the main part of the surface disturbance consists of a regular train 

of waves in the rear given by 

gpy = —2xP sin xx, (3) 

where the length ) of the waves is 
Ne 20 ie Qa" 

K g 

We can generalise this result for any form of pressure distribution / (2), 

which is likely to occur, by the Fourier method. We have in general 

apy = —2e | f(Osinn wf) dé (4) 
—oO 

= —2«(psin cu—W cos Kz), (5) 
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where gic | 16 ens BOE We | LO sine (6) 

The mean energy per unit area of the wave motion given by (5) is 

2«*(6?+?)/yp. Now the head of the disturbance advances with velocity », 

while the rate of flow of energy in the train of waves is the group velocity 40; 

hence the net rate of gain of energy per unit area is $v times the above 

expression for the energy. If we equate this product to Rv, then R may be 

called the wave-making resistance per unit breadth ; and we have 

R= 2 ($+ V)/9p. (7) 
We have in each case to evaluate the complex integral 

x= Grin =| /Oertae. 8) 
In the examples which follow, the integral has a finite, definite value 

which can be obtained in Cauchy’s manner by integrating round a closed 

simple contour in the plane of the complex variable & The function /(&) 

is such that (i) it has no critical points other than simple poles in the 

semi-infinite plane situated above the real axis for &; (ii) it has no critical 

points on the real axis; and (iii) its value tends to zero as & becomes infinite. 

Further, the quantity « is restricted to real, positive values. Under these 

conditions it can be shown* that 

| 76 ext dE = 2mZA, 

where 2A is the sum of the residues of the integrand at the poles of /(&) 

situated above the real axis. If a is a pole, A is given by the value of 

(E—a)f(&)e"* when E =a. Alternatively, in the following examples /(&) is 

of the form F(&)/G(é), none of the zeros of G(E) coinciding with those of 

F(&), and A is given by F(a)e**/G‘(a). 

3. For the sake of comparison the results which have been obtained 

previously may be repeated briefly. If 

p=fO= wee (9) 
the poles are at €=-+7i«, of which the positive one alone concerns us. 

Hence we have 

~~ Aexé . | Aeixé aT 
xX => | eee => 2770 Ein io => z Ae 6 (10) 

22 2,A2 
Hence from (7) i aa = a e-2ga/v2.t (11) 

* Jordan, ‘Cours d’Analyse,’ vol. 2, § 270. 

Ge Lamb, ‘Hydrodynamics,’ 1932 edn. p. 415. 
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If A is a constant and independent of the speed v, the graph of R as a 
function of v rises to a maximum and then falls slowly but continually to 
zero as V increases indefinitely. Thus, for an assigned pressure disturbance 
of this type whose magnitude is independent of the speed, there is a certain 
speed beyond which the resistance R continually decreases. 

On the other hand, if the pressure disturbance is that produced by tue 
motion of a floating, or submerged, body, it is clear that it will depend upon 
the speed. Since we may suppose the pressures in question to be the excess 
or defect of pressure due to the speed, it seems a plausible first approxima- 
tion to assume that the distribution is not altered appreciably in type and 
that the magnitude is proportional to v2. Thus if in (11) we make A pro- 
portional to v? we obtain 

R = const. x e~ 29a”, (12) 
The value of R now tends to a finite limiting value as v increases 

indefinitely. 

If the quantity A, specifying the magnitude of the pressure disturbance, 
varies as v", then the graph of R rises to a maximum for some finite value 
of v, provided x is positive and less than 2; the nearer x is to 2 the higher 
is the speed at which the maximum occurs. For the present we assume 
that n is equal to 2; in any case it does not affect the results of a qualitative 
comparison of different types of distribution. 

The scope of the assumption may be illustrated by a certain case. 
Prof. Lamb* has worked out directly the wave-making resistance R due to 
a circular cylinder of small radius a, submerged with its centre at a constant 
depth f, and moving with uniform velocity v; he finds that R varies with 
the speed according to the law v~4e-2a/, Tf we attempt to represent the 
disturbance approximately by some equivalent surface pressure distribution 
the type which suggests itself naturally is 

p=A(P—x)[(7? +2). 
It can be shownf that this distribution, together with the assumption that 

A is proportional to v*, leads to the same law of variation of resistance with 
speed. 

4. In a certain sense the generalisation from a line disturbance to any 
diffused distribution of pressure may be regarded analytically as a case of 
interference ; the final result is due to the mutual interference of the line 
elements into which we may analyse the given distribution. However, the 
idea of interference in ship waves has usually been associated, after the work 

2 

* H. Lamb, ‘Ann. di Matematica,’ vol. 21, Ser. 3, p. 237. 
t ‘Roy. Soc. Proc.,’ A, vol. 82, p. 300. 
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of W. Froude, with the superposition of bow and stern wave-systems, that 

is, when the whole system may be separated into two fairly distinct parts. 

I have represented this previously by a positive pressure system of type (9) 

associated with the bow, followed by a similar negative system associated 

with the middle of the run. Thus if / is the distance between the centres of 

the two systems we have in the present notation 

Ay As (13) PS Gy Ee 
Substituting in (8) and evaluating the integrals we find 

gd = (Ai— Aa) e~* cos 3 xl, a = (Ai + Ag) e~* sin $l, 

Hence from (7) 

gpk = K? (Ai? + A?— 2 AjAs cos kl) e72aK, (14) 

The graph of R is a mean curve similar to (12) with oscillations super- 

posed upon it, humps and hollows corresponding to minima and maxima of 

cos xl or cos (gl/v?). 

It is of interest to note that if A, and Ag are equal, we have 

R = const. x e~?™ sin? $ xl. (15) 

Thus, in a hollow, R would be actually zero if the two pressure systems 

were equal in magnitude. This, of course, follows at once from general 

principles; if we have a pressure system followed at a fixed distance by an 

equal and similar system, then there are certain wave-lengths and corre- 

sponding speeds for which the main regular waves due to the two systems 

cancel each other out exactly. A moving body which would produce such 

a state of affairs would be, in Lord Kelvin’s phrase, a waveless pontoon. 

Of course, this does not occur in ship forms, and there are several reasons 

why it could not be expected to do so. In fact we have in general to suppose 

Az much less than A; in (13). However, it is conceivable that some change 

of form might give more effective interference effects of this kind and so 

deepen the hollows in the resistance curve, though possibly as a practical 

suggestion it may be subject to the same limitation as in other cases, namely, 

even if the wave-making resistance were lessened in this way probably the 

alterations would so increase frictional and other resistances that there might 

be no gain on the whole. 

5. Baker and Kent have pointed out that in certain cases the pressure 

distribution at the entrance of a ship form is not simply a hump of excess 

pressure, but is a hump followed by a hollow of negative pressure. They 

assign to the interference of these two parts a certain subsidiary interference 

effect in the resistance which may become important when it coincides with 
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one due to the bow and stern systems. This follows on general grounds, and 

might be represented analytically as in §4, but it is worth while examining 

other distributions with this character. 

In the first place consider one which does not give the desired interference 

effect, namely, 

pecs 
E+ a? ‘ 

The graph has been drawn for certain numerical values of the constants 

and is curve A in fig. 1. 

P (16) 

1) tee 

We have x= | goat = tmAe~*. 

Hence, from (7) and (8), 

¢=0; sp = wAc*; 

gpR = x? Ate 2, (17) 

We have here the same form for R as a function of vas in(11) for the single 

hump of positive pressure; we do not get the interference effect which might 

have been expected. This may be explained by remarking that the pressure 

falls away from the maximum only slowly; in other words, the hump and 

hollow are not sufficiently pronounced for their individuality to show 

directly in the final formula. In the previous section, where the distribu- 

tion is 1/(£#+ «*) instead of &/(E?+), the maximum and minimum are more 

pronounced and we get a typical oscillating term in the final result. This 

view may be confirmed by another example. 

6. Consider 

AE p = Fda (18) 

This distribution is graphed in curve B of fig. 1, arranged so as to have the 

same minimum and maximum as for (16); the curves A and B illustrate 
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clearly the difference in question. Numerically, if & is the position of 

the maximum, at 3¢) the value of p from (16) has fallen to 3/5 of the 

maximum, while from (18) it has fallen to 1/7 of the same value. 

The poles of the function in (18) are +(1+7%)a; thus from (8) we have 

Eeixé 

x= 29" | Teal} (Efe +0) (Ea 0} heasy 
+21 | See eee CN tee esa 

{E-a(1+1)} {E+a(1+2)} {§—«(1—%)} |-ea-o 

= a e7* sin ax. 

The wave-making resistance, R, is given by 

AgpotR = xr? A2e~ 2 gin? ax. (19) 

We have now the oscillating factor sin?««. There will be, for instance, a 

hump on the resistance curve when 2e« = 7, that is, when the half wave- 

length is equal to 2x. It may be noticed that this is nearly, but not exactly, 

the distance between the maximum and minimum of y; from (18) it follows 

that the latter distance is 2«{/(4/3), or approximately 2°15a. 

We also have R exactly zero in the hollows in the resistance curve, a result 

which follows from the numerical equality of the positive and negative 

pressures at equal distances from the origin. We can make the negative 

pressures less by considering an unsymmetrical distribution. 

7. Let the pressure be 

en: 
P= Ba pe+ aa ep 

In this case the graph would be as in fig. 1, with the curve B for positive & 

and the curve C for negative values. 

If the poles of (20) are a1 +75, and ag+72be, we have 

aq +a2 = 0, 

ay? + by? + ag? + bo? + 4araq = 0, 

2 {ay (a2? + bo?) + a2 (a? +0,7)} = B 

(ay? + by) (aig? + bs?) = 4at. 

In forming the function y .by the previous method we have two parts. 

The part for the pole a,+ 7; is 

2a Eet«t 

E—(a—%i)} {E—(a2+tba)} {E—(a2—wh2)} 

(a ate 2b) eik2,g—Kdj 

et * (G—my— (G2 —b?) + Libs (a —aa) (22) 

(21) 

a,+ib 
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There is also a similar expression corresponding to the pole a,+7b,; from 
(21) we see that the result can be written in the form 

X = (Ai + 7By) #407" —( Ay + 1By) etre nbo, 
Hence for the resistance we have, from (7), 
gpR/K? — (Ay?+ B;?) e72hk + (Ap?+ B,?) E72box 

—2 {(A1 Az +B, Bz) cos 2% —(A2B,— A,Bs) sin 2ay«} e-40)«, (23) 
We notice how the presence of the smaller negative pressure complicates 

the mathematical expressions. On the other hand, all the terms are of the 
same type as in simpler cases; we have three terms involving the same 
exponential function, the third having an oscillating factor cos (2a, +e), 
where 

tane = (A2B,— AiB)/(AyAo+ Bi Be). (24) 

The humps and hollows on the curve for R will not coincide exactly with 
those obtained by graphing 

= +2) cos(Qaxe+e), with «= g/v, - 
but the agreement will be sufficiently close for present purposes. 

Accordingly, the maxima for R will be near speeds for which 

2ayce+e = nz; fe = 1b, Bs By sos 

The corresponding speeds and wave-lengths are given by 

pa Aue ; y= Estat, : (25) nit —e nT —€ 

In the previous case of symmetry, with the result in (19), the humps 
occur at wave-lengths 4a/n, that is when the wave-length is equal to or an 
odd sub-multiple of a certain length ; a similar statement in terms of velocity 
brings in the series J, 1/,/3,1/,/5, ete. In the present case we see from 
(24) that this arrangement is somewhat disturbed by the presence of the phase 
€, a quantity which may possibly be small compared with 7. A complete 
algebraical study might be made, but possibly a simpler way would be to 
start from a graph of the pressure curve and carry out the integrations 
involved in (8) by graphical methods. We can also obtain information by 
working out some numerical examples ; one may suffice at present, namely, 

&—180£+ 2419 

The pressure curve is of the form BC, shown in fig. 1, with 

h/H = 0541; 1 = 10°66. 
Further, with the previous notation, 

M = —a=5, db) = 4, be = ./34, 
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Working out the numerical values from (22) we obtain for the resistance, 

omitting a constant factor, 

R = 516e7* 4 353e-116% — 857 cos (10 «—e) e~ 98%, (27) 

with K = g/v. tane = 0-017. 

We verify that in this case ¢ is, in fact, very small, consequently the simple 

relation between speeds at which there are humps is not appreciably altered. 

The absolute position of these humps on the R,v curve may be slightly dis- 

placed. For instance, the final hump occurs when 10x is equal to 7, that is 

when the half wave-length is equal to 10; on the other hand, the distance / 

between the maximum and minimum on the pressure curve is 10:66 units. 

8. We turn now to more complicated distributions of pressure similar to 

those obtained by Baker and Kent, to which reference has already been made. 

We can build up a rational algebraic fraction which has at least the salient 

features of these curves; for instance, the graph of fig. 2 is represented by 

26 =p? (28) 
EA (+ pw?) +3 Att pt) 

where \ and yw are constants. We have, on the curve, 

p= 

OA=2, OB=V[}0'+), OC =p, AE = CD =2/(u2—a’), 
OF = 2(a2+2)/(at+ 4). 

With different values of > and p, one could obtain variations in the 
relative prominence of OF compared with CD, and in other features. 

If the roots of the denominator in (28) are + (a+7b), we have 

2(a?—2) = 0? + p?, 

2 (a? +07)? = A 

Using these relations in evaluating the integral y, we obtain 

9 (2 —a? ct b?) eixé 

(29) 

ss ec aMeR Gey R= OO 
ei 2 (E2— a? +08) 

{E—(a+1b)} {E—(a—1b)} {E+ (a+%d)} |-a+iv 
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On simplification this leads to 

X = 2me~* (bcos ea—a sin xa)/(a? +0). 

Hence from (7) the corresponding resistance is given by 

(0+ 0?) ypR = 41?x?e~« sin? (xa—e), (30) 
with tane = b/a. 

We have in (30) a form very similar to those we have already studied. 
The phase € means a bodily displacement of the series of humps and hollows ; 
but, again, ¢ is small under the usual circumstances, when the difference 
between yw and d is small compared with either. 

Further, because of the symmetry of the distribution fore and aft, there are 
values of «, with corresponding speeds, for which R is zero; we have seen 
that to avoid this result we must suppose the magnitude of the pressure p to 
be less in the vicinity of the run than at the entrance. We could introduce 
this want of symmetry by considering 

an &—¢? ( 

se (Cea (Cer ea 
In the expression for the integral y we should have a part corresponding 

to each of the poles a, +70, and d2+1b2; in consequence, the resistance R 
would be similar in form to the expression in (23). 

From (30) we notice that the wave-lengths corresponding to humps on the 
resistance curve are submultiples of 2a; also when 2X and » are nearly equal, 
2a is of the order 2, the distance between the two positive pressure humps. 
The typical interference effects in this example are due to the interference of 
the bow and stern systems; in order to get a secondary interference effect 
between the positive and negative parts at the bow these must have separate 
individuality to a greater degree, as we saw in §5. For instance, we could 
consider two distributions like (20), one associated with the entrance, the 
other reversed and associated with the run; we should then have a very 
general type of distribution represented by 

31) 

oe Eee A (EERE a (32) 
(E—2Y)— Bi (E—31) + 4ay* (E441) + Bo (E441) +43” 

It is unnecessary to graph this or to put down expressions for y and R. 
We should obtain a sum of expressions like (23) involving sines and cosines 
of 2«a, and of 2«a2, and, in addition, of «il. There would be in general 
various possibilities of subsidiary interference effects; the main one would be 
the bow and stern interference represented by «/, and the next in importance 
that between the positive and negative parts at the bow represented by 2 «a. 
There would also be the possibility of these two effects adding together at 
certain speeds. 
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9. One could obtain more maxima, or increased waviness, in the pressure 

curve by introducing higher powers of & into the fractions we have used. 

With the same general method for evaluating the integral y it follows that 

we should obtain expressions of the same type, only more complicated 

in form. 

The various examples which have been studied cover a wide range of 

distributions of the type which one would expect to be associated with the 

motion of a ship, in respect to the formation of transverse waves. It may be 

said that the corresponding resistance curves do not differ essentially from 

those obtained from a simple <listribution. only with the introduction of 

additional coefficients there is possible a wider range of variation. 

Harnison anv Sons, Printers in Ordinary to His Majesty, St. Martin’s Lane, 
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The Initial Wave Resistance of a Moving Surface Pressure. 

By T. H. Havetock, F.R.S., Professor of Applied Mathematics 

in the University of Durham. 

(Received January 18, 1917.) 

1. The study of the water waves produced by the motion of an assigned 

pressure distribution over the surface has hitherto been limited to the steady 

state attained when the system has been moving with uniform velocity for a 

very long time. In his latest series of papers on water waves, Lord Kelvin* 

made an elaborate graphical and numerical study of cognate problems, and 

expressed the hope of applying his methods to calculate the initiation and 

continued growth of canal ship-waves due to the sudden commencement and 

continued application of a moving, steady surface pressure. 

In the following paper, I have not attempted any analysis of the surface 

elevation itself, but I have proceeded directly to the calculation of the corre- 

sponding wave resistance. At present the wave resistance is known only 

for the steady state for certain localised pressure systems in uniform motion, 

and it seems desirable to attempt some estimate of the time taken to attain 

this state when we take into account the beginnings of the motion. One 

might examine the effect of initial acceleration, but I have limited the 

problem by considering only the case of a system which is suddenly 

established, and is at the same instant set in motion with uniform velocity. 

* Kelvin, ‘Math. and Phys. Papers,’ vol. 4, p. 456 (1906). 
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The work is arranged in the following order: a general expression for the 

wave resistance as a function of the time, an exact solution for a certain 

waveless system, a comparison of this solution and the group approximation, 

and an approximate solution for certain systems which leave regular waves 

in their rear. 

2. Consider, first, the effect of a single impulse applied to the surface of 

deep water, with no initial displacement of the surface. Take the axis of y 

vertically upwards, the axis of x horizontal, and the origin in the undisturbed 

surface. If the impulse is given by F(z), and if the Fourier method is 

applicable, the elevation at any time ¢ is given by 

=aipn) = [ev sin (Vt) dic | “F@) exe) dg, (1) 

where V = (g/«)3, and the real part of the integral is to be taken. The 

effect of a pressure system, whether stationary or moving, can be obtained by 

integrating (1) suitably with respect to the time. For the pressure system 

may be considered as a succession of impulses; to each impulse there 

corresponds a fluid motion with definite velocity potential, and the velocity 

potential of the fluid motion at any instant is the sum of the velocity 

potentials due to all the previous impulses. Similarly, the corresponding 

surface elevations are simply superposed, and we obtain the required solution 

by an integration. 

For a pressure system moving with uniform velocity c, we have to 

substitute a-+ct for « in (1) and then integrate with respect to ¢ between 

the limits 0 and ¢. But the solution so obtained is indeterminate to a 

certain extent, for we can superpose on it any infinite train of waves of 

wave velocity c. The so-called practical solution is found by choosing the 

amplitude of this train so as to annul the main regular waves in front of 

the travelling system. The integrals are, in fact, indeterminate, and are 

evaluated by taking their principal value, in Cauchy’s sense of the term. 

Another way of avoiding this difficulty is to introduce small frictional terms 

proportional to the velocity. The integrals are then determinate, though 

more complicated in form ; however, the final results, after the analysis is 

completed, can be simplified by taking the frictional coefficient as small as 

we please. We shall use this method, and it is sufficient for our purpose to 

write, instead of (1), 

—o 

we oy f ® erbet eV sin (« Vt) dic I F (a) eda, (2) 
(0) 

where, ultimately, is to be considered small.* 

* Compare Lamb, ‘Hydrodynamics,’ 1932 edn. p. 348. 
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Consider, then, a pressure system 

p= FQ), (3) 
which is suddenly established, and is at the same instant set in motion with 
uniform velocity c along the axis of z. 

Putting «= a+ct, the surface elevation at any time ¢ after the start is 
given by 

t e) e) 

—Tg py = | eK dy | KVeEK(@+eX) sin (Vw) al F (a) e-**da, (4) 
0 0 —2» 

For simplicity, we shall confine ourselves to pressure systems which are 
symmetrical with respect to the origin ; so that 

ADE [ F@e*ae =) (j2 (3) ea rales (5) 

Also we shall use only localised distributions for which the integrals are 
finite and determinate; the systems will be finite and continuous and such 

that the integral pressure is finite, that is, the integral | F(a) da 

convergent. Carrying out the integration with respect to w, we obtain 
0 Re 1 1 — 27g py = , KV G(x) ¢ Lavagnin an aaa 

; [" Vv : etx (V+e)t en (V—e)t Te 6 
Eel hog 

Cale EO 1: (Wim “avo aal = © 
The first integral represents the steady state, while the second gives the 

deviation from it when we take into account the beginning of the motion. 
3. From the first integral in (6) we have, with «y = g/c?, 

Sunt fee ee Clie Sh Sn | aaa 
PSG Ee | 2 (o—«) + 2px © 

The integral is to be evaluated first, before we make mw zero, otherwise it is 
indeterminate. The interpretation for certain types of localised pressure 

system is well known; in such cases the solution takes the form 

y=f(s), o>, 

y= — 72 $ («sin aoe +f (—2), a< 0. (8) 

This solution represents an infinite train of regular waves in the rear 
of the moving system, together with a disturbance symmetrical fore and aft 
which becomes negligible at a distance depending upon the concentration and 
the velocity. For our present purpose, all the examples we use are included 
under the case 

d(x) = n%e-*, n> 0, a> 0. (9) 
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To verify the solution (8) in this case, regard « in (7) asa complex variable 

re, 

For o positive, integrate round a sector of radius R bounded by the lines 

@6=0 and @=6 (0<@<47). Under the specified conditions, it can be 

shown that the integral along the arc r=R tends to zero as R is made 

infinite. In this way the integral (7) is transformed into an integral, along 

the line 0 = £, in which we can make p zero. 

For o negative, integrate round a sector of radius R bounded by the lines 

=Oand 6=8, with —tan712u/m>8>—47. We get a similar result, 

except that the integrand has now a simple pole within the sector at the 

point x«9—2y2 approximately. The residue at this pole gives the term in (8) 

which represents the recular train of waves in the rear of thesystem. It can 

also be verified that in this case y and dy/ds are finite and continuous 

throughout. 

Returning to the general expression (6), the second integral represents the 

deviation from the steady state. It contains exp {ix (m+ct) } aga factor, and 

we see from its form that it represents the effect at time ¢ of a certain initial 

distribution of velocity and displacement. To illustrate this point, consider 

a stationary pressure system which is suddenly established at a given instant 

and maintained constant. The effect is the same as if there had been in 

existence up to the given instant two equal and opposite systems with their 

ultimate static effect upon the water surface fully established, the negative 

system being then suddenly annulled. Thus the subsequent effect is the 

steady state of the positive system combined with the effect of an initial 

displacement equal to the steady state of an equal negative system. In the 

same way, for a pressure system which is suddenly established and started in 

uniform motion, the effect is the superposition of the steady state of this 

system and the disturbance due to initial conditions given by the steady state 

of an equal negative system in uniform motion. We shall find this principle 

of use in a later section. 

4. The wave resistance R; in the steady state is usually obtained from 

energy principles applied to the regular waves. The front of the train 

advances with velocity c, while the rate of flow of energy across any fixed 

vertical plane in the rear is the corresponding group velocity $c; from the 

amplitude of the regular waves in (8), by equating the net rate of gain of 

fluid energy to Rye, it follows that 

Ry = Ko? {$ (0) }?/ 9p. (10) 

Some consideration is necessary before we can apply this method to the 

motion before the steady state has been attained. 
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Begin with a case in which there is no ambiguity, namely, when the waves 
are produced by a rigid body moving horizontally through the liquid. We 
can apply the general hydrodynamical principle that the rate of increase of 
total energy of the fluid is equal to the activity of the pressure taken over all 
the bounding surfaces. If we equate the rate of increase of energy to the 
product of a force R and the velocity of the rigid body, it follows that R is 
simply the total fluid pressure on the moving body resolved horizontally. This 
result can easily be verified by direct caleulation for the steady state, whether 
the waves are produced by the motion of a rigid body or by the motion of an 
assigned surface pressure ; in fact, the two cases are identical in the steady 
state, for we can imagine the surface pressure to be applied by a rigid cover 
which fits the water surface everywhere. 

Consider now the problem before the steady state has been established. If 
the waves are caused by a moving rigid body, we can use either definition for 
the wave resistance; we can calculate it from the rate of increase of fluid 
energy or from the total horizontal pressure on the body. We are not 
discussing this case, simply because so far the analysis has proved too 
complicated to allow of suitable reduction. We replace this problem by that 
of the motion of an assigned surface pressure. Now we can calculate the rate 
of increase of the total energy of the fluid when the pressure system is in 
motion. But it would not be satisfactory to divide this quantity by the 
velocity of the pressure system and define the quotient as the wave resistance, 
for part of the increase of fluid energy is independent of the motion of the 
pressure system. For instance, if a stationary pressure system is suddenly 
established and maintained steady, the activity of the surface pressure is not zero 
immediately after the initial instant; there is a subsequent flow of energy, 
whose rate ultimately subsides to zero. From these considerations it seems 
that we should get results more comparable with the wave resistance of a 
rigid body by adopting the alternative method of calculation. In what 
follows we shall therefore calculate for any instant the total horizontal 
component of the surface pressure regarded as applied normally to the surface 
of the water; and we shall define this to be the wave resistance. 

With the usual limitation that the slope of the surface is everywhere 
small, we have from this definition 

R== * Fo) Shas. (11) 

We can verify that this gives the same result (10) for the steady state. 
For instance, taking the expressions in (8), the part which is symmetrical 
with respect to the origin gives no contribution to R, and we obtain 
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gpk: = 2 (ios (@) . Ko (Ko) COS Kom das = Ko? {d (ko) }?, 

or if we work directly from the integral (7), we have 

i, ix? { («) }? dk (12) 
mgpRi = Ko Lim MG= ere 

ud 

where the real part is to be taken. Under the general conditions specified 

for $(«), or, in particular, for the case given in (9), it can be shown that this 

leads to the same expression (10). The wave resistance in general is the 

sum of two parts, the steady value Ri, as given by (10), and the deviation Rs. 

Using the definition (11) with the second integral in (6), we find 

co —tix(V—c)t in (V-+c)t 
fi it ca |) a2 | Pot C se ee patna os ik | 
2 pat a cm \. CN) =e “Seoenanle 

(13) 
5. Consider first a special case in which the pressure system is such that 

there are no regular waves left in the rear, a type which Kelvin called a 

waveless system. It follows from (10), (12), and (13), that this is the case 

when the system is such that @(«) is of the form («—xo) W(«), where yr («) 

remains finite. We have then 

| “ F@ cos xa da = b(«) = («—Ko) Wr(«). (14) 

If this system is made to travel with the velocity c, for which 27/xp is the 

free wave-length, there will be no regular train of waves in the rear. The 

integrals (12) and (13) now remain finite and determinate with mw zero; we 

can thus simplify the expressions by making yw zero. The integral (12) 

vanishes, as does also the equivalent expression (10). Then, taking the real 

part of (13), we find for the total wave resistance of this system at any 

time ¢ 

—rgpR = nt | (4-00) {1 («) 
0 

x {<4 sin «Vt cos xct—xot cos «Vt sin Ket} dx. (15) 

It is of interest to examine this solution when the integral can be evaluated 

exactly in finite terms. Burnside* suggested some years ago a method of 

building up exact solutions of certain wave problems, and similar forms 

have been analysed in detail by Kelvin, after obtaining the solutions by a 

different method. The cases in which we can carry out the integrations in 

(15) lead to similar functions; we obtain them by taking 

ap («) = Kte-"*, r > 0: (16) 

* W. Burnside, ‘Proc. Lond. Math. Soc.,’ vol. 20, p. 31 (1888). 
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This case is the simplest of the type which allows of exact evaluation of (15), 
and for which the integral pressure is finite. To derive the corresponding 
pressure system, we make use of Euler’s integrals of the form 

| Kr Teco cog (Ax sin «) dk = A~"T'(n) cos nz, (17) 
0 

r~> 0, n> 0, —in<ca<hr. 

Using the Fourier integral theorem, combined with (16) and (17 ), we find 

mF (x) = | Ge—aycten cos Kx dk 
0 

= DG) (7? +2?) 8 cos (f tan7! 2/7) — oT (2) (72 +.22)—58 cos (5 tan~} x7). 

(18) 
The two terms of this expression are easily graphed when expressed in 
terms of the angle tan7!(x/r); two numerical cases are shown later. 
We can now find the resistance R for the system (18), travelling with velocity 

c= /(g/xo). Substituting (17) in (15), and writing « = w®, git =, ct = Ps 
we have 

ao 

—trgpR = —K | (u® — Kut) e~?™ sin pu? cos qu du 
0 

o 

+ Ko? | (wu! —Kyu*) e-?" cos pu? sin qudu. (19) 
0 

The integrals involved can all be derived, by differentiation with respect to 
the parameters, from 

| e- &-P) cos qu. du = }[m](p—ip) en" 0-0, (20) 
0 

Carrying out these operations, we obtain finally 
—7PgoR =_ Koll? (Ar? + 07¢?)—5/4 e—gPrl2 (412+ ct?) 

x [o8 { —42 A sin (FO—$) +48 97A2 sin (20— $)—337'A’ sin (420—¢) 

+ pe QAt sin (426 —$)} + 0%” (3 sin ($0—p)— 397A sin (Z0—9) 
vee sin ($0—$)} +498 9A? cos ($0—g)—198 9A cos (1,0—$) 
34 7A* cos (126+ 6)—74_97A® cos (120—¢) 

ene (F0—$) + £9°A? cos (3 0—) — lg gPA cos (1.0—4)} ] 
(21) where 

q=9t; A= (4 +4c%?2)-4; O= tan“'(ct/2r); = get?/4 (47? + 2?), 

6. Before working out numerical examples, it is convenient to record the 
asymptotic expansion suitable for large values of et/2r, From (21), by 
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writing 6 = 47—tan~1(2r/ct), and expanding the various terms, we get, up 

to and including terms in (27/ct)*”, 

—m go R = 73yg'e7 Mt Me 8 cos (gt /4c+47) 

+ Arpgict- 32 (374+ B(18B—75) te Fcos(gt/4c—tm), (22) 

where X» = 2c?/g and 8B =mr/X. If the pressure system has moved 

through n wave-lengths, we have ct = mo, and the ratio of the amplitudes 

of the two terms in (22) is 

1 mr (180r 
—— + 37+ — —75 2 
dan Vo! * ma xa )} ) 

an expression which gives some estimate of the approximation obtained by 

using only the first term of (22). It depends not only upon the distance 

travelled, but also upon the ratio of the effective breadth of the system to 

the free wave-length for the assigned velocity. 

Compare this approximation with that obtained by applying Kelvin’s 

group method directly to the integral expression for the wave resistance. 

Under certain conditions,* an approximate value of an integral of the form 
b 

f F(x) ef de 

is given by oy 
rE («) = et f(a)+m/5} (34 

AO) 
the upper or lower sign being taken in the exponential according as 7” () is 

positive or negative, and a being a root of f’(«) = 0. It is assumed that the 

circular function in the integral goes through a large number of periods 

within the range of integration, while F («) changes comparatively slowly ; in 

addition, the quotient f”’ («)/{/’’ (a)}*? must be small. 

Apply this to the form for F given in (13). The second term within the 

square brackets contributes nothing to the approximation; from the first 

term we have, with ct = Xo, 

f(x) = —K(V—c)t = —gbted + ete. 
Hence 

a=gl4e; f(a) = 2/9; f(a) S’ (a) 3 = 3/./ (an). 
From (13) and (24) the group value of R is 

ll2 3/2 Py 
Rees - 1 Lim ennet a/ (2) Ue Lp (4) et (gt/4e—m/4) (25) 

TY Baga 56 ct / gall? — coe — ic 

Taking the real part of this expression and putting » zero, we obtain 

Bs = PP Lb (9/407) P aos (gt/4c+ 47). (26) 47? pci? AP 

* Lamb, ‘Hydrodynamics,’ 1932 edn. p. 395. 
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It should be noted that for a pressure system which leaves regular waves 
in its rear, we cannot take (26) as an approximation for the limiting value 
of (13) when «0, except under certain further limitations. For the 
present this difficulty does not arise, as we are considering a waveless system 
with @ («) of the form («—x») w(x); we have seen that in this case the 
integrals (12) and (13) remain finite and determinate with be zero. 

In particular, for the forms (16) and (18), the group formula (26) 
reduces to 

—T?9pR = hq gto Wt V2e—*/N cos (gt/4c+ 4), (27) 

which, from (22), agrees with the first term in the asymptotic expansion of 
the exact solution for this case. 

Instead of expressing R as a function of the time ¢, we can use the 
distance travelled, or again the number n of free wave-lengths X» through 
which the system has moved ; in the last case the circular function in (27) 
becomes cos }(2n+1) 7. The form of (27) agrees with the definition of the 
wave resistance as the resolved total pressure. For after a sufficient time, 
the surface in the neighbourhood of the moving origin consists chiefly of the 
simple waves whose group velocity is the velocity ¢ of the pressure system ; 
thus the wave-length there is 4X9. 

7. Consider now two numerical examples of the exact solution (21) with 
different values of the ratio 7/No. 

In the first place, we shall adopt units used by Kelvin, for comparison and 
for simplicity of calculation. 

Case i: 9=4, r=1; M=2; mem; C= BBr/r. 

From (18) the pressure system F (z) can be obtained by graphing 

4m cos */4 8 cos § 8—5 cos %* 6 cos 2 6, 

where 6=tan~1(a/r). The graph is shown in curve (1) of fig. 1; the 
curve has maxima nearz = + 0-2, though they are almost inappreciable on 
the diagram. 

It is convenient to graph the resistance curve upon a base &=ct/2r; in 
this particular case £ is also the number of wave-lengths A» through which 
the system has moved. The angles of the formula (21) are now 

6 = tan; b = 7&3/2(1+ &). 

It is unnecessary to repeat the expression (21) with these values ; each of 
the 14 terms can be easily calculated for any given value of &. The results 
are shown in curve (1) of fig. 2; toobtain the curve 15 points were calculated 
by the formula (21). 

The wave resistance decreases ultimately to zero, as it should for a waveless 
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system, but it approaches the steady state very slowly. This is explained 
when we examine the graph of the pressure system in this case. The 

waveless character is due to the mutual interference effects produced by 

the peaks of the pressure graph, and fig. 1 shows how inappreciable the peaks 
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are inthis case. Hence the slowness with which the steady state is attained 
and the probable lack of stability of the steady state. 

To compare the group approximation with the exact solution, we have 
from (27) 

—m gp R = 9 x 2-74 —-W2¢—n!2 cos 1 (Qn + 1)z. (28) 
The following is a comparison of the values of 10°7rigpR, as given by (28) 

and the exact formula (21): 

Case iiiAs a second numerical example, we take one which might 
correspond more to practical conditions, in that the pressure system is 
similar to that associated with the motion of a ship model in an experimental 
tank. Using foot-second units, we take 

GSH5 PSAs 6S 20s ko = 0°08; Ay = 25m. 

The pressure system is graphed in curve (2) of fig. 1, from the expression 
8 cos* 6 cos $9—125 cos” @cos 20. We notice the contrast between this and 
the previous case. We should now expect the steady state to be attained 
quickly and to be much more stable. This is brought out very clearly by 
the resistance curve, which has been graphed from (21), and is shown in 
curve (2) of fig. 2; after the initial peak, the subsequent oscillations can 
searcely be shown on the scale of the diagram. 
A comparison of the exact formula and the group approximation gives 

similar results to the previous case, for in both the numerical value of the 
ratio (23) is of the order 1/n, in spite of the difference in the values of r]ro 
for the two cases. 

It should be remarked that the two cases cannot be compared as regards 
absolute values from the curves shown, because the scale for the ordinates 
has been chosen arbitrarily in each case. The maximum value of R, that is, 
the value at the prominent peak on curve (2), is given by gpR = 7 x 1073. 
We can obtain some idea of the magnitude by the following comparison : 
We have chosen the pressure system so that it is waveless at a particular 
velocity, namely, 20 feet per second. Now, imagine the same system to be 
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driven at any other steady velocity ; it will have a steady resistance, which 

we can calculate from the formula (10); in this case it is 

gpR = x? (x—0:08)?e*, Kk = g/V?. (29) 

This steady wave resistance has a maximum at a velocity of about 

5:25 ft./sec., and the value of gpR is then 164x10-% Hence the maximum 

resistance due to the sudden starting of the system at its waveless speed is 

about one-half the maximum steady resistance at any uniform speed. 

8. We have been able to obtain an exact solution for a special type of 

waveless system ; we leave this now to consider more generally asymmetrical 

localised pressure system, which is suddenly established and set in motion. 

We have seen that the surface elevation at any time is found by super- 

posing the steady state of the system and the effect due to initial conditions 

given by the steady state of an equal negative system in uniform motion. 

Apply this to a case in which the steady state consists of an infinite train of 

regular waves in rear of the system, together with a localised dispiacement 

symmetrical with respect to the moving origin. Let O be the fixed origin 

and starting point, and C the position at time ¢. The deviation from the 

ultimate steady state consists of the effect due to a certain initial distribution 

of displacement and velocity localised round O, together with the subsequent 

state of a semi-infinite train of regular waves, which at the initial instant 

had a definite front at the point O. We may describe the latter part in 

general terms as a regular train with a front, more or less detinite according 

to the time, at a point G corresponding to the group velocity, and in 

advance of G a disturbance which may be called the forerunner. If OC is 

sufficiently large, and if we require the surface elevation only at points 

sufficiently far in advance of G, the forerunner is given with considerable 

accuracy by Kelvin’s group method of approximation. The argument is 

represented diagrammatically in fig. 3, the continuous line showing the 

elevation and the dotted line the travelling pressure system. 

FIG 3 

G 

The wave resistance being defined as the total horizontal component of the 

pressure system, we divide it into two parts. The first part is the final 

steady value o?{@(«o)}2/gp as given in (10), and the second is the deviation 

given by the integral in (13). The latter represents the resolved pressure 
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system as if the surface elevation were that due to the stoppage of a negative 
system, as represented in fig. 3. 

For a concentrated pressure system, the value of the integral (13) will be 
given approximately by the Kelvin group method, if the time is sufficiently 
large ; that is, if C is sufficiently far in advance of G for us to neglect the 
contribution of the applied pressure acting on the surface to the rear of G. 

Without attempting to specify these conditions more precisely, we shall 
apply the method to the type of system used in the previous sections; from 
the previous exact solution we have been able to estimate somewhat the 
degree of accuracy of the group approximation. 

The group value of (13) is given in (26). Hence the wave resistance, for 
sufficiently large values of ¢, is given by 

2 1/2 42) 12 

B= (8) } Geechee em tlse+ im, (0) 
9. Apply this to the pressure distribution 

TE (x) = V (3) (r2-+.22)-* cos {2 tan (w/r)} (31) 
for which («) = «*/4e-™, with « = g/c. The graph of this distribution is 
shown in curve (3) of fig. 1. 

We have 

ae 2gr/c2 i —g7|2c? pR= aaa =] ae gle" cos (gt/4c +41). (32) 

The value of R oscillates about the final steady value. The relative 
deviation is given by the ratio of the two terms, namely, 

Q-W2qp— 1p 1/26377 Ao agg 4(2n+ 1)z7, 

where 2» is the wave-length of the regular train and cf =A)n- We may 
obtain numerical values by using the two cases of the previous sections. 

For Case i we have r= 1, X» = 2, and we find the following comparison 
between Rj, the tinal steady resistance, and Re, the deviation given by the 
second term of (32):— 

Hence, after the system has moved through nine wave-lengths, the devia- 
tion is less than 5 per cent. 
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In Case ii, r = 2 and Ay = 257. We find that when 2 = 9, the deviation 

is already less than 0:06 per cent. 

10. Consider now a simpler type of localised pressure distribution, namely, 

mE (x) = r/ (7? +2"). (33) 

This type leads to a steady wave resistance whose variation with the 

velocity is more like that of a ship model. We have ¢(«) = e-”, and (30) 

gives 
1/2 

soap 027?" 008 (gt [4+ A), (34) pR= ae pa 

The relative deviation is now 32 times as large as in the previous case, since 

3mr/Ag 

= = ee cos 4(2n+1)rr. 

With 7 = 1, »=2, the value of Ro/ Ry is about 0°5 for »=100. We 

should have to take n of the order 10,000 before bringing the deviation from 

the steady value below 5 per cent. 

On the other hand, with 7 = 2,» = 25m, the deviation is under 2 per cent. 

when n = 9, or at about 35 seconds after the beginning of the motion; it is 

less than 2 per cent. when n = 4, or after a travel of rather more than 

300 feet. 

11. The waves produced by the horizontal motion of a circular cylinder of 

small radius travelling at a considerable depth 4 below the surface may be 

cormpared with those produced by the surface pressure 

mE (x) = Ac? (h?—2*)/(h? +2). (35) 

We assume that the intensity of the system is proportional to the square 

of the velocity. It appears that the steady wave resistance is then the 

same function of the velocity as in the motion of the cylinder ;* for we have 

h(x) = Actxe*, 

and hence 

pR = A?g? en 2ghlc = A2g'/? 

ct 64 q7}/2 ¢7/2 2 

As a numerical example, take the case when the velocity is such that 

the steady resistance R,; has its maximum value; that is, when c? = gh. 

e~9/2e* cos (gt/4¢e+ 47). (36) 

Then we have 
Ro 63? 

Ri ~ 913/272 

The value of the ratio means a deviation from the steady value of about 

0:8 per cent. when n = 33, that is, when the system has travelled through a 

distance 77h. 

cos }(2n+1) 7. (37) 

* Lamb, ‘Hydrodynamics,’ 1932 edn. p. 410. 
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Some Cases of Wave Motion due to a Submerged Obstacle. 

By T. H. Havetock, F.R.S. 

(Received May 14, 1917.) 

1. As far as I am aware, only one case of wave motion caused by a 

submerged obstacle has been worked out in any detail, namely the two- 

dimensional motion due to a circular cylinder; for this case, Prof. Lamb has 

given a solution applicable when the cylinder is of small radius and is at a 

considerable depth.* The method can be extended to bodies of different 

shape, and my object in this paper is to work out the simplest three- 

dimensional case, the motion of a submerged sphere. 

The problem I have considered specially is the wave resistance of the 

submerged body. In the two-dimensional case, this is calculated by considera- 

tions of energy and work applied to the train of regular waves. But for a 

moving sphere the wave system is more complicated, like the well-known 

wave pattern for a moving point disturbance, and similar methods are not so 

easily applied ; I have therefore calculated directly the horizontal resultant 

of the fluid pressure on the sphere. Before working out this case, the 

analysis for the circular cylinder is repeated, because it is necessary to carry 

the approximation a stage further than in Prof. Lamb’s solution in order to 

verify that the resultant horizontal pressure on the cylinder is the same as 

the wave resistance obtained by the method of energy. 

The stages in approximating to the velocity potential may be described in 

terms of successive images; the first stage ¢; is the image of a uniform 

stream in the submerged body, the second stage do is the image of @ in the 

free surface, the third 3 is the image of ¢2 in the submerged body, and so 

on. In order to keep the integrals convergent, a small frictional coefficient is 

introduced in the usual manner ; after the calculations have been carried out, 

the coefficient is made zero. Further, the solution for uniform motion is 

built up so that expressions can be found for the velocity potential at any 

time after the starting of the motion, although only the final steady state has 

been studied in detail. The wave resistance of a sphere is found to have the 

form const. x «/?¢~4/? W,,(«), in which « is 2¢f/c, with f the depth of the 

sphere and ¢ its velocity; W1,1(«) is a confluent hypergeometric function. 

In order to graph the wave resistance as a function of the velocity, 

expansions have been found for this particular variety of the function 

*H. Lamb, ‘Ann. di Matematica,’ vol. 21, p. 237; also ‘Hydrodynamics,’ 
6th edn. (1932) p. 410. 
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Wi, m(a); it belongs to the logarithmic case for which a general expansion is 

not available. 

In general form the graph of the resistance is very similar to that of the 

circular cylinder. 
Circular Cylinder. 

2. The steady state for uniform motion of the cylinder may be attacked 

directly, as in Prof. Lamb’s solution, but we shall adopt his suggestion of 

building it up from simple oscillations. Take the axis of x in the free 

surface of the water, and the axis of y vertically upwards. A circular 

cylinder, of radius a, is making small oscillations parallel to Ox with velocity 

ccos at, the axis of the cylinder being horizontal and perpendicular to Oz, 

and the mean position of the centre being the point (0, —f). A first 

appproximation when the depth / is sufficiently large is found by ignoring 

the surface effect altogether and putting 

p= caa(afr2yext; rPr=e+ytfy. (1) 

This satisfies the boundary condition at the surface of the cylinder. For the 

next step, add a term X, to the velocity potential so as to satisfy the 

conditions at the free surface, but ignoring meantime the disturbance 

produced thereby at the surface of the cylinder. The term X; must) be a 

potential function and it must satisfy the condition for deep water, namely, 

0X, /dy = 0 for y = —co ; these conditions are fulfilled by 

2G = eet a(x)ecsin xx dk, (2) 
0 

where « is a function of « to be determined. This form is chosen because we 

can satisfy the conditions at the free surface by using an equivalent form 

for (1), since 

x fr? = | “erotNsinecde;  ytf>0. (3) 
0 

The surface elevation is expressed similarly by 

tee \,2 (ic) sin «x de, (4) 
0 

In order to keep the various integrals convergent, we assume that the 

liquid has a slight amount of friction proportional to velocity; in the sequel 

the results are simplified by making the frictional coefficient ~ tend to zero. 

In these circumstances the pressure equation is 
) 

p/p = const. + Se —9y+ub—F dae (5) 

Hence the conditions at the free surface are, neglecting the square of the 

velocity, 

d¢/dt—gy+ ubd=const.; —dd/dy=dn/dt. 
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Here ¢ is the velocity potential after (2) has been added to (1); thus the 
equations for a and 8 are 

ca®Ke—"S—Ka = ia B (6) 

tacwe—"T + iga—gB+ ycare-"F+ wa = 0 

From these we obtain the expressions for X; and 7, namely 

X,= eaten ( git oe ite e*F-) sin nx dx, (7) 0 Jk—o°+tyo 

-/@ 2 } : n = caret { ei iesiaione e-*F sin «x de. (8) 
0 Jk—o"+ tuo 

The expression for X, can be divided into two parts 
: [2 3 , Co —K(F-”) gj ] es —eate=t | e-"(F-9) gin rode — Dear | STAAL LL (9) 

0 0 G—two—gJK 

If we regard X, as the image of the oscillating cylinder in the free 
surface, we see from the form of the first integral in (9) that part of the 
image is a negative doublet at the image point (0, f). We obtain next the 
velocity potential of the motion produced by a sudden small displacement of 
the cylinder, and we take this to be equivalent to a momentary doublet of 
constant strength. Suppose then that at a time + a doublet is suddenly 
created, maintained constant for a time 67, and then annihilated. The 
velocity potential at any subsequent time ¢ is given by a Fourier synthesis of 
the preceding results for an oscillating cylinder, and we have 

= = i ea) [g]do, (10) 

where [] is the sum of (1) and (9), omitting the factor et. 
Carrying out this integration for the value of ¢ in (1) and for the first part 

of (9) gives simply the momentary doublet at the centre of the cylinder and 
the negative doublet at the image point. These doublets last for a short 
time 67; the subsequent fluid motion is contributed by the second part of 
(9). For this we have to evaluate the real part of 

io) eta (t—7) 

de ; t—7T>0. (11) 

We obtain the value by contour integration; further we simplify the 
result by neglecting y?. We shall make w zero ultimately, but we must 
retain it sufficiently to keep the integrals convergent ; however, at one or 
two stages, superfluous terms may be omitted when it is clear that the final 
limiting values will not be affected. We find for (11) the value 

mm eH) sin fxV(t—7)} KV 
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writing V for ,/(g/«) whenever it serves to simplify the notation. Hence 

the velocity potential of the subsequent fluid motion after the cylinder has 

been given a small displacement at time 7 is 

0 
h = 2ca*Bre-mtt—n [ nV e-*0-2) sin ex sin eV (t—7) de. (12) 

Finally we obtain the velocity potential for a cylinder in uniform motion 

by substituting «+c(¢—7) for x, noting that hereafter x will refer to a 

moving origin immediately over the centre of the cylinder; we then 

integrate with respect to 7 from the start of the motion up to the instant in 

question. We could in this way obtain results for any stage of the motion, 

but we limit the discussion to the final steady state ; for this we take —oo as 

the lower limit in integrating with respect tor. Before writing down the 

result, we must remember to introduce the integrated effect of the original 

momentary doublet in (1) and its negative image, which were not included in 

(11); these clearly add up to steady doublets. Hence we find for the steady 

state 

4 = DD Beat | e-ett-0 (A sin xe +B cos xz) de, (13) 
0 

where D represents the doublet ca*x/r? at the point (0, —/), D, an equal 

doublet at the point (0, f), and 

oa — EV (V 40) eV (V—e) 
eV +eP tty? (Veh + dp 

Aig =) a DEN Sats oe ae BSN (14) 
eO(V—cp +i? (V+ e+e 

3. Before proceeding further we may obtain the surface elevation from (13) 

for comparison. The surface condition is now 

—0¢/dy = On [Ot — —con/ ox. 

Hence we have 

n = 20?f (a? + f2)—20° | *(A cos xe—B sin wx) e-* de, (15) 
0 

in which x = g/c. Further, since yu is to be small, we may omit irrelevant 

terms and put 

A = ho (1e—Ma)/ (0—(4a+ in /0)} {1e—(0o— ip 0), 
B = wo (u/0)/ {1e—(Ho + iu] e)} {«—(xo— ipo}. (16) 

The integral in (15) can then be written as 

C) enikx eiKe 
—K«f 

I, (an See (ie (17) 

122 



Wawe Motion due to a Submerged Obstacle. 524 

We transform these integrals by contour integration in the plane of a 

complex variable «, treating separately the cases of w positive and x negative ; 

after making w zero in the final results we obtain 

2a*f Beerec =m cosmf—Ko sin mf ; 
7= +f? + Ara?Koe Kof SIN K9v+ 2a? Ko \. > wan” e™ dmv 5 BOS 0, 

2a? f 2. (7 mcosmf—xo sin mf _,,, 
= —<—$<$<$<$ << pm im, 0. 18 n Fame 5 + 2a [ aplnape e mM ; “> (18) 

These agree with Lamb’s results for the circular cylinder in a uniform stream. 

The wave resistance R is derived from the regular waves in the rear, by 

considering the rate of increase of energy and taking into account the 

propagation of energy in a regular train ; we have 

R = i9p (amplitude)? = 47?¢patio?e—PF, (19) 

4, We have now to obtain the resistance R by direct summation of the 

horizontal component of fluid pressure on the cylinder. It is clearly 

necessary to proceed to a further stage with the velocity potential, since we 

have assumed so far that the surface effect is negligible in the neighbourhood 

of the cylinder. If we write (13) as 

@¢=D+xX, (20) 

the doublet D is the first approximation, satisfying the boundary conditions 

on the cylinder; X, is the image of the doublet in the free surface, found by 

satisfying the conditions there. The next step is to find Xe, the image of Xy 

in the cylinder, ignoring then the effect of X2 at the free surface. It follows 

that Xz is the image of X, in the cylinder, found as if the cylinder were at 

rest in a field defined by X;. Taking polar co-ordinates with the origin at the 

centre of the circular section of the cylinder, we have 

x= 7cosé; ytf = rsin@; (21) 

also the conditions for Xz are that it should be a potential function, the 

components of velocity must vanish as 7 becomes infinite, and 

0(Xi+X.2)/or=0, forr=a. (22) 

But from (13), Xi consists of a summation of terms of the form 

We obtain Xz by replacing each term by the expressions 

eee A COS ‘ 
Ge GEO en (xa? cos 8/7), 

and the above conditions for Xj are then satisfied. This process amounts 

simply to inversion; we may think of X as due to a line distribution of 
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sources and Xz is then a circle of sources on the inverse of this line with 

respect to the cylinder. We have now for the velocity potential to this stage 

Ae D+ 2ea? e-*U-9) {(A —4) sin xx + B cos xx} de 
0 

+ 2ea? |  enwf+ ntl? (A — 4) sin (402/72) +B cos (wax /72)} de. (23) 
0 

We have put A—4 for A so as to include under the integral sign the 

doublet previously denoted by Dy. 

The method could theoretically be carried on step by step; however, we 

stop at this stage because it is sufficient for obtaining the wave resistance 

R from the pressure equation to the same approximation as by the energy 

method. 
2rr 

We have Re | ap cos 6 dé ; (24) 
0 

pip = —cdp/dx—gy + up —} 0. (25) 
If we write (23) as 6 =D+Xi+Xz, and omit terms which obviously 

contribute nothing to the value of R, we have, when r = a, 

Dye, Geac, _ 10D 0(%, + X:2) 
pan Ca (Xi + X2) +4 (Xi + Xs) A ey 

= (2c/a) sin 60 (Xi+X2)/00+m(Xit Xe), (26) 

where we have used (22) and the value of D. From (23), omitting the 

doublets D and Dy, which will from symmetry give no contribution to R when 

pis zero, we have 

p = ca? [eevee in?{ 2c A sin Osin(p—0)+pAsing 
0 

+2x«cB sin 6cos(@—0)+pBeosp}dx, (27) 

where ¢ = xacos@. Substituting in (24) we have an expression for R. We 

may now change the order of integration and take first that with respect 

to 6; we can carry this out, after some transformation, by means of the 

integrals 

oe cos (1 sin @—n@) dé = rh"/T (n+1), 
0 

[ie °89 cos (isin +n) dé = 0, (28) 
0 

where 7 is a positive, odd integer. In fact the integration with respect to 6 

gives simply mxa(xcB+pA); hence we have 

R = 4arpeat | ” (eB pA)e-2 de, (29) 
0 
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where A and B are given by (14), or by (16) since we suppose w small, Thus 
we have 

: 20-2 ye. R = 4rrpcat Lim eee (i /-\n i Lim { {«—(xo+ tu/e)} {1e-—(eo—tule)} 
= 4rrpeat Lim w {2aringe-**oF | 2% (w/c) + finite quantity } 
= Ang pate 4-20, 

‘ (30) 
which is the same as the previous expression (19). 

Sphere. 
5. A sphere of radius a is at depth 7 below the’surface and is moving with uniform velocity ¢ parallel to the axis of z. The origin is in the free surface, the axis of z being drawn vertically upwards. As before, the first approxi- mation is a doublet D given by 

b = ca®x/ 27° ; r= PtP t (etsy (31) 
For the purpose of satisfying the conditions at the free surface we have 

js — tea 2 Nese Tole /(@+y?)} de;  z4f>0. (32) 0 

This suggests at once suitable forms for the next approximation and for the free surface; the equations are similar to (6) of the previous case, and we obtain in the same way 

@ = D—D, +X, (33) 
where D, is a doublet at the image point (0, 0, /) and 

xo Sue 2 { Vo) e-U-2) dy | ce Joler/{ (w-+0u)?-+ 92} ] sin (<Vu) du, 

(34) The corresponding surface elevation is 

AS a |" Io {eV (ot+y?) ede 

—a3 [vo e—S kdk [pei Jo fey /{(a+ cu)?-+ 9} ]sin («Vu) du. (35) 0 0 

The first term represents the effect of the doublets D and D,. It can be verified by approximate methods that the second term includes a main part like the well-known wave pattern for ship waves. Since the expression in (35) gives finite and continuous values for the surface elevation, it might be of interest to examine some points in detail; for instance, the elevation near the lines corresponding to the lines of cusps for a moving point disturbance, However, we pass now to the calculation of the resultant horizontal pressure 
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on the sphere. We have to find X, the image of X, in the sphere ; for this 
we first put X; into a different form by using 

mJ o[« {(a+cu)?+ y?}4] = {, cos {x (x+cu) cos p} cos(xy sind) dd. (36) 

From (36) and (34), after carrying out the integration with respect to w, 

we obtain 

wX, = ca? | on *(S-2) ed ic [,t4 sin («x cos @)+ B cos («x cos d) } 
0 0 

x cos (xy sind) cospdd, (37) 

where A and B are given by (14) after writing ¢ cos ¢ for c. 

For convenience in the following analysis, we transfer the origin to the 

centre of the sphere, noting that in (37) we shall have exp.(—2«f+.«z) in 

place of exp.(—«f+«z). Also we use polar co-ordinates 

v= rcosa; y = rsinacos BP; z=rsinasin £. 

The conditions for X2 are that it must be a potential function, the 

disturbance due to it must ultimately vanish as we recede from the sphere, 

and on the sphere 

0(X1+X2)/or = 0. (38) 

To avoid repetition of expressions like (37), we take out of it a typical term 

and write 
X) = e* sin («x cos ) cos (cy sin ¢). (39) 

We know that the function 

rerwel™ sin (Kau cos p/r*) cos (Kay sin p/7?) (40) 

satisfies the first two conditions for X2, but we find it does not fulfil (38). 

An additional term is required, and it can be found in the following way. 

Suppose that on the sphere we have 

e® sin (Kx cos d) cos (Ky sin 6) = TAnYn (2, B), (41) 

where the right-hand side is an expansion in surface spherical harmonics. 

Then for the term (39), all the conditions for X2 are satisfied by 

ar ex!" sin (Ka*x cos h/7?) cos (Ka?y sin b/7?)— La"** AnY m/(m+1)7r™*1. 

(42) 
Suppose, similarly, that on the sphere we have 

e* cos (xz cos h) cos (ky sind) = YBnYn (a, 8). (43) 
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Then the complete expression for Xq is 

TX3 = en? { 
oo wT 

oF edi | ar ex" cos (Ka?y sin h/ 7?) cos d 
0 0 

x {A sin (xa*x cos p/7*) + B cos (xa?x cos b/r) }db 

— eat (oP wa { "3 (AAn+BBn)(mn-+1)-1(ajr)™1Vq cos b dd. 
0 0m 

(44) We have now 

@ = D—D,+ X%i+X, = D+X, (45) 

and the pressure equation is 

plp = —cep/ox—gz+ wo—} @. (46) 
The wave resistance, or the resultant horizontal pressure on the sphere, is 

7 2 

1 = | da ap sin « cos a dB. (47) 
0 0 

Omitting terms which, from symmetry, will give no contribution to R, we 
have 

2 he MOOR MO aOR 
p Ge "op Gp mS thakh mane 08 0B 

But when r = a, we have 

oD/oB = 0; OD/da = —heasin a; oX/or = 0, 

hence p/p = (8c/2a) sin «0X /da + wX. (49) 
We must now substitute (49) in (47) and use the value of X given by the 

sum of (37) and (44) on the sphere ; it is clear that we may omit the doublet 
D, as it will not affect the limiting value of R when w is zero. 

6. Consider, in the first place, the contribution of the first term in the 
value of p given in (49). In the repeated integrals which are obtained, we 
may change the order of integration, and we shall carry out first the summa- 
tion over the surface of the sphere. We notice that, when r = a, the first 
term in the value of Xz in (44) is equal to the value of X,; the additional 
part of X, is the term involving the expansions in spherical surface 
harmonics. Choose a typical term from the latter part, and we find we have 
to evaluate 

(48) 

f#sin « cos a (OY m/0x) dS, (50) 

taken over the surface of unit sphere. 

But this integral is equal to 

—3)P2(cos «) Ym(«, 8) dS. (51) 
Hence, the only term which has a value different from zero is the term in 

Y2, the surface harmonic of the second order. From the manner in which 
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the expansions were introduced, in (41) and (43), it follows that the contri- 

bution of the second term in (44) is one-third of that of the first term ; 

hence, summing up the result so far as the first term of (49) is concerned, we 

have 
co 7 2 Le 

mR’ = —5ec?atp | c7F dic | cos db dp | dp { sin a Py (cos a) cxasinasine 
0 0 0 0 

X cos (ka sin « cos PB sin d) 

x {Asin (ka cos « cos 6) + B cos (na cosacos)} de. (52) 

Taking the integration with respect to 8, we find it is equal to 

2 ( exasinacesB cos (Ka sin asin gd sin 8)dB = 2rIo(kasinacos¢), (53) 
0 

where Ip («) is the Bessel function Jy (iz), a result which may be obtained by 

direct expansion and integration term by term. For the integration with 

respect to « the term in A in (52) obviously gives zero, and we are left with 

2a (. Ip (Ka cos ¢ sin «) cos (Ka cos ¢ cos «) Ps (cos «) sin « da. (54) 
0 

Here also we may expand in powers of xa and integrate term by term ; 

it can be shown that the integral of the coefficient of («a)" vanishes except 

for the single term x?a?; thus we find that (54) reduces to 

—(20r/5) x?a?cos*¢. 

7. We have now to consider the term mX in the value for p in (49). We 

might omit this term, on general grounds, as giving no contribution to R 

ultimately when mw vanishes; for X is the velocity potential for a sphere at 

rest in a given field X;. However, it may be left in, and we have a similar 

calculation. Taking the second integral in (44), we find it is now only the 

term in Y; which counts; hence the contribution of this part is one-half of 

that of the first integral in (44). Further, it is the term involving A which 

gives a value different from zero when integrating with respect to «, and 

instead of (54) we have 

20 \, Ip («a cos ¢ sin «) sin (Ka cos d cos «) P; (cos «) sin « da, 
0 

which reduces to (47/3) xa cos d. 

8. Collecting the various results, we have now 

Rv—2caep [ory atte [ic Beos d+ pA) cos? ¢ dg, (55) 
0 0 

a form which may be compared with the corresponding expression for the 

cylinder in (29). 
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A and B are given by (14) when we replace ¢ by ccos¢; putting these 

values in (55), we see that we may change the order of integration. Further, 

as we make pw vanish ultimately, we may use simplified forms of A and B 

corresponding to (16). These give 

a | 2 5) KEW dk 
— 2098 2 ed R = 4n)2ca po |" sec*h dp {, Ge naseC 5) EWI ECCA 

To obtain the limiting value for ~ zero we may treat this like the similar 

expressions in (30); or, alternatively, we may put (y/c)sec d = 1/n, and use 

the general result 

Lim 
n—> 2 
(eS =F Ve-9 4/240}. al+n?(c—a)? 

The apparent difficulty with regard to values of @ near 7/2 is overcome by 

noticing that with the particular functions involved in R no extra contribu- 

tion arises from such terms near the upper limits of the variables. Carrying 

out the integration in « in this way, and changing the remaining variable by 

putting tan @ = ¢, we obtain 

R = 4rrg*pa8c- Se— 2a \,« 14 22)3/2¢-20fle dt. (56) 
0 

The remaining integral can be expressed in terms of known functions. 

Possibly the simplest method is to use the confluent hypergeometric 

function* defined, for real positive values of « and for real values of & and m 

for which k—m—4 <0, by 

Omelet ene m —$+Mp—u Wa, m (a) =a. lime mea el +u] a) s+Me—U Clyy, (57) 

We have now the wave resistance of the sphere given by 

R = 42? pa®f Fail e~ ol? Wy, (a) ; a = 29f/c?. (58) 

8. For purposes of calculation, we require expansions of W,,:(«). This 

function belongs to the logarithmic type of confluent hypergeometric function, 

and general expansions are not available in this case; however, they can be 

obtained without difficulty for Wi,1. In the first place, the differential 

equation satisfied by Wi,; is 

Cy ff We MS ) ae Perera) a 9) 
We use the ordinary methods for solving by means of power series. The 

roots of the indicial equation are 3 and —4; hence one of the fundamental 

* E. T. Whittaker, ‘Bull. Amer. Math. Soc.,’ vol. 10, p. 125; also Whittaker and 

Watson, ‘ Modern Analysis,’ Chap. XVI. 
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solutions will contain logarithms. Calculating the coefficients step by step, 

we obtain as a fundamental system 

1n = o8(1—hat geal gyalt ghtyat—...) a 
Ys = yi loga+a?(—8—$a+3a3— $5 a4+ ...) 

We know that Wj,; is a linear function of y and y2; however, it is simpler to 

obtain an expansion directly and use (60) to verify it. For this purpose we 

use the equivalent contour integral for the confluent hypergeometric function, 

ake a4 pet 1 (s) 1 (—s—k—m+ 3) (—s—k+m+}4) 
27t | _wi T(—k—m+3)T(—k+m+}) 

where the contour has loops if necessary, so that the poles of I'(s) and those 

of T'(—s—k—m+4)I'(—s—k+m-+4) are on opposite sides of it. The 

integral can be evaluated by the method of residues. When k = m = 1, the 

poles at which the residues have to be found are simple poles at s = —4, —3, 

together with double poles at s = 4, 3, §,.... The latter series gives rise to 

logarithmic residues. Carrying out the calculation, we obtain 

Wee = ads, (61) 

= = = 3 4p, 3 = DT (p+) = 1/2 of2 3/24 = 4-1/2) — 3/2 p—a]2 a SEEN UB Wii=7 ae (. +54 ) 4 arene log «Sry LDI(p 3) aP 

3 d I'(p+3) Yoo 2—5)+5 5 pce 0a Dna 2 t4nt(y—2log2—5)+ 2 Cer @EH ©) 
where y is Euler’s constant 0°5772.... The coefficients may be put into 

alternative forms more suited for calculation ; for instance 

a T'(p+3) 
dp V(p+1)U(p+3) 

ont 13S pf aga il eit 

~ 2? .p!(p+2)! ae BEB MS) a ie 

For numerical calculation we have 

_ 3 -12,,3/2,-af2 4, 3 il 7 -B | 
Wasa gaues sare ga ee Vaan Tpa@ 7 

= (7+ log j a)(1+50+25 1 en att. } (63) 
° 4 192 

The expansion may be confirmed by comparison with the fundamental 

solutions of the differential equation given in (60); we find that 

(8/3) 74 Wii = (2 log 2—y¥—4) myo. 
For large values of « the general asymptotic expansion of W4, m is available ; 

and in this case we have 

Si. @ Wt . 1h 
~ —af2 55 SS } Wao (1435 +i iat) (64) 
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9. With (63) and (64) we can now calculate the resistance R from (58). 

For a given depth f, the variation of the resistance with the velocity is shown 

in the following curve, for which R has been calculated for various values of 

e]/ (Gf). 

Se fe (Oi mo ere eee | ED SH - ; 

The curve is very similar in form to the two-dimensional case of a circular 

cylinder. For small velocities, that is « large, if we take the first term of the 

asymptotic expansion (64), we have 

R = yf (21°97) f) . paSc Se 2a, 

which may be compared with (30) for the cylinder. It is of interest to 

notice the similar law of variation of wave resistance with speed for the few 

cases of rigid bodies which have been worked out. The method adopted here 

can be applied to bodies of different forms, and it is hoped to illustrate later 

some interference effects. 
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Periodic Irrotational Waves of Finite Height. 

By T. H. Havetock, F.R.S. 

(Received May 21, 1918.) 

1. The method of Stokes for waves of finite height on deep water consists in 

working upwards by successive steps from the infinitesimal wave towards the 

highest possible wave. Although lacking formal proof of convergence, it is 

generally accepted that the method is valid, but that it does not include the 

highest possible wave when the crests form wedges of 120°. 

For the highest wave itself we have Michell’s analysis by a distinct method, 

also involving an infinite series whose convergence has to be assumed.* 

The theoretical position of Stokes’ method has been stated concisely by 

Prof. Burnside in a recent criticism} :— 

“The complete result would be to express the co-ordinates x and y in terms 

of @ and yw in the form 

2 = —btbeV sin 6+ S0"P, (6) e™ sin nd, 
2 

y = —p+ber cos $ + S0"Q, (De cos np, (1) 

where P,, (0), Q, (6) are power series in 0. 

“These results have a meaning and can be used for actual approximate 

calculation only, if P,, Q, are convergent power series when 6 does not exceed 

some value, say 0, while for suitable values of 6 and for real negative values 

of y, the series for z and y are convergent. 

“ Until the form of the power series P, and Q, have been determined, it is 

impossible to deal with their convergence. Assuming that they are 

convergent, it is clear from physical considerations that there must be an 

* J. H. Michell, ‘ Phil. Mag.,’ Ser. 5, vol. 36, p. 480 (1898). 
+ W. Burnside, ‘Lond. Math. Soc. Proc.,’ Ser, 2, vol. 15, p. 26 (1916). 
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upper limit 0’ for 6 in order that the series for x and y may be convergent for 
negative values of yy, and there are no means of determining }’.” 

Prof. Burnside concludes that Stokes’ method cannot be used for numerical 
calculation as it is not known whether the corresponding value of 6 is less 
than the above value 0’. 

In the following notes a general method is suggested, which includes waves 
of all possible heights, ranging from the highest wave down to the simple 
infinitesimal wave. The method consists of a simple and direct extension of 
Michell’s analysis for the highest wave. The advantage is a theoretical one 
which may be expressed in this form: the parameter does not have, as in 
Stokes’ series, an undetermined upper limit, but it enters in the form 
e~**, where a may have any positive value, including zero. 

It should be stated that here, again, we have infinite processes for which no 

formal proof of convergence is given: we have to rely meantime upon a 
numerical study of the series. However, in addition, we can compare the 
method with that of Stokes for waves short of the highest; in this case 
numerical results obtained by the two methods are the same, as might be 
expected. 

Extending this comparison to the highest possible wave, we get a value for 
the quantity b’ referred to previously, that is, the value of the parameter for 
which Stokes’ series for the elevation become divergent. We obtain 0’ as 
5—)y, where 0; has the value 0:0414 approximately, or we have 0’ = 0°291..., 
the value for 0, being slightly less than the true value. 

The discussion is arranged in the following order: Michell’s form for the 
highest wave, its generalisation by means of the surface condition, method of 
approximation for the coefficients, calculation for the highest. wave, the values 
when e~** = 3, comparison with Stokes’ series, determination of b’, further 
numerical examples and remarks upon the values of the coefficients. 

2. It was shown by Stokes that the highest possible wave, under constant 
pressure at the free surface, has crests in the form of wedges of 120° It 
follows directly from his argument, as a simple extension, that the crests 
will meet at the same angle for the highest possible wave under any assigned 
surface pressure provided the pressure is stationary in value over the crests. 

Consider any assigned surface pressure of this character which is finite, 
continuous and periodic. To determine the form of the highest possible 
periodic wave, we may follow Michell’s analysis for the case of constant 
pressure up to the stage at which the coefficients are determined from the 
given surface condition. 

We might then begin with the form given in (5) below, but we may 
recall briefly Michell’s argument. Take Ox horizontal, Oy vertical and 
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downwards, with O at a crest. Let the successive crests be given by 

¢ = +n, n integral; and let the upper surface bey =0. If @ be the 

inclination of the wave line to the horizontal at a point ¢, assume 

GF = fob c08 2p + 1 008 4 +... (2) 

This is equivalent to assuming that under the given conditions for the surface 

pressure, the ratio of the curvature of the wave line to the velocity is finite 

and continuous throughout a wave-length; in that case 00/dd can be expanded 

in a uniformly convergent Fourier series. In the numerical calculations 

which are needed later, the practical success of the method of approximation 

depends upon a, a, ..., being small compared with a, and, in fact, upon the 

series converging rapidly. 

With the notation, w = $+ wy, z = x+7y, U = log (dz/dw), Michell showed 

that 

x —1 (a +467” + age” +...), (3) 

is a function which is real over the surface y= 0, and possesses only 

simple poles, which are at the wave crests. 

Suppose that near a crest, say w=0, we have dz/dw= Aw”, then 

q? = const. x r-*"/"*), where g is fluid velocity and 7 is distance from the 

summit. But, since the pressure is constant in the neighbourhood of the 

crests, we have g? = 2gy, and hence n= —}. It follows that the function 

(3) differs by only a constant from the quantity —}2(w—mm). Hence, 

after adjusting the constants and integrating, we find for dz/dw the form 

— = (—Ztsin w) Ve (1 4 ce? 4 coe + ...), (4) 

the real root of (—isin w)¥ being taken along ¢ = 0. The units are such 

that the wave velocity V, or the velocity at y= oo, and the wave-length L 

are given by 

W = 2s L=a/V = 2'*q, 

It is convenient to invert (4) and write 

— = (—Zsin w)3el3 (1 + bye” + boct” + ze ...). (5) 

3. The coefficients 0), b2, ..., are now to be determined by the pressure 

condition at the free surface. So far, we have stipulated only that the 

pressure at y = 0 shall be finite, continuous, periodic, and stationary at the 

points ¢ =m. For our present purpose we shall leave this pressure 

distribution undetermined, except for these conditions. We shall assume 
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that it is possible for some assigned stream-line below the surface, say the 

line y = a, to be a line of constant pressure. Thus we shall determine 

di, b2, ..., directly by applying the condition for constant pressure to (5) when 

y =a. The surface y =a will then be a possible free wave surface, and 

free waves will be given by assigning any value to @ in the range zero to 

infinity ; thus, by working down from the highest possible wave, we include 

in one scheme free waves of any permissible height. 

The condition that the pressure is constant for yy = « is 

g? = 2gy +constant. (6) 

It is convenient to use an equivalent form obtained by differentiating (6) 

with respect to ¢, namely 

ah = ye. (7) 

This has to be used when 

GY = {—isin(p tia) BAG" (14 Bett Bret 4...), (8) 

where Bi = bye 4, [By S WaxI-S, 0600 

Multiplying by the conjugate complex and squaring, we obtain 

qt = e 48 (sinh? « + sin? )7? (Dp + 2D1 cos 26+ 2D2c0s4h+...), (9) 

where 

Do = 14461? + (282+ B12)? + (283+ 281 B2)?+ ..., 

Dy = 281+ 28; (282+ Br") + (282+ Bi’) (283+ 28182) + ..., 

Dz = 282+ Br’ + 281 (283+ 28iB2) + (282+ Br) (284+ Bo? + 2RiB3)+..., 

Dg = 283+ 28182+ 2Bi (284+ Bo? +2BiB3)+ ..., 
PO e meee wees reese ssa ser see sste seas erccresesss eee cess eee s ees ee ese sessed setasereescesssses 

Pee mem eee csc rreerereseers ces sere case seer r seer sees sere ee sees se sen esse eeeeeesssesesseseses 

Differentiating (9) with respect to ¢, we can take out a factor 

(sinh’a+ sin)", and can collect the other terms into a sine series in 

even multiples of ¢. However, we take out also the common factor sin ¢, 

because we then have dq*/0 in a form which reduces directly to the proper 

form for the highest wave (a = 0), and, in addition, we find that the 

numerical calculations converge more rapidly. After some reduction, we 
obtain in this way 

age 4 a $e 42/3 sin (sinh? « + sin? d)-¥3 (Ai cos f+ Azcos3p+...), (10) 
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where : 

Ay = Dy + 8D: + 6D2+3(3D3+4Ds+...):-3 (Di + 2D2+ 3D3+...) cosh 2a, 
As = £D,+4D3+3(3D3+4Da+...)—3 (2D2+3D3+...) cosh 22, 
As = 4D.+4D3+3(4Di + 5D; +...)—3(3D3+4Ds+...) cosh 2a, 
A, = 12D34+7D.43(5Ds+...)—3(4Ds+ ...) cosh 2a, 

For the other side of equation (7), using I to denote the imaginary part Q 

of a complex quantity P+7Q, we have 

se = —Ie- (sinh? a +sin? p)%e~* 0-9/3 & Ber, (11) 

where Re® = cos ¢ sinh «—isin ¢ cosh a. 

To expand this in a form similar to (10), we notice that 
e- 10-43 = (1 — e720 g2ib 1/6 (1—e-2 e- 2) U6, 

(sinh? a+ sin? py? — ter el — e720 op) 2 (1 —e72a Cue) 2k 

Hence we have 

e = —I 4¢3 (sinh? «+sin? gd) 3 & B,(1—e-22e7)7/3 (1 — e728 e—2th)U/3 g2rid | 
r=0 

| (12) 
We now expand the two binomial factors after the sign of summation in 

series valid for the whole range of ¢@ and for all positive values of «. We 

can then write down the coefficient of ¢?”?, and so obtain 0f/dy, involving a 

series of sines of even multiples of @; as before, we take out a common 

factor sin d, and obtain the result 

= 1-4/8 sin g (sinh? @ + sin? )-9 (By cos 6-+ Bs cos3¢+...), (13) 

where the B’s are linear functions of the §’s, with coefficients which are 

functions of e~**. In practice, these can be obtained directly from (12) to 

any required degree of approximation; general expressions can be put in the 

following exact forms 

Bont1 = Boent1+ Bi Bi, 2ntit-.. + BrBrentit-.-., 
ine) oo 

Be 2n+1 = > C_25— > Cos, 
s=ntr+l] s=n—r+l 

eet (eye io — 
Ce ee 

—1(—141)...(—4+s—1) -2,.- Chas $a sal gts—1) ,-2%6 NeR(—145,—2,s+1e-"), 

Co = 3c F (—4, —2,1,e~*), (14) 

where F represents the hypergeometric series. 
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We can now apply the surface condition (7) by substituting the expansions 
(10) and (13) and equating coefficients of cos ; COS 3¢, .... 
We obtain, as in Stokes’ method, an infinite series of equations of the 

form A2.+1 = gBon+1, from which the quantities g, Bi, Bs, B3, ..., are to be 
obtained in practice by successive approximation from the equations taken in 
order. 

Up to terms of the third order the equations are 

1+ 58 + 1282+ 1081? + 288; 82+ 58:2 +1883 

—6 (61+ 282+ B?+58:B2+Be+ 383) cosh 2a 
= 9 (Boi + 61Bu + GsBa, + BBs), 

5Bi+ 862+ 481? + 2881 8.+ 5813+ 1883—6 (282+ Bi?+ 381 B2+ 383) cosh 2a 
= g (Bos + A:Bi3+ 82Bo3 + B3B33), 

882+ 481? + 118182+1183;—18 (8182+ 3) cosh 2a 
= 9 (Bos + BiBis + B2Bo5+ B3Bs5), 

1183+ 118182 = 9 (Bor +AiBiz+ B2Boz + B3B37). (15) 
It might appear, from the quantity cosh 2a on the left, and from the 

factor e* in the expressions for the B’s in (14), that there are terms in these 
equations which become infinitely large as « increases indefinitely. But we 
have 2, = bye~**, Bs = doe 42, B3 = bse8*, ..., therefore, if we write the 
equations (15) as a set of equations for the coefficients 6), bs, ..., this 
difficulty disappears. In this connection we may recall the initial assump- 
tion that the series in (5), namely, 1+ b,c? + hyetiv 4 ig absolutely 
convergent, otherwise the analysis has no meaning. 

The infinite set of equations, given to the third order in (15), has to be 
treated by Stokes’ method; that is, assuming the process to be convergent, 
the equations taken in succession yield approximations to g, Bi, Bs, ..., for any 
assigned numerical value of «. But there is a difference between these 
equations and the corresponding set in Stokes’ analysis. In the latter, the 
first coefficient, say 6, is arbitrary, and the successive equations have their 
lowest terms of order zero, one, two, and so on, respectively ; thus g and the 
remaining coefficients are found as power series in }. But in (15), we have 
a term independent of the 4’s on the right-hand side of each equation ; thus 
the solution, if practicable, leads to a set of numerical values of g, Gi, Bo,... 
for a definite numerical value of «. We may notice, in passing, that for a first 
rough approximation gBo: = 1; and as By, does not differ much from unity 
for any value of a, the coefficients 81, Be, ..., are of the order of magnitude of 
Boz, Bos, ---; respectively. 

4. The method of approximation used in the following calculations may 
be described by considering first the simplest form of the equations, namely, 
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when « = 0. The hypergeometric series in (14) can be summed in this case 

and we find 

18,/3 6r+1 Bis gal eke ele ee 16 
apis mn 9(2n+1P—(6r+1)? eo) 

The equations (15) reduce to 

1—Bi + 4By?—28182—Bie = k (A—7 Bi— 3s B23} Bs), 

5B1—482— 281? + 108182 + 5Bi? = k (ty +35 Bi—4382— 3185 Bs), 

882+481?—7BiB2—7B3 = k(shg+ yi hit 38 B2—i% Bs), 

116182+1183 = k (stg t+a5ehit ahs Bet 4883), (17) 
with k = 189,/3/7. 

These are Michell’s equations for the highest wave. Without specifying 

any definite method of approximation, Michell states that sufficiently close 

values are given by 

g = 0832, 6, =00397, f2=00094, @3;=0:002. (18) 

In order to compare results for different values of «, it is desirable to adopt 

some consistent scheme of approximation. 

In general, in the equations (15), we substitute 

gBo = 14+ 6i+heB?+hsBi3+..., 

Bo = 281? + 03813 + ..., 

B3 = 6383+ cs8it + ..., 

sis gre Decca ce dh fe (19) 
For a first approximation, write down the first two equations up to terms 

in #1, and we get two equations from which to determine i; and f;. The 

first of these equations is, in fact, independent of #; on account of the form 

of (19). 

For a second approximation, retain the value of /, so determined, and 

write down the first three equations of (15) up to the terms in ,’, the first 

of the three being again independent of 61; from these, we determine 

ka, B2, and a second approximation to ;. For the third stage, using the 

values of fy, ke, and 02 already found, and writing down the first four equa- 

tions of (15) up to the terms in (,°, we determine ks, 63, ¢3, and a third 

approximation to §;. Using (19) we obtain the corresponding values of 

9, B2, B3,.... ab any stage. The nth approximation to , is given by an 

equation of the nth degree in 8; but there is no difficulty in practice as to 

the particular root since we follow it through from the first approximation. 

The method is simple in plan, if somewhat tedious in practice; so it is 

not necessary to give the details of the following calculations. 
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Taking the particular case (17), we may write down one set of equa- 

tions to illustrate the type. After the first two stages, we obtain 

Iy = 0:4, kg = 7:6, bg = 4°67: using these values we find for the next stage 

the equations 
k3—0°65b3—0°432cz = 1:18 

Bi3 (O-1k3+ 2:82b3—0°543¢c3—44-25) +17:°7456—3:2168,+01 = 0 

Bi? (0:036k3—6'14b3 + 5°88c3 + 41°68) —34:688;? + 0°3328, —0:036 = 0 

B13 (0:018k3 + 0°3803—9-1¢e3— 53°77) + 2°158;? + 0:1581+ 0018 = 0 

(20) 
Eliminating /3, 63, c3, we get a cubic for 4), of which the required root is 

0:0407, the previous stages having given the values 0-0311, 0:039. Also 

from (20) we find k3 = 30, bs = 35, c3 = 40. Collecting the results to this 

stage, we find 

g = 0833, 8, = 0:0407, B2 = 00106, 83 = 0:0027. (21) 

These values are rather higher than those given by Michell (18). In 

order to determine 6; more closely, the approximation has been carried to 

the fourth stage, with the result 

yg = 0833, 6, = 00414, B2.=0°0114, 63; = 00042, 6.= 00014. (22) 

With these values, the ratio of h, the height of the wave, to L, the wave- 

length, is given by 

h/L = (velocity at trough)?/2gL 

= (1—Bi+ B2—B3+ Bs)?/24? 9m = 01418. (23) 

An interesting point about the series 1+ 8, e”*+ 6,e#*+... for the highest 

wave is the smallness of all the coefficients ®i, Bs, ..., compared with the 

first term, namely, unity; on the other hand, the numerical values obtained 

do not suggest a rapid convergence of the series after the first term. It 

appears, from the method of approximation, and from the fact that all the 

quantities Boi, Bos, ..., are positive, that successive approximations will increase 

the values of the coefficients. A test for the sum of the series, compared 

with the value of g, is obtained by considering the velocity near a crest. 

Near ¢ = 0, we have dw/dz = $¥8e-** (14+ Bi+Bot+...). 

Therefore g? = ¢7°(1+6:+42+...)? and z = 3¢7%e7/6/(14+ 81+ Bet...) ; 

and since g? = 2gy, it follows that we should have (1+ 61+ @2+...)?/g = 15. 

But with the values given in (22), this expression has the value 142, This 

is perhaps a severe test; a simpler criterion is to write down the successive 

convergents to any one coefficient; for example, those for the leading 

coefficient 6; are 0:0311, 0:0390, 0:0407, and 0:0414. 
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5. Returning to the general equations (15), we consider a wave short 

of the highest and we select the case e~**= 3. We shall find that this 

corresponds to a value of about } for Stokes’ parameter 6. 

The coefficients B,,2.+1 have to be calculated from the relations (14); 

the hypergeometric series are, of course, convergent, and the values can 

be obtained to any required degree of accuracy. Substituting the numerical 

values in (15) we obtain the equations 

1—1:258,;—0:582+3'75B—3:2561B2—1:2583—0°7583 
= g (1:081 — 25848; —1'5383—1-:2818s), 

581 —45B2— 22581? + 9:258)82+ 58:3—0°75B3 
= 9 (00166 + 2:1338) — 2'32282—1:42983), 

8B2+4B.2—7°75B8i182—7°'75B3 = g (—0°0157 + 027678; + 2°237 B,— 2:27483) 

1183+11f:82 = g (—0°0125 + 0:08658; + 0:3243 834 2:25483). 

(24) 
We carry out now the successive approximations described in the previous 

section. At the third stage, we find 

= 09246, 6, =0:00273, B2= —0:0034, 63 = —00013. (25) 

Comparing these values with those for the highest wave given in (21), 

we see that the §’s are much smaller; on the other hand, there may be 

greater difficulty in obtaining their values accurately, because of the later 

stage at which the §’s begin to diminish steadily in absolute value. We 

shall find this impression confirmed later when we try smaller values 

olvem=s3 

To find the ratio 4/1 for this wave, we have 

(velocity at crest)? = 2773 (1 —e~**)73(1+4+ 61+ 82+ B3+...)?, 

(velocity at trough)? = 2-98 (1 +e) (1—B, + B2—B3+...)”. 

Taking the difference, and dividing by 2g, we find ; and since L = 21, 

we have h/L = 00898. Stokes’ parameter 6 is, to a first approximation, 

ah]; hence this wave corresponds to b equal to 7 nearly. 

6. We have now two methods for a wave of finite height, namely, that 

described above and Stokes’ method. The two can be shown to be in 

agreement in any particular case. 

From (8), we have, on the wave surface yr = «, 

gon a = (107 28e2i8)-18 (14 Biot + Boetio-t 2, (26) 

For any wave below the highest possible, that is provided « is not zero, 

the first factor on the right of (26) can be expanded in a series valid for 
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all values of 4; hence, under these conditions, we have on the surface ap = a, 

gue 2 = 14 Asetibg Agetib + Age 4... (27) 
where 

A; = te *—@,, 

As = je" "—4 Bie~*"—(8,— 8’), 

As = 346 —§ Bie *—1 (B2— Bi”) e- 2" — (B3—28, 82+ Bi), 
P00 Se CODDS O00 OD O0o000000000n0000000000000000000 00000000000 00N00000D0N00000 

slo memnaseseleielele\eie)s[e\e\ee{e\e]s[ele/ele(e(n\a\o10/0]e/ele/e)s1e\ele\elaleie\o.e|e[elelele|sfalelojelolele(clerelsieteleleleine aeice 

Now Stokes’ method gives z, and dz/dw, in the form of a series like (27) ; 
write this as 

cz = 1+ Cre”? + Coeto + Cyehio4 .... (28) 

From Stokes’ equations, Co, Cs, ..., are obtained as power series in C,; 
these have been carried up to the tenth order by Wilton,* whose results 
we quote now—in so far as they are needed here— 

—C, = 8, 

Co = 0+ 0-504 + 2:41708 + 1559708 + 64-0851 

—Czg = 1-508 + 158305 + 8:21507+4 55-0109, 

Cy = 2667044 434708 + 24-0108 + 166-251, 

—Cs = 520805 + 11-5374 67-4029, 

2 

~ = 147435044 19-0808 + 154°7584 1997510, (29) 
With the units adopted here, the last expression corresponds to 1/9. 

Further, in Stokes’ investigations the wave-length was taken as 27, while 
in the above work we have used 7; the result is that in comparing the two 
methods by means of (27) and (29), Cy, Co, Cs, Cy, ..., correspond respectively 
to A, $ As, 3A3, 4Ag, ejeiss 

For the numerical calculations in the case e~2¢ = #, we use the values of 
Ai, 82, and B3 given in (25); then from (27) we obtain 

A; = 0:24727 ; 4 Az = 0:06385 ; zAz3 = 0:0249; 

ZA, = 0:0115; 4A;5 = 0:0058; ...... (30) 
On the other hand, if we take 3 equal to Ai, we get from this series 

in (29) 
—C, = 0:24727; Cz = 0:06382 ; —C3 = 0:0248; 

Cz, = 00114; —C; = 00058; ...... (31) 
* J. R. Wilton, ‘Phil. Mag.,’ Ser. 6, vol. 27, p. 385 (1914), 
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It is unnecessary to carry the calculation further to show the numerical 

agreement between the two methods for waves short of the highest. It 

may be noticed that in the above comparison we have gone up to the 

coefficient 83 of the present method; to obtain the agreement shown above, 

we have had to use the Stokes’ series as far as the tenth order in the 

parameter. 

7. From the comparison between (27) and (28), we see that, for waves 

lower than the highest, we are in effect dealing with a Stokes’ series whose 

parameter has the value 1e~**—8;. If we applied Stokes’ method directly 

to (27), we should obtain Ag, A3,..., in the usual way as power series in this 

parameter, and the quantity e~ 7 would be a superfluous arbitrary parameter. 

On the other hand, the present method gives a definite value of ®; for an 

assigned value of «, or theoretically gives a functional relation between 

Bi and a The method definitely connects a wave of any height with the 

highest possible wave, and any possible wave-form is given as one of a family 

whose limiting curve has crests consisting of wedges of 120°. 

Consider the expansion from the form (26) to the corresponding Stokes’ 

form (27) or (28). Assuming the convergence of the series with the 

8-coefficients, the expansion is valid over the whole range of @ for all 

positive values of «, excluding zero; it is also valid for « zero, with the 

exception of the points ¢ = az, n integral. In other words, the comparison 

confirms the view that Stokes’ series for the elevation is valid throughout, 

with the exception of the actual crests of the highest possible wave. 

We can now estimate the limiting value of the Stokes’ parameter b for 

convergence at the crests. Todo this, we compare the series (27) for the 

highest wave with a Stokes’ series, for points other than the crests. 

For the highest wave « = 0, we found 

Bi = 0:0414, B2 = 00114, B3 = 0:0042, Bs = 0:0014. 

Hence the expansion should be a Stokes’ series with the parameter 

4—(0:0414, or say 0°2919. Making the comparison between (27) and (29) 

with these values, we find 

A; = 0:2919 ; $A, = 0:0993 ; 4A3 = 0:0528 ; 

—CQ; = 0:2919; C,=0:0914; —C3 = 00429. (32) 

The agreement is sufficient to justify the comparison, when we remember 

that the @-coefficients have only been determined to the fourth stage, and 

further, that the Stokes’ series (29) for the C-coefficients presumably converge 

slowly in this extreme case. 

It should be remarked that we do not gain information from this com- 

parison about the convergence of the Stokes’ series for the separate coefficients 
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for higher values of the parameter; the result concerns the series for the 

elevation. We find that Stokes’ series for the elevation becomes divergent 

at the crests when the parameter has the value 0:291..., so far as the 

numerical calculation has been carried. 

In this connection reference may be made to Wilton,* who concluded that 

the Stokes’ series certainly diverge for a parameter greater than 1/e, and 

who estimated the limiting value to be in the neighbourhood of 4. 

Wilton works out in detail a numerical example with the parameter 

b = 0316, for comparison with the highest wave. According to the present 

analysis, this is beyond the limiting value for 6; the series should be 

divergent at the crest. This may well be the case, notwithstanding that the 

coefficients C, as calculated by Wilton, diminish steadily as far as the order 

shown ; since the series is supposed to be divergent only at the crests, one 

might expect the divergence to become evident numerically only after 

calculating a large number of terms. The example may serve as an illustra- 

tion of Prof. Burnside’s criticism, that it is necessary to know the limiting 

value of 6 before Stokes’ series can be used with confidence for numerical 

calculation. 

8. We may examine briefly the present method for waves of small height. 

It is of interest first to consider the exact expression 

ae = 2-8 (33) 

We can integrate dz/dw and so obtain the equation of the stream-lines 

in finite form, and also exact expressions for the variations of pressure along 

any stream-line. To find how far (33) satisfies the condition for a free wave 

under constant pressure at a stream line wy = a, it is simpler to expand first 

before integrating ; we can then express g? and y as cosine series. In this 

way we find at the wave surface y = «, writing down the variable part only, 

Const. x (q?—2gy) = {4ge**—(h ee *— gto — 185 e ®_...)} cos 2h 

+{}ge*—($ e *#—55, ce *_...)}cos 4g 

+ {ald ge 8*— (fre — phy oe—...)}008 6 

(34) 
Hence, if we take g-1=1+ 4c 4, the pressure is constant up to, 

and including, terms in e~*; and the next term is the small quantity 

—ats & cos 6d. This value for 1/g is Stokes’ expression 1+0?, the 

* J. R. Wilton, loc cit. ante. 
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parameter } having the value 4e~ to this order. It is, of course, impossible 

to make the right-hand side of (34) zero for all values of ¢ merely by 

choosing g a suitable function of « However, the fact that (33) satisfies 

approximately, to the order shown above, the conditions for a free wave of 

any height, explains the smallness of the coefficients 61, B2,... even for the 

highest wave when « is zero. 

Returning to the general equations (15), for a numerical example of a 

wave of moderate height we take e~?* = 3/10. In this case we shall only 

carry the approximation to the second stage, to illustrate the character of 

the coefficients. We have the following numerical values : 

Bo = 1:008 ; By = —8:24; Ba = —7°336; 

Bos = —0:004 ; Bis — 0:082 ; Bas = 121% 

From these we obtain 8; =—0-:0018; Bs =—0:00066. Making the com- 

parison with a Stokes’ series, as in the previous sections, we find 

A, = —C, = 01018, 4 Ay = Cy = 0:0104, 1A; = —C; = 0:0016. 

The numerical values confirm the impression that while the 8-coefficients 

diminish indefinitely as the height of the wave hecomes smaller, it is more 

difficult to obtain their values by the method of successive approximation 

used in dealing with the infinite set of equations for them. 

The behaviour of the 6-coefficients is made clearer by studying the leading 

terms Boi, Bos, ..., on the right-hand side of equations (15). Over the whole 

range for a, from zero to infinity, By, only varies from about 1:24 to 1; 

consequently, from the first equation, g is never much different from unity. 

From the remaining equations, we see that (4, G2, 83, .-., form a parallel 

series to Bos, Bos, Boz, ---, taken in order. 

It is only for the highest wave («=0) that all the terms of the latter series 

are positive and decrease steadily to zero from the first term; for other 

values, the series is not quite so simple in form, although in all cases the 

terms converge ultimately to zero. The character of these terms is best 

illustrated by numerical examples, such as are given in the following Table: 
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The quantities By,2,4:, and, in fact, all the coefficients B;,2n+1, can be 
studied algebraically from the relations (14). The algebraic solution of 
equations (15), together with a formal study of convergence, would be of 
great interest ; meantime the numerical illustrations given in the foregoing 
discussion may serve to show the possibility of a general scheme which 
includes waves of any permissible height. 

Hargison AnD Sons, Printers in Ordinary to His Majesty, St. Martin’s Lane. 
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Wave Resistance: Some Cases of Three-dimensional Fluid 

Motion. 

By T. H. Havetock, F.R.S. 

(Received November 27, 1918.) 

1. Calculations of wave resistance, corresponding to a pressure system 

travelling over the surface, have hitherto been limited to two-dimensional 

fluid motion ; in those cases, the distribution of pressure on the surface is 

one-dimensional, and the regular waves produced have straight, parallel 

crests. The object of the following paper is to work out some cases when 

the surface pressure is two-dimensional and the wave pattern is like that 

produced by a ship. A certain pressure system symmetrical about a point is 

first examined, and more general distributions are obtained by superposition. 

By combining two simple systems of equal magnitude, one in rear of the 

other, we obtain results which show interesting interference effects. In 

similar calculations with line pressure systems, at certain speeds the waves 

due to one system cancel out those due to the other, and the wave resistance 

is zero; the corresponding ideal form of ship has been called a wave-free 

pontoon. Such cases of perfect interference do not occur in three-dimensional 

problems; the graph showing the variation of wave resistance with velocity 

has the humps and hollows which are characteristic of the resistance curves 

of ship models. 

Although the main object is to show how to calculate the wave resistance 

for assigned surface pressures of considerable generality, it is of interest to 

interpret some of the results in terms of a certain related problem. With 

certain limitations, the waves produced by a travelling surface pressure are 

such as would be caused by a submerged body of suitable form. The expres- 

sion for the wave resistance of a submerged sphere, given in a previous 

paper, is confirmed by the following analysis. It is alsoshown how to extend 

the method to a submerged body whose form is derived from stream lines 

obtained by combining sources and sinks with a uniform stream; in par- 

ticular, an expression is given for the. wave resistance of a prolate spheroid 

moving in the direction of its axis. 

2. Take axes Ox and Oy in the undisturbed horizontal surface of deep 

water, and Oz vertically upwards, and let ¢ be the surface elevation. For an 

‘initial impulse symmetrical about the origin, that is for initial data 

pho = F(a); c=0; 
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where w? = x? +7, the velocity potential of the subsequent fluid motion, and 
the surface elevation are given by* 

ne =, T(#) &= To (wes) cos (Vt) ede, (1) 

eee = [7 In Ga) aia IO) Ze (2) 
where V? = g/x, and 

POs [,F@J (ea endles (3) 

We have assumed that it is permissible to use the integral theorem 

NG) = | “Jo (+o) ede|"F (2) Jy (Ayode. (4) 

We obtain the effect of a pressure system moving over the surface with 
uniform velocity ¢ in the direction Ox by integrating (1) and (2) after 
suitable modifications. We replace ¢ by t—7 and x by «w—cr, and integrate 
with respect to 7 over the time during which the system has been in motion. 
We shall limit the present discussion to the case when the system has been 
in motion for a long time, so that if we take an origin moving with the 
system a steady relative condition has been attained. In this case, with a 
moving origin O, we replace a by w+cw and ¢ by w in (1) and (2), and obtain 
the required resultst 

pp = \ e— 3H" du [7 & Jo [ka/ {(w+cu
)?+¥"} ] cos («Vu) ede, (6) 

mee — [ee au | "Fedo [xr/ {(w-+eu)? +42} ] sin(«Vu) «2Vdee, (6) 

where f(«) is obtained from the assigned pressure distribution p = F (=) by 
means of (3). 

The introduction of the factor exp(—u/2) is familiar in these problems 
and needs only a brief explanation. It may be regarded as an artifice to 
keep the integrals determinate, it being understood that ultimately p is to be 
made infinitesimal. Or, again, it ensures that the solution is the fluid motion 
which would establish itself eventually under the action of dissipative forces, 
however small. 

In the steady motion with which we are concerned, we may imagine a 
rigid cover fitting the water surface everywhere and moving forward with 
uniform velocity c. The assigned pressure system F(a) is applied to the 

* Lamb, ‘Hydrodynamics,’ 6th edn. (1932), p. 432. 
T*Roy. Soc. Proe.,’ A, vol. 81, p. 417 (1908). 

147 



356 Prof. T. H. Havelock. Wave Resistance: Some 

water surface by means of this cover; hence the corresponding wave resist- 

ance is simply the total resolved pressure in the direction Oz.* With the 

usual limitation that the slope of the surface is everywhere small, this leads 

to 

Re [F (w) Eas, (7) 
IX 

taken over the whole surface. 

The evaluation of the steady wave resistance for an assigned pressure 

F (aw) is to be carried out by means of (3), (5), (6), and (7). However, we 

may obtain simpler expressions before applying them to particular cases. 

3. For this purpose we analyse the wave disturbance (5) into simple con- 

stituents, in fact into one-dimensional disturbances ranged at all possible 

angles round Oz, the line of advance. We have 

mIJo[K{(w+euP+y?}?] = [ie (z+ew) cos $ eos (Ky sin h) dd. (8) 
0 

Substitute in (6) and we can now carry out the integration with respect to w; 

for we have 

@o 

2 | e~ aut grxcucos sin (Vu) du 
0 

= (xccosP+KV+hpi)1—(xecosp—KVt+hpi) 3. (9) 

We simplify this expression further by using the fact that m was 

. introduced only to keep the integrals determinate, and is eventually to be 

made infinitesimal; we can therefore reject terms in « which are super- 

fluous for this purpose. The process receives its justification in the course of 

the analysis. This being understood, we can use, instead of the right-hand 

side of (9), the expression 

—2 (V/c?) sec? p/ {«—x sec? 6 +7 (w/c) sec p}, (10) 

where «= g/c?. Using these results in (6), and making a slight trans- 

formation, we can express the surface elevation in the form 

Ko mlz 2 a p 

a 2779p \o ae (, ef (1) { K— ky Sec? +2 (p/c) sec b 

e—t« (cos p+ysin >) ha 11 

Omen 

etx (zcos p+y sin >) 

g 

In (11) we have the surface elevation analysed into plane wave con- 

stituents, each element moving in a line making an angle @ with Oz. Carry- 

ing out the integration with respect to «, we can express each constituent 

* ‘Roy. Soc. Proc.,’ A, vol. 98, p. 244 (1917). 
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in terms of a simple harmonic wave in rear of the line x cos $¢+y sin ¢ = 0, 

together with a disturbance symmetrical with respect to this line. We 

might continue the discussion for general types of pressure distribution, 

provided the functions are such that certain transformations may be used ; 

however, it is simpler to study in detail a few cases for which the conditions 

are all satisfied. 

4. At this stage it is convenient to specify the system 

p= F(o) = As/(PP+ay", - (12) 
where A and f arecunstants. Using (3) for this case, we have f («) = Ae—*/. 

Returning to the expression (11) for the elevation, we consider the element 

making an angle @ with Oz. We change to axes Oz’, Oy’ given by 

“x=xcospd+y sin d, 7’ =y cos $¢—«# sin p. The integral with respect to « 

then becomes 

C) tex! —ikz! 

A Sey a oes fl . (13 
[- ee K—Ky Sec? f +7 (u/c) sec ar K—ky bec? P—2 (w/c) sec p Ko) 

This integral can be transformed by contour integration; as it is of a 

type familiar in plane wave problems* we write down the results when these 

have been simplified by making p zero after the transformation has been 

carried out. We have for the value of (13), 

4arnoA sec? pe-F 8" sin (xgx’ sec? p) 

492A [ Ky Sec? d cos fm + mi sin fm , mz! 5 GH : : GPae eeTO mdm, for x’ <0; 

2A | BIBER O08 UIST eri tone) SOMA) 
0 m* + Ko" sec* 

From (11) and (14) we could now write down the elevation €as the sum 

of the constituents for all values of ¢ in the range from —7/2 to 7/2. The 

first term in (14) represents simple waves in the rear of the corresponding 

wave front z cos ¢+y sin ¢=0; hence the integration of this term 

would only extend over elements for which the assigned point (a, y) was in 

the rear of the wave front. The other terms in (14) represent a disturbance 

symmetrical with respect to the wave front, and diminishing with increasing 

distance from it. We shall not write down the expressions, as we do not 

intend to examine the wave pattern in detail. From the definition in (7), 

it follows that we can evaluate the wave resistance R by considering first a 

simple constituent of the elevation and then summing with respect to ¢. 

Since the pressure system is symmetrical with respect to the origin, the 

symmetrical local disturbance in (14) gives no resultant contribution to R: 

* Compare, for example, ‘ Roy. Soc. Proc.,’ A, vol. 93, p. 524 (1917). 
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also the part due to the regular waves in rear of the wave front 

x cos 6+y sin = 0 is given by 

ce) it) > yl 2 

4 ako? A sec? pe-*o/ser + | dy’ | eyed 

= 477? A2Ky? sec? pe-*ofser*?, (15) 

Collecting these results we have, from (11) and (15), 

[2 

R = (4m/gp) Aa? | sect qh e~ 0120" ds (16) 
0 

We may express R in terms of known functions in two convenient forms. 

Tf Wi,m(«) is the confluent hypergeometric function defined, under certain 

conditions, by* 
4 e742 ak 0 Eee Ra eee 

Wi, m(4) = toa. u (1+u/«) e“du, (17) 

and if K,(«) is the Bessel function for whicht 

iKo(@) = (SIP | * ¢7ac03h 4 cosh nap dyp, (18) 
i) 

we find, after some reduction, that 

R = (a? /4gpf?) A2a3e~ 4? Wy, 1 (a) (19) 

= (1/89pf?) A?ake— 2? {Ko(a/2)—(1+1/a) Ki («/2)}, (20) 

where « = 2kf = 2gf/¢. 

In a previous paper,t the same function of velocity, except for the con- 

stant factors, was found for the wave resistance of a submerged sphere; the 

result was given in the form (19), and a graph was drawn to show Rasa 

function of c. The resistance rises to a maximum in the neighbourhood of 

¢ =/(gf), and then falls asymptotically to zero. 

Although there are few tables available for the functions K, in general,’ Ky 

and K, are given in ‘ Funktionentafeln’ (Jahnke u. Emde) under the form of 

(im /2) Ho (ix) and (7/2) Hi (az) respectively. 

5. Reference has been made to the wave resistance of a sphere submerged 

at a depth /, large compared with the radius a ; this was calculated directly 

as the resultant horizontal pressure on the sphere. The connection with the 

present analysis is easily shown. 

In the paper referred to, the approximate solution for a submerged body 

was found directly, following Prof. Lamb’s method for a cylinder. It is con- 

* Whittaker and Watson, ‘ Modern Analysis,’ p. 334. 

+ Grey and Mathews, ‘Bessel Functions,’ p. 90. 

t ‘Roy. Soc. Proc.,’ A, vol. 93, p. 530 (1917). 

(Note by Editor: These functions have now been tabulated in G.N. Watson, 

Theory of Bessel Functions (pub. C.U.P., 1922). 
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venient to repeat here the expressions for the velocity potential and surface 

elevation due to a cylinder and to a sphere, putting them into the same 

notation for purposes of comparison. We have, for a cylinder 

cara can, 

P Pte Bet 
+ 2¢ca? [jew du f e—*(J-) sin «(w+cw)sin(«Vu)«Vde, (21) 

0 0 

6 = 20 fla? +f?)—20 \eome du | e-Scosx(a+cw)sin(«Vu)«Vde, (22) 
0 0 

and for a sphere 

cazx carr 
= 2{ar+yP+etfype 2F+yP+e—fpp? d 

= ear | ee du ea I) Jo[ea/ {(a+ceuP+y?}]sin(kVu)«Vde, (23) 
0 Jo 

b= afore aye 
=a { ED, [ews [ea/ {(w+eu)?-+y?}]sin (eVu) 2Vde. (24) 

0 0 

These expressions satisfy the conditions at the free surface, namely, 

cop/ dx +96 = 0 and d6/dz = cdf/dx, when yw is made infinitesimal. Oppor- 
tunity has been taken to correct an obvious mistake in sign in the expres- 

sions for the sphere ; in the former paper, the last terms in (23) and (24) 

were given as positive instead of negative. 

Returning to the comparison with § 4, consider the expression (24) for the 

surface elevation due to a submerged sphere. The first part represents a 

disturbance symmetrical about the origin, due to a doublet at the centre of 

the sphere, together with an equal opposite doublet at a point a height f 

above the free surface. Compare now the second term in (24) with the 

surface elevation given by (6) when the pressure system is (12), so that 

f(«) = Ae-*?, The two expressions are identical, with a suitable relation 

between the constants; we must have a*= A/gp, or the corresponding 

moment of the doublet is Ac/29p. We have then two related problems. 

For the submerged sphere the pressure is constant at the free surface, and 

the surface elevation consists of the two parts in (24); the wave resistance 

depends upon the supply of energy needed to maintain the waves contained 

in the second part of (24), and this energy is supplied through the work of 

the pressure at the surface of the sphere. On the other hand, for the travel- 

ling surface pressure, 

p= gp0'T][(P?+ 07), (25) 
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the surface elevation is the same as the second part of (24); hence the same 

supply of energy is needed, and is obtained in this case from the work of the 

applied pressure. Thus we may assuine that the wave resistance is the same 

in the two problems. 

From (19) and (25) we have 

R = 4 oP gpf—Fabade— 9? Wy, 1 («), (26) 

which agrees with the value for the sphere given in the previous paper. The 

connection between the wave patterns of a submerged body and of a certain 

surface pressure has been pointed out by Dr, G. Green in a recent paper,* in 

which the correspondence is developed from a different point of view. In the 

following analysis we deal only with combinetions of simple pressure systems 

(12), and the corresponding submerged body can be found from a similar 

combination of doublets, as in the preceding case. 

6. The foregoing results can be generalised for other symmetrical forms of 

local pressure distribution, provided transformations such as are used in (4) 

and (14) are applicable. Assuming this, it appears, from the analysis of § 3 

and § 4, that fora pressure system p = F (w) we have 

R = (4rr/gp) Ki [see 6 Fle sec? ) }2 dd, (27) 

where f(x) is given by (3). 

7. Some points of interest in the theory of wave resistance can be 

illustrated by combinations of the simple type (12). We consider first two 

equal systems, at a distance 2/ apart, and advancing in the direction of the 

line of centres; that is, 

P= Aff (P+ av)? + Af[(f? + o27)?, (28) 
where oi” = (e—A)?+7? and wo = (a +h)? +y?. 

Writing, for the moment, p; and ps for the two component systems, and 

G, & for the surface elevations which would be caused by these systems 

acting separately, the waves due to the combination are given by &+ 2, since 

we neglect, as usual, the squares of the fluid velocities. It follows from the 

definition in (7) that the wave resistance is the sum of four parts, Ry, Re, Rio, 

and Ry. Here R; is the resistance due to the pressure ; acting on the waves 

produced by ji, Riz is that due to p; operating on the waves caused by po, and 

similarly for Ry and Ray. 

It follows from § 4, that 
1/2 

R, — Ro — (47 g A293 sec? 7 2xaf sec? > cf, y 29 p ; ( 

* G. Green, ‘ Phil. Mag.,’ vol. 36, p. 48 (1918). 
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The terms Rjz and Ra represent the interference effects. Let B, and Bo 

be the centres of the two systems p, and py». To calculate Ra, consider a 
constituent plane wave-front through B,; take this line as a new axis O’7’, 

and a perpendicular line through Bz for the axis O’z’, as in fig. 1. 

Then, corresponding to the expression (15) in § 4, we have as an element of 
Re the quantity 

ut eu cea ic A cos (xox sec? p) div’ 2 3 Ko fsec? If \ Aor ky" A sec? he i \w ( {(@’ + 2h cos $F +924 f) (30) 

The similar element in the value of Riz is the expression (30) when we 
have replaced 2’+2hcos@ by «’—2hcos¢. Adding the two elements and 
carrying out the integration with respect to y’, we have, as an element of 

Ri2+ Ray, 

2A2 acs gy e—Kof sec? * COs (Heoer" sec* ) dan’ Sm fKo A? sec? pe Hos @ + 2heos pF 472 

= 87°? A* sec? He- nose" cos (2eoh sec). (31) 

Replacing from (11) the proper factor and integrating with respect to ¢, 
we have 

ar /2 

Riyo+ Rig = (87/ 9p) xo*A? | sec? pe-*Fse*4 cos (QKoh' sec) dd. (32) 
0 

Finally, from (29) and (32), the total wave resistance R is given by 

7/2 

R = (167/gp) Ata | sec? he-**oFse*d Gos? (Kyh sec p) dd. (33) 
0 

We can express R in series of known functions by expanding cos(2x«oh sec d) 

either in powers of xo, or in Bessel functions J, (21); however, as these 

series involve either Wi,m(2«9/) or K,(«of))t they are of no use for numerical 
calculations. 

It is not difficult to calculate numerical values directly from the integral 

(33) for given values of the constants. To obtain a graph showing the 

T See note by Editor on page 150. 
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variation of the resistance I with the velocity v, the Jollowing method is 

sufficiently accurate, at least for illustrating the main features. 

Take as a definite example, h = 2f; then, writing a for 2qf/c?, we require 

to calculate the value of a* [sect pe “4 cos? (a sec p) dp for various values 

of a. 

The integrand can be obtained without much trouble, and it was found 

sufficient to calculate its value at intervals of 10° throughout the range from 

0 to 7/2; the mean value was found from half the sum of the initial and 

final values together with the sw of the intermediate ones. In the course of 

these calculations, we have material for obtaining the value of 

7/2 : 

a’ | sec? pe 28°'b dh 
0 

by the same method ; but this integral is equal to 

fade {Ko (a/2)—(1+ 1/a) Ky (a/2)}, 

and we can find its value also from the tables of Ky and K, mentioned in § 4. 

By comparing results we obtain some idea of the accuracy of this method of 

numerical integration. The calculations can be lightened for present 

purposes by choosing, from general principles, values of « which correspond 

to important points on the graph. 

By this method we obtain values of R for different values of c, for this 

particular case. The result is shown in the full curve in fig. 2; the scale for 

R is arbitrary, the unit for cis the velocity \/ (gf). The dotted curve is a 

mean curve, and is equal to R:+ Re in the notation of this section; that is 

it represents the sum of the resistances due to the two systems, ignoring any 

interference effects. 

The graph is of interest in its exhibition of the typical humps and 

hollows, occurring in general when 2z7rc?/g is 2 sub-multiple of 2h. ‘The 
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“ prominence of the interference effects depends upon the relative magnitudes 

of the constants f and i; the example we have chosen shows a pronounced 

effect due to the final maximum of interference being near the maximum of 

the mean curve. 

8. We may note briefly the interpretation in terms of a submerged body 

The surface of the body is one formed of stream-lines due to the two equal 

doublets in a uniform stream; the axes of the doublets are in the same 

horizontal line at a depth /, which must be large compared with, at least 

the vertical dimensions of the body. For instance, with suitable relations 

between the constants, the result would give the wave resistance of two 

small bodies, of nearly spherical shape, one behind the other at a distance 

large compared with their dimensions. 

9. By combining simple symmetrical pressure systems, we may generalise 

the previous results; this seems an easier process than the direct discussion 

of unsymmetrical systems. We shall assume that the component simple 

systems are all of the type (12) and have the constant f of the same value, 

and that the centres of the systems all lie on the axis Oz. 

In the first place we must extend the analysis of §8 to two components of 

unequal magnitudes A and B, with their centres at the points (A, 0) and 

(x, 0) respectively. From the argument expressed in (29)-(32), it is easily 

shown that the value (33) for the wave resistance must be altered by replacing 

A? cos? (xo sec h) by 

4 [A?+ B?+ 2AB cos {ko (A—&) sec } J. (34) 

Suppose further that the pressure system is given as a continuous line 

distribution of components along Ox in a range from / to fe, the magnitude 

of the element with its centre at (#, 0) being proportional to some function 

vv (x); in other words, suppose the surface pressure is given by 

fg (h) dh 
pe Lill ese eP 

the function y (/) being such that the transformations used in the preceding 

analysis are permissible. For the system (35) we have to sum (34) for all 

possible pairs of elements; this is performed by taking the double summation 

3 jvm dh [.¥® cos {xo (h—k) sec p} dk. (36) 

(35) 

The wave resistance for the system (32) can be completed now from (33) 

and (36); we have 

R = (4r/gp) 00°? 
| aya | oR | “F008 he- 20/00" cos {iy (h— lk) sec} dg. (37) 
hy hy 0 
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10. Consider as an example the case when w(/) is constant, so that the 

surface pressure 1S 

y dh 
plAf = l. {@—hp+pPtfey? 

ee x—h A, eth 

(PAP) @-AP+P TPP? (PAP) E+hPE P+ Py? 
This may be regarded as the combination of two equal systems of opposite 

sign, with their centres at the points (A, 0) and (—h, 0) but not symmetrical 

round these points. 

In this case, after carrying out the integrations with respect to h and & 

(37) gives 

(38) 

ar [2 

R = (16 7/gp) A? ko { sec? dh e~?noSsec?$ gin? (x9 sec h) dd. (39) 
0 

The integral may be treated similarly to (33). One of the main differences 

lies in the factor sin? (xoi sec p) instead of cos? (xo sec pd); this is because 

we have now two equal positive and negative systems instead of two positive 

systems, and in consequence the series of humps and hollows on the resistance 

curve will be interchanged. 

We have chosen this case partly because of the corresponding problem in 

the motion of a submerged body at depth 7. Integrating a line of doublets 

of constant strength results in a simple source at one end of the line and an 

equal sink at the other. Hence, the submerged body is one of the oval- 

shaped surfaces of revolution formed by combining a source and sink with a 

uniform stream; it follows that, as in §5, the strength of the source is 

Ac/2gp. It may be noted that the coefficient A in (39) has different 

dimensions from that in (33), agreeing with its introduction in (38). By 

making / small in (39) we regain the former result for a sphere. 

11. If a prolate spheroid of semi-axis a and eccentricity e is moving in an 

infinite liquid with velocity ¢ in the direction of its axis of symmetry, it can 

be shown that the velocity potential may be written in the form 

ae (a?e?—h?) (a—h) dh 

b= Al” Gaara ey 
where A = 1/[4e/(1—e?)—2 log {(1+e)/(1—e)}], and where we have, for the 

moment, taken Ow along the axis of symmetry of the spheroid. This 

expresses ¢ as due to a line of doublets ranged along the axis between the two 

foci. Hence the surface pressure corresponding to the motion of the spheroid 

with its axis at depth 7 is 

(40) 

ze (ae? —h?) dh 
p= 20th | eairersr Te “) 
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reverting to axes with the origin in the free surface. It should be noticed 

that, as in § 5, the surface pressure (41) does not give the same surface 

elevation as the moving spheroid; the surface condition in the latter case is 

that the pressure should be constant at the free surface. But (41) does give 

the same wave formation as the spheroid, and that is the part of the surface 

effect upon which the wave resistance depends. The complete surface eleva- 

tion can be easily written down by direct methods as in the case of the 

submerged sphere. 

Using (41) now as an example of (35), we find the wave resistance of the 

spheroid from (37) ; after integrating with respect to / and &, the result is 

ar | 2 

Re 128 gpa | sec? he-2oF8"4 {Tso (xyuesec p)}2deb. (42) 
0 

It can be verified that this gives the result for the sphere by making e zero. 

For a given relation between f and ae, the value of R can be obtained 

approximately by the numerical methods used in the previous examples ; 

judging from rough calculations, it appears that the resistance curve does not 

show prominent humps and hollows. This might be anticipated from the 

surface pressure (41), which can be evaluated in simple form; if we repre- 

sent the pressure distribution by a surface with p, a, and y as co-ordinates, 

then (41) gives a single oval-shaped peak with its longer axis in the direction 

Oz. On the other hand, the pressure distribution (28) represents two 

distinct peaks. We may compare in this respect the behaviour of ships’ 

models; it depends upon the shape of bow and stern, and the relation 

between them, whether the resistance curve has marked interference effects 

or is a continuously ascending curve. 

12. We have limited the previous cases to combinations of simple pressure 

systems ranged along the axis Oz. The method can obviously be extended 

to systems with their centres on Oy; or again, for systems situated in the 

plane zy, a four-fold summation in the manner of (36) would give further 

generality. For the corresponding problem of the motion of a submerged 

body, one could obtain the wave resistance of any body whose surface is 

formed of stream lines due to the combination of sources and sinks with a 

uniform stream. 
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TURBULENT FLUID MOTION AND SKIN FRICTION. 

By Professor T. H. Havetocx, F.R.S. 

[Read at the Spring Meetings of the Sixty-first Session of the Institution of Naval Architects, 
March 26, 1920. | 

INTRODUCTION. 

1. Iv is generally admitted that our knowledge of the laws of skin friction for a 
solid moving through a fluid is not very satisfactory. This may be ascribed to two main 
reasons: in the first place the inherent difficulties of the theory of turbulent fluid motion are 
great even in the simplest cases, and in the second place most of the experimental data 

which are available have been gathered, not with the primary object of building up a 
consistent theory, but with more immediately practical aims in view. 

Although no general investigation is attempted in the following notes, it is hoped that 
they may be of interest as a critical discussion of certain aspects of the problem. The 
work may be summarized briefly as fcllows :— 

(1) An examination of experimental results with a view to defining or estimating the 

(apparent) velocity of slip of a fluid in turbulent motion past a solid. 
(2) The expression of the frictional force per unit area at any point of a plane surface 

in the form «pv, where v is the relative velocity at the point; determination 
of the value of « from experimental results. i 

(3) The calculation of the total frictional resistance in the case of a plank for which 
the distribution of velocity is known; remarks on the distribution of velocity 
for a long plank. 

(4) Two numerical calculations to illustrate the assumptions involved in applying a 
similar method to curved surfaces. 

(5) Connection with the law of similarity ; the effect of the ratio of breadth ta length 

in the case of planks; remarks on the extension to long planks and high 

velocities ; general problem of ship resistance. 

RELATIVE SURFACE VELOCITY. 

2. When a liquid flows in steady turbulent motion through a pipe it is usual to 
express the resistance of the wall in terms of the mean velocity over the cross-section, 
because it can be defined precisely and measured accurately. Further, in any theoretical 
study of the motion, it seems necessary to assume that the fluid velocity at the wall 
is zero, there being no slipping of the layer actually in contact with the wall. However, 
in many cases it is found that the velocity varies little over a large part of the cross- 
section and is an appreciable fraction of the mean velocity at points very near the wall; 
this occurs when the turbulent régime is well established, either because of high velocities 
or of large diameter of the pipe. It may be then. for some purposes. a matter of prac- 
tical convenience to treat the motion as if there were a velocity of slip at the wall. The 
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2 TURBULENT FLUID MOTION AND SKIN FRICTION. 

magnitudes involved may be illustrated by some numerical cases. Taking indirect calcula- 
tions first, we may quote an instance from Lamb’s Hydrodynamics (6th edn., p. 666). 

Assume that the resistance per unit area of the wall of the pipe is given by xpv?, 
where p is the density and v, the mean velocity of the liquid. Also suppose the velocity 
to be approximately v, over the cross-section, except in a thin layer of thickness 1 
in which there is laminar flow. Im order to obtain the same resistance per unit area, 
we must have pv,/l = «pv, or 1=v/kv,, where pw is the viscosity and v the kine- 
matical viscosity. For water moving with a mean velocity of 300 cm./sec., this gives 

I = 0:024 cm. 
For the cognate problem of the motion of a solid through a liquid, take an example 

from Froude’s data for planks. The resistance of a 2-ft. plank at 600 ft./min. is given 
as 0°41 Ib. per sq. ft.; the thickness of the equivalent layer for laminar motion giving 
the same resistance is found from pv/l = 0°41, or 1=0-°007 in., approximately. 

But these are indirect estimates, and we turn now to experimental determinations 

of the velocity. Here the velocity is obtained by means of a Pitot tube, and it is obvious 
that the nearest point to the wall at which an experimental value can be found depends 
upon the dimensions of the Pitot tube. For the motion of a plank through water we 
have Calvert’s measurements of frictional wake.* In this case the Pitot tube was one-eighth of 

an inch in diameter. It was found that the relative velocity at the surface of the plank 
decreased from full speed at the front end to about half that speed at the aft end of 
a 28-ft. plank moving at about 400 ft./min. For turbulent flow through pipes, passing 
over the earlier work of Bazin and others, we may take an example from measurements 
by Stanton.t The Pitot tube was of rectangular section, the external dimension in the 
direction of the radius of the pipe being 0°33 mm. With a smooth pipe of 2°465 cm. 
radius, the velocity at the axis being 1,525 cm./sec., the velocity at 0°025 cm. from the 
wall is given as 592 cm./sec. Further, the mean velocity is about 0°81 of the velocity 

at the axis.{ Hence we may deduce that the (apparent) velocity at the wall is 0°475 of 
the mean velocity. A similar result is obtained from other cases given in the papers 
quoted, the value of Vd/v being in the neighbourhood of 50,000. 

We shall assume that we can refer to a relative surface velocity which is sufficiently 
definite for certain purposes, the limitations being indicated by the numerical examples 

which have been given. 

PLANE SURFACES. 

3. We wish to see if the frictional force per unit area on any plane element of surface 
can be expressed by «p v*, where v is the relative velocity of the fluid and wall at the 
point, p is the density of the fluid, and « is a non-dimensional coefficient of roughness. 
One of the earliest attempts to analyse turbulent fluid motion, by Boussinesq, involved 
a surface friction of this kind, together with a constant effective coefficient of eddy 
viscosity, or of mechanical viscosity as it was called by Osborne Reynolds. Experimental 
results on flow through pipes can be fitted more or less by a scheme of this kind, but 
it is generally recognized now as only an approximate statement. In the first place the 
mean friction on the walls is not simply proportional to (velocity), but depends also on 
the diameter ; so that the friction on an element of the wall may include a term involving 
its curvature. Further, the effective eddy viscosity is not found to be constant over the 
cross-section, though it varies little except near the walls. A similar theory has been 
applied recently by G. I. Taylor to the turbulent motion of the atmosphere and the skin 
friction of the wind on the earth’s surface. 

Rankine, in his method of augmented surface, assumed a skin friction proportional 

* C. A. Calvert, Trans. I.N.A., Vol. XXXIV., p. 61, 1893. 

} T. E. Stanton, Proc. Roy. Soc., A, 85, p. 366, 1911. 
+ Stanton and Pannell, Phil. Trans.. A, 214, p. 205, 1914. 
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to (velocity)?; but the working out of the idea involved various assumptions which 
are no longer regarded as legitimate. 

In these notes, the scope is much more limited. The method is applied, in the first 
instance, only to plane surfaces ; and, without further theoretical elaboration, some experi- 
mental results are examined from this point of view. 

To obtain a value of the coefficient x for smooth surfaces, take first some of the 

earlier data: Bazin’s results for water flowing in open smooth canals of great breadth 
compared with the depth. These have been expressed in various empirical formule; we 
shall quote one numerical case.* If R is the skin friction per unit area, V the mean 
velocity, v,, the velocity at the open surface and v the (apparent) velocity at the bottom 
of the canal, we are given 

Om =V (1 +1812); v= V(L— 3-626) 
where ¢ = 2 R/p V*. With a mean velocity V = 142-9 em./sec., and ¢ = 0-0044, this gives 

R = 0-0022 p V2 = 0:0038 pv? 

However, we have a more accurate expression of recent work in Lees’ formula for turbulent flow 

in smooth pipes,t namely :— 

R = p V*{0-0009 + 0°0765 (/V d)°*>\ 
This formula includes the results of Stanton and Pannell quoted in the previous section ; 
we may therefore use for the reiation between the velocity » at the wall and the mean 
velocity V the equation v = 0°475 V. Further, if we assume the formula to hold when 
the diameter d of the pipe is made very large, we deduce an expression for a plane 
surface in the required form, namely :— 

R = 0:004 p v® 

We shall use this expression to estimate the frictional resistance of a smooth plane surface, v 
being the relative velocity at the surface. 

4. In order to apply this method, it is necessary to know the distribution of velocity 
over the surface. Unfortunately there are very few determinations available for this 
purpose, although no doubt others may have been made in recent years. The only 
direct observations which have been published appear to be those of Calvert, given in 
his paper on the measurement of wake currents to which reference has already been made. 

A plank, 28 ft. long and coated with black varnish, was drawn along the surface 
of water and measurements were made with (Pitot) tubes projecting beneath the underside 

of the plank. “The speeds recorded at distances of 1 ft., 7 ft., 14 ft., 21 ft., and 28 ft. 
from the leading end were respectively 16 per cent., 37 per cent., 45 per cent., 48 per 
cent., and 50 per cent. of the velocity of the plank; and these proportions appear to be 
maintained at all speeds between 200 and 400 ft. per minute, the latter being the highest 
speed that the arrangements would allow.” 

The relative velocities at these points are thus, respectively, 0°84, 0°63, 0°55, 0°52, and 
0°5 of the velocity of the plank. The width of the plank is not stated, and we must 
assume the effect of the finite width upon the distribution of velocity to be small. 
Summing up the friction along the plank, supposed of unit width, we have :— 

28 
Total skin friction = i 0°004 pv*dl 

0 

From Calvert’s observations we may draw a fair curve showing the variation of v*/V* 
along the plank, where V is the velocity of the plank; it is shown in curve A of Fig. 1. 

*Data from Von Mises, Elem. der Tech. Hydromech., teil 1, p. 97. 
TC.H. Lees, Proc. Roy, Soc., A, 91, p. 49, 1914. 
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The integral can now be evaluated approximately from the graph; applying Simpson’s 
rule with intervals of 1 ft., the integral of v?/V? along the plank comes to 10°2. With 
a velocity V = 400 ft./min., this gives a total resistance of 3°51 lb. 

The resistance of the plank was not measured by Calvert. However, we may obtain 
another estimate from W. Froude’s results (Brit. Assoc. Reports, 1874). Using Plate II. 
of that report, we can read off from the curves the resistance of a 28-ft. varnished 

plank at 400 ft./min.; it is 3°51 lb., as nearly as can be estimated. Naturally one 
need attach no importance to the coincidence; except that with a constant coefficient 
«x = 0°004 and taking account of the actual distribution of surface velocity, the value 
of the total friction is in agreement with direct measurements in similar cases. 

5. It must not be supposed that this method means that the total skin friction is 

proportional to the square of the velocity V of the body. From the theory of physical 
dimensions applied to similar bodies we have :— 

R = p Vf (V Iv) 

On the present statement, the only difference is that it is the relative surface velocity 
which is some undetermined function; for instance, in the graph of Fig. 1, if x is the 
distance from the leading end the graph must satisfy an equation of the form :— 

v/V? = F (2/l, V1/v) 

After integrating along the plank, we obtain then R in the general functional form given 

above. 
6. Assuming the value 0°004 for x for smooth planks we may deduce some informa- 

tion as to the fall of surface velocity, for the mean resistance per unit area divided by 
kp gives the average value of v* over the surface. 

Taking Zahm’s experiments * on varnished planks in air, using a suitable value of 
p and taking the results as they are given in the table for the resistance of planks of 

various lengths at 10 ft./sec., we obtain the following :— 

Length .. ¥ at 2 4 8 12 16 
Average v*/V?.. so OSB OSB ORIG — Osea 0°49 

From the similar tables of W. Froude for planks in water at 10 ft./sec., we find— 

Length... ae Be 2 8 20 50 
Average v?/V?_.. Pens 29 0:419 0°359 0°316 

There is a much quicker fall in water than in air, but of course the VJ/y values do not 
correspond in the two sets. Froude gives a column which is said to be the resistance 
per square foot of the last foot of plank; this is, one may suppose, obtained as the 
difference in resistance of two planks differing in length by 1 ft., and it obviously 
assumes that the addition of 1 ft. to the rear of a plank does not alter appreciably 
the distribution of velocity over the rest of the plank. Taking the figures as they stand, 
we may deduce the average value of v* over the last foot of plank for various lengths ; 
they give :— 

Length Ge at ne 2 8 20 50 
Average .. 58 eee OsI503 0-340 0-309 0-291 

the second row being the average value of v?/V? over the last foot. Taking the square 
root, we may estimate the relative velocity at the end of a 50-ft. plank moving at 10 
ft./sec. as about 0°54 of the velocity of the plank; and this estimate will be on the high 
side. It may be compared with the value 0°475 which we found for the similar ratio 
in flow through pipes when the steady state has been reached. 

* A. F. Zahm, Phil. Mag., 8, p. 58, 1904. 
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CURVED SURFACES. 

7. If a body is moving through a liquid we may suppose the force on an element 
dS of the surface to be resolved into a normal pressure and a frictional force RdS; 
the latter will be in a direction opposite to the relative velocity and, if we suppose it 
to make an angle @ with the direction of motion of the body, we may define the skin 

friction as [Rd Scos 6, taken over the wetted surface. 

For plane surfaces we have shown that there is some justification for taking R equal 
to x pv, where v is the relative velocity ; in the general case one would probably have 
an additional term involving the curvature of each point. Consider first the case of “two- 
dimensional ”’ flow, when the longitudinal cross-section of the body is of ship-shape form. 
Here each element is curved in the line of motion, and if the curvature is small and we 

assume R = «x pv”, the effect of the curvature is to be found in the distribution of velocity. 
The effect of this kind of curvature has been discussed by Mr. G. 8. Baker by estimating 

the distribution of velocity in stream-line motion. It should be noted that it is not the 
same as the effect of the shape of midship section, for there the curvature is at right 

angles to the line of flow. Naturally in three-dimensional flow both effects are superposed, 
and cannot be disentangled. No experimental determinations of surface velocity appear to 

have been published, at least for ship forms in water. The extension from plane to 

curved surfaces is thus to a large extent speculative: however, as the extension has been 

made already in other methods, two numerical examples are given here to illustrate the 

various assumptions. 
8. For two-dimensional motion, suppose that the model js 28 ft. long, as for Calvert's 

plank, with a longitudinal section shown, as to the upper half only, in model C of Fig. 1. 

This is a form for which Baker and Kent * have calculated the pressure distribution in 

stream-line motion; from the curves given in that paper we can draw a curve of the 

distribution of v?/V2 in stream-line motion, v being the relative surface velocity and V 
the velocity of the model. Now, as an arbitrary assumption, suppose that in turbulent 

flow v? diminishes for the model according to the same law as for the 28-ft. plank ; 

that is, we take a reduction factor at each point from the curve A of Fig. 1. We obtain 

thus the curve © of Fig. 1 as an estimated distribution of relative velocity, or rather it 

* G. S. Baker and J. L. Kent, Trans. I.N.A., Vol. L., Pt. I1., p. 37, 1913. 
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shows the values of v?/V? for the model. Also the total skin friction, per unit breadth 

=|RdScosé = |x prdl 

taken along the straight axis of the model. Estimating the area under the curve C, and 
the curved length of Model C, we can calculate the mean resistance per unit area. It 
appears that the model has a mean resistance per unit area about 11 per cent. greater than that 
of a plank of the same length. 

9. For a three-dimensional case we take similar preliminary data from a paper by 
Mr. D. W. Taylor * on solid stream forms. We carry out the same process as in the 
previous section, and it is unnecessary to reproduce the corresponding curves. The only 
difference arises from the fact that the solid is one of revolution with pointed ends ; con- 
sequently the element of area approaches zero at the two ends. If y is the ordinate of 
the ship form at any point on the axis, we have to graph the values of yv? on the 
straight axis of symmetry as a base, instead of simply v* as in the two-dimensional 
problem. As far as the numerical approximation has been carried, it appears that the 
mean resistance per unit area for this model is about equal to, or slightly less than, that 
of a plank of the same length. 

10. The resistance of a small appendage on the surface of a ship must depend chiefly upon 
the relative surface velocity in its neighbourhood. It is appropriate to refer here to some 
experiments by Mr. Baker + to determine the added resistance due to local roughness 
of a model. If the rough area were small enough relatively so as not to affect appreci- 
ably the flow over the rest of the model, and if the slope of the surface and the direction 
of flow were known, it might be possible to deduce information about the velocity distri- 
bution ; however, one cannot analyse in this way the results to which reference has been 
made. 

In regard to skin friction for curved surfaces especially, one may venture to quote 
and endorse a remark made by Professor Lees {: “It is of prime importance that further 
measurements should be made on bodies which lend themselves to simple theoretical 
treatment in order to build up a satisfactory theory.” 

Law OF SIMILARITY FOR PEANKS. 

11. The law of similarity in its usual form :— 

R = p V?f (V Ijy) 
applies to bodies which are geometrically similar in form, and are similar as regards 
scale of roughness. In experiments with planks we may perhaps neglect the thickness 
and suppose the motion to be in two dimensions only ; but the planks will not be similar 

unless the ratio of breadth to length is constant. In other words, the general formula 
from physical dimensions is :— 

R = pV°f (b/l, Vly) 
where the undetermined function depends upon two quantities, the ratios 6/1 and V ljv. 

In most experiments the ratio 6/1 has not been kept constant, but the planks have 
been of constant breadth and varying length. Consider, for example, Zahm’s results,§ 
which he expressed in the empirical formula :— 

R = kl-°07 yres 

* D. W. Taylor, Trans. I.N.A., Vol. XXXVI., p. 234, 1895. 
t G. S. Baker, Trans. North-East Coast Inst., Vol. XXXII., p. 50, 1915. 

{ C. H. Lees, Trans. I.N.A., Vol. LVIII., p. 64, 1916. 

§ Zahm, loc. cit. 
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It is usual, following Lord Rayleigh, to correct this to satisfy the law of similarity 
and to write :— 

R = Const. x p V? (p/V 1)?! 

It is probably true that the experiments are not sufficient to decide between these two 
forms. The present point is that without altering the empirical law as regards J and V, 
the formula can be made to satisfy the dimensional equation by writing it, for instance, 
in the form :— 

R = Const. x p V7 x (U/b)° x (v/v)? 

Similar remarks may be applied to Froude’s experiments with planks in water. For instance, 
with planks coated with fine, medium, or coarse sand the resistance is proportional to the 
square of the speed. Hence in these cases the quantity R/p V? is a function of the ratio 
b/l and of the coefficient «, which may be called the ratio of roughness; but it is not 
possible to separate the two effects in the results. 

12. Consider the distribution of relative surface velocity from front to rear of a long 

plank. Neglecting the disturbance of the edges, we may divide the distribution roughly 

into three stages; firstly, one in which the 
velocity falls rather rapidly, then a long 
stretch in which it is practically constant, 

and finally a relatively short stage in which | gpy: 

the influence of the end is appreciable. For 
a very long plank in which the middle 
stage predominates, the mean resistance per 
unit area will approximate to « pv*, where 
» is the steady value of the surface 
velocity. On the other hand, for shorter a 
planks a two-term formula may be 
sufficient, which may possibly be of the type 
p V7{A +B (v/V1)"}. 

Again, if the breadth is taken into account such a formula would be incomplete. 
Here in the extreme case of a long plank of finite breadth, the analogy of steady flow 
through a pipe is suggested; and the mean resistance should approximate to a two-term 

formula of the type just given, with the length J replaced by the breadth d. This is 
the argument which has been worked out by Professor Lees in the paper * already quoted ; 
in that analysis d is taken as the diameter of an equivalent circular cylinder and deduced 
by a certain method from the dimensions of the plank. 

13. On the analogy of the law of similarity for flow in pipes, Mr. Baker f has collected 
results on planks and models into one diagram in which R/p V® is graphed on a base 
Vljv. We have seen that certain reservations are necessary in grouping the data from 

planks in this way; but the general trend of the curves obtained is very suggestive. Fig. 2 
shows the main points in a diagrammatic sketch, not drawn to scale, but based on the 

paper quoted. 
The stage AB represents simple viscous fluid motion when R is proportional to V. 

BC is an unstable condition when the flow may be partly simple and partly turbulent ; 
after C the latter régime becomes permanently established. If the resistance R is repre- 
sented by a single-term formula f V”, it is clear that the best single power is V” in the 
neighbourhood of the points B and C. It may be noted that Froude gives V* for short 
smooth planks of 2 ft. in length, and it may be presumed that the region near C was 
then under observation. As the length is increased, the best single power decreases to, say, 
vis} near D, if we take this point to represent the limit of available data. Froude’s 

* C. H. Lees, loc. cit. 
+ G. S. Baker, Trans. North-East Coast Inst., loc. cit. 

Fia2 

vl/y 

164 



8 TURBULENT FLUID MOTION AND SKIN FRICTION. 

extension to very long planks is equivalent to extending the curve beyond D so that 

it approaches the base-line ultimately. On the other hand, the analogy with the problem 
of flow through pipes suggests that the curve approximates ultimately to a line at a 
finite distance above the base-line. In the latter case, the best single power must 
increase again at some stage and ultimately approach V* again. However, it is generally 
recognized that all that can be said is that any reasonable extension of the curve beyond 
D must lie within certain limits, that in fact being the statement made by W. Froude* 
in this respect; we are not able yet to decide between alternative methods. 

14. In conclusion a few remarks may be made on the general problem of ship resist- 
ance. It is usual to divide up the total resistance into three parts: frictional, eddy- 
making, and wave-making resistance. An alternative method is to think of the direct 
action upon each element of the wetted surface; this action may be resolved into a 
normal pressure p and a tangential force R at each point. The integrated effect of R 
gives the total skin friction, while the resultant of the pressure distribution may be called 
the body or form resistance. In the ship problem it is assumed that the latter corre- 
sponds in the main to the wave resistance, together with that due to eddy-making of 
the more obvious kind; however, in general, the distribution of normal pressure and of 

tangential force will be interdependent and will each be affected by all the circumstances 
of the motion. It would be of interest to have some case analysed in this way, with the 
pressure distribution determined experimentally. This method has been adopted in the 

corresponding problem in aeronautics, which is simpler in some respects. For an airship 
envelope, in the form of a surface of revolution, the pressure distribution can be found 
experimentally ; the difference between the resultant and the total resistance then gives 
the skin friction.t If there were, for the same case, experimental determinations of the 

distribution of velocity over the envelope, it would be possible to compare the total skin 
friction with the resultant of a distribution of tangential force k pv? taken over the surface. 

Results for submerged bodies in water might be deduced from those in air by the law 
of similarity ; but it would be preferable if direct results could be obtained, experimentally, 
for the distributions of normal pressure and of velocity for simple forms intermediate 
between the plank and the ordinary type of ship model. 

* W. Froude, Brit. Assoc. Reports, 1874, p. 255. 
7 Ci. L. Bairstow, Applied Aerodynamics, p. 357. 

165 



[Reprinted from the PROCEEDINGS OF THE Roya Society, A. Vol. 98] 

The Stability of Fluid Motion. 

By T. H. Havetock, F.R.S. 

(Received January 31, 1921.) 

1. The following notes on the stability of fluid motion arose from a desire 

to use the energy method, introduced by Reynolds and moditied by Orr, as a 

measure of the comparative degree of stability of various types of flow under 

different boundary conditions. A few examples are worked out to illustrate 

this point of view: in § 5 a case which resembles the flow of a stream with a 

free surface; in §7 flow which approximates to a uniform stream between 

fixed walls without slipping at the walls; in §§6,8 motion with other 

boundary conditions. Before proceeding to these, it seems desirable to give a 

short account of the method in the form in which it is used later, together 

with some remarks on its relation to the classical method of small vibrations. 

2. We shall consider only two-dimensional motion of an incompressible 

viscous fluid limited by the planes y= +a. Let the steady state under an 

assigned forcive and given boundary conditions be specified by a velocity, U, 

parallel to the axis of wz. Let the disturbed state have velocity components 

(U+4u, v)and let the additional pressure be p. Then, by taking the difference 

of the two sets of hydrodynamical equations for the two states and neglecting 

squares and products of the additional velocities, we have 

ow ou, OU 1 op 
tt UY == Ss BK W2 eP wag’ foyie pant” 

Ov 77 Ov 1 Op AE) Of ee Eee Pp 1 
Bo Bs p yp ar ©) 

together with the equation of continuity. 

It is convenient to introduce non-dimensional variables given by 

Ge = We y = an; at = Ut; 

where U is the mean velocity over the cross-section in the steady state. 

Further, we write UU instead of U, and take the current function of the 

additional velocity to be Uay. Eliminating p from the two equations (1), we 

obtain 
@ , @\ 5 WOOP a 

R (sta) v—RU ae ay, (2) 

where U” is written for d?U/dn?, and R is Reynolds’ number 2aU/v. There 

are in addition the appropriate boundary conditions for the disturbing 

function, y. The classical method of examining the stability of a given 
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distribution U consists in assuming a solution of (2) of the form 

exp. {i(nr+pE)} fa(n). For any arbitrary real value of p, the corresponding 

possible forms of f,(7) and values of m are found from (2) together with the 

boundary conditions. The distribution U may be said to be thoroughly 

stable if every possible value of 7 has a positive imaginary part, and if this 

holds for all positive values of KR. 

The usual boundary conditions, which we shall assume in the first place, 

are u = 0, v = 0, or 

y=0; apfoy=0: = +1. (3) 
From the work of Kelvin, Rayleigh, Orr, Hopf, and others, it may be taken 

that the simple shearing motion, U = 1+, is thoroughly stable in this sense ; 

and probably a similar conclusion holds for motion under a constant force or 

pressure gradient, namely U = 3(1—7?). 

There are various possible explanations of the well-known divergence 

between these results and the behaviour of actual fluids. In the first place, it 

is obvious that the physical properties, whether of the fluid or of the walls, are 

inadequately specified in the mathematical statement of the problem. But, 

apart from this, the disturbances have been supposed small, and second order 

terms neglected. Again, in a system of this type, a disturbance may be 

small initially and may converge ultimately to zero, but may be very large at 

intermediate times, and may thus give rise to practical instability. 

The energy method of Reynolds is in a different category from these in 

that it takes the mathematical problem as it stands and does not necessarily 

involve the actual magnitude of the disturbance; in fact, it forms a new 

criterion or measure of degree of stability. The energy of the disturbance 

being defined by B= boat? jl (aby. (Sey dé dn, (4) 

we have from (2) and (3), after integrating by parts, 

dk dy d = u0?[R((u Se aedn—2 ([(yyyr dean |.) 
Here dE/dt means the rate of increase of E ina region whose end boundaries 

move with the steady velocity U. We may replace this by 0E/ot for a region 
with fixed ends, and we shall then have additional terms on the right of (5) 

denoting flux of energy across these ends. The latter terms may be omitted 

under conditions which cover the usual cases: namely, either the disturbance 

is periodic in &, or it is limited or localised so that y and its derivatives 

converge sufficiently rapidly to zero for = +c. We shall assume such 

conditions to hold in what follows, and references to boundary conditions 

mean those which hold at the planes 7 = +1. 
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Reynolds’ method of using (5) to determine a criterion of stability 

eonsisted, in assuming a suitable form for x and finding the least value of It 

for which the right-hand side of (5) is zero. It is usually stated that this 

method assumes turbulent motion to be already in existence, and it then 

gives a criterion to show whether the turbulence is increasing or decreasing 

momentarily ; but this is somewhat misleading without defining what is 

meant by turbulent motion. Equation (5), as stated above, applies to any 

small arbitrary disturbance, neglecting terms of the second order, as in the 

ordinary method of small vibrations; further, U is a laminar fluid motion 

satisfying the usual hydrodynamical equations under the given conditions. 

On the other hand, Reynolds defined U as the mean velocity at each 

point, taken over a small region or during a short time, and this principal or 

mean motion need not satisfy the ordinary equations. The extra velocities 

uw and v then play a double part, in that they specify the disturbance, and at 

the same time give a measure of the turbulence; they must satisfy certain 

conditions as to their mean values, and then equation (5) holds in the same 

form when mean values are used. However, in applying it to find the 

criterion for flow under a constant pressure gradient, Reynolds, and Sharpe 

following him, did, in fact, take U to be the usual form, C (a?—y?), for steady 

laminar flow. But in turbulent flow, although the variations of velocity at 

any point are small, yet they may cause the gradient of the mean velocity to 

differ appreciably from its value in laminar flow, as is obvious from a com- 

parison of the curves of distribution of velocity across a pipe in regular and 

in turbulent flow. 

” However, it is unnecessary to dwell on this distinction, as it has been 

pointed out clearly by Lorentz* and other writers; further, we shall 

consider here only small disturbances. 

3. Under these circumstances, the energy method has been given a precise 

and definite meaning by Orr} from the following considerations :— 

If the right-hand side of (5) is positive, the energy of the disturbance is 

momentarily increasing. But, for a given velocity distribution, U, it may be 

impossible to find any function, y, satisfying the boundary conditions, such 

that that expression is positive, unless R exceeds a certain value. If such be 

the case, this least value of R is a critical value of definite significance. The 

corresponding critical disturbance is found by taking the variation of the 

Soman R | | U x dé dn —2 {| (yp dé dn = 0, (6) 

subject to dR = 0. 

* H. A. Lorentz, ‘Abhandlungen iiber Theor. Phys., vol. 1, p. 43. 
+ W. MeF. Orr, ‘ Proc. Roy. Irish Acad.,’ vol. 27, p. 9 (1907). 
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Carrying out the variation, and using the boundary conditions (3), we 

obtain 

OW py Oh 4viy+ 2RU aEon nD eT (7) 

To find the critical value of R, we assume first that & occurs in y as a 

factor exp. ip£, and then solve (7); using the boundary conditions, we have 

an equation from which we can find the least value of I for a given value 

of p, and finally we take the minimum value of R with respect to p. 

The process has been expressed in a different form by Hamel.* Using the 

corresponding Green’s function for the equation y*y = 0, the equation (7) 

may be replaced by a linear integral equation for y, of which the required 

value of R is the lowest characteristic number. 

Returning to equation (5), if dE/dt is positive for any assigned initial 

disturbance, it does not follow that the motion is unstable in the ordinary 

sense. But, if there exists an absolute minimum for R in the manner 

explained above, it follows that, when R is less than this value, dE/d¢ is 

negative for every initial disturbance, and must always remain negative. 

Thus the system has at least a much higher degree of stability for such 

values of R compared with those greater than the critical minimum. 

Obviously, this method does not produce any new information which is 

not implicit in the ordinary equations, such as equations (2) aud (3); but it 

presents part of that information in a different form, so that the critical 

minimum of R may be used as a measure of the degree of stability of various 

distributions of velocity under different boundary conditions. 

4. It is convenient to classify the boundary conditions under which the 

energy equation (5) is valid. For this purpose we use an alternative form 

derived directly from equations (1), with the ordinary notation 

0 Ou , oO 0: 
Pz = —pt 2a; Pay = (SESE) Py = —P+2u5, (8) On, 

We have 

di 
a= | {u (lprr+ Mpry) +0 (pry + mpyy)} ds—p {{ wv a dx dy 

i [[{e= 2 + Pyy x + Pry (S42) b dxdy, (9) 

where ds is a line element of the boundary and (/, m) the normal. 

We have specified the conditions at the end boundaries, and we are con- 

cerned now with the planesy= +a. It follows that we get the energy 

* G. Hamel, ‘Gott. Nachr., Math. Phys. Klasse,’ 1911, p. 261. 
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equation (5), without any surface integrals expressing transfer of energy across 

the boundaries, with the following combinations : 

(i) w= 0, v= 0; (i) w= 0, py, = 0; (ail) v=0, pr, = 0; (iv) Pry =0, Py = 0. 

We may also verify that, under these conditions, the variation of (6) leads 

to the same differential equation (7). 

5. Most of the fluid motions whose stability has been examined, come under 

case (i) of the above. A different case of special interest is a stream with a 

free upper surface, the conditions at the upper surface being as in (iv). These 

conditions, however, do not lead to simple expressions in terms of the 

disturbing function, yr; moreover it is not permissible to regard the upper 

free surface as rigorously plane. We therefore, following Kelvin,* replace 

the problem by one which is very nearly the same but is more easily 

specified; it may be described as a broad river flowing over a perfectly 

smooth inclined plane bed, the upper surface being fitted by a parallel plane 

cover moving with the water in contact with it. The conditions at the 

upper surface then come under case (ili) of the previous section. 

We take the origin in the upper surface in this case, so that a is the depth 

of the stream and R is aU/v. The steady state is given by 

U =$3(1—-7’). (10) 

Using this in (7) and assuming y to be proportional to ¢’?‘, the differential 

equation becomes 

(4-1) ¥-1 (20a +) =0, (11) 

where « = pn, and k = 31R/2p*. 

The boundary conditions are w= 0, v= 0 at the bed of the stream, and 

v = 0, Pr = 0 at the upper surface; these reduce to 

ay = 0, Ayr /da? = 0; C—O 

wv =0, dy/de = 0; Cs = 70. (12) 

Equation (11) was solved by Orr for flow between two fixed planes with w 

and v zero at both boundaries, and it was found necessary to consider only 

solutions in even powers of « We shall require here the corresponding 

solutions in odd powers. Writing a solution in the form 

v= >; A,a"/n! 

we have the sequence relation 

An+a— 2 Angot {1—(2n+1)k} A, = 0. (13) 

* Kelvin, ‘Math. and Phys. Papers,’ vol. 4, p. 380. 
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Denoting by Wo, Wi, 2, ws the solutions beginning with 1, «, «3, 23 

respectively, it follows from (12) that the boundary conditions lead to 

ri dwr3/da—rWv3dyn/de =0 (14) 

where « has to be replaced by p. 

Calculating the coefficients far enough to give sufficient accuracy for our 

purpose, we have 

Yn = a+ 23/3 !4 (343k) 09/5!4+(44 20K) a /7! 

+(5 + 70k + 33k?) a®/9!+ (6 4+ 180k + 366K) «4/11! 

+(7+ 385k + 2029K + 627k) a!9/13!+ (8 + 728k + 7832k? + 9672k3) 219/15! 

+ (9+ 1260k + 24030K? + 73500 + 16929k4) aM /17!4..., 

abs = 08/3! +4 20°/5!4(34 7k) a7 /7!+(44 36k) 29/9! 

+ (5+ 110k + 105%?) a! /11!+(6 + 260k + 8944?) a!8/13! 

+(7+525k + 4213k? + 2415k3) a!9/15 14+ (8 + 952k +1455 2k? 

+ 28968) al /17!+... 
Forming equation (14) we have 

2/3!+ 8p? /5!4+32p*/7 14+ 1288/9 !4+ (512+ 192k?) 8/11! 

+ (2048 + 22444?) 99/13 !4+ (8192+ 194562") p?/15! 

+ (32768 + 139264k?) p#/17!+ (131072 + 901120 

+129024k*) p'*®/19!+...=0. (15) 

Only even powers of & appear in this equation, thus giving a check upon 

the arithmetic ; further, the terms independent of & may be summed. Taking 

the least root of (15) as an equation for %?, we have approximately 

R= sinh 2p — 2p - 6) 
ee ee ) 

Itt Te 15! 17! at atk 

Instead of forming an equation for the minimum value of R, it is simpler 

to find it by trial. We find, with sufficient accuracy, that it occurs near 

p? = 11, and then, approximately, 

R = 96. (17) 

The corresponding value, found by Orr, for flow under similar conditions 

but with a fixed plane at the upper surface, is 117. We conclude then that 

flow in an open canal has a lower degree of stability than flow between fixed 

planes. 

Turning to experimental results, the number usually quoted for flow 

through a tube is 2000 approximately. This was obtained chiefly from 
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experiments with smooth glass tubes ; a much lower number, of the order of 

400, has been found from metal tubes. The only available direct results for 

flow in an open stream appear to be those given by Hopf,* who found R to 

be of the order of 300. These results agree in character with the theoretical 

calculations, which is all that could be expected. 

It is of interest to note that this appears to contradict a statement by 

Reynolds} in one of his earlier papers. He classes separately circumstances 

condusive to steady motion and those conducive to unsteady motion: among 

the former a free surface, and in the latter solid bounding walls. However, 

this opinion seems to be based on visual observation of eddies caused by the 

wind beneath the oiled surface of water. “At a sufficient distance from 

the windward edge of an oil-calmed surface there are always eddies beneath 

the surface, even when tlie wind is light. . . . Without oil I was unable 

to perceive any indication of eddies.” 

This introduces a different property of a boundary surface, namely, that of 

initiating disturbances. The mathematical statement ignores this property 

and specifies only control of the velucity functions: the disturbances are 

supposed to be initiated by some extraneous agency, and it is tacitly assumed 

that all types of disturbance are equally probable. It may be, for instance, 

that the theoretical results for flow through pipes should be compared with 

experiments on rough pipes rather than those with perfectly smooth walls. 

However, we may conclude that a solid boundary is conducive to stability in 

so far as it ensures that there is no slipping of the fluid in contact with it. 

6. In determining the minimum value of R from the differential equation (7), 

there are only two factors: the distribution of steady velocity, U, and the 

boundary conditions for the disturbance. The comparison in the previous 

section, between an open stream and flow between fixed walls, involved 

changes in both these factors. We may separate the effect of the boundary 

conditions by assuming the same value of U as in (10), but expressing the 

property of the supposed moving plane in contact with the upper surface by 

u=0,v = 0, instead of by v= 0, px = 0. To anticipate the argument of 

the next sections, we should expect a value of R intermediate between 96 

and 117. 

We have the same equation (11) for y, together with py = 0, dy/de = 0 

at a=0,and a=p. It follows that only the solutions wa and we are 

involved, and we have 

ra dwy3/da—rwWs3 dipo]/ da => 0, (18) 

* L. Hopf, ‘ Ann. der Phys.,’ vol. 32, p. 777 (1910). 

+ O. Reynolds, ‘Scientific Papers,’ vol. 2, pp. 57, 59. See also A. H. Gibson, ‘Phil. 

Mag.,’ vol. 25, p. 81 (1918). 
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when « =p. The series for 3 is given in §5; also we have 

tha = 07/214 2a4/4!4+(3 45h) 08/614 (44 28h) 08/8 | 
+(5 + 90K + 65K?) 19/10 !+4 (6 + 220k + 606K) «12/12! 

+(7+ 455k + 3037k? + 136543) «4/14 !4(8 + 840+ 1096822 

+17880K) a!6/16!+.... 
The boundary equation (18) leads to 

2/4 1+ 8p2/6 !-432p'/8!+ 128p8/10 + (512 + 28024) p8/12! 
+ (2048 + 3136?) p/14!+ (8192 4+ 252162) p2/16 ! 

+ (32768 + 1740802?) p'4/18!4+...= 0. (19) 
The minimum value of R seems to occur for about p? = 12, though it is 

not a sharply defined minimum ; however, with a similar approximation as 
in previous cases, we find the critical minimum of R to be 110. 

7. It is well known that, when fluid motion through a tube has changed 
from laminar to turbulent flow, the distribution of mean velocity over the 
cross-section alters so that the velocity becomes more nearly uniform over 
the greater part of the section, while falling to zero at the walls. This 
suggests a study of the comparative stability when the distribution of 
velocity alters in this manner, the boundary conditions being unchanged. 

However, it must be noted that we assume the distribution to be a steady 
state which has been acquired under a. law of force, which may be deter- 
mined from the hydrodynamical equations, so as to give the required form 
for U. 

A simple form, which illustrates the points in question, is 

U = (141/2n)(1—7), (20) 
As 7 is made larger, the velocity approximates more closely to the mean 

velocity, U, over the greater part of the cross-section, while remaining zero at 
the walls. The corresponding law of force is, in the usual notation, 

X = v(4n?—1)(U/a?) n*-2, (21) 

The greater the value of n, the more is the field of force concentrated near 
the walls, quite apart from the value of the viscosity. The flow approxi- 
mates to a uniform stream, but retaining the condition of zero velocity at 
the walls. 

The usual case of flow under a uniform field of force is given by n = 1. 
It is sufficient for comparison to work out another numerical case, say n = 2. 
We have then 

U = $(1—n'). (22) 
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Equation (7) becomes 

(4-1) y—2 (200k 4 30ty) = (i) (23) 

where k = 5iR/8p'. 

The boundary conditions are 

w=0; dyfda=0; a=tp. 
Solving (23) by a power series }A,«"/n!, we have. 

An+e = 2Ant4—Anse+ 2k (n +1) (n+ 2)(2n+8) Ay, (24) 

As in the simpler cases, it is sufficient to choose fundamental solutions 

involving only even powers of «; denoting these by yo and ye we have 

Wo = 1407/2!+4+a4/4!4+(14+ 12k) a9 /6!4+(14+192h) 28/8! 

+(1+4+1032h) a!/10!+(1+3552k + 20160K?) a! /12!4 (14+ 9492 

+ 696960k?) al4/14 !+ (1+ 21504k + 8162256k?) «18/1614... 

We = 27/214 2a4/4!4 3205/6 !4+(4+4+ 168k) a8/8!+(5 +1656%) «1/10! 

+(6+8184h) o!?/12!+(7 + 28392k + 574560k?) «4/14! 

+ (8+ 78960k + 1120435 2k?) «16/16 !+(9 + 188496% 

+ 10226649647) a!8/18!4.... 

From the boundary condition 

Wody2/da—Wedyro/de = 0, 

we obtain the equation 

p+ 2p?/3!+ 8p? /5 14+ 32p7/7!+128p9/9!4512p"/11! 

+ (2048 + 129024k) p'8/13!+ (8192 +3280896K7) p?/15 ! 

+ (32768 + 7753296k?) p47/17!4+... = 0. (25) 

Using this as an equation for R, we find by trial that the minimum value 

occurs near p? = 3; and the critical minimum value of R is 280 approximately. 

The corresponding value for the ordinary parabolic distribution (m = 1) is 

117. Thus, the critical value of R increases as the flow approximates more 

closely to a uniform stream, without slipping at the walls; and, in this sense, 

the motion becomes increasingly stable. 

8. It has been stated that, under the boundary conditions w= 0, v= 0, 

there is thorough stability, in the ordinary sense, for simple shearing motion 

and probably also for laminar flow between fixed planes. In view of the 

behaviour of actual fluids in similar conditions, another suggestion has been 

put forward by Hopf.* He proposes to express the influence of a wall by 

making the extra normal pressure, due to the disturbance, constant at the 

* L. Hopf, ‘Ann, der Phys.,’ vol. 59, p. 538 (1919), 
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wall, together with no tangential slipping; in fact, his boundary conditions 
come under case (i1) of § 4, namely u = 0, p,, = 0. With these assumptions, 
he applies the method of small vibrations to simple shearing motion between 
a fixed plane and a parallel moving plane. It appears that the motion is 
unstable for disturbances whose wave-length exceeds a certain value; for 
smaller wave-lengths it is stable or unstable according to the value of R. 
Thus the motion is not thoroughly stable. Without discussing how far these 
assumptions express the behaviour of actual fluids and boundaries, we may 
see how they affect the enerey method. 

We shall take the case of laminar flow between fixed planes, for which the 

previous calculations are available. 

The stream function y satisfies equation (11), and the boundary conditions 

are 

== 0s —p+2pdv/dy = 0. 

From the equations (1), these are equivalent to 

= 03 pv dU /dy—pPu/oy? = 0, 

or, in the present notation, 

dyy/da = 0; dp [da — harp =0): a ip. (26) 

Using the solutions yy and yo, these give 

wo (ra — 2kprr2)— pa! (ro — 2kp ro) = 0, (27) 
where accents denote differentiation with respect to «. 

From the previous work, this equation involves odd powers of k. But & is 

37R/4p? and we have to determine R in terms of p from (27). It follows that 

in this case there is no real solution of the problem of finding the critical 

minimum of R. 

It seems probable that it is only those motions which are completely stable 

in the ordinary theory which lead also to a real minimum for R. The suggestion 

may be stated in this manner: if a fluid motion is thoroughly stable when 

considered by the method of small vibrations applied to equation (2) and the 

boundary conditions, then it also possesses a real minimum value of R found 

from equation (7) and the boundary conditions. It has been pointed out 

that the latter equation is derived directly from the former, and it may be 

presumed that the minimum value of R depends in some manner upon the 

rates of decay of elementary vibrations and so may be used as a measure of 

the degree of stability of the system. 

Harrison anp Sons, Ltd., Printers in Ordinary to His Majesty, St. Martin’s Lane, 
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From the PuitosopHicaL Maa@azing, vol. xlii. November 1921, 

The Solution of an Integral Equation occurring in certain 
Problems of Viscous Fluid Motion. By T. H. HAvsLock, 
ERS. 

ik HERE are a few well-known solutions of problems of 
viscous fluid motion in which a solid body starts 

from rest and moves through the fluid under the action of 
given forces: for example, the fall of a sphere under gravity 
when the square of the fluid velocity is neglected, or the 
corresponding simplified problem of the fall of a plane in 
which this limitation does not arise. These problems lead 
to integral equations which have been solved by an applica- 
tion of Abel’s theoremt. In these cases the fluid was 

{ Boggio, Rend. d. Accad. d. Lince?, xvi. pp. 618, 730 (1907); Basset, 
Quart. Journ, of Math. sli, p. 369 (1910); Rayleigh, Phil. Mag. xxi. 
p. 697 (1911). 
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Prof. T. H. Havelock 621 

supposed to be of infinite extent, and it seemed to be of 
interest to solye similar cases of motion when the fluid has 
a fixed outer boundary. In the following paper considera- 
tion has been limited to the motion of a plane between fixed 
parallel planes and to similar problems with cylinders, the 
ordinary hydrodynamical equations for non-turbulent motion 
not involving terms of the second order in such conditions. 
The results are perhaps not of practical importance, but, 
apart from the particular problems, the method of solution 
may be of interest. Stating the problem as in the cases to 
which reference has been made, we are led to an integral 
equation of Poisson’s type in which the nucleus is an infinite 
series of exponentials. This equation can be solved by fol- 
lowing a method suggested by Whittaker*; the solving 
function is obtained as an infinite series of exponentials, the 
exponents being the roots of a certain equation. It seems 
that examples of this method have not been given hitherto, 
though equations of this type should arise naturally in 
various physical problems. The particular cases worked 
out in detail are the fall of a thin material plane in a liquid 
bounded by two fixed parallel walls, and the motion of a 
cylindrical shell filled with liquid and acted on by a constant 
couple. The same method gives the solution when the force 
is an assigned function of the time, for instance an alter- 
nating force which is suddenly applied. Motion in an 
infinite fluid may be included in the scheme by replacing 
the infinite series of exponentials by corresponding infinite 
integrals. The case of systems with a natural period of 
oscillation will be considered in a subsequent paper. 

It will be clear, from the examples, that the method of 
solution could be formulated in general rules for obtaining 
the solving function. This has not been attempted here, as 
an examination of convergence would be necessary to estab- 
lish any general theorem. A knowledge of the differential 
equations and the boundary and initial conditions enables us 
to verify the results which are given ; in these circumstances, 
of course, they can be obtained by other methods without 
difficulty. However, there are probably other physical 
problems, in which the conditions are not so completely 
known, whose statement leads to an integral equation of 
the same type, and its solution can be obtained in the same 
manner. 

2. Consider laminar fluid motion between two fixed planes 
w= +h, the fluid velocity being parallel to Oy. Let the 

*E.T. Whittaker, Proc. Royal Socy. A, vol. 94 (1918), p. 367. 
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622 Prof. T. H. Havelock on an Integral Equation 

plane of yz be a thin rigid barrier which is made to move 
parallel to Oy with a velocity V(t). 

Since the equation of fluid motion is 

Ov 070 
ot = Coe 3 ay Reactant tess el (1) 

with the boundary conditions v=0 for c=h and v= V(¢) for 
«=0, we may write down the solution as in a similar problem 
in the conduction of heat ; we have, for 2>0 and ¢>0, 

2 2nimv 

se 2 h? 

The frictional force, per unit area, on the plane of yz is 
the value of 2u(0v/d#) for 2=0, counting both sides of the 
p'ane ; if we suppose the plane to start from rest, so that 
V (0) =0, this gives, after integrating by parts, 

t ~o 

uit) Vi(r) {1+ 230 Vdr, . (8) 
0 1 

PPA os : n2n2y7/h2 9 é sin V(a)e dr, . (2) 
0 

In the class of problems we are considering, V(t) is the 
function to be determined and it is the forces on the plane 
which are given. Asa first example, consider motion under 
gravity. Suppose that the plane of yz is vertical and that it 
hag amass o per unit area; we require the motion of the 
plane as it falls under gravity, starting from rest and having 
fixed parallel walls ata distance A on either side. Using (3), 
the equation of motion of the plane can be put at once into 
the form 

t (a) 

Vit (not) V(r) {14235 > rut-nil?} dry. (4) 
0 1 

This is an integral equation of Poisson’s type, which can be 
solved for V'(¢) in the following manner. 

3. In the paper already quoted, Whittaker considers an 
equation 

Het (Hoeee—sls=/), - . . ©) 
in which the nucleus 5 the sum of exponentials, or 

x(x) =Pert?+Qet+....+Ver . . . (6) 

The solution is obtained as 

pa) =f) "F)K(e— ds, @ 
where the solving function is also a sum of w exponentials, or 

I(@) SNe BES Sona SEIN, 656 0 (©) 
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in certain Problems of Viscous Fluid Motion. 623 

It is shown that ¢(«)=K(x) and f(7)=«(x) satisty (5) ; 
hence by substituting and Paes coefficients of similar 

exponentials, it is found that a, B,y,--.v are the roots of the 
algebraic equation 

12 
ap Q tb aoo0 te = (9) 

w—p x—-q vv 

while the coefficients in K(z) satisfy the equations 

A B 
Se ot oon +1=0 | 
a—p B—p Yires?? 

Se ee ge ea) 
Agia kB N | 

maa Y Ban ean oqe == aril | 

The solution of (10) leads to 

py a= P@=9) (20) 5 
G=2)C=) =C=n 

_ C= NOH DiaclV=o) oa 

(=a)v—A)...v—m)?” OP 
Before proceeding, we may note alternative forms of these 

results which are of use later. If we write 

F(z) =(a—p)?(@—g)®...(7—v)¥, . . (2) 

the equation for the new exponents @, 6, y... is 

Hy (eee) =O) an) Se G2) 
Further, if we put 

fle) =(e—2) (eB) ... (e—») 
and $ (x) =(«—p)(@—q) ... (v—v), 

the coefficients in (11) are — ¢(@)//’(«), where & isa root 
of (13). 

Whtitaker remarks that if the number of exponential 
terms in (6) is supposed to increase indefinitely, a theorem 
appears to be indicated, namely, that in the solution of a 
Poisson’s integral eq teuon whose nucleus is expressible as 
a Dirichlet series, the solving function is also expressible 
as a Dirichlet series, but with a different set of exponents 
for the exponentials. 

4, Returning now to equation (4), we see that it is an 
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624 Prof. T. H. Havelock on an Integral Equation 

example of such a theorem; without attempting any discus- 
s'on of the general theoram, we proceed to solve (4) directly 
on the lines indicated in equations (9)-(13). In the nota- 
tion of these equations, we have from (4) 

P=0, G= Sen, PS Srl 506 8 

P=2y/ch, Q=R=.... =4y/ch. 

Equation (9) becomes a transcendental equation, namely 

2 
g coth alia OW een tern te (OLA) Tro 

Ovex? 

The roots of this equation are negative, and it is convenient 
to write w= —vd*/h?, then the values of X are the positive 
roots of the equation 

NUN —=)2 010 Gan tay BE (160) 

Using Aj, Ag, ... for the coefficients of the solving function, 
equations (10) become 

Ay Ay A; 
; omatata = ar = 

Ay—n2nr? — dr —n*a? 3? —n? rr? 

Vv 
+ ++. ——=0, (16) 

where n=0,1,2,... and 24,Azs,... are the positive roots 
of (15). 

Assuming that a function f(a) can be expanded, in the 
range —1<«#<l1, ina series 

f(@)=C cos Az, 
we have 

r +1 

Oe erasrnaa ent 
Ned, 

A+sin A Cos \. J(2) cos rx da, (17) 

where A isa root of (15). Taking /(a@)=cosn7a, we obtain 
the set of expansions 

? sin AX cos A 
>) : oh: 

(A+sin XA cos X)(A?— n777”) (18) 

Hence the solution of the set of equations in (16) is 

_ _2vr,~ SiN A-COSA, __ Ap ee (19) 

"~ A2(A,+ sin A, cos Ar) GharAP+kh(1+hky’ 

where k=2ph/o. These results can also be derived directly 
by extending the forms (12) and (J3) to include infinite 
products. 
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in certain Problems of Viscous Fluid Motion. 625 
Substituting in (7), we have 

Tey cab +k(1 +h) 

t 2 ON _ Aug > ER perma a ae 
o 

e 7 vARt/h2 
SS 2 g NM +KL+%)’ ey) 

the terms independent of ¢ cancelling out on summation. The velocity at any time is given by 

_ Agph 1—e-rrt/re 
ay nan = OD 

It can be verified by summation that the limiting steady velocity has the value goh/2u. The fluid velocity at any point can be obtained by substituting V from (21) in (2) and reducing the expressions, but it is, of course, simpler to insert suitable functions of x directly in (21) ; we obtain 

aes gah (1 =) _ Agph? & sin {AC —a/h)} e- rene (22) 

ES UY yer rears. 7 
In this particular problem the result ean also be obtained from the differential equation together with the boundary and initial conditions, by assuming the existence of a limiting steady state. In the preceding analysis the existence of a final steady state is associated with the occur- rence of zero as one of the exponents in the nucleus of the integral equation (4). 
5. Itis interesting to deduce the motion in an infinite fluid from these results. In solving this case directly, Rayleigh obtains the equation of motion as 

dV in Zpv? (* V'(r) dr & 
dt om), /(t—7) 7° (23) 

Applying Abel’s theorem, this is reduced to an ordinary differential equation whose solution is given as 

Am upV | 90 =4pviti—n0 + Zo ewe | Oa, (EY) 
< 2pv8t?/o 

We obtain (23) from (4) by giving the nucleus its limiting value, since’ 

Lim (2u/oh) & e-n nv (t—2)/n2 (2pv?/om) ( e-2%(t-=1) dy, h>w —o 
oJ -a 



626 Prof. T. H. Havelock on an Integral Equation 

In the same way, the solving function has a limiting form 
which follows directly from (15) and (19), namely 

2pve( ? axe @lt=7) 
oT { a+ 40*y/o? ae 

Using this value as before, we obtain the same result (24). 
6. It is clear that the same procedure is sufficient when 

the applied foree is any assigned function of the time. 
For example, if the accelerative force is acospt and the 
motion starts from rest, we have 

dV ; —vA2(t=7)/h2 TE 2 Os pt OCR EAC dt, . (25) 

where the summation extends over the roots of the same 
equation (15), and the coefficients are given by (19) The 
solution follows on completing the integrations ; it consists 
of a periodic motion in different phase from the applied 
force, together with the disturbance due to taking into 
account the initial conditions. 

7. A final example may be taken from cylindrical motion 
when there is no limiting steady velocity. Suppose the 
motion to be symmetrical round an axis; then if ris dis- 
tanee from the axis and v is the fluid velocity, supposed 
perpendicular to the radius vector, we have 

CO fOr, LO o 

ot ras Or oF ror =*) 

Consider the motion of a hollow cylinder, of radius a, filled 
with the liquid. Suppose the motion to start from rest and 
let the velocity of the cylinder be Q(¢). Then it may be 
shown that the angular velocity of the fluid at any time is 
given by 

ad (pr/a) —yp2(t=7)/a2 =|) Or Dj aN Wd e—Et—7)/a har © \ (x) { 1+ aap) , 

where the summation extends over the positive roots of 
J, (p)=0. 

Let the cylindrical shell start from rest under the action 
of a constant couple N, and let I be its moment of inertia, 
both quantities being for unit length along the axis. The 
retarding couple due to fluid friction is the value of 
2rpurOo/dr when r==a. Hence the equation of motion 
of the cylinder is 

t 
Ql(t) + Umut) O! (rt) Se--e dg = NI, (28) 

0 

(26) 
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in certain Problems of Viscous Fluid Motion. 627 

where the summation extends over the positive roots of 

1 2 
alo: Vr ceaam ails pe. (C2) 

The equation for the exponents of the solving function is 

iia 1 1 ae ae ies careoe amen oe . +1=0. (30) 

Writing «= —v)2/a?, equation (30) reduces to 

AJo(X)+ATA)=O,. . . . . (81) 

where k=2zpat/I. The equation can be deduced from (29), 
by logarithmic differentiation, as indicated in (12) and (13). 

The equations for the coefticients of the solving function 
become 

Ay As As Vv eas 

AP~—p? a Agi — pi 3? — pp? F xa2aap v 

Ay ee Ay or Bawions —-+=0 5 (ez) 
a 

where p,, pz, ... are the roots of (29), and X,, A», ... the roots 
of (31). 

To solve these equations, we may adopt the same plan as 
before. Assuming that a function f() can be expanded, in 
the range 0 <r<1, in the series 

f(r) ==BJ(Ar), 

the summation extending over the positive roots of (31) 
we have 

DNS ( AGM, 2G B= {PEACE Epp TaF(n) qf IO7)rar. o (a3) 

Now take f(r)=J.( pr), where p is a positive root of (29) ; 
after obtaining the expansion and putting r=1, we arrive at 
the result 

2k? 
= ; mo 0 0 (ol UAL Th DEE Op) Se 

p being any one root of (29) and the summation being with 
respect to the roots of (31). 
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628 Prof. T. H. Havelock 

Comparing with (32) it follows that 

A,=2kva,?/a7{r~P+k(k+4)}. . . . (35) 

With this expression for the solving function, (28) gives 

= A 2kyN Me oie ea 
7 el ar, erate (ea - (86) 

By expanding r? by (33) and putting r=1, it can be 
shown that 

2(k+4) 
P+ k(k+A4) ” . e . ° (37) 

Carrying out the integration in (36) and using (37), we 
find 

> 

dQ, N 2kN GRE 
Eisai owen oame © CY) 

The angular acceleration has a finite limiting value in this 
case, the same as if the cylinder and enclosed liquid were 
rotating like a rigid body. We notice that in this case zero 
is excluded from the roots of the equation (29) for the 
exponents of the nucleus. 

Integrating (38) we obtain the angular velocity of the 
cylinder at any time; then, using the differential equation 
(26), we may complete the solution by writing down the 
angular velocity of the liquid. It is found to be given by 

‘au Nf nga wens 
on I+4pat By 12(k+4) 

_ ANS BPI Ar/aje let 
I > E+ ED}, (A) 
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From the PHILOSOPHICAL MAGAzINB, vol. xlii. Movember 1921, 

On the Decay of Oscillation of a Solid Body in a Viscous 
Fluid. By TV. H. Havetocgn, B.S. 

ile ee decay of rotational oscillation of a cylinder 

or a sphere in a viscous liquid is a well-known 

problem in Hydrodynamics ; among more recent researches, 

reference may be made to the work of Verschaffelt +, 

Coster {, and others. In those papers it is remarked that 

+ G. E. Verschaffelt, Amsterdam Proc. xviii. p. 840 (1916); also 

Comm. Leiden, cli. (1917). 
{ D. Coster, Phil. Mag. xxxvii. p. 587 (1919). 
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629 Prof. T. H. Havelock on the Decay of Oscillation 

the ordinary solution of a damped harmonic vibration requires 
modification when the initial conditions are taken into 
account, but no explicit solution of this nature seems to have 
been piven; in certain experimental refinements, the dis- 
turbance may be of some importance. In the following 
notes, I have worked out in detail first the simpler case of a 
plane oscillating between two fixed planes. The problem 
can be solved by various methods: by normal functions, or, 
more readily, by operational methods. I have chosen to use 
it as an example of a type of integral equation, for which 
reference may be made to a previous paper*. In this case 
the equation of motion is an integro-differential equation of 
Volterra’s type, and it can be solved by a repeated appli- 
cation of Whittaker’s method which was used in the simpler 
cases; the solution may be of interest apart from the parti- 
cular problem. ‘The results are then verified by using 
Bromwich’s method of complex integration. Finally, the 
solution is indicated for a sphere oscillating within a fixed 
outer sphere, and the results are discussed in connexion 
with the experiments to which reference has already been 
made. 

2. Suppose that a viscous liquid can move in laminar 
motion between two fixed planes z=+h. Let the plane of 
uz be a thin rigid barrier of mass o per unit area, and let it 
be acted on by an elastic force parallel to Oy such that, if the 
liquid were absent, the plane would vibrate with a natural 
period 27/p. Further, suppose the motion starts from rest 
with the plane displaced a distance a from its equilibrium 
position. The equation of motion of the plane is 

d*y Ov 
v2 ~2#(5,), tPU=O - jd) ob (UY) 

where v is the fluid velocity. 
Now if the plane of yz has a velocity V(t), the fluid 

velocity may be written in the form 

22.n1rv - nie (* lyr /he al oa e7 Rm 2vt[h? sin e iV irjennndr. 5 @) 

Taking the value of Qv/dx for c=0, integrating by parts 
and noting that in this problem V(0)=0, equation (1) gives 

Vy , 2p (‘ay Se naaetear 
ae dalam m Lartpiy=0. (3) 

* Supra, p. 620. 
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of a Solid Body in a Viscous Fluid. 630 

Consider the integral equation 

$0 +) $)x—n)ar=/0, 
where the nucleus is the sum of n exponentials 

x(t)= SP ri oes Bap baad be) 

Whittaker’s solution * is given as 
t 

s0=/O-[AnKe—nd, . . . ©) 
0 

the solving function being also the sum of n exponentials 

KO) =p Abe 2sin Wau neelay aa) 
il 

The indices « are the roots of the equation 

P P Pn 
“+7 4.,,4—* 41=0. . . (8) 

U—p, U—py L—Pn 

Further, if we form the functions 

eee Cage ZN . (9) 
a(0)=(1-= )(1- 2) (1-2 | 

it may be shown that the cocflicients of the solving function 
are given by 

(Nea eal Maris -1)" (a) /0"( 10 
al “Abe OD PAE GM) 

where « is a root of (8). It should be noted that if p, is 
zero, and we write W(v)=2(1—2/p.) ... (1—2/pn), then 

A= rr (c)IPIO(a) 2). GD) 

We shall assume that these results hold in the limit when 
the number of exponential terms becomesinfinite. Hquation 
(3) then comes under this form, except that it is an integro- 
differential equation. Hquation (8) for the exponents of the 
solving function gives, on summation, 

2h 
Vex 

(a) = (v3a2/h) sinh (hz2/v?), 

6() =cosh (ha?/p*) + (ov2x?/2p) sinh (hi?/v?) 

* [1 T. Whittaker, Proc. Roy. Soc. A, xciv. p. 867 (1918) 

eoth® 41=0. oe oo GY) 

Also we have 
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631 Prof. T. H. Havelock on the Decay of Oscillation 

The method of formation of O(x) is clear from the equa- 
tions for a finite number of terms; multiply the left-hand 
side of (12) by y(z) and a factor to make the value unity 
for « zero. From (11) and (12), we have 

yee | 24(5 a oh e <r) we (13) 

oh\2v  4u 0 Ow? 

Writing the roots of (12) as «= —vd/h? and collecting 
the results from (6), (12), and (13), the first step in the 
solution of (3) gives 

PY 6 4p? (* Q2e-vAX(t-7)/A? 

Sa 2d = as |, eee) ah }o 
(14) 

where the summation extends over the positive roots of 

A tanA=2ph/o=k. Pate rf: OLS) 

Following the method of reduction for this type of equa- 
tion*, integrate (14) with respect to ¢ from O to @, using 
Dirichlet’s formula to transform the order of integration 
of the last term. Since the initial value of dy/dt is zero, this 
leads to 

dy(@) _ App h 6 & ea vA2(0—t)/h2 

i a JO™ aa Kee ee (16) 

Integrate (16), in the same manner, with respect to 0 
from 0 to T; finally, for convenience, replace T by ¢ and 
t by 7, respectively, in the result. Then we obtain 

(3 op’h  App?h3 7 vAMt=7)/h2 
t ea oth >; aaa” Mr S0h, y( +f vo Ti a eRe OA ee a. (17) 

The solution of (17) can be completed by means of (6), 
(8), and (11). The new exponents are yiven by 

op*h 4up?h® 1 ih 

z) of “AI ERLEO|@roye) | oS) 
Resolving the summation into one of simple partial frac- 

tions and using the properties of the roots of (15), this 
equation can be reduced to 

2pitaz h 
a? + coth = + p=0. so o (9) 

* Volterra, ‘Tecons sur les Equations Intégrales,’ p. 140. 
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In the previous notation, we have 

ee bas, By 
(2) = o( cosh + 3 “sinh =), 

% (20) 
By has\ . b Qui ha? 

(2) =(f4 + ose e* cosh ——? 
ANE oph. VE 

the formation of the latter being clearly indicated in the 
reduction from (18) to (19). The coefficients of the solving 
function can now be formed by (11). Finally, substituting 
in (6) and carrying out the integration, we arrive at the 
result 

_ 4p a = aot 

I~ ch ~at—(2yloh) (1+ 2ph/o)a* + pra? + 6up aloh + p” 
Se ESE) 

the summation extending over the roots of (19). 
3. We may verify the result by other methods which are 

available in this case. We choose Bromwich’s method of 
complex integration*, referring to his paper for the general 
principles, and writirig down the results briefly for the 
present problem. 

Suppose the fluid velocity and the displacement of the 
plane to be given by 

1 
v= 55 uetda; y= se retda: 0 o (x) 

where u and 7 are functions of «, and the paths of integration 
are in the plane of a complex variable « and enclose all the 
poles of these functions. The differential equation of fluid 
motion, 07/Ot=vd7r/d2”, with the conditions w=0 for «=h 
and u=dn/dt for e=0, gives the solution, for x positive, 

_ dnsinh{a3(h—z)/v?} 

‘dé sinh (ath[vt) —~ 2) 

From the boundary condition (1), after introducing terms 
due to the initial conditions y=a and dy/dt=0 for t=0, and 
using (23), we obtain 

Quast eh i 3 
= n coth = +op'n= ( + = coth — i oan + a (24) 
v oy 

Hence we have 

_ 1 (afat(2u23/cv*) coth (hai/vt) ter da 

Y= dni) a+ Qyallon) cath (hati) +p? | OO) 
Forming the residues of the integrand at the zeros of the 

* T. J. PA. Bromwich, Proc. Lond. Math. Soc. xv. p. 401 (1916). 
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denominator, we obtain the same solution (21). The com- 
parison brings out the connexion between the method of 
solution of the particular form of integral equation and the 
use of normal functions in dynamical problems. ‘The latter 
methods would not be available if we had not a complete 
knowledge of the differential equations of the problem : for 
instance, if it were stated directly as an integro-differential 
equation like (3) in some problem of ‘heredity.’ 

4, The nature of the roots of (19) may be studied most 
easily by graphical methods, or by using the form (18) or 
equivalent expansions. It appears that, leaving aside the 
possibility of multiple roots, there is an infinite series of 
real negative roots and, in addition, a pair of roots which 
may be complex, or real and negative. In the latter case 
the motion is aperiodic; in the former, the two complex 
roots give the damped harmonic vibration while the re- 
maining roots complete the solution according to (21) for 
the given initial conditions. In the theory of determinations 
of viscosity by oscillating cylinders or spheres it is usual to 
assume a damped harmonic vibration, neglecting all the other 
terms. 

Verschaffelt remarks that for a motion that is not purely 
damped harmonic, the proportionality of the resistance to 
the velocity no longer exists, and that it would then probably 
be impossible to establish a general differential equation for 
the motion. We have seen, however, that it may be ex- 
pressed by an integro-differential equation as in (3). It 
seems that in experiments under usual conditions, the final 
stato of a damped harmonic motion is practically reached 
after a comparatively short time (a few minutes). 

With numerical values of the usual order, it is easy to see 
that the lowest real negative root of (19) is much larger 
numerically than the real (negative) part of the complex 
roots. The matter would require closer examination if the 
motion were ent'rely aperiodic, as in some experiments. 
In the case of a sphere making oscillations of finite ampli- 
tude, Verschaffelt has studied small damping effects due to 
approximations involving the quadratic terms in the hydro- 
dynamical equations ; this introduces damping coefticients 
of three or five times the first approximation, and it may be 
that in such eases the purely aperiodic terms in the solution 
should also be taken into account. 

5. It may be of interest to record the complete solution, 
neglecting quadratic terms, for a sphere oscillating in a 
liquid enclosed within a fixed concentric shell. 

Let @ be the angular velocity in the liquid, 0 the angular 
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displacement of the sphere, a its radius and I its moment 

of inertia ; and let 6 be the radius of the fixed outer sphere. 

Then the equation of motion of the rotating sphere is 

reas ree (2) +pl@=0 (26) 
diz 3 dr}, ? Op eed int 

with 0=6, and d@/dt=0 for t=0. 
In the fluid we have 

Oe =1(S8 4 2) 
Oi NO TP OPY 

with a=0 r=b, and w=d6/dt for r=a. 
Using the method of § 3, we write 

1 1 ans 
o= sefuer da ; 0=5- netda. . . (28) 

p 

(27) 

Then equation (27) gives the solution 

ak a? dO k’b—r) cosh {k(b—r)} + (br —1) sinh {k(b—7)} 

~ 73 dt k(b—a) cosh {k(b —a)} + (ba —1) sinh {k(b—a)}’ 

where k=a3/v'. 
Modifying (26) so as to take account of the mitial con- 

ditions, we have for 7 the equation 

a mia=N@,  s 6 5 0 o @ 

f(a) =a? + 8urra*a + Ip? + $rrpara? 
bk cosh k(b—a)—sinh k(b—a) 

‘ k(b—a) cosh k(b—a)+ (Pab—1) sinh k(b—a)’ 

F@)=Ie+ Sutra? + Sarpara 

bk cosh k(b—a) —sinh k(b—a) 

X k(b—a) cosh k(b—a) + (Kab —1) sinh (6 =a)’ 
The angular displacement of the sphere is then 

— 9 (EC) pat ag — 6,3 ED pat 
9 ori) Flay eo Fa) 

where the summation extends over the roots of f(4)=0, and 
it is assumed that these are all simple roots. 

In practice we may usually separate the roots into two 
classes : first a pair of roots which may be either complex or 
real and negative, then a series of real negative roots in the 
neighbourhood of —7v/(b—a)?, —47°v/(6—a)? and so on, 
In deducing the form of (31) for a sphere in an infinite 
liquid the sum of the terms from the latter series of roots 
must be replaced by a corresponding infinite integral. 

(31) 
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The Effect of Shallow Water on Wave Resistance, 

By T. H. Havetock, F.R.S, 

(Received October 28, 1921.) 

1. The general character of experimental results dealing with the effect of 

shallow water on ship resistance may be stated briefly as follows:—At low 

velocities the resistance in shallow water is greater than in deep water, the 

speed at which the excess is first appreciable varying with the type of vessel. 

As the speed increases, the excess resistance increases up to a maximum at a 

certain critical velocity, and then diminishes. With still further increase of 

speed, the resistance in shallow water ultimately becomes, and remaias, less 

than that in deep water at the same speed. The maximum effect is the more 

pronounced the shallower the water. For further details and references one 

may refer to standard treatises, but one quotation may be made in regard to 

the critical velocity: “This maximum appears to be at about a speed such 

that a trochoidal wave travelling at this speed in water of the same depth is 

about 1} times as long as the vessel. . . . It was at one time supposed 

that the speed for maximum increase in resistance was that of the wave of 

translation. This, however, holds only for water whose depth is less than 

0:2 times the length of the vessel. For greater depths the speed of the 

wave of translation rapidly becomes greater than the speed of maximum 

increase of resistance.’* In a recent analysis of the data, H. M. Weitbrechtt 

expresses a similar conclusion by stating that for each depth of water there is 

a critical velocity, but that the critical velocity does not vary as the square 

root of the corresponding depth. 

It should be noted that experimental results are for the total resistance. 

If we assume that this can be separated into three terms, which are simply 

additive, namely, eddy, frictional, and wave-making resistance, it must be 

admitted that probably all are affected by limited depth of water. However, 

the main differences are due to the altered wave-making, and the general 

explanation is to be found in the fact that there is a limiting velocity, ,/(g/) 

for simple straight-crested waves on water of depth h. 

Leaving aside the difficult problem of a solid body towed or driven through 

the water, we may study the allied problem of a given distribution of surface 

pressure aud the associated wave resistance. Previous calculations of wave 

resistance have been limited to a line distribution of pressure, involving 

*D.W. Taylor, ‘Speed and Power of Ships,’ vol. 1, p. 114; also G.S. Baker, 

‘Ship Form, Resistance and Screw Propulsion,’ p. 134. 

THM. Weitbrecht, ‘Jahrbuch d. Schiffbautech. Gesell.,’ vol. 22, p. 122 (1921). 
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therefore, only straight-crested parallel waves and so emphasising the connec- 

tion between the critical velocity and that of the wave of translation, In 

the present paper I obtain an expression for the wave resistance of a surface 

pressure symmetrical about a point, and moving over water of finite depth. 

The result is in the form of a definite integral, which has been evaluated by 

numerical and graphical methods so as to give graphs of the variation of 

wave resistance with speed for different values of the ratio of the depth of 

water to the length associated with the pressure distribution. The graphs 

are of special interest in the cases intermediate between the two extremes of 

deep ‘water and shallow water. They show the double effect of limited 

depth, in lowering the normal wave-making speed of the ship and in 

increasing the magnitude of the effect as the speed approaches that of the 

wave of translation. The results are discussed in their bearing upon the 

experimental results which have just been described. 

2. In a previous paper* I worked out the case of a symmetrical surface 

pressure moving over deep water. The present analysis is on exactly similar 

lines, except for suitable changes in the expressions; it may be sufficient, 

therefore, to set forth the calculation briefly, referring to the previous paper 

for further detail in the argument. 

Take axes Ox, Oy in the undisturbed horizontal surface of water of depth h 

and Oz vertically upwards. For an initial impulse symmetrical about the 

origin, that is if the initial data are 

pho=F(m), €=0, @) 
where oa? = 2?+y", the velocity potential and surface elevation in the 

subsequent fluid motion are given by 

w= [Le («) cosh « (g-+h) sech xh Jp (wes) cos (« VE) « de, 

me = = \,f («) Jo (xe) sin («Vt) x2 V de, (2) 

where V? = (g/«) tanh ch, 

oy [Fea (oede (3) 

We obtain the effect of a travelling pressure system by integrating with 

respect to the time. We shall suppose that the system has been moving for 

a long time with uniform velocity, c,in the direction of Oz. Transferring 

to a moving origin at the centre of the system, we replace x in (2) by #+ct, 

and we find for the surface elevation 

l= — | “oo Meet dt [7 Jo [a { (wtct)?+y?}!2] sin (eVt) «2 Vde, (4) 

* Roy. Soc. Proc.,’ A, vol. 95, p. 354 (1919). 
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where f(x) is found from the assigned pressure distribution, p = F(a), by 

means of (3). The factor exp. (—4yt) serves to keep the integrals deter- 

minate, so that they give a solution which corresponds to the main part of the 

surface waves trailing aft from the moving disturbance. It is to be noted 

that ultimately ~ is made zero in the final results, and it is only retained in 

the intermediate analysis to a degree sufficient to attain its chief purpose. It 

should be stated also that all the analysis is subject to the usual limitation 

that the slope of the surface is supposed to be always small. 

We take the wave resistance to be the resolved part of the pressure system 

in the direction of motion, or 

Bee [FoR of as, (5) 

taken over the whole surface. 

The disturbance (4) may be analysed into plane waves ranged at all 

possible angles to Ov. Substituting 

rJole{ @+eye+y%}!2] = | gir (+ct)e05 6 Gos (ey sin b) dd, (6) 
0 

we can integrate with respect to ¢, and obtain, after rejecting superfluous 

terms in p, 

s ; ’ V sec? b »—1/2ut pixct cos > iS oo ne 

ie i fA Bea Men xe? —g sec? d tanh xh + ipc sec 7) 

Using this in (4), the surface elevation can be expressed in the form 

9 a/2 5 1 hel ex (x cos +y sin ) 

Tp G— (iss sec cond | «f («) tanh ch Koy see tanh Kh + ipe sec 

entk(e cos @+y sin p) 
—————— 8 

o xe?—gq sec? d tanh ch —wc sec (8) 

3. We simplify the calculations by specifying the surface distribution of 

pressure as 

p= F(a) = Al/(P+ 0°), (9) 

where A and / are constants. It follows from (3) that /(«) = Ae-*. Now 

in (8) consider an element makiny an angle ¢ with the axis Oz. Change to 

axes Ox’, Oy’, given by 2’ =xcosd+ysin dg, y’ = ycos¢—asin gd. Then the 

integral with respect to « becomes 

io) tea! 

xe— tanh xh if : i “ - 
0 xe? —g sec? $ tanh Kh + we sec 

en ikz! 

} de. (10) 
ss Ke*—g sec? d tanh xh —ipc sec h 
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As in similar plane wave problems, this integral can be modified by inte- 

grating round a suitable contour in the plane of a complex variable; the 

expressions then divide into two types according as the integrand has or has 

not a pole within the contour. The surface disturbance corresponding to (10) 

is seen then to consist, in general, of a surface elevation symmetrical with 

respect to tne line xcos¢+ysin d = 0, together with a regular train of waves 

in the rear of this line; but the latter part only occurs if c?cos?’@<gh. In 

evaluating the wave resistance by (5) for the symmetrical distribution (9), 

we see that we need only consider the regular train of waves. By calculating 

the residue of the integrand in (10), collecting the results and finally making 

» zero, we find that the regular waves, when they occur, are given by 

___ Am Aciste sin (xa!) (11) 
g sec? h (c? —gh sec? o) + x2cth’ 

where « is the root of 

Ke?—g sec’ tanh ch = 0; gh sec? p > c?. (12) 

From (5) and (11), the contribution of this element to the wave resistance is 

An Ac?ke—* cos b i — ACOs (ce) dex! 
g sec? dh (2 —gh sec? $) + K*cth oe! | oa? +y2+ PP 

223 p—2xl te emai Ke **' cos h (13) 
g sec? b (ce? —gh sec? b) + x*cth 

Summing for the different elements, from (13) and (7), we have finally for 

the wave resistance 

_ 4 Ate? pr? Ke *! sec hdd 
R= p i g sec? h (? —gh sec? h) + x2cth’ se) 

where « satisfies xc? = g sec? ¢ tanh ch, and the lower limit ¢o is given by 

goo = 0, for &<gh; go = are cos (gh/c?)V?, for c? > gh. (15) 

4. We may notice, in the first place, that (14) reduces to the expression given 

previously for deep water; making >, we find 

ar/2 

1 = (A4rrg?A?/pc®) | sect  e-? (lle?) see 4 de 

0 

A293 
= EES {i Gy — Em}, 6) 

where « = gl/c?, and the result is expressed in terms of Bessel functions of 

which Tables are available. For finite values of the ratio 4//, the value of R 

for given values of ¢ can only be obtained from (14) by numerical and 

graphical methods. After some preliminary trial, the following plan was 
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adopted. With p =h/l, and « = xh, using the relation between « and @, (14) 

can be put in the form 

AnA?al? p72 gil2¢~2e/P coth V? « 
R= gplip*? ( a? +e coth a —«? coth? « dp, (17) 

with a coth a = px sec? ¢. (18) 

For a given value of p, the integrand of (17), which we may denote by /(), 

was calculated for values of « ranging from zero to 3 at intervals of 0:2, and 

in certain cases also at unit intervals up to the value 10. Taking next an 

assigned value of x, the value of ¢ corresponding to each value of « was found 

from (18). The integrand f(a) was then graphed on a base of @, giving a 

curve for each value of «; the area of the curve was taken by an Amsler 

radial planimeter, and then the value of (17) was obtained. The calculations 

are rather lengthy and it is unnecessary to repeat them here. 

The process was carried out for p = 2, 1-43, 1, 0:75, with about a dozen 

values of 2 in each case; some estimates were also made for p= 05, to 

confirm the general deductions. Further, the values for p= co were 

calculated from (16). The results are shown in the figure, where the unit for 

R is 47rA?/gpl%, and for ¢ is ,/(g/). 

0-4 0-6 0-8 ie) 2 4 

5. The curve for deep water, p = oo, has a single maximum at a velocity 

slightly less than ,/(gl). At this velocity the corresponding length of 
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simple transverse waves is about 27/; this may be called the principal wave- 

making length of the disturbance, to use a term from the theory of ship 

resistance. Taking next the curve for p = 2, we can see indications of two 

maxima. The first occurs at about the point 0°97 on the velocity scale; it 

clearly corresponds to the deep water maximum, and cdmes lower down the 

scale, because waves of given length occur at a lower velocity as the depth 

diminishes. There is also a second maximum at a velocity of about 1:25 ; 

this is due to the other factor in the resistance, namely, the increased effect 

as the velocity approaches the velocity ,/(gh) of the so-called wave of 

translation, which in this case is at the point 1:41 on the velocity scale. 

From the next curves, p=143 and p=1, we see the increasing 

importance of the latter effect as the depth becomes less. For the curve 

p = 1-43, there is a maximum near the velocity 1:1, the corresponding value 

of (gh) on the scale being 1:2. There is no other actual maximum, but 

there is an enhanced resistance at about 0°92, followed by a flattening of the 

curve between that point and the point 1:05; we may take the increased 

effect at 0°92 to correspond to the deep water maximum in the lower 

curves. Similarly for the curve »=1, the corresponding values are: 

increased effect at about 0°81, diminished slope of curve between 0:82 

and 0:9, maximum at 0:97, velocity of wave of translation 1:0. The last 

curve, p = 0°75, shows that, as the depth becomes small, the second effect 

becomes the predominant feature; the excess resistance increases rapidly in 

magnitude, and occurs practically at the velocity ,/(gh). This effect is still 

more pronounced for p = 0°5, but the results are not shown in the figure. 

It is obvious that, as the ratio of 4/2 diminishes, the disturbance becomes 

more like that due to a line disturbance ; in simple calculations on the latter 

assumption, the resistance increases indefinitely at the velocity /(gh), and 

falls suddenly to zero above that velocity. It will be seen from the figure 

that in all cases the resistance falls after the velocity ,/ (gh), as, in fact, may 

be deduced directly from the expression (17). 

In a comparison between these results and the experimental curves of 

ship resistance described in § 1, it is advisable to consider in each case the 

difference between the resistance in water of a given depth and that in deep 

water; in this sense the results agree in character. Thus the first effect of 

finite depth may be regarded as due to the lowering of the chief wave- 

making velocity; it is only when the depth of water becomes of the same 

order as the beam of the ship that the critical velocity is practically that of 

the wave of translation. 

In describing the experimental curves, it was stated that the excess 

resistance has a maximum value at a certain critical velocity. But there is 
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one exceptional set of curves, obtained at the United States Model Basin,* 

which shows two maxima: a phenomenon which has not received explana- 

tion. It is conceivable that this may be a case in which the two maxima 

indicated in the intermediate curves of the present paper have become 

prominent through some unusual features of the model. In this con- 

nection, it must be remembered that the present calculations are based 

upon a surface pressure of specially simple type, one symmetrical round a 

point; one could extend the calculations by integration, as in the previous 

results for deep water, so as to apply to a pressure distribution, giving 

a better analogy with ship form. It may be anticipated that the results 

would be of the same character in general, though no doubt better agree- 

ment could be obtained in certain details. 

* D. W. Taylor, loc. ctt., p. 115. 

HakrIson AnD Sons, Ltd., Printers in Ordinary to His Majesty, St. Martin’s Lane. 
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Studies in Wave Resistance: Influence of the Form of the 

Water-plane Section of the Ship. 

T. H. HAveEtock, F.R.S. 

(Received April 5, 1923.) 

Introduction. 

1. The problem which is investigated in some detail in the following paper 

is the wave resistance of a vertical post in a uniform stream. The horizontal 

section of the post is of ship-shape form and the lines are varied in a certain 

manner while keeping the area of the section constant. 

A direct study of ship waves as a three-dimensional problem for a ship 

of finite dimensions has not yet been accomplished. From one point 

of view the problem has been attacked by the method of an equivalent 

distribution of pressure on the surface of the water. Some advance has also 

been made in the case of submerged bodies; I have shown previously how to 

calculate the wave resistance of a body whose form is derived by combining 

the stream-lines of a uniform current with certain distributions of sources and 

sinks, under the limitation that the dimensions of the body are small 

compared with its depth. On the other hand Michell in an extremely 

J. H. Michell, ‘ Phil. Mag.,’ vol. 45, p. 106 (1898). ’ s 
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interesting paper, gave a general expression for wave resistance; but it 

suffers from a serious limitation, in that the surface of the ship must be 

everywhere inclined at only a small angle to its vertical median plane. 

In § 2 a short synopsis of Michell’s theory is given. 

In §3 this is applied to the case of a submerged body and the result 

compared with the work to which reference has been made; the two methods 

are quite different and have different limitations, but it appears that the 

results agree when these conditions overlap and are common to both. 

The main problem is treated by an application of Michell’s analysis in 

circumstances in which its limitations are not of serious importance, namely, 

when the body is a vertical post of infinite depth and of small beam compared 

with its length. We may regard this as a ship in which the effect of the 

vertical sides will be exaggerated, and we may study the changes produced in 

the resistance curves by varying the form of the level lines. The practical 

problems which have been kept in view in devising special cases are such as 

the effect of straight or hollow lines at the bow, the effect of finer entrance 

and increased beam while displacement remains constant, and similar 

questions. 

In §4 a set of parabolic curves for the level lines is specified so as to 

illustrate these points, and the corresponding value of the wave resistance 

obtained in general form as a function of the velocity. Certain new types of 

integral which occur in the analysis are examined in §5; they can be 

expressed in terms of the second Bessel functions Yo and Y, together with the 

integral of Yo, and are evaluated numerically by means of recent tables of 

Struve’s functions. 

In §§ 6-10, four types of model are examined, and the wave resistance 

calculated for various velocities in each case. The chief results are shown in 

the resistance. curves of fig. 2. For comparison with experimental curves 

from ship models, the base is the quantity V/,/L, where V is the speed in 

knots and L the length in feet. The models with finer entrance, or with 

hollow lines, have smaller resistance up to V/,/L=1-1 or 1:2; but above 

this speed the models with fuller ends have the less resistance. These, and 

other results of some interest agree with deductions from the corresponding 

practical study of ship resistance ; in § 11 a summary of these deductions is 

given and a comparison is made with the results of the present calculations. 

General Analysis. 

2. Take Ox, Oy in the undisturbed surface of the water and Oz vertically 

downwards; and suppose the ship to be symmetrical with respect to the 

plane y= 0. Assuming the ship to be at rest, and the water at a great 
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distance to have a uniform velocity ¢ in the negative direction of Oz, the 

velocity potential is taken as cvu+qd; the squares of the velocity due to the 

disturbance ¢ are to be neglected. At the surface z= 0, the kinematical 

condition 1s 4 
Pall ; oct, (l) 

where € is the surface cee 

The condition for constant pressure at z = 0 gives cd¢d/dx—gt = 0, or 

ep _ 0b SoD = 2 gant be 2 
At the bottom of the water 0¢/0z = 0; in what follows we shall assume 

the water to be of infinite depth. The remaining boundary condition is that 

dp /oy = 0 when y = 0, except over the surface of the ship; in the latter case, 

with pv as the normal, 

2 (e449) = 0. 

If the inclination of the ship’s surface to the plane y = 0 is everywhere 

small, the latter condition reduces to 

Ob _ 5 f= ot = of 2), (3). 

where 7 = f(a, 2) is the equation to the ship’s surface; to the same order the 

condition (3) may be taken to hold at y = 0 over the median plane of the 

ship. 

A potential function to satisfy these conditions may be built up by a 

summation of simple harmonic terms in the co-ordinates ; it is sufficient here 

to state Michell’s expression, namely, 

Err cos (nz—e) cos (n§—e) 

ne 7 Lane PE $) (m? + 2)? 

cos {m (E—2) fev m+) dE do dm dn 

2c3 (> meme? (2+9)/9 

Salo | i AG: ®) (mPct/g? — Re 

sin {m (a—&)+ my (mct/g?— he }dé d&dm 

Dc3 gle? men me? (z+6)/9 

ral, |). 8 camera 
cos {m (Ex) }e my G— mel? dEd&dm, (4) 

where tan e = —c?m?/gn. 

It may be verified directly that each term in (4) is a potential function and 
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satisfies all the above conditions except (3); and further that (3) is satisfied 

by the complete expression on account of the expansion 

fed= 4({[{ reo 
07070 J—-@ 

cos (1z—e) cos (n€—e) cos m (E—x) dE dE dm dn 

a | | | f (E, ©) m2e~ em" 2+519 cos m (E—2) dé dt dm. (5) 

An expansion which may be verified without difficulty, e having the value 

given in (4); it is assumed that the function /’(@, z) is such that the various 

integrals are convergent. 

The expression (4) holds for y positive. The first and third integrals 

represent local symmetrical disturbances, while the second integral represents 

the waves which follow the ship if we imagine it to be advancing into still 

water. 

If dp is the increase of fluid pressure due to the disturbance ¢, the wave 

resistance is given by 

R=—2|| 6p. dds = Bpe [| SOS aed (6) 

the integration extending over the vertical median plane of the ship. 

The first and third terms in (4) contribute nothing to R, and we have 

us Apc! oo cD p0O ce} m2e- m2 (z+.¢)/q 

R= 7g e fr alaloe tS (2) Ff & &) (nbc! ]/ ge —1y? 

cos m (w«—&) da dz dé d& dm 

_. 4iae- al P42) mdm 

TY 9 Sole Ge /(ge=1) 
Co) 

ait = | | J’ (@, 2) e- 2/9 cos max da dz 
0 J—x 

— | | SF (a, 2) e7-""7/9 sin ma da dz. (7) 
0% —w 

This is Michell’s expression for the wave resistance. We shall take the 

origin at the midship section and assume the ship to be symmetrical fore and 

aft; in these circumstances, I = 0. 

Submerged Spheroid. 

3. The application of (7) is limifed by the assumption involved in (3), that 

the inclination of the surface of the ship to the median plane y = 0 is always 

small. To illustrate this limitation we may consider a particular case in 
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which we can compare the result by another inethod. In a previous paper* 

I have shown how to find the wave resistance of submerged bodies of various 

forms. Apart from the usual simplification of neglecting the square of the 

fluid velocity in the wave disturbance, the specific limitation in that analysis 

was that the dimensions of the submerged body should be small compared 

with the depth at which it moves; but on the other hand, the kinematical 

condition at the surface of the body was taken in its exact form. In 

particular, if the body is a prolate spheroid of semi-axis a, eccentricity e, 

moving with velocity ¢ in the direction of its axis and at a depth f, the wave 

resistance was found to be 
7/2 

R = 128 7°9pa%er A? | sec? per 2moF °° { T10 (xoae sec f) |? dd, (8) 
0 

where x = g/c? and A = [4e/(1—e”)—2 log {(1 + €)/(1—e)} J". 

The limitation in (8) is that @ is small compared with /, but there is no 

direct limitation on the form, for example the expression includes the case of 

the sphere with e=0. Now, if we apply Michell’s formula (7) to this case, 

we shall obtain a result in which there is no limitation of the ratio of a to /; 

but on the other hand the inclination of the surface must be small, so the 

expression will only hold in the limit as « approaches unity. 

The equation of the spheroid being 

Ee CS = 1, BY 
we have 

On [Oa =f’ (w, 2) = —Vafa {0 (0?) — a2 (2 PY”. (9) 
Thus from (7) 

b? — mc? wen eslg ] J= rane *f19 \ ea) ere sin ma da dé, (10) 

where we have put €=z—/, and the integration extends over the ellipse 
Pfla+?/P = 1. 

Integrating with respect to x first, we have 

| @ “sin mx da Ali AD ues a7 (ie ——— 

-» (@C—F)—Pape — PEE ("F JE=P) 

where p has been used for a(1—£?/?)1/”. 

Hence we obtain 

J = — 7b? efig | e(merb/)eos® J, (ma sin @) sin? 6 dé 
0 

pan, BPP IP @seS) eee = —I2arbhre~mreslg 2 

eee > GayrtiB (2n)! ( g 

* “Roy. Soc. Proc.,’ A, vol. 95, p. 354 (1919). 

I Jn+3/2 (ma). (11) 
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If we use only the first term in this expansion in powers of 6, we have 

J = —(20r?/ma)? be ™eF9 J 3/0 (ma). (12) 

With this value (7) gives 

DN S7z eee in mdm 
2 pp -P , ———— 

R ga be {Jape (ma) }? (mPct / g—l)? 

= 87° gpa? (1—e?)? [see her ProFsee?? {Jao (Koa sec dh) }? dd. (13) 

With ¢ nearly equal to unity, it is easily verified that (13) agrees with (8). 

On the one hand, the result (8) includes the sphere (ec = 0), under the 

restriction that fis large; on the other hand (7) and (11) give a formal 

solution for any depth f, but only serve for e nearly unity. The two methods 

are very different, and it is of interest that the results agree under conditions 

in which the two approximations overlap. 

Formule for General Type of Model. 

4. The limitations of Michell’s formula do not admit of its application to 

actual ship forms; for although the sides of a ship may be at small angles to 

the median vertical plane, the bottom of the ship does not fulfil this condition. 

It is proposed to use the method here in such conditions that this objection 

does not hold, by supposing the ship to be of infinite draught. In other words, 

we consider the wave resistance of a post extending vertically downwards 

through the water from the surface, its section by a horizontal plane being 

the same at all depths and having its breadth small compared with its length. 

This enables us to elucidate certain points of interest in ship resistance. 

We suppose the ship to be symmetrical fore and aft, and we take the 

origin at the mid-ship section. Then since in (7), /’(a, 2) is independent of z, 

we have 

ay ga co 
Es 7 le m? 

(mct/g?—1)” 
(14) 

where J= (a (x) sin ma da, (15) 

the integration covering the length of the ship, and the equation to the half- 

section being y = /(#). 

We wish to study the effect of altering the form of the section while 

keeping the length and the total displacement unaltered, the beam varying 

slightly according to the curvature of the lines. These conditions can be 

satisfied by taking the form of the water-plane section, for y positive and v_ 

ranging between +/, to be 
b a? ces i EN 1 J eae =) | 6a? ec) 
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Here 2/ is the constant length, and 301 the constant area of horizontal 
section of the ship; the beam is 

2b (1—?/6d?)/(1—P/5d?). (17) 
The points of inflection in the curve are at « = +d. For d = 0., we have 

the ordinary parabolic form with beam 2b. With d =/the bow and stern 
lines are still straight, but the ship has a finer entrance and a slightly larger 
beam. With d<l, the lines at bow and stern are hollow, that is, the sides 
are concave outwards. We shall study in detail later four values of 1/d, 
namely, 0, 1, 1:25 and 1:5. 

From (15) and (16) we have 

4b y : = ae _ 173) q2 TE J = Pd TES |e 4x3/d?) sin ma de. 

Evaluating and putting in (14) we obtain 

R = 64n71gpb71-4(1 -1?/5d?)-? x 

<a l [3 21 1 2 2 ; 2 Sj fs hs m ie {(4 Bari =) SUE (= Fates) sin ml } 

dm 

m? (mc! [g?—1)v* re) 
We shall use the notation 

o— ae IL, = Ye p=gL fe. 
Altering the variable in (18) and expanding the terms, it can be expressed in 
the form 

512Qgpb"l re 4 = Uap |, [Fos [35+ 5 142545 c0s2 0 

+57 Beast p+ Boosh b 4d costg {1p 

4 Z 
Te (1-6 B+ Fd 4eos! p—T 8 (1-254) cost g 

256 6t 6 2 2 4 §2 1 §4 Rian cos® @ - cos(p sec d)—cos? & Ae +4 5*) cos b 

oe 5? (1—3 6?) cos? p+ = 64 cos? an sin (p see 6) | dd. (19, 
J 

5. The integrals in (19) which do not seem to have been studied explicitly 
are of the following forms 

Pos (p) = (—1)* [cost sin (p see @) dg (20) 
1/2 

Ponti (p) = (—1)"#2 | cos*"*1 ¢ cos (psec d) dd, (21) 
0 
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with 2 a positive integer. The cases which occur in (19) could be tabulated 

directly by means of convergent series and asymptotic series. They can, 

however, be derived by repeated integration of the second Bessel function, and 

can be expressed in terms of functions of which Tables are now available. 

The functions satisfy the relations 

Ie == 1 ny 

PD: =D a) G@al) Bn (22) 

Further, in reducing a function of positive order n by this relation, (22) 

holds as far as 

2P2 = p(Pi+ P-1)—Po, 

P, = p(Po+ P-2). (23) 

Now we have 

Re [esi (p seep) dp = —7 ie (pyle (24) 

where Yo is the second Bessel function defined by 

Y= = ine sec d cos (p sec h) dp. (25) 

We shall use the notation 

Yoo= [Yo (avd. (26) 

Since we have 

poss —F Yo; P2=—2V! = > Va (27) 

it follows that by using (22) and (23), we may express the unknown integrals 

in (19) in terms of Yo}, Yo and Yj. 

Some numerical values of Yo! have been published recently by G. N. 

Watson; these are not sufficient for our purpose, but Watson also gives 

Tables of Struve’s functions Hp and Hy ranging from 0 to 16. In terms of 

these functions 

Yoou= pYo-F p (YoHi—YiHp). (28)* 

Watson’s Tables of Struve’s functions and of Yop and Y, have been used in 

the calculations that follow. 

6. Returning to (19) we evaluate the simple integrals and reduce the 

others in the manner indicated in the previous section ; omitting the algebraic 

reductions, the final result is 

* G. N. Watson, ‘ Treatise on Bessel Functions,’ p. 752 (1923). 
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5129 pb?l 

a m (1-4 6)? p3 

Tf a Oe ie 1( 1 05 EES = Ba fea go LL 21a me” Mame)! algae e tm |e 
Loy eyo | ai =U +58 aD Yo 

9 
oh 

“2 \aoaiee : ot) p+ sh 1 ye OO 

1 16 1 512 & 16384 64 = (1—1. 82 + —9 (14. 292-1 gt) L912 & | 16384 6 [5 Coo 15 (E 5 at 35 pt 315 pe 

1620 IT 2W YEH 

+35 PI —go) ee hy, 

+51 (co-ats ®t pay eg (Id ora 8 9), 
Higa tag), tgs Ba) 2 + BES) (29) 

This, with p=gL/c?, gives the wave resistance as a function of thé 
velocity. 

For large values of p it is simpler to calculate directly from an asymptotic 
expansion. This may be obtained directly from the integral expression for 
R, or by substituting in (29) the asymptotic expansions of Yo, Y; and Youl. 
The latter method gives a check for the coefficients in (29), since the positive 
powers of p must disappear from the expansion ; in this way the first few 
terms of the expansion are found to be 

5129p 671 

$e 
Le? SC a oh *) sin (p—7) 
=) { (5 3° +755 aa A 

1S) ET os. 1 _@ 
al ago ag 8) = 008 (p aa @) 

We shall consider now four cases numerically. 

ae 1 A, SEHD 16 21 94 i R [5c 3 8)+ 72 (1+28 19) 

Calculations for Four Models, 

7. In model A we take 8=0; so that the level lines of the ship are the 
parabolic curves 

= b(1—2?//?), 

The expression for the wave resistance reduces to 

see Lea oe 1 Als 
Rises 3/1522 \60” ti”) % 

w/t oo 5) z(2 Sale 2) } 31 terse Eo \ eg? tg? hip) ay CD) 
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with the asymptotic expansion 

eee (5+ 25-(z yr 43 (v-3)+ 151 (v-2) b] 39 
Rw~ 3+ in (Op un pa iGsal oe D7 . (32) 

For small values of p, (81) is not satisfactory as the quantity within large 

brackets is the small difference between large numbers; it is better then to 

use an ascending series in p which can be found by substituting expansions of 

Yo 1, Yo and Y;. ‘The first few terms are 

Bee ee aon | 2 R= 72 gpl | (Faye a760” + log ( 2 y 

Tas 
+576? 930400” + rf (2) 

where y is Euler’s constant, 0°57722 

From these expressions the values in Table I have been calculated. 

Table I.—Resistance of Model A. 

P- e| V (gL). 10°R/gpb2U. p- | e/ (gL). | 10°R/gpb7U. 

19 “64 0° 7°8 0 °358 56 
18 07 @)e 7 086 0-376 | 131 
16°5 0:2 6 0-408 406 
14°92 0:2 5 0-447 897 
14, O° 3° 0 5038 1502 
13 °36L O° 2 0-707 2392 
11°78 O° 1 1:0 2050 
10°22 Ov O° 1-058 1930 
9°24 Otsy 0° 1414 1434 
8 64 O° Os 2°0 904 

A certain portion of the range will be studied in detail later; the Table 

gives a general view of the variation of the resistance with the velocity. At 

low velocities the resistance is small and oscillates in value; then at a speed 

of about 0-4,/(7L) it begins to rise rapidly and reaches a maximum at about 

/(4gL), after which the resistance decreases continually and converges to 

zero for infinitely large velocities. Doubtless the conditions under which the 

expressions were obtained would be violated at very high velocities, but it is 

of interest to trace the variation in value over the whole range. Absolute 

values could be obtained from Table I for a plank of given dimensions and of 

the specified form ; these would be comparable with experimental results for 

a plank of finite depth if the velocity were such that the effect of the surface 

waves could be neglected at the depth of the lower edge of the plank. 

8. For Model B we take 6=1. The formule are now 
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_ 800gp0% 7 4 1281 5121, 163841 _/ 31, 
mp Ee 45 pi 35 pi 315 F > (aaa5? 

iW Bil a / 31 256 1 , 8192 1 Vereen One 2 
tapes Erte spre oo SB =) Q 

m/_3l 122 512 1 , 16384 1 De eet ee Aad Mer (soe + sear 2 p= B15 pot 315 hal ( ) 

a 

The corresponding asymptotic expansion is 

S00gbIP A IIB A (2) (Bin (8) M2 (pz) 1] ay depigh an leas Hal UG eal 36 2 >) 
The general course of R is similar to that for Model A except that the 

values are less for velocities below about 0°36,/(gL) and higher for velocities 

above that value; for example, at p = 6 the resistance of B is 482 units, and 

at p= 1 itis 2546 units, while the corresponding values for A are 406-and 

2050 respectively. 

9. The third case is Model C with 6=1:25. We have then 

131072 gpbl f 529 | 25431 , 160 1 , 8000 1 

12ir p® 6912" 720 p27 pt” 63) pe 

— 23959 2641, 275 1\ z ( 23959», 68378 
9 

pp a — —————— ee 

903040 * 64512? *512p/ ° ~ 2 \2903040" * 483840 

47443, 111 

R= = 

2 

2903040” 17451520? 560 p 
560 1, 80001 i 36 

op BS a) Op So 

220 1 , 4000 1 a! + (saaanag? 
63 p®? 63 =) ; 

and for large values of p, 

131072 gpblf 529 | 2543 1 ( ae 529 7) 
Rw~ : al if we “ 

121m 7p et 720 py \2p T608 sin (p a) 

_ 28865 1 - i 
36864 p (o-7) | } cD 

The remaining example, Model D, is a more pronounced variation from the 

standard form A. With 6 = 1-5, the forward point of inflection in the water- 

plane curve is at one-sixth of the length of the ship from the bow. 

We have in this case 

Rp — 204800 cee O11 1152 1, 9216 Va aT 
1210 4815p? 35 je 3 pe? 2 \O720 

191 99 1 a/ 37 5, 29 , 4608 1 
tapas) oo $l eae 672° 35 5) p 

coh Se er LD ee a 2216-4 OE eu LL byl “Sano” Se Toss ey BY oS ml uh CY 
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For small velocities the appropriate expansion is 

204800 gpblf 1, 611 a We fF il. 7 R~ FIRES eb ye sentence se ue aE 
Me es ete (=) 39 sin (p q 

71 (»-7)} | 39 Oo D7 » (39) 

A study of the numerical coefficients in these various formule gives some 

indication of the manner in which the resistance varies with the form, and 

this is confirmed by actual calculations which have been made in each case 

asin Table I for Model A. The general variation of the resistance is the 

same, but the differences noted between Models A and B become more 

pronounced for C and D; the resistances are less at low velocities and 

greater at high velocities as we progress from A to D. The results may 

now be collected and examined graphically. 

10. Fig. 1 shows the lines of models A and D, the curves being one- 

quarter of the water-plane section in each case. In the comparison we 

have in view with ship models the ratio of beam to length is of the order 

of 1 to 10. In order to make the diagram show the difference on a small 

seale, the ratio of beam to length in fig. 1 is 1 to 5. Further, only the 

extreme models A and D are shown; the lines for B and C would fall 

between those of A and D. 

D 

ee FIG.1 

The variations in form are summarised in Table II. 

Table II1.—Models of Constant Length and Displacement. 

Model. Beam. Water-plane coefficient. Bow and stern lines. 

A 1:0 0-667 Straight. 
B 1-042 0-64 Straight. 
Cc 1-076 0-62 Hollow. 
D 1°136 0-587 Hollow. 

For comparison with ship resistance, it is convenient to use the same 

co-ordinates as are used in experimental results. In graphing the resistance 
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we use as a pase the quantity V/,/L, where V is the speed in knots and 

L is the length in feet ; thus we have, in the previous notation, 

— gl ee L - Sa 11:594 ye Prox. (40) 

The range for V/,/L, which is of special interest, is from about 0°75 

to 1:25. Fig. 2 shows the curves of wave resistance for the four models, 

obtained by calculating R from the expressions (31) to (39). 

Comparison with Ship Resistance and General Conclusions. 

11. In studying these curves in relation to experimental data from ship 

models, one cannot make a direct numerical comparison of absolute values. 

In the present calculations one has the advantage of isolating some single 

feature and of seeing how its variation affects the results, for instance, the 

form of the level lines. On the other hand, in experimental curves from 

models there is no simple separation. In practice, the form of the ship 

is expressed roughly by certain coefficients of fineness: the water-plane 

coefficient being the ratio of the area of the water-plane section to a 

rectangle enclosing the section, the mid-ship area coefficient similarly 

defined, the prismatic coefficient, the curve of sectional areas, and so forth. 

In experiments these coefficients may be varied in a systematic manner, but 

in their effect on the ship’s form they are not in any mathematical sense 

independent variables ; this leads to some difficulty of interpretation from a 
theoretical point of view, 
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The first point to be noticed is the prominent hump on the resistance 

curves in the neighbourhood of V/,/L=1. This is a well-known feature 

of ship resistance; it has been stated as an empirical rule that this hump 

occurs at V = 1:05,/L, or again that it occurs at V = 1:34,/(PL) where P 

is the prismatic coefficient. In fig. 2 the values of V/,/L for the more 

normal models A and B are 1:04 and 1:03 respectively, while for the more 

extreme forms C and D with hollow lines they are about 1:02 and 0:98; the 

model D has obviously lines which are unusually fine at the bow. 

In the figure the humps and hollows are, in general, more pronounced 

than in experimental curves. The familiar pattern of ship waves is usually 

described as made up of transverse waves and diverging waves, the former 

being the chief factor in the wave resistance; there is also a tendency to 

associate the transverse waves with the stream-lines which travel along the 

bottom of the ship and the diverging waves with the action of the vertical 

sides of the ship at the bow, but this is misleading. In the present calcula- 

tions we have models in which none of the stream-lines can go underneath 

the ship; they are all forced sideways from the bow. It appears that the 

effect of the flat bottom of the ship, and of its finite draught, may be rather 

to smooth out the oscillations in the resistance curve. A general feature 

of the curves which is in agreement with experiment is that the oscillations 

become progressively less prominent as we take the models in the order 

A,B, GC, D; this is especially noticeable in models C and D, which have 

hollow lines. 

The most interesting and important characteristic of the set of curves is 

their intersection in pairs at values of V/,/L ranging from 1:12 to 1:18. 

Compare, for instance, models C and A. At low speeds C, with its finer 

entrance, has a decided advantage ; at 1:18 the resistances are equal, while 

above this speed the advantage remains with model A, with blunter ends 

but with less beam. It has been remarked that one cannot make exact 

comparison with experimental results from ship models, but a general 

survey of the data bears out these calculations. Without going into detail, 

it may suffice to give a few references to standard treatises on ship resistance 

where the results are summarised. 

G. S. Baker remarks: “In the section dealing with the relative merits of 

hollow versus straight lines, and elsewhere, it has been shown that for vessels 

of fine form intended to work at speeds in the neighbourhood of V = ,/L 

there is a decided gain in working the level lines with some hollow in them. 

Tt has also been known that for such fine forms at very high speeds the 

hollow should be reduced to get the best effect.” * 

*@.S. Baker, ‘Ship Form Resistance and Screw Propulsion,’ p. 87, 2nd edn. 

1920. 

212 



Studies in Wave Resistance. 585 

D. W. Taylor,* referring to a series of experiments with models of the 

same displacement and of varying, midship section coefficients, states that 

the models with full midship-section coefficients drive a little easier up to 

V—,/L = 1:1 to 1:2, and the models with fine coefficients have a shade the 

best of it at higher speeds. Again, the same author analyses the results of 

another set of experiments thus: “Fig. 67 shows curves of residuary 

resistance for five pairs of 400-foot ships, each pair having the same dis- 

placement and derived from the same parent lines, but differing in midship 

section area or longitudinal coefficient. It is seen that at 21 knots No. 10 

with 0:64 longitudinal coefficient has 23 times the residuary resistance of 

its mate No. 9 with 0:56 longitudinal coefficient. But at 24} knots they 

have the same resistance. Again, No. 4 of 0°64 coefficient at 21 knots has 

nearly twice the residuary resistance of No. 3 of 0:56 coefficient. At 

253 knots they have the same residuary resistance, and at higher speeds 

No. 4 has the best of it, having but 0°9 of the residuary resistance of No. 3 

at 35 knots. 

“These results, which are thoroughly typical, are susceptible of a very 

simple qualitative explanation. A small longitudinal coefficient means large 

area of midship-section and fine ends. A large longitudinal coefficient 

means small area of midship-section and full ends.” e 

It will be noticed that the experimental curves referred to in this extract 

intersect in the neighbourhood of the point V/,/L = 1:2. The curves of 

fig. 2 also intersect near this point. The lines of the models A, Band C 

were chosen to be of suitable form, limited by the necessity for a simple 

mathematical expression which led to integrals that could be evaluated. It 

may be claimed that the curves so obtained agree with experimental data, 

and, further, that they repay detailed study, in that the variations in 

resistance are connected definitely with a precise variation in the form of 

the model. 

* D. W. Taylor, ‘Speed and Power of Ships,’ pp. 96 and 97. 

Hareison anv Sons, Ltd., Printers in Ordinary to His Majesty, St. Martin’s Lane, 
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Studies in Wave Resistance: the Effect of Parallel Middle Body. 

By T. H. Havetocg, F.R.S. 

(Received February 20, 1925.) 

Introduction and Summary. 

1. If a ship is altered by inserting different lengths of parallel middle body 

between the same bow and stern, the main features of the variation in the 

wave resistance may be inferred from the principle of wave interference, and 

may be expressed in terms of a certain length, sometimes called the wave- 

making length of the ship. The problem proposed for examination is the 

alteration in this length with varying length of parallel middle body at the 

same speed, and, further, its variation for a given ship at different speeds. 

Recent discussions have attracted renewed attention to this problem. It 

may be said that there are two approximations based on experimental results 

of various kinds obtained from ship models. On the one hand the wave-making 

length is supposed to be approximately independent of speed for a given ship, 

and to increase directly with the increase of parallel middle body ; on the other 

hand, an empirical formula which agrees with experimental results over a 

certain range makes the length increase with velocity, the increase beimg one- 

quarter of the increase in the wave-length of regular transverse waves. 

The following contribution to the solution of this problem is mathematical, 

and necessarily deals with a simplified form of ship. It is true that one cannot 

compare absolute values of the wave resistance with those of actual ship models ; 

but it has been shown in former studies of the dependence of wave resistance 

on ship form that one obtains a rather remarkable agreement, at least in the 

character of the results and in the positions at which changes occur. Leaving 

detailed discussion of the present extension till later, it may be stated that 

as regards the two approximate formule mentioned above the results are 

intermediate ; after an initial decrease the wave-making length increases with 

velocity, but not so rapidly as in the quarter wave-length formula. 

In §2 an expression is developed for the wave motion due to any distribution 

of doublets in a vertical plane in a uniform stream, and in §3 this is associated 

with the form of the ship’s surface. Applying the formule to a ship of infinite 

draught, with parabolic curves for the entrance and run and with parallel middle 

body, we obtain a general expression for the wave resistance (§4). After com- 

putation of the functions involved (§5), a detailed numerical study is made for 
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a ship with entrance and run each of 80 feet and with parallel middle body 

increased from zero up to 340 feet, as in W. Froude’s well-known experiments 

($6). Fig. 2 shows the curves of wave resistance for five different velocities, 

the base being the length of parallel middle body. A short account of model 

results and of recent discussions is given in §7, and the present calculations are 

reviewed in the remaining sections. The information from the curves of fig. 2 

is extended by an equation whose roots give the complete series of maxima 

and minima (§8). The roots are found numerically for three series. With both 

the length of the ship and the speed varying, we obtain the roots for the maxima 

for which on a simple theory the wave-making length is equal to one and a half 

wave-lengths ; Table IIT shows the actual variation of this length. Then two 

series of roots are found for a ship of constant length at varying velocities, 

one for a ship of 160 feet without parallel middle body, and the other when 

240 feet of parallel middle body have been inserted; these are given with 

other quantities in Tables IV and V, and the results are discussed in relation to 

experimental data. 
Expressions for Wave Resistance. 

2. A uniform stream of deep water moves with velocity c in the negative 

direction of Oz, the axes Ox, Oy being in the undisturbed surface, and the 

axis Oz vertically upwards. Suppose there is a doublet of moment M in the 

liquid at the point (h, 0, —f) with its axis parallel to Oz. With the usual 

limitation of assuming the additional fluid velocity at the surface to be small 

compared with c, one can write down complete expressions for the velocity 

potential, and so deduce the wave disturbance and the corresponding wave 

resistance. It is convenient to begin here by quoting from a previous paper* 

the wave resistance, altered to the present notation, as 

wla 

i LérgteMe-* | sec® he~ Cul sectd qd, (1) 
0 

In the same paper it was also shown how to generalize this expression, 

first, for any two doublets at given points in the plane y = 0 and then for any 

continuous distribution in the same plane. Equation (37) of that paper 

gives the result for a continuous line distribution of doublets along the line 

y =0, = —f; an obvious extension gives now 

enone jale i. dh | ae (i bi NYS) 

x secd few Ft Nietsec?# cos [{g (h—h')/c?} sec 4] dd, (2) 

* ©Roy. Soc. Proc.,’ A, vol. 95, p. 358 (1919). 
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for a distribution of doublets in the plane y = 0, the moment per_unit area 

being wt (h, f) and the integrations extending over the whole distribution. The 

function ) must be such that the integrals are convergent, as well as the 

corresponding expressions for the velocity potential and the surface disturbance. 

We now integrate (2) by parts with respect to h and h’, and as we shall deal 

with distributions which are of finite extent in the x co-ordinate, we obtain 

7 

RB = 16ng%o0-4 if df a le dh | “a i Dw/ah. OU far’ . sec? 

x EW WETHICF see* > eos [£g (h—h’)/c?} sec 6] 0d. (3) 

The fluid motion is symmetrical with respect to the plane y=0; we may 

therefore confine our attention to the fluid on one side of this plane and we may 

interpret (3) in terms of the distribution of normal fluid velocity over the plane 

y=0. For, from the definition of |, the normal fluid velocity at the point 

(h, 0, f) is2x0/dh. Substituting in (3) we should then have the wave resistance 

for a given distribution of normal fluid velocity over the plane y= 0. From the 

latter point of view the solution can also be obtained by methods of harmonic 

analysis; the expression for the wave resistance, used in a former paper,* 

agrees with (3) found by the method of sources and sinks. 

3. In the application to ship waves the same assumptions are made as in the 

paper just quoted. The plane y = 0 is the fore and aft median plane of the 

ship, and the inclination of the ship’s surface to this plane is supposed small. 

The ship is then replaced by an equivalent distribution of normal fluid velocity 

over its section by the plane y = 0, namely the component of the stream velocity 

c over the actual surface of the ship ; thus if 

y = F(a, 2) (4) 

is the equation of the ship’s surface, we use in (3) 

ou oF 
9 —  — — ana = on. (5) 

A difficulty which may arise in the general solution should be mentioned, but 

need not be considered further in the present applications. A mathematical 

infinity may occur in some of the expressions ; this may be removed by intro- 

ducing a suitable factor to ensure convergency, but in any case it only occurs 

in those parts of the velocity potential and surface disturbance which represent 

the local symmetrical disturbance. The integrals for the wave disturbance, 

and consequently expression (3) for the wave resistance, remain finite. 

* «Roy. Soc. Proc.,’ A, vol. 103, p. 574 (1923). 
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4. Suppose the ship to be symmetrical fore and aft, and take the origin 

at the midship section. To simplify the calculations we assume, as in previous 

studies, the ship to be of infinite draught and to be of constant horizontal 

section, as shown in fig. 1. 

The length of parallel middle body is 2k, and 1 is the length of entrance or 

run ; the curved surface is of parabolic form, the equation of AB being 

y = b{1—(a—k)"/P}. (6) 

Substitute from (5) and (6) in (3). Since the normal velocity is zero over the 

parallel middle body, and since the ship is symmetrical, the integrations in 

h and h’ simplify considerably ; also, we may carry out the integrations in 

f and f’ and so obtain 

2 
Re sectn=* | J cos dé, 

0 

where 

= = | sin |S (h+-k) sec | dh. (7) 

Evaluating J, we find after some reduction 

7 

a) [ E cos? f+ = cos’ d— ; cos! ¢ sin (E sec é) 

, é) cos (eae d sec a) 

— = cos! ¢ sin pa (be), ecg ti “cost ¢ sin an 08 (2k-+}) secs 

64gob7l 

Tw 

R= 

pis = cos® ¢ cos (@ sec é) +4 (cos! o— 

cA 4 a cos? ¢ cos {eee sec 4| is aD cos? $ cos (Po sec $)| ch ®) 
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Using the notation 

wols 

D(a) = (=ilp | cos” ¢ sin (p sec $) de, 

wv 

Ban) = (ee [coe $ cos (psec ¢) dd, (9) 

we have 

__ 64geb7l &y 118 & (gl (2) 
Bis Te gl E Tis gl oP \e a) = pp ts Ce 

* e Ae @ 
4P3 (pi) — gi Px (pi) 12 op Ps (p1)-++ gi Pa (pz) 

4 4 — agp Pole) +4 Ps ks) | (10) 
where 

pPi=g(2k+2le, p2=g(2k+D/c*, ps = 2gk/e°. 

Tabulation of Functions. 

5. In order to obtain the curves we require, we have to evaluate (10) for a 

large number of values of &, and in each case for several values of ¢; it was 

necessary to prepare tables and graphs of the P functions. Yo and Y, being 

Bessel functions of the second kind and Yo + being defined by 

Meu = ['¥%o (p) dp, (11) 

we have, from sequence relations given previously,* 

== a (p?—3p) Yo *+-p"Yo—(p*—4p) Yi} 

Py=— 5 {(P*— 6p? +9) Yo "+ (p*—9p) Yo—(p*— Tp") Va} 

Pp ai {(p°—10p3+-45p) Yo *+(p'—13p") Yo—(p° — 11 p+ 64p) Yi}. (12) 

The values of Yp and Y, and of Struve’s Functions Hp and Hj, given in G. N. 

Watson’s ‘‘ Treatise on Bessel Functions,’ were used to calculate values of 

Y, 2 from the formula 

Yo + = pYo— + p(YoH:— Yio), (13) 

* «Roy. Soc. Proc.,’ A, vol. 103, p. 578 (1923). 

218 



82 T. H. Havelock. 

and then values of the P functions were found from (12). With increasing 
values of p, the multipliers in (12) become large and this method loses accuracy 
unless the Bessel functions are known to a large number of places. It is then 
preferable, and sufficiently accurate for the present purpose, to calculate from 
a few terms of asymptotic expansions. These can be found independently, 
or derived from those of the Bessel Functions ; they are 

a ff, CSS IL ze, Der P; VE{ (1 128 pe 7 sin (p 7) 

ae 1 42-964 | zoey “i (p— a 
De p 

r 1569 1, 527-3 7 
Eas V E(t 128 pp! ) eos (p— 4) 

21.1 73-608 on) = | —_— ——— —_ —_ C2 a 
5 nf Sly AD 2 983°2) sin (p—2) 

ES Veale me pe an) esa 
@ i Hee 3858) aes (»- a 
iP p 

Although systematic computation of these functions has not been attempted 

(14) 

to any high degree of accuracy, it was found necessary to calculate a large 
number of values from p zero up to p equal to 40. Some of these are recorded 
in Table I. 

Table I. 

p P; ID, 12. D 125 Iho P;. 

0 +0-6666 0 —0-5333 3:6 —0-3515 | —0-3606 | +0-3457 0-4 --0-5880 | --0-2563 | —0-4795 4-0 —0-1517 | —0-4624 | +0-1784 0-8 --0-3876 | +0-4551 | —0-3361 4-4 +0-0597 | —0-4828 | +0-0150 1-0 --0-2569 | +0-5198 | —0-2381 4-8 -+-0-2580 | —0-4220 | —0-1800 1-2 --0-1171 | +0-5573 | —0-1300 5-9 --0-3317 | —0-3570 | —0-2721 1-6 —0-1590 | +0-5480 | +0-0903 6 +-0-4478 | +0-0741 | —0-4230 2-0 —0-3867 | +0-4366 | +0-2940 7 +0-1380 | +0-3932 | —0-1623 2-4 —0-5106 | +0-2509 | +0-4405 8 —0-2659 | +0-3195 | +0-2291 2-8 —0-5651 | +0-0281 | +0-4902 9 —0-3884 | —0-0406 | +-0-3799 3-0 —0-5436 | —0-0828 | +0-4849 || 10 —0-1475 | —0-3348 | +0-1669 3-2 —0-4998 | —0-1880 | 4-0-4579 bes = = pe 

Many intermediate values of the functions were required, and the only 
practicable plan was to construct graphs from which these could be taken 
with an accuracy of three figures. This was obtained by drawing graphs 
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of the three functions over the range from 0 to 40, the scale for p being 1 inch 

for unity and the scale for the ordinates being 10 inches for unity ; these gave 

the required accuracy, supplemented at critical pots by numerical calcula- 

tion. The graphs are not reproduced here, as they lose their practical value 

unless on a very large scale ; they are, of course, similar in character to graphs 

of the Bessel functions—oscillating curves diminishing in absolute value with 

increasing argument. 

Resistance Curves. 

6. We can now make a numerical study of the wave resistance given by 

(10). We might adopt dimensionless variables, such as gl/c? and k/l, but the 

calculations were begun with the intention of comparing the results with 

W. Froude’s curves ; we take therefore 

1 = length of entrance = length of run = 80 ot (15) 

2 k = length of parallel middle body, 

with 2k increased from zero up to 340 feet. For an assigned velocity c, the 

values of R were found for every 20 feet of parallel middle body ; as a rule, 

intermediate values were also calculated so as to define the maxima and minima 

with sufficient accuracy. 

Two examples of the work may suffice. With 

gic? = 0045; c= 26-75 ft./sec.; V = 15-83 knots; (16) 

we have, from (10), 

als 
3°6 

sails 
25-92 

eubt) 
25-92 

2 
R = 921 10-974 x [0-5026-+ (Ps— gg Pit se", Ps}{0-00k-+7-2} 

TT 

i 1 ) | —— P, — ——— P| {0-09%-£3- : . teal: mae +3-6}+ P; {0-094} |. (17) 

The notation { } denotes the argument of the P functions in the preceding 

bracket. 

For increments of 10 in the value of k, the P functions were required at 

intervals of 0-9 from zero up to 22:5. Again, with 

gic = 0-02; ¢ = 40-18 ft./sec.; V = 23-76 knots, (18) 

we have 

ee 1 — 9964 19 [o-2344 (QP— = a 
Hoa roRm ACK TG eg 5-12 

Ps) (0-04b-+3-2} 

1 

5-12 

1 1 apes 
1-6 ° 2-56 

an ( Ps) {0-04k-+1-6} + Ps {0-04h} |. (19) 
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In this case the arguments of the P functions increase by intervals of 0-8 
from zero up to 10. 

It may be noticed from (17) and (19) how the relative importance of the 
oscillating terms alters with the velocity. 

This process was carried out for nine different velocities, namely :— 

gle? = 0-1, 0-0625, 0:05, 0-045, 0-04125, 0-0375, 
0-03125, 0-02, 0-0075. (20) 

Five of the curves are shown in fig. 2, which gives the quantity 8cR/gpb7 
on a base 2 k representing the length of parallel middle body ; the curves for 
higher speeds are not reproduced, as the scale would obscure the effects, but the 
data are used in the discussion. 

Approximate Formule. 

7. It is convenient to summarise now the experimental data and empirical 
formule derived from them. 

The investigation of W. Froude* was the first direct study of interference 
of bow and stern waves made by testing models with the same bow and stern, 
but with increasing lengths of parallel middle body. We associate with this work 
the subsequent paper by R. E. Froude,} who applied the principle of interference 
to the resistance of a given model at different speeds. Founded on this work, 
the approximate theory has been developed : the bow produces a wave system 
beginning, so far as regular transverse waves are concerned, with a crest 
slightly aft of the bow, while the stern originates a system beginning with a 
trough a little aft of the after-body shoulder. Assume that this wave-making 
length, say Z, is approximately independent of speed, and further assume that 
the wave resistance is chiefly due to the transverse waves. If, then, A is the 
wave-length of regular transverse waves for velocity c, the so-called humps 
and hollows on the resistance curve occur at speeds for which Z is an odd or 
even multiple of $2. Or, if we assume an approximate formula 

R = A—B.cos (gZ/c*), (21) 

where A and B are undetermined functions of velocity, the humps and hollows 
correspond to the maxima and minima of the cosine factor ; hence we have 
the sequence 

1 1 1 
1, — — aa 22 

* W. Froude, ‘Trans. Nav. Arch.,’ vol. 18, p. 77 (1877). 

7 R. E. Froude, ‘ Trans. Nav. Arch.,’ vol. 22, p. 220 (1881). 
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for the ratios of the velocities at which these occur, beginning with the final 
hump on the curve of R plotted on a velocity base. 

This was the sequence verified experimentally by R. E. Froude. It should 
be noted, however, that these points are not actual maxima or minima on the 
resistance-velocity curve ; although their approximate position is fairly obvious 
from inspection, they cannot be defined accurately without a knowledge of the 
mean resistance curve. 

Turning to W. Froude’s work, it is obvious we should have similar phenomena 
if the effect of introducing parallel middle body is simply an addition to the 
wave-making length. his is the case if we consider any curve of R on a base 
of parallel middle body for a given speed. Here we are dealing with actual 
maxima and minima; and Froude’s curves show that, within experimental 
error, the separation between consecutive maxima is approximately equal 
to the wave-length 4. On this theory the quantity Z derived from each curve 
should be the same for all velocities, but Froude did not examine that point. 
The second approximate theory, which we shall consider now, asserts in fact 

that Z is not constant in these curves. 

From a study of various model results, a formula connecting Z with ship 
form was given by G. 8. Baker and J. L. Kent*; the formula was later asso- 
ciated with direct observation of wave profiles in certain cases. For a recent 
critical account of this formula, reference should also be made to two papers 
by J. Tutin} and to the discussions published in connection with them. 

The formula is equivalent to defining the wave-making length Z by the 
equation 

Z= PL+4A = PL+2c?/2g, (23) 

where L is the total length of the ship, and P is the prismatic coefficient of 
form. Since P is the ratio of the volume of the ship to the volume of a prism 
of the same length and with section equal to the midship section of the ship, 
we have in the present notation 

PL = 2k+9P,I, (24) 

where P, is the coefficient for the entrance or run; and at any given speed 
there is a similar relation between R and 2k as on the previous theory. The 
chief interest of (23) lies in the second term, which makes Z increase with the 

* G.S. Baker and J. L. Kent, ‘Trans. Nav. Arch.,’ vol. 55, Pt. I, p. 37 (1913) ; also 
J. L. Kent, ‘Trans. Nav. Arch.,’ vol. 57, p. 154 (1915). 
{ J. Tutin, ‘Trans. Nav. Arch.,’ vol. 66, p. 240 (1924); also ‘ Trans. N. E. Coast Inst. 

Eng. and Ship.,’ vol. 41 (1925). 
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velocity, in contrast to R. E. Froude’s results. The expression for R corre- 

sponding to (21) is now 

R = A+B sin (gPL/c*), (25) 

and instead of the sequence (22) we have 

ites ae nee 
GB" Vf of 

for the ratios of the significant velocities. 

(26) 

The authors of this formula based it upon observations over a certain inter- 

mediate range of velocities. If we omit the first two or three terms in the 

sequences (22) and (26), there is a range in which the ratios do not differ very 

much ; further, if we are considering a resistance-velocity curve, the points 

in quéstion are not defined with precision. However, these remarks do not 

apply to the final hump on such a curve, and in that case the available evidence 

seems to favour the first sequence (22). 

It is different when we turn to,resistance curves, such as those given by 

W. Froude and by Baker and Kent, in which the base line is length of parallel 

middle body. In these curves we may follow the position of a certain maximum 

as the velocity is increased. If the wave-making length Z is constant, it follows 

from (21) that if (is the wave-length and 2k the length of parallel middle body 

at which the maximum occurs, we should have 

9) “t >—2k = constant; 
20 

while, on the other hand, from (23) and (25) we should have 

wt A—2k = constant, (28) 

where n is zero or an assigned positive integer. 

It is certainly the case that over the range which has been examined the 

second relation (28) fits the data very well. For comparison with present 

calculations we may take one example from the results of Baker and Kent. 

The figures are given by Kent, in a recent discussion already quoted, for the 

case n = 2. They relate to models ranging in length from 11-2 feet to 20-5 feet 

by the insertion of parallel middle body ; and the velocities vary from 290 

to 370 feet per minute. We transform the results to apply to ships with entrance 

and run equal to 160 feet by multiplying all lengths, including wave-lengths, 

by the factor 160/11-2. In the present notation we obtain thus Table IT. 
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Table II. 

Ay 2k. $A —2k. 8, —2k. 

65 43 120 103 
73 60 122 104 
79 74 124 104 
90 96 129 106 
96 110 130 106 

106 133 132 105 

It should also be stated that Kent has observed the wave profile for a certain 

model at two speeds, and his analysis of the waves agrees with the view that 

in that case the distance between the first regular bow crest and the first stern 

trough had increased by one-quarter of the increase of wave-length. 

Discussion of Results. 

8. We return now to the curves of fig. 2 obtained by the present calculations. 
Absolute values are not under consideration, and we notice one or two other 

respects in which the curves differ from experimental results. The interference 
effects are very greatly increased, and this is no doubt largely due to the infinite 
draught of the ship ; further, as might also have been anticipated, the oscilla- 

tions in any curve do not fall off so rapidly with increasing length of the ship 
as In practice. 

Consider now the positions of the maxima and minima. Take, for instance, 

the curve for g/c? = 0:0625, that is, for 1 = 100-5 feet. Successive maxima 

occur at 2k — 28, 128, 228; the differences are equal to the wave-length, to 

the order of approximation. This rule holds for any of the curves for moderaté 
velocities. Again, considering the actual positions, the maximum at 2k = 128 
for the same curve evidently corresponds to n = 2 in the formule (27) and (28), 
the wave-length being 100-5. In Table II we had 2k = 133 for a wave-length 
of 106. Thus, to a first approximation the actual positions are in very fair 
agreement ; more could not be expected, for the experimental results vary 
slightly according to the lines of the model, and no attempt has been made 

here to fit closely the form of any particular model. 

We have now to group corresponding maxima at different speeds. It is 
easily seen that the crests A; on fig. 2 must correspond to n = 1, A, to n = 2, 

and so on ; the troughs are given by the intermediate values n = 1, 3 

We have to follow out any one of these series and find the relation ee A 
and 2k; before doing so, we extend the calculations beyond the curves shown 
in fig. 2. 
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9. It is not necessary to graph a large range of resistance curves at each 

speed to find the positions of the maxima or minima. Turning to the general 

expression (10) for the wave resistance, we require the roots of the equation 

dR/dk = 0. (29) 

Since P’,41 = - we find that this reduces to 

in poets OS 
¢ ce \(g@k+))\ ., (2gk\ _ 
ee GE trea | alm aay 

But we have 

pPs(p) = 4P3 (p)—pPs (p)+5Ps (p); (31) 

and if we write 

a = gic? = Qnl/rA;  -y = 2ghk/c? = 4rck/d = 2ka/l, (32) 

the equation (30) becomes, in terms of functions which have been tabulated 

here, 
y¥_p Te 5 Pa) om) 

( acy + 2a? : oat ~* ' Qy+4a ° tae) 

r(bp—Lp)iyto+sbPfy}=9. (8) 
The problem is the determination of pairs of positive values of 7 and y 

satisfying this equation. The approximate formulz (27) and (28) are equivalent 

to arranging these in series in linear relationships. For a numerical study of 

the roots of (33), we have to use the tables and graphs of the P-functions to 

which reference was made in $5. Starting with some value of x, we find the 

corresponding value of y from (33), and it is not difficult when we take another 

value of x to decide which is the corresponding root in y; the preliminary 

survey of the curves in fig. 2 enables us to follow out any required sequence. 

We choose here the series corresponding to » = 1—that is, the series of crests 

which includes those marked A, in fig. 2. It was found that with the large- 

scale graphs of the P-functions, the value of the left-hand side of (33) could 

be calculated with sufficient accuracy for a graphical method to give the 

required root; except that for high velocities—that is, low values of z—the 

graphs had to be supplemented by direct calculations. 

Omitting the details of the work, the following pairs of roots were obtained :— 

x 5-97 5 4 3-6 3 2-5 2-3 2 1:6 

3°83 4-7 5-36 | 5-66 6-1 6-56 
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On the scale used for fig. 2, we have 1 = 80 ft. ; from these values of x and y 
we get from (32) the values of 4 and 2k and so the results collected in Table IIT. 

Table III. 

2k. r. 3A — 2k. SA —2k. 2k. A. 3A —2k. 5\—2hk. 

0 84 126 105 171-5 201 131 81 
28 100°5 123 98 196 218-6 132 77 
66 126 123 92 244 251-3 133 70 
85 140 125 90 328 314 143 65 

125 167-5 126 84 — — — = 

From the third column we see that the wave-making length Z of the approxi- 
mate theory is not constant. There is first a small decrease, which we should 
find emphasised if we examined a higher order of crest, say, for n = 2; then 
for a short range it is practically constant, after which it increases steadily 
with the velocity. However, we see from the fourth column that the rate of 
increase is not so large as in the alternative approximate formula. 

If we had taken any other series of corresponding crests or troughs, we 
should have found similar results at moderate velocities, but with greater 
increase at high speeds where the distance between successive maxima differs 
somewhat from the wave-length. 

9. Consider now the resistance-velocity curve for any given length of ship. 
It has already been stated that the points of maximum excess or defect on 
such a curve cannot be found precisely ; however, they will be in the neigh- 
bourhood of the velocities for which dR/dk is zero for the given length of ship, 
this being, in fact, the assumption involved in the usual comparison of experi- 
mental data of the two kinds. 

We shall work out two examples. First, for a ship with no parallel middle 
body, equation (33) reduces to 

2 
(Gee+2 Ps) {2}-+ (2 Ps— Pi) {} =0. (34) 

The first seven roots and the corresponding results are shown in Table IV. 

Table IV. 

x 1-93 4-14 5-97 7-41 8-79 10-55 12-14 

A 260 121-4 83-9 67-8 57-2 47-65 Ge 

Z 130 121-4 126 135-6 142 143 mee 

V/VL 1-7 1-17 0-97 0-87 0:8 Om | OG 
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The roots correspond to the series of humps and hollows on the resistance 

curve. The third row shows the wave-making length Z, and in the last row 

are the values of V/\/L, where V is in knots and L is the length of the ship 

in feet. The velocities which would be assigned from an inspection of the 

actual resistance curve would naturally be a little higher than those found 

from (34), especially where the mean resistance curve rises rapidly. We have 

already considered the increase of Z from moderate to higher velocities ; we 

notice here that it is not sufficient to affect appreciably the value of V/,/L for 

the position of the final hump. Table IV. brings out a new point, namely, 

the increase of Z with decreasing velocity. It is easy to see how this arises. 

We may express it in this way: the particular model has straight lines at bow 

and stern, including a finite angle, and as the velocity decreases there is an 

increase in the relative importance of the wave-making properties of the ends 

compared with the parts where the change of curvature is gradual ; or, analy- 

tically from (34), when « is large we can use the asymptotic values of the P 

functions, and the roots approximate to those of P, (2x) = 0 and succeed 

each other at intervals of 7/2. It has not been found possible to analyse 

experimental curves to see if this effect occurs ; the interference at low velo- 

cities is small and unimportant in practice, and the curves are not sufficiently 

accurate for the purpose. One reference may, however, be given where this 

effect seems to have been observed. 

In a contribution to a recent discussion quoted in §7, G. Kempf describes 

some experiments made at the Hamburg Experimental Tank. The model 

was of cylindrical form with a hemispherical entrance and a run formed by 

the rotation of a sine curve ; it is stated that Z was not constant at all speeds, 

but that the value of ,/Z increased 10 per cent. with decreasing speed from 

V, to V;. It may be noted, as a coincidence, that in Table IV., Z increases 

from 126 at V, to 145 at V;, and this is an increase of 7 per cent. in ,/Z. 

To show the effect of parallel middle body, we consider finally a ship of 

400 ft., with the same entrance and run as before, but with 240 ft. of parallel 

middle body. 

Since y = 3z, equation (33) becomes in this case 

=o 1 

2x" 

3 1 1 1 1 
|= bot et Py ++ = Ps) {5a} (Lp.— =Pa) {4x}-+ ames {3a} 10: 

(35) 

Table V gives the roots and the similar quantities deduced from them, 
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Table V. 

2 0-625 1-27 2-02 2-73 3-45 4-14 4-83 

N 804 396 249 184 146 121 104 

Z 402 396 373 368 365 364 364 

V/JL 1-9 1-33 1-06 0-91 0-81 0-74 0-68 

In this Table the value of Z is given for the whole ship, without deducting 
the length of parallel middle body ; it is seen that in this case Z increases with 
increasing velocity over the range examined. It is difficult to determine the 
first root accurately by graphical methods, but it seems probable that Z is 
then approximately equal to the length of the ship. The increase in the 
higher values of V/,/L as compared with Table IV. is of interest. 

The particular dimensions of this case have been chosen because they are 
the same as the model for which R. E. Froude obtained the resistance curve 
and made the deductions described in §7; from inspection of the curve, 
Froude gave the following values of V/,/L for the series of humps and hollows, 
namely, 1-8, 1:28, 1-045, 0-905, 0-81, 0-73, 0-68: These may be compared 

with the last row in Table V. 

10. The comparison which has been made between the present calculations 
and experimental data has provided various points of interest. The general 
agreement is rather striking when one remembers not only the general limita- 
tions of the hydrodynamical theory, but the fact that the lines of the ship 
have been given a simple form, and further that it has been assumed to be of 
infinite draught. Except for the labour involved in the calculations, it would 
not be difficult to improve the investigation in both the latter respects. For 
instance, in former studies other forms for the ship’s lines were used in cases 
where there was no parallel middle body ; these could be used for the present 
problem, and without writing down explicit equations now it may be stated 
that the result is to vary the coefficients of the P functions in equation (33), 
and also to introduce functions of higher orders. This will no doubt affect 
to some extent the rate of change of the wave-making length ; but one cannot 
say in advance to what extent, and the point is one which must be left for 
consideration in any future extension of the calculations. 

Ha4RRISON AND Sons, Ltd., Printers in Ordinary to His Majesty, St. Martin’s Lane, 
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Wave Resistance: the Effect of Varying Draught. 

By T. H. Havetocr, F.R.S. 

(Received June 5, 1925.) 

1. In previous studies in the theory of wave resistance, while the water- 

plane section of the model was of a reasonably ship-like form, the draught 

was assumed to be infinite. In the following paper the model has the same 

simple lines and has vertical sides, but the draught is finite. The investi- 

gation shows how the resistance at different speeds depends on the draught, 

but‘it was undertaken specially for other reasons. In view of certain applica- 

tions, it was important to find how the interference effects due to bow and 

stern waves are affected by varying draught. It is shown now that these 

become less prominent with diminishing draught, but the maxima and minima 

occur at practically the same positions. Further, when the ratio of draught 

to length is of the order of the values in actual ship models, one is in a position 

to attempt a comparison between the absolute values of theoretical and 

experimental results, 
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Curves are shown in fig. 2 (p. 590) for the variation of resistance with velocit iy 
in three cases—when the draught is infinite, and when it is one-tenth and one- 
twentieth of the length of the model. The latter values cover approximately 
the usual ratios in practice. On the same diagram are reproduced experi- 
mental curves for three models of different types, the data being reduced to 
the same non-dimensional co-ordinates. Making allowance for the differences 
of form between these models and for the simplified form for which the calcula- 
tions have been made, the results show that the calculated values are of the 
right order of magnitude over a considerable range of velocity. Differences 
in the two sets of curves, such as the greater prominence of interference effects 
in the theoretical curves, are discussed. 

The first sections of the paper deal with the mathematical expressions for 
the resistance, and their transformation into forms suitable for calculation ; 
graphs of certain integrals are given in fig. 1 (p. 586). 

2. Take axes Ox, Oy in the undisturbed surface of a stream flowing with 
uniform velocity ¢ in the negative direction of Oz, and take Oz vertically 
upwards. If there is a distribution of doublets in the liquid in the plane y = 0, 
with axes parallel to Oz, and of moment w (h, 0, f) per unit area, the corre- 
sponding wave resistance is given by* 

R= lergipe* | an a | aif an |” O4/Oh. Ou'/AK’. sec? d 

x € UU IME} see°$ cos [fg (h — hi’) )/e*} sec d]dé (1) 
Over the plane y = 0 the normal fluid velocity at the point (h, 0, f) is 2x0 p/Oh. 
Taking y= 0 as the fore-and-aft median plane of the ship, we assume the 
action of the ship to be equivalent to a distribution of normal velocity over 
its section by this plane, the distribution being such that if y —F (x, z) is 
the equation of the ship’s surface, we substitute in (1) 

by _ ¢ ane = en Ff). () 
To simplify the calculations as far as possible, we shall assume the ship 

to be symmetrical fore and aft, and to have vertical sides so as to be of constant 
horizontal section. The water-plane section is taken to be of parabolic form, 
the equation for y positive being 

y = 6b (1 — 2? /l). (3) 

The length of the ship is 2/, its beam 2b, and it is of constant draught d. 

* «Roy. Soc. Proc.,’ A, vol. 108, p- 79 (1925). 
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We substitute from (2) and (3) in (1). Carrying out the integrations in 

f. f’; h and h’, we obtain, after some reductions, 

256 gob*l 

Tp® 

+ (cos" fae cos? # £08 ( psec d) — cos ¢ sin (psec ¢)} dd, (4) 

ar /'2, 

R= | (1 emesecnt 2 J feos! $ + cos? ¢ 
0 

where p = 2gl/c?, and « = gd/c”. 

3. In reducing this expression to a form suitable for calculation, we take 

first the terms which are non-oscillating regarded as functions of c. 

A typical integral is 
Pp 
{ cos’ ge FP"? dd. (5) 
0 

Changing the variable, this becomes 

e*| aten be-PP de — IniBe-# W_, _. (8), (6) 
0 es 

where W is a confluent hypergeometric function. We can obtain an expansion 

by using the contour integral for the general hypergeometric function of this 

type. In this case we obtain 

Segaas (26 IN (e) IM —=sa-s) In (eset € s s+i s+} Wo) | Bil) Use) 0s ea) aa (7) 
Qret ey Y (3) I (4) 

the contour separating the poles of I’ (s) from those of [ (—s+4)  (—s+4). 

We have, therefore, to evaluate the residue of the integrand at the simple 

poles s = 4, 3, 3, and at the series of double poles s = 7, $, 44,.... The 

lattet residues give logarithmic terms. Carrying out the calculation, we 

obtain the expansion 

Ws, -3(8) = sn ast op! te! —ga! 
: eae n+1/2 ] 9 SEAN p ee )) 

en (n+1) TP 0 (le. lace 2 el 1p z p I)? (8) 

with log y = 0-57722 ... . 

We obtain thus 

“2 WANs gue 113 B sec? > eS i = poe ea (0 

fy Cas ye ay 15) Ng “Be a ee +e * 3073" 

263 
20480 Oa + (SOM apg Ph Gggg ht Joe GHB) 
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A similar integral which we require in (4) can be derived by differentiation, 

and we have 

/2 9 1 7 3 —Bsec?> =F Ze# {1-3 See De ale 4 

; BOS Gee $ r P Tea a8 at 

683 Dai -@ 3 4 Dae = ee } 10 

* 30720" 7 Ce tage UE ae 2 ESB ee OY) 

For large values of 8, asymptotic expansions can be found in the usual 

manner by transforming the integrals. They are 

alg 1, 189 1 3465 1 5 fe-Bsec?> dd, ~~ 728-3 (1! eS at I aN cee Net ees Se [; cos° de ¢ 578 e Age 32 BF 128 B 

315315 1 
ee 1 

2048 Bt ) 

“fe ihe 51-1031 4725 1 
3 he-Bsec?? dd — — 773 B73 “(12 Se ed Sg 

i. coro Piriataen? 16 92 6? 384 63 
4 3638251 _ : (12) 

6144 B# 

On applying the expression (4) to numerical cases of interest, it was found 

that the integrals we have just considered were required over a range inter- 

mediate between those suitable for the series given in (9)-(12). It was, 

therefore, necessary to calculate the values of integrals such as (5) directly 

by numerical methods. It was sufficiently accurate to evaluate the integrand, 

for each value of 8, at intervals of five degrees throughout the range of 

integration, and then to use Simpson’s rule. The series given above were 

used for checking and supplementing the values so obtained. 

For the purposes of expression (4) the results were collected in tables and 

graphs of the integrals 
1/2 

I= | (1 — e= 28°74)? cos? Jd, (13) 
0 

L= [a eos! Preost pide. (14) 

The graphs are shown, on « as base, in fig. 1. 

It can be seen from (4) how the mean resistance, apart from superposed 

interference effects, depends upon the integrals I, and I;; and since « is 

gd/c?, the curves in fig. 1 show how the effect of finite draught becomes 

appreciable when the wave-length is comparable with the draught, the ordinates 

falling off rapidly in value after that as « becomes smaller. 
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4. We have now to consider the remaining terms in (4), namely, the last 

three terms under the integral sign. 
T T 

A complete valuation of these over the whole range of velocity would be 

troublesome ; but fortunately the range of most interest, and one in which 

there is more chance of agreement between theory and observation, corresponds 

to fairly large values of p, roughly between 10 and 40. We can obtain an 

asymptotic expansion which is suitable for this range. We shall write 

a = gd/c* = Bp, (15) 
where 3 is the ratio of draught to length. 

Then, with the understanding that real parts of complex expressions have 

to be taken, we have 

{ra — GEE P {(cos* O= cs cos° é) cos (p sec 4) \ * 4 —_— — 4 i 
d 

a sin (psec #} $ 
a [ ( shes en PP sce?) cos? (sec d + 2h el seep dd 

Pp 

OMe fs: = pales) 2 i me + t\? 

oN ra - a t Z Es 

( i Pp a 2p 
= (n/2p)* &” {Q (0) — 2e~*7Q (28) + e *7Q (48)}, (16) 

234 



587 T. H. Havelock. 

where 
foo) 5 2 

(1 ae en (¥—i) tt? /2p dt 
P Ei nk 

) ra) egy 
The integrand in (17) is expanded in ascending powers of 1/p and then 

integrated term by term, using the formula 

72Q(y) (7) 

[. fe O- — D(r + HS He tH, 
0 

— (ly) cot —ty: (18) 

The expression was carried out completely to include all terms of order 

p 3, and the leading terms in py‘ were also determined so as to check the order 

of numerical approximation. Leaving out the intermediate expansions, it 

may suffice to record the final result ; we find 

> Serie 1 1i0 ald 380 rai) Q (y) = die + (4id8e 2 Bie = Ste : 

— ise Zl ep - 3 ) Bie? — 209 xt rig sav diet S 
eee ee be aL die Gel dite 9aY O° a 

inp 68 et (25 serio 1 (3 
a oy ee #15 

ae . — siete 4 OT 2 a) Steit9 

7 ey = FEE 64 

_ 16065 oxy ute 3465 any val 1 art Tart Oe gto (19) 

Collecting these results, we have now reduced (4) to the form 

P 4 
R= aN , (8p) + 1s (Gp) + real part of 

afb wp 

(7/2p)* €” {Q (0) — 2e#°Q (28) + e-”Q (48)} |, (20) 

where the integrals I are defined in (13), (14) and graphed in fig. 1, and the 

asymptotic expansion of Q as a function of p is given in (19). 

5. Numerical calculations from (18) and (19) are tedious, and we have 

chosen the parameters so that we require the numerical values of the coefficients 
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in (19) for four values of y, namely, 0, 0-1, 0-2, 0-4. Omitting the details 

of the work, we have in these cases 

Q(0)-- 0-707 1 +a) — L326) _ 1237044) _ 4-75) | 
ip p p 

2 GGG Te -916% ANON) Aeron LHD oon 916% 

we SUE a ce 
p 

. 1:473—1:2632  1-634-+0-472 
0-2) — 0-766-+-0- 6282 — ———___—_——- — __~—" __—_- Q (0-2) a; a F a 

<j eB Seabee Ney 

P 
Q (0-4) — 0-798--0-541é So La we) (1) 

6. We proceed now to calculate and graph the wave resistance as a function 

of the velocity for three different draughts. The curves are shown in fig. 2 

(p. 590) in non-dimensional co-ordinates, the ordinates being R/gpb?/ and the 

abscisse V/\/L. In the notation used, we have 2b = beam, 21 = length, 

d = draught, V = velocity in knots and L = length in feet; thus 

V/V L = v/(11-594/p), approximately. 

The first case is that of infinite draught, for which 8 =d/21= 00. Here (20) 

reduces to 

Ram ae ( +e TRG al( = = 7Q (o)}. (22) 

This case has been calculated me from more complete formule ; 

the use of (22) now serves to check the range of the asymptotic formule for Q. 

The second case is for the draught one-tenth of the length, or 8 = 0-1, so 

that 

— Sing (4 Ald xp 107)" Be (5? 

ED Real (2) e” {Q (0) — 2e-*? Q (0-2) + e-?Q (0-4) | (23) 
yD 

Finally, for the draught one-twentieth of the length, or 8 = 0-05, we have 

256geb4 (2 4, G 
xp® 3\90? ig °\90P 

eRe (Z) &” {Q(0) — 2e-#”Q(0-1) + e-*Q(0-2}] 24) 

* © Roy. Soc. Proc.,’ A, vol. 103, p. 579 (1928). 
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With the use of the graphs in fig. 1 and the expressions in (21), caiculations 
were made from (22), (23) and (24) for about fifteen values of /p in each case. 
The results are shown in the continuous curves of fig. 2, the curves being marked 
with the corresponding value of 8. 

7. The curves show the increasing influence of smaller draught at the higher 
velocities. Although, from the differences in the expressions for the resistance, 
the maxima and minima due to interference of bow and stern systems probably 
do not occur at exactly the same positions, it is important to notice that 
the differences in this respect are inappreciable. This agrees with a similar 
phenomenon which has been observed experimentally in the resistance of a 
submerged model at different depths ; although the magnitude of the interference 
effects varies with the depth, the positions of the maxima and minima are 
practically unaltered. Another point to note in the theoretical curves of fig. 2 
is that at the smaller draughts the effect of interference is less pronounced. 

But the chief purpose of the calculations was to find whether, with a draught 
similar to that of actual ship models, the calculated resistance was in reasonable 
agreement with experimental results. 

The values which have been chosen for the ratio of draught to length, namely, 
one-twentieth and one-tenth, cover ay proximately the usual range in practice. 
It must, of course, be remembered that the calculated results correspond to a 
model with vertical sides and constant horizontal cross-section ; therefore one 
cannot expect more than agreemrnt in order of magnitude. Three examples of 
experimental curves have becr selected and are shown in the discontinuous 
curves of fig. 2. 

The curves marked 0-0475 and 0-0385 have been drawn from results given by 
R. E. Froude* for the residuary resistance of two models of the same length 
and beam and having the given ratios of mean draught to length. The results 
were given as the resistance in tons for a ship of 400 ft. length, and have been 
recalculated here in the non-dimensional co-ordinates of fig. 
Froude’s ship A with displacement 5,390 and 4,090 tons respectively. In 
both cases there was a certain amount of parallel middle body. 

The third curve, marked 0-083 in fig. 2, has been obtained by similar reduc- 
tions from experimental results given by J. L. Kent}; it refers to his model 
112K, which had no parallel middle body, but had hollow lines at the bow. 
The curve has been filled in approximately from a smaller number of points 

2; the two cases are 

thanin the previous cases ; one can, however, observe the effect of the hollow lines 

* KR. E. Froude, ‘ Trans. Inst. Nay. Areh.,’ vol. 22, p. 220 (1881). 
j J. L. Kent, ‘ Trans. Inst. Nav. Arch.,’ vol. 57, p. 154 (1915). 
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in the general form of the curve. The effect of differences of form, other than 

the ratio of draught to length, is, of course, important, and the three curves 

reproduced in fig. 2 have been chosen so that this should not be overlooked 

in the comparison between the various curves. 

We note first the differences between the two sets of curves in fig. 2. The 

theoretical curves have much more prominent humps and hollows, due to inter- 

ference between bow and stern waves, especially at the lower velocities. This 

may be inherent in the approximations made in replacing the ship by a certain 

doublet distribution over the median plane. But the effect is probably due 

in part to the simplified form with constant horizontal section ; however, this 

point must be left for future examination. It is hardly necessary to remark 

that, when one reaches the stage of comparing absolute values, the influence of 

viscosity and turbulence must eventually be taken into account. Further, 

this consideration applies not only to the theoretical curves but also to those 

we have called experimental ; for the latter are derived from actual measure- 

ments of total resistance by deducting the frictional resistance calculated 

according to an empirical formula, the residuary resistance so obtained being 

chiefly due to wave-making. It may be that the effect of fluid friction on 

the wave-making could be expressed by a slight alteration of the equivalent 

wave-making form of the ship. The curves of fig. 2 show also small 

differences in the positions of the interference maxima, but this is, of course, 

due to the different lines of the various models. 

When every allowance has been made for differences of form and other 

considerations, the curves of fig. 2 show over a large range ol velocity a general 

agreement between theory and observation, which is very interesting and 

suggestive. Further approach to ship-like form may enable us to remove 

some of the remaining differences, and should in any case be of service 

in the interpretation of experimental results. 

HagRIson AND Sons, Ltd., Printers in Ordinary to His Majesty, St. Martin’s Lane. 
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Wave Resistance: Some Cases of Unsymmetrical Forms. 

By T. H. Have ocr, F.R.8. 

(Received November 14, 1925.) 

1. One of the chief features of interest in curves showing the variation of wave 

resistance with velocity is the occurrence of oscillations about a mean curve, 

which may be regarded as due to interference between the waves produced by 

the front and rear portions of the model. In various comparisons made between 

theoretical curves and such suitable experimental results as are available, the 

greatest divergence is perhaps in the magnitude of these oscillations, the theore- 

tical curves showing effects many times greater than similar experimental results. 

There are, no doubt, many approximations in the hydro-dynamical theory 

which preclude too close a comparison between theoretical and experimental 

results in any particular case, but it seems fairly certain that the divergence 

in question must be largely due to neglecting the effects of fluid friction. For 

several reasons it is useless to attempt at present a direct introduction of vis- 

cosity into the mathematical problem, but a consideration of its general effect 

suggests one or two calculations which may be of interest The direct effect 

of viscosity upon waves already formed may be assumed to be relatively small ; 

the important influence is one which makes the rear portion of the model 

less effective in generating waves than the front portion. We may imagine 

this as due to the skin friction decreasing the general relative velocity of model 

and surrounding water as we pass from the fore end to the aft end ; or we may 

picture the so-called friction belt surrounding the model, and may consider 

the general effect as equivalent to a smoothing out of the curve of the rear portion 

of the model. Without pursuing these speculations further, they suggest 

calculations which can be made for models in frictionless liquid when the form 

of the model is unsymmetrical in this manner ; and the particular point to be 

examined is the effect of such modification upon the magnitude of the inter- 

ference phenomena. 

The first sections compare, in this respect, two bodies entirely submerged in the 

liquid. The form in each case is a surface of revolution ; one is symmetrical 

fore and aft and has sharp pointed ends, while in the other the rear portion is 

cut away so as to come to a fine point. By inspection of the expressions for the 

wave resistance it is seen that the oscillating terms are of a lower order of 

magnitude in the latter than in the former case. 
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The remaining sections deal with the similar problem for a model of infinite 

draught and constant horizontal cross-section; the forms of the section for 

the two cases are shown in fig. 1. Here, with the help of tables and graphs 

available from previous studies, the expressions for the wave resistance have been 

graphed and the curves are shown in fig. 2. The result of smoothing the lines 

of the rear portion is very marked. It makes the curve like experimental 

ones in this respect at least, that the curve is a continually ascending one in 

the range shown ; the superposed oscillations are not large enough to make actual 

maxima and minima. A more complete study of the progressive effect of 

small changes in the rear half of the model would involve very lengthy calcu- 

lations ; the examples given have been chosen for the comparatively simple 

form of the mathematical expressions. It is to be understood that they are 

not intended as a direct representation of the actual effects of fluid friction ; 

but they show the great difference in interference effects which are produced 

by an asymmetry of the general nature suggested by them. 

2. The fluid motion produced by a body entirely submerged in a uniform 

stream may be investigated by the method of successive images. The first 

approximation consists of the distribution of sources and sinks which is the 

image of the uniform stream in the surface of the body; the second is the 

image of these sources and sinks in the upper free surface of the stream, and the 

process could be carried on by successive images in the surface of the body and 

the free surface of the stream. After the second stage the expressions become 

very complicated, as the image of a single source in the upper free surface is a 

distribution of infinite extent along a horizontal line at a height above the free 

surface equal to the depth of the source. It would be of interest to carry the 

process further in some simple cases, but at present the second stage must 

suffice ; it can be seen that, in general, this implies that the ratio of the maxi- 

mum vertical diameter of the body to its depth below the surface must be 

small. 

For the first stage of the approximation, instead of finding the image system 

for a given form in a uniform stream, it is more convenient to begin with a 

given distribution of sources and sinks and deduce the form of the body. As 

we shall deal only with surfaces of revolution, we assume a line distribution of 

finite extent along a line parallel to the stream. Writing down Stokes’ 

current function, the form of the body may be found by graphical methods 

devised by Rankine and applied to shiplike forms by D. W. Taylor and other 

writers. 

Let the stream, of velocity c, be parallel to Oz, and let there be a source 
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distribution of strength f (x) along portion of the axis of 2; then, with @ as 

distance from Oz, the velocity potential and stream function are given by 

é: F(a) a 
toot |e ap 0 
— reg? 4. [ _(@ MFO ah : 

y= yea" + | { (eA + oP, a 
The form of the solid is obtained from the equation V=0. The graphical 

method is first to graph the integral in (2) upon @ as a base for given values 

of x, obtaining a family of curves each corresponding to a constant value of 

x; then on the same diagram the parabola Y= $c@* is drawn. The inter- 

sections of the parabola with the family of curves give pairs of corresponding 

values of x and @ on the zero stream line. 

It is obvious that if 7 (4) is finite, not zero, at an end of the range of sources 

then the body has a blunt end ; and further, the length of the body is greater 

than the length of the range. If f (h) is zero at both ends, the body has a 

sharp point at both ends and its length is equal to the length of the range ; 

if, in addition, f’ (A) is zero at an end, the sharp point at that end is one of zero 

angle. 

3. In considering the second approximation, namely, the image of the 

distribution /(/) in the upper free surface of the stream, it is more convenient 

to use as the elementary system a doublet with its axis parallel to the stream. 

As we are dealing with solid bodies of finite size, we can in general replace the 

line of sources and sinks by an equivalent line of doublets ; thus instead of (1) 

we have 

pace y [ean etna 
J{G—hF =o} 

provided J’ (kh) = f(A). and wv (h) is zero at both limits. Consider now a solid 

of revolution with its axis horizontal and at a depth f below the surface, the 

form being such that the image of the uniform stream in it is a line of doublets 

(3) 

of moment | (i). The image of this system in the free surface can be shown 

to be a certain distribution of doublets of infinite extent along a line at a height 

jf above the surface. For the present purpose we shall quote the expression for 

the wave resistance* 

r i R = 16agiee* [y () dh | Yh) ah’ | see® g 
Jo : 

X eos [{g (kh —h’)/c*} see d]e- CHO Fdd. (4) 

* <Roy. Soe. Proe.,? A, vol. 95, p. 363 (1919). 
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We shall consider two cases, one a sharp-ended form which is symmetrical fore 

and aft, while in the second case the aft end is curved to a fine point. 

4. For the first case we take a spindle-shaped body which has been used for 

experimental work at the National Physical Laboratory; for this form the 
source distribution is 

F(A) = af(h/l) — (h]l)"}; —l<h<l. (5) 

The shape of the surface for this case has been given by Perring.* It is sufficient 

to state here that it is a surface of revolution symmetrical about the middle 
cross-section and having pointed ends with finite angle of entrance ; it can be 

made to have any required ratio of breadth to length. 

We can, in this case, carry out the integration in (2) and obtain the equation 

of the longitudinal section. It is found that with 2b as the breadth of the 
model, 2/ its length, and 8 the ratio of 6 to Ll, then the constant a of (5) is equal 

to 4.abe, where 

a=d/1(1+57j2(3+252)+ 57(14+- 487) log (6/f 14(14+-52)2})]. (6) 

The equivalent distribution of doublets, given by the conditions stated in 
(3), is 

b(t) = — gal (l — #/P). (7) 

Substituting in (4) we obtain the wave resistance 

R = 4ag'plta’e all TP? sec! go Paes dy, (8) 
where = 

i ja — u?)? cos (glu/c* cos ¢) du. (9) 

After evaluating (9), the ey (8) can be reduced to standard form as 
9 2]ey2 pale a Se |e s$+ 5 ie = cos" 

; 0 

— (cos ¢—--> 80 os? d+ oe i cos (p sec ¢) 

cos*@ 12cos'd)\ . =H + 12 se ae sng sin (p sec #) |e RB eee Shp, (10) 

where 8 = f/l, p = 2gl/c?, and « is given in (6). 
An asymptotic expansion suitable for large values of p could be obtained, 

but calculation from it is very tedious ; the particular point under consideration 
can be made by comparison with the similar expression for the second case. 

*W.G.A. Perring, ‘Trans. Inst. Nav. Arch.,’ vol. 67, p. 95 (1925). 
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5. For comparison we require a solid of revolution of which the front end 

is a sharp point of finite angle while the rear end is cut away to a point of zero 

angle ; there will, of course, be a point of inflection in the curve of the rear 

portion. 

This is obtained by taking the source distribution to be 

f(h) = ah (21 — h) (314 bP; — 31< a <2. (11) 

The equivalent doublet distribution over the same range is 

(hk) = — 4 a (20 — hy (31 -+ hy. (12) 

The outline of the model was found by the graphical methods described in 

§ 2; the work is not reproduced here as it was only carried out with sufficient 

accuracy to verify that the curve was of the required type. A similar curve Is 

shown later in fig. 1. The model has now a length 51, and it is not symmetrical 

fore and aft of the maximum cross-section. 

From (4) we find the wave resistance 

ar | 2. 

R = }8zg!pa%e-® | (I2 + J2) sec® ger Calersee# dg, (13) 
0 

where 
21 

Ter | (21 — h)2 (31 + A)% eishlecosd dh, (14) 
31 

Evaluating (14) and substituting in (13), the terms can be collected in the 

same form as in (10); if we write, with 2b as the maximum breadth of the 

model, 

a@—abe/l25I, p—dgl/ce, B= 2f/5I, (15) 

we obtain ultimately 

272 em/2 .- 3 

R = 220zgeb la: Ab Ua | | eos & + us cos? ¢ + $32 oss d+ ge00 cos’ ¢ 
Pp 0 Pp p 19 

1 9 128 1200 . 
= @ ( cos” 6 — —— cost fd + cos® ) sin ( sec d) P $ iy ¢ > ¢ psec ¢ 

—6 (FF cos® fd — 328 cos! éd + tape cos’ 4) cos (p sec #)| Enh odd. 
19 12 

(16) 

We may now compare (10) and (16) as regards the matter under discussion. 

We imagine the resistance graphed as a function of the velocity, and we com- 

pare the relative magnitude of the oscillations superposed upon the mean 

curve. The terms in (10) and (16) which give rise to these oscillations are the 
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terms factored by sin (p sec ¢) or cos (p sec ¢). For large values of p, we 

have an asymptotic expansion of any of these terms in the form 

/2 5 
[; cos" gf . eiPseod— BPE Hd g~ pF (ay + apt + agp? +...). (17) 
0 

Moreover, in practice, the interference effects concerned are prominent for 

larger values of p, say, for the range 10 to 40. Now from (10) we see that 

the expansion of the oscillatory terms would begin with a term of order p-}, 

while from (16) the lowest term is of order p-?. It follows, therefore, that the 

interference effects have been largely eliminated by the alteration made in the 

form of the model. It may be noted that the alteration is rather extreme if 

considered as an illustration of practical conditions, in that the after end of 

the model is cut away completely to zero angle ; this accounts for the complete 

absence of the term in p-* in the expression for the second case. 

6. To examine the matter graphically, it is easier to consider a model of 

infinite draught, and of small ratio of beam to length, in the manner used in 

previous papers. The model is assumed to be symmetrical about a longi- 

tudinal vertical plane. Take Oz horizontally in this plane, and let Oy be also 

horizontal. The form of the horizontal cross-section of the model is constant ; 

if its equation is 

y = F (2), (18) 

for positive values of y, the approximation consists in taking the doublet 

distribution of (4) so that 

Qn Op/ex = coF dz. (19) 

Integrating (4) by parts with respect to h and h’, substituting from (19), and 

also integrating with respect to f and f’, we have 

= “eee dh (¢ dh’ i cos jee) sec 6) cos ¢ dd. (20) 

We wish to contrast two models which have the front half the same, but with 

the rear end smoothed off to a finer point in one case than in the other. We 

shall take the section of unsymmetrical form to be given by 

y = (b/48) (lL—2) (2140); —W<a<l. (21) 

For the symmetrical model we shall take the front portion to be given by (21) 

for x positive and by the corresponding expression for xz negative. The model 

in one case is of length 21 and in the other of length 3/. The cross-sections by 

a horizontal plane are shown in fig. 1. 
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b/ 
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7. Taking the symmetrical case first, we obtain from (20), 

R = 90°01 * ( J* cos d dd, (22) 

where : 

J= \ (2u + wu?) sin (glu/c* cos d) du. (23) 
0 

From these we have, after reduction, and writing p for 2gl/c?, . 

__ 324gob2l fe Pes WO Sew 
BSG ea GE OO) ee relly 

112 1 128 1 64 1 32 1 eee ep pe Cee PNG), oe BG + HPA, Ps(@) + sPo (e) + 5 ar ®) — FaPs Oo) 
256 1 256 1 1 
== = 1 3 Sow 74 ine) 2 + 2B Ea (bp) — 7 SP (| (24) 

with the notation 

Ps, (p) = (= 1)” fe cos*" ¢ sin (p sec ¢) dd, 

Poss (p) = (— 1)" | cos! # $008 (p see 4) dd. 
J0 

Using sequence relations for the P functions, we reduce (24) to a form 

involving only P3, Py and P; ; tabulated values of these have been given 

previously,* and in addition large-scale graphs of the three functions were 

available over the range of p from zero to 40. These graphs have been used 

also in the present calculations ; the reduced form of (24) from which these 

have been made is 

2 Ah (2 -9482 , 9-752 . R= Shgeb (2 4 0-048? 5 TO? + (1 + SF) Paw) 
z \3 p p 

5-333 , 11:684 — (FS Pe to) + ( 14-98 
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The graph is shown in curve A of fig. 2, the base being c/1/ (2g). 

8. For the unsymmetrical model of fig. 1, we have 

R = (90b°e2/4m) | “(2 4 P) cos BL, (26) 
where Y 

I+ i =| (Qu + u?) etsuletcos > das, (27) 
= 

In this case the reductions lead to, 

2 2187g0b7l (2, 64 1 1152 1 4 28 

ie ic’ TR ae gh Spee Tal =P; 
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where p is now 3gl/c?. 

For purposes of calculation this is put in the form 
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Fig. 2. 

9. The curves for the two models are given with the same co-ordinates, 

namely, R/gpb?l and c/1/(2gl) ; since the lengths of the models are different, 

the maxima and minima of the superposed oscillations occur at different 

speeds in the two cases, 
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The difference in the magnitude of the interference effects is sufficiently 

obvious from these curves. The variation in the form of the models shown in 

fig. 1 is considerable, and it would have been of interest to compare forms 

intermediate between those shown for the rear part of the model; but equa- 

tions for such curves led to expressions for the wave resistance which were too 

complicated for numerical calculation. However, it may be inferred that for 

any case in which the lines of the model are smoothed out in this manner 

there will be a very considerable reduction in the magnitude of the interference 

effects. 

Harrison anp Sons, Ltd., Printers in Ordinary to His Majesty, St. Martin’s Lane. 
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SOME ASPECTS OF THE THEORY OF SHIP 

WAVES AND WAVE RESISTANCE 

By PROF. T. H. HAVELOCK, F.RB.S. 

The Paper gives a general survey without detailed calculations, of 

attempts made during recent years to develop the mathematical theory 
of wave resistance. The first section is a short statement of the general 
problem from the theoretical point of view, while the two remaining 
sections describe some results which have been obtained by indirect 
attacks. It is shown first how calculations with travelling pressure 
disturbances illustrate such problems as the variation of wave resistance 
with speed, the interference of bow and stern waves, and the effect of 
shallow water. In the last section the ship is regarded as equivalent 
to a certain distribution of sources and sinks in the fluid; problems 
discussed briefly im this section are the effect of the form of the water- 
plane section, of the length of parallel middle body, and of varying 
draught. Cwrves are reproduced which show the results of these 
calculations, and some mathematical notes and further references are 
gwen in an appendix. 

EARLY forty years ago Lord Kelvin delivered to the Institution 
N of Mechanical Engineers a lecture on ship waves which is 
familiar to all students of this subject. I may venture to appropriate a 
paragraph from that lecture and to quote it now in addressing this 
society: ‘I must premise that, when I was asked by the Council to 
give this lecture, I made it a condition that no practical results were 
to be expected from it. I explained that I could not say one word 
to enlighten you on practical subjects, and that I could not add one 
jot or tittle to what had been done by Scott Russell, by Rankine, and 
by the Froudes, father and son, and by practical men like the Dennys, 
W. H. White, and others; who have taken up the science and worked 
it out in practice.’’ 

My object is to discuss the wave resistance of ships as a problem 
in hydrodynamics. It is, of course, impossible to do so adequately 
without the use of mathematical analysis which would be unsuitable 
for a general lecture. I must therefore be content to give a mere 
outline sketch, aiming at giving some idea of the theoretical point of 
view and of the sort of contribution which mathematical theory can 
make to the scientific discussion of our problem. Such an outline suffers 
inevitably from two drawbacks: on the one hand we can only glance 
at the various practical problems which are suggested, and on the 
other we are not able to do justice to the mathematical interest of 
the theoretical treatment. It may, however, serve in some measure 
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its main purpose of being a general account which may be of value 

to the student of this aspect of the science and at the same time be of 

interest to those who have not the opportunity of studying the 

mathematical theory for themselves. 

Some formule and references will be found in notes appended to 

this lecture, and I am indebted to the Royal Society for permission 

to reproduce the diagrams. 

Tue GENERAL PROBLEM. 

We wish to know completely the fluid motion produced in the water 

when a ship is towed along at constant speed, and the first step is 

to see what information is necessary before we can attempt to find a 

solution. We can group this under three heads: (1) the laws of motion 

of the fluid, (2) the forces acting throughout, and (3) the conditions 

at the boundaries of the fluid. We are faced at the outset with the 

difficulty of saying what are the laws of motion of an actual liquid 

such as water. We know that water is viscous and we can write down 

equations taking the viscosity into account; and we can also solve the 

equations in simple cases if the velocities are not too large. But we 

also know, unfortunately, that those solutions break down completely 

when the motion becomes eddying or turbulent. It is not my intention 

to discuss here whether the difficulties arise because the solutions of 

the equations of viscous motion are inadequate or because the equations 

themselves are incomplete; in either case the inclusion of fluid friction 

in our problem would complicate it so much as to make progress 

almost impossible at present. 

We are therefore compelled to assume the liquid to be frictionless. 

This is no doubt a serious limitation, but perhaps not so important 

if we confine ourselves meantime to qualitative and comparative con- 

clusions from our results. Moreover the direct influence of viscosity 

upon the wave motion is comparatively small, and indirect effects might 

possibly be allowed for later by some adjustment of the effective form 

of the ship. However that may be, we can only make any advance 

by separating frictional resistance from wave resistance, and we there- 

fore assume the information required under the first head to be the 

laws of motion of a frictionless liquid; these are equations connecting 

pressure, velocity, and acting forces, and their rates of change 

throughout the liquid. We may dispose of the second head by simply 

taking the acting forces to be those due to gravity. Under the third 

head, the conditions at the boundaries are of two kinds; at the free 

upper surface of the water the pressure must be the atmospheric 

pressure, while at the wetted surface of the ship the condition is simply 

that the water must remain in contact with the ship or that the com- 

ponent velocity of the water at right angles to the wetted surface must 

equal at each point the component of the ship’s velocity in that 

direction. 
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Our problem is now stated in a form in which we know, from 

general theory, that we have all the information necessary for a complete 

solution ; this solution would give us the velocity and pressure at every 

point of the water, the form of the free surface or the wave pattern, 

and moreover the resultant of the fluid pressures on the surface of the 

ship would give the wave resistance. 

It is instructive to bear in mind the general problem so stated, 

but it must be confessed at once that the direct attack leads to 

calculations which have hitherto proved far too complicated for the 

mathematical methods available. Even if we replace the ship’s surface 

by simple geometrical forms, the problem is extremely difficult; in fact 

the only direct solutions obtained so far, and they are approximate, are 

for spheres and other bodies of simple form entirely submerged at 

some distance below the surface. 

It might appear that we have not gained much from our rigorous 

formulation of the problem, and no doubt it is not often the case 

that a practical problem admits of a direct and complete theoretical 

solution. But theory is usually built up by devising and solving 

simple cases; these often give in themselves valuable suggestions, and 

we may then endeavour to approximate more and more closely to the 

actual problem. The preliminary survey is necessary to guide this 

process along lines which are likely to prove useful. 

My main task is to describe now some indirect attacks which have 

been made, and I shall consider these in two groups. In one case 

the leading idea is the pressure between the water and each element 

of the wetted surface of the ship, while in the other we fix our 

attention more upon the horizontal velocity produced in the water by 

the motion of the ship through it. 

TRAVELLING PRESSURE DISTURBANCE. 

When the ship is in steady motion there is a definite normal pressure 

at each element of the wetted surface. From a dynamical point of 

view, that is the function of the ship. We could imagine those pressures 

to be supplied by any means we please, for instance by jets of air 

properly adjusted, and the motion of the water would be exactly the 

same. We have now removed the ship and have applied to the surface 

of the water a definite distribution of pressure, definite for each 

velocity be it noted. The solution of this problem would give us the 

form taken by the surface of the water; one part of this would 

necessarily be a depression of the same form as the ship, while the 

rest would be the accompanying wave pattern. Now this is merely 

the general problem over again, with the complication that the pressure 

distribution depends upon the speed. But it suggests that we should 

study the wave patterns produced by simple distributions of pressure 

applied normally to the water surface. 
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Localized Pressure.—To begin with the simplest type we may picture 

a fine jet of air impinging on the water surface; we could call this 

in the extreme case a point pressure system, or more generally a 

distribution of surface pressure symmetrical round a vertical axis. 

We may imagine the jet to move horizontally with constant speed, or 

we may study the equivalent problem of a stationary jet of air directed 

down on to the surface of a uniform stream. Everyone is familiar 

with the simple and beautiful wave pattern produced in this way, and 

we are encouraged to proceed with this line of attack by the fact that 

the pattern is so similar in its main features to the waves produced 

by a ship. 

The mathematical solution of this problem can be obtained com- 

pletely, provided the surface waves are not too large; the wave pattern 

shows the well-known transverse and diverging waves contained within 

lines making angles of about 19° 28/ on either side of the line of 

motion of the system. Leaving on one side the discussion of the wave 

chk 

Fie. 1. 

system let us consider what is perhaps less familiar, the corresponding 

wave resistance. We are considering a pressure system applied to 

the water surface and moving horizontally with constant velocity ; 

accompanying the system there is a steady wave pattern. Suppose 

now that we place over the whole surface of the water a smooth rigid 

cover exactly fitting the surface at every point, and let this cover move 

horizontally with the same velocity. We could now remove the jet, or 

other means by which we applied the pressure system, for this function 

will now be performed by the rigid cover; and the fluid motion will 

be exactly the same as before. Moreover, at all those outlying parts 

where the surface pressure is the same as atmospheric pressure, the 

cover could obviously be cut away; and we are left with what corres- 

ponds to the ship in this problem. Let me repeat that in the actual 

ship problem we are given an assigned depression in the water surface, 

namely, the surface of the ship; we have replaced this by a problem 

in which the pressure distribution is assigned and the ship is, so to 

speak, made to fit the surface disturbance. The reason for doing this 
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is simply that the latter problem can be solved mathematically in 
certain cases. 

It is clear that the wave resistance is the resultant of the surface 
pressures when resolved in a direction opposite to that of the motion. 
These calculations have been carried out (Note 1), but we shall only 
consider here the graphical form of the results 

Fig. 1 shows the variation of wave resistance R with the velocity. 
The pressure system is of a certain localized type, symmetrical round 
a centre which moves over the surface with constant velocity c; the 
quantity f is a length which may be called the effective radius of the 
applied pressure system. There are various points of interest in this 
curve, but I shall only mention one or two which have their analogues 
in ship resistance. Notice that the wave resistance is very small at 
low speeds. Then it begins to increase rapidly and reaches a maximum 

when the speed c is about equal to / (gf); this means that the wave 
resistance is a maximum when the length of the transverse waves 
produced is of the same order as the length of the pressure system. 
After this stage the resistance deereases gradually to zero. A little 
consideration will show that this last result might have been anticipated ; 
it may be described as a sort of planing or smoothing action of the 
pressure system when the velocity becomes very large. 

Shallow Water.—Before we leave this elementary pressure system 
we may use it in another interesting problem. We have assumed 
so far that the water is very deep, but we can examine the effect of 
shallow water by adding the condition that at the bottom of the water 
ithe vertical velocity must vanish. The work becomes more difficult 
but formal solutions can be obtained and calculations made from them 
(Wote 2). We know that on water of depth h the speed of transverse 
waves cannot exceed the value ,/(gh), which is the speed of the so-called 
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wave of translation. The waves produced by our travelling pressure 

system agree in character with this fact. Below the speed ,/(gh) the 

wave pattern is similar to that in deep water, the heights of the waves 

being increased; but at higher speeds the transverse waves have 

disappeared and the pattern is made up of diverging waves only. 

Here are some curves, in Fig. 2, which show the corresponding 

changes in the wave resistance. The numbers marking the different 

curves are the ratios of the depth of water # to the length # which 

measures the linear dimensions of the applied pressure system; each 

curve gives the variation of wave resistance with velocity for a given 

depth of water. The curve marked o is the curve for deep water 

which we have already discussed. The progressive changes in the curves 

as the depth is diminished should be noted; but consider in particular 

the curve marked 0°75. Notice the greatly increased resistance com- 

pared with deep water so long as the speed is less than a certain value, 

and the rapid fall after that point with the resistance ultimately 

becoming less than in deep water. The velocity at which the change 

Fie. 3. 

takes place in this case is, from the graph, about 0:-86./(gf); and, 

as the depth h is 0°75 ,/(gf), this velocity is practically equal to / (gh), 

the speed of the wave of translation. This result is in general agree- 

ment with various recorded experiments on the effect of shallow water 

on the wave resistance of ships. 

Interference Hffects.—Returning to the easier case of deep water, 

we can illustrate the interference of bow and stern wave systems. We 

shall call a system in which the applied pressures exceed atmospheric 

pressure a positive pressure system, and one in which they are less than 

atmospheric pressure a negative system. Let the travelling system 

consist of a positive system of the kind we have been considering 

together with an equal negative system at a fixed distance to the rear 

of the positive one. The combined wave pattern is obtained simply 

by superposing the waves due to the two systems separately, and an 

expression for the wave resistance can also be obtained (Vote 3). The 

resistance is not the sum of the resistances due to the two systems 

separately, otherwise there would be none of the so-called interference 
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effects; the combined effect oscillates about the mean sum according 
to the positions of the crests and troughs of one wave system relative 
to those of the other system. Fig. 3 shows a graph of the wave 
resistance calculated for a certain case of this combination 3 it shows 
the typical humps and hollows, and the mean curve. 

It may be asked why we illustrate the wave-making action of bow 
and stern by positive and negative pressure systems respectively, instead 
of by two positive systems or two negative ones. The best answer to 
this question seems to be that we find that this combination gives the 
humps and hollows on the resistance curve in the same sort of sequence 
as for a ship. Another way of expressing it is this: we know from 
observation that the bow and stern produce wave patterns which are 
similar in character except that where there are crests in one pattern 
there are troughs in the same relative positions in the other pattern, 
and vice versa; the simplest combination of pressure systems which 
gives the same effect is obviously the one we have used, one system 
being positive and the other negative. 

General Pressure System.—We might now attempt similar calcula- 
tions for a continuous distribution of pressure such as would be 
essociated with the motion of a ship. So far these have only been 
carried out in certain cases of two-dimensional fluid motion, that is 
when the wave motion consists only of straight-crested transverse waves ; 
we need not consider these in detail here (Vote 4). One point should 
be mentioned to avoid possible confusion. We have already remarked 
that the action of bow and stern is similar to that of positive and 
negative pressure systems. But the actual continuous distribution of 
pressure round a ship is different; it is symmetrical fore and aft of 
the midship section as far as its general character is concerned. The 
excess pressure begins by being positive near the bow, it then decreases 
rapidly to a negative value, remains more or less constant over the 
middle length of the ship, and then increases rapidly to a positive 
value again near the stern. Now a little consideration shows that the 
places which give the main part of the wave effect of the whole system 
are not the regions where the pressure is uniform, whether it is positive 
or negative, but those places where the pressure is changing rapidly. 
Here we have near the bow a rapid change from positive to negative, 
while at the stern the change is from negative to positive; the nett 
result is that in the wave patterns arising from bow and stern respec- 
tively the relative positions of crest and trough are interchanged. 

One recognizes that the results which have been reviewed in this 
section are necessarily only illustrative of the actual ship problem. 
They are nevertheless interesting and suggestive, and students of the 
subject will be familiar with the use that has been made by various 
writers of the notion of pressure distribution in interpreting curves of 
wave resistance obtained from experiments with ship models. 
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DISTRIBUTIONS OF SOURCES AND SINKS. 

Let us consider now another method of treating the wave-making 

action of a ship. It is obvious that the bow and entrance of the ship 

produce in the water an outwards horizontal velocity on either side, 

while the run and stern give rise to component velocities inwards. We 

can also see that the same sort of effect will be produced if we remove 

the ship and replace it by some apparatus which supplies water where 

the velocities are outwards and removes it where they are inwards. 

This picture suggests one of the most fruitful devices in hydrodynamics, 

the study of the motion produced in a fluid by the presence of sources 

and sinks, that is points at which fluid is introduced or withdrawn at 

a uniform rate symmetrically round each point. Just as in the 

previous section we might begin with simple cases, for example a source 

travelling at uniform speed at a constant depth below the surface and 

followed at a fixed distance by an equal sink. The wave motion 

produced by this combination can be calculated; and we can generalize 

the results, with certain limitations, for any distribution of sources 

and sinks. We need not delay over the simpler cases, but let us see 

now how we may use this idea in the ship problem. 

D 
ee 

Fie. 4. 

Consider the vertical section of the ship by the median plane 

running from bow to stern. We replace the ship by a distribution 

of sources and sinks over this vertical section, so arranged that the 

horizontal velocity outwards or inwards at each point is equal to the 

same component of the velocity of the corresponding element of the 

ship’s surface at right angles to itself. This is, of course, an approxi- 

mation; the chief limitation is that we must assume the lines of the 

ship to be fine, so that the angle between the ship’s surface and the 

vertical median plane is small. 

Without going into the details of any one problem, I shall describe 

now some results obtained from three sets of calculations made on 

these general assumptions. 

Form of Water-plane Section.—Suppose that we wish to examine 

the relative effect of making the lines at the bow finer and increasing 

the beam of the ship, the displacement being constant. We shall 

simplify the work by assuming the draught to be infinite, which means 

simply that it is large compared with the wave length at the highest 

speed; we are not concerned with absolute values of resistance, and 
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this assumption is not likely to affect much the comparative values. 

We imagine the ship to have vertical sides and constant horizontal 

section; and we consider a series of models in which the length is 

constant, the beam and the lines altering in such a way that the area 

of the water-plane section is unaltered. Calculations have been made 

for four models in which the lines can be expressed by simple mathe- 

matical formulz so that these conditions are satisfied (Wote 5). Fig. 4 

shows a quarter of the water-plane section for the two extreme models 

of the set and the Table gives some further details. 

MopEtLs oF Constant LENGTH AND DISPLACEMENT. 

Model. Beam. Water-plane coeff. Bow and stern lines. 

A 1:0 0-667 straight 

B 1-042 0°64 straight 

Cc 1-072 0°62 Hollow 

D 1°136 0-587 Hollow 

| 

The calculated curves of wave resistance for these four models are 

shown in Fig. 5. 

Fie. 5. 

The ordinates are the wave resistance R on a certain scale, while 

the base is V/4/L where V is the speed in knots and L the length in 

feet. Look at the curve A, which belongs to the model of more normal 

lines. There are the typical humps and hollows due to interference, 

enormously exaggerated in value, but they occur at values of V/ /L 

which agree sufficiently well with experiment; for instance, there is a 

prominent hump at V=1:04,./L. We can trace also from the set of 

curves the general effect of putting the displacement more amidships. 

The chief point of interest is the intersection of these curves in pairs 

of values of V//L ranging from 1°12 to 1:18. Now this set of 
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calculations corresponds to a simplified form of certain well-known 

sets of experiments with ship models, into the details of which we 

need not enter. It may be sufficient to quote one example, which is 

typical of the results. D. W. Taylor, referring to a series of experi- 

ments with models of the same displacement and of varying midship- 

section coefficients, states that the models with full midship-section 

coefficients drive a little easier up to V/,/L equal to 11 to 1:2, and 

Fie. 6 

the models with fine coefficients have a shade the best of it at higher 

speeds. The agreement with the intersections of the curves in Fig. 5 

is rather striking. 

Parallel Middle Body.—Take now the simple form of model A and 

insert varying lengths of parallel middle body between bow and stern, 

so that the water-plane section is like Fig. 6. 

Ton T T 7 T T T T v Toa a 

4 
A 

L 410 

L sb 
A, dh 

\\ IL 
A 

p 6 

A rai 
L - 5 

C) Ale 

Ir A J 
vy 

ae. NV 

1 1 J 1 1 1 = 
180 2k 140 100 60 20 (0) 

Fie. 7. 

The calculations lead to curves showing how the wave resistance 

at a given speed varies with the length of parallel middle body (Note 6). 

Some curves are shown in Fig. 7. The base is the length (2k) of 

parallel middle body, and the entrance and run were each taken to 
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be 80 feet; these lengths were chosen simply because they were those 
adopted by W. Froude in recording the results of his original experi- 
ments on this effect. The number marking each curve is the wave-length 
of transverse waves at the speed for that curve. 

We shall only compare these curves with experimental results in one 
respect, namely the positions of the maxima and minima, a matter 
about which there has been considerable discussion recently. There 
have been two interpretations of the experimental results put forward. 
On both of them the bow wave system is supposed to begin with a 
crest and the stern system with a trough, positive and negative systems 
as we have called them; therefore there will be a maximum on a 
resistance curve when there is an odd number of half wave-lengths 
between this crest and this trough. The difference between the two 
views is that in one case this distance between first bow crest and first 
stern trough is supposed to be constant for all speeds, while in the 
other it is said to increase with the speed in such a way that the 
increase in this distance is equal to one quarter of the increase in the 
corresponding wave-length. Let us follow some particular maximum 
on the curves of Fig. 7, say A,; on both views this corresponds to three 
half wave-lengths between the first bow crest and the first stern trough. 
On one theory the quantity 2—2k should be independent of the speed, 
while on the other it should increase at the same rate as 4A and 
therefore the quantity £’A—2k should be constant; A is the wave- 
length for a given speed and 2k is the length of parallel middle body 
at which the maximum A, occurs at that speed. Taking the values 
from Fig. 7, and adding other results obtained by further calculations, 
we get the following table :— 

Qk N 8) — 2k EN — 2k 
0 84 126 105 

28 100-5 123 98 
66 126 123 92 
85 140 125 90 

125 167°5 126 84 
171-5 201 131 81 

196 218-6 132 77 

244 251°3 133 70 

328 314 143 65 

According to this Table, neither of these quantities is constant. 
Calling $ 4 —2k the wave separation, it is interesting to notice that 
the wave separation decreases slightly at first with increasing speed ; 
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this is an effect which we find more pronounced if we follow a higher 

order of maximum such as A, or A,. After a range over which the 

wave separation is approximately constant, it ultimately increases with 

the speed but at a slower rate than that required by the quarter 

wave-length theory. Such are the results for the simplified form of 

model we have used; it is quite possible, of course, that different rates 

of variation might be obtained if the calculations could be made for 

forms more like actual ship models. A similar remark may be made 

at the same time about empirical formule derived from experimental 

results; it is not as a rule justifiable to extend these formule beyond 

the range from which they were obtained. 

-7 005 

Varying Draught.—As a last example of this set of calculations 

let us find how the resistance of model A, without parallel body, varies 

when we alter the draught (Vote 7). Hitherto we have taken the 

draught to be so large that it might be assumed infinite. We now 

cut the model off by a horizontal plane, so that it still has vertical 

sides and constant horizontal section; but we take the draught to be 

first one-tenth and then one-twentieth of the length. 

Fig. 8 shows the three curves, marked with the ratio of draught 

to length. There is little difference at low speeds until the wave-length 

becomes comparable with the draught. An interesting point is that 

the humps and hollows occur at practically the same speeds in the three 

curves; one may compare this with the observed effect that for a 

submerged model the resistance curve gives humps and hollows at the 

same speeds independently of the depth at which the model is run. 

The ratios one-twentieth and one-tenth cover roughly the ratios of 

draught to length which occur in practice. We may then compare these 
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curves with experimental results to see whether absolute values are 

reasonably of the right order of magnitude; we cannot expect more 

when we remember the simplified form of the model and the other 

limitations of the theory. 

The three dotted curves in Fig. 8 are experimental curves of 
residuary resistance, the number marking each curve being the ratio 
of draught to length. The curves 0°0475 and 0:0385 have been drawn, 
on the scales used in Fig. 8, from those given by R. E. Froude for 
ships of 400 feet length of 5,390 and 4,090 tons displacement respec- 
tively ; while the curve 0'083 has been deduced from some results given 
by J. L. Kent. We notice at once how much more prominent the 
interference effects are on the theoretical curves; this is probably due 
chiefly to the neglect of fluid friction, whose indirect effect may be 
equivalent to an altered distribution of velocity in the present calcula- 
tions. The effect of differences of form, other than that expressed by 
the ratio of draught to length, is also obvious from the dotted curves. 
When we remember that the calculated curve, say that marked 0°05, 
is for a simple form not specially fitted to any actual model, the 
general agreement of order of magnitude over a considerable range of 
velocity is sufficient at least to justify the fundamental assumptions of 
the theory. 

It is perhaps needless to add that we are very far indeed from 
being able to predict or to calculate in advance the wave resistance of 
an actual ship. Nevertheless our chief aim will have been achieved 
if we have gained more insight into the nature of the problem ; for 
in this respect at least, the pursuit of theoretical investigations, even 
if apparently remote from practical requirements, is essential to a 
complete and scientific solution of the various problems of ship motion. 

NOTES AND REFERENCES. 

1.—The effect of a travelling surface pressure can be obtained by regarding it as a 
succession of applied impulses and by integrating suitably the expressions for the effect 
of a single impulse. Take axes Ox and Oy in the undisturbed water surface and Oz 
vertically upwards; let ¢ be the surface elevation and let O move with uniform velocity 
c in the direction Ox. If the pressure distribution is symmetrical round O and is 
given by 

p=F (r), 7? = x2 + y?, 5 E 0 0 5 5 (ili) 
the surface elevation can be obtained in the form 

gps = -| e 7 By [100 Jo [ «v{e + cu) + 7] sin (kVu)k?dx, . > @) 
0 “0 

where /4 is to be made zero after the integrals have been evaluated ; further V?=g/x, and 

F(k) = [re Jo(xa)ada, . 5 = 5 en) 

J being the Bessel Function of zero order. 
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From the definition of wave resistance given in the text, assuming the slope of the 

ey ao) See UE ao ea Pee end aaa 

the integral being taken over the whole surface. ‘The particular case for which the 

surface to be small, we have 

calculations have been made is 

3 

j= IN) BAGG? sk 79) : : : : « (5) 

A and f being constants. It is found that the integral (4) reduces to 

T 
> 

= (47 9? atin | secd pe ACE) EE? dp . 6 0 . (6) 

This integral can be expressed in terms of Bessel functions, of which tables are avail- 

able, in the form 

mT? A2pse Pp.) . ee R= EAE {ine 122? im}, 
where p= gf/c?. This is the expression whose ne is given in Fig. 1. (Proc. Roy. 

Soc. 4, 95, p. 354. (1919). 
2.—With the same notation, and with h as the depth of water, instead of (6) we 

now have 

R= 
p g sec” (c?—gh sec? d) + K*cth ° e 2 ‘ p (8) 

Po 
where x satisfies the equation 

7 

47 A2c8 | 2 Ke 2 sec pad 

g 

Ke? = g sec’ & tanh xh. 

The lower limit d, is to be taken zero if c’<gh, and to be the value of are 

cos Vghic? if c’>gh. The integral (8) was evaluated by graphical methods, the 

integrand being graphed on a certain base and areas taken by an Amsler planimeter. 

The process was carried out for the different values of the ratio h/f shown in Fig. 2. 

(Proc. Roy. Soc. A., 100, p. 499. 1922.) 

3.—With h as the distance between the centres of the two pressure systems, the 

integral for the wave resistance is 

Tv 

y 2 
R = (16mg?A*/pc*) | ; sect g e— “(Af lc?) sect cos? | (gh/c?) sec \ hyo o © 

The particuiar case shown in Fig. 3 is for h = 2/, the integral being evaluated by 

numerical methods. (Reference as in Note 1.) 

4.—For a study of some cases, with further references, see Proc. Roy. Soc. A., 89, 

p. 489. 1914. 

5.—The general expression for any distribution of sources and sinks is found by 

beginning with a doublet of given moment at a given depth in the liquid, with its axis 

parallel to Ox. The results are generalized by integration for any continuous dis. 

tribution of such doublets in the plane y = 0, the moment per unit area in this plane 

being (2, z); this gives for the wave resistance the expression 

T 
[) 0 0 ) i 

R= 16matpe—* | a | “J ue dx} . bW)dz . bY/52'. 

x sco'p e[ IE + HIE | #2 ® cog oa | | gl - xry/ct { seo |» 5 (00) 
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This distribution of doublets gives over the plane y = 0 a normal distribution of 
velocity of amount 27/82. Taking the plane y=0 as the median fore and aft 
plane of the ship, and taking the ship's surface to be given by y= F(a, z), we have, 
with the assumptions in the text, to substitute 27dy/5x = cd5F/5x in (10) to obtain the 
wave resistance. The curves of Fig. 4 for the form of the water-plane section are 
particular cases of the equation 

b x2 \ ( ( a?) ) 
= an (t= =) 1 1-422 n= =) es ihsy. (LL) 

Here 2/ is the constant length of the ship and 4®J the constant area of the 
water-plane section ; the beam is 2b(1 — 1d2)/(1 — 4d?) The four models are the cases 
d= 0, 1, 1-25 and 1-5 respectively. Evaluating as far as possible the integrals in (10) 
for the form given in (11) we obtain 

512gpb% diate et 
(1 — 4d2)p =[ x a(l "+ 48(1 + 242 - 4d rs 

da? ds 2 + Se — + 19984 — 4 4(1 — 3a2)"P, — =(1 — 4424 4d4)P p p ( A) a 3 gas)P, 

4 32 64 + sell — 6d" + $dtjP, — pail — 30)P, peel 249, 

‘ 4 4 

Ps + Se, | SES Mee rede yi a Mee eee ak (TD) 

where p = 2g//c? and the functions P are defined by 

7 

P., (p) = (= uf ‘ cos?” @ sin (p sec d)dp 
0 

T 

12 ana) = (oper i ; cos"”*! ¢ cos (p sec )dp. 
0 

After preliminary computation of these new functions, it was possible to calculate 
R from (12) for the four given values of d and for sufficient values of p in each case to 
give the curves of Fig. 5. (Proc. Roy. Soc. A., 103, p- 571. 1923.) 

6.—The equation of AB in Fig. 6 is 

y=b{ 1 —(e — mae } Be Ry atRe wiiate tn. 1125513) 

In this case the integrals of (10) give, with the same notation, 

512 gpbl Z 4 
R =a [33 BiG Tar = P, (2p) + 2 Fs (bp) 

2 2 
+$P, (p,) - 3 P,(p,) + Poe (p,) + Pp P, (p,) 

4 2 
. ae (p2) + pits (Ps) |. . . . : . : (14) 

where p = 29l/c*, P1=9(2k +21)/c2, pog=9(2k+1)/c2, pg=2gk/c?2. 

The curves of Fig. 7 were obtained from this formula, with 7=80, for the cases 
g/c?=0'1, 0:0625, 0:05, 0-045, 0:04125 respectively. (Proc. Roy. Soc. A., 108, p. 77. 
1925). 
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18 THEORY OF SHIP WAVES AND WAVE RESISTANCE. 

7. The general expression (10) now gives, with p=2gl/c2, a=gd/c*, 
B=d/2l. a 

2 TP 2 

R= en it (1—e-asec?o | cos*d + <008" 

0 

+ (cos? o- z cos* 2) cos (p sec $) - 4 cost¢ sin (psec $) }ag, . (15) 

After certain transformations, this expression was evaluated by 
approximate methods to give the curves of Fig. 8 for the cases B=~, 0-1 and 0-05. 
(Proc. Roy. Soc. A., 108, p. 582. 1925.) 
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The Method of Images in Some Problems of Surface Waves. 

By T. H. Havetock, F.R.S. 

(Received May 26, 1926.) 

Introduction. 

1. When a circular cylinder is submerged in a uniform stream, the surface 

elevation may be calculated, to a first approximation, by a method due originally 

to Lamb for this case, and later extended to bodies of more general form: the 

method consists in replacing the cylinder by the equivalent doublet at its 

centre and then finding the fluid motion due to this doublet. In discussing 

the problem some years ago,* I remarked that if the solution so obtained were 

interpreted in terms of an image system of sources, we should then be able to 

proceed to further approximations by the method of successive images, taking 

images alternately in the surface of the submerged body and in the free surface 

of the stream. This is effected in the following paper for two-dimensional fluid 

motion, and the method is applied to the circular cylinder. It provides, theoreti- 

cally at least, a process for obtaining any required degree of approximation, 

but, of course, the expressions soon become very complicated. It is, however, 

of interest to examine some cases numerically so as to obtain some idea of the 

degree of approximation of the first stage. 

An expression is first obtained for the velocity potential of the fluid motion 

due to a doublet at a given depth below the surface of a stream, the doublet 

being of given magnitude with its axis in any direction. A transformation of this 

expression then gives a simple interpretation in terms of an image system. 

This system consists of a certain isolated doublet at the image point above the 

free surface, together with a line distribution of doublets on a horizontal line 

to the rear of this point ; the moment per unit length of the line distribution 

is constant, but the direction of the axis rotates as we pass along the line, the 

period of a revolution being equal to the wave-length of surface waves for the 

velocity of the stream. The contribution of each part of the image system to 

the surface disturbance is indicated. 

Before proceeding to the circular cylinder, two cases are worked out in some 

detail, namely, a horizontal doublet and a vertical doublet. To a first approxi 

mation these give the surface disturbance of a stream of finite depth with an 

obstruction in the bed of the stream ; in the first case the bed of the stream is 

plane with a semi-circular ridge, and in the second case it has a more com- 

* «Roy. Soc. Proc.,’ A, vol. 93, p. 524 (1917). 
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269 T. H. Havelock. 

plicated form. Numerical calculations are made for both these cases, and 

graphs of the surface elevation are shown in figs. | and 2. 

The second approximation for the circular cylinder is then investigated. 

The first stage is the surface effect due to a doublet at the centre, and the second 

is that due to a distribution of doublets on a certain semicircle. Hxpressions 

can be obtained for the complete surface elevation, but the calculations are 

limited to that part which consists of regular waves to the rear of the cylinder. 

The integrals are investigated and reduced to a form which permits of numerical 

evaluation. Calculations are carried out for various velocities for two different 

cases, namely, when the depth of the centre is twice, and three times, the radius. 

The results are tabulated for comparison, and one may estimate from these 

rather extreme cases the degree of approximation of the first stage. The effect 

of the second stage is to alter both the amplitude and the phase of the regular 

waves. The amplitude of the first-stage waves has a maximum for the velocity 

a/ (gf), where f is the depth of the centre. It appears that the second stage 

increases the amplitude of the waves for velocities less than +/(gf) and decreases 

it for velocities above this value; further, the crests of the waves are moved 

slightly to the rear by an amount which varies with the speed. Some other 

possible applications of the method of images may be mentioned. For a 

doublet in a stream of finite depth, we can take successive images in the bed 

of the stream and in the free surface, and so build up the image system of a 

doubly infinite series of isolated doublets and of line distributions of doublets ; 

this solution may be compared with the direct solution in finite terms which 

may be obtained in this case. Further, similar methods may be used for the 

three-dimensional fluid motion due to a doublet in a stream, and application 

made to the corresponding problem of a submerged sphere. 

Image of Doublet in Stream. 

2. We may either consider the doublet to be at rest in a uniform stream or to 

be moving with uniform velocity in a fluid otherwise at rest ; we choose the 

latter alternative. Take Ox horizontal and in the undisturbed surface of the 

liquid, and Oy vertically upwards. Let the axes be moving with uniform 

velocity c in the direction of Qz, and let there be a two-dimensional doublet 

of moment M at the point (0, —-f) with its axis making an angle « with the 

positive direction of Oz. The velocity potential of the doublet is given by the 

real part of 
Me‘ 

Seah) @) 
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Images in Some Problems of Surface Waves. 270 

In order to keep the various integrals convergent and so to obtain a definite 
result, we adopt the usual device of a small frictional force proportional to 
velocity and in the limit make the frictional coefficient uw’ tend to zero ; further, 

we neglect the square of the fluid velocity at the free surface. 
If y is the surface elevation, the pressure equation gives the condition at the 

free surface, 

- — gn + pd =const., (2) 

we have also, at the free surface, 

@ 0 Ove Se 0b (3) 

And as we are dealing with the fluid motion which has attained a steady state 
relative to the moving axes, these conditions give, in terms of the velocity 
potential, 

ey = pl () 
to be satisfied at y = 0. Here we have put x = g/c? and B= ple. 
We now assume the solut on to be given by 

ge — iMe= | 
20 

POD Ge AL | F (ic) 74 dic. (5) 
0 0 

The first term represents the doublet (1) in an equivalent form, valid for 
y + f>0. The function F(x) can now be determined by means of (4), and 
this gives 

F(x) = iMe® (1 4 jal (6) 

Hence the velocity potential of the image system is 

co 20 ikx—« (f—y) eK IV de + YineoMe™ | eee ee (7) 
ime | - 

0 K—kKo + tu 0 

By comparison with (1) and the first term in (5), it is easily seen that the 
first term in (7) is the velocity potential in the liquid due to an isolated doublet 
at the image point (0, f), of moment M with its axis making an angle z — « 
with Oz. 

To interpret the second term in (7) we put 

4 = | eT UP +i (KK) dp, uw > QO. (8) 
kK — ko + aes 0 
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We then interchange the order of integration with regard to « and p, and 

integrate first with respect tox. The second term of (7) thus becomes 

ale —HD—1KoD 
QireMe'* | é dp, (9) 

ottpti(f—y) 
with f — y> 0. 

By a comparison with (1), we see that the real part of (9) is the velocity 

potential of a line distribution of doublets along the line y = f, extending over 

the negative half of that ine. The magnitude of the moment per unit length 

at the point (—p, f) is 2x9Me~“?, and the axis at that point makes with Ox 

an angle xp — % — 4n. 

It is necessary to retain the quantity » while manipulating the integrals, 

but we may put it zero ultimately and we have the following result :—The 

image system of the doublet M at an angle « to Ox and at depth f below the sur- 

face consists of a doublet M at the image point at height f above the surface with 

the axis making an angle x — « with Oz, together with a line distribution of 

doublets to the rear of the image point of constant line density 2x9M and with 

the axis at a distance p in the rear making a positive angle «op —« with the 

downward-drawn vertical. 

It is of interest to note how the parts of the image system contribute to the 

surface elevation. From the preceding equations we obtain 

2M (f cos « — x sin «) eneash 7 s 2 2B (fteosia Saisie) oMet dx, (10) ah ef? 0 K— Ko big 
where the real part of the second term is to be taken. 

The integral in (10) is transformed by contour integration, treating x positive 

and « negative separately; when pw is made zero ultimately, the complete 

expressions are 

fab Re 2M Wyiees a—2 sin «) 4M ip m COs (nfSa)e sin (mf—«) e-™ dm, 

i a + f? m + Ko" 

forxz > 0; and 

en — MMe a Sin 4) f dreyMew* sin (xox + «) 

+ 2h | m COS 2A (mf + «) e™ dm, (11) 

m* + K 
forz <0. ‘ 

The first term in each case represents that part of the local surface disturb- 

ance due to the doublet and the isolated image doublet. The remaining terms 
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Images in Some Problems of Surface Waves. 272 

are due to the semi-infinite train of doublets behind the image point. Part of 
the effect is the train of regular waves to the rear of the origin, evidently associ- 
ated with the periodicity in the direction of the doublets along the line 
distribution ; and there is also a further contribution to the local surface dis- 
turbance, which we may regard as arising from the fact that the line distribution 
is semi-infinite and has a definite front. 

Horizontal and Vertical Doublets. 

3. With the axis of the doublet horizontal, we have the well-known first 
approximation to the submerged circular cylinder of radius a, if we take 
M = ca?. From (11), the surface elevation can be expressed in the form 

2 
— 20, + 2a?%xoP, «> 0, y= ee + f? 

= _2a'f + 2a7KoP + Arxoa2e—! sin nox, 2 <0 (12) a + f? ? 2 

where P is the real part, for 2 > 0, of the integral 

20 e tim 

| ae EE (13) 
0 % + UKo 

Taking the axis of the doublet to be vertically upwards, we have « = x/2 
in the general formule ; and, putting M = ca? in this case also, we obtain 

2a*x ° 7= cee +f = 207K Q, z> 0, 

2a°a 2 2,—Kof i eae + ft + 2a%KoQ + 4rKoa%e—"! cos xox, x <0, (14) 

where Q is the imaginary part of the integral (13). This integral may be 
expressed formally in terms of [i (e’—*), where li denotes the logarithmic 
integral, and may be expanded in various forms. For the numerical calcula- 
tions which follow, it was found simplest to use the series 

> o— (atip)u 

| 0 u+t 

A=y-+logr +E cos nO, 
1 4 

du = — (A + aB) e=#-i®, 

Boe) dn ab (15) 
in! 

where 

r= («? + B?)}, tanO=a/B, and y=0-57721. 
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The series is sufficiently simple for calculation, though in some of the cases it- 

was necessary to take a large number of terms. 

For both the horizontal and vertical doublets we take 

N= er, f= My; Kof = 4. (16) 

This means that we take the velocity to be such that the wave-length of the 

regular waves is dxf. We are assuming, in each case, a given doublet at depth 

f below the surface of deep water. The only restrictions so far are the general 

ones due to neglecting the square of the fluid velocity at the free surface, and 

the consequent limitation to waves of small height. From this point of view 

the data of (16) are rather extreme; but, this being understood, it may be 

permissible to use them for a comparison of the two cases. With the values 

in (16), the calculations are comparatively simple, and lead to graphs which can 

be drawn suitably on the same scale throughout; these are shown in figs. | 

and 2, where the unit of length is the quantity a. 

In fig. 1, there is a horizontal doublet at C; the arrow shows the direction 

of the stream assuming the doublet to be stationary, and Oz is in the undis- 

turbed surface. The surface elevation was calculated from (12) for the case 

(16). The broken curve shows the regular sine waves to which the disturbance 

approximates as we pass to the rear. This solution is also the first approxi- 

mation for a submerged cylinder of radius a; or, again, to the same order, it 

gives the effect caused by a semicircular ridge on the bed of a stream of depth 

twice the radius. rom this point of view the diagram may be compared with 

that viven by Kelvin* for a small obstruction on the bed of a stream of finite 

depth. 

* Kelvin, ‘Math. and Phys. Papers,’ vol. 4, p. 295. 
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Fig. 2 shows the corresponding curves for a vertical doublet, calculated from 
(14) for the case (16); the doublet is at the point C. Here, again, the broken 
curve shows the cosine term of the solution to which the disturbance 
approximates. 

We may also regard this as an approximate solution for the flow of a stream 

] ] I T I T | 

———— 

! n i 

Fig. 2. 

over a bed of a certain form. This is obtained by taking the zero stream-line 
for the combination of the uniform stream and a vertical doublet at C under the 
conditions given in (16) ; the equation of this curve is 

(y + 2a) {a? + (y + 2a)%} + ax = 0, (17) 
and its form is shown in the figure. Fig. 2 may be compared with a graph given 
by Wien* for the ease of a sudden small rise in the bed of a stream. 

It is interesting to note the general similarity of the surface elevation in the 
two cases shown in figs. 1 and 2; although the regular waves are given by a sine 
curve in one case and a cosine curve in the other, that is only because of the 
different position of the origin relative to the general form of the obstacle. 

Second Approximation for Circular Cylinder. 

4. We may now carry out further approximations for a circular cylinder in 
a uniform stream by the method of successive images. Reference may be 
made to fig. 3, which is not drawn exactiy to scale. 

The image of the stream in the circle is a horizontal doublet M at the centre 
C. The image of M in the free surface is a doublet — M at the image point Cy 

* W. Wien, ‘ Hydrodynamik,’ p. 206. 
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together with a trail of doublets to the rear of C,. The image of this system in 

the circle gives a doublet — Ma?/4f? at C,, together with a certain line distribu- 

tion of doublets on the semicircle on CC,. 

So the process could be carried on, but we 

shall stop at this stage. 

From the results already given, we could 

build up complete expressions for the velocity 

potential and surface elevation for each 

stage. It would be of interest to work 

these out graphically to compare with fig. 1; 

but the expressions soon become complicated 

and their evaluation difficult, especially for 

the immediate vicinity of the origin. We 

shall therefore limit the study to the regular 

waves established in the rear of the cylinder. We have seen that the regular 

waves of the first approximation, due to the doublet ca? at C, are given by 

y = 4rxpae~"" sin Koz; Ss 70. (18) 

We take the next stage in two parts. First we have an isolated horizontal 

doublet of moment — ca*/4f? at C., whose co-ordinates are (0, —f-+ a?/2f). 

From (11) it follows that the contribution of this doublet to the regular waves 

is 
Q = —TKpa'f 2e OF -P) sin noo; 2<0: (19) 

Next we consider the line distribution of doublets to the rear of ©, and its 

image in the circle. Referring to the results in § 2, there is at the point (—p, f) 

an elementary doublet of moment 2x ca*dp, with its axis making an angle 

kop — 4m with the positive direction of Ox. The image of this in the circle is a 

doublet at the point whose co-ordinates are 

a*p earn 
= era ali ; 20) 
pep lpr P 

the moment of the doublet is 2« ca* . dp/(p? + 4f?), and its axis makes with 

Oz the angle 

2 tan™ (p/2f) — kop + 3m. (21) 

From (11) we can now write down the waves due to this doublet. It should 

be noted that the expression will hold for 

LEDS e+ eae <0. 
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If, therefore, we wish to obtain the complete expression for this part of the 
surface elevation at a point in the range — a2/4f <a <0, we should have to 
integrate with respect to p between appropriate variable limits. We shall 
consider only points to the rear of this range, so that the limits for p are Qand a. 
This being understood, the distribution of doublets on the semicircle CC, 
contributes to the regular waves a part given by 

e) 202 Kof az 

= 8rK-ate— “of | e *+4f cos { (x =F are n 0 5 0 rep 

Putting p = 2f tan 40, this becomes 

n = 2rKpPrat ft e~ “4S +7/4F (A cos «oz — B sin Koo), (23) 
where 

ee [et* cos (6+ h sin 6 —& tan 46) d0, 
0 

B = | tm? sin (0+ h sin 6 —k tan 46) d0, 
0 

with h = xoa/4f and k = 2xof. 

5. In the applications to be made, h and & are positive, h is less than unity 
and is usually a small fraction. In these circumstances, the integrals may be 
evaluated by expansion in power series of h. It can be shown, after a little 
reduction, that we have 

ye ao hr A sy t) h” ; 
A= 22 Tyas B= 227 Mas; (24) 

where 

i [- cos (2ré — k tan ¢) dd 
0 

M, = f WO in (Op — [bein VTE. (25) 
0 

The quantities L and M may be evaluated in terms of known functions by a 
reduction formula. It can readily be shown that 

(7+ 1) Lys = KL,” — kL,’ + rL,, (26) 
the accents denoting differentiation with respect to k; or denoting this opera- 
tion by D, we have 

7! L, = (kD? — kD +r —1)(KD?— kD +7 —2) ... (KD?— AD) Lp. (27) 
The quantity M satisfies similar relations. 
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Further, we have 

m2 

ly = | cos (k tan 6)dé = 4ne* 
0 

M) = — ie sin (k tan $)df = — $ {e*h (e*) — ela (e~*)}. (28) 
0 

We shall find it necessary to go as far as the sixth term in numerical calcula~ 

tion of A and B ; we therefore record to this order explicit expressions for L and 

M obtained from (27) and (28). 

Ib, == elo, 

L, = — rk (1—hk) e*, 

L, = 4rk (3 — 6 + 22) e*, 

Ly = — 4nk (3 — 9k + 642 — kh) e—*, 

L; = 75nk (15 — 60k + 60k? — 2043 +- 2h*) e-*, 

Lg = — pth (45 — 225k + 300k? — 1503 + 30k* — 2k°) e—*, 

M, = — kei (e*) +1, 

M, = k(1—h)ehi (e*) +-&, 

M,; = — 3h (3 — 6h + 2k?) e*hi (e*) + 4 (1 — 4k + 29%), 

Mz = 3h (3 — 9k + 6h? — h°) e~*hi (e*) 4+ 4k (5 — 5k + F), 

M; = — 75k (15 — 60k + 60k? — 20K? 4 2k*) e*hi (e*) 

+ af; (3 — 28k 4 442? — 183 + 284), 
Mg = sk (45 — 225k + 300K? — 150K? + 30k* — 2h>) e*h (e*) 

+ Jk (93 — 198k + 124k? — 28% + 2%). 

6. The first case we shall examine is that already discussed in § 3, a cylinder 

whose centre is at a depth of twice the radius. It has been remarked that this 

is an extreme case, but it has the advantage, as far as the calculations are con- 

cerned, of magnifying the difference between the first and second approxima- 

tions and so of lightening the numerical work involved. In the notation of the 

previous sections, we have 

f=2a; k= 2of=4rfl/ro; bh = xoar/4f = k/32. (29) 

Collecting the terms in (18), (19) and (23), the regular waves established to 

the rear of the cylinder are given by 

nla = rke~™ sin kyo — pgrke”** sin xox 

+ shak?e—** (A cos Kot — B sin kz). (30) 

The first term is the first approximation, and the amplitude in this case has 

a maximum at * = 2, or when the velocity is such that the wave-length is 2zf. 
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We shall calculate the value of (30) for & equal to 10, 8, 6, 4, 2,1 and 0-5, 

given in order of increasing velocity. Omitting the intermediary steps for the 

numerical values of the L. and M functions, the following table gives the values 

of A and B, calculated from (24), for these values of & and with h = k/32 in 

each case. 

k | 10 | 8 | 6 | 4 | 2 | 1 | 0-5 

A 0-021 0-064 0-204 0-646 1-805 2-311 1-891 

B —0-418 —0-522 —0-716 | —0-950 —0-596 0-668 1-742 

The simplest form in which to show the difference made by the second approxi- 

mation is to express (30) in each case in the form 

y/a = D sin kp (« + &), (31) 

and compare it with the first approximation 

y/a = C sin koe. (32) 

A comparison of D and C gives the alteration in the amplitude of the waves ; 

further, there is an alteration in phase expressed as a displacement of the crests 

to the rear by an amount €. 

In this form the final numerical values, for f = 2a, are given in the following 

table :— 

c/ /(ga). Cc D t/a. 

0-63 0-212 0-263 0-006 

0-71 0-460 0-568 0-017 

0-82 0-939 1-159 0-050 

1-0 1-701 2-046 0-148 

1-41 2-312 2-396 0-468 

2-0 1-906 1-721 0-669 

2-83 1-223 1-081 0-595 

We see that the second approximation makes a considerable difference in 

the amplitude in this case ; but it should be noted that, in addition to the depth 

being only twice the radius, the velocities are relatively large, the wave-length 

at the lowest velocity being about 1} times the depth. 
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The amplitude C has a maximum at the speed 4/(2ga) ; and it appears from 

the table that the second approximation: increases the amplitude below this 

velocity and diminishes it at higher velocities. It seems that thé rearward 

displacement, given by &, also has a maximum, amounting to about two-thirds 

_of the radius of the cylinder. 

7. It is clear, from the form of the expressions for the surface elevation, that 

the accuracy of the first approximation increases rapidly as the depth of the 

cylinder is increased or as we take relatively smaller velocities. Without 

pursuing the calculations in this direction, we shall take one other case which is 

not quite so extreme as in the previous section. We take the depth of the 

centre to be three times the radius; the data are now 

J = 3a; k= 2of; h = xat/4f = k/72. (33) 

In this case, instead of (30), we have 

nla = 2ke—* sin xox — Aprke-™ sin xox 

+ gynke—™ (A cos xoz — B sin oz). (34) 

The following table shows the values of A and B, with h = k/72, calculated 

for convenience at the same values of k as before :-— 

k | 10 | 8 6 | 4 2 | 1 | 0-5 

A 0-008 0-033 0-137 0-540 1-747 2-311 1-898 

B —0-324 | —0-428 —0-626 | —0-911 —0-644 0-663 1-732 

With the same notation as in (31) and (32), the results are given in the 

following table :— 

c// (9a). | Cc | D | E/a. 

0:77 0-141 0-149 0-001 

0-87 0-307 - 0-329 0-006 

1-0 0-626 0-677 0-024 

1:22 1-134 1-222 0-088 

1-73 1-541 1-558 0-295 

2-45 1-270 1-214 0-409 

3-46 0-816 0-802 0-324 
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The calculations were made for the same values of &; and as we have taken 
4/ (ga) as the unit of velocity, we get a different set of velocities, but they cover 
much the same range. We notice that the decrease of the ratio a /f from 4 to 4 
has diminished considerably the difference between ( and D, and also the dis- 
placement £. The results have the same general character as we noted in 
the previous case. Q 

In any given case there are two significant quantities involved: one is the 
ratio of the radius to the depth and the other is the ratio of the wave-length 
to the depth. It would require a more elaborate numerical study than has been 
attempted here to enable us to state precisely the degree of accuracy of the 
first approximation for given values of these ratios. 

HarRIsoON anp Sons, Ltd., Printers in Ordinary to His Majesty, St. Martin’s Lane, 
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Wave Resistance. 

By T. H. Havetocr, F.R.S. 

(Received December 15, 1927.) 

Introduction. 

1. The object of this paper is to give more direct proofs of certain expressions 

for wave resistance which have been used in previous calculations ; further, 

in view of other possible applications, the expressions are generalised so that one 

can obtain the wave resistance for any set of doublets in any positions or 

directions in a uniform stream, or for any continuous distribution of doublets 

or equivalent sources and sinks. The only limitation is the usual one that the 

additional velocities at the surface are small compared with the velocity of the 

stream. One might take a simple source as the unit, but to avoid certain 

minor difficulties it would be necessary to assume an equal sink at some other 

point. The possible applications are to bodies either wholly, or with certain 

limitations partially, submerged. The image system in such a case consists of 

a distribution of sources and sinks of zero aggregate strength, and so may be 

replaced by an equivalent distribution of doublets. Hence it is simpler to 

use the doublet as the unit from the beginning. 

The wave resistance of a submerged sphere was obtained previously both by 

direct calculation of pressures on the sphere and by an analogy with the effect 

of a certain surface distribution of pressure. The latter method was then 

generalised to give the wave resistance of any distribution of horizontal doublets 

in a vertical plane parallel to the direction of the stream. In a recent paper 

Lamb* has supplied a method for calculating wave resistance which avoids the 

* H. Lamb, ‘ Roy. Soc. Proc.,’ A, vol. 111], p. 14 (1926). 
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comparison with an equivalent surface pressure ; it consists in calculating the 
rate of dissipation of energy by a certain integral taken over the free surface 
when, as is usual in these problems, a small frictional force has heen introduced 
into the equations of motion of the fluid. Lamb, however, deals only with a 
single doublet, to which a submerged body is equivalent to a first approxima- 
tion, and so does not obtain the interference effects which arise from an extended 
distribution of doublets ; further, he carries out the necessary calculation by 
analysing first the surface distribution of velocity potential, or in effect analysing 
the wave pattern. In the following paper it is shown that this intermediate 
analysis may be avoided by a direct application of the Fourier double integral 
theorem in two dimensions. This step simplifies the extension of the calcula- 
tion to any distribution of doublets in any positions and directions ; various 
cases, which it is hoped to use later, are given. in some detail for deep water, 
and one case of a single doublet in a stream of finite depth. 

Two-dimensional Motion. 

2. The results for a two-dimensional doublet are well-known, but there are 
one or two points of interest in the calculation. We shall suppose the liquid 
to be at rest, and the doublet to be moving with uniform velocity c. Let the 
doublet be of moment M, with its axis horizontal, at a depth f. Take the origin 
in the free surface, with Oz in the direction of motion and Oz vertically upwards. 
If ¢ is the surface elevation, and if there is a frictional force proportional to 
velocity, the pressure condition at the free surface gives 

2 — gC + u’'d = constant, (1) 

¢ being the velocity potential. Since, at the free surface oC /ot = — dd/oz, 
we have for the steady motion relative to the moving axes, 

od | od od 0, (2) Coa eo ca 

to be satisfied at z= 0, with xy = q/c? and = p’/c. The conditions of the 
problem are satisfied by 

NE a a 
a+i(z+f) x+i%(—f) 

eS) erk® — k(f —2z) 

2eeyM | ————__ dx, 3 = UK 9 == Sp ( ) 
$ 

where the real part is to be taken, 
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If R is the equivalent wave resistance, Re is equal to the rate of dissipation 

of energy ; this gives, following Lamb, 

ip sal jae ag, (4) 
On 

taken over the free surface. Thus in the two-dimensional case we have 

R = Lim yup | soe dz, (5) 
Peto =e! GB 

with z = 0. 

The surface values of ¢ and 0¢/0z can be obtained from (3) ; after applying 

well-known transformations we obtain, at z= 0, 

oo . 

m s } mf _ eae 2M | (m+ p) sin mf + Kp» Cos m e-™ dm, 

(m+ By + KQ 

od —_—e 4Maf == Wr M [ (par) 08 Ty gS ac dm 

mB Cape. (mt uP Ke 
forz > 0; and 

hb = 4rxyMe**— "J cos (ko + uf) 

cf 2g | (m— p) sin mf — Kp COs mf me dm, 

(m — p)? + K9" 

od ao ArcicyM e#*—"F {cg cos (gt + wf) + w sin (Kow + uf} 

hal Maf A Oe MI (m — wp) cos mf — Kp sin mf nem Bin, (@) 

(a? = or (m — p.)? + Kk, ; 

ce 

fora <0. 

These expressions are continuous at z= 0. It is easily seen that the only 

terms which give any contribution to (5) in the limit are the first terms in the 

expressions for ¢ and 0¢/dz when « is negative. These are the terms which 

arise from the train of regular waves established in the rear of the moving doublet 

and so this method is connected with the alternative calculation of wave 

resistance by means of group velocity. The dissipation of energy when there 

is a frictional term is represented in the limit, when y is made zero, by the propa- 

gation of energy away from the system in the train of regular waves. To com- 

plete the calculation from (5) and (6) we have 

0 

R = Lim pe | L 67023 M2e7#*— 2F cos? yx dx 
—o 

= 4r29x,3M2e~ 2, (7) 
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We may obtain this result without analysing the expressions for ¢ and 0¢/0z. 
We obtain from (3) the following complete expressions in real terms, at z = 0, 

: ” wu COS K& — ( — Kp) SIN KE _py § = 2M |, 7 eee a es (8) 

od. M * uk, Cos Ka — {xe (1 — Ko) + p2} sin Kx Aebhe (9) 

dz do (ke = kg)? + 2 
To carry out the integration of the product over the surface, we use the follow- 
ing theorem : if 

i@ = | (A, cos Kx + B, sin xx) dk, 
0 

v@= { (A, cos xx + B, sin xa) dx, 
0 

where A,, Ay, B,, B, are functions of x, then 

[. iQ b@m— a (i Ny HET, 1B) Ge (10) 

This theorem is derived from the Fourier double integral 

Bw =| dk | 5 ®) eee = oe) de, (11) 
Tw JO —00 

and is subject to the same conditions. 
In the present case, comparing (8) and (11) we have 

2nKyMye 4 
ie ¢ (a) cos Ka da = (aaa 

‘0D 
) wee —xf 

| ¢ (x) sin xa dx = — aS (12) 
- © ( — Ko)? + 

Hence we have 

© oo OY tai] 

| ) ae dx = 4k )M? | —__ dk, 
-a Oz 0 (K — Ky)? + p 

; LS Kee KS 

R= Lim trecgMPou | ———— dk 
u>0 0 (kK — Ko)” sil ye 

= 47? 0K 2M 2e~ 2nof, (13) 
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Horizontal Doublet. 

3. To consider three-dimensional fluid motion, take first a horizontal doublet 

of moment M at the point (0,0, —f). Assume that the velocity potential can 

be expressed in the form 
Tr 00 

db ee =| | Ke * +f) + tx (x cos 6+y sin 6) cos () d9 dk 

a i | KE (0, x) e* J tHe (2 008 +950) eo3 @ dO dx, (14) 
0 =o 

where real parts are to be taken, and where the first term is the velocity potential 

of the given doublet in a form valid for z+ f > 0. 

The surface condition is equation (2) as before; applying this, we obtain 

uM k + ky sec® 0 + tu sec 0 
= 5 15 

ea) Qn K — Ky sec? @ + ip sec 0 ) 

Hence from (14) and (15) the surface values of ¢ and 0¢/0z are 

9 Cd i) —xf tix (x cos 6+y sin 6) 

| | —_—*n sec 8 d0 dk, (16) 
tT J—zJo K — Ky sec” 0 + tp sec 0 

‘ 1 C2 —«ftix (x cos 6+y sin 4) 

as =| | g : Ale Ankes am O0bde (Om) 
Oz T 0 K — Ky sec” 0 + ip sec 0 ip 

Taking real parts of these expressions we obtain 

‘= | : i {48 (O¥c)icosl (ier cog 6) eos) (reyisinl6) 
ae + F, (0, «) sin (Kx cos 0) cos (ky sin 0)} « dk d0, (18) 

and a similar form for 0¢/0z with G instead of F, with 

F, = M«yue” sec? 0./D 

F, = — Mky (k — ky sec? 8) e~” sec 0./D 

G, = Muxyxe~“ sec? 0./D 

G, = —M {« (k — kp sec® 0) + 2 sec? 6} xe"! cos 0./D 

D = zx {(k — ky sec? 6)? + p? sec? 6}. (19) 

We now apply a theorem in two dimensions corresponding to that given in (10). 

The Fourier integral theorem is 

Fay = 5] du | av | ( F (s, t) cos u(x — s) cos v (y — t) ds dt. 
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Putting w = « cos 0, v = « sin 9, this may be written 

1, 9) = [ dd | {F, cos («x cos 6) cos (xy sin 6) 
it, 0 

+ F, sin (kz cos @) cos (xy sin 0) + Fy cos (xx cos @) sin (xy sin 9) 

+ F, sin (kx cos 0) sin (xy sin 0)} « dic, (20) 

where 

ht, = al | F' (s, ¢) cos (Ks cos 0) cos («é sin 0) ds dé, (21) 
oT ioe) ll ae) 

with similar expressions for F,, F'3, Fy. 

If G (x, y) is another function given as a double integral in the form (20), it 

follows as in the one-dimensional case that: 

| | E («, 4) G (a, y) dx dy = 4r i. a0| (F,G,+FGo+F,GstF,G,) ede. 
—o J—0 =_ 0 

(22) 
It is assumed that the various integrals are convergent. 

For the particular case given in (18) and (19), we find that F,G, + F,G, 

reduces to a simple expression, and we obtain 

R= Lim yp | | ALD ay 
uo =odiacs GH 

pe lee 3 e-2«f dx dO = Lim 16pxjiPp ("| we 
eon ca o Jo (k—Kko sec2 0)2+p2 sec2 0 

1/2 

= 16rpxy!ME | SEC mmemnod acca 
0 

1 
= AmoicytM2 e~ “oF fic (kof) +(1 + =.)K (« i (23) 0 \ 0 \"0. of i (kof 

where K,, is the Bessel Function defined by 

o 

Ka) = | e724 cosh nu du. 
“0 

Horizontal Doublets in Vertical Plane. 

4. This method allows easily an extension to any distribution of doublets. 

Consider first two horizontal doublets M and M’ at the points (h, 0, —f) and 

(h’, 0, —f’) respectively. The surface value of ¢ is now given by (16) with 
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x — hinstead of x, together with a similar expression in M’ and « — h’. Taking 

the real part we have 

es) 
ee cal se a0| cos (ky sin 0) 

16 daa » (Kk — Ky sec? 0)? + pu? sec? 0 
Pe dk, 

P = wsec 0[Me~“! cos {« (x — h) cos 0} + M’e~*!" cos {k (x — h’) cos 0}] 

— (k—ky sec? 0) [Me~“! sin {x (z—h) cos 0}+M’e—"" sin {x (c—h’) cos }] 

(24) 

There is a similar expression for the surface value of 0¢/0z. We now write both 

these in the form (18), omitting terms which from symmetry give zero when 

integrated with respect to 0. We find again that we have only to form the 

quantity F,G, + F,G, and that this simplifies considerably ; the wave resist- 

ance, after this reduction, is given by 

nea I6exya | do) “ee {« (h—h’) cos 6} dc 
0 0 0 (k—Ky sec? 0)?-+ uy? sec? 0 

mf 9 2 9 ’ 2, —_ 169% | [M2 e7 2Kof sec t) +M’” e7 2kof sec? @ 

0 

+ Q2MM’e~"(F47) sec* ® cos fi, (h — h’) sec O}] sec Od0. (25) 

The first two terms give the resistance due to the two doublets separately, 

while the third term represents the interference effects. This expression was 

obtained formerly from the analogy between the waves produced by a sub- 

merged sphere and those due to a certain surface distribution of pressure ; it 

was then generalised for any distribution of horizontal doublets in the vertical 

plane y=0.* The method given here can also obviously be extended by 

integration for any such continuous distribution, and confirms the general 

expression used in previous calculations; if M (h, f) is the moment per unit 

area at the point (h, 0, —f), then (25) generalises to give 

R= Were? | df | ar’ | a dh’ | eM (hy f) MW, f”) x 
0 0 J-o Jw 0 

e Ko (F+F') 80" 8 cos {icy (h — h’) sec 8} sec® Od. (26) 

General Distribution. 

5. We can use the same method for doublets with their axes in any directions, 

for we can always obtain the surface values of ¢ and 0¢/0z in the form (20) 

and so can integrate over the surface by means of (24). Begining with a single 

* “Roy. Soc. Proc.,’ A, vol. 95, p. 363 (1919) ; also A, vol. 108, p. 78 (1925). 
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doublet at the point (0, 0, —f), let the direction cosines of its axis be (l, m, 1). 

By the same process as for the horizontal doublet in (16) and (17), the surface 

values of ¢ and 0¢/dz are found to be 

ee am d6 i (il cos 8+ im sin 6 — n) sec? 6 Ort 

Tw bee 0 K — Ky Sec” 0 + ip sec 0 

i Ay sof siiands manna a 
with Q = ens/ tie (eens ety sino), 

With the same notation as before, 

F, = ky (ul — n (k — ky sec? 6)} D sec? 0, 

F, = — ky {un sec 0 +1 (K — ky sec? 8) cos 6} D sec? 0, 

Fy = —kym (k — ky sec? 0) D sin 0 sec? 0, 

F, =—«yumD sin 0 sec? 0, 

G, = k[wk, 1 sec? 0 — nk (K — Ky sec? 8) + p? sec? 0}] D, 

G, = — x[I {« (« — Ky sec? 0) + p? sec? 0} cos 0+ pny sec? 0] D, 

G; = — xm {k (K — ky sec? 8) + p? sec? 6} D sin 8, 

G, =— wm«,xD sin 0 sec? 0, 

D = (M/r) e“/{(x — xy sec? 0)? + pu? sec? 6}. (28) 

We find that & FG simplifies very much even if we take the expressions as they 

stand ; since we are only concerned ultimately with uw zero, we could further 

simplify the work by omitting superfluous terms. The expression for R 

reduces to the limit of an integral of the same type as in (23), and the result is 

7/2 é 
1 16rpxp tM] (2 cos? 6 + m? sin? @ + n2) e~ *xoF 8°°8 sec’ 8d0 

0 

<= Oper iO o [p [Ko (@) (1 4 =| K, (a)} 

)Ke @x (1 a a a =) K, (@)} | (29) 
als 

where « = ky f = gf/c?. 

6. The only further stage to which we need carry the calculation is for two 

doublets in any positions: M at the point (h, &, — f) with its axis in the direction 
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(1, m, n), and M’ at (h’, kh’, —f’) in the direction (I’, m’, n’). We have simply 

to put the surface values of ¢ and 0¢/0z in the standard form, and evaluate 

the quantity XFG. The reduction need not be reproduced here; omitting 

terms in p. which make no contribution in the limit, we obtain 

TD EG . {( — Ky sec? 0)? + pu? sec? O}/icyx? sec? 0 

= [(l cos 8 sin P cos Q + msin 6 cos P sin Q — n cos P cos Q) Me“! 

+ (I cos 0 sin P’ cos Q’ + m’ sin 0 cos P’ sin Q’ — n cos P’ cos Q’) Me“ "2 

+ [(lcos 8 cos P cos Q — m sin 0 sin P sin Q +n sin P cos Q) Me7** 

-+ (U’ cos 6 cos P’ cos Q’— m’ sin 6 sin P’ sin Q’ +n’ sin P’ cos Q’) M’e~ "2 

+ [(L cos 0 sin P sin Q — m sin 0 sin 0 cos P cos Q — ncos P sin Q) Me~*! 

+ (I' cos 6 sin P’ sin Q’— m’ sin 0 cos P’ cos Q’— n’ cos P’ sin Q’) M’e~*F'2 

+ [(lcos 6 cos P sin Q + m sin 0 sin P cos Q + sin P sin Q) Me~*f 

+ (V’ cos 6 cos P’ sin Q’+ m’ sin 6 sin P’ cos Q’+-n’ sin P’ sin Q’) M’e~"F' 2, 

(30) 

where P = kh cos 0, Q = «ck sin 0, and similarly P’ and Q’. Carrying out the 

rest of the calculation for R, the wave resistance is given by 
1/2 ; 

R= 16px! | [iw cos” § + m? sin? 6 + n2) M2e~ of sect 6 
0 

++ (I? cos? 8 + m/’? sin? 6 + n’2) M’2e~2xoF’ sect é 

+ 2 {(ll’ cos? 8 + mm’ sin? 0 + nn’) cos A cos B 

— (Im’ + I’m) sin 6 cos 0 sin A sin B + (xm’ —n’m) sin 0 cos A sin B 

+ (nl’ — n'l) cos 8 sin A cos B} MM’e~" (+4) sec® ‘| sec’ 0d0, (31) 

where A = ky (h — h’) sec 0, B = ky (k — k’) sin 0 sec? 0. The various terms 

represent the contributions of the three components of each doublet and their 

mutual interference in pairs. 

Water of Finite Depth. 

7. For water of finite depth h, we shall consider only the simplest case of a 

horizontal doublet of moment M at depth f. It is clear that the same surface 

integral can be used for evaluating the wave resistance. 

We now assume the velocity potential in the form 

= —F| oe 0 a0 | {e-*f 4 eR ennetir (x cos O-+Y SiN 8) 1 dye 
ate J) — 0 

+ | cos a0 | F (0, «) cosh « (2 + h) ef (© 008 OY 8i0 9) 1. dye, (32) 
0 
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This satisfies the condition d¢/dz = 0 at z = — h; we note that the first term 

represents the original doublet and its image in the bed im an analytical form 

valid for z+ f > 0, and therefore suitable for applying the boundary con- 

dition (2) at the free surface. This yields 

2e—*" cosh « (h — f) Kk + kK, sec? 0 + ip sec 8 
F (0 = EE Ne, ee ee, (CB 

(8, ) cosh Kh kK — Ky sec? § tanh xh + 2p sec 8 (Se) 

consequently the required surface values are given by the real parts of 

aes a a a0 e—*" cosh {«(—f)} (+tanh + £)) ice. g 
Ky 

Te 0 K — Ky Sec” 6 tanh ch +i sec 0 Su 

hee) e— "cosh {« (h — f)} (1 + tanh ch) (+ tp sec 8) ies ede, (34) 

0 K — Ky sec? @ tanh kh + iu sec 0 

where o = x cos 0+ ysin 0. 

Comparing these with the corresponding values for deep water given in (16) 

and (17), we can write down the expression for the wave resistance as 

: pr ”8e-2 xh cosh2{x(h—f)} (1+tanh Kh)? R = Lim 160x,M2 10) Siete LCOSMENS ze sa sta aC) 
n> 0 ao “|, Jo © (k—ko sec? 6 tanh xh)?2+ 2 sec? 0 

(35) 

There are two points to notice in evaluating this limit. The result is only 

different from zero when 
Kk — kK, sec? 0 tanh kh = 0 (36) 

has a real positive root ; and this occurs only for «gh sec? 06> 1. Further we 

must introduce in the denominator d.(« — ky sec? 0 tanh xh) /dx. We may sum 

up the result in this form 

7/2 «3e—-2«Kh cosh2{x(h—f)} (1+tanh xh)? 

& 1—xoh sec? 6 sech?2 kh cosh 6 dé, (37) R= 6rpyM? | 

where « is the positive root of (386); further, the lower limit 0p, is given by 

OQ, =O, ror p>, or & <a, 

6, = are cos +/ (kh), for c?> gh. 

We may note that the change in the lower limit occurs at the so-called critical 

velocity ~/ (gh) for the given depth. From (37), R may be graphed as a function 

of the velocity for various ratios of f to h; the calculations may be carried 

out by numerical and graphical methods. A similar expression in the case of 

a certain distribution of surface pressure was examined in detail in a previous 

paper,* and it may be anticipated that (37) would give somewhat similar 

curves. 

* “ Roy. Soc. Proc.,’ A, vol. 100, p. 503 (1922). 
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The Wave Pattern of a Doublet in a Stream. 

By T. H. Havetock, F.R.S. 

(Received September 18, 1928.) 

1. The following paper is a study of the surface waves caused by a doublet 

in a uniform stream, and in particular the variation in the pattern with the 

velocity of the stream or the depth of the doublet. In most recent work on 

this subject attention has been directed more to the wave resistance, which 

can be evaluated with less difficulty than is involved in a detailed study of the 

waves ; in fact, it would seem that it is not necessary for that purpose to know 

the surface elevation completely, but only certain significant terms at large 

distances from the disturbance. Recent experimental work has shown con- 

siderable agreement between theoretical expressions for wave resistance and 

results for ship models of simple form, and attempts have been made at a 

similar comparison for the surface elevation in the neighbourhood of the ship. 

In the latter respect it may be necessary to examine expressions for the surface 

elevation with more care, as they are not quite determinate ; any suitable 

free disturbance may be superposed upon the forced waves. For instance, it 

is well known that in a frictionless liquid a possible solution is one which gives 

waves in advance as well as in the rear of the ship, and the practical solution 

is obtained by superposing free waves which annul those in advance, or by some 

equivalent artifice. This process is simple and definite for an ideai point 

disturbance, but for a body of finite size or a distributed disturbance the 

complete surface elevation in the neighbourhood of the body requires more 

careful specification as regards the local part due to each element. It 

had been intended to consider some expressions specially from this point of 

view, but as the matter stands at present it would entail a very great amount 

of numerical calculation, and the present paper is limited to a much simpler 

problem although also involving considerable computation. 

A horizontal doublet of given moment is at a depth f below the surface of 

a stream of velocity ¢; the surface effect may be described as a local dis- 

turbance symmetrical fore and aft of the doublet together with waves to the 

rear. Two points are made in the following work. One is the variation of the 

local disturbance with the depth of the doublet, or rather with its relation to 

the velocity. Roughly, it may be said that the local surface effect changes 

from a depression to an elevation at a certain speed, which we might have 
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anticipated, to be somewhere about the speed +/(gf). A line doublet is first 

examined, and the surface elevation immediately over the doublet is calcu- 

lated ; it is found to be zero at approximately a speed 0-86 1/(gf). To illus- 

trate the difference for speeds greater or less than this value, curves are shown 

in fig. 1 for the complete surface elevation when gf/c? has the values 4 and 0-5. 

A three-dimensional doublet is then considered and a similar calculation for 

the surface elevation immediately over the doublet gives a critical speed of 

about 0-84 +/(gf). 

The second point is the variation of the wave pattern. We may compare 

it with the pattern due to an ideal point disturbance of the surface of the 

stream. In that case the approximate evaluation of the integrals by the 

method of stationary phase gives the system of transverse and diverging waves 

established in the rear. But in our case there is a variable amplitude factor for 

the constituent harmonic terms of the integrals, and we notice that the velocity 

/(gf) has here also a special significance ; for the amplitude factor itself 

possesses an additional stationary value, a maximum, when the velocity 

exceeds 1/(gf). The difference this makes in the wave pattern is examined ; 

roughly, at lower speeds the pattern consists chiefly of transverse waves, while 

at higher speeds the diverging waves become of increasing relative importance. 

A direct numerical study has been made of the integral for this part of the 

surface elevation for two values of gf/c?, namely, 4 and 0-5; graphs are given 

in figs. 3 and 4 for the surface elevation along various radial lines from the 

origin, including some outside the limits of the ideal wave pattern. 

2. Take Ox in the undisturbed surface of the stream, and Oy vertically 

upwards, and let the velocity of the stream be c in the negative direction of Oz. 

Let there be a two-dimensional horizontal doublet of moment M at the point 

(0, —f). The solution of the problem is familiar as the first approximation for 

the effect of a submerged cylinder of radius a, if we take M = ca?. We quote 

here the complete expression for the surface elevation 1 in the form used in 

previous calculations* 

ny 2Mf 29M. [ m cos mf — ky sin mf ,—-me din, (1) 

eeepc Jo mBE a? 
for z > 0, and 

9 aD 28 . a 

xa aM - + 2a | mM COs mf oe mf = dm 

c (a? + f?) c Jo me + Ko 

+ (4 pM ic) e~% sin xyz, (2) 
for x < 0, with ky = g/c’. 

* «Roy. Soc. Proc.,’ A, vol, 115, p. 271 (1927). 
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The last term in (2) gives the regular waves to the rear, and the remaining 

terms the local disturbance which is symmetrical before and behind the origin. 

The integral in (1) is the real part of 

2 4 (a+ipiu 

| Ee is (3) 
o ute 

where « =xkyr, 8 =«x,f. Asymptotic expansions may be obtained for large 

values of the parameters, or the integral may easily be evaluated directly by 

numerical methods when « is not small. For small or moderate values of « 

and (, (3) may be calculated from 

— (A + 7B) e 8, 

A=y+lor+% i ; cos 28, 
1n.n! 

ee ee Ge a ; sin n0, 
1Un.N: 

r—(e2-+ 2) tanO@=a/8, y= 0-5772. (4) 

Consider the surface elevation at the origin (r = 0). Since we have 

“wcos Bu — sin Bu 7 8 1 (eB 5 [, 1 + uv c a 

for 8 > 0, where li is the logarithmic integral, we have at the origin 

_ 2M a a {1 — Be-* li (e*)}. (6) 

Using tables of these functions, we find that 7 is zero when 8 is approximately 

1-35, or when c = 0-864/(gf); when c is less, the value of (6) is negative, 

while at greater speeds it is positive. To illustrate this point, the surface 

elevation has heen calculated from the complete expressions (1) and (2) for 

two different cases, «9f—=4 and x)f= 0-5. The graphs are shown in 

fig. 1, A being for the smaller value of xf and B for the larger. 

The ordinates are to the same scale assuming M and f constant and c to be 

the variable ; the abscisse are in wave-lengths, or more strictly the values of 

Kot. 

3. Consider now the three-dimensional problem. Take Ox and Oy in the 

surface of the stream, the current being in the negative direction of Oz and 

take Oz vertically upwards. lor a horizontal doublet of moment M at the 
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Fig. 1. 

point (0, 0, —f), we take the velocity potential from a previous paper in the 

form* 

¢ = cr al i Ke" @ +N + to cos § dO de 
28 | ace da 

=/ | KF (0, «) e-*F- 2) + *? cos 0 dO di. 
4T J—3r/0 

with 
F (0 ro) es A Bay 58S? Se UB BR 

K — ky sec? 8 + iu sec 0’ 

o=azxcos f+ ysin 0. (7) 

The real part of the expression is to be taken, and further the limiting value 

as u> 0. The surface elevation is obtained from 

0 _ od 
Oz Oz 

After some reduction, ¢ is obtained in the form 

2M f kK oM | am 5 ie { Cina SL 6d0 SEEN Ts Sara 
: c (a? + y? + f?)%? “ WO sh oi \, | — ky sec? @ + ip sec 0 

ene | se 

Se er cdicn, 4(8) 
K — Ky Sec? 0 — iu sec 8] 

Transforming the integral with respect to « in (8), and taking the limiting 

value, we obtain 
i 2) . 

kK, sec? 8 cos m msin mf — 
2 | Ko Sect 0 cos mf + m sin mf , z= mdm, for o > 0; (9) 

0 m* + K,2 sect 0 

* © Roy. Soc. Proc.,’ A, vol. 118, p. 28 (1928). 
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4mk, sec? § e~ f°"? sin (kya sec? 6) 

2 
+ 2 Se e"= mdm, fora <0. (10) 

0 

We have now to integrate with respect to 0, subject to the conditions in (9) 

and (10). The form of the surface is symmetrical with respect to Oz, so we 

may write down only the expressions for y positive ; and we shall put 

x=rcos0’, y=rsin &. (11) 

We find that the value of ¢ can be given by one expression, valid for0< 0’ <n, 

namely, 

ae 2M 

e+ fe 
aL 2M (e sec? 0.40 I Ky sec? 8 cos mf + m sin mf e—m7 008 (6) | an dim 

TC eae m? +- Ko% sect 0 

2 —in 

a sot sect Qe—"f"? sin {gr cos (8 — 8’) sec? 6} dO. (12) 
Cc in 

This expression is exact, apart from the usual limitation that, at the surface 

of the stream, we neglect the squares of the additional fluid velocities. 

4. The first two terms in (12) represent the local effect which is only of 

importance in the neighbourhood of the origin. A few preliminary calculations 

show that, as in the two-dimensional case, it changes from a depression to an 

elevation about the value x,f—=1. Considering the elevation at the origin, 

we have from (12) with r = 0, 

2M , 4 ir . i 
Co = of =f = =|. sec? 0d0 (, ee du, (13) 

where p = kof sec? 0 = 6 sec? 0. P 

The integration with respect to w can be expressed in terms of the logarithmic 

integral, and we obtain ane 

aa ane i {1 — pe? li(e®)} a6 |, (14) 

The integral in (14) was evaluated approximately for certain values of kof 

ranging between 1 and 2. The integrand was calculated in each case for a 

sufficient number of values of p and was then graphed on a base of 0; the 

value was found by taking values from the graph and using Simpson’s rule. 

In this way it was estimated that ¢, is zero at about «jf = 1-4, 

or ¢ = 0-84y/(gf). It was also verified that at lower speeds C, is negative, 
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and at higher speeds positive. For comparison of the maximum local effect 

with the rest of the surface elevation in two cases discussed later, it may be 

noted that 
rgt? fC) /4M = — 1-346, for cof = 4 

= -+ 0-860, for «of = 0-5. (15) 

The local effect at points other than the origin was not calculated, although 

rough estimates were made for the central line, 6’ = 0, from (12) to verify 

that it falls off in much the same way as in the two-dimensional case ; for this 

purpose the second term in (12) was put into the form 

(dicgM/xcf) i, J sec? 6 dO, (16) 

where 
“9 COS U+ USIN U _ gx 

J =( can oar we ea ttl (BP) yy du 

‘3 z — pe? [P cos {ax/(p/8)} — Q sin {ax/(p/8)}1, 

n 

s 2 LB ap a NOS 9 ar pee COS 

Cc) °" x é 

QB ea me a a (17) 

with = p+ po2/B, tang =aJ,/(Bp), «= Kor, p=Kofsec?®, B= kof. 

5. Consider now the third term in (12). For computation, we alter the form 

slightly. We take 0’ = x — ¢, so that ¢ is the angle the radius vector makes 

with the negative axis of #, and further we put 

= cot ¢; t = tan 0. (18) 

Then this part of the surface elevation, which we may denote by ¢ — @ is 

given by 

7 ae 4ieg°M =f 2) o—Bl at , 2 12h 
Ghent Gtae br son te (1 + #) e~** sin [a (¢’ — t) (1 + @)/(1 + ¢?)}) dt. 

(19) 

In this form «, or xr, is a positive quantity, r being the distance from the 

origin. The axis of z in front of the disturbance is given by t’ = — , and 

(19) is then zero; for the axis of « in the rear of the origin t’ =-++ ©. The 

usual first approximation to the integral in (19) consists in assuming « large 

enough so that the only appreciable contributions come from the groups of 

terms near the positions of stationary phase of the harmonic constituents ; 

this leads to the familiar pattern of transverse and diverging waves contained 

within radial lines making angles of about 19° 26’ on either side of the negative 
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axis of a, or lines for which ¢’ = + 2\/2. Within the range © > t > 21/2, 

there are two values of ¢ for which the phase is stationary, namely, the roots of 

2 —tt+1=0, (20) 

the smaller root corresponding to the transverse wave and the larger to the 

diverging wave at each point. In the elementary ideal case the constituent 

harmonic waves have equal amplitudes, but in (19) we have the amplitude 

factor (1 + #)e-**. If 8 > 1, this function has a maximum at t = 0, and 

diminishes steadily to zero as ¢ increases. But if 8 <1, there is a minimum 

att = 0 anda maximum at t = {(1 — @)/@}!. We may expect then a difference 

in the wave pattern according as c? is greater or less than gf. When 8> 1 

and « has moderate values, the main part of (19) comes from small values of ¢ ; 

further, when « is large and the typical wave pattern should be developed, 

we see that the diverging waves will be relatively small. On the other hand, 

when 8 <1, there is increasing importance of the diverging waves; and in 

particular, there will be a value of ¢’, that is a certain radial line, for which 

the maximum of the amplitude factor coincides with the greater root of (20) 

for which the phase is stationary. As we are not calculating the wave pattern 

at large distances we need not put down the general first approximations to 

(19) by the stationary phase method ; we may, however, note the particular 

cases for t’ = oo and t’ = 24/2, that is for radial lines along the rearward axis 

and along the line of cusps of the so-called isophasal lines. For these cases 

(19) gives, by the usual methods, 

24} 4.°M 
¢-G=-— Gaye te e tof cos ( Kol" —5), 

for t’ = o, and 
9393 2 

C=G== Eco AN eet sin (heygr/3), (21) 
0 

for t’ = 24/2. We note here the additional factor e~*-/ in the second case, 

so far as variation of the amplitude with the depth is concerned ; we see that 

the relative prominence of the so-called cusp waves is only a feature of the 

limiting case of a point surface disturbance. 

6. Returning to the exact integral (19) for this part of the surface elevation, 

it seemed of interest to make some numerical calculations directly from the 

integral for points near to the origin, or for moderate values of «. Instead of 

following the isophasal lines, which are not significant in this region, we have 
calculated the surface elevation from (19) along certain radial lines. We take 

in turn the values ¢’ = 00, 3, 2\/2, 2, 1 and zero; these are shown in fig. 2 

as A, B, C, D, E and F respectively. 
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For a given value of ¢’, the value of (19) was found for about a dozen values 

of «, so that the graph could be obtained with sufficient accuracy for our 

Iie. 2. 

purpose over a range of «, that is of «gr, extending from 0 to 18. In each case 

the value of (19) was obtained by evaluating the integrand at intervals of 0-1 

for ¢ for a sufficient range of ¢ until, by reason of the exponential factor, the 

remaining terms became negligible. Sets of calculations were made for two 

values of @, that is of kof, namely, 4:0 and 0-5; in the latter case it was 

necessary to take 40 or more values of the integrand in each case, but a smaller 

number sufficed in the former case. The value of the integral was obtamed 

finally by using Simpson’s rule. The collected results are shown in the graphs 

of figs. 3 and 4, the curves being lettered in agreement with the radial lines 

of fig. 2. 

Fia. 3. 

Fig. 3 is for «f= 4, or c= 4)/(qf). Consider first the radial lines within 

the limits of the ideal wave pattern, namely, A, B, C. In this case, though 

B and C were calculated separately, there was not sufficient difference to show 

on the graph without confusion and so B has been omitted ; A is the central 

line and C, at an angle of 19° 26’, would be the cusp line of the simple theory. 

We may picture the waves in the present case as chiefly transverse waves, 
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slightly curved, and diminishing in height from the central line outwards. 

The remaining curves are for radial lines outside the usual pattern and show 

how the wave disturbance is continued in this region. D is for an angle of 

about 26° 26’ with the rearward central line; it shows an appreciable wave 

effect, but there are indications that it decreases more rapidly with distance 

from the origin than for the previous curves. A similar effect, nore pronounced, 

is shown in E and F, for radial lines at 45° and 90° respectively. 

Fia. 4. 

Fig. 4 is for «gf=0-5, or c=+/(2qf). Here, on account of the labour 

involved in the calculations, only three curves have been drawn; but they 

bring out the points made in the general discussion. The amplitude along 

the cusp line C is now greater than along the central line A. Moreover, the 

greatest amplitude is along the line B, inside the cusp line C, and shows evidence 

of superimposed diverging waves. The radial line B is given by t’ = 3. Now 

for xf = @ = 4, the maximum of the amplitude factor in (19) occurs at ¢ = 1. 

But from (20), when t’ = 3 the positions of stationary phase occur at t = 4 

and t=1; the latter coincides with the maximum of the amplitude factor 

and so in this case we should expect a prominent wave along the radial line 

t’ = 3, or the line B in the diagram. 

A comparison of the curves in figs. 3 and 4 enables us to form some picture 

of the wave disturbance due to the doublet and the changes that occur as the 

doublet is brought nearer the surface ; in the limit, as far as the wave pattern 

is concerned, the effect would approximate to the ideal case of a concentrated 

point disturbance at the surface. 
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[Reprinted from the PROCEEDINGS OF THE ROYAL Soctery, A, Vol. 122.] 

The Vertical Force on a Cylinder Submerged in a Uniform Stream. 

By T. H. Havetocg, F.R.S. 

(Received November 28, 1928.) 

1. The horizontal force on a circular cylinder immersed in a stream is 
familiar as an example of wave resistance. The following note supplies a 
similar calculation for the resultant vertical force. The problem was sug- 
gested in a consideration of the forces on a floating body in motion, the hori- 
zontal and vertical forces and the turning moment ; but the case of a partially 
immersed body presents great difficulties. It seemed, however, of sufficient 
interest to compare the resultant horizontal and vertical forces for a simple 
case of complete immersion for which the calculations can be carried out. 
The horizontal force, or wave resistance, has usually been obtained indirectly 
from considerations of energy, but a different method is adopted here for both 
components of force and the turning moment. In a former paper the method 
of successive images was applied to the problem of the circular cylinder, taking 
images alternately in the surface of the cylinder and in the free surface of the 
stream. Using these results to the required stage of approximation, the com- 
plete force on the cylinder is now obtained as the resultant of forces between 
the sources and sinks within the cylinder and those external to it. The same 
method can be applied to any submerged body for which the image sytems are 
known, and the resultant force and couple calculated in the same manner. 

The proposition used in this method is that for a body in a fluid, the motion 
of which is due to given sources and sinks, the resultant force and couple on 
the body are the same as if the sources and their images attract in pairs accord- 
ing to a simple law of force, inverse distance for the two-dimensional case and 
inverse square of the distance for point sources. This fairly obvious proposition 
follows directly from a contour integration in the two-dimensional case ; and, 
in view of the application, the extension is given in § 2 when the flow is due to 
a distribution of doublets. In §3 the horizontal and vertical force on a 
circular cylinder are obtained by this method, the former agreeing with the 
usual expression for the wave resistance. The different variation of the two 
components with velocity is of interest, and the expressions are graphed on the 
same scale. The additional vertical force due to velocity changes direction at 
a certain speed, and is clearly associated more with the surface elevation 
immediately over the centre of the cylinder. In § 4 reference is made to the 
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couple on the cylinder. This should, of course, be zero for a complete solution ; 

it is verified that the method used here gives zero moment up to the stage of 

approximation in terms of the ratio of the radius of the cylinder to the depth 

of its centre. 

2. Consider steady two-dimensional flow of a liquid of density p past a 

solid body, the motion being irrotational and there being no field of force. The 

motion being specified in the usual manner by a function w of the complex 

variable x + iy, the resultant force (X, Y) on the solid and the moment M 

about the origin are given by 

AY ce Sad () ih, (1) 
a 

C 2 

M = —1e| (2) ih, (2) 

where in (2) the real part is to be taken. In each case the integration is taken 

round the contour of the rigid body, or indeed round any contour enclosing 

the body but excluding any external sources and sinks. 

Now suppose the motion to be given by 

w = — Xm, log (z — z,) — um, log (z — z,), (3) 

where the suffix s refers to the given distribution in the liquid, and r to the 

image system within the surface of the body, m, and m, being real. 

Forming (dw/dz)*, we see that this quantity has simple poles at the points 

z, within the contour of integration ; and we obtain at once from the theory 

of residues 

ON ee aso ee) (4) 
Z—Z 

T <8 

the summation extending over the external and internal sources taken in 

pairs. Hence we obtain 

X = 2r0 Lm,m, (x, — 2,)/R,.”, 

Y = 29 m,n, (Ys — y;)[R,<?. (5) 

It follows that the resultant force is the same as if each pair of external and 

internal sources attracted each other with a force 2mpm,m,/R,,, where R,, 

is the distance between them. 

It may easily be verified in the same way from (2) that the moment M is 

accounted for by the same forces acting at the internal sources. It is con- 

yenient to have a similar analysis for doublets, If M is the moment of a 
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doublet making an angle « with the axis of 7, we have with the same notation 

as before, 

y Met 1» Met (6) 

Forming (dw/dz)? we see that again the only terms which give any contribution 

to the integral (1) are the product terms in 7 and s, and for a typical term we 

have 

dz drt 

| (z— 2,)? (z aad z,)° OR , a ye @ 

Thus we obtain 
Ppt (ar+as) 

BNC ee MMei("* 8 X—1 Te Dy Gar (8) 

and the contribution to the total force due to M, and M, is 

xX, = — 470MM, cos (a, + a, — 36,,) /Rre?, 

Woy = 4roM,M, sin (a, ap = 30,.) /B,.3, (9) 

0,, being the angle between Oz and the vector R,, drawn from the doublet 

(r) to the doublet (s). Further, calculating the total moment M from (2), 

the product terms M,M, are the only terms which give any value, and the 

corresponding contour integral is 

er ea ee (10) G—aFe—aP  &—*) 
Hence we obtain 

M = — 2notuM,Me “*™) (z, + 2,) (%, — 2), (11) 

the real part to be taken. 

On reduction it is seen that this consists of the sum of the moments of the 

forces given by (9) acting at the internal doublets, together with a couple for 

each pair of internal and external doublets of amount 

2neM,M, sin (a, + «, — 26,,) . /R,.”. (12) 

The contribution to the forces and moment on the body when the external 

field includes also a uniform flow can easily be obtained in the same manner. 

3. We now apply these expressions to a circular cylinder of radius a sub- 

mergedinauniformstream. Take Oz in the undisturbed surface of the stream. 

Oy vertically upwards ; and let the stream velocity be cin the negative direction 

of Ox. Let the centre C of the circle be at the point (0, —f). Then the image 

of the stream in the circle is a horizontal doublet at C of moment ca. The 
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image system of this doublet in the free surface of the stream consists of a 

horizontal doublet of moment —ca? at C, the image point (0, f), together with 

a continuous line distribution of doublets along a horizontal line through C, 

in the negative direction of Ox. At a point (—p, f) on this line the moment 

of an elementary doublet is 2«,ca*dp, where xy =g/c?, and the axis of the 

doublet makes an angle x)p — 47 with the positive direction of Ox.* We may 

stop at this stage meantime. 

In the notation of the previous section the external system (s) consists of 

the uniform stream and the image system just specified ; the internal system 

(r) is the doublet ca* at the point (0, —f). 

For the wave resistance R, we have from (9) 

a ial * cos (kop — $x — 36) 
R = —X = 8rpx,c?a* if (2 af dp, (13) 

sin 0 = 2f/(p? + 4f?)?; - cos 0 = — p/(p? + 4f?)?. 
where 

This gives 

R= Sica | ee de, ag 
0 (sr Ee 

“p sin Kop + 2f cos [ee 
0 

D4 af? (15) 

by differentiating twice with respect to f; and we obtain 

R = 4r2gon,2ate 2, (16) 

in agreement with other methods. 

Turning to the vertical force, if we calculate it from the expressions in (9) 

we shall obtain the hydrodynamic part depending upon the velocity. There 

is also the hydrostatic part gpxa*, arising from the term gpy in the expression 

for the pressure ; and in addition there is the weight of the cylinder itself. 

We may assume the cylinder to be of the same density as the liquid, and then 

the calculation will give the total vertical force. 

Measuring Y vertically upwards, the contribution of the two finite doublets 

at C and C, is, from (9), 

—mpc?a4/2f3, (17) 

*‘Roy. Soc. Proc.,’ A, vol. 115, p. 271 (1927). 
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The part arising from the interaction of the line distribution of doublets and 

the doublet at C is 

Empxyeat |S a Faye i) dp, (18) 
0 

which reduces to 
— 12f?) cos cop — 2f (3p? — 4 f?) sin kyp Brora [ pea Meio eg eS Ee ESI eG as 91 (19) 

: (Par ary 
This. integral may be evaluated by differentiating twice with respect to f the 

integral 
fs Pp COS Kop — 2f sin Kop dp = — eS Ii (e? * °F), (20) 
Jo jiP ap ee 

where Ji is the logarithmic integral. 

Collecting the terms from (17) and (19) we obtain finally 
Zt. 

Y= — {1 ++ QKof | 4x2 f? ram Srp em li (Gey, (21) 

This vertical force changes from upwards to downwards at a certain velocity. 

For when c is small, that is cof large, using the asymptotic expansion of the 

logarithmic integral we find that Y approximates to mec?a*/2f% ; on the other 

hand, when c is large, Y is approximately —pca*/2f%. The value of (21) 

can be calculated readily from tables and it is of interest to compare the 

relative values of R and Y and their variation with velocity. 

The figure shows R and Y graphed on the same scale on a base of c/V (gf). 

R is very small at low velocities and then increases rapidly to its maximum at 
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about ¢ = 4/(gf). On the other hand Y is relatively large at lower velocities, 

and changes sign at about c = 0-84 4/(gf). The wave resistance arises from 

the flow of energy in the regular waves to the rear of the cylinder, while the 

vertical force is associated more with the surface elevation near the cylinder. 

The surface elevation immediately above the centre of the cylinder is given by* 

n = (2a*/f) {1 — ko feos li (e%S) }, (22) 

and for comparison this is shown on the figure with an arbitrary scale for the 

ordinates. Doubtless the variation in the vertical force with the velocity 

is connected with the mean curvature of the lines of flow in the neighbourhood 

of the cylinder. It may be noted that the usual approximation for the pressure 

condition at the free surface involves neglecting the square of the slope of the 

surface ; this would not affect the present approximation but would come into 

the next stage involving higher powers of the ratio a/f. 

4. Obviously in a complete solution the fluid pressures on the cylinder 

cannot give rise to any couple. As the method of successive images amounts 

to an expansion of the solution in ascending powers of a/f, it is worth while 

verifying that the couple is zero at each stage of the approximation. With the 

images specified up to the present the couple comes from the interaction of the 

doublet at C with the line distribution to the rear of C,. Using the result (12), 

this gives a moment 1 
Kop — ae = 20) 

4akopc?a* dp, (23) 

sin ( 
i 

0 
p? + 4f? 

which, on substituting for 0, gives 

tnnapcta| Apf sin Kop — (p2 — 4f2) cos Kop oh (24) 
( ° 

0 (p? i; 47°)? 

This can be evaluated, and its value is not zero. But it can be seen that we 

shall get a contribution of the same order, in the radius a, from the next stage 

of successive images. The next set of images is internal to the cylinder and 

consists of a horizontal doublet of moment —ca*/4f? at the inverse point C, 

whose co-ordinates are (0, —f-+ a?/2f), together with a continuous distribu- 

tion of doublets on a semi-circle described on CC, as diameter. At a point 

on this semi-circle whose co-ordinates are 

tg mt fie 

joe ae Ay [Dar Ayr 

*Roy. Soc. Proc.,’ A, vol. 121, p. 517 (1928). 
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the moment of an elementary doublet is 2xoca*dp/(p? + 4/7), and its axis 

makes with Ow an angle 
2 tan! (p/2f) — kop + 4x. 

Now at this stage the only additional terms of order a* for the turning moment 

arise from the interaction of the external uniform stream and the semi-circular 

distribution of doublets just described. 

It can easily be seen that the amount due to the uniform stream and an 

internal doublet of moment M, at an angle «, to Ox is 

— 2nceM, sin o,. 

Therefore the additional couple of the specified order is 

— 4rkoec?at |, sin {2 tan (p/2f) = kop-t0/2} 
0 P +4 Wie 

On reduction (25) comes to precisely the expression (24) with a minus sign 

dp (25) 

and therefore the couple on the cylinder is zero to the order specified. 

HARRISON AND Sons, Ltd., Printers in Ordinary to His Majesty, St. Martin’s Lane, 
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From the PBILosoPHICAL MaGazinF, vol. viii. October 1929. 

Forced Surface- Waves on Water. 
By T. H. Havetocr, F.R.S. 

Ih, ee following notes deal with some problems of forced 
waves on the surface of water, the waves being 

forced in that the normal fluid velocity has an assigned 
value at every point of a given vertical surface ; the problems 
treated here are the elementary cases when the given 
surface is an infinite plane or a circular cylinder. The 
motion of the water surface consists in general of travelling 
waves together with a local disturbance, and the type of 
solution is one which may have possible application to the 
waves produced in water by the small oscillations of a solid 
body. 

2. Consider first deep water, and take the origin in the 
free surface with Ow horizontally and Oz vertically down- 
wards. The velocity potential satisfies 

OH) ID gooenes @) on? 02 
Neglecting the square of the fluid velocity at the free 
surface, and omitting the effect of capillarity, the condition 
at the free surface is 

op dh _ aay hs 8 8 5 2 0 

and the surface elevation € is given by 

= ee 3 BAe) Rate tenant) 

For simple harmonic motion we assume a time-factor 
et, and (2) gives 

Kop + OY =0, at z=0, ies eA) 

with «9=07/g. 

Suppose now that we are also given 

= 22 26) oe, ch oO; ee aC) 

where f(z) is given for all positive values of z; and we 
require a solution of (1), (4) and (8) suitable for positive 
values of w. 
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The solution can be obtained by various methods ; for 

example, by combining suitable elementary solutions of (1) 

and (4). The usual solution for free progressive waves is 

found from 

eae aes 5 a 10 oo () 

There is also another elementary solution, 

pe ™(Kcosxz—Ky sin kz), . . « - (7) 

where « may have any real positive value. 
We can generalize these solutions by means of the 

following integral theorem, which may easily be verified : 

f= 

EP pele eee sin x2) a da 
Ke + Ko" 

fal 

MORAN IP (ah\e-Be dis 5 6 oo | @) 
0 

Here f(z) is given for all positive values of 2, and it should 
be remarked that the proof involves the Fourier integral 
theorem, and that f (z) is subject to suitable limitations. 

We may now write down a solution which satisfies the 
condition (5). It is clear that, on the forced vibrations so 
obtained, we may superpose any free oscillations for which 
0¢/Ox is zero over the plane x=; we shall choose the 
latter so that the complete solution represents waves 
travelling outwards tor large positive values of a. This 
solution is given by F 

: ane 2 
b= 2e-** sin (ot — wut) F (we "erda + moos atx 

0 

K COS KZ — Kg SIN KZ) X ( 
er tae x (kK COS Ka—Ky SIN KH) _ 

x ii \ T (@) ACE) e "de da. . (9) 

This gives a normal velocity f(z) cos ot over the plane 
a=0, and reduces to a positive wave for large positive values 
of a. The corresponding surface elevation is 

ans) 

= 2a koa b= Zoos (atx) | f (a)e-"o0 dx 
0 

as 20 A, ( \ f(a) KCOS KA Ko SINK, wot Ty. (10) 

7g Jo Jo 
Ke + Ko 

The first term of (10) is a plane progressive wave of the 
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same wave-length as the free wave of the same frequency, 
while the second term may be called the local oscillation. 

If we take f(z)=e-"*, the second term in (9) and (10) 
vanishes, and we regain the expressions for a simple 
progressive wave. 

If we take, more generally, 

VACa Nae ee, Rca wenn OLE) 

over the whole range for z, the second integral in (10) can 
be evaluated explicitly in terms of Cosine and Sine integrals, 
and we obtain 

t= 2o0A SECO) 2oA sin ot ‘6 

Ko +p " wg(ko+P) 
x [Ci(pa) cos pa —Ci(K,x) cos xv + 82( px) sin pax 

—Si(«yx) sin Koa — a (sin pe—sinkyr)]. . (12) 

As we make p smaller we approach the limiting case of 
constant normal velocity over the whole of the plane z=0. 
It is of interest to note that the amplitude of the travelling 
wave remains finite in the limit, but that the amplitude of 
the local osciliation becomes logarithmically intinite at z=0. 

3. A problem of some interest is the decay of the vertical 
oscillations of a floating body due to the propagation of 
waves outwards from it, but a direct attack upon the 
problem is difficult. We may perhaps obtain a rough 
estimate by applying the preceding analysis to a simplified 
form of the problem. Imagine a log of rectangular section 
floating in water with the sides vertical ; let b be the breadth 
and @ the depth immersed. Now suppose the log made to 
execute small vertical oscillations of amplitude a and 
frequency o. Let one of the sides of the log lie in the 
plane 2=0; then the disturbance in the water on that side 
may be regarded as due to a certain oscillating distribution 
of normal fluid velocity over the plane «=0 from z=d to 
z=o. If we make the assumption that this is of the form 

P@)GSGH oo 6 0 5. 0 (C8) 

then, from continuity of flow, we have 

2" /(e)dr=eab. oe oo G4) 
d 

Without attempting to solve the actual problem, let us 
assume 

H@QSACH a 5 2 0 0 0 (lS) 
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then from (14) we have 

Neaodypor ss 5 6 5 5 « (lb) 

From (10) we find that the amplitude of the waves 
travelling out on either side of the log would be 

2 ine) 

pay en( e-(KotP)0 dar 
g d 

o*abp 
= e 

9(%o +p) 
A large value of p would correspond to a concentration 

of the outward flow round the lower edges of the log ; 
hence this estimate gives, asan upper limit for the amplitude, 

(GUIDO oo oo (ili) 

4, If, in the general problem of §2, the normal velocity 
at «=0 is a function of y as well as of z, the solution of the 
three-dimensional motion can be obtained by an additional 
Fourier synthesis. 

Assume first that $ is proportional to cos «'(y—{), then 
the potential equation is 

Kod peeve ge. 8 o(17) 

oe A, Sie Ke’? 6=0, Pee hoey te (19) 

The time entering as a simple harmonic factor, the 
boundary condition at z=0 is given by (4). 
We have now the following elementary solutions, omitting 

the factors in y and ¢: 

haem hoz inl?) for Ke! < key ; 
2 

pe Ko —z(e%— "0"! For Kk! > Ky 5 
a 

pre Were (Kcosxz—Kysin kz). . . (20) 

The theorem (8) may be generalized, with suitable 
limitations on the function f(y, z), to 

L(y, = 

2K, . a 2 

eee “aa” aa “£0, Ble" cose’ (y—8)ae 
= \ “dal ae” dp i f (a, B) x 

(« Cos KZ — Kp Sin Kz) X 
x (« cos Ka—K, Sin Ke) 

x 
Ke + Ko" cosx’(y—8)dk'. (21) 
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Suppose that at c=0 we are given 

fo) z ot “(QE ACE 4 6 « » CD 

Then from (20) and (21) we obtain an expression for ¢> 
valid for positive values of 2, and adjusted so that it 
represents progressive waves at large values of « ; we find 

Ge “Eten | da aa{"/(, B) sin (ot —2 Va? =n) x 

x e-“*%eosKn (y= B) dk! as 2h noe cos ot a dB x 

7 os) (x? —x«'?)5 

x (6 f (a, B)e-2(©?—0?)}— Koa = (y=B) dx' a ,cosat X Ko-)* 

a i(? icf apr f(a, B)e-#+*" cos «' (y—B) 

sg MICOS eee eo SIM) 0 08 es SITES) Fa sail (95 
(x? + Ko”) (2 + «/?)h 

A particular case which would illustrate the spreading of 
plane waves emerging from a canal into an infinite sea is 
obtained by taking 

FY 2)=(gar/aje“*cosct, . . . (24) 

over the whole range for z and between the limits +b for y, 
the function being zero outside these limits for y. Substi- 
tuting in (23), the third term disappears, and also the 
integrations with respect to 8 can be effected in the 
remaining terms. We find that the surface elevation for 
this case is given by 

c— 
al sin «'b cos K’y cos ee Cay —n'?)! ee 

0 '(ko — K')a 
22 

Qua “sin «bcos Kye 2("?—"o? 
— — cos ot Sune COS ese RELY ND . (24) 

7 Ko 

Tv 

kK! («'*? — K?)2 

The form of the surface could be studied by approximate 
evaluation of these ee as in similar diffraction 
problems. 

5. We return to plane waves, and suppose now that the 
water is of finite depth A. We have the additional condition 

oe = Oi tOr GHRo 6 6 6 oo | (SS) 
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The corresponding elementary solutions are 

p=elst—Ko coshx(z—h),. . . . (26) 

where Xp is the real positive root of 

Ghayealn OCB 5 56 6 8 o (0) 
and 

OH OX-“=] O95 2 (C=) 6 > 6 ce (4) 

where « is any real positive root of 

getankhto?=0. . ... . (29) 

This equation has an infinite sequence of real roots, 
together with an imaginary root ix. We assume then the 
possibility of expanding a function f(z) in the range 
O<ezch, in the form 

f (2)=A cosh e(z—h)+=Bcosx(z—h), . (30) 

where the summation extends over the real positive roots 
of the eqnation (29). We find that the coefficients are 
given by 

4k h 

ee a ee 
ah 

A= 2Kyh-+ sinh 2xoh t) J (a) cosh Ky(a—h) da, 

4k BA 
B= spate |, fo «(a—h) da. } - (31) 

If at z=0 we are given 

2 Si ()COG 5s o 6 » (x) 

then the velocity potential for positive values of x, such 
that the motion at a distance is a plane progressive wave, 
is given by 

g=Axy* cosh x,(z—h) sin (ot ~ x2) 
+ ZBe'e-** cosx(z—h) cosat. . (33) 

Suppose, for instance, that one end of a long tank is 
made to execute simple harmonic vibrations of small 
amplitude a, then we have f(z)=oa. The values of A and B 
follow from (31), and from (33) we deduce the surface 
elevation in this case : 

2o7%a sinh 2xoh 

= gko(2Koh + sinh 2h) IS Oli) 

2o°ae-*"* sin 2eh 
— sin o> (OREO) , (34) 
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6. The same analysis may be applied to circular waves, 
and we limit consideration here to symmetry round the 
origin, The normal fluid velocity is supposed to be assigned 
over a vertical cylindrical surface ; for example, we take 

op — 5, —/ (2) cosat, for r=a. 5 0 0 (8) 

The velocity potential satisfies 

O° , 186 | 6 _ ; ar ite ae + 52 =0. o 6 o »o (6) 

The condition at the free surface is the same as before, and 
we assume the water to be deep. Elementary solutions of 
the required form are found in terms of suitable Bessel 
functions. The solution 

OaGr—owsONGap) 6 6 3 o o (a) 

represents diverging waves for large values of r ; while in 
the solution 

p=e'(k cos Kz—xkysin Kz) Ko(kr), . . (38) 

K(«r) tends exponentially to zero for large distances from 
the origin. 

Generalizing as before, we obtain the solution 

Hi) (or) (> 2a 
= 9 tat— Koz 0 0 — Koa, 1 eos eiat x p=2e Hi? (Kya) Vo f(a)e-"rdce = 

(Kk COS K2— Ky SIN K2) X 
x ue We Ko(«r) 5S (GCOS BBS HUE) Fa, (39) 

) Kai (xa) K+ Ke 

where the real part is to be taken. 
The surface elevation at a great distance from the origin 

is given by 

al 2 3 et(at—Kor-+a7) juices 

g ) Jo (Hot) =2Yo/(Ho2) Jo 

or, in real ‘eee: this gives 

G2 =2(—) f f(a@)iem wadiax 

C~ — T (a) e~*on da, (40) 
TWKor 

Jo (koa) sin (ot — —Kort| m+ 

ee a aa) eee 
Jo 2(ko@)+Yo0 2(xo@ 
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This expression might be used, as in §3, to give an 
estimate for the energy propagated outwards from a circular 
cylinder immersed to a given depth, and making small 
vertical oscillations of given frequency. 
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The Wave Resistance of a Spherord. 

By T. H. Havetocr, F.R.S8. 

(Received February 20, 1931.) 

1. A method which has been used to calculate the wave resistance of a 

submerged solid is to replace the solid by a distribution of sources and sinks, 

or of doublets, the distribution being the image system for the solid in a uniform 

stream. The cases which have been solved hitherto have been limited to 

those in which the image system is either a single doublet or a distribution of 

doublets lying in a vertical plane parallel to the direction of motion. It is 

shown here how to obtain the solution for an ellipsoid moving horizontally 

at given depth below the surface of the water, and with its axes in any assigned 

directions. The present paper deals specially with prolate and oblate spheroids 

moving end-on and broadside-on, the general case of an ellipsoid with unequal 

axes being left for a subsequent paper. 

In § 2 it is shown that the image system for an ellipsoid in a uniform stream 

is a certain surface distribution of parallel doublets over the elliptic focal 

conic, the direction of the doublets bemg in general inclined to the direction 

of motion ; if the motion is parallel to a principal axis, the doublets are in the 

same direction. For a spheroid the image system reduces to either a line 

distribution or to a surface distribution over a certain circle ; explicit expres- 

sions are given in §3 for prolate and oblate spheroids when moving either in 

the direction of the axis of symmetry or at right angles to that axis. 

The calculation of the wave resistance is considered in § 4. An expression 

has been given previously for the wave resistance associated with two doublets 

at any points in the liquid with their axes in any assigned directions ; this can 

be generalised to cover continuous line, surface or volume distributions of 

doublets. Incidentally, it is shown how by integration we may pass from 

a three-dimensional doublet, corresponding to a submerged sphere, to a two- 

dimensional doublet, corresponding to a circular cylinder. In § 5 expressions 

for the wave resistance are developed for the particular cases of moving 

spheroids of §3. In the final section these results are illustrated by numerical 

and graphical calculations for certain series of models. In each case the 

axis of the spheroid is supposed horizontal, and to make the calculations 

definite the depth of the axis is taken to be twice the radius of the central 

circular section. The models consist of a sphere, radius 6 ; an oblate spheroid 
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with semi-axis a = 46/5; and prolate spheroids with a = 56/4, 5b/2 and 5b 

respectively. Graphs are given for the variation of wave resistance with 

velocity for these five models (i) when moving in the direction of the axis of 

revolution, (li) when moving at right angles to that axis; these illustrate 

respectively the effect of increased length, and the effect of increased beam and 

area of cross-section. It is of interest to note that increase of length gives 

diminished resistance at low speeds, with a subsequent rapid increase ; while 

increasing beam in the second series gives increased resistance at all speeds. 

2. Consider the motion of a solid bounded by the. ellipsoid 

fit ee i, (1) 
in an infinite liquid, the velocity being u parallel to Oz. 

It is well known that if V is the gravitational potential of a uniform solid of 

unit density bounded by (1), then the velocity potential of the fluid motion is 

given by 
= u OV 

$ oreo = a are (2) 

where 

ie re du : = abe | sy eee (3) 
eince 

dx’ dy’ dz ve y hs 
IN SOR POT rr Gao () 

taken throughout the ellipsoid, it follows from (2) and (4) that the velocity 

potential of the fluid motion is that due to a uniform volume distribution of 

doublets throughout the ellipsoid, with their axes parallel to Ox, and of moment 

per unit volume equal to u/27(2 — a»). 

Sunilarly for motion parallel to Oy or Oz we have a like result with a corre- 

sponding quantity 6, or y taking the place of «). For motion in any other 

direction we resolve the velocity along the three axes and combine the 

component doublet systems. 

The gravitational potentials of two solid homogeneous ellipsoids, bounded 

by confocals, at any poimt external to both are proportional to their masses. 

Hence in the hydrodynamical problem we may replace the distribution of 

doublets throughout the ellipsoid (1) by a uniform distribution through any 

interior confocal, increasing the moment per unit volume by the factor 

abe/»/{(a° + 2) (6? + 2) (2 + d)}, (5) 
where 2 is the parameter of the confocal. 
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In particular, we obtain the simplest system by taking the confocal which 

reduces in the limit to the elliptic focal conic 

2 2 
Res 03 ae 

a2 — 2 62 — ¢ 1, (6) 

with a> b> c. In this case the volume distribution of doublets reduces 

to a surface distribution over the plane area bounded externally by (6). The 

moment per unit area is found by putting 42 = — c? + $ and taking limiting 

values as § +0, taking into account the factor (5) and the limiting thickness 

of the confocal at each point. We may refer to the distribution found in this 

way as the image system for an ellipsoid in a uniform stream. 

If the motion is parallel to Oz, the doublets are parallel to Ox and are 

distributed over (6) with a moment per unit area given by 

abcu (1 Mage CEy hl 2 - (1) 
= (2 on a9) (a2 =F e2)i2 (62 8 c2)1/2 a2 — c2 62 — ¢2 Z 

There are similar expressions for motion parallel to Oy, Oz with Bo, Yo 

respectively in place of ap. 

3. We shall specify now the particular results for spheroids, using the known 

values of %, Bo, Yo. We take Ox to be the axis of symmetry, with c= 6b; 

and consider first motion parallel to the axis of symmetry. 

For a prolate spheroid, the focal conic reduces to the line joining the foci 

of the generating ellipse. The image system reduces to a line distribution 

along Oz, from « = — ae to x = ae, of moment per unit length 

Au (ae? — 2°), (7) 
where 

AW} = 4e/(1 — 2) — 2 log {(1 + &)/(1 — 2} (8) 
with e? = 1 — 62/a?. 

For an oblate spheroid under the same conditions, the system is a surface 

distribution of doublets parallel to Ox, over the circle 

r= 0; yf = bee (9) 
where e’? = 1 — a?/b?; and the moment per unit area is 

Bu (b2e’2 — ye — zy, (10) 

with 

B7!=27(sin7! e'—e’ N1i—e'?). (11) 

For motion at right angles to the axis of symmetry, we take Oy as the direction 
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of motion. For a prolate spheroid the system is a line distribution along Ox 

between x = + ae, with axes parallel to Oy, and of moment per unit length 

A’u (a?e? — 2°), (12) 
where 

A’~1 = 2¢ (2c — 1)/(1 — e2) + log {(1 + e)/(1 — e)}. (13) 

For an oblate spheroid the system consists of doublets parallel to Oy, over the 
circle 

pa0; PHP aber, au) 
and of moment per unit area 

Blu (b7e — y? — 2*), (15) 
where 

Bt = nf{e (1 + ¢)/(1 — e)2 — sin“ e’}. (16) 

For e = 0, all these distributions reduce to the finite doublet at the origin 
appropriate to the motion of a sphere. 

4. Consider now the wave resistance when an ellipsoid is wholly immersed 

at some depth in water and is moving with constant horizontal velocity ; we 
obtain the first approximation for the resistance by replacing the ellipsoid 

by the image system which was discussed in the preceding section. The 
resistance is derived from the doublet system by expressions which have been 
given previously ; in particular, reference may be made to an expression for 
the wave resistance corresponding to two doublets at any points in the water 

with their axes in any given directions.* We shall not quote the general 
result, as we require here only the case in which the doublets have their axes 
parallel to the direction of motion. Take the origin O in the free surface of 

the water, Oz vertically upwards ; for a doublet of moment M at the point 

(h, k, —f) and a doublet M’ at (h’, k’, —f’), both axes being parallel to Oz, the 

direction of motion, the wave resistance is given by 

7/2 , 2 
1) 3 16 ex | {M2 e—2rof sec? 6 4 M’2 e~2kof sec? @ 

0 
ap ZN Gy DEO Gos A Cos sxe OO, (la) 

with 

Ky =9/u?; A=, (h—W) sec8; B=«,(k —K)sin 0 sec? 0. 
This can easily be extended to continuous distributions. For distributions 

* * Proc. Roy. Soc.,’ A, vol. 118, p. 32 (1928). 
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in a vertical plane parallel to the direction of motion, to which previous work 

has been limited, we have 

‘0 } ‘020 co 7/2, 

Re L6mpr! | af | af’ | dh | a | M (h, f) M(h', f’) 
0 0 — —o 0 

xX e7*o (f +f’) sec? @ cos {ko (h — h’) sec 6} sec 0 d6, (18) 

where we have taken y = 0 as the plane of distribution. This expression can 

be written as 
[2 

= lewd | (P2 + Q®) sec 6 d0, (19) 
0 

where 

Ree Oe | af {a _M (hi, ff) « en Hof see? #bicgh seo 0. (20) 
0 —o 

When the distribution is in a plane perpendicular to the direction of motion, 

say the plane x = 0, it is edsily seen that we have the same expression (19) 

for R, but now 

P aL 1 = |v {a _M (kf). Em Kof Sec? @-+ixok sin @ sec? O° (21) 

0 —o 

If the doublets are distributed along a line, the suitable forms for R may 

readily be deduced from these expressions. 

Before proceeding to apply these results to spheroids, we may notice a simple 

case of (21). The first problem in wave resistance to be solved was that of a 

two-dimensional doublet corresponding to the motion of a circular cylinder 

with its axis horizontal and moving at right angles to the axis; the next 

problem was the three-dimensional doublet for the motion of a sphere. By 

means of (19) and (21) we may pass from the second problem to the first by 

integration. 

Write down the velocity potential of a uniform distribution of three-dimen- 

sional doublets of moment M per unit length over a straight line of finite length, 

the axes of the doublets being at right angles to this line ; evaluate the expres- 

sion in the limit when the length of the distribution becomes infinite, and we 

obtain the velocity potential of a two-dimensional doublet of moment 2M. 

Consider now the expression for the wave resistance for the same process ; 

if 21 is the length of the distribution, (21) gives 

cl 

Pp + 2Q) 4 | Me —rof sec? 6+ixyk sin 6 sec* 6 dk. (22) 
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Evaluating the integral and using (19) we have 

LA pn o 2 

R= Btrpxg?ME| sin” (xgl sin 0 sec” 8)  — Prof sec? 6 JO. (23) 
0 sin? 0 cos 0 

The wave resistance for the corresponding two-dimensional doublet is for 
unit length perpendicular to the plane of motion, and should be given by 
lim (R/2l) asl > 2. From (23), this is 

Lim 3279)? M2 an sin? (qu V1 + u2/I?) eof? yw V/T 2/2 du 
l>o 0 

= 16r?oK,? M@e-7" | (24) 

and this is the known expression for the wave resistance of a two-dimensional 

doublet of the corresponding moment 2M. 

5. We proceed now to the wave resistance of a submerged spheroid, taking 
im each case the axis of the spheroid to be horizontal and at a depth f below 

the surface of the water. 

Prolate Spheroid in Direction of Axis.—From (7) and (20) we have 

(P — 1Q)/ Auer "oF see ess ic (ae? ue h?) etkoh sec 6 Jp, 

—ae 

= (8rraFe3/cg? sec? 0)? Jap (Kgve sec 8), (25) 

where J denotes the usual Bessel function. Hence from (19), 

mr [2 sures 

R= 128xigpatea? | EW Prot 82° 8 LT 15 (ky ae sec )}? sec? 0 dO, (26) 
0 

a result which was obtained previously by a different method.* For purposes 
of numerical calculation it is convenient to change the variable in the integration 
from 6 to tan 8; we then have 

R = 128rgpate?A%e? | e™ {Taio (gae V1 + #2)}? dt, (27) 
0 

where p = 2x) f = 2qf/u?, and A is given in (8). 
Oblate Spheroid in Direction of Axvis.—Here we have a surface distribution 

given by (10), and remembering that the centre of the circular distribution is 
at a depth f, (21) gives 

(P ak 1Q) /Bue="F sec? 9 __ {| (b?e’? ak. y? eats EPpy ekoe Sec? 6+7%xay sin @ sec* 6 dy dz, (28) 

taken over the circle y? + 22 = be’2. 

* “Proc. Roy. Soc.,’ A, vol. 95, p. 365 (1919). 
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Taking the integration with respect to y first, we obtain, after integration 

by parts, 
(b2e’2 — 2?)t 2 

(ko sin 8 sec? 6) | y (b?e'? — y? — 2*)-V?2 sin (ky sin 8 sec? 6) dy 
—(b2e’2 —2?)1/? 

oe (b?e'2 Lee z2)il2 =a =: ‘ 

~ a ein O eae J, (ky V be? — 22 sin 6 sec? 8). (29) 

The integration with respect to z now becomes 

be’ 

| (b2e’2 — 22)U2 ere sec*O (ic, 4/b%e'2 — 2? sin 8 sec? 8) dz, (30) 
—be’ 

and this is equivalent to evaluating 

2 (ie cosh (« cos ¢) J, (8 sin ¢) sin? ¢ dd, (31) 
0 

where o = Kbe’ sec? 0, 8 = Kybe’ sin 0 sec? 0. 

The integral (31) may be evaluated as a special case of Sonine’s integral, or 

by expanding cosh(« cos ¢) in powers of cos ¢, integrating term by term, and 

summing the resulting series. The latter expression for (31)-is found to be 

« 2n 9n—1/2 5 CRE OS T (m+ 3) jy 

n=o 2m! aS n+s/2 (B). (32) 

Noting that in the present problem, « <> 8, the value of (32), or of the integral 

(31), is 
1/2 

2 () = To/2 {(a? — B?)"?}, (33) 

where the Bessel function is given by 

__ f Be sinh x hn) = (2) (cosh « — smhe) (34) 

Collecting these results, we obtain 

(P + 1Q)/Bu e~*f °°? —2(77353e'3 /2icq3 sec? 8)"2 Taio (Kegbe’ sec 9). (35) 

Finally, from (19) we find 
77/2 

R=382 r'ox )b3e’SB2u2 | e~ *xof sect? fT. (gde’ sec 8)}2 sec? 8d0, (36) 
0 

or in the same form as (27), 

R=32 r4gob%e’SB2e-” | eP# {Toi (Kgde’ V1 + 22)}2 dt, (37) 
0 

where B is given in (11). 
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Prolate Spheroid at Right Angles to its Axis.—The distribution is given in 
(12), and in this case we use (21) instead of (20); apart from this, the caleu- 
lation follows the same course and we obtain finally 

a | 2. 

1, = 128rigpateAa’ | enol 8008 OL J 5/9 (egze sin 0 sec? Q)}2 cos 0 d0/sin? 6 
0 

= 128n’goa%e2A’e7? I, e {Tajo (ko aet V1 + t)}2 t-3 dt, (38) 

with A’ given in (13). 

Oblate Spheroid at Right Angles to its Axis.—The distribution given in (15) 
les in a plane parallel to the direction of motion, so we now use (20); the 
integrals are, however, of the same type as those already discussed and the 
analysis need not be given in detail. Using (15), (19) and (20), we obtain 
after some reduction 

R = 32n4gpb3e’3B’2e” [ e {Tajo (Kqbe't V1 + )}2 1-8 dt. (39) 

where B’ is given in (16). 

Sphere.—It may easily be verified that in the limit when e, or e’, becomes 
zero, all these expressions (27), (37), (38) and (39), reduce to the known result 
for a sphere, namely 

R = 4rgox,%b&e-” i (1 + ¢2)32 e- 2% dt 
0 

= / IL\ = rgpxctiPe! {Ky (bp) + (1+4) Kp}, (40) 
where K,, is the Bessel function defined by 

K, @) = \" e~7°osh4 cosh nu du. (41) 
0 

6. The resistances for prolate and oblate spheroids have been worked out 
independently in the preceding section. It is of interest to note that the 
results have the same analytical form and may, in fact, be deduced from each 
other by taking the eccentricity to be imaginary instead of real. For the 
prolate spheroid, e* = 1 — 6/a?; while for the oblate spheroid, e’2 = 1 — a/b. 
It may be verified that if in (27) we write e = ie’b/a, the expression transforms 
precisely into (37) ; and the same relation holds between (38) and (39). 

7. The integrals in the various expressions can be transformed into alter- 
native forms, or expressed in infinite series in several ways; but either the 
series do not converge rapidly enough for the values of the parameters which 
are of interest, or else the functions involved have not been tabulated. I¢ 
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has been found simpler to make numerical calculations directly from the 

integrals as given, although a considerable amount of work is involved in any 

case. 

The calculations have been carried out for a set of five spheroids, including 

the sphere, the radius 6 of the central circular section being supposed constant 

and the semi-axis a@ varied. The following are the data for the series :—A, 

oblate, a = 4/5, e’ = 0-6; B, sphere, a = 0; C, prolate, a = 5b/4,e = 0-6; 

D, prolate, a = 5b/2, e = 0-9165; E, prolate, a = 5b, e = 0-9798. The axial 

sections of these forms are shown in fig. 1, drawn to scale, the diagram 

showing one quarter of the section in each case. 

We suppose the axis horizontal in each case and at the same depth f below 

the free surface. To make a definite case for numerical calculation we take 

f = 2, (42) 
that is, the depth twice the radius of the central circular section. We consider 

the models in two series, (i) with the axis in the direction of motion, (ii) with 

the axis at right angles to the motion. Our object is to show the variation of 

wave-resistance with velocity for each model, and to see how the graph varies, 

in (i) with increasing length, and in (ii) with increasing beam. To give one 

example of the calculations, when a = 5b/2, (27) gives 

R= 2240ngpb%e~? |. cP LJ, 9(0-5728 pNi+e?)}? dt. (48) 

For velocities which are of special interest, the parameter p ranges from about 

1 to 8. A graph of the Bessel function Js. was drawn on a large scale and 

values were taken from it, except for small values of the argument when they 

were calculated from tables of J). and J_,/. Values of the integrand were 

calculated for values .of ¢ at intervals of 0-1, and the numerical integration 

carried out by the usual methods. Owing to the exponential factor, it was 

unnecessary to go beyond ¢ = 2 in any case; and for the larger values of p, 

a smaller range of ¢ was sufficient. This process was carried out for seven or 

eight values of p, and so a graph could be drawn for the variation of R with p, 

that is, with velocity wu. 
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A similar method was used for the integrals in (37) and (38). For (39), 

the Bessel function was expanded in powers of (1 + ¢?), and integration carried 

out term-by-term ; the integrals involved are then of the form 

2n+1 

i (1 + #) 2 e-?" dt, (44) 

which can be expressed in terms of the Bessel function K,, defined in (41). 

By recurrence formule, the terms can be reduced to expressions involving 

K, and K,, and tables of these functions are available. In all these calcula- 

tions no attempt was made to obtain any high degree of numerical accuracy ; 

the object was to obtain sufficient values to enable graphs to be drawn showing 

the nature of the results and the main differences between the two series. 

The graphs are shown in figs. 2 and 3; the scale is the same throughout, the 

ordinates being R/rgeb?, and the abscisse u/1/(gf). 

The nature of the results is obvious from the graphs. Fig. 2 shows the 

curves for the end-on motion. The curve B, which is the same in both 

diagrams, is for the sphere and shows the maximum just before the velocity 
(gf ¥?. The graphs for C, D, E show how much the resistance is diminished 
at the lower velocities by increasing length in this way ; but this is followed 
by a rapid increase at higher velocities. The latter effect may be described, 
roughly, as due to the final interference between bow and stern system giving 
a prominent hump on the resistance curve ; the interference effects at lower 
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speeds were found in the calculations for curve H, but could not be shown on the 

scale cf the diagram. 

The graphs in fig. 3 for the broadside motion are in striking contrast t6 those 

in fig. 2. Here we have increased resistance at all velocities as we go up the 

series of models; the values for E were calculated, but could not be shown on 

the scale of the diagram. It appears from the curves of fig. 3 that a rough 

empirical rule for this series is that the resistance per unit volume of displace- 

ment is proportional to the area of the midship section. 

Harrison anp Sons, Ltd, Printers, St, Martin’s Lane, London, W.C.2. 
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The Wave Resistance of an Ellipsoid. 

By T. H. Havetocr, F.R.8. 

(Received May 9, 1931.) 

1. Inarecent paper* it was shown how to obtain, to the usual approximation, 

the wave resistance of a solid of ellipsoidal form submerged at a constant depth 

below the surface of water and moving horizontally with any orientation of 

the axes ; and explicit calculations were made for prolate and oblate spheroids 

moving end-on and broadside-on. The present note is a brief study of an 

ellipsoid with unequal axes, moving in the direction of the longest axis. It had 

been intended to examine numerically in some detail the effect of different 

ratios of the axes upon the resistance-velocity curve; but the necessary 

computations would have been lengthy, and the main results of interest may 

be seen from the form of the expressions obtained for the wave resistance. 

In the discussion attention is directed specially to cases in which the ratios 

of the axes are similar to the corresponding ratios for a ship. 

2. It is convenient first to evaluate some integrals which occur in the 

analysis. 

Consider the integral 

ao ye\i2 
A= [{(i- 7 -*) cos ax cos By dx dy, (1) 

m= n? 

taken over the ellipse 

Gil UES 2 #+4- (2) 

Putting z= msin ¢ cos 0, y = n cos ¢, we obtain 

A =mn [ if sin? ¢ sin? 0 cos (ma sin ¢ cos 0) cos (n8 cos 6) d0d¢. — (3) 
0/0 

Integrating first with respect to 0, this gives 

A = (xn/a) Ik cos (nB cos ) J, (ma sin ) sin? ddd 
0 

a 
= =. i J, (ma sin $) J_4/2 (nB cos ¢) sin? fd cos’? ddd. (4) 

0 

* «Proc. Roy. Soc,,’ A, vol. 131, p. 275 (1931). 
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This is a particular case of Sonine’s integtal,* and we obtain finally 

ies GRRE nn lor (5) 

A similar integral which we require is 

B= \| (1 = = = )" e*” cos ax daxdy, (6) 

taken over the ellipse (2). 

This may be evaluated in the same manner. To avoid possible ambiguity 

we distinguish between various cases according to the relative magnitude of 

ma and nf. We find 

B = 2"2n32ann Jap {( (mPa? — n2Q?)"?\ 

(mPa? — n282)3/4 ” ma > 1B; 

1, Layo {(n2B2 — mPa)? SO 1/ 23/2; 3/2 F = 227 32yy, ee ea? ma <nB 5 

= 3nmn, ma=npB ; (7) 

where I denotes the usual modified Bessel function. 

3. Consider a solid bounded by the ellipsoid 

7 22 
Sew Jk = 7] 8 
a a b a Ce ; (8) 

moving with uniform speed w in the direction of Ox, the axis Oz being hori- 

zontal and at a depth f below the surface of the water, while the axis Oy is 

vertical. 

We shall consider first the case a > b> c. 

The image of a uniform stream in the ellipsoid is a distribution of doublets 

over the plane area bounded by the elliptic focal conic 

eee 5= 1, 2=0; (9) 

BN 5 eon BODO EA) Seite el Me aa, i 
T (2 — ap) (a2 — c?)¥? (6? — c?)V2 ( 2 

where 
2 du 

tial cor CCE 00) 
For numerical calculation «) may be expressed in terms of elliptic integrals. 

*G.N. Watson, “Bessel Functions,” p. 376 (1st edn., 1922). 
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From (12) of the previous paper, the wave resistance is given by 

ar 2 

R = lérpic,! | P2 sec? 040, (11) 
0 

P — lan al LET EEE ant {Jl Roped — y Pere 

rQ—a) (eae ae l)\ “ae@—e BA 
X cos (Kgx sec 0) dx dy, (12) 

the integral for P being taken over the ellipse (9), and xy = g/u?*. 

Comparing with (6) and (7), we obtain for the integral in the expression for 

P the value 

{2n3 (a? — c2) (b? — c2)}V2 Jai [ko sec 0 {a2 — co? — (b? — c?) sec? oy") (13) 
Ko” sec 9/26 {a2 — c? — (b® — c®) sec? 6}3/4 

when cos 0 > »/{(b? — c?)/(a? — c®)}, and a similar expression when cos 0 

is less than this value. Collecting these expressions, and for comparison with 

previous results, putting tan 0 = ¢, we obtain finally 

(2 ae aX)? (a? pat b2)3/2 ent 

327?gea7b*c* 

day lice Is/p {eq? (a? — 6) (1 + #) (1 — o1?t?) JEEP —2xoft qt 
@ (1 Eas oc?) 3/2 

° [ye ficg? (a = (5) ae ?) (at? — 1)} HEIR en 2eoSt dt + ibe SS an dt, (14) 

where a” = (b? — c?)/(a? — 6°). 

This expression is for an ellipsoid moving horizontally in the direction of the 

longest axis, and having the least axis horizontal and the mean axis vertical ; 

or, we may say, with the beam less than the draught. 

4. We consider now the case when the beam is greater than the draught ; 

that is, keeping the axes Ox, Oy, Oz as before, we have a>c> 6b. The 

elliptic focal conic is now in the horizontal plane and is given by 

x 2 
amma Uararemepe as) y = 0. (15) 

The doublet system is distributed over the area bounded by (15), the axes being 

parallel to Oz and the moment per unit area being given by 

abou a z MG Oe ee oe . (16) 
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For a distribution of this type the expression* for the wave resistance of 

any two doublets generalises into 

RB = 16x! | TH Pee 2naf °° soo5 dO, (17) 

where : 

1B j)™ (x, 2) M(z’,2’) cos {kg (7 — 2’) sec 0} cos {cg (z — 2’) sin 0 sec? 6} 

dx dzdx' dz’. (18) 

From the symmetry of the distribution specified in (15) and (16) we see that 

1P = {J M (a, 2) cos (kg& sec 8) cos (kz sin 0 sec? 0) dx dz, (19) 

where M is given in (16) and the integration extends over the ellipse (15). 

Comparing with (1) and (5), we obtain 

(2n)"2 abeu Isjp [Ky sec 0 (a? — b? + (c? — b2) tan? 0}/?] Da _ BIBI 0 BEG ON Osa Cater 25) MAN Urey 
2— oy Ky? sec? O a2 — 62 + (2 — 62) tan? O94 0 0 

(20) 

From (17), after putting tan 0 =t, we deduce 

(2 nee oy)? (a2 aan b2)3/2 e2kof R 

327?goa7b7c? 

= [te (eg? (a? — 88) (1+ 8) (1+ o?)PP one gy (1) 
0 (lor GARE 

where a? = (c? — b?)/(a? — 6). 

The cases c <6 and c> b have been worked out separately ; however, on 

comparing (14) and (21), we see that the results could both be included in the 

same formal expression with a suitable interpretation of the integrand when 

a and 1 + «/? are negative. 

5. A numerical examination of these results could be made for different 

ratios of the axes a, b, c; certain points of interest may, however, be seen 

from the form of the expressions, keeping in view the analogy with the wave 

resistance of a ship. We note in the first place that the exponential factor 

exp. (—2« ft?) in the integrand means in practice that the greater part of the 

value of the integrals arises from. small values of the variable t. 

An interesting feature of curves of wave resistance and velocity is the 

occurrence of so-called humps and hollows which, on a simple theory, arise 

from interference between bow and stern wave systems. In (14) and (21) 

* «Proc. Roy. Soc.,’ A, vol. 118, p. 32 (1928). 
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these oscillations are due to the Bessel function J in the integrards, the 
modified Bessel function I being non-oscillatory; and one might trace the 
relative importance and positions of these humps and hollows with variation 
of the quantity «?, that is, (62 — c?)/(a2 — b2). For instance, in (14) the second 
integral is non-oscillatory ; and, as one would expect, it becomes of less 
relative importance as the ratio of a to b is increased. Or, again, consider the 
positions of the humps and hollows. The maxima on the resistance-velocity 
curve will be in the neighbourhood of the maxima and minima of 

J 3/2 (KoV a? = ()), 

while the minima will be near the zeros of this function. Suppose, as an example, 
we take a = 5b and compare ellipsoids with different ratios of c to b. When 
c lies between zero and 6, the factor (1 — a?) in the integrand of (14) lies 
between 1 — ,,#2 and unity; further, if in (21) we take c as much as 2b, the 
corresponding factor is 1 + 12. It is clear, without further calculation, that 
the positions of the interference maxima and minima will be altered only 
very slightly by such a variation in beam when the ratio of length to draught 
is five or more. It appears in fact, that when the beam and draught are of 
the same order of magnitude and the length is of the order of 10 times either 
of these quantities, the form of the resistance-velocity curve is comparatively 
insensitive to changes in beam. This consideration may, perhaps, account 
partly for the measure of agreement which has been obtained between calqu- 
lated values of the wave resistance of ship models and experimental results ; 
the theory, of course, fails in many details, but the agreement in general 
character is better than might have been anticipated in view of the simplify- 
ing assumptions which have to be made. 

6. The calculations for ship models are usually made from Michell’s formula 
for the wave resistance. That expression holds for a model with a longitudinal 
vertical plane of symmetry, and is derived from an assigned distribution of 
horizontal velocity at right angles to that plane ; it is, in fact, the same ag can 
be obtained from a distribution of sources and sinks, or of horizontal doublets, 
in the vertical plane. In applying the expression to a ship there are two 
approximations, which probably involve the same limitation; one is in 
extending the distribution right up to the surface of the water, and the other 
is in obtaining the equivalent distribution from the slope of the ship’s surface. 
The latter approximation could, of course, be examined quite independently 
of the wave phenomena, but it is of interest to compare the expressions for the 
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wave resistance in one or two definite cases. In a former paper* the com- 

parison was made for a submerged prolate spheroid, and from the formule 

given then numerical calculations were made later by Wigley} in connection 

with an experimental investigation. We may make now a similar comparison 

for a flat ellipsoid moving in the direction of the greatest axis, that is, for the 

case a > b > c worked out in § 3 above ; it has, moreover, been found possible 

to put all the expressions into the same analytical form, and we can see from 

inspection the difference between them. 

Michell’s formula for wave resistance is 

4out f 2 mdm 
a p2 ee 22 

| 2 ( aly Q ) (m?ut /g? pool 1) ( ) 

where - 

adn) = | | z GAP ONE Teal (23) 

The integration in (23) is taken over the vertical longitudinal section of the 

model, that is, in the present notation, over the section by tae zy-plane; 

and 0z/dx is derived from the equation to the surface. Applying this to the 

model specified by (8), with Ox at a depth f below the surface, and putting the 

expressions into the form used in § 3, we obtain after some reduction 

cm/2 

R = 4 “lgpKg?u? | INO GEO cares (Nhs); (24) 
0 

ha 2 2\1/2 

N= \| ( = = — z) ered °° GOs (gx sec 0) dx dy, (25) 
a 

the integration in (25) being extended over the area of the ellipse 

a/a? + y?/b? = 1. 

Carrying out the integrations in (25), we obtain finally 

4a3 ee. R =| | Isak o ? (a7—b*) (1+?) )(1=B622?) acai en72 * oft? 7 
32779ea7b7c? 0 IBA Pe 

Pag cree leer ae as vp (e771) 3? (26) 
where B=) Na*—b?. 

* «Proc. Roy. Soc.,’ A, vol. 103, p. 574 (1923). 

+ W. C.S. Wigley, ‘Trans. Inst. Nav. Arch.,’ vol. 68, p. 131 (1926). 
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Comparing (14) and (26), we see how the latter approximates to the former 

when 6 and ¢ are small compared with a. We have, for instance, a difference 

which is independent of the velocity in that the factor (2 — «,»)?(a? — b2)3? in 

(14) is replaced by 4a° in (26) ; this makes the value of R calculated from (14) 
greater than that found from (26) in a certain ratio. To give a few numerical 
examples :—When a = 5b, c= 6, the ratio is 1-2; when a=5b, c= 4b, it 

is 1-12; while for a= 106, c=6, it is about 1-05. Again, comparing the 
integrals in (14) and (26) the quantity a=\{(b2 —c2)/(a2— b2)tis re- 
placed by 8 =6 Va2—62. From the considerations given in § 5, it 
appears that this difference would have only a slight effect upon the 
character of the resistance-velocity curve for a body with proportions 

like those of a ship. 

7. For a ship model with fine ends and the usual ratios of length to beam 
and draught, experimental results have shown that the theoretical expressions 
form at least a good first approximation. A more exact solution of the 
theoretical problem for a surface ship of simple form moving in a frictionless 
liquid is desirable, but it presents considerable difficulties. As regards com- 
parison with experimental results, such a solution would probably not improve 
the present position appreciably, on account of the effects of fluid friction in 
the actual problem. So far as the ship problem is concerned, it seems that the 
approximate theory might be supplemented by semi-empirical assumptions of 
a suitable nature, possibly as regards the effective distribution equivalent 
to a ship under actual conditions. 



From the PuitosoPpHicaL MaaazinF, vol. xi. Suppl. February 1931. 

The Stability of Motion of Rectilinear Vortices in Ring 
Formation. By T. H. Havetocs, F.R.S. 

Introduction and Summary. 

1. ee stability of the two-dimensional motion of an 
infinite system of vortices arranged in a single row, 

or in double rows has been worked out in detail in recent 
years, but not much attention has been given to cases in 
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which the number of vorticesis finite. The obvious analogous 
problems arise when the vortices are equally spaced round 
the circumference of one or more concentric rings; the 
problems are not perhaps of special importance, but they 
are of some interest, and, further, one may obtain the 
infinite straight rows as limiting cases of ring tormation. 

We examine first the motion of a single ring of vortices, 
a problem which attracted attention many years ago in 
connexion with the vortex theory of atoms. Kelvin* worked 
out the case of three vortices, but failed to obtain a solution 
for a larger number; it was in this connexion that he drew 
attention to the now well-known experiments of Mayer with 
floating magnets. Shortly afterwards the problem was 
attacked by J. J. Thomson +, and it is usually stated that 
he proved the configuration to be stable if, and only if, the 
number of vortices does not exceed six. He,in fact, worked 
out the small oscillations for the particular cases of three, 
fonr, five, six, and seven vortices, obtaining an instability in 
the last case. It appears that the equations for the general 
case are capable of asimple explicit solution, and thisis given 
in § 2; a ring of seven vortices is neutral for small displace- 
ments, with less than seven it is completely stable, and for 
more than seven unstable. In §3 the effect of an assigned 
velocity field in addition to that of the vortices is examined 
briefly. 

In the next two sections we work out the effect of a 
concentric circular boundary upon the stability of a single 
ring, the boundary being either interna] or external to the 
ring. In both cases the stability is diminished, seven or 
more vortices being unstable whatever the radius of the 
bonndary. Fora smaller number there is a limiting ratio 
of the radius of the ring to the radius of the boundary for 
stability in each case. For an external boundary the motion 
is unstable in any case if the radius of the boundary is less 
than about twice the radius of the ring, and there is a similar 
result for aninternal boundary. The effect of the boundary, 
estimated in.this way, seems larger than might have been 
anticipated. 

In the remaining sections we examine the motion of two 
concentric rings of vortices, of opposite rotations, the vortices 
being spaced alternately. A steady stateis possible in which 
the rings rotate and retain their relative positions unaltered, 
but there are always modes of disturbance which give rise 

* Kelvin; Math. and Phys. Papers, iv. p. 185 (1878). 
+ J. J. Thomson, ‘ Treatise on Vortex Rings,’ p. 94 (1883). 

331 



619 Prof. T. H. Havelock on the Stability of 

to instability. By suitable choice of the relative strengths 
of the vortices in the two rings it is possible to limit the 
instability to only one special mode of disturbance ; itis this 
particular configuration which becomes in the limit the 
stable Karman vortex street, when we make the radius of a 
ring and the number of vortices both infinite, keeping their 
ratio finite. 

Single Ring of Vortices. 

2. Let there be n equal vortices, each of strength «, 
equally spaced round the circumference of a ring of radius a. 
In steady motion the ring rotates with a certain angular 
velocity w. Let the vortices be slightly displaced, and 
suppose the disturbed positions to be given in polar co- 
ordinates by 

G+7sii, 2s7/n+ott+Oe41,- - - - (1) 

where s=0,1,...n—1, and r,@ are small radial and angular 
displacements from the steady state. Consider the motion 
of one of the vortices, say that at the point (a+7, @t +0) ; 
its velocity is due to the other vortices, and the radial 
component is 

kK 1 (a+7r541) sin (2sm7/n+ 0541 —9)) eo 7 eae) 
while the transverse component is 

RS (a+ 7.41) cos (2s7/n+ 6,41 — 61) —(a +77) (3) 
5 =~ 
27 «=| D? ‘ 

where 

D?=(@+ Ts41)° + (a+ 4)? 

—2(a+7rs41)(a+7) cos (287r/n+O541—4). 

We expand these expressions to the first order terms in 
rand @, and so get the equations of motion of the vortex under 

consideration. After some reduction we obtain 

vie Ana y 1—C; ’ 

K 4 C, 14 iL a 
_ pees LS Az 

(a+r)o+a=qo7 a a 1—C,a 1—C, a J? (4) 

where C,=cos(2s7/7). 
The steady state is given by o= (n—1)k/42ra?, and since 
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equations (4) give 
n—1 

(41a/«)ry= A6é,— > a0s415 
1 

5 n—-1 

(Ara*/x)0,=Bry— & asreyr, . . - ~ (5) 
1 

where 

1 1 : 
A= g(—1); B= gi —-Y(m—-1)); a,=1/(1—C,). 

There are similar equations for each vortex, giving altogether 
a system of 2n equations. 

The simplest method of treating the equations is to examine 
a possible simple solution of the form 

Poe edle 3 Chanel 5 6 5 4 (8) 

where k=0, 1, 2, ... n—1. 
It may be proved that under the conditions stated 

n—1 e2ksniin 1 

s=1 1—cos (2s7/n) = g 1) —k(n—k) O° (7) 

Hence, from (5), we find that the equations for a, 8 reduce to 

(4rra/x)e=k(n—k) B, 

(Arra/«)B={k(n—k)—2(n—1)}a. . . « (8) 
Finally, taking « and @ to be proportional to e, these 

give 

n= (45) Mn—H){Mn——2n—-D)} a9) 

It follows that in (6), (8), and (9) we have, in general, 
2n independent solutions of the equations of the system, and 
that we can build up the complete solution for any arbitrary 
small initial displacements of the vortices. 

An alternative method of solution may be noticed briefly, 
namely, the method used by previous writers for particular 
cases ; it may be extended to give the general results, though 
not quite so simply as in (6)-(9). In the 2n equations (5) 
we assume each coordinate to be proportional to e¥, and 
form the determinantal equation for }. The determinant 
can be reduced to one of order n in )2, and it can be shown 
that it is of the type known as a circulant, and can be 
factorized in terms of the nth roots of unity ; after some 
reduction we obtain (9) again, and can deduce the corre- 
sponding simple solutions given by (6). 
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From (9), when k=0 we have A=0. If we examine this 
case we find that the displacement consists of a rotation of 
the ring combined with a small change in its radius ; the 
result is a new steady state with a corresponding small 
change in the angular velocity. The condition for stability 
is that X? must be negative for all the other values of &, 
namely, 1, 2,...n—1. Hence, from (9), the steady state is 
stable if 

KO) AG) 56 556 6 3 CO) 
is negative for all the values of k, and this is the case if it is 
negative for k=4n when n is even, or $(n+1) when nis odd. 
It follows at once that the steady state is completely stable 
when n<7. When n=7 the expression (10) is zero for 
k=3 or 4; while for n >7 there are always some values 
of k for which 2? is positive, and hence the system is 
unstable. 

Whatever the value of n there are always two modes of 
possible small oscillations, namely, those given by k=1 and 
i=) 

When k=2 we have 

v= 45.) (0-2), Leh et Oi cict) 

while for k=1 

pepe euiaeies oie 
We notice that in the latter case the period of the small 

oscillation is the same as the period of rotation of the ring 
in the steady state; this motion was worked out for the 
particular case of three vortices by Kelvin in the paper 
already quoted, and it is illustrated ina characteristic manner 
by the description of a working model to show the motion 
ot the vortices. 

The single infinite straight row of vortices may be obtained 
by making both n and a become infinite, with the ratio n/27a 
finite and becoming in the limit equal to the distance between 
consecutive vortices ; the usual results then follow from (6) 
and (9). 

Single Ring in assigned Field. 

3. We have so far considered the vortices to be moving 
solely under their mutual actions. Suppose now that there 
is an assigned velocity field which is maintained indepen- 
dently ; for simplicity we suppose the flow to be in circles 
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round the origin, the angular velocity being Q(r), and the transverse fluid velocity at a distance r being 7. 

Then, referring to equations (4) for the motion of a typical vortex in the ring, the only difference is that we have to add 
aQ(a) +r {O(a) +aO'(a)} 

on the right-hand side of the second equation. The angular velocity of the ring in the steady state is now 

(n—1)«/4ma? + O(a). 

Following the same procedure, we obtain, instead of (8), the equations 

(Arra/«)a=k(n—h)@, 

(41ra*/) B= {k(n —k)—2(n— 1) + (4ma*/x)O'(a)}, (13) 
and hence we have 

M=k(n—k) {k(n—k) —2(n—1)+ (A7ra*/x)Q'(a)}., (14) 
with k=0, 1, ... n~1. 

It follows that the steady state can be stabilized for any value of n, provided Q'(a) is negative and sufficiently large. Two spécial cases may be noted. First, if the fluid is rotating like a rigid body—that is, if O(r) is constant—the conditions for stability are unaffected. In the second place, suppose there is in assignei vortex fixed at the origin, so that Q.(r)=«'/2rr? ; then. if x! is of the same sign as x, we can make the steady state stable for any value of n by taking «' large enough. 

Single Ring with Outer Boundary. 
4. Suppose the liquid is contained within a circular boundary of radius 6, the vertices being in the steady state on a concentric circle of radius a (<b). The motion in the liquid is due to the given vortices and their images in the 

circular boundary. 
Taking the steady state first, the radius of the image ring is 6?/a, the strength of each image vortex being —x, Writing down the velocity at any vortex in the given ring, the angular velocity in the steady state is given by 

n—1 2 (m=Ne 5 (0?/a)C—a - (15) 
am Ata 2m .=o b4/a? + a? — 22°C’ 

where C=cos(2sz/n). 
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We shall have occasion to use the following summations, 
which can easily be proved : 

a —p? 2n 

a oS e =p" iT i Gay) 

fs bee BON ed ele 
s=1 L—2pC +p? 1—p” 1—p’ 

Gagne wet ag 
can (Bate Cay spr 

with 0 <p< 1. 
Writing p=a’/b?, we find from (15) 

a= Fe (-2-1). se a GD 

For small displacements from the steady state we have 
for each vortex « at a point 

a+7s+1, wt + 2sm/n+ Os41, 

an image vortex —« at the point 

62 

a 
(1 — a) » @t+2s7/n+ O41. 

Considering the motion of the vortex given by s=0, we 
have for the radial velocity the expression (2), together with 

FE ee . WS 20 s=0 H 

and for the transverse velocity we have (3), together with 

K nal (b?/a)(1—1541/a) cos 6— (a+7)) 

Qe so ig 5 0 (gy 

where 

p= 2s7/n+ Os41—9}, 

and 

bt Ts+1 2 b? Ts+t Bas =o /f TL a Se Oo) Vesa oy Sete 7 E =a(1 = ) + (a+m)?-2- (i : )(a+n) eos. 

The steps in the reduction of the equations of motion need 
not be reproduced here; making use of the summations 
given in (16), and writing 

p=a?/b?; S=sin (2sz/n) ; C=cos(2sa/n), . (20) 
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we obtain eventually the equations 
Ama? ry ale 2n2p™ . ho 
Ka BGPP 7 tps 

ed ead eS hg 
ost LI=C 7 (1 = 290 +p? Pie 

—"5 2pA=p)8 rea 
s=1 (lL—2pC +p?)? a 

Ana; ¢n?—1 2n*p” A= { a geoy 
An =O yet) } rs 

lap =a 
& 'S 4 T_ 2p{(l + p?)C— 2p} ). resi 

s=1 (1—C (1—2pC + p?)? a 

— "3 _2p—p*)8 
s=1 (1— 2pC-+ p*)? 

There are 2n equations of this type, and we examine now a possible solution of the form 

1541/4 wer**smiln ; 0,41 = Berni/n, LR INCeNRy ate (22) 
Wat PD), Ty 5 PIL, 

On substituting these expressions we obtain two equations ina and B. In simplifying the various coefficients we use 
the following summations, whose proof need not be given 
here :— 

= (1—p?) cos (2ks7/n) ne n(p + p-*) anak 
a L—2pC +p? ye 1l—p 
'S (1—pC) cos (2ks/n) = n(p* +p"-#) ieee 
1 1—2pC +p? 2(.1—p") 1l—p 
= {(1+ p?)C—2p}cos (2ks7r/n) _ nk (pk-1 — pn-#—-2) 

Bee T Oe eal hy Ba a(O 1) 

1 (1—2pC0 +p)? 2(1—p”) 
n®p”—(p*—p-*) 1 

+ _ ans vmstat P33 BUS prt siCleep)tsVunhi a 
valid for 0 <p < 1, and k=1, Py acy lly 
We obtain after some reduction the equations 

(47ra*/«)«e=P@—iRe, 

(41ra*/x)B = Qa—iRZ, 5 3 6 (CX) 
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where 
- ps nk(p®—p-*) n2gn—k( 1—p*)? 

P=k(n—k) ee -4 SS. 
kp — pret) npr" +p*)? 

=k(n—k)+2(n+1 ane + aa Q= kn) +2(0 41) + MOREE won 
k na —k 2 ,>n—k Spek 

[ec oe ar) 9) gs T=)" (=p? 
We may check these expressions by deducing the equations 

for the corresponding disturbance of an infinite double 
symmetrical row of vortices. If d is the distance between 
consecutive vortices in each row, and h the distance between 
the two rows, we have, in the limit, 

2najn=d; 2kn/n=¢d; 

p=(1+ 27h/nd)-}. 

With these (17) gives the limiting value of the linear 
velocity of the vortices, namely, 

K wh 
5d coth ape 

further, the quantities n2P/272, n?Q/272, and n2R/27? become 
respectively the quantities A+C, A—C, and B in the 
notation of Lamb’s ‘ Hydrodynamics,’ (5th ed. p. 221). 

Returning to equations (24), we take « and 8 proportional 

err /4ra® 

and obtain 

A=-—7R+(PQ)?. . Teeny, (26) 

For complete stability the product PQ must be negative, 
or zero possibly, for all the values of k. To prove instability 
it is sufficient to show that PQ is positive for one value at 
least of k&. From the form of the expressions in (25) we see 
that P and Q are symmetrical in & and n—A, and that the 
critical mode to examine is k=4n for n even, or k=}(n+1) 
for n odd. 

For n even we have 

P(dn)=3n2—n2pi/(L1+p)2, . . . (2%) 

which is always positive. Further, 

4n n2p” 
+ =>, + (28 1 yp ( iL — p)* ( ) 

Q(3n)=4n2 + 2(n +1) — 
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and this is positive if 
(n* + 8n +8) 23 + (3n? —8n — 5) a? + (bn? + 8n—8)a 

Pe —Epsr8 Ss > (29) 
where a =p" = (a/b)”, 

The left-hand side of (29) is always positive for nS 8. From similar expressions when n is odd we find that there is always a positive value of Qforn=7. Hence we conclude that the motion of the ring is unstable when the number of vortices is equal to or greater than seven, whatever the radius of the outer boundary. For n <7 we shall see that the motion is stable provided the ratio of the radius of the ring to that of the boundary is less than a certain value in each case. We shall examine the cases briefly, noting that in each case the mode £=0 means simply aneutral displacement 
of the ring. 

Hor 2=2)/k—1, we find from the previous expressions that Q is negative if p < 02137; and as P is positive, it follows that the circular motion of the two vortices is stable 
if a/b < 0-462. 

For n=3, k=1 or 2, Q is negative for p < 0:322, and the motion is stable for a/b < 0°567. 
Similarly for n=4 we find the critical value of a/b to be about 0°575 ; for n=5 it is 0:588, and for n=6 it is 0-547. When n=7, which is the critical neutral case when there is no boundary, the effect of an outer boundary of any radius is to cause instability. 

Single Ring with Inner Boundary. 
5. Suppose now that the fluid is bounded internally by a circular barrier (r=6), and that a ring of n vortices is rotating in circular motion in a ring of radius a(>6). The image of a vortex «x at r=a is a vortex —« at r=67/a, together with a vortex « at r=O : this combination makes the circulation zero for a circuit enclosing the boundary without including any of the actual vortices 
We find the equations of motion of a given vortex, s=0 in the previons notation, just as in $4. The only differences arise (i.) from the additional image vortex nx at the origin, and (ii.) in evaluating the various summations, as 6/a is now less than unity instead of a/b. For the steady state we have 

; _(n—1)e nk (io PY Lag® 
Ohare Ama un On Tec 1—29C+ q?’ © 

where g=6?/a2 and C= cos (2sm/n). 

(30) 
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This gives 

(3n—1- =a , oe GH pea Se 
Oo dara 

We shall merely state now the results for the general 

equations of disturbed motion. The equations for *, and 6, 
are the same as in (21), with the following alterations :— 
(i.) write g for p in the coefficients, (ii.) change the sign of 
the last term in each equation, the coefficients of 7,4, and 
6,41 respectively, from — to +, (ili.) change the coefficient 
of 7, in the second equation to 

1 4nq” 2n2q” 2q 
ee 2 — = — —— F (n2—1)—2(n—1) + arnt 

(gy? G9)?’ 
Taking a simple solution of type (22), and proceeding as 

in (24), (25), we obtain, instead of (26), the result 

ase (PON oe 6 5 6 CD 

where 

tie a ek Gi diee) fy n2gr—*(1—g*)? 

1 =Hk(n k) 1—q (1—g")? y 

4nc¢ n2qr—"(1—q*)? '=k(n—k)—2(n—1) + —4 == Q (n—k)—2(n—1) = Ge 

np GIG) 
1—q" i 

hb (yk a—k 2>n—k(] — 72k 
Ra Mee ated) ) _ ng (LF) (33) 

1—q (l=q")? 

As before, it appears that stability depends upon there 
being values of g less than unity for which Q’ is negative for 
all the values of k. Jt is easily seen that there is no such 
value of g when n>7, and therefore the steady state is 
unstable when there are seven or more vortices in the ring. 

Examining the expressions numerically for smaller values 
of n, we find that the steady state is stable under the 
following conditions :—n=2, b/a<0°386 ; n=3, b/a<0°522 ; 
n=A4, b/a<0°556 ; n=5, b/a<0°579 ; n=6, b/a<0°544. 

These values are slightly less than the corresponding 
limits when the ring is within the circular boundary, but 
there is little difference in the general conclusions. 
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Double Alternate Rings. 

6. In the previous sections we have been considering in effect a double symmetrical ring, in which the motions of one ring—the image ring—are constrained in accordance with those of the actual ring. We shall leave on one side the general case of a free double symmetrical ring, and prozeed to two alternate rings in an unlimited liquid. 
Let there be n positive vortices, each of strength x, equally spaced round a circle of radius a, and n negative vortices of strength x! equally spaced round a concentrie circle of radius 6 (>a), the arrangement of the vortices being alternate. Thus, if the vortices in the inner ring are given by polar coordinates a, 2sm/n, those of the outer ring are given by 8, 2(s+2)a/n, with s=0, 1, ..., n—1. 
Examine first the possibility of a steady state with the two rings rotating with equal angular velocity, the relative configuration remaining unchanged. The radial velocity of any vortex is zero. The transverse velocity of a vortex in the inner ring is given by 

(n—l)e «21 bC’—a 
Ara 27 = 6? +a2—2abC”’ ) 

and in the outer ring by 

@=1)e' ik" a5 (35) 
eae SS a? + 62?—2abC'’ 

where C’=cos{2(s+2)ar/n}. 
We shall require the following summations, with p=al/b<1: 

n—l1 1—pC! n 

o=0 L~2pC' +p? ~ 14 py? 

rep lap __ n(l—p”) 
) 0 L—2pC’+p2 1+,” 

Dail (1+ p2)C'— 2p Re 

0 (L—2p0'+p?)2 (1+ p)2" 
The condition for equal angular velocity of the two rings then becomes 

(36) 

6 n 2 1) IE al FO (n= Lp - & 
It can be seen that for a given ratio of «' to « we obtain from this equation a corresponding value of p less than unity, 
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and hence a possible steady state. Consider now the general 
equations for the disturbed motion. Let the positions of the 
vortices in the inner ring be given by polar coordinates 

a(1+741), 2sT7/n+ ot + A541, 

and those in the outer ring by 

b(1+ps41), 2(s+3)m/n+ot+ $eyr 

We form the equations of motion as in the previous 
sections. We choose a typical vortex, s=0, in the inner 
ring, and to simplify the notation we take the vortex s=n—1 
in the outer ring. Expanding the components of velocity to 
first order terms, and reducing the coefficients by means of 
(36), we obtain the equations for these two vortices : 

’ 1 2n2p” 

dati = LGD pga 
6, n-19 i 72 Ce=2 

—K 3 =e, 2 PAC =e Die 

4 8’ +x! bs FE eas 

. i Anp” Qn2p” kn Ym) Pi A—i1)\—Ome 4a, “4 é (n2—1) —2(n—1)+ T+ p* ~ d+p"? 

n—1 U in VS 2n{(1 +p?) C'—2p} 

IU ~ @ D2 ae 
1 — 2) os 72) 8! 

ee! A Sy 

‘ 1 Qn2p” \ 
2 S33 = Anb®p, = “fan 1) (+p)? Dn 

3 N=19) 1+p2 CV = 

+x! 5 ae = PU ie PS O41 

“5! 2p(— pS, pp eI BZ D2 stl 

oy aus 3 )—Nerc 4n = 
Amb bn = ls noe (n 1) 2(n 1) ip 1+p" +p")? p 

=! i 2p{ (1+p?)C'—2 

n—1 

—K > 
1 

n 

n-19, — me\n! 

—K > ee 65415 ° ° e ° (38) 

0 
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where 
630 

C =cos(2sr/n); Cl = cos {2(s+4)r/n} ; 
S’ssin {2(s+))a/n}; D= 1—2pC' + p?. 

We now assume a simple solution of the form 
i aerksmijn : Ony = Berksnin ; 

hs41= GB! e2he+3)r in i ey (39) 

and, further, suppose that a, B, &’, 8’ invol ve the time asa Factor 

Psp axeMs+¥)ni|n 

CEM a AM cM ge (40) 
In simplifying the coefficients we use the following summations, valid for =1, 2, ..., n—1, which may be proved without difficulty : 

nel a —p”) B As n( pi — p-*) 

oO 1—2p0' +p? ie iL +p” 2 

“= 2pr(h + p*)C'— 2p} it nt kp*—(n—k)pr-*1 
0 (1=2p0' +p)? 1+p" 

= n®p"( pk — py") 

@ +p”)? 2 

"> 2p(1—p*)S’/E =i 
0 (L~2p0’ $2)? — 1 +p” 

an a) 

ieeapey 1 | er en ohana (le a) (41) 

where H = e%(st+)zi/n, 

The 4n equations of the system now reduce to 
Az = PiB+Q'a' + R'B’, 
AB = Pra + R'a!—Q' 8’, 
ne = IPfel! 2 Qa+ RB, 

NB! =Pyla' + Ra— QB, (42) 
where 

2n? —— cers «' +k(n—k)x, 

; Qn2 prt? 

a 1S —— Ff K—h(n—k)pe!, (1 sr /a")" ( )P 

2np™ n? py” 
— ie — OA PV 0) oS a ed i] «P.= {k(n—h) —2(n Dyes 2) Tesaee 
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2n n? p™ (Makes ea Nios abit 9) tat 2 «Py! = —{k(n—k)— 2(n—D} pe ee eRe i, 
k n n—k n _ ea Dk = (mk) p"} +p” Mn —k— kp") 

Q=ip’n (1+p")? a 

_ a, Pik (n= Eph =pe“H(n— hp") 
R=p’n (1+ p)? ? 

Var Oiges Waaciiigs ss 5's oo o C8) 

The equation for A is 

r —P, —Q’ —R’ |=0. (44) 

—P, X —hk’ Q' 

=@ oor r py 

—R Q —P,/ X 

Using the relation (37) we see that P}—P,= Rabon 

and we find that (44) reduces to a quadratic in 2, which 

can be solved in the form 

4n2=(L#+Mt)?—(P,—P,), . . . (43) 
where 

L=(P; + P,')? +4QQ’, 

M=(P,—Py')?+4RR’. . . . . (46) 

The condition for complete stability is that for the n values 
of & all the values of \2 must be real and negative, including 
possibly zero. From the symmetry of the coefficients (43) 
in kand n—k it is only necessary to examine the values of 
k from zero up to 3n if nis even, or ${n—1) if nis odd. 

7. We might examine now in detail the case when we 
take «/=x«, that is, when the vortices in the two rings are of 
equal strengths and opposite rotations; we shall state the 
results without giving the details of the algebraic analysis. 
It can be shown that when p satisfies the equation (37) the 

quantity QQ! increases in absolute value from £=0 to k=4n, 
while the quantity RR’ decreases in absolute value as k 
increases in this range. Further, except at k=O the 
quantity L of (46) is always negative, and thus the criterion 
for stability is reduced to M being negative. But when 
k=23n we have R=R/=0 ; and since P, is not in general 
equal to Py’, it follows that M is positive at k=3n. Hence, 

if n is even, the system is unstable for the mode k= $n at 

least. It can be seen that in general there are always some 
unstable modes in the neighbourhood of this mean value of & ; 
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further, there is always an instability associated with the 
mode k=0. 

8. It remains to be seen whether we can obtain a greater 
degree of stability by a suitable choice of the ratio of «! to x, 
that is, with vortices of different strengths in the two rings. 
To avoid complicating the discussion we shall assume n even. 
Then the previous discussion suggests that we make the 
central mode stable, that is, we fix «’ by the condition that 
P,=P,' at k=3n. From (43) this gives 

2p” ram Qprt2 38 

a Epenya ~ +p") 4P Pop Oo 9 (47) 

The ratio of «' to «and the value of p are now determined 
by equations (37) and (47). 

Without examining the expressions in general a numerical 
example will show the nature of the results. 

Taking n=10, the appropriate roots of (37) and (47) are, 
approximately, 

p—0;1840 61 yamc)/ic—O728 enema neen (43) 

The following table shows the values of QQ’ and RR’ and 
of X2 for all the modes, calculated from (43) and (45) ; the 
values for k=6,7, 8, 9 are omitted, as they are the same as 
toe (oath By By al, 

k. QQ’. RR’. n3, 

—SS 

0) Sancabondeso 0 —411 0 85 

II sopseaanecce —61 —350 —318 —142 

Da daues esas -177 —72 — 307 —95 

ecueteees sas —292 —48 —545 —143 

AS eNer at eteecat — 369 —5 —475 —316 

Beconaq0co0as —396 0 —418 —418 

We see that the motion is stable in all the possible modes 
with the exception of k=0. Reverting to (40), we find that 
Kd/4ra2 =27rA/6°3T approximately where T is the period of 
rotation of the rings in the steady state ; thus the periods 
of the small oscillations in the stable modes range from about 
two-thirds to one-quarter of the period of rotation. 

It is easily verified that A2=0 in the mode £=0 corre- 
sponds to a neutral displacement of the system, consisting 
of a rotation and dilatation of the rings without alteration of 
the ratio of their radii. On the other hand, the root 
A2=85 in this mode gives rise to definite instability. 
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9. The Karman vortex street may be obtained as a limiting 
case of the present problem. We make the radius a and 
the number of vortices n both become infinite, their ratio 
remaining finite. If the limiting value of 27a/n is d, the 
distance between consecutive vortices in each row, and if h 
is the distance between the rows, we may put 

alee go 5 6 5 5 (8) 

p approaches unity, while the limiting value of p” is e~?7™/4. 
We see from equations (37) and (47) that the ratio «’/« 
approaches unity, and (47) gives at once, in the limit, the 
Karman condition 

COS (GCF, 5 5s a 5° 5 (HU) 

Further, if from (42) and (45) we write down the 
expressions for X# when £=0, we find that for the positive 
root, «d/47ra* is of order n—? ; thus, as the limit is approached 
the instability in this mode merges with the neutral state in 
the same mode. It is only in this particular limiting case 
that we obtain a system which is completely stable. 
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Ship Waves: the Calculation of Wave Profiles. 

By T. H. Havetoor, F.R.S. 

(Received August 20, 1931.) 

1. The surface disturbance produced by a ship is usually analysed into two 

parts : one is called the local disturbance and the other forms the wave pattern, 

the supply of energy required for the second part giving rise to the wave 

resistance of the ship. For a direct comparison between observed and 

theoretical surface elevation it is necessary to calculate both parts of the 

disturbance. This has been carried out recently for a certain case by Mr. 

W. C. 8. Wigley,* working at the Wiliam Froude Laboratory. The model 

was of uniform horizontal section and sufficiently deep to be treated as 

theoretically of infinite draught, while the section consisted of a triangular 

bow and stern connected by a straight middle body; the surface elevation 

along the side of the model was observed at various speeds, and compared 

with the theoretical calculations. 

The following paper deals with the calculation of the surface elevation in 

cases of this type. The theory is developed here from the velocity potential 

of a doublet at any given depth below the free surface of the water; this has 

the advantage of bemg capable of wide generalisation, and, moreover, the 

introduction of a small frictional term, which is ultimately made to vanish, 

keeps the expressions determimate throughout the analysis. 

We examine first a uniform distribution of doublets on a vertical line, and 

then a similar distribution of finite length in the direction of motion ; graphs 

* W.C.S. Wigley, ‘ Trans. N,E, Coast Inst. Engineers and Shipbuilders,’ vol. 47, p. 153 

(1931). 
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are given of the surface elevation along the line of motion. A similar analysis 

is given for the distribution corresponding to the model described above, and 

the connection between the distribution and the model is indicated. 

Finally, the results are generalised to give the central surface elevation for a 

model, of infinite draught, of any sectional form. The general expressions 

are of simple character and some deductions can be made from their form. 

In addition, they are suitable for the numerical or graphical calculation of the 

profile for any required model of this type. A brief analysis of a parabolic 

model is made to illustrate the general results. 

2. Consider a doublet of moment M at « depth f below the surface of water 

and moving horizontally with constant velocity wu. For the present applica- 

tions we need only the expressions when the axis of the doublet is horizontal 

and in the direction of motion ; further, we take moving axes with Ow in the 

direction of motion, O in the free surface, Oz vertically upwards, so that the 

position of the doublet is the point (0,0, —f). The velocity potential of 

the fluid motion is given by* 

@ 

cos 00 | em KH) FiRm pe de 

Ml (i cos 040 [ Be irae (0) 
AES 0 K — Ky sec? 0 + iusec 0 

where 7 = x2cos 0+ ysin 0 and ky=g/u*?. The real part of (1) is to be 

taken. The first term expresses the velocity potential of the given doublet in 

a form valid for z + f > 0, that is for points above the doublet. In the second 

term pis a small positive constant which is ultimately made zero. The surface 

elevation ¢ is given by 

mio ea (2) 

This gives 
T te) 2 p—Kftine 

¢=Lim >| ao | SiMe Cm ak (3) 
u>0TUS-, Jo K—kgsec? 0+ iu sec 0 

In this form € is finite and continuous, and the expression may be generalised 

by summation or integration for a distribution of doublets. We shall consider 

here the distribution to be in the vertical plane y = 0. If M(h, f) is the moment 

per unit area at the point (h, 0, —f) we have 

1 [o} °oM ] dl d 7 d0 oa) Ke ews Hino’ d (4 

== (sf) ; ile [, kK — Ky Sec” 6 + au. sec 0 - ! 

* © Proc. Roy. Soc.,’ A, vol. 121, p. 518 (1928). 
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where ow’ = (x —h)cos 0+ ysin 0. We have omitted here the symbol for 
the limiting value as p. is made to vanish, but that is always to be understood. 
It is assumed that the integrals are convergent. From a physical point of 
view it is easily seen that divergent or indeterminate integrals may arise if 
the distribution contains finite sources or sinks which extend up to the free 
surface of the water. From the method of obtaining the velocity potential 
(1), we see that the appropriate form of (4) in such cases will be found by taking 
the integration with respect to the depth f to extend from a positive quantity 
d to mfinity and then considering the limiting value as d is made to vanish. 
We may note another form for (4) which is obtained by integrating by parts 
with respect to . Provided M is continuous in this variable and is zero at 
the two limits, we have 

‘oO eat bica’ & [i ail y eee Seen AC, g Od yo ere (5 
5 =| oh if | _see \ Kk — Ky Sec? 6 + iy sec 0” oan) 

Further, the normal component of fluid velocity at any point of the vertical 
plane y = 0 is equal to 

2 OM/oh. (6) 

Hence from (5) we may obtain the surface elevation for any assigned dis- 
tribution of normal fluid velocity over this plane. 

3. Consider first a simple line distribution of constant moment M per unit 
length on the z-axis, extending from the free surface to an infinite depth. 
Here we shall have to suppose first that the distribution extends up to a depth 

d below the surface, and then take the limit as d is made small. 

Integrating with respect to f, we obtain 

7 eo) —Kd tine 

t= | a0 | 2a a (7) 
C15) 0 0 K — Kg sec? 0 +- 2y sec 0 

Tn the integrand we write 

K a Ky Sec? 9 
K — Ky sec? § + in sec 6 K — Ky sec? § + iu sec 0’ (8) 

omitting terms which will give no contribution in the limit when p is made 
zero. The integrations in 0 and « in (7) corresponding to the first term on the 
right of (8) give the value 2r/r(d? + 22 + y?)#. Hence, putting d = 0, the 
contribution of this part to the surface elevation is 2M/u(a? + y2)}. Taking 
the second part of (8), the corresponding integral in (7) remains convergent 
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when we put d = 0, provided & is not zero. Hence we obtain, for all points 

other than the origin, 

2M KoM [” 6 ( 2 ene 
= ———_ } 2 6d | ————_—__———ck. (9 

‘ veLy TU [se 0 K — ky sec? 0 + iu sec 0 a) 

We shall limit consideration at present to the surface elevation along the line 

of motion, that is for y= 0; we have 

2M 4M 1/2, 3 [ exe cos 6 

= ic Og Wee se CRE Ne ean od ane Gt 
6 AIL TU I, cal ) K —Ky sec? § + ip sec 0 a“ cy) 

noting that we require the limiting value of the real part as u is made zero. 

The integration in « may be transformed by regarding « for the moment as 

a complex variable and considering a contour integral taken round a suitable 

path according as @ is positive or negative. In this process it is the residue 

at the pole of the mtegrand which gives the expression for the waves in the 

rear of the system. The result, when uw has been made zero, is 

| ” Cos (Ky ma sec 0) din 

0 1+m 

27 sin (kor sec 9) + 

forz> 0; 

(® cos (Kk gma sec 8) 

J0 1+m 

For the integration with respect to 0, we require the following results 

dm; tori << 0s) ((1i)) 

ie sec? 0 sin (gx sec 0) d0 = —= Y, (ko%), (12) 
0 hed 

|" sect 6 d6 I" cos («gma sec 0) Fp ia mace ia J, (koma) tes 

Jo 0 1+m 2Jo 1lt+tm 

el db ts Te i Jo (Kgma) cb 

Qype Aye Jo (1 + m)* 

2 2 
=— ae ale 7 ea (kot) — Y, (kx) — 2}. (13) 

In this J and Y denote Bessel functions, and H is Struve’s function, the 

notation being that of G. N. Watson’s “ Treatise on Bessel Functions.” Col- 

lecting these results and putting in (10) we obtain the surface elevation on the 

line y=0. To avoid any possible ambiguity in signs, we shall find it con- 

venient to write xz’ for —a and so restrict « and 2’ to positive values; 2 is 

thus distance in front, and «’ distance behind the moving system. We obtain 

cB LH (cae) — Ya ker) 21; a> 0 : x) 
- 9 

c= Bea H oe!) — Ya oot) 2} FRE Va eee); > 0. (18 

350 



Ship Waves. 5 

The quantity H, — Y, is monotonic and decreases to an asymptotic value 

2/x. The symmetrical terms in (14) represent the local disturbance, becoming 

infinite near the origin like 21. The last term in (14) represents the wave 

disturbance in the rear. The expressions are easily calculated from tables 

of the functions, and fig. 1 shows the two parts of the disturbance. 

It will be seen that there is discontinuity at the origin, but that arises from 

extending this particular distribution right up to the free surface. If we 

retain the quantity d used at the beginning of this section, it is easily seen that 

the discontinuity is associated with the last term of (14) ; for any finite value 

of d, this part of the disturbance is zero at the origin. 

4. Consider now a uniform distribution over a finite length of the vertical 

plane y = 0, extending over the range —1 <<a <J. This might be deduced 

from the previous section by integrating with suitable precautions to allow 

for the discontinuities in those expressions; but we shall use the general 

formula (4). Suppose in the first place that the distribution extends from a 

depth d to an infinite depth ; then we have 

M 1 foe) 7 ro Kee Ki tio’ 

=| a d | PO (inepesete CAE IO 2 IN 7 15 
: mile Ja J ik K — Ky Sec” 6 + iu sec 9 5 me) 

For the elevation along the line y = 0, this gives 

6 | 2 0 p—Kd fptx (z—l)cos@ __ ix (x+U) cos d 

ae | sec 040 | corm COT eee ph JG) 
Tu Jo 0 K—k,sec? 6 + iusec 0 

We may put d=0 in (16). Further, the disturbance separates into equal 

and opposite disturbances associated with the front and rear of the system, 

or, as we may call them, into bow and stern systems. Writing q, for x — 1, 

we have to evaluate the real part of 

i ar | 2. () elk Cos 8 

a \ sec 00 | —_—__—___—___———_ (17) 
0 

- K. 
0 K — Ky sec? 8 + tu sec 0 
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We transform this as in the previous section, and also make use of the following 

evaluations 
7/2, 2 

| sec 0 cos (Koq, sec 0) d0 = — ale (Koq,)- 
0) 

[sec oan [* Salama see 6) gy, = (* Tolsafit) dm 0 iL + m 2 J0 1 aa m J0 

= © {Hy (com) — Yocom) 8) 

Using, as before, g, for distance in front of the bow and q,’ for distance behind 

the bow, we find that the bow system is given by 

M 
C= — {Hy (Ko%1) — Yo (KoH)}3 G1 > 0 

U 

4M M , ’ 
Ps “= — Yo (kot) 5 qi > 9. (19) C= ; {Hp (kor) — Yo (Ko )} — 

There are similar expressions for the stern system with qg=« +l, all the 

signs bemg changed. These results are easily calculated from tables, and 

curves for the local disturbance and the waves for both bow and stern are 

shown in fig. 2. 

The complete disturbance is the sum of all the curves shown in the figure. 

The distribution of doublets is equivalent to a vertical line of sources at the bow 

and a vertical line of sinks at the stern. It may be noticed that the elevation 

os 

Fie. 2. 

becomes logarithmically infimite at bow and stern, and the discontinuities 

there arise as described in the previous section. The local disturbance is 

symmetrical fore and aft when taken as a whole, but is anti-symmetrical for 

bow or stern separately. If the complete disturbance associated with the bow 

is called a positive system, the stern generates an equal negative system. 
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5. The system we have just considered may be supposed to correspond to 

a ship with bluff bow and stern. We may examine the effect of pomting the 

ends by the following distribution ; the moment per unit area 

=M, for—a<a<a 

=M(l—2z)/(l—a), fora<a<l 

=M(l+2)/(l—a), for—l<a2<—a, (20) 

where M is a constant. The moment is zerbd outside the range specified in 

(20). 

If we replace M in (20) by ub/2zx, in accordance with (6), we see that if 6/1 

is small the corresponding form of ship is that examined by Wigley in the paper 

already quoted. Wigley has worked out the surface elevation along the line 

y =0 from Michell’s formule, giving suitable interpretations to the indeter- 

minate integrals involved in those formule. Here we shall use the general 

form (5). We may take the distribution to extend right up to the free surface, 

as it appears that the resulting expressions are finite and continuous through- 

out. 

From (5) and (20), after carrying out the integration with respect to f and h, 

the surface elevation for y = 0 is given by 

eqs esa | sect 6 d0 [ eC Aiea eer 
mu (l — a) Jo o K (kK — ky sec? 0 + ap sec 8) 

where 
N = as (+a) cos 0 __ et (c+l) cos @ __ Bix (x—l) cos 0 aL ei (%—a@) cos a (22) 

We notice from the form of N that the singularity at « =0 in the integral 

with respect to « is only apparent. On the other hand, the integral as it 

stands cannot be separated directly into four parts associated with the points 

-+ta, --l respectively ; this may, however, be effected by a slight alteration 

which does not affect the final result for the complete system. 

If we write 
4M 7/2 5 io) ih ekd cos 8 

———— 648 |. ————_________ 
$(@) ail et o K (kK — kg sec? 6 + ty sec 0) < 

4M 
= ———_ ff ao (23) 

then we have 

C=S(@—1) —C(e@—a) -—Cw+a)+C(e+)). (24) 

The integrals in (23) may be transformed in the usual way to separate out the 
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two parts of the disturbance in each case. We require also the following 

results 
7/2 Kod 
| sip (coq sec 0) d0 = — = J Yo( d= Po (xan) (25) 
0 0 

where the P functions, which have been used previously in wave analysis, are 

defined by 
ar | 2. 

Fon (P) = (— 2)" | cos®” 9 sin (p sec 0) dO 
0 

tr | 2 

Ponsa (p) =(— 1)" | cos*"*1 § cos (p sec 6) dO. (26) 
0 

We have also 

{" a0 I 1 — cos (ky mq sec 8) shin 

0 0 m (1 + m) 

= a dt {" Tq (mt) dm 

2 0 0 1 + m 

ao} 
=F [Go —Yo hd =F Qu), (27) 

using the notation introduced by Wigley for this part of the disturbance. 

Retaining q for points in front and q’ for points behind the origin of a dis- 

turbance, so that g’ = — q and q, q’ are both positive, we find after collectmg 

these results that 

FQ) =—s— Qo (ko), 9 > 0 
0 

acho Tr Qo (Kog’) + = Po (ky), q > 9. (28) 

The complete surface elevation may now be found from (23), (24) and (28). 

The Q terms represent a local disturbance which is symmetrical fore and aft 

for the system as a whole, while the P terms give the wave disturbance in the 

rear of each of the points --a, +l. 

If M is put equal to wb/2x, these results will be found to agree with those 

for the model examined by Wigley in the paper quoted above, and reference 

may be made to it for a detailed comparison with experimental results. 

It should be noted that the method used in (23) and (24) for separating the 

disturbance into four parts is reflected in the artificial character of the local 

disturbance associated by (28) with an isolated point g=0; the function 

Qp is zero at its origi and increases indefinitely with distance from it. The 

354 



Ship Waves. 9 

local disturbance decreases with increasing distance when we sum for the 

system as a whole. The localisation of the disturbance into parts associated 

with special points is in general no more than a convenient help for purposes 

of calculation and description. 

6. The previous settion gives a surface elevation which is finite and con- 

tinuous throughout, and it is simple to extend the method to cover any form of 

distribution. 

We begin, for simplicity, by considering any limited distribution of which 

the graph is made up of straight lines. 

The general expression (5) gives, for infinite depth of distribution, the 

elevation along the line of motion as 

s io) aT ios) ix (w—h) cos cat Man |” see 900 f° ik. 
TU Jo dh 0 K — Kg sec? 8 + zu. sec 0 —7 

Take the integration with respect to 4 along two parts of the range meeting 

at a junction h,,, and we obtain, associated with this junction 

ekg cos 0. (30) 

r 

dM 
dh 

a 

kK cos 8 

where the coefficient in straight brackets is the increase in slope of the M, h 

graph in the positive direction, or tan ¢, — tan ¢, in terms of the slopes of 

the adjacent parts of the graph. It should be noted that the positive direction 

of h, and of a, is taken here in the direction of motion, that is, from stern to 

bow. 

It is clear that for any limited distribution which is zero outside a certain 

range in h, we have from (29) and (30) the complete surface elevation in the 

7 4 cc > a ® of (7h) cos 6 

c=-+\ sect ode fe? en Sa aon r de. (31) 
o K(k — Ko sec? 6 + iu sec 8) 

form 

where the summation extends to all the junctions, including the bow and stern. 

Further, the algebraic sum of all the changes of slope is zero; hence we may 

separate out the calculation for each junction by writing (31) in the form 

s oct 0 — pix (&—h,,) cos 
ws dM | sect 0.40 | CU Cees Seo Bs 

TU Up \\> jae o K (kK — ky sec? 6 + wy sec 8) 

4 dM |s eteN LAS (ep a mir eae (x — h,s), (32) 
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where F is the function specified by (28) for positive and negative values of the 

argument. 

We may now complete the expressions to include a distribution in which 

there are ranges of continuous change of gradient. It is obvious from the 

preceding argument that the complete expression is 

ca Su { |S 

where the summation covers all points of sudden change of slope and all ranges 

aM “F (@ — hes) + \aa F(c—h) an, (33) 

of continuous variation. 

The function F can easily be tabulated and graphed by means of Q,) and Pp. 

In summing and integrating in (33) it is to be noticed that the Q, terms are 

symmetrical before and behind each element, while Py only exists in the rear 

of each element. When the distribution M is a sum of integral powers of h, 

it appears that (33) can be expressed in terms of the P functions defined in 

(26), for the wave disturbance, together with a similar series of Q functions 

for the local disturbance. But even if M is not given in simple analytical 

form, the elevation could be calculated directly from (33) by numerical or 

graphical methods of integration. 

7. We have been discussing the fluid motion due to a given distribution of 

doublets, the surface elevation we have calculated being one of the stream lines. 

It would be of interest to trace, if possible, other stream lines so as to exhibit 

the form of a submerged solid to which the given distribution is equivalent ; 

but the calculations would be lengthy, even in the simplest cases we have 

considered in the previous sections. For a ship model we have already men- 

tioned the usual approximation for the equivalent distribution of doublets 

when the ratio of beam to length is small enough. For a model of infinite 

draught, whose horizontal half-section is given by y =f(h), we have 

Gel (34) 
Hence (33) gives 

ca2zlirmi re-tot+|s Fema}. G9 

We note that the magnitude of the contribution due to an angular pomt on 

the model is directly proportional to the change of slope that occurs there. 

8. We may illustrate the general result by considering briefly a model with 
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parabolic lines. We take the origin at the bow, and let the form of the half- 

section for y positive be given by 

y=bf1—(h+)P7/P}; —2<h <0. (36) 

The discontinuities of f’(h) at the bow and stern are both positive, and equal 

to 2b/l; while f’"(h) is constant throughout the range and equal to —26/I?. 

Hence from (28) and (35) we have, from the discontinuity at the bow, 

=F Qwloo, 20 
TK g 

/ 8b U 1 id 

= — —— Qo (ko 2) + = Po (ko “); a > 0. (37) 
TK ol 

There is an equal system for the discontinuity at the stern. 

Consider now the contribution due to the curved portion and take first the 

wave terms. For a point behind the stern («’ > 2I) we have 

TK gl” 0 

20 

ages | Py fico (a! — B')} ah. (38) 

We have, in a notation already used, 

| Po (u) du =1+ P, (u) 

= Pp*(u), say. (39) 

Thus from (38) and (36) the complete wave disturbance at a pomt behind the 

stern is given by 

8 {2 t = {2 = So atyh en Ob. [me (ee Dee OT (eect Te ce 21) | (40) 
TK ol Kol 

Taking a point between the bow and stern (0 <2’ < 21), it is easily verified 

that (40) gives the wave elevation for all points with the convention that the 

functions P, and P% ‘ are to be taken zero for negative values of their arguments. 

It may be noted that as these functions are zero for zero values of their argu- 

ments, the expression is continuous throughout. 

Similarly, if we consider the local disturbance and take first a poiwt in 

front of the bow (a > 0), we readily obtain from (28) and (35) 
- 

t= — BL atin) + Qa tka (@ + 20} + A (Qs (eye) — Q, (coe FB} | HD 
‘Ko Ko 

where 

Q, (u) = | Q, (u) du. (42) 
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By taking points between the bow and stern and behind the stern, it may be 

verified that (41) gives this part of the elevation for all points on the under- 

standing that each function Q, is symmetrical about the zero of its argument 

while each function Q, is anti-symmetrical, that is Q)(— vu) = Q, (wu) and 

Q, (— 4) = — Q, (w). 
In (40) and (42) we have the total elevation expressed in terms localised 

at the bow and stern, and in functions which are easily calculated and tabulated. 

The quantities have been calculated, without attempting any great degree of 

accuracy, but sufficiently to show the character of the curves. These are shown 

in fig. 3 in relation to the length of the model for the velocity given by 

Kol = gl/u? = a. 

Fie. 3. « 

The total elevation is the sum of the four curves which are shown in fig. 3. 

One curve, symmetrical fore and aft, is the complete local disturbance given 

by the sum of all the Q terms. Then there are two equal curves, one starting 

at the bowand the other at the stern, for the wave terms due to the discontinuity 

in slope at the bow and stern. The fourth curve is the total contribution of 

the curved surface to the wave part of the elevation. 

9. Another case of interest, which will only be mentioned here, is an un- 

symmetrical model whose wave resistance has been discussed previously ; 

its form is given by 
y=—ah(h+l?, —l<h<0. (43) 

Here there is only one discontinuity in f’ (h), namely, at the bow, and f” (h) is a 

linear function of h throughout the range. It will be found that the wave 

elevation requires the first three terms Pp», P,, P, in the series of P functions, 

while the local disturbance can be expressed in terms of Qo, Q,, Q of a similar 

series of Q functions. 

To return to the general expression (35), it will be seen from the examples 

that the localisation of the disturbance at special points is largely a matter of 
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suitable integration. Consider, for instance, the usual form of model which consists of a parallel middle body with a curved entrance extending from the fore-shoulder to the bow and a curved run extending from the aft-shoulder to the stern. In the sense in which the term has been used here, the total eleva- tion can always be separated into parts localised at these four points, the bow and stern and the shoulders. This can readily be expressed analytically by suitable manipulation of (28) and (35); but it is hardly worth while pursuing the general analysis further, as it is simpler to work out the results directly for any particular form of model, 
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Ship Waves; their Variation with certain Systematic Changes 

of Form. 

By T. H. Havetocr, F.R.S. 

(Received February 24, 1932.) 

1. The following paper is an examination, by analysis and by curves, of a 

single definite problem in wave profiles. Consider a ship model, of great 

draught, in which at some point in the form, at bow, stern or shoulders, for 

example, there is a sharp corner giving a sudden change of slope of the hori- 

zontal lines of the model. What is the effect on the wave profile of replacing 

this sudden change by a gradual change of slope of the same total amount. 

but distributed uniformly over any given length of the ship’s form? Apart 

from direct applications, the problem is suggested by certain other considera- 

tions. In comparing theoretical and experimental resistance curves, I sug- 

gested some years ago* an indirect effect of the friction belt along the sides 

of the ship in that it may be equivalent to smoothing out the lines of the model, 

especially towards the stern. From an examination of interference effects 

with experimental models, it has been estimated that the effective length of 

the model is roughly 8 per cent. greater than the actual length, and this may 

probably be ascribed to some such frictional effect. The present paper deals 

with wave profiles since measurements of surface elevation are now becoming 

available, though the main results so far are for a simple model with straight 

lines and sharp corners ; such a form simplifies the calculations but no doubt 

introduces other complications in practice, and a small correction for the 

smoothing effect of a friction belt would not be likely to account for the remain- 

ing differences between calculation and observation. It must be noted, 

moreover, that there are other approximations in the theory, apart from the 

neglect of fluid friction, but these need not be discussed here. 

For these reasons no attempt has been made to apply the results of the 

present paper directly to experimental data, but it is hoped that the progressive 

series of curves will be of interest in showing the changes in profile due to 

successive changes of form of a definite kind. 

2. The general analysis will be quoted from a recent paper,f to which refer- 

ence may be made for further detail, and the expressions will then be adapted 

to the particular problem. 

* © Proc. Roy. Soc.,’ A, vol. 110, p. 233 (1926). 

+ ‘ Proc. Roy. Soc.,’ A, vol. 135, p. 1 (1932). 
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Take O im the free surface, with Ow in the direction of motion and Oz verti- 

cally upwards; and let w be the velocity of the model. We consider first 

a distribution of horizontal doublets in the plane y = 0, extending from the 

free surface down to a great depth, and we take the moment M per unit area 

to be a function of x only. Further, we suppose that the distribution of M 

is confined to a finite range in 2, is continuous within this range, and is zero 

at the two limits of the range. 

The surface elevation along the median line y = 0 is given by 

CSE {IM eR] 2) + (MGR — Mai}, 
where the summation covers all points of sudden change in the gradient of M, 

and the integrals extend over the ranges of continuous variation of gradient. 

The function F is defined for positive and negative values of its argument by 

F (q) = — 5 Qo (xo) 
Ko ; ) 
TT AT 

Ri 9) — Fe, Qo (Kog) + — Po (x09); 
Ko Ko 

with ¢ > 0, and ky = g/u?. 

We have also, for positive values of , 

x [P 
Pop) =—5 | Yon) ap 

4 Jo 
, (3) 

in the usual notation for Struve and Bessel functions. 

One of the approximations of the theory lies in the connection between the 

form of the ship and the equivalent distribution of doublets in the median 

plane y= 0. For a ship model, of infinite draught, whose horizontal half- 

section is given by y = f(z), the usual approximation amounts to taking 

M’ (0) = (u/2r) f’ (2). (4) 
With this relation, the surface elevation along y = 0 is given by 

2 , s ” C=SE IP OER —2)+ (sf MPe—Hail. — & 
Here x, and h, are positive in the direction from stern to bow, «,, being the 

position of any sharp corner in the form of the model. With this convention 
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the discontinuities in f’(x) at stern and bow are both positive; at an inter- 

mediate sharp corner, say, at a shoulder, the discontinuity weuld usually 

be negative. Along the curved lines of the model f(A) is negative, except for 

hollow lines where the form is concave outwards and where f’’(h) is positive. 

Thus, knowing the character of the function F, the expression (5) gives a 

general idea of the contributions of the various parts of the form. These 

possibilities are illustrated in fig. 1, which represents a half section of a model 

by a horizontal plane ; or, to pe more exact, the diagram gives the distribution 

R F (2) A 

Stern Bow 

Fic. 1. 

of doublets which is approximately equivalent to a model of this form. The 

figure also indicates the conventions for direction which are adopted throughout 

this paper. 

3. We now isolate one particular feature for examination separately. It 

should, however, be noted that the function Q defined in (3) increases without 

limit as its argument becomes greater, though the expression (5) for the model! 

as a whole remains finite everywhere. Therefore there is a certain artificiality, 

as regards that part of the disturbance, in applymg the expressions to an 

isolated element of the form; but that may be allowed for, and in any case 

the method gives the differences made by changes in any particular element. 

Consider a point on the model, given by « = a,, where the lines of the model 

are straight lines meeting at a finite angle, for example, P, Q, or R in fig. 1. 

Let C be the discontinuity in f’ (x) at that point ; that is, C is the difference 

of slope of the lines forward and aft of that point. Then, from (2) and (5), 

the contribution of this element to the surface elevation is 

a= ae (x — a) 

= (4C/rK9) {= 4£Q5 (kom) + Po (Ko7's)}; (6) 

where q, = «© — a and q’,; =«x,— «x. Further, we may use (6) for all values 

of a with the convention that P, is to be taken zero for negative values of its 

argument, and that Qo (— p) = Qo (p). Now suppose that the same change of 

slope is carried out uniformly in a given range; that is, suppose the sharp 
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corner replaced by a parabolic are extending from a = x, to 7 = ag, the point 
«, lying within this range. Considering the effect of this by itself apart from 
any other changes, we see from (5) that the corresponding contribution to the 
surface elevation is now 

IC za 

cn = | Tee —~ I) ai (7) 
were Zs 

We shall use the notation 

Q: (p) = i Qo (p) dp, (8) 

Pot (p) = 1+ Ps (p) = ("Po (p) ap. (9) 

After evaluating (7) for points in advance of x3, between 25 and 3, and in the 
rear Of Xa, we find that we may express (7) in a single expression for all values 
of x, namely 

Co3 = —> (= 494 (072) + £Q, (093) — Po? (koa) + Po (kog’s)}s 
Tg” (Cgz— Lp) 

(10) 
with dz = % — x3 = — qo, 3 = & — %3 = — q’y, and with the convention that 
P, ‘1s zero for negative values of its argument, while Q, is anti-symmetrical 
So that 

QO, (= p) = — %(p). 

The expression (6) is, of course, the limiting value of (10) when 73 — ag is 
small and the points x, and x; ultimately coincide with the point 2. 

Numerical values of the functions may be calculated from their definitions 
as integrals, or from suitable series ; for example, using the expansion of Hy 

as a power series, we have 

me 4 6 Le i eg ce a ag ica aaa 
DOP) To (Bisse topsite eae nerainG oD 

p 
—_ 7) =i “i p (P = 

Q; (p) = Po (p) + 2.3.4.5 2 e607 neers 
DoS | yeh a (12) 

4. The special object in view is a comparison of the relative values of (6) 
and (10). The quantity C may be either positive or negative, and z, may be 
at any point between x, and v3. But to make the problem definite in the first 
place, we suppose C negative and take 7; =, and a, <a,; thus we are 
considering a sharp-angled shoulder on the model, such as Q or R in fig. 1, 
with the smoothing out entirely to the rear of that point. This process, if 

363 



Ship Waves. 469 

carried out on an actual model, would no doubt involve other changes which 

would have to be considered in a theory capable of taking exact account of 

actual dimensions ; but meantime we may isolate the effect of this particular 

change. 

For convenience we consider separately the effect on the local disturbance 

and on the wave motion to the rear. Taking the former, we see from (6) 

and (10) that the difference amounts to replacing + Qy (koq,) by 

a {Q1 (Kod2) — Q, (Ko%1)}- (13) 

This can be shown in a form applicable to various velocities and to various 

ranges of 7, — x, by graphing the quantity 

Zz {Q (p + ) — Q (p)} (14) 

on a base p, for several values of k. These curves are shown in fig. 2. 

Fia. 2.—Curves of {Q (p + k) — Q, (p)}/4k for different values of k. 

In applying these curves to actual distances along the ship model, we note 

that p= Kyv = ga/u?, where wu is the velocity; and similarly k = gd/u’, 

where d is the range over which the original sudden change in slope has been 

distributed. Thus the relative importance of the effects depends upon the 

ratio gd/u?, or upon the ratio of d to A, the wave-length of straight water waves 

for velocity uw. In the diagram, k = 0 denotes the curve for the sharp corner ; 

the bow of the model is to the right of the diagram and the stern to the left. 

Apart from the general smoothing effect, the chief point to notice in these 

curves is the raising of the profile forward of the point in question and a lower- 

ing to the rear of it. This is due to taking the range d entirely to the rear of 

the original sharp corner. If, on the other hand, the corner is taken at the 

middle of the range d in each case, by a suitable relative displacement of the 

curves, it is easily seen that the smoothing of the corner does not make any 

appreciable difference to the local disturbance except within the range d 

itself. 
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Turning now to the wave portion of the surface elevation, the change from 
(6) to (10) consists in replacing — P,(«9q’,) by 

aa (o/s) — Po? (Ko9's)}- (15) 
Ko (Y'1 

In fig. 3 curves have been drawn for the quantity 

{Po (p — k) — Py 4 (p)}/k, (16) 

on a base 7p, for several values of hk. 

There are several points of interest in these curves. Since k = d/2xA, the 
relative effect of smoothing out a sharp corner over a given range is less the 

Fic. 3.—Curves of {P,~!(p — k) — P,—1(p)}/k for different values of k. 

smaller the ratio of d to A, as might be expected. In the curves for the smaller 
values of k, although there is some diminution of amplitude, the more notice- 
able effect is the displacing of the troughs and crests to the rear, an effect 
which would increase the apparent interference length of the model. For the 
larger values of k, from about & = 2, there is a pronounced lessening of the 
amplitudes. 

On the convention already described, in calculating these curves from (16) 
the first term is zero until after p = k, and hence within the range k, the curve 
is simply the value of — P,(p) . /k. This quantity has a first maximum 
numerically, at about p = 2-54, and this may be observed in the curves for 
= 3. 4,5, 6. Further, in the curves for the higher values, the effect of later 

maxima of the same quantity may be noticed; for instance, with k = 6 the 
range of continuous variation of slope is practically equal to the effective wave- 
length, and so subsidiary interference phenomena of this nature are obtained. 
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By displacing the curves to right or left we could examine the case when the 

smoothing of the lines takes place partly in front of the corner; and for a 

positive discontinuity the curves may be inverted. We may thus obtain, for 

example, some idea of the effect of smoothing out the lines of a sharp-angled 

stern, whether actually or by the equivalent effect of a friction belt. 

Summary. 

An examination, by analysis and by curves, of the changes in wave profile 

produced by replacing a sudden change of slope in the lines of a model by a 

continuous variation of the same total amount uniformly distributed over a 

given length of the model. 

HaRRISON AND Sons, Ltd., Printers, St. Martin's Lane, London, W.C.2. 
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The Theory of Wave Resistance. 

By T. H. Havenock, F.R.S. 

(Received August 6, 1932.) 

Introduction. 

1. In the following paper general expressions are obtained or the wave 

resistance of a continuous distribution of sources and sinks over a surface within 

the liquid, and also for a similor distribution of normal doublets. These 

expressions follow directly from ve: ults given previously,* and may be applied 

to give the wave resistance of avy solid for which a suitable distribution of 

sources or doublets over its surface can be found. 

The opportunity is taken to give, for comparison, the similar results for a 

distribution of pressure over the surface of the liquid, using the same notation 

and the same general method of calculating the wave resistance. 

The various results are discussed briefly in relation to the ship problem. 

Certain interpolation formule, of a semi-empirical nature, have been proposed. 

recently in attempting to extend the range of existing expressions for the wave 

resistance of a ship ; these are shown to have their interpretation as particular 

cases of source distributions of the nature considered here. 

Source Distribution. 

2. We begin with a simple point source of strength m at a depth f below the 

free surface of the liquid, and suppose the source to be moving horizontally in 

the direction Oz with uniform velocity c. Take the origin O in the free surface 

with Oz vertically upwards, the source being at the point (0, 0, —f) referred to 

* © Proc, Roy. Soc.,’ A, vol. 118, p. 24 (1928). 
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moving axes. Let ¢ be the surface elevation, and assume a frictional force in 

the liquid proportional to velocity, the frictional coefficient being ultimately 

made zero. 

The pressure condition at the free surface is 

<t —gC + v'd = constant, (1) 

and this gives 

Cr a 
Ae AP 0z p on °, o 

at 2=0, with xy =g/c? and u=y’/e. Assume for the velocity potential 

= [ do (f em KEN HID die 
21 ——T. 0 

t {i d0 I. F (c, 0) e+ de, (3) 
—T 0 

where @ = xcos 0 + ysin 0, and the real part of the expression is to be 

taken. The first term in (3) gives the velocity potential of the given source, 

namely m/r;, in a form valid for z+ f> 0. From the surface condition (2) 

we obtain 

18a, @)) 2 a 28 arene eee os) © 
2m kK — Ky sec? 0 + iu sec 0 

Hence we may write the solution in the form 

pa B— Bl cot oa {8 i, 6) . K, 

fy es 0 K — Ky sec” 0 + zusec 0 

where 

mae ty (e+fy?; re=2+ y+ (2 —f). 

It is to be understood that the limiting value of (5) is taken for > 0. 

We may now generalise by integration. We replace x and y by x — h and 

y — k respectively, and take o to be the surface density of source at a point 

(h, k, —f) on a surface 8 within the liquid. Thus the velocity potential is 

given by 

c aT [o} —K(f—zZ)+tco 

| ofS | sec? 00 | shoe eT Sela ai(6) 
T st 

. 2 

o K — Ky sec? 0 + iu sec 0 
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with 

re = (« —hP+ y—kP +e +f? 

ta = (c —h)? + (y¥ — hk? + 2 —f)? 
@ = (x — h) cos 0 + (y — k) sin 0. 

It is assumed that the distribution is such that the various integrals are 

convergent. 

3. To calculate the wave resistance R we use the method of the previous 

paper to which reference has already been made. With the inclusion of the 

frictional term in the equations of fluid motion, energy is dissipated at a rate 

equal to 2u’ times the total kinetic energy of the liquid and this must be equal 

to the product Re. As yu’ is made to approach zero the quantity so calculated 

approaches a finite limiting value, and its physical interpretation in the limit 

when there is no fluid friction is the rate at which energy is propagated out- 

wards in the wave motion. 

The rate of dissipation of energy js given by 

— we | 6 fas, (7) 
taken over the boundaries of the liquid. As we require only the limiting value, 

we have the wave resistance given by 

R= Lim po i 
u>0 —a 

[ b 2 de dy (8) 

taken over the free surface z = 0. 

Referring to (6), and putting the first two terms in the same integral form as 

the third, we obtain, at z = 0, 

7 (o) —xkf+ix 3 

a =| ds | dé | peli bustesiCiee Sint IL eg, (10) 
™ = 

- ? 

oz 0 K — Ky Sec? 6 + zy sec 0 

T ie) eT ita 

sec? 6 d0 | (9) Seely 
0 K — Ky sec? 9 + tu sec 0 

where the real parts are to be taken. 

After some reduction, we may write the real part of (9) in the form 

d= [. dé L {F, cos (kx cos @) cos (xy sin 0) 
—T 0 

++ F, sin («a cos 0) cos (xy sin 0) + Fy cos (kx cos 0) sin (ky sin 0) 

+ F, sin («x cos 6) sin (ky sin 0)} « dk, (11) 
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in which 
F, = — {(k — ky sec? 0) P, — pQ, sec 6} D 

F, = — {(k — ky sec? 6) Q, + pP, secb} D 

F; = — {(« — ky sec? 6) Qy — uP, sec 0} D 

F, = — {(k — k, sec? 8) Py + wQy sec 6} D 

D = ky sec? O/z« {(k — Ky sec? 0)? + u? sec? 0}, (12) 

and the quantities P, Q are given in terms of the source distribution by 

a | ae—! cos (kh cos 0) cos (kk sin 0) dS 

Py= | oe sin (kh cos 9) sin (kk sin 0) dS 

Q,= | oe “sin (kh cos 8) cos (kk sin 8) dS 

OQ, = | ce—*! cos (kh cos @) sin (kk sin 9) dS. (13) 

Similarly from (10), 0¢/0z is obtained in the same integral form as in (11), 

with quantities G instead of F given by the same expressions as in (12) but 

with 

D=k/r{(k — ky sec? 6)? + py? sec? 6}. 

The expressions for the surface values of ¢ and 0¢/éz are now in a form to 

which we may apply a theorem derived from the Fourier integral theorem in 

two variables ; namely, we have, with the above notation 

@@ awe ce ll a) GG 2G. GL Gi\ede (4) az | , 1 

Using (8), this reduces readily to 

Cs (o) 2 2 2 2 

18 = doshan che, ayn sec 6 a0 | Heese Honan ede Oho) gy 
0 A) o (kK — Kp sec? 0)? + u* sec? 0 

= 16mic,20 ( (P2-+ P,?-+ Q2-+ Q,2) sec 0 d8, (15) 
0 

where in (15) the quantities P and Q have the values given by (13) when « has 

been replaced by x, sec? 0. 
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This result may also be put in the form 

1 = Seeks (e (P2 + Q2) sec? 6 d0, (16) 

with i 

al = | o er see 8 C8 F(a cos 8 + y sin 0) sec? 6} dS. (17) 
sin 

In (17), the co-ordinates (h, k, —f) have been replaced by current co- 

ordinates (x, y, 2); since the sources are within the liquid, z is negative over 

the surface S. 

Doublet Distribution. 

4, A surface distribution of normal doublets could be obtained by general- 

ising an expression for any two doublets, but it can be deduced directly from 

(16) and (17). We have simply to regard the surface S in (17) as a double 

sheet with source densities c and —o respectively, and then proceed to the 

limit in the usual manner. The required result is obtained by applying the 

operator 
a) 0 a) 

[es = = 
Be ay ae! 

to the expressions in (17), (J, m, n) being the direction of the normal to the 

surface. If Mis the doublet moment per unit area, the axes being everywhere 

normal to the surface 8, we obtain, in this way, the wave resistance 

B= Suelo | (P2 + Q2) sec? 6 d0, (18) 
—in 

in which 

P= | M ese? {_ (J cos 6 + msin 8) sin (ky @ sec? 8) 

+ n cos (ky @ sec? 0)} dS 

Q= | M ese? {( cos @ + msin 8) cos (ky@ sec? 0) 

+ n sin (k gw sec? 6)} dS, (19) 

with o = xcos 0 + ysin 0. 

These expressions may be put into various alternative forms, and, of course, 

may be simplified when the surface distribution is symmetrical with respect 

to the co-ordinate planes. It may be remarked that an expression given 

previously for the wave resistance of any two finite doublets in given positions 

may be deduced as a particular case of these results. 



344. T. H. Havelock. 

Pressure Distribution. 

5. The wave resistance for a travelling distribution of pressure applied to 

the upper surface of the liquid has been worked out by various methods, but 

not by that used in the previous sections. It is convenient, for comparison, 

to have the general case set out in the same way and using the same principle 

for the calculation of the resistance. 

We begin by assuming a possible form for the velocity potential and finding 

the surface pressure to which it corresponds. 

We take 
fg ies) Ke+iKD 

= | sec 0d0 | Heh ts) Cats see K dk, (20) o K — Ky sec? 0 + iu sec 0 

with © = x cos 0 + ysin 0. 

From the kinematical condition at z = 0, the surface elevation is given by 

(a) KF (k) exe a 1 

=—.- 2 68d), ——~~—_____ 21 
c = |_see | K — Ky sec? 0 + insec 0 ay 

The pressure at the surface (zg = 0) is found from 

pe eON ' 99 b= — of — Gt + wd. (22) 

Using (20) and (21), this reduces to 

p= ae) I d0 |" KE (i) etx (ecos@ + ysin @) dk 

—1 /0 

= = Free I KF (1c) Ty (er) dic, (23) 
0 

where 7? = 27+ y*. Since we may write 

plr) = [: Ty (ter) 1 dic | ~p@O)ip keodvendles (24) 
Jo 0 

we see that 

a 7 oo f (x) eke tee 

— XG} 7) AG) = i] 5 25 

$ 2mco [e ee | K — Ky Sec? 6 + iy sec Qieaan ee) 

represents the solution for a surface pressure (7), symmetrical round the moving 

origin, with 

Fe) = | (@) So (er) a de. (26) 
0 

To generalise this, we first suppose the pressure concentrated round the origin 

and of integrated amount P, so that f(«) in (25) is replaced by P/27. Then for 
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any continuous distribution of pressure p(x, y), we obtain by integration 

() ene tina 

poae f p(h, k) dS [sec 0.0 | xdx; (21) 
a 4x*co 0 K — Ky sec? 8 + iu sec 0 

where now we have 7 = (x — h) cos 0 + (y — k) sin 0. 

6. We obtain the corresponding wave resistance from the rate of dissipation 

of energy exactly as in the previous sections, and we use the formula (8). 

The surface values of ¢ and 0¢/0z are put into the form (11) and the calculation 

carried out as in (14). From the similarity of the forms for ¢ in the two cases, 

the result may be written down. We obtain 

roe, (i sec? 0 dO ( ae G
E yee art On)) dk R = Lin 

u>0 477079 o (kK — Ky sec? 0)? + py? sec? 0 

Dace i (P22 pr O2-- @,2)sec> Old 0) (28) 
Teo Jo 

where the quantities P and Q are as in (13) with f zero and o replaced by p. 

We may also write this in the form 

2 (te 
R= (P2 + Q2) sec® 0 d0, (29) 

Pee) Aaa 
with 

ol = |p (a, y) nee {ky (ec cos 0 + ysin 6) sec? 6} dS, (30) 

the latter integrations extending over the given surface distribution of pressure. 

We may obtain an alternative form by integrating with respect to x in (30) ; 

provided the pressure distribution is continuous and is zero at its outer 

boundaries, we then have 

Lor 

== L. | (P2 + Q2) sec? 6.40, (31) 
ATC 0 J-in 

with 

ot = [2 ae {ky (x cos 0 + ysin 8) sec? 0} dS. (32) 
x 

We may compare (31) and (32) with the expressions (16) and (17) for a dis- 

tribution of sources on a surface within the liquid. Suppose we may neglect 

the depth of this latter surface at every point ; then without considering the 

actual surface elevation, which would require a closer examination, we may 

say that the wave resistance for the two cases would be the same with the 

connection between the source density and the pressure distribution given by 

4rgoo = c Op/da. 
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Moving Solid. 

7. An obvious application of these results is to the uniform motion of a sub- 

merged solid when we replace the solid by a distribution of sources or doublets 

over its surface ; for a first approximation we may take the distribution to be 

that appropriate to the motion of the solid in an infinite liquid. This will, of 

course, give the same result as if we had used the system of sources and sinks 

which is the image of a uniform stream in the solid, or, in fact, any equivalent 

surface or volume distribution on or within the surface of the solid. Simple 

forms, such as the sphere or ellipsoid, for which the wave resistance has already 

been found, have been calculated from the known image system. For instance, 

the sphere was replaced by a doublet at the centre ; it can be verified, after 

some reduction of integrals, that the expressions (16) and (17) with the proper 

value of c over the surface of the sphere, lead to the same result for the wave 

resistance. In general, the expressions (16) and (17) allow the wave resistance 

to be calculated for solids for which an image system is not known, but for 

which the distribution of surface density can be determined by known methods 

of approximation. 

Consider now an open plane distribution of sources and sinks over the 

vertical zz-plane. In this case the normal fluid velocity at a point on either 

side is 2mc, where o is the source density at the point. For a ship of slender 

form, and small beam, symmetrical about the za-plane, the normal velocity 

is taken to be approximately c dy/ox if the surface of the ship is given by an 

equation y = f(z, x). From (16) and (17), the usual expression for the wave 

resistance follows : 

2. pin Ree “oe | (P2 + Q2) sec? 6 d0, (33) 
—}hr 

as | | EY greet OF (cyr sec 0) de de (34) 
x 

the latter integrations being taken over the vertical longitudinal section. 

For the other extreme case, a ship of flat form and small draught, comparison 

is usually made with a suitable distribution of pressure applied to the surface 

of the water, with the wave resistance given by, say, (31) and (82). 

The similarity between the expressions for the resistance in these two extreme 

forms has been remarked upon by Weinblum,* and more recently by Hogner.t 

In an attempt to cover both cases by a single expression, Hogner has proposed 

*G. Weinblum, ‘Z.A.M.M.,’ vol. 10, p. 458 (1930). 
TE. Hogner, ‘Jahrb. Schiffbautech. Ges.’ (1932). 
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a so-called interpolation formula which, when put into the notation of the 

present paper, is , 

pee — | "(P24 Q2) sec? 6 d8, (35) 
Pu me Jing 

al = {| a Get oe {icy (v cos 8 + ysin 8) sec? 0} da dy. (36) 

In (36) the integrations are taken over the section of the ship by the water 

surface, and the surface of the ship is given by an equation z= F(a, y). It 

may be noted that if dS, and dS, are the projections of an element of the 

surface upon the za-plane and the zy-plane respectively, we have 

(dz/0x) dS, = (@y/@n) dS, 

In the limit y > 0, (86) becomes equivalent to (34) under the conditions for a 

ship of small beam. On the other hand, in the limit z > 0, (36) reduces to the 

expression (31) for a pressure distribution with the assumption p= got. 

Without discussing this argument, it may be remarked that (36) 1s a particular 

case of the expressions in (16) and (17) for a distribution of sources over 

the surface of the ship. In the one extreme case, the narrow ship, we 

take co = (c/2z) dy/0x, the sources forming in the limit a plane distribution. 

For the other extreme, the flat ship, a similar approximation would be 

o = (c/27) 0z/ox. But it is only in these cases, when the source distribution 

approximates to a plane, that the normal fluid velocity can be expressed 

simply in terms of the source density ; these expressions do not hold when 

the distribution is on a curved surface or, in other words, when the finite beam 

of the ship 1s taken into account. 

It has been remarked that formule in use at present are in effect special 

cases of the general expressions (16) and (17), with simple approximations to 

the density of the source distribution. If we think of the distribution, appro- 

priate to motion in an infinite liquid, asa suitable first approximation, it might 

be suggested that this should be used over the curved surface of the ship 

instead of the present simple expressions over the vertical longitudinal plane. 

In one sense this would be an improvement, but it is not likely that it would 

give any better agreement with experimental results ; for the more we depart 

from the simple narrow ship the more necessary it is to take into account the 

effect of the wave motion upon the distribution of fluid velocity round the 

ship. 

Instead of attempting to assign in advance a distribution of sources or 

doublets over the surface of the ship, it might be left to be determined, from 
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suitable integral equations, so that all the conditions of the problem should be 

satisfied. This, in itself, would not amount to more than a formulation of the 

general problem in different terms and would not advance its practical solution, 

unless possibly such a form of statement should lead to improved methods of 

approximation for the equivalent distribution. 

HARRISON AND Sons, Ltd., Printers, St. Martin’s Lane, London, W.C.2. 
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WAVE PATTERNS AND WAVE RESISTANCE. 

By Professor T. H. Havetocg, F.R.S. 

[Read at the Summer Meetings of the Seventy-fifth Session of the Institution of Naval Architects, 
July 12, 1934.] 

INTRODUCTION. 

1. It is not my intention to discuss in this paper practical problems of ship resistance, 
but rather to review briefly certain points in the mathematical theory of ship waves and 
wave resistance. In doing so, I shall not attempt to give the derivation of formule or 

any mathematical analysis of them; my main object is to give a descriptive or qualitative 
account of some of the mathematical expressions and to show how in some cases deductions 
may be drawn from an inspection of them. 

The wave pattern made by a ship is familiar both from observation and as a subject 
of mathematical study, and it is equally fascinating from both points of view. Perhaps the 
earliest theoretical account is that given by Kelvin in 1887 in his well-known lecture on 
ship waves to the Institution of Mechanical Engineers. That lecture was based on mathe- 
matical work of which a later improved version was published by Kelvin in 1904,* and 
it is this later work which is usually quoted now in the text-books. The ship, in that 
work, is idealized to a point disturbance travelling over the water and at the same time 
sending out groups of waves which combine in such a way as to produce the characteristic 
pattern of transverse and diverging waves. The early history of this idea of wave groups 
and group velocity is also of some interest. In a letter written to Stokes in 1873, William 

Froude describes the motion of a group of waves, how the group as a whole advances with 
a less velocity than that of the waves composing it, wave crests advancing through the 
group in its motion and appearing to die away at the front while new ones are formed 
at the rear; he writes, in his letter from Torquay, “In my long experimental tank or 
canal here, I have frequent opportunity of noticing this in the propagation of artificially 
generated waves. I have not, indeed, yet investigated it quantitatively, because my hands 
are full: but at a later date when experiments on the oscillation of models will be the work 
in hand, I shall have to establish regular appliances for the generation of waves, and the 
investigation to which I refer will be comparatively easy.” It was in 1876 that Stokes 
gave the kinematical explanation of group velocity, a more general account being given 
shortly after by Rayleigh. This was followed in 1877 by Osborne Reynolds’ dynamical 

theory of group velocity, connecting the flow of energy and the rate of work of the fluid 
pressure in a train of waves; it is this latter point of view which is of fundamental 
importance in the theory of wave resistance. 

Much work has been done since then, both on the detailed structure of wave patterns 

* Edin. Roy. Soc. Proc., Vol. XXV. (i), ““On Deep Water Two-dimensional Waves produced by any 
given Initiating Disturbance”; “On the Front and Rear of a Free Procession of Waves in Deep Water’’; 

and “Deep Water Ship Wayes,” 
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and on the calculation of wave resistance, and more recently on the comparison of calculated 
results with experiment; but the fundamental principles remain the same, and it is these 
which I wish specially to keep in view in the following notes. We begin by considering 
freely moving wave patterns; that is, not forced waves produced by the motion of a ship, 
but waves moving freely and steadily over the surface of the water under the action of 
gravity alone. We imagine the pattern to be produced by the mutual interference of 
simple plane waves moving freely in all directions, their phases and velocities being suitably 

adjusted; the elementary properties of the pattern are described from this poimt of view. 
Then, considering the waves produced by a ship, we see that these must approximate, 
at a sufficient distance to the rear of the ship, to such a freely moving pattern; this is 
illustrated by calculations made for certain ship models. Finally, it is shown how the 
wave resistance can be obtained from considerations of energy when we know the structure 
of the wave pattern formed at a great distance in the rear of the ship. 

FREE WAVE PATTERNS. 

2. The simplest form of free waves on the surface of water consists of simple harmonic 
waves with straight parallel crests, the procession of waves extending over the whole surface. 
If the velocity of the waves is c, the wave-length is 2 7c?/qg for deep water; so that if 
we take an origin O in the surface and take Ow in the direction of propagation, the waves 
might be represented by 

£=sin 3 (@ — cd) «put Siveugsty, Rae ane ada UD) 

where ¢ is the surface elevation, and we have taken the waves to be of unit amplitude. 

Suppose now that the waves are travelling in a direction making an angle 6 with O2, 
and that the wave velocity is ccos@; then, with Oy in the surface and perpendicular to 
Ox, the waves are now represented by 

f =sin {x sec? 0 (xcos@ + ysin@ —ctcos@)}. . . . (2) 

where we have written « = g/c*. 
An equal procession of waves moving in a direction making a negative angle @ with 

Ox is given by 
¢ = sin {x sec? 0 (w cos 9 —ysin@ —ctcos6)}. . . . (3) 

Superpose these two sets of plane waves, and we have a wave pattern given by the 
sum of (2) and (3), or 

¢ = 2cos (x y sin 8 sec? @) sin {x (ce —ct)secO}. . . . (4) 

These have sometimes been called corrugated waves. . We may get a rough idea of the 
result by drawing parallel straight lines to represent the positions of the crests and troughs 
of the component systems at a given instant; and so we get the picture of a diamond- 
shaped pattern, covering the whole surface and moving steadily in the direction Ox with 
velocity c. 

We now generalize by supposing that we have simple straight-crested waves like (2) 
travelling forward in all directions included within 90° on either side of Ow. Superposing 
these component plane waves will give a surface elevation 

T 

2 
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WAVE PATTERNS AND WAVE RESISTANCE. 3 

and this will represent a free wave pattern of some form travelling steadily parallel to Ox 
with velocity c. 

We may again obtain a rough picture of the result by simple graphical methods. 
Suppose we represent a component plane wave of (5) by parallel straight lines showing the 
crests and troughs at, say, the instant t= 0, in the manner shown in Fig. 1, the full lines 
representing crests and the broken lines troughs. 

Now draw similar lines on the same diagram for a large number of values of 6 in the 
range from —90° to + 90°. It is instructive to take, for instance, intervals of 10° and to 

Fig. 1. 

draw 19 sets of lines as in Fig. 1. Such a diagram is not given here, as there is too much 
detail for reproduction on a small scale; but it is interesting to see the picture of a familiar 
wave pattern emerging from such a diagram. The curves which we see in process of 

formation are shown in Fig. 2. 
These curves are, of course, the envelopes of the lines of constant phase of the com- 

ponent waves, and their mathematical equations are most easily obtained by expressing 

Fig. 2. 

that fact. When we look into the formation of the curves we see that they represent places 
where component crests, or troughs as the case may be, combine together to give prominent 
features of the pattern; on the other hand, we may say that at points at some distance 
outside the region covered by these curves the component crests and troughs tend to cancel 
each other out on the average. We arrive in this way at the picture of a wave pattern of 
transverse and diverging waves, with a focus point O, and extending in advance of this point 
as well as to the rear; the whole forms a freely moving pattern travelling forward with 
steady velocity. It need hardly be said that this description of the pattern represented 
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4 WAVE PATTERNS AND WAVE RESISTANCE. 

by (5) is only a first approximation; detailed mathematical analysis is necessary for a more 
correct and intimate knowledge of the surface elevation. 

Examine more closely one of the curves of Fig. 2, say the portion OAB which is 
shown in Fig. 3 along with the crest lines of the component plane waves. 

We find that the transverse part AB is made up from those plane waves whose 
direction angles range from zero up to an angle 6@,, which is such that cos?@,—= 3, or 
0, = 35° 16’ approximately; the diverging part OA comes from the plane waves whose 
directions range from 6, to 90°. The angle between the crest line OA and the central 
line OB is 19° 28’, nearly. To complete our picture we require some information about 
the height of the waves in the pattern defined by the expression (5). All that need be 
said here is that, following a curve such as BAO, the height is fairly constant over the 
central portion of the transverse wave, increases in the neighbourhood of a crest point A 
and then decreases along the diverging wave to zero at the point O. 

It may also be noted that the wave-length A of a component plane wave being 
(2 7 c?/g) cos? 0, these wave-lengths range from 2 7 c?/g to zero. 

3. Consider for a moment the difference in these general results if the water, instead 
of being very deep, is of given finite depth 4. The relation between velocity and wave- 
length for a simple plane wave is different, and, moreover, there can be no plane wave 

A 

Rie. 3: 

whose velocity is greater than \/ (gh). Suppose we build up a pattern like (5) when the 
velocity c of the pattern is less than this critical value \/ (gh). We could trace the envelope 
curves in the same way and obtain a wave pattern similar to Fig. 2. The chief difference 
is that the wave pattern widens out; the angle of the cusp line is greater than the value 
19° 28’ for deep water and it increases with the velocity c. In addition, the transverse 
waves become less curved, the angle 0, of Fig. 3 being less than the value 35° for deep 
water and becoming less as the velocity c¢ is increased. 

If the velocity c is made greater than the critical value 1/ (gh), we see at once that 
we must omit a central portion of the integration in (5), because the component plane waves 
can only begin to exist at such an inclination 6 that their wave velocity ccos@ is equal 
to 4/ (gh). On working out the wave pattern in more detail, it is found that it consists 

then of only diverging waves. 
4. We return to the expression (5) for deep water. The origin O was taken at a fixed 

point, but it is more convenient to take a moving origin for the co-ordinates at the focus 
point of the wave pattern; so in what follows we shall write x instead of x —ct. Further, 

for brevity we shall write 
(x, y) = « sec? 6 (~ cos 6 + y sin @) Alpi oe tite (6) 

We may call the surface elevation given by 

7 

= |sneenai rem OM ok lero Heo 1 (C)) 

a simple sine pattern. 
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We could also have used a form 

C= |GOsG@mede ss 6 56 5 go 5 (). 

which may be called a simple cosine pattern. The general form of the pattern is the same 
in both cases, with the necessary changes in wave heights due to the interchange of crests 
and troughs. It would be of interest to have a more detailed mathematical and numerical 
analysis of these two simple forms. 

In (7) and (8) the amplitudes of the component plane waves are taken to be the same 
for all directions. We may now proceed to a final generalization by supposing that in each 
case there is an amplitude factor depending upon the direction of each component; adding 
the two forms, we arrive at a general expression for a freely moving wave pattern, namely 

t -{i (8) sin (x, y) a0 +| 

It is true that the amplitude factors may alter considerably our picture of the pattern, 
especially if they have pronounced maxima or minima; however, we shall see that most 
cases which have been calculated for ship models can be reduced to terms like (9) with 

simple amplitude factors. 

ies] bola Ocoee MG? 5 56 5s ». @& 

bola 

SHip WAVES. 

5. We have been dealing so far with a free wave pattern; that is, we have supposed 
the system to be completely in existence at some instant, and then afterwards it moves 
freely and steadily forward. 

Consider now the disturbance produced, in a frictionless liquid, by a moving ship or 
by a disturbing pressure system moving steadily forward. At some distance in advance 
of the ship there can be no appreciable disturbance, as we suppose it moving forward into 
still water. In the immediate neighbourhood of the ship the disturbance will be of a 
complicated character. But as we go further and further to the rear, the surface disturbance 
must approximate more and more to some freely moving wave pattern following on with the 
same speed as the ship. 

For instance, if a long cylindrical log is moved with steady velocity ¢ at right angles 
to its length, the disturbance at a great distance in the rear must approximate to a simple 
plane wave of velocity c, whose wave-length is therefore 27c?/g. It could be expressed 

by (1), taking some suitable point as the origin O, and including some definite amplitude 
factor; this amplitude factor would be the important thing left to be determined from the 

form of the cross-section of the cylinder and its velocity. Similarly for an ordinary ship 
form, the waves at a great distance in the rear must approximate to some freely moving 
wave pattern such as we have been considering; and for some suitable origin O, in or near 

the ship, they must therefore be expressible in the form (9), with amplitude factors f (@) 
and (8) depending upon the form of the ship and the speed. Without going into the 

details of calculating these expressions we shall now examine a few cases in order to illustrate 

the types of wave pattern which occur in such problems. 

Point DistURBANCE AND SPHERE. 

6. On account of its historical interest we may mention first the travelling point 
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6 WAVE PATTERNS AND WAVE RESISTANCE. 

disturbance examined by Kelvin in the paper to which reference has already been made. 
In this case the waves in the rear approximate to the form 

Nols 

C= A [see @ sin (x, y) dé Mm ORD el ome se ((IO) 
7 

where A is a constant, and we use the notation specified in section 4. 
We may describe this as a sine pattern with an amplitude factor sec? @, which varies 

from unity at #0 = 0° to infinity at 6 = 90°. We have seen, in section 2, that the transverse 

waves of the pattern come from the range 0° to 35° approximately, while the diverging 
waves come from the rest of the range 35° to 90°, taking one side of the central line O x. 
Thus we should expect the diverging waves in this case (10) to be increased in magnitude 

5 SS SS S58 

a 
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Fig. 4.—Grapus or Sect e~*/*°* por DIrFERENT VALUES OF xf. 

compared with those for the simple sine pattern (7); these features are unduly prominent 
in the Kelvin pattern in comparison with those made by an ordinary ship model. 
Incidentally we may note that the factor sec? 6 causes the expression (10) to have an infinite 
value at the focus point. 

An interesting contrast is for a small sphere, of radius a, submerged in the water with 
its centre at a depth f and moving with velocity c. The expression is now 

z= Beat | sect etn sin Go 4 6 6 0 (ii) 

2 

the focus point O being vertically above the centre of the sphere. 
In Fig. 4 are shown curves of the amplitude factor sect @ exp. (— kf sec? 6) for different 

values of «xf, that is, of g f/c?. 
From these curves we get at once some idea of the relative importance of the transverse 
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WAVE PATTERNS AND WAVE RESISTANCE. 7 

and diverging waves for different depths or for different speeds. We see that the effect of 
increasing depth, at the same speed, is to diminish relatively the diverging waves. 

But these are perhaps details of purely theoretical interest, and we turn now to some 

cases of ship models. 

MopeELs or Great DRAUGHT. 

7. We consider first a model of great draught, of uniform horizontal cross-section 
throughout and with parabolic lines; this is a model which has been investigated by 
Mr. W. C. S. Wigley, working at the William Froude Laboratory. Fig. 5 shows the hori- 
zontal section. - 

Taking the origin O at the mid-point, the equation of the curve ACB is y = b(1 — 2°//’), 

+ 

MG, 5), 

the beam being 26 and the length 2/. It can be shown that, on the usual mathematical 

theory, the waves in the rear of the model approximate to 

86 IF 

t= | 
This might be regarded as a sine pattern with a somewhat complicated amplitude 

factor; but fortunately we can dissect it into simpler components, for it is identically 
equal to 

9) 4 

«1 cos (x 1 sec 0) — cos @'sin (x l sec @)} sin (w, y)d@ . (12) At 
poy 

2 
46 esr eo. 

— sin (« — 1, y) 4 ; sin (x + I, y) 

4 4 

cos 6 cos (x — 1, y) — cos 8 cos (x +1, yao (13) 
ai g [2 g [2 

Here the pattern is seen to be the combined result of superposing four simple patterns, 
two focussed at the bow and two at the stern. The first two are simple sine patterns, 

with constant amplitude factors at a given speed; they may, in fact, be attributed directly 
to the finite angle of the model at the bow A and at the stern B respectively. The other 
two terms in (13) are cosine patterns, with an amplitude factor cos @ in each case; although 

one is focussed at the bow and the other at the stern, it is more appropriate to regard 
these two terms together as representing the resultant effect of the curved sides ACB and 

ADB of the model. 
A matter of great interest is the mutual interference of these four patterns according to 

the speed, the extent to which it is possible to make the crests of one pattern coincide 
with the troughs of another and the speeds at which maximum effects of this kind occur; 
however, these points are better considered in connection with the corresponding wave 

resistance. 
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8 WAVE PATTERNS AND WAVE RESISTANCE. 

Notice first the magnitudes of the terms in (13). The bow and stern systems are 
factored by c?/g1l, while the effect of the curved sides has the factor c*/g21?. Hence at 
low speeds the bow and stern provide the greater part of the wave system, but as the 
speed increases their relative importance becomes less. Then we have the effect of the 
amplitude factor cos 6 in the last two terms of (13). Remembering the distinction between 
transverse waves and diverging waves in a simple pattern, and that cos @ diminishes from 
unity at 0° to about 0-8 at 35° and then to zero at 90°, we may describe the result in 
general terms: the effect of the gradual change of slope along the curved sides of the model 
compared with the finite angle at bow and stern is to diminish the relative importance of 
the diverging waves. This point is amplified further in the following model. 

8. In this model one end, say the stern, is drawn out to a fine point. The model is 

again of great draught and is of uniform horizontal section throughout. Fig. 6 shows the 
form of the horizontal section. Sa 

-p----------fo 

Fig. 6. 

Taking the origin O at the bow, as in the diagram, the equation of the curved side 
OCB is 

276 
Y= aay 2 til) Bye gs etna Se ach ee I) 

The maximum beam 26 occurs at one-third of the length from the bow. 
The wave pattern in the rear is given, in our abbreviated notation, by 

gee eae eC. c2\2 CN oa 
= al sin (7, y) — 4 G) cos 6 cos (@, y) — 6 G cos? @ sin (x, y) 

2\ 2 2\3 

—2 (5) cos 8 cos (x + 1, y) + 6 (5) cos? 6 sin (x ++ J, ofa @ (15) 

Here we have five simple patterns, the first three focussed at the bow and the last 
two at the stern. The first term in (15) is the simple sine pattern due to the finite angle 
of the model at the bow; we notice there is no similar term for the stern because the angle 
has been smoothed away completely at the stern. The last four terms of (15) taken together 
represent the resultant effect of the curved sides OCB and ODB of the model. The 
general inferences are the same as for the previous model; but we notice that we have 
now, in (15), patterns with an amplitude factor cos? 6, and for such the relative importance 

of the diverging waves is still further diminished. 

Errect oF DRAUGHT. 

9. Another point about which we may make some broad deductions from the formule 
for the wave patterns is the effect of the draught of the model. In the previous cases 
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WAVE PATTERNS AND WAVE RESISTANCE. 9 

we have supposed this to be very large, or theoretically infinite. Let us suppose now that 
the model is of uniform horizontal section down to a depth d below the surface and is then 
cut off by a horizontal plane. For our present descriptive purpose, we may make some 
simplifying assumptions in deducing the formule for the wave system, but these need not 
be investigated here; it is sufficient to state the general result. The effect of making the 
model of draught d, instead of infinite draught, is simply to introduce into each of the 
ternis for the component patterns, in say (13) or (15), an additional amplitude factor, 
namely 

ie STC a een REPT ee hon eal oy uate nt AG) 

Since xd =gd/c?, the value of this factor depends upon the speed. Fig. 7 shows 
curves of this quantity (16), for different values of «d, for the half range of values of 
6 from 0° to 90°. 

From inspection of this diagram we see at once that, for a given speed, if the draught 
is diminished the transverse waves of the pattern become less important. We may put 

1:00 
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alongside this a remark drawn from observation; for instance, in Taylor’s Speed and Power 
of Ships there is the statement: “Narrow deep ships have wave patterns whose transverse 
features are more strongly accentuated than those of broad shallow ships.” 

This might, of course, be anticipated without any mathematical expressions. or the 
effect of a plane wave on the surface is only appreciable down to a depth of, say, half its 

wave-length. But of the component plane waves which combine to make the pattern, 
that which is travelling in the same direction as the ship has the greatest wave-length, and 
in inclined directions the wave-length is proportional to cos? 6 and diminishes to zero at 90°. 
Thus as we diminish the draught, for a given speed, the first components to be affected are 
those of longest wave-length and those are the components which provide the transverse 
waves of the pattern. However, the mathematical expressions enable us to obtain at least 

a rough quantitative estimate of the effect. 

WaveE RESISTANCE. 

10. We turn now to the calculation of wave resistance, and for this purpose it is 
essential to have a knowledge of the wave patterns we have been considering. Throughout 
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10 WAVE PATTERNS AND WAVE RESISTANCE. 

all this work we are assuming the liquid to be frictionless; or, rather, we suppose that 
frictional resistance and the effects of viscosity have been treated separately and so eliminated 
from the wave problem in order to make it more amenable to calculation. It is true that 
the most direct idea of wave resistance is to regard it as what it is in fact, namely, the 
combined backward resultant of the fluid pressures taken over the hull of the ship; but this 
is by no means the simplest method for purposes of calculation. 

On the other hand, by a direct application of the method of energy and work, we 
shall see that we only need to know the wave pattern at a great distance in the rear 
of the ship. 

Denote by S the position of the ship at any instant, by A and B two infinite vertical 
planes in given fixed positions at right angles to the direction of motion of the ship, the 
plane A being in advance of the ship and the plane B to the rear. 

Consider the rate of increase of the energy of the fluid in the region between the 
surface of the ship and these two planes, and consider also the forces operating at the 
boundaries of this portion of fluid. The fluid possesses kinetic energy due to its motion 
and potential energy arising from alterations in the surface elevation. Calculate the rate 
at which total energy, kinetic and potential, is flowing into the region in question across the 
plane B and call this E(B). A similar calculation would give E(A) for the rate at which 
total energy is flowing out of this region across the plane A. At any point of the plane B 
let p be the fluid pressure and w the component fluid velocity inwards at right angles to 
this plane. The fluid to the left of B is doing work on the fluid to the right at a rate pw 
per unit area at each point of the plane; summing up for the whole plane, we call W (B) 
the rate at which work is being done on the fluid in question across the plane B. Similarly, 

— W (A), calculated in the same way for the plane A, is the rate of work across that plane 

upon the fluid between the two planes. Finally, if R is the resultant resistance to the 
motion of the ship and c¢ its velocity, the ship is doing work on the fluid at a rate Re. 
Hence, equating the total rate of work upon this portion of fluid to the rate of increase 

of its total energy, we deduce a general expression for R, 

Re = E(B) — W(B) — {E(A)— W(A)}. . . . (17) 

This holds for ary two fixed planes, one in advance of the ship and the other to the 
rear. If we take plane A further and further in advance, the quantities E(A) and W (A) 

approximate to zero, since the ship is advancing into still water. And if we take B further 
and further to the rear, the disturbance approximates to a free wave pattern such as we 
have considered in the previous sections and we can calculate the quantities E and W for 
any plane of that free wave pattern. Thus we have finally 

Cie We ce ene Pe ere eee OS) 

where E and W are calculated from the free wave pattern to which the disturbance approxi- 
mates at a great distance in the rear of the ship. 

11. This method is familiar in its application to plane waves with straight parallel 
crests. It is probable that the first calculations of wave resistance were those made in this 
way for plane waves, the argument being usually expressed in terms of group velocity. 

For simple harmonic waves of height h the average total energy is }gph® per unit area of 
surface; thus the quantity E of (18) is }gph?c per unit length parallel to the crests. 
The quantity W is exactly one-half of this amount; or, as it is usually expressed, the group 
velocity is one-half the wave velocity. Hence from (18) we have R = }gph?, where R is 
the wave resistance per unit length of the cylindrical body to whose motion the waves 
are due. 

It is rather curious that this method has not been used for obtaining the wave resistance 
from the wave pattern produced by ordinary ship forms. The formule in use at present 
have been developed by other methods. In some cases they have been found from the 
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WAVE PATTERNS AND WAVE RESISTANCE. 11 

resultant fluid pressure on the ship. Another method is to introduce an artificial kind of 

fluid resistance, calculate the rate of dissipation of energy, and so ultimately arrive at 

expressions for the wave resistance. All these methods must lead to the same results 

if carried out correctly; but perhaps the most natural method is that outlined above and 

embodied in the general expression (18). 

It has been shown recently that the necessary calculations can readily be extended to 

wave patterns of the general type which occur in ship waves.* The results may be given 

here, without going into the detailed analysis. 
Suppose first that we have a free wave pattern given by 

2 

r= [fo sim (OG o co o o 6 « o (i) 

and suppose that the amplitude factor f(#) is an even function of 0, so that (19) is 

equivalent to 

2 
C= afi (0) sin (« a sec 0) cos (x ysin @sec?@)d6 . . . (20) 

0 

We can write down the velocity potential of the fluid motion for the wave form (19) and 

so obtain the pressure and velocity at any point of the fluid. The quantities E and W 

of (18) can then be calculated, with suitable limitations on the function f (@) which amount 

to ensuring that E and W are in fact finite and calculable. Under these conditions it is 

found that E — W for the pattern (19) is given by a remarkably simple expression, namely, 

BW = mpet| {F(0}* 008 6a ee ANIC) 
0 

Hence the wave resistance of a body moving with velocity ¢ and leaving in its rear 

a pattern (19) would be given by 

2 
R=7pe ly OVP CoPOd 5 6 5 2 5 o () 

“0 

12. Suppose, for illustration, that the amplitude factor is independent of @ and that 

we have 
7 

2 
c= | sin ya Bie oa ied ten aie Ang 23) 

a simple sine pattern, with h possibly a function of the velocity c. This is certainly a 
hypothetical case; (23) is like the first term of (13) or (15), so presumably the sort of 
body which would produce this wave pattern would be the bow of a ship of great draught, 
but without any sides or stern. However, without inquiring any further into that, if the 
wave pattern is (23), then from (22) the corresponding wave resistance would be 

Rew p iit |eoebde an pe Bh i) REINS (24) 
0 

* Proc. Roy. Soc. A., 144, p. 514, 1934. 
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12 WAVE PATTERNS AND WAVE RESISTANCE. 

We might even carry this calculation a step further and divide the integration into two 
parts: (i) from @ = 0 to 6 = 35° 16’, (ii) from 8 = 35° 16’ to 6 = 90°; and we might associate 

the first part of R so calculated with the transverse waves of the pattern, and the second 
part with the diverging waves. On that basis we easily find that for (23) the transverse 
waves account for about 77 per cent. of the wave resistance, and the diverging waves for 
the remaining 23 per cent. 

The formula for R given in (22) was for a sine pattern (19), but the same expression 
holds for a similar cosine pattern. For instance, to compare with (23) we may take the case 

7 

2 

C= h| es PCS . 5 o .o 6 o (4a) 
7 

— 
Z 

which is like a term of (13) or (15) giving the effect of the curved sides of the model. For 
this pattern the corresponding wave resistance is 

= 

Ra npctit| co Odd = tempeh. ut oly! selec wao) 
0 

If we make a similar division into transverse waves and diverging waves we find that 
the former now account for a greater proportion of the total resistance, about 86 per cent. 
However, this is, no doubt, carrying the dissection too far; the wave pattern as a whole 

should be treated as a single system. 
13. As an example of (22) we may consider the model with parabolic lines for which 

the wave pattern was given in the expression (12). We have at once the wave resistance 
given by 

64 b? p c? 
R= ED coy («sec 8) — cos @ sin («I sec 0)}? cos? 0d0 . (26) 

On expanding this expression we have 

48 

32 B2 pc? | * 
R= SEE ane cos? 6 + x? 1? cos (2 « Lsec 6) 

TK “0 
— 2x 1cos @ sin (2 «1 sec 8) + cos? 0 cos (2 « 1 sec 4)} cos? 6d (27) 

And this leads to 

q sale G a. ae a iG a [
ow Dicos (ZiT see8)id0 

na =I! i 8 sin (2 kU sec 6) d8 — (Ss ) [co 6 cos (2 « L sec 6) a | (28) 

The result has been put into this form for direct comparison with the expression for 

the waves given in (13), where they are analysed into four simple patterns, one for the 

bow, one for the stern, and two for the combined effects of the curved sides of the model. 

From this, and the calculations of the previous section, we can now identify the origin of 

each of the terms in the expression (28). The first term is the resistance due to the bow 

and stern patterns as if each existed alone, while the second term is similarly due to the 

curved sides calculated separately. The last three terms of (28) have been left in the form 
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WAVE PATTERNS AND WAVE: RESISTANCE. 13 

of integrals; these integrals have been tabulated for numerical work, but we are only con- 
sidering here some general inferences. These three terms represent the mutual interference 
of the four simple patterns contained in (13), and it is obvious from the power of the factor 
(c?/g 1) whence they arise. The first of these represents the interference of bow and stern 
patterns, the second the interference of bow or stern with entrance or run, and the last 

term the mutual interference of the two patterns from the curved sides or, as one may say, 
the interference of entrance and run. It is these last three terms in (28) which have 
oscillating values, and so give rise to the well-known humps and hollows on the curve of 
wave resistance. 

14. We have seen that the wave pattern left behind by a ship can in general be put 
into the form given in (9); we have described this as sine and cosine patterns with known 

amplitude factors. The calculation of the quantity E — W can readily be extended to this 
general form and we obtain then the wave resistance for any general case. 

We first put (9) into the equivalent form 

7 

gs 

[=| tenn A cos 4, cos A in B+ By cbs A cos BY Wy sin A in B29 (29) 
0 

where A= x xsec 0, B=xysin@sec? 6, and the F’s are functions of 9, in general, and of 

the form of the ship and its speed. The calculation of R follows as in the simpler case 
of (19), and leads to the general result 

7 

2 

Ra bape | e+ RE + RE + Ry cos oat oo 6) ©) 
0 

The determination of the functions F is, of course, another matter. Approximate 
methods in use at present amount to replacing the ship by some equivalent distribution of 
sources and sinks; the functions F then usually appear as integrals taken over the surface 
of the ship, or over its longitudinal section for a first approximation. One of the out- 

standing problems of ship wave resistance is the improvement of methods for determining 
these functions; the line of attack open at present would seem to be by further steps of 
mathematical and numerical approximation, assisted and corrected by comparison with 
experimental results. 

The object of the present paper was to recall some of the elementary properties of 
wave patterns and their production by the mutual interference of simple plane waves, to 

illustrate these by examples from ship models, and further to emphasize the direct connection 
between the wave pattern and the wave resistance. 

389 



[Reprinted from the PROCEEDINGS OF THE Royat Soctgty, A, Vol. 144.] 

The Calculation of Wave Resistance. 

By T. H. Havetocr, F.R.S8. 

(Received January 25, 1934.) 

1. The wave resistance of a body moving in a frictionless liquid has been 

calculated by various methods. In a few cases it has been found directly as 

the resultant of the fluid pressures on the surface of the body. Another 

method, which has been more generally useful, involves the introduction of 

a certain type of fluid friction into the equations of motion. The wave 

resistance is then found by calculating the rate of dissipation of energy and 

taking the limiting value when the frictional coefficient is made vanishingly 

small. This method has certain important analytical advantages, nevertheless 

it is highly artificial, A third method, dealing directly with a frictionless 

liquid, consists in examining the flow of energy in the wave motion ; this has 

hitherto been used only for two-dimensional problems when the wave motion 

consists of simple waves with straight parallel crests, the usual theory of 

group velocity being directly applicable. 

In the followmg note this method is extended to three-dimensional fluid 

motion. Although no new special results are obtained so far as expressions 

for wave resistance are concerned, it seemed of sufficient interest to obtain 

them by this direct method, namely, by considering the flow of energy and the 

rate of work across planes far in advance and far in the rear of the moving 

body. 

These quantities are examined first for a free wave pattern of simple type. 

Then a general expression is given for wave resistance in terms of the velocity 

potential of the free wave pattern to which the disturbance approximates at 

a great distance in the rear, and this is applied to a general form of wave pattern 

and to some special cases. Finally, a similar examination is made of a certain 

problem when the water is of finite depth. 

2. With the origin O in the free surface of deep water, and Oz vertically 

upwards, the surface condition is 

OD 6 = 2=0, (1) 

where ¢ is the velocity potential and ¢ the surface elevation, For a wave 
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pattern advancing steadily with velocity c in the direction Ox, we may write 

(1) in the form 
2 
CER OE (2) 

with ky = g/c?. 

A simple plane wave advancing in a direction making an angle @ with Oz 

is given by 

¢ = asin {ky sec? 6 (x cos 8 + y sin @ — ct cos @)} 

= ac cos Be" °"? cos {xq sec? 8 (x cos 8 + y sin 6 — ct cos 8)} 

We may generalize this to obtain a free wave pattern made up of plane waves 

advancing in all directions, so that the pattern itself moves steadily with 

velocity ¢ in the direction Ox; we have then 

C= ie f (8) sin {xy sec? 6 (x cos 8 + y sin 6 — ct cos 8)} dé. (4) 
—ir 

We shall suppose in the first place that the pattern is symmetrical with respect 

to Oz, so that we have 

dar 

G—2 | f (9) sin (kp 2’ sec 8) cos (Ky y sin @ sec? 6) dO 
0 

» (5) tn 

¢ = 2c | f (8) et" * cos (icgx’ sec 8) cos (Ky y sin 6 sec? @) cos 6 d6 
0 

with a’ = « — ct. 

Consider a fixed vertical plane «= constant. The rate of flow of total 

energy across this plane is given by 

iS 0 é 0 2 
tee | de | {(@ ay = ( a ( sey } dy + hgee | Ody. (8) 

—7o —~o ¥ dz =e 

The variable part of the fluid pressure being e0d/0t, or — pcdd/ex, the rate at 

which work is being done across the same plane is 

of ef Bm ° 
We shall assume that the wave pattern is such that these quantities are finite 

and determinate. 

To evaluate these expressions with the values (5) for ¢ and ¢ we use the 

following theorem ; 
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If 

F, (y) = | zi (A, cos yu + B, sin yu) du, 
0 

@ (8) 
F, (y) = \ (A, cos yu + B, sin yu) du, 

0 

A, B, being functions of wu, then 

[BO FW) dy =|" AAs + BBs) du, (9) 

assuming that the integrals are convergent. 

To take one of the integrals in (6) as an example, we have 

dr 

ae = — 2y | f (8) e7"? sin (Kgx’ sec 8) cos (kgy sin 6 sec? 6) d@. (10) 
v 0 

To put this into the form (8), we write wu = x, sin 6 sec? 0, then carry out 

the process (9) and finally replace the variable uw in terms of 0; it is clear 

that we shall have to introduce into the integral in the final form a factor 

d@/du; that is, a factor cos* 0/«, (1 + sin? 6). Thus we have 

ele 
“0 br 3 

= 4rK 9c? | a dz if {f (O)}? e207 8ec*? sin? (icga’ sec 0) ae 

5 
= ane? |" (Ff (8)}2 sin? (keqa" sec 6) a (11) 

From (6) we find in this way that the rate of flow of total energy across the 

vertical plane is 

mec? |" { (0)? (3 — sin? 6) sin? cy! se 0) 
Jo (fl ae eB Aenea? exe 0) (12) 

and that the rate at which work is being done across this plane is 

5 

Qnec? i, {Ff (6)}2 sin® (ic x" sec 8) SS (13) 

It is the difference of these two quantities that is significant for our purpose ; 

it is, as would be expected, independent of the time and of the position of the 
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plane. Subtracting (13) from (12), we find that the rate at which energy is 

being propagated less the rate of work reduces to the simple expression 

ua 

npe* | {f (0)}? cos? 6 d0. (14) 
0 

It may be noted that if we take mean values of (12) and (13) we have as the 

mean rate of flow of energy 

2 cos® 8 amod |” (f(OP (15) 

and as the mean rate of work 

p08 (i (f (®)} 5 a = = 46. (16) 

The connection indicated in (15) and (16) is a generalization of the well-known 

result for simple plane waves that the mean rate of work is half the mean 

rate of flow of energy. 

3. Consider now the forced wave pattern produced by a body moving through 

the liquid, or by a localized pressure disturbance. The complete surface 

elevation may be separated into a local disturbance and a wave pattern. Ina 

frictionless liquid a possible solution is one in which the wave pattern extends 

to an infinite distance in advance of the body as well as in the rear. The 

determinate practical solution is that for which the wave pattern vanishes at 

a great distance in advance, and we may suppose this obtained by superposing 

over the whole surface a suitable free wave pattern. In that case, considering 

the flow of energy and rate of work across two fixed vertical planes, one far in 

advance and the other far in the rear, we see that (14) is equal to Re, where R 

is the wave resistance. Hence we have 

apes ie {f (8)}? cos? 6 d8, (17) 

when the wave pattern at a great distance to the rear approximates to the form 

(4). 

For example, the forced wave pattern produced by a submerged sphere, or 

more precisely by a horizontal doublet of moment M at depth f, approximates 

at a great distance behind the disturbance, to the free wave pattern 

42M 3 
C= : | zs sect § en "of 3°" 8 gin {ko (a! cos § + y sin 6) sec? 6} dé. (18) 

7 
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Hence, from (17), the wave resistance is 

us 

R = 16rpr iM? | “sees 0 en 2 "do, (19) 
0 

which is the known result for this case. 

4. Before generalizing these results we may put (6) and (7) into an explicit 

form for the wave resistance. 

The kinetie energy of the liquid in a strip between two parallel vertical 

planes at a distance dz apart is 

0 00 rs) 2 

| ae [” (a4 ey +(2 ao) + (22) ay. (23) 
= x oy 0z 

Transform (23) into the equivalent form of a surface integral over the boundaries 

of this portion of fluid, assuming the wave pattern to be such that the various 

integrals are convergent. Thus we obtain the rate of flow of kinetic energy 

across a vertical plane as 

too |” (98) tut teof el” [oSt+ (yh. em 
Further, we may transform the other terms in (6) and.(7) by using the surface 

condition (2) together with gf = — c@d/éx at z = 0. 

Finally, equating the difference between (6) and (7) to Re, we obtain for the 

wave resistance 

ET URI —#E) a af (GS -a8e 
(25) 

0x 0a? ee, 

In this expression ¢ is the velocity potential of the free wave pattern to which 

the disturbance approximates at a great distance in the rear. Considering the 

disturbance produced by a body of any form, it appears that this free wave 

pattern must be expressible, in general, in the ferm 

e— F F (8) sin {xy sec? 8 (a cos 8 + y sin 6)}d0 
=jr 

+ FP F (8) cos {iy sec? 0 (x cos 8 + y sin 6)}d8, (26) 
—4r 

that is, in the form 

chr 

{=| "(Pisin A cos B + Py cos A sin B + Py cos A cos B + Py sin A sin B) a8, 
0 

(27) 
where A = xyz’ sec 6, B = «yy sin 9 sec? 0. 
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The corresponding velocity potential is 

> Tu 

=e (P, cos A cos B — P, sin A sin B — P, sin A cos B 
0) 

+ P, cos A sin B) e8°°"? cos 0d0. (28) 

With this value of ¢ in (25), we use (8) and (9) to evaluate the integrations 

with respect to y as in §2; and we obtain readily the general result 

RS tae | "(pe + P+ P,2 + P,2) cos? 6 d0. (29) 
0 

The actual calculation of the quantities P for a body of given form is, of 

course, another problem. Methods in use at present amount to replacing the 

body by some approximately equivalent. system of sources and sinks; the 

functions P then appear, in general, in the form of integrals taken over the 

surface of the body. We need not consider these here as the expressions for 

R given above lead to the same results as those obtained previously by different 

methods. 

5. It is of interest to examine a similar problem when the water is of finite 

depth h. It is clear from the derivation of (25) that we may use it in this case 

also, taking the lower limit of integration with respect to z to be —h instead 

of — ©. 

For the simple symmetrical type of free wave pattern given by (4), the corre- 

sponding velocity potential is 

cosh x (z + h) 
Aaa cos (Kx’ cos 8) cos (ky sin 8) cos 8d0, (30) p= 2| 7) 

the relation between « and @ being 

kK — Ky sec? 6 tanh ch = 0. (31) 

We shall assume first koh > 1, that is c? << gh, so that (31) as an equation for 

« has one real root for each value of 0 in the range of integration. In evaluating 

(25) we carry out the integrations with respect to y by means of (8) and (9). 

For this we have to change from an integration in @ to one in a variable u 

given by 
u =k sin 6, (32) 

together with (31). The corresponding factor d@/du has now the value 

cos? 6 (coth xh — xh cosech? xh) 

Ko (1 + sin? 6 — kph sech? xh) ~ 
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We have, for example, 

0 fo) 

| ae | ey dy 
—h —o ha 

ue ds (ihe ae(" (f (8)}2 cosh? x (z + h) (coth «ch — rh cosech? xh) 

us Kg sinh? Kh (1 + sin? 0 — koh sech? kh) 

x sin? («a’ cos @) x2 cos? 6 d0 

coth? xh — «*h? cosech! ch 
i (ca os O) eon! Od, 
o(l + sin? 6 — x gh sech? xh) 

(34) 

= ret [" (Ff (O)}? - 

Evaluating the remaining terms in (25), we obtain after a little reduction the 

result 
$1 

ee np0*| {f (8)}2 (coth xh — xh cosech? xh) cos® 6 dé, (35) 
0 

with « given in terms of 0 by (31). 

This may be compared with (17) for the similar wave pattern in deep water. 

For a horizontal doublet M at depth f in water of depth h, an expression for 

the complete surface elevation can be derived from results given previously.* 

We have 

— M I, ( cosh x (h —f) gir (2’ cos 0-+ysin 8) 

re J _» 
Ee J ee id 36 

Jo cosh xh ( — x, sec? 0 tanh xh - ip sec 6) Sie 

where we take the limiting value of the real part for » > 0. 

From this we may easily deduce the free wave pattern to which the dis- 

turbance approximates at a great distance in the rear. It is given by 

4x 2M (#" coshe« (h —f) tanh? xh sect 0 ; : 
= — g i) 6)} dé. 

‘ c | _3, cosh Kh (1 — xgh sec? 8 sech? xh) Sn (e(e nce ery ne) 

(37) 
From (35) this gives 

chr 2 = 
ne 16M | peleas Weel re (0 =) ap, (38) 

9 cosh? kh (1 — Kh sec? 6 sech? xh) 

It will be found that this agrees with the result obtained by a different 

method in the paper just quoted, when the previous expression is corrected 

for an obvious slip ; in formula (37) of that paper 32 should be replaced by 16 

and tanh «ch (1 + tanh xh) by (1 + tanh «h)?. 

**Proc. Roy. Soc.,’ A., vol. 118, p. 33 (1928). [This paper is No. 22 of this 

collection and the error mentioned above has been corrected. —Editor. | 
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When koh < 1, that is c? >gh, the equation (31) for « has a real root only 
for a more limited range of values of 0, the lower limit being 65 = cos y/(kgh) 
instead of zero. It is readily seen that the expression for R will be as in (38) 
with 6, as the lower limit of the integral. 

Summary. 

An examination is made of the transfer of energy in a free wave pattern, 
and expressions for wave resistance are deduced. These are applied to certain 
cases both for deep water and for water of finite depth, 
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Ship Waves: The Relative Efficiency of Bow and Stern 

By T. H. HAVELOCK, F.R.S. 

(Received January 11, 1935) 

1. It seems fairly certain that one of the main causes of differences 

between theoretical and experimental results is the neglect of fluid friction 

in the calculation of ship waves, and further that the influence of fluid 

friction may be regarded chiefly as one which makes the rear portion of 

the ship less effective in generating waves than the front portion. The 

process may be pictured, possibly, in terms of a friction belt or boundary 

layer whose more important effect is equivalent to smoothing the lines 

of the model towards the rear. Some calculations were made from this 

point of view in a previous paper,* the purpose then being to show how 

such an asymmetry, fore and aft, reduced the magnitude of interference 

effects between bow and stern waves. We may also describe the frictional 

effect as a diminution in the effective relative velocity of the model and 

the surrounding water as we pass from bow to stern. This is not very 

satisfactory from a theoretical point of view; but, on the other hand, it 

leads to a comparatively simple modification of expressions for the 

waves produced by the model. From a formal point of view, we may 
regard the modification as an empirical introduction of a reducing factor 

to allow for decrease in efficiency of the elements of the ship’s surface 

as we pass from bow to stern. 

There are now available experimental results, for wave profiles as 

well as for wave resistance, which make it possible to attempt such a 

comparison. The following work is limited to a few simple cases, and 

the assumptions are made in as simple a form as possible for the purpose 

of the calculations; these deal with the wave profile and wave resistance 

of a model of symmetrical form, and also with the difference between 

motion bow first and motion stern first for a simple asymmetrical model. 

2. Take the origin O in the undisturbed free surface of the water, with 

Ox horizontal and Oz vertically upwards; and let the origin O be moving 

with uniform velocity c in the direction Ox. We suppose that there is a 
given distribution of sources and sinks over the zx-plane, or, alternatively, 

that the normal fluid velocity is given over this plane; let it be F (H, f) at 

**Proc. Roy. Soc.,’ A, vol. 110, p. 238 (1926). 
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418 T. H. Havelock 

the point (4,0, —f). Then the surface elevation ¢ due to this travelling 

distribution is given by 

t= =e | Pema 
Die 

7 a —Kfhine dk 

OO) ee a(l 
SFE es (1) 7 

where w = (x —h)cos 9+ ysin 0, and the limiting value is to be 

taken as the positive quantity p tends to zero. 

If the form of the ship is given by y as a function of A and f, the usual 

a proximation is to take F (A, f) as equal to c dy/ch. We modify this 

now by supposing that the effective value of ¢ in this expression for 

F (A, f) diminishes from bow to stern; we introduce what may be called a 

reducing factor f(h), so that we shall use in (1) 

FAN=F¢02. 2) 
We have assumed that the reducing factor is independent of the depth. 

It will, no doubt, depend upon the velocity and form of the model, and 

in particular upon the value of the Reynolds number; but, meantime, 

we shall neglect any such considerations. It may even be that, in 

certain circumstances, the factor should allow for an increase of 

apparent efficiency near the bow of the model. However, it appears 

from such experimental evidence as is available that the wave profile 

near the bow agrees fairly well, for simple models, with calculations made 

without any allowance for frictional effects ; so that the chief effect of the 

latter appears to be a reduction in efficiency over the rear portion of the 

model. In view of these considerations, and also to lighten the numerical 

calculations, very simple expressions have been used in the following 

work. Calculations are made for two cases, and in both we assume the 

reducing factor to be constant and less than unity over the rear portion; 

in one case the factor is taken as constant and equal to unity over the front 

portion, while in the other, to avoid possible discontinuities, it is assumed 

to diminish uniformly from the bow to the value which it has for the rear 

portion. 

We shall consider only models of great draught and of uniform horizontal 

section ; for such, (1) and (2) give for the surface elevation 

=o! -P poplar fpr aecs att EE Gichas «tien 
oS 27? | f@ oh di see ae |, Kk — Ky sec? 0 + in sec 0 3) 

3. We consider a model of length 2/ and beam 26, and of symmetrical 

parabolic lines given by 

y=b(1— FPP). (4) 
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The reduction factor f(A) is to mean a diminution of effective velocity 

from the value c at the bow to a smaller value @c at the stern. In order 

to allow the calculations to be made in terms of known functions, we 

shall suppose the diminution to take place uniformly over the front half 

of the model; thus we assume 

f(A) "Ba (ab) is SO GhiG 

Using (5) and (4) in (3) and carrying out the integration with respect to 

h, we obtain 
Db (e , @ Adk 

Sy EN gece tO rg Gu | iets ihe es ee ee SED 6 
: sal ee cemene anes nate 0) (6) 

where 

A = {2(1 — 8) sec? 6 + (2 — 8) ix] sec 0 — 12/2} ete LD cose+y sin] 

—= 9» (1 ee B) sec2 8 ex (cos 6-+-y sin @) 

= (iB«l sec 0 -++ Bx?/?) ex {(@+l) cos 6+y sin 6] (7) 

This expression gives finite and continuous values for the surface elevation. 

It is convenient, for purposes of calculation, to separate it into finite 

and continuous expressions associated respectively with the bow (x = /), 

amidships (x = 0), and the stern (x = —/). Further, for points on the 

central line y = 0, we can express these in terms of known functions. 

Writing 
Cr oO aK cos é 

G@ =i 0 d0 eee AGES 8 
@ "| a ( Kk — ky sec? 8 + ip sec 0 (8) =n 

Gy (q) = Ks Qa GA@g= | ‘Go (@) a4, (9) 

and so on, it can readily be shown that (6) gives, for the wave profile 

along y = 0, 

t= — 7. (PGy(e— 1) + 2— BIG, @—) +201 — 8) Ge —D) 

ae AU CnC) = Caesar) Gn esis (tO) 

In the limit, when we take p zero, we have* 

G(q)=7{Hy(k.g)—Y o(kog)}, g>0 
= —1}H,(ko@)—Y¥ q(kq9)}-40?Y,(k 9g), g<0. - (il) 

** Proc. Roy. Soc.,’ A, vol. 135, p. 5 (1932). 
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In the notation used in previous work, we have 

Qo (u) = 5 | {How — Yo (w} ds 

AH=(°WHd, QW = [Que du, 

Po) = — 5 | Yo (u) du, (12) 

Pot (u) = | Po (w) du= 1+ Pr 

P, (u) = | Po (u) du = u + Pu). 

Summing up these results, we obtain finally for the wave profile 

c= —# ‘S Fo (K041) fe +h (Koga) + 2c F, (ko) 

— 2058 Fe (xoq2) + oF (koqs3) — = ae (ods) (13) 

Tiana fon = NOH fa) == Real, Oh == 28 — IE Oy = 255 Wace Also we have 

FLKW=Q@), u>d 

= Q, (—u) — 4P, (—), u< 0, 

FiwWM=Qa@, u>0 

=—Q,(u+4Pot(-u), u<9, 

F, (vy) = Q. (), u >O 

= Q, (—u) — 4P) 7 (—»), u< 0. 

Using tables and graphs of the various P and Q functions, the wave 

profile can now be found, for any speed, for any assigned value of . 

We have chosen the value 8 = 0-6, and calculations have been made for 

a sufficient number of values of x to give the wave profile for two different 

speeds; the speeds are those for which «l= 6 and «,/ = 3, or for 

c/,/(gl) equal to 0-408 and 0-577 respectively. The wave profile has 

also been calculated at these speeds for the value 6 = 1, that is for the 

usual theory without any allowance for frictional effects. The four 

curves are shown in fig. 1, the full curves being for 8 = 1 and the dotted 

curves for 8 = 0-6. 

These curves may be compared with some given recently by Wigley* 

in a comparison of experimental and calculated wave profiles. 

** Proc. Roy. Soc.,’ A, vol. 144, p. 144 1934). 

(14) 
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In fig. 2 of that paper, the full curves are calculated from the usual 

theory, that is, for @ = 1 in the notation of the present paper; while 

the dotted curves are observed values. It may be concluded that the 

value 8 = 0-6 is of the right order of magnitude to bring the calculated 

values into better agreement with observed values, at least for medium 

values of c/,/(gl). It should be noted that Wigley’s model is slightly 

different from that of the present calculation, in that it has a certain 

amount of parallel middle body inserted between the parabolic ends. 

c/V(gl)=0:577 

x/L 

Fic. | 

For that, and other obvious reasons, it is not worth while attempting any 

closer comparison of the results meantime. 

4. It is of interest to examine the corresponding change in the wave 

resistance for this model. It can easily be deduced from (6) that the 

wave pattern at a great distance to the rear of the model approximates. to 

C=— a {p* sin (x — J, y) — (2 — 8) pcos 8 cos (x — J, y) 
Tp —7/2 

— 2(1 — 8) cos? 0 sin (x — J, y) + 2(1 — 8B) cos? 0 sin (x, y) 

+ Bp? sin (x + J, y) + Bp cos 8 cos (x + J, y)} 8, (15) 
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where we have used the abbreviation 

(q, Y) = Ko sec? 9 (q cos 8 + y sin 0). 

In (15) the wave pattern is analysed into simple constituents associated 

with the bow, amidships, and the stern; putting the expression into the 

form 
1/2 

C= | {A, sin (ox sec 0) + Ag cos (yx sec 0)} 

0 

cos (yy sin 8 sec? 0) d8, (16) 

the wave resistance is given by* 

7/2 

=} pre? | (A,2+A,”) cos® 60. (17) 
0 

Carrying out the reduction we obtain 

_ 16eb%2 (21 + 6) , 166? , 128(1 — BF , 28 
RX \ 3p? vy ‘epee 35p5 a P P, 2p) 

eas 2 a -* 

ee ae ae DP. 2p) 

ieee s@= 8 (1 — BP 
-40= 2, +B SCP}. (18) 

In terms of P functions which have been tabulated this becomes, for 

the particular case 8 = 0-6, 

“GeBRE DD OBR BOMB gfe? 9-32) 
me \ 3p? cy p a 35p% i ie P, 2p) 

3s) 
Tp? P; (p) 

18 -88 14:4 7-68 
ie OO! a Tp 

R 

2:88 0:8 2ESz 
— (7 — 22) Pate) + Se Por) + Pp 

)P,(@)f- 09) 

This is to be compared with the value for the same model without any 

reducing factor, that is, with (18) when § = 1, or 

l6eb7c? ( 4 16 2 4 2 ; 
a OS) Sa OD) = = =. R= WORE (oat spt phe CP) = han) + Ps (2p)}- 20) 

The curves are given in fig. 2, and show the variation of R/c* with the 

quantity c/\/(g/); in addition to the smaller value of the resistance from 

(19) compared with (20), there is also a relative decrease in interference 

effects. 
* © Proc. Roy. Soc.,’ A, vol. 144, p. 519 (1934). 

403 



Ship Waves 423 

5. The wave resistance of a ship model in a frictionless liquid is the 

same whether it is moving bow first or stern first, even when the model 

is not symmetrical fore and aft. If, however, we introduce a reducing 

factor to represent the effect of fluid friction, it is clear that we shall 

obtain a difference between the two cases, and it is also easy to foresee 

the general character of the result. Suppose that the bow is finer than 

the stern, and assume that the reducing factor is the same whether going 

ahead or astern. Then it is obvious that the resistance will be less when 

going bow first than when going stern first; and further, that interference 

effects between bow and stern waves will be relatively more marked in the 

former case than in the latter. 

03 0-35 0-4 0:45 0-5 

e/ V (gl) 
Fic. 2 

We shall now work out a particular case, a model of great draught 

with parabolic ends and with some parallel middle body. The lines of 
the horizontal section are given by 

p=B0=ED, O<hei 
=p: ee 0 
=-2+m, —1<h<-¥ (21) 

In this model the change of gradient at the stern is twice that at the 
bow. 

In order to simplify the calculations, we shall assume that the reducing 

factor is constant and equal to unity over the front half of the model, 

and has a constant value fs over the rear-half; there will be only a small 

difference between the results so obtained and those with a more natural 

form of reducing factor, because in any case the middle portion of this 
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model does not contribute much to the wave-making. We shall not 
examine the wave profile in this case. For the wave resistance we have 

Ren) { ne + BY) cos 6 dé, (22) 
where 

A— iB = — aoe { -@ a 1) e-ixoh sec 4 I}, 

=i 

pis we [ema gh. (23) 
0 

This leads to the result 

— l6pb*c? (2 (1 + 48%) | 16(1 + 168%) , 48 CE ea 8 ag 

— ap Pa Op) + $8 P, @p) + 8p, an) — 8p, en 

Ml =D ae WGP ca 
a C75) p, (p) + 20 Pp, @-— P, (4p) 

i “et P, ap}. (24) 
This expression may be written as 

R=Ry+ BR, + BRo. (25) 

The form (25), with 8 a positive quantity less than unity, applies to the 
model when going bow first. It is easily seen that the corresponding 
result for motion stern first, assuming the same reduction factor 8, is 

R = #R, + PR, + Rg. (26) 

Numerical calculations have been made from these expressions for 
6 = 0-6, and from these curves have been drawn showing the variation 
of R/c® with speed, on a base of c/4/(g/); these are given in fig. 3. 

The curve A in fig. 3 is for motion bow first, the curve B for motion 
stern first. The curve C is for (24) with 8 = 1, that is, it is the resistance 
curve for motion in either direction when no allowance is made for 
frictional effects. There are few experimental data available for com- 
parison ; but in any case it should be noted that, apart from other simpli- 
fying assumptions, the preceding calculations are for a model of very 
great draught. However, reference should be made to some experimental 
curves given by Wigley ;* in fig. 3 of his paper there are three resistance 

* * Trans. Inst. Nav. Arch.,’ vol. 72, p. 216 (1930). 
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curves which correspond to curves A, B and C of fig. 3 below, and the 

mutual relations of the three curves in the two cases have much in common. 

6. In the preceding work, the reducing factor has been given specially 

simple forms in order that the calculations might be made in terms of 

functions which have already been tabulated. However, for the wave 

resistance of a model of ordinary form and draught, the calculations are 

usually made by numerical and graphical methods for the particular 

case; the introduction of a reducing factor of suitable form would not 

03 0:35 0-4 0-45 05 0:55 

c/V (gl) 
Fic. 3 

add any great complication. The usefulness of such a factor would 

depend largely upon whether it proved to be sufficiently independent of 

speed and of variation of form of the model. 

SUMMARY 

The main effect of fluid friction in regard to the production of waves 

by a ship may be described as a decreasing efficiency of elements of the 
ship’s surface with increasing distance from the bow. A reducing factor, 
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of a semi-empirical nature, is introduced into the theory of ship waves to 
represent this effect. With certain assumptions, calculations are made 
for the wave profile for a simple model, and curves are also given; these 
are compared with available experimental data. It appears that, as a 
a rough estimate for such forms at moderate speeds, the efficiency of 
the stern is of the order of 60% of that of the bow. Curves are also 
drawn to show the corresponding change in the wave resistance. The 
introduction of the reducing factor leads to different wave resistances for 
a model going ahead and going astern, when the model is not symmetrical 
fore and aft; this is illustrated by calculations and curves for a particular 
case. 

Reprinted from ‘ Proceedings of the Royal Society of London’? 
Series A No. 868 vol. 149 pp. 417-426 April 1935 

HARRISON AND Sons, Ltd., Printers, St. Martin’s Lane, London, W.C.2 

407 



460 

Wave Resistance: the Mutual Action of Two Bodies 

By T. H. HAVELOCK, F.R.S. 

(Received March 27, 1936) 

1—Methods of calculating wave resistance which depend upon energy 

considerations are appropriate for a single body or a single system for 

which we require the total resistance. There are, however, certain prob- 

lems in which there are two or more bodies and we wish to calculate 

the resistance of each separately, or more generally the resultant force 

on each body in any required direction. For instance, the effect of the 

walls of a tank upon the resistance of a model might be calculated from 

the resistance of one model among a series of models abreast of each 

other. Another problem is suggested by experiments made by Barrillon.* 

Two or more models were towed in various relative positions and the 

resistances measured separately; the results for a model in the waves 

produced by other models in advance of it were considered to show 

interference effects due to both the transverse and the diverging waves 

from the leading models. Without attempting to deal with these actual 

problems at present, the following paper contains a method of calcu- 

lating wave resistance which seems suitable for the purpose. It depends 

upon obtaining the force on a body as the resultant of certain forces on 

the sources and sinks to which it is equivalent hydrodynamically. A 

general discussion is given first and then a simple case is worked out in 

some detail ; this may be described as two equal small spheres at the 

same depth, first with one directly behind the other, then with the two 

abreast of each other, and finally in any given relative positions. 

2—Consider a solid body held at rest in a liquid in steady irrotational 

motion. We shall suppose the motion to be due to a uniform stream 

together with given sources and sinks in the region outside the body, 

and we suppose the effect of the body to be equivalent to a certain dis- 

tribution of sources and sinks within the surface of the body; the latter 

may be called the internal sources. It is known that the resultant forces 

and couples on the body may be calculated from forces on the internal 

sources due to attractions or repulsions between the external and internal 

sources taken in pairs; the fictitious force between two sources m, m’ is 

4xemm’ /r® and is an attraction when m and m’ are of like sign. Another 

way of expressing this theorem is that if m is a typical internal source, the 

*°©C.R. Acad. Sci. Paris,’ vol. 182, p, 46 (1926). 
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force on it may be taken as the vector — 4remq, where q is the resultant 
fluid velocity at that point due to all the other sources, in which the remain- 
ing internal sources may be included as their actions and reactions do 
not affect the final result. 

It is true that for a solid of given form an important and difficult part 
of the problem is the complete determination of the internal sources so 
as to satisfy all the required conditions. However, assuming this has 
been done, we can proceed to calculate the resultant forces. Further, 
in certain problems results of some value may be obtained by using dis- 
tributions of internal sources which satisfy the conditions approximately. 

3—Take the origin O in the free surface of deep water which is stream- 
ing with uniform velocity c in the negative direction of Ox, and take Oz 
vertically upwards. Let there be a source of strength m in the fluid at 
the point (0, 0, —f). The velocity potential of the fluid motion is given* 
by 

mm «m7 2 ea (2) riko, BS eee. Se sec? 0 d0 | pai Sea) 
Pi IPs we Ja 0 K — Ky Sec? 0 + iu sec 0 

where the limit is to be taken as the positive quantity » tends to Zero, 
and 

r= tY EEL; re=e+yt@— fy: 
wm = xcos 6+ ysin 0; Rey = eC, 

The second term on the right of (1) is the given source, the third term 
represents an equal sink at the image point above the free surface, while 
the last term could be interpreted as a certain continuous distribution 
of sources lying in the plane z—f=0. The expression (1) may be 
generalized by summation and integration for the velocity potential of 
any given distribution of sources in the liquid. We shall assume that 
this distribution is such that it represents a solid body in the stream, the 
total source strength being therefore zero. 

4—Consider in the first place a continuous distribution over a finite 
part of the vertical plane y = 0, the surface density of source strength 
being co at a point (h, 0, —f). The velocity potential is 

b= ex+{{(t —1)odhaf 
Ty Ps 

‘CO e—* (f-2) Hike = {| o dh af |’ sec? 0. d0 | (2) 
up 

SS ed 
0 K — Ky Sec? 0 + iu sec 0 

* Havelock, ‘ Proc. Roy. Soc.,’ A, vol. 138, p. 340 (1932), 
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where 

BPS Ce = WP ap PPP GaP py 

np = (6s = Rae Soap Gir 

@ = (x —h)cos 0+ ysin 0. 

Using the theorem given in § 2, we may write down the total wave resis- 

tance for the body which is represented by the given distribution. It is 

given by 

Ree are | | o (h', f’) u dh’ df’, (3) 

taken over the distribution, u being the x-component of fluid velocity at 

the point (h’, 0, —f’). 

Consider the contribution of the various terms in (2) to the value of u 

in (3). We may omit the uniform stream c since the total source strength 

is zero, and also any contribution from the internal sources. Further, it 

is easily seen that there is no total horizontal force on the internal sources 

due to the image system represented in (2) by the term involving rz. 

Thus the only part of u which gives any integrated effect from (3) comes 

from the x-derivative of the last term in (2). Thus we obtain the expres- 

sion 

R= Acre | | a! dh’ df’ {Je dh df | "sec 0 d0 

8 ea SAS) +i (h’—h) COs 6 

x| de. (4) Ss}? —————_ 

0 K — Ky Sec” 0 + iu sec 0 

The integrations in 8 and « may be written as 

7/2 co ff eit (’—h) cos 6 

2 | sec 0 d0| )— 
0 9 le — ky sec? 0 + ip sec 6 

e7* (h’—h) cos @ : 
we oes eS) dx. (5) 

kK — Ky Sec? 0 — iv sec 8 

Regarding « as a complex variable we may transform the integrals by 

taking as contour an appropriate quadrant bounded by the positive half 

of the real axis and the positive or negative half of the imaginary axis 

according to the sign of h’ —h. Reducing the expressions and finally 

putting » zero, the integral with respect to « in (5) is equivalent to 

— 2i| Ko Sec” 0 sin m Gise i) — MCcos Mm Gi if ’) e7m (h’—h) cos om dam 

a m? + Kk, sect 0 z 

for h’ —h>0O, (6) 
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and 

2i | en S01) ln ey) C08 A AP) anemia agp ‘ m + K,92 sec! 0 

— Ark i sec” Be~*0(I+1) se" 8 Cos {ey (h’ — h) sec 9}, 

for h’'—h<0, (7) 

the function defined by (6) and (7) being continuous at h’ —h=0. 

Writing —iF (f’, f’, h, f, ®) for this function, we have 

| 

R = See | o dh af’ || o dh df | F(W’,f’, h, f, 8) sec8d0. (8) 
J 0 

It is obvious from (6) and (7) that the part of F from the integrals in m 

will give zero result when integrated twice over the distribution; and 
we are left with 

R= 32n.2p {| o’ dh’ df’ | | o dh df 
wr /2 

x | sec? De" (F1) see’? Cas {xy (h’ — h) sec 8} d0, (9) 
0 

with h’ — h < 0, the integrand being zero for h’ — h > 0. 

This is the wave resistance expressed in a form which brings out more 

clearly than the usual forms the fact that the solution we require is one 

in which the regular waves trail aft from each element of the distribution. 

It is easily seen that the limitation h’ — h < 0 in (9) is equivalent to 

taking one-half the result of the repeated integration over the distribution 

without this limitation. Hence we obtain the result 

R = Gree [- (P? + Q2) sec? 6 d0, 
0 

with 

P = iQ = \| ceikok sec 6—xof sec? 6 dh df. (10) 

This agrees with the general result obtained from energy considerations 

in the paper already quoted, where the distribution was not necessarily 

confined to the plane y—O. There is no difficulty in extending the 

present method to more general cases, but that is left over until occasion 
arises for applying the results to some particular problem. 

5—To proceed to the case of two bodies, it is only necessary to suppose 

that the distribution of sources is divisible into two parts, each contained 
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within a distinct closed surface. For convenience, we shall limit the 

discussion to a distribution in the vertical plane y = 0. We suppose that 

the total distribution o of the previous section can be divided into two 
distributions 6, o,, each representing a solid body and one being aft 

of the other. The resistance for either body is given by the same general 

expression (3), the integration being taken over the corresponding partial 

distribution. For instance, for the resistance R, of the body o,, the 

velocity u at any element of c, will be that due to the rest of o, and to os, 

and the integration is to be taken over o,. The velocity potential is given 

by (2) with o = o, + oy. It is convenient to regard (2) as made up from 

the following parts: the uniform stream c, the given distributions o, and 

Oy, distributions —o, and —o, over image positions above the free surface, 

and finally a part represented by a certain integral taken over the dis- 

tribution o, + oz. 

Consider the contributions of these parts to the value of R,. The 

uniform stream gives no resultant effect as we suppose the integrated 

source strength of o, to be zero. We have now a resultant force from the 

mutual actions between o, and o2, given numerically by ; 

h, — hy 4ro \| o, dh, df, \| NE ee Serer | (il) 

the sign depending upon whether o, is in advance of oc, or to the rear of 

it. It may be noted in passing that this corresponds to the apparent 

repulsion between two bodies, one behind the other, in a uniform stream 

of infinite extent. There is also a similar resultant due to the actions 

between —o, and oj, given numerically by 

Arco \| o, dh, df, \| oy dh, df, levies (12) 
* {Gy = ha)? + (fs + fa)? 

Finally we have the part due to the last term in (2) for the velocity poten- 

tial, and this will be given in the notation of (8) by 

Bicop | | o', dh’, df’, | (o, dh, df, + 6» dhs df») RE sec 0.0, (13) 
J 0 

where F is given by (6) and (7). 

The terms in F represented by the integrals in m will give a resultant 

effect different from zero when summed over the partial distribution o,, 

arising from the part due to o, when summed over o,. From the term in 

(7) representing the regular waves, the part due to o, when summed over 

oc, will give the wave resistance of o, as if existing alone; the part due to 
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5» will give no effect over o, if o» is aft of o,, but the full interference effect 
of the two systems will be added to R, if o, is aft of o5. 
Summing up this general discussion, we see that the total resistance 

of each system consists of various parts: the resistance of each as if exist- 
ing alone, mutual actions between the two systems which are equal and 
opposite and may be classed as due to local disturbances, and wave inter- 
ference acting on that system which is to the rear of the other. It may 
be noted again that in this analysis we are assuming the source distri- 
butions to be given. It has been shown how the various terms in the 
Tesistances can be calculated when the two systems are in one and the same 
vertical plane. A similar analysis could be made for more general cases; 
but we shall consider in some detail a simple distribution consisting of two 
isolated doublets. 

6—Suppose that there are two equal horizontal doublets A, B each of 
moment M in the liquid at the points (0, 0, —f) and (—/, 0, —f) respec: 
tively; thus A is directly in advance of B. If the points are sufficiently 
far apart, the corresponding bodies would be, approximately, spheres each 
of radius b given by M = 458c. However, all we shall assume meantime 
is that the doublets are far enough apart to represent two distinct bodies, 
one enclosing each doublet, whatever their actual shapes may be. 

The velocity potential is given by 

$= cx + ox + dp, (14) 
where 

Mx Mx , ik ,M (7 0 g—K(f—2) +ix (2 cos 6-+y sin 6) 
= SS ee CS) AR) |W eee Se : 

He ri? r° Ps Te [/_see \, K — kp sec? 0 + ip sec 0 ig 

(15) 

and ¢, is a similar expression with x + / instead of x, the notation being 
the same as in (1). 

The form which (3) takes for an isolated doublet is 

od 
R = — 479M Bye? (16) 

where in 0?4/0x? we must omit the term in ¢ due to the doublet at the 
point in question. Thus we may calculate the resistances R, and R, 
separately. In the process we have to evaluate the expression 

li as 6 dé [oe) en 2aftine cos 6 5 A (17) 

—limi| cos 8 fe. 
u—0 [L [[ kK — Ky sec? 6 + iu sec 0 
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By the method already described, this is transformed into 

ali woe OE (3 Ko sec? 0 sin cli m COS 2mf . —mae0s 93 dm, 

| m? + Kk 92 sect 6 
for x >0, (18) 

a i aes Od) le Ky sec? 9 sin 2mf — m cos 2mf ome cos 8 3 din 

0 Jo m? + Kk, sect 6 

pr/2 

— 8rK,? | sec? De **F 8°"? Cos (gx sec 0) dO, 
0 

or ae<@, ils) 

the two expressions having the same limiting value as x tends to zero. 

Writing Ry, for the resistance of either doublet if existing alone, and 

using these expressions in (16), we get at once the known result 

cm] 2 

Ry = 16xpx,2 M2 | sec? He-2*of sect? JA), (20) 
0 . 

Considering R,, the contribution from the doublet M at B and the image 

doublet —M is easily found to be —R’ where 

ee pI EES) R’ = 24n0M tao oe ie (21) 

It may be noted that if we put M = 45%c, the first term in (21) gives 

6zeb® c?//*, which is the usual approximate value of the repulsion between 

two equal spheres moving in the line of their centres in an infinite liquid. 

Finally, for R,, there is the term which comes from (18) and (16); we 

denote this by —R”, with 

kK, sec? 0 sin 2mf— mcos 2mf onmlcos. 
- m dm. 

0 m? + kK," sect 0 

7/ 
R” = 16x eM? | 

) 

wens 0 d0 [. 

(22) 

If we calculate R;, remembering that A is in advance of B, the forces R’ 

and R” are reversed, and we have in addition the effect of the second term 

in (19). We obtain finally 

R, = R, — R’ — R” (23) 
7/2 

[Reg == TR qe TRY Se IR Se 32pxy!M | sec® Def se? COs (Kol sec 0) dO. 
0 

(24) 

The sum of Ry, and R, is the result which would be given by energy 

methods for the two parts regarded as one system. In (23) and (24) 

we have the separate resistances with the wave-interference part assigned 

414 



467 T. H. Havelock 

to the rear system. In addition we have the terms R’ and R’’, which may 

be regarded as a local action and reaction, their magnitudes diminishing 

rapidly with increasing distance. It may be noted that with M pro- 

portional to the velocity c, R’ increases as the square of the velocity; this 

may be associated with the fact that, although the regular wave system 

diminishes to zero ultimately with increasing velocity, there is a permanent 

local surface elevation. 

7—Suppose now that the two doublets are abreast of each other at a 

distance 2k apart, that is, suppose equal doublets A and B at the points 

(0, 0, —f) and (0, 2k, —f) respectively. The velocity potential is 

p= cx + oy + op, (25) 

with ¢, given by (15), and ¢, by a similar expression with y — 2k instead 

of y. 

We have 

SS. Ob, , Obs R, = — 4npM ( a + oo ), (26) 

evaluated at the point A and omitting from ¢, the term representing the 

doublet at A. 

It is clear from the symmetry of the arrangement, that the local terms 

give no effect; reducing the remaining terms we obtain the result 

R, = Ry + 167 9K 94M? [- sec’ Bee"? Cos (2kok sin 8 sec? 6)d6, (27) 
0 

with Ry given by (20). 

Taking M = 4b’c, we may regard this as the resistance of a small 

sphere at depth f in a stream and at a distance k from a vertical wall 

parallel to the stream; it is of some interest to estimate the influence 

of the wall upon the resistance. Ry has been expressed previously in 

terms of Bessel functions; it is given by (using the notation of Watson’s 

Treatise on Bessel Functions) 

= it || 1 } Ry = Ee |Ko(#) + (1 + 5-) Ki}, (28) 
with « = kof = gf/c. 

The integral in (27) is equal to 7. 07X/da?, where, with B=x,h, 

mw /2 

= | sec 0e—2«°* 8 cos (26 sin 8 sec? 6) dé 
.v) 

= | © e-20.c0sh*« cos (8 sinh 2u) du = 4e~K, (Ve + BD. (29) 
0 
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Using these results in (27), we obtain 

R = BEM e+ [ Ko (0) + (1 + 35) Ki () + pete Ko (VFB iD) 

x, ¢ (a8) 
Haran ter ee svFrR), co 

with « = gf/c?, B = gk/c?. 

Values have been calculated from this, using tables of Bessel functions, 

and graphs are shown in fig. 1. 

The ordinates are values of Rf?/zgeb°, while the abscissae are those of 

c/\/(gf). The curves are for different values of the ratio k/f; the curve 

0:8 

0-6 

0-4 Viigo = 

0-6 07 08 0-9 1-0 V4 1:2 1:3 

e/V (gf) 

Fic. 1. 

Rf? /rgeb 

for k/f = 0c is the graph of Ro, the resistance in an infinite stream, and 

the other curves show the increase of resistance with increasing nearness 

of the wall. 

8—It may be remarked that the present method of calculating the 
forces gives not only the wave resistance, which is the resultant force in 

the line of motion, but can also be used to give the resultant force in any 

direction; for instance, in (3) it is only necessary to replace u by the 

component velocity in the required direction. 

For the problem treated in § 7, the force on A in the direction towards 

the wall is given by 

= Od, | bg Y 4roM (= Ate ma): (1) 
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Carrying out the calculation as before, we find 

peaicteeee| 
(2  f2)9!2 J 

m2 sin 6 d0 i Kg sec? 0 sin Bliss li cos 2mf 

0 m + "sect 0 

Y = 7M — 

e72mk sin @ m3 dm — 16x yeM? | 
0 

m2, . s 2 : 
= 16ror'Me | sin 0 sec® Oe-7*-Fsee*? Cos (2kok sin 0 sec? 0) dO. (32) 

0 

Here again with M = 4b%c, the first term is the usual approximation for 

the attraction between two spheres moving abreast in an infinite liquid 

at a distance 2k apart. 

9—When one sphere is directly behind the other, the oscillating part of 

its resistance is due to the transverse waves in the pattern made by the 

leading sphere. When the two spheres are abreast of each other, there 

are no similar oscillating terms. We shall now consider the more general 

case of any relative positions, when in suitable circumstances we can 

distinguish between interference due to transverse waves and diverging 

waves. 
With the same notation, we take the doublets A and B to be at the 

points (0, 0, —f) and (—J, k, —f) respectively ; thus, with / and k positive, 

B is a distance / to the rear of A and a distance k to one side. The 

velocity potential is 
p= cx + bat dp; (33) 

with ¢, given by (15), and ¢, a similar expression with x + / instead of 

x and y — k instead of y. Each resistance is given by the expression in 

(26), evaluated at A or B in the manner already explained, and the calcu- 

lation of the various terms follows the same lines. 

For the term corresponding to R’ in (21) we now obtain 

f APS Ne 21? — 3k? — 12f?) (34) 
UP ane key (P+ R+ 4fp2yi2s 

The remaining terms are more complicated than in the previous simpler 

cases; for their contribution to Ry we have to evaluate an expression 

R’ = 127eM?/ 

.(™ co ex (Leos 6—k sin 6) 

i | cos 8 d0| Bl RE Cutie PS NE es eS hies (35) 
a » K — Ky sec? 8 + iy sec 0 

We first reduce the integration in 0 to the range 0 to 4x. Then the 

various integrals in x are transformed by contour integration, the form of 

the results depending upon the sign of /cos 8 — k sin 9; this involves 

417 



Wave Resistance 470 

dividing the integration in 9 into the ranges 0 to « and « to $x, where 

tan « = //k. Reducing the various expressions we find that the part 

corresponding to R” in (22) is now given by 

™a ica) 2 in? ois R” = BioeME | Eesi0 a0 Ko Sec 9 ain Ai m cos 2mf 

Si: 0 m? + Kk," sect 0 

x eum (l cos 64-k sin 6) m> dm. (36) 

The remaining terms give contributions to both R, and Rg. It is found 

that the complete results for the two resistances can be put into the form 

Ry = Re = R? = i 

4 16epry'M | * sec® Be-2fe*# cog {xy sec? 6(/ cos 0+-k sin 6)} 6, 
—n/2 

(37) 
Ree RCO RE RY 

1/2 4 

+ 169K )*M? | sec’ Be~2*F ="? cos {ky sec? 6 (J cos 8-+-K sin 6)} d6, 

vi (38) 
where R, is given by (20), R’ by (34), R” by (36), and tan « = //k. 

The previous results for A and B in line, and for A and B abreast, are 

particular cases of these expressions with « = 4x and « = 0 respectively. 
The sum of (37) and (38) could have been obtained from expressions 

given previously for the total resistance of A and B considered as one 

system. Perhaps the most interesting difference between R, and Rg, 

compared with simpler cases, occurs in the last terms in (37) and (38). 

It might appear that both A and B experience effects of wave-interference, 

in the usual meaning of that term, although A is in advance of B. 

However, this is not so, and this can be seen most easily if we suppose 

kov/(P2 + k) to be large and apply the Kelvin method of approximation 

to the integrals in question. According to this, the important parts of 

the integral come from narrow ranges of 0 in the neighbourhood of the 

stationary values of /sec 0+ ksec 0 tan 0, that is, near values of 0 

given by 
tan 0 = — } tana +44/(tan? « — 8). (39) 

Such values only exist if tan? « > 8; moreover, even if they do exist, they 

do not contribute to the value of the integral unless the values of 0 given 
by (39) lie within the range of integration. It is easily seen that they do 

not come within the range for the integral in (37); hence the resistance of 

the leading sphere does not exhibit any characteristic interference effects. 
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On the other hand, there are such effects for the other sphere if tan? « > 8, 

that is, if 5 — «< 19° 28’ approximately. Thus the interference effects 

occur if this sphere lies within the wave pattern left by the leading sphere; 
and the two prominent terms in the evaluation of the integral correspond 
respectively to the transverse waves and the diverging waves of the pattern. 

SUMMARY 

A new method is given for calculating wave resistance directly from the 
source distribution equivalent to the body producing the waves. The 
method can be applied to two source systems representing two distinct 
bodies in any relative positions, giving the resistance of each separately. 
It can also be used to obtain the resultant force in any direction, or the 
resultant couples. 

Results are obtained for a simple case representing two small spheres in 
various relative positions. With the two spheres in the line of motion, 
the resistances differ by certain forces of action and reaction and also by 
the wave-interference effects, which are assigned entirely to the following 
sphere. 

Taking the two spheres abreast, the results are interpreted as showing 
the effect of a vertical wall upon the resistance of a sphere; the expressions 
are given in terms of Bessel functions and curves show the magnitude of 
the influence of the wall for various distances and velocities. An expres- 
sion is also given for the force towards the wall. 

Finally, with the spheres in any relative positions, it is shown that 
effects of wave interference occur when the following sphere lies within 
the wave pattern produced by the leading sphere, and arise from both 
the transverse waves and the diverging waves. 

Reprinted from ‘ Proceedings of the Royal Society of London’ 

Series A No. 886 vol. 155 pp. 460-471 July 1936 
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The Forces on a Circular Cylinder Submerged in a 
Uniform Stream 

By T. H. HAvELOcK, F.R.S. 

(Received 18 August, 1936) 

1—Although many investigations have been made on the wave resistance 

of submerged bodies, no case has been solved completely in the sense of 

taking fully into account the condition of zero normal velocity at the 

surface of the body. The simplest case is that of the two-dimensional 

motion produced by a long circular cylinder, with its axis horizontal and 

perpendicular to the stream, submerged at a certain depth below the 
upper free surface. This problem was propounded many years ago by 

Kelvin, and it was solved later, as regards a first approximation, by 

Lamb; in that solution the cylinder was replaced by a doublet, and the 

effect of the disturbance at the surface of the cylinder was neglected. 

Applying the method of images, I examined a second approximation, 

and also by the same method obtained a first approximation for the 

vertical force on the cylinder. 

Although the problem is not in itself of practical importance, it seems 

of sufficient interest to obtain a more complete analytical solution, and 

this is given in the present paper. The solution contains an infinite 

series, whose coefficients are given by an infinite set of linear equations; 

expansions are given for the coefficients in terms of a certain parameter, 

and corresponding expressions obtained for both the wave resistance and 

the vertical force. Numerical calculations have been made from these 

for various velocities and for different ratios of the radius of the cylinder 

to the depth of its axis. These confirm the general impression that the 

first approximation is a good one over a considerable range. The effect 

of the complete expressions appears in an increase in the wave resistance 

at lower velocities and a slight decrease at high velocities; this may be 

described as due largely to a shifting of the maximum of resistance 

towards the lower velocities, an effect which might have been anticipated. 
The similar three-dimensional problems of the submerged sphere, or 

spheroid, are of more practical interest, as the first approximations which 

I have given for these cases have had certain applications in ship resis- 

t ‘Proc. Roy. Soc.,’ A, vol. 115, p. 268 (1926). 

t ‘Proc. Roy. Soc.,’ A, vol. 122, p. 387 (1928). 
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tance; the corresponding extension of the solutions would require more 
complicated analysis than for the two-dimensional case, but it seems 
probable that the general deductions on the range of applicability of the 
approximate formulae would be of a similar character. 
2—Consider the two-dimensional fluid motion due to a fixed circular 

cylinder, of radius a, placed in a uniform stream of great depth, the axis 
of the cylinder being at a depth f below the undisturbed surface of the 
stream. Take the origin at the centre of the circular section, with Ox 
horizontal and Oy vertically upwards, and suppose the stream to be of 
velocity c in the negative direction of Ox. We write the velocity potential 
of the motion as 

$= CX + $y. (1) 

To obtain a solution which gives regular waves to the rear of the cylinder, 
we adopt the hypothesis of a frictional force proportional to the deviation 
of the fluid velocity from the uniform flow c, thus introducing a coefficient 
1" which is made zero after the various analytical calculations have been 
effected. The pressure is then given byt} 

E = const — gy + why — 448. (2) 
If 4 is the surface elevation and we make the usual approximation for 
small surface disturbances, we have 

= ee Oe, nt ees Pagtnrs taeda (3) 

Hence, from (2), the condition to be satisfied at the free surface is 

Fly pg, es fy Oe op. ye (4) 

where ky = g/c*, and p = p'/c. 
We may regard ¢5 as made up of two parts, one part having singu- 

larities within the circle r = a, and the other having singularities in the 
region of the plane for which y > f. The first part is the potential of a 
system of sources and sinks, of total strength zero, within the circle, 
and can clearly be expressed by the real part of a series 

DAZ", (5) 

T Lamb, “Hydrodynamics,” 6th ed., p. 399. 
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where z = x + iy, and the coefficients are complex. Now we have 

—n (= i)” % m—1 pixz ie ‘ % ome Cue y>0. (6) 

Hence, in order to satisfy (4), we write ¢, in the form 

bo = i F (x) e*-*¥ die + i G (rc) e@+« U-29) dic, (7) 
0 0 

where the real part is to be taken, and 

F() = (2° A, (n= 1) 1. (8) 

Putting (7) in (4), we obtain 

p\eees Ban Goar Ue Tai, G(x) =~ SESE FW, (9) 

With this value in (7) the surface condition is satisfied. Further, we may 

change the sign of 7 throughout the second term of (7), and we obtain 

feo) foe} . 
! sbi . im 

| F(x) eik% an} OTE TS (x) eaixx te (y— 2h) de (10) 

h b K—Ky—t 

where the real part is to be taken, and the asterisk denotes the conjugate 

complex quantity. It may be noted that this method of satisfying the 

condition at the free surface is quite general, and independent of the 
form of the submerged body. 

It is convenient for the present problem to alter the notation slightly 

from (8), and we write 
F (x) = — ica®f (Kk) 

5 ‘ . Il 
F (6) = By + by (a) + 82 (xa? + 23 (Ka)? + ine | (11) 

Further, the expression (10) is a function of the complex variable z; 

hence we have for the complex potential function w, or ¢ + iv, 
{oo} foo) . EK Sites! 

ace ica*| f(x) e%? aue—ica® | ena Omar (2) GUE ES Gh. (12) 
Fs KK tp 

this being in a form valid in the liquid in the region y > 0, it also being 

noted that ultimately wu is to be made zero. 

3—We have now to determine the function f(«) so as to satisfy the 

condition 0¢/ér = 0 for r=a. For this we turn the second term in 
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(12) back to the form (5); it gives, with the form (11) for f(x), the 
series 

S ca? (ia)"— 2", (13) 
1 

Further, the last term in (12) represents the potential of image sources 
and sinks in the region of the plane for which y >2f, and hence it can be 
expanded in the neighbourhood of the circle |z| =a in a series of 
ascending powers of z. Thus we obtain w in the form 

ee) (ee) 
Wie CONS C2 Cas (ia) a Date Bazi 

1 1 

(__7\n+1 poo ee ' 3 = Ae | Bay SO as e-2* f* (ie) de, (14) 
n! g k= Ko = 1 

With the potential in the form 

w = const -+ S (C8 EID) 2-8), (15) 
1 

the condition of zero normal velocity on the circle | z | = a is satisfied, 
provided 

1D) == Fe (Ce. (16) 

Hence, from (14) we obtain the equations 

b=1-—2 ie oly or Ue icf (Kk) e *F dic, 
0 = hey ae Up 

m+1 poo 7 pres = | ee ees dr. (17) 
0 0 0 

These relations, with (11), may be expressed in the form of an integral 
equation satisfied by the function J («a); it is easily found to be 

a eee MPuty+ipv aban = vif (v) = v! I caecata Yuta ut (u) I, (2 Vuv) du, (18) 

where + = x oa, I, is the modified Bessel function, and the limit of the 
integral is to be taken as the positive quantity, » approaches zero. 

For purposes of calculation, we use (17) as a set of linear equations for 
the coefficients bo, b,, .... We write 

Jin (Paste le gm ~2Kofte yh Gf 19 
ee ee ee Uu u. ( ) 
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‘Substituting the power series (11) for f(«) on the right of (17), we obtain 

the infinite set of equations 
4 5 

bol + y*) + Gev%b1 + a Bs ar a by +... = | 

G2¥° ur) Gav? = eV by + (14+ BY) by + AO b, + JO bg +... = 0 iit 

qv" Gav q5¥ WX ai 
Be bo + LY oy + (1+ A) bs + BE B+. =0 
Peary srg eal ORIYA OID rie Sl gaet when LN h <u itisy =0 

From the integral expression for q, given in (19), and also the fact 

that a/f< 1, it can readily be shown that the infinite determinant formed 

by the coefficients of bo, b,, ..., on the left of (20) is convergent. 

Evaluating the expression (19) and putting 

Os, = Fi, = US, (21) 
we find 

— ip! Ni 
r= A {CD Ge tte tie}, 

a 

Lae) (22) 
where « = 2«,f, and /i denotes the logarithmic integral. 

For any given values of a, f, and c, we have in (20) a set of equations for 

the b’s with complex numerical coefficients. 

Although expansions in terms of other parameters may be more suit- 

able for special ranges, it is convenient to assume that the coefficients b 

can be expanded in power series of the quantity y, that is kya. These 

expansions will be of the form 

by = 1+ Doay® + Boay* + Dosy® + --- 

b, = bygy? + Bysy° + bry" = 000 

Dey = = saat + bog y® + bogy® + O06 

° (23) 

Substituting in (21) and collecting the various powers of y, the new 

coefficients may be found to any required stage. For the calculations 

which follow, it was found sufficient to obtain the results: 

boo = —- hh 

bo = 4% 

bog = 292 — G0 

Diy = Che = CRO AP Say Oe 
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boro = —q,>+ 0% — U9, — rely Wind mad 
bis = — 442 

bis = $9192 

biz = 49293 — 591°G2 
big = — 490° + 19342 — 49,9093 + 249394 
bi = —4 Gog? + £91 9293 — $91°G2 + 21192 — 37919394 + 2854445 

ba = — €I3 

bes = $4193 

bes = — 441°43 + 729244 

bss = — ha 

bsr = rtd 

Dug = — T2095 (24) 

4—Consider now the forces acting on the cylinder per unit length. The 
pressure is given by 

p/e = const — gy — 44°. (25) 

The term in gy gives the usual buoyancy, equal to the weight of displaced 
liquid, as part of the vertical force on the cylinder. Apart from this 
term, let X, Y be the resultant horizontal and vertical forces on the 
cylinder in the positive directions of Ox, Oy. Then, by the Blasius 
formula, we have 

LA ati (ayy a, (26) 
taken round the circle | z| = a. 
We note that —X will be the force known as the wave resistance, 

while Y is the addition to the upward force of buoyancy arising from the 
fluid motion. The value of the integral in (26) is 27i times the residue 
of the integrand; with w given in the form (15), and, using (16), this 
gives 

I ee 1 X — iY = 2npz ae 1D), DP va (27) 

Using (14), we have the result 

X— iY = — InpCai {11.25 ,b% + 2.80,0% + ... 

ap BW ap Wb bese oe @8) 

This may be expanded in powers of y, that is of «a, by substituting from 
(23) and (24), the results given there being sufficient to include the term 
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in v1. Using the notation of (21), and separating out the real and 

imaginary parts, we obtain, after some reduction, 

— X = 4r®ec?a (x a)? eI [1 — 2r, (koa)? — (r2 — 3737 + 5*)(Koa)? 

— (4r3 — ro? — nr, + £7, — 4r4s" + S?) (koa)® 

SP (ola == clalay —= GIRL ae eee a a ae AW a APES Sing 7 

— (10r? — 3r, — 3re + 335) 5? + st} (oa)® + ...], (29) 

Y = 4reca (xa)? [—4re + ryre (K9a)? + H(rarg — 3rPre + 125") (Koa)” 

+ (2rfre — 4rs8 — yrs + aly Paha + $728" — 2ryres*) (Koa)” 

ae {eils® = sia No — folate sia lone — BIA = TAIRA eg 

+ (Sryr2 — shire — 31s dre +ils sla + yx) S 

= ress} (koa)® + --], (30) 

with r,, 5 given by (22). 

The first term in (29) is the expression for the wave resistance of a 

circular cylinder which was obtained by Lamb. The first term in (30) is, 

after putting in the value of r, from (22), the first approximation for the 

vertical force which I obtained by the method of images in the paper 

already quoted. 

5—It is of interest to obtain the wave resistance, which should be equal 

to —X, from considerations of energy applied to the regular waves 

behind the cylinder. The current function ¥ is given by the imaginary 

part of the expression (12). Putting y= (+ 7, we obtain at once the 

complete expression for the surface elevation as 

n= ia? | f@ efra—«f de + ig? [ ee KS LE r& (i) ef de, (31) 
0 0 B= Ky = UB 

where the imaginary part is to be taken, f(«) is given by (11), and uy is to 

be made zero ultimately. This expression separates into two parts, a 

local disturbance 4, which decreases with increasing distance from the 

cylinder, and a system of regular waves 7, to the rear, that is, for negative 

values of x. The latter part is found, by methods familiar in these 

problems, to be given by 

Ne = — Ark a2f* (Ko) emt, (32) 

the imaginary part to be taken. 

If his the amplitude of the regular waves at a great distance behind the 

cylinder, the wave resistance R is given by 

R = 4geh". (33) 
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Hence from (32) we have 

R= 407 9px a4 f(k)f* (ky) e- * (34) 
With 7 

SF (Ko) =b,+ bh (oa) =P a (koa)? + ..., 

and with the equations (20), it could presumably be shown that (34) is 

the same as the real part, with sign changed, of the expression (28). 

However, it has been used here simply to verify the previous expansion; 

substituting from (23) and (24) we obtain from (34) the same result as is 

given in (29). 

6—We may now examine the expressions (29) and (30) numerically. 

It is easily seen that if the ratio a/f is small, the first term in each case 

gives a close approximation at all velocities. Further, the ratio of the 

second term to the first in (29) and in (30) is —2r,«,a?, that is 

tat 
with « = 2x, f = 2g¢f/c?. 

The quantity in brackets in (35) approaches the value —1 as c becomes 

zero and the value +1 as c becomes infinite. It has a maximum negative 

value of —2-:57 at «= 4-5 approximately, and a maximum positive 

value of 1:9 at about « = 0-6. Hence the effect of the second approxi- 

mation in (29) is to increase the wave resistance at low velocities and to 

give a rather smaller value at high speeds. 

Taking a/f = 4, as a moderate value of this ratio, and calculating the 

resistance from (29), it is found that the value does not differ by more 

than about 9% of the value of the first approximation at any velocity. 

As an example of the numerical values in this case, for « = 6, that is for 

c= 0:58 \/(gf), the following are the values of the successive terms in 

the expansion in square brackets in (29): 

1 + 20 — 2a%e~- li (e*)}, (35) 

1 + 0-0746 + 0-0134 + 0-0015 + 0-0001. 

Another case which has been worked out in some detail is a/f = 4, this 

being definitely outside the range of the first approximation for the most 

part. Numerical values were calculated for both X and Y for « = 8, 6, 

5, 4, 3, 2:5, 2, and 1. On account of slower convergence of the series at 

the higher values of «, an estimate was made of the next term beyond 

those shown in (29) and (30). The results are shown in fig. 1. 

The curves R and Y are the wave resistance and vertical force calculated 

from (29) and (30); R,, Y; are the curves given by the first approximations, 
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that is by the first term in (29) or (30). The unit of force in each case is 

mgoea?, that is the weight of liquid displaced by the cylinder per unit length. 

It should be noted also that, in addition to the vertical force Y, there is the 

usual hydrostatic buoyancy. The curves for the wave resistance show 

clearly the increased values at lower velocities and also the displacement 

of the position of maximum resistance, the latter occurring at a lower 

speed than the value ,/(gf) given by the first approximation. 

0:5 

Fic. 1. 

SUMMARY 

A solution is given for the two-dimensional wave motion due to a 

circular cylinder in a uniform stream, taking fully into account the con- 

dition at the surface of the cylinder. Expressions for the horizontal and 

vertical forces on the cylinder are obtained in the form of infinite series 

in ascending powers of a certain parameter. Numerical calculations are 

made from these and compared with the known first approximations. 

The main effect of the additional terms upon the wave resistance is to 

increase the calculated value at low velocities and to decrease it slightly 

at high velocities. 

Reprinted from ‘ Proceedings of the Royal Society of London’ 

Series A No. 892 vol. 157 pp. 526-534 December 1936 
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The Resistance of a Ship among Waves 

By T. H. Havetock, F.R.S. 

(Received 25 March 1937) 

1—The wave resistance of a ship advancing in still water may be calculated 
under certain assumptions, which amount to supposing the forced wave 
motion to be small so that squares of the fluid velocity may be neglected; 
moreover, the ship is supposed to advance with constant velocity in a 
horizontal line. It does not appear to have been noticed that we may super- 
pose on the solution so obtained free surface waves of small amplitude, and 
that the addition to the resistance may be calculated, to a similar degree of 
approximation, as the horizontal resultant of the additional fluid pressures 
due to the free surface waves; this additional resistance, which may be 
negative, depends upon the position of the ship among the free waves. 
Various calculations are now made from this point of view. We consider 
first transverse following waves moving at the same speed as the ship, and 
then a ship moving in the waves left by another ship in advance moving at 
the same speed; finally, we examine the more general case of a ship moving 
through free transverse waves of any wave-length. All the cases are discussed 
with reference to such experimental results as are available. 
2—We treat the problem first as one of steady motion with the ship at 

rest in a uniform stream of velocity c in the negative direction of Ox; we 
take the origin O in the undisturbed water surface, and Oz vertically 
upwards. The velocity potential is given by 

b= cx+¢y, (1) 
where ¢, represents the disturbance due to the ship. This, on the usual 
approximations, may be regarded as due to a source distribution over the 
longitudinal section of the ship; the source strength per unit area is 
(c/27) dy/dx, with y = f(x, z) as the equation of the surface of the ship, and 
it is to be noted that dy/dx is assumed to be small. 

We now take $ =cx+¢,+¢’, 

p' = heetv cos(kyx — f), (2) 
where ky = g/c?. The additional term represents standing surface waves of 
elevation hsin(kyx—f). We should, of course, require further terms in 
order to satisfy exactly the condition at the surface of the ship; but such 

[ 299 ] 
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terms would be of a smaller order of magnitude, and of a similar order to 

those which have already been neglected in obtaining an expression for ¢, . 

on theassumption that the angle between the tangent plane and theza-plane 

is always small. The pressure equation is now 

Op: OP pip = const. —gz—c~"—¢ mat (3) 

and the wave resistance is given by 

le = -2| [p stdeds, (4) 

taken over the longitudinal section of the ship. 

The term in ¢, in (8) gives from (4) the expression for the wave resistance 

for the ship advancing into still water; we shall denote this by R,. We give, 

for reference later, the expression for R, in terms of the equivalent surface 

distribution o,, namely, 
ta 

R= Lén§p| (P? + Q?) sec? 0d8, 
0 

where IP, +70, =| Io eko28ec? O+ixor sec 8 dy dz, (5) 

The term in ¢’ in (3) gives from (4) the additional resistance R’ due to the 

standing waves; we have 

rt Op’ oy 
f =? — — i R pe Aa a ae de 

=— 2aph| | = exo? sin(K yx — f) da dz. (6) 

3—Consider a simple form of model, of uniform draft d and length 21, 

whose surface for y > 0 is given by 

y = b(L —22/d2) (1— 22/2). (7) 
From (4) we obtain, after carrying out the integrations, 

, _ 8gpbhl { 2 ( 1 realise . 
ly = PAE ie R ae) | (sin gl — Kol e08 ey) cos (8) 

The factor cos # in (8) shows how R’ varies with the position of the ship 

among the waves; for # = 0 or # = 7, the surface elevation is anti-sym- 

metrical with respect to the mid-section of the ship. Further, the factor 

(sin Kol — Kol cos Kgl) /(Kol)3 (9) 
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gives the variation of R’ with the ratio of the length of the model to the 

wave-length. It is obvious that the greatest positive values of R’ will occur 

when there is a crest near the bow and a trough near the stern, and con- 

versely for negative values of R’. The stationary values of (9) give the 

corresponding values of k,l, or 27l/A; one such value gives A/2l = 0-55 

approximately, and for this velocity R’ is negative if = 0 and positive if 

ji—ie 

4—For numerical calculations we shall consider a model for which theo- 

retical and experimental values of the wave resistance in still water are 

known; this is Model 1302 investigated by Wigley at the National Physical 

Laboratory, the results being given in these Proceedings (Wigley 1934). 

The form of the model is given by the following: 

From z = 0 to z = —id, 

y = b{1—(x+a)2/7}, y=b, y = b{1—(«—a)?/P} 

for x ranging from —l—ato —a, —atoa, atol+a respectively; 

From z = —4d to z = —d, 

y = 30(1—2?/d*) {1—(e@+a)?/P},  y = 3b(1—27/d?), 

y = $0(1 -24/d2) {1 —(@—a)/P} 
for the respective ranges for x of 

—l—ato —a, —atoa, atol+a. (10) 

The dimensions, all in feet, were a = 0:5, b = 0-484, 1 = 7-5 and d = 2. 

Carrying out the integrations of (6) over the longitudinal section of the 

model, we obtain 

,  Spbe*h(, 4/1 Nave 3( 1 1 ~tl 

Ee R02 alert ani ue Kod | Kod i 

x {sin Ko(/ + @) — Kol cos Ky(J +a) —sin kya} cosf. (11) 

We shall take # = 0 so as to obtain maximum effects as far as the position 

of the model relative to the waves is concerned. In the following table values 

of R’/c?h are shown for several different velocities, R’ being in lb. with c in 

ft./sec. and h in ft. The column R,/c? gives the corresponding theoretical 

values for the wave resistance in still water, taken from fig. 6 of Wigley’s 

paper. 

R, has maxima and minima according to the interference of bow and 

stern waves; while R’ oscillates between positive and negative values in 

431 



302 T. H. Havelock 

accordance with the factor in (11) which involves the quantity k jl. One 

method of expressing these results is to find what height 4 of the imposed 

waves would give &’ the same numerical value as A, at each velocity, 

regardless of whether R’ is positive or negative. This is given in the last 

column of the table as h/A, the ratio of amplitude to wave-length such that 

Rk’ is numerically equal to R,. In comparing these figures with values from 

observation or experiment, it should be noted that usually the height of 

a sea wave is measured from trough to crest, and is equal to 2h of these 

calculations. The point made now is that for quite ordinary values of the 

ratio of wave-height to wave-length the additional resistance, positive or 

negative, is of the same order as the wave resistance of the model in still 

water. 

Kol cly/ (gl) R’/e?h R,/c? h/aA 

8 0-353 0-5 0-042 0-014 

7 0-378 — 0-264 0-03 0-017 

6 0-408 — 0-92 0-072 0-01 

5 0-447 — 0-78 0-1 0-013 

A 0-5 0-62 0-053 0-007 

3 0-577 1-05 0-12 0-007 

2 0-707 1-13 0-233 0-008 

5—An interesting form of the problem is the case of a model in the waves 

left by another model at a fixed distance in advance and moving at the same 

speed; it is a case for which some experimental results are available. 

Instead of (2) we now have 

$ =cut $+ Po, (12) 

where ¢, represents the disturbance due to the rear model and ¢, that due 

to the leading model. We may replace the models by source distributions 

01, O over their respective longitudinal sections, and the usual first 

approximation is taken for o in each case, namely o = (c/27) dy/0x. 

The resultant horizontal force on each model has been considered from 

this point of view in a previous paper (Havelock 1936), and a general dis- 

cussion is given there in §§4, 5. The resistance of each model consists of 

various terms: the resistance of each as if isolated, mutual actions between 

the two models which are equal and opposite and may be assigned to local 

disturbances of the fluid motion, and forces due to wave interference 

acting on the rear model only. It is easily seen, from approximate calcula- 

tions, that the mutual actions due to local effects diminish rapidly with the 

distance between the models, and we shall neglect these terms in what 

follows. 
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The resistances R,, R, of the two models when far apart are given by (5) 
with P, +2, in terms of 7, and P,+7Q, in terms of a5. 

In addition the rear model experiences a resistance Ry. which, from (7) 
and (13) of the paper just quoted, is given by 

Ry. = 327K? | {a dx, dz, | | O,dx, dz» 

an . 
x I errata) Se*9 cost{k g(a, — a) sec O} sec? 0d0, (13) 

0 

the integrations extending over the two distributions. This may be put into 
a form involving the same quantities P,, Q,, P,, Q, as are required for R, 
and R,, namely, 

an 

Ry = S2mnip| (P,P, + Q, Q.) sec? 0d0. (14) 
0 

We now simplify the problem by supposing the two models to be similar 
in all respects; then if / is the distance from the bow of the leading model to 
the bow of the rear model, we have 

12 +7Q = (U2 +7Q ) etxok sec 0 15 
2 2 1 1 

37 

This gives Ry, = S2nnip| (P}+ Q?) cos(kyk sec A) sec? 6d0. (16) 
0 

Finally, we carry out the integrations for a model of great draft and of 
uniform horizontal cross-section given by 

y = b(1—2?//?). (17) 

The results may be expressed in terms of P functions used in previous 
investigations and defined by 

an 

P3y(p) = (= yf cos?” @ sin(p sec 8) dé, 
d 

47 

PanualP) = (= 1] “cos 9 cos(p see 0) 0. (1s) 
0 

(I am indebted to the Superintendent of The William Froude Laboratory 
for graphs of the first nine of this series of functions.) We obtain then for 
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the resistance R, of the leading model and for the resistance R, + Ry, of the 

rear model the expressions 

32pb2c? 

By = Ry = eae ls + INGE + KGIPPS 2c!) — 2eglP(2kel) + Pe(2koD)}, (19) 

64pb2c2 
Li err ae - [EKG {PB (Ko ky) + 2P3(kok) + Ps (Ko hn)} 

+ Ko l{Py(kok,) —Py(kyk,)} 

+ 3P5(Ko hy) —Po(kok) + 3P5 (Koko) I, (20) 

where k, = k—2l, ky = k+2l. 

6—Before making numerical calculations we may refer to experiments 

made by Barrillon on models in tandem and other formations (Barrillon 

1926). In a classical series of experiments W. Froude examined the inter- 

ference between the bow and stern waves of a ship by introducing into the 

model varying lengths of parallel middle body between the same bow and 

stern. Barrillon made an interesting variation by running two models in 

tandem at the same speed and measuring the resistance of each model. The 

results were similar in character to those outlined in the previous section; 

for instance, the resistance of the rear model was found to be an oscillating 

function of its distance from the leading model, in general agreement with 

what would be expected from its position relative to the waves left by the 

leading model. We noted also that the action between the two models is 

made up of a mutual action and reaction due to local effects together with 

a wave effect upon the rear model; and the former has been neglected in the 

present calculations. Barrillon found, for his models at a certain speed, 

that the action upon the leading model was insensible if the distance apart 

exceeded 1 m., while the action upon the rear model was appreciable up to a 

distance of 14 m.; and further that, apart from its oscillations, the action 

upon the rear model only diminished slowly with the distance. 

With a view to making corresponding calculations from (19) and (20) we 

notice in particular two measurements. (I am indebted to Professor 

Barrillon for these and other details of his investigations.) The velocity of 

the two models was 2 m./sec. and the length of the rear model was 2-2 m. 

Turning the results into the present notation, with k = 13-47 m. and 

16-19 m. the experimental values of the ratio R,,/R, were — 0-224 and — 0-2 

respectively; these two values of k gave consecutive positions of maximum 

reduction of resistance of the rear model, the relative reduction being of the 

order of 20 %. 
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We now use these measurements solely in order to take a corresponding 

velocity and corresponding distances in the expressions (19) and (20) and 

so to calculate the ratio R,,/R,. 

We have kyl = gl/c? = 2-7. For the two values of k, the corresponding 

values of kjk are 33-07, 39-74 respectively. With these we obtain from (19) 

and (20) the values — 0-24, — 0-3 respectively for the ratio R,,/R,, a relative 

reduction of resistance of between 20 and 30 %. 

7—We have considered so far only wave motion which is stationary 

relative to the ship, and we examine now a ship advancing through free 

transverse waves which are moving with the velocity appropriate to their 

wave-length. 

Suppose first that the waves are moving in the same direction as the ship. 

With a fixed origin O we now have, instead of (2), 

@ = $,("—ct, y, z) +hVex* cos k(x — V2), (21) 

where V? = g/x, and the additional surface elevation due to the free waves 
is hsink(x— Vt). 

The variable part of the pressure is p 0¢/0t, or 

0g, h K2aq = 7. 9 — pe~ + gphe sin k(a— V2). (22) 

To calculate R from (4) and (22), transfer to an origin moving with the 
ship. Then the first term in (22) gives the same expression for R, as in (5), 
while for the additional resistance due to the second term we have 

R=- 2aph| | oH e sin{xa — k(V —c) t}dadz. (23) 

This is the same as in (6) for relatively stationary waves, except that Kp, 
¢ are replaced by x, V respectively, and that the phase # has now the 
varying value x(V —c)t. 

For transverse waves hsinx(x+Vt) moving in the opposite direction 
(21) is replaced by 

@ = $,(x —ct, y, z) —hVe cos k(x + Vt), (24) 

and it is easily seen that we get the same result as before with the phase p 
equal to —K(V +c)E. 

The result is that the additional resistance depends only upon the in- 
stantaneous position of the ship relative to the waves. This might have been 
anticipated from the various approximations which have been made. We 

435 



306 T. H. Havelock 

have assumed the free waves to be small, the corresponding quantities being 

of the same order as those of the forced waves due to the ship; moreover, we 

have neglected any direct disturbance of the free waves by the surface of 

the ship for the same reason as for omitting terms of a like order in obtaining 

expressions for the forced waves. The additional pressures are therefore 

simply those due to the free waves, and the additional resistance is the 

horizontal resultant of these pressures acting upon the ship’s surface. Taking 

as an example the model described in (10), the resistance is given by R, +f’, 

where &, is the resistance in still water, and 

pSV CORDON BNA eG eho Noles 
w= ae alata) eat aa) | 

x {sin «(1+ a)—xl cos(k+a)—sinxa}cosf, (25) 

where Ve= g/k, P=KC+V)t = 27/2. 

In this expression, 7’ is the period of encounter of the ship with the waves. 

In experiments on models in artificially produced waves, a critical con- 

dition occurs when the wave-length is about equal to the length of the model. 

We take therefore as a numerical example A = 27/K = 2(/+a), and 

V2 = gA/2m = g(l+a)/rn. 

Putting in the numerical values for this model, we get from (25) 

R’ = 89-1hcos(2nt/T), (26) 

R’ being in lb. with the amplitude h in ft. 

In experiments a usual assumption is a wave-height of 6 ft. for a wave of 

length 400 ft.; this ratio gives for the wave-length 16 ft. the value h = 0-12 ft. 

In that case we have 

R’ = 10-7 cos(27t/T) lb. (27) 

Values of R, for this model are known. For instance, for model speeds of 

7-08, 9-22, 11-04 ft./sec. we have R, = 4:9, 13, 29 lb. respectively; the total 

resistance, wave-making and frictional, at these speeds was 14-54, 30-11, 

52-15lb. respectively. We see that, for quite a moderate ratio of wave-height 

to wave-length, #’ represents an alternating force of relatively large ampli- 

tude. It should be noted, however, that this is for the particular case when 

the wave-length of the free waves is equal to the length of the model. 

8—It is necessary to emphasize the basis of the present calculations. It is 

assumed that the model is maintained in the same relation to the un- 

436 



Resistance of a Ship among Waves 307 

disturbed water surface and that it is driven forward horizontally at constant 

speed. 

In experiments on models in waves, such as those made by Kent at The 

National Physical Laboratory (Kent 1922), the conditions are different, 

being naturally designed to reproduce to some extent conditions for ships 

at sea. In these experiments the model is free to pitch, and obviously an 

important factor is the relation of the pitching period to the period of 

encounter with the waves. Moreover, the model can move fore and aft 

within certain limits under the influence of the waves. Thus Kent makes the 

statement: “‘ When the model was towed through aregular series of advancing 

waves, it experienced periodic fluctuations in its resistance as it met each 

succeeding wave. Hach fluctuation in resistance was partially absorbed by 

the inertia of the model, but a portion of it was recorded by the resistance 

pen. The fluctuations were of small amplitude when the waves were of short 

length in comparison with the length of the model, but became much larger 

when the wave-length was increased.” The actual results given were for a 

certain mean resistance over the whole experiment in each case. The precise 

relation between this mean resistance and the horizontal forces acting on the 

model at each instant would require a detailed examination of the conditions 

of the experiment and of the recording apparatus. However that may be, 

the present calculations serve to estimate some of these forces and indicate 

how large the fluctuating part of the resistance due to them may be under 

certain conditions. 

A point which arises is the dependence of the amplitude of the fluctuations 

upon the ratio of the wave-length to the length of the model. This is given, 

for the model considered here, by the factor of (25) which involves «l. Taking 

the simpler case of that model with no parallel middle body, that is with 

a = 0), the factor concerned is 

(sin u—u cos u)/u3, (28) 

where uw = 7L/A, with L the total length of the model, and A the wave- 

length. 

An interesting result is that there are certain values of the ratio A/Z for 

which (28) is zero; for these, the additional resultant horizontal force due 

to the waves is zero independently of the position of the model among the 

waves. For this particular model, these values are given by the roots of the 

equation tan u = u; the corresponding values of A/L are 0-7, 0-41, 0-29, .... 

Intermediate values of the ratio give maximum values for the amplitude of 

the fluctuations in resistance. 
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SUMMARY 

The wave resistance of a ship in still water can be calculated to a certain 

degree of approximation after making various assumptions. Similar 

calculations are now made for a ship among free surface waves of small 

height; the additional resistance, which may be negative, is considered as, 

to a similar degree of approximation, the horizontal resultant of the 

additional pressures due to the free surface waves. 

The cases considered are (i) when the waves are stationary relative to the 

model, free transverse waves moving at the same speed, and also the case 

of a model on the waves left by another model in advance and moving at the 

same speed, (ii) a model, not free to pitch, in transverse waves moving with 

the speed appropriate to their wave-length. 

It is shown that the additional horizontal forces may be of the same order 

as the wave resistance in still water even when the ratio of wave-height to 

wave-length has only a moderate value. 

The various cases are discussed in relation to available experimental 

results. 

REFERENCES 

Barrillon, E. G. 1926 C.R. Acad. Sci., Paris, 182, 46-8. 

Havelock, T. H. 1936 Proc. Roy. Soc. A, 155, 460-71. 
Kent, J. L. 1922 Trans. Instn. Nav. Archit., Lond. 64, 63-84. 

Wigley, W. C.8. 1934 Proc. Roy. Soc. A, 144, 144-59. 

Reprinted from ‘Proceedings of the Royal Society of London’ 

Series A No. 906 vol. 161 pp. 299-308 August 1937 

PRINTED IN GREAT BRITAIN BY W. LEWIS, M.A., AT THE CAMBRIDGE UNIVERSITY PRESS 

438 



The lift and moment on a flat plate in a stream 

of finite width 

By T. H. Havetock, F.R.S. 

(Received 8 February 1938) 

1. The problem of the lift on a flat plate in a stream between parallel rigid 

walls has been solved in an exact form, by using a suitable conformal trans- 

formation, by Tomotika (1934), who also gives an expansion for the lift 

in the particular case when the mid-point of the plate is midway between the 

walls; a similar solution for the moment on the plate does not seem to have 

been given. The method used in the following paper is quite different and 

is, perhaps, of sufficient interest to justify further examination of the 

problem. The flat plate is treated as the limiting case of an elliptic cylinder, 

and the method of solution leads directly to expansions for the lift and for the 

moment suitable for any position of the plate subject to the parameters 

being within the range necessary for convergence. Moreover, by a simple 

modification, expansions for lift and moment are obtained when the stream 

is bounded by parallel free surfaces, taking the boundary condition in an 

approximate form; and a further modification gives the corresponding 

results when one surface is rigid and the other free. A brief examination is 

also made of the moment for an elliptic cylinder. 

GENERAL EXPRESSIONS 

2. Consider the two-dimensional motion due to a cylinder placed in a 

uniform stream bounded by plane parallel walls, including circulation 

round the cylinder. Let C be the contour of the cross-section of the cylinder, 

and take the origin O so that the parallel walls are given by y =a, and 

y = —b, respectively. To simplify the argument, we assume that a position 

can be found for O such that a circle can be drawn, with centre O, entirely 

in the liquid and enclosing the contour C. 

With w for the complex potential function, we take 

dw amtiniA, dw, 
—=C a hs 
dz o entl dz 

(1) 

Tn (1), ¢ is the velocity of the stream, in the negative direction of Oz, 

the series is a suitable expansion for the singularities of the potential 

[else 
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The lift and moment on a flat plate 179 

function within the contour C, and the last term is to be determined so as 

to satisfy the boundary conditions on the walls. These conditions are 

I dw 
Game Z2=x+1a,2=2—ib, (2) 

where J denotes the imaginary part. 

To satisfy these conditions we replace the series in (1) by 

|, Fe e@dk, forz=x+ia, 
0 

|| F(—k)e“*dx, forz=2—ib, 
0 

where E(k) — Ac (3) 
0 

We may build up an expression for dw,/dz by successive images. Taking the 

expressions in (3), a single reflexion at a plane wall changes F(«) into the 

conjugate complex F*(«); if the reflexion is at the upper wall (y = a) the 

contribution to dw,/dz valid in the liquid is 

| F*(k) e—tkz—2Ka dk, (4) 

0 

while if the reflexion is at the lower wall (y = — 6), the corresponding form is 

=| F*(—k) et? dk. (5) 
0 

Taking successive reflexions at the two walls, the contributions of the 

infinite sets of image systems may be summed, and we obtain finally 

dw imintA, 
dz rags 0 gntl 

(ve) *(4-) p—ikz—2ka __ F* —K eike—2Kb 

+] Pints) “{ ) dk 
0 l—e-* 

dk, (6) 
i F( a k) ea ikz—2Kd =: F(k) etkz—2kd 

0 l —e—2kd 

where d = a+b, and F(x) = LA, kK”. 

It may easily be verified directly, by using (4) and (5), that (6) satisfies 

the boundary conditions (2). 
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180 T. H. Havelock 

3. We now calculate the forces on the cylinder from the expression 

2 

RAAT & si f(r) dz. (7) 

We write (6) in the form 

dw imtinlA 
as, =c+y a + 2B 2", (8) 

(oe) ( = Aye P*(k) e-2ka — i" F*( = k) e—2kb Ke 

j [ed nl where [oy = | 

of(=1)e (6) Hit (Ket Ke 
=| g=z ni ek (9) 

From (7) and (8), we obtain 

X—iY = —27p(icAy+ Li7+1n! A, B,). (10) 

If I’ is the circulation round the cylinder, we have J’ = 277A); further, 

using (9), we easily obtain X = 0, and 

(ee) * —2ka _ i738 *( —2kb 

¥ = pel’+2np| NEN i sone (ae dk. (11) ; => 

For the moment about the origin we have 

dw\? eo TO ake M ph b2( 72) dz (12) 

= 2np Ri{cA,+21"(n+1)!4,4,B,}, (13) 

where & denotes the real part. 

Using (9), this may be expressed in the form 

co Fl * —2ka __ F'( _ Eo fae —2kb 

M= 2npRil cA, + | Hats aisle ; ae eee ae 3 = 

c {B"(k) F(=k) = F'(54) F(x) ar | . (14) 0 1 — ed 

To complete the solution of the problem in any given case we have to 

determine the function F(«) so that the boundary condition of zero normal 

velocity is satisfied over the contour C. 
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The lift and moment on a flat plate 18] 

ELLIPTIC CYLINDER 

4. We take the contour C to be an ellipse, of semi-axes a’ and b’, with its 

major axis making an acute angle 0 with the positive direction of Ox, and 

we take the origin at the centre of the ellipse. 

In terms of a complex variable € (=&+7in), we take 

z = pe cosh €, (15) 

and the contour C is given by 

£=&); pcoshé =a’; psinhé, = b’. (16) 

(17) 

We now write 

dw 

de 

the second and third terms being in a suitable form in the elliptic co- 

ordinates; to obtain F(x) in terms of the new coefficients b,, we have to 

compare these two terms with the series in (6), noting that 

dz/d€ = pe sinh €. 

Hf) 0 oll” ‘ A du 
= epe sinh €+ 5— — > 17b,e-"5 + pe” sinh ¢ aa 

Ue 2 

For this purpose we put the series in (6) into the form in (3) valid for the 

upper surface; under the same condition it can be shown that 

i" f ae =D (fi F : . AK 
di"b,e-" = pe sinh € oe Jy(Kpe’) +iXb,, J, (Kpe®)) e dk. (18) 

0 ~ It 

Hence, by comparison, we obtain 

TAGS) = = Jo(Kpe’) +iXb,, J, (Kpe’), (19) 

d Ee Yess 
and a = cpe’ sinh €+ = —Di"b,e-é 

Bibs 0 ANE (pe e—tkz—2ka _ Pe => etks—2Kb 

+ pe sinh c(, its) = —_ és) dk 

ie, © J F — P\ pH PF -\ pikar ,— 2d 

—pesinhf| * (Se as) eS Te 
~Jo 1— e-2Kd 

We now express this in the form 

dw ecole 

de = X(C,, em ar Dp 
Gs) 
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by substituting in (20) the expansions 

Kpe e+ sinh € = 2) ( +7)" 1 nd, (Kpe*) sinh n€, (22) 
T 

We obtain, for n> 1, 

~ ( _4)n-1 Ff* K e-2ka —yn-l Pei K e—2Kb . ak ee Sate ee eee an) 

2 f( — r= 1F(— K)—0"— 1 F(x (k)} e-2xd M6 dk BS 

-[ aS nJy(pei®)E, (28) 
(ee) ==} n—1 Pe K) e72ka _ nl Fre ( — K e—2kb . aK 

1D}, = ~irb,—| ( ( 1 Dod: ( nJ,(Kpe*’) ay 
0 3 K 

eo) {( pS t) ee F(= k) —yn-1 F(k (k)} eae 9 dk - 

+f Ripe we Wie eaacar Bae ce nJ,,(Kpe ) K? (24) 

while for n = 1, C, has the additional term icpe’ and D, the additional term 
lepetd — Cpe”. 

The boundary condition on the contour C is that the real part of dw/dé 
should be zero for = &); this gives 

DE = —e?"60C,. (25) 

Using this in (23) and (24) we obtain an infinite set of equations for the 
coefficients b,,; these are, for n> 1, 

© H(k) dk 

0 1— e72kd K H 

(k) = {ng" F(x) J,(Kkpe~”) + (— 1)" nF *(x) J,(Kpe")} ex 

+ {(—1)"ng”F(—K) J,(xpe-) + nF*(— x) J,(epe®)} e-™ 
= nl{a"F*(—K) + (= 1g F*(w)} I, (ape) 
+{(—1)" F(—k) + F(k)} J, (kpe®)] e-24, (26) 

with a similar expression for 2b, including an additional term 

ib, = 

— gcepe + tepge—, 
and with q = e£0 

By using (19), these results may be combined into an integral equation 
for the function F(x); it is 

F(x) = Iy(xpe!)— eple® — ge) J (xpe? 

ap ae )G, + F*(v) Gy} e244 {F*(—v) Gy + F(—v) Gy} e2” dv 
0 ] —e-2vd ) 

(27) 2 

_ (°tP*(< 2) G+ F(—») G.+ F(v) Gy + F*(v) Gy} e-24 dv 

0 ] —e-20d v 

443 



The lift and moment on a flat plate 183 

with G, = Xing” J, (vpe—**) J, (Kpe*”), 

Gy = E(— 1)" nJ,(vpe!) J, (xepe), 
G, = EnJ,(vpe!) J, pe), 
Gy = 2(-1)" ng" J, (vpe—”) J, (Kpe”). 

(28) 

FLAT PLATE BETWEEN PARALLEL WALLS 

5. We consider the limiting case obtained by making &, zero, that is, 

by putting q = 1 in the previous results. The cylinder reduces to a flat plate 

of width 2, at an angle 6 to the direction of the stream, and with its mid- 

point at distances a, b from the upper and lower boundaries, respectively. 

We write T= 2nkepsin6; F(x) = cpsin @f(k). (29) 

The equation for f(x) is 

S(k) = keJo(Kpe"*) — a, (pe) 

+ {f(v) Gy + £*(v) Ga} oP + {f*(— v) Gy + f= v) Gah er?” dv 
0 | —e-2vd v 

vi I @{f*(=0) @ +f(=2) Ga + flr) Ga+ f(r) Gert" dv (a) 
) 0 tes e2vd 

Gy, Go, Gs, G, being given by (28) with g = 1. 

We approximate to f(k) by successive substitution of approximations 

for f(«) in the integrals of (30), repeating the process as far as may be desired. 

Our object is to obtain the various quantities ultimately in power series in 

p/d, or alternatively in p/a or p/b, assuming these ratios to be less than unity. 

The expansion for f(x) is most readily obtained by replacing the Bessel- 

functions in (30) by their power series as far as necessary so as to give all 

terms up to a required order in the final results. We shall develop these 

expansions up to terms of order (p/d)4; except for the length of the expres- 

sions, the expansions could readily be taken to a higher order. Itis sufficient, 

for the present purpose, to take as the first approximation 

f(v) = k— hivpe® — dhv2pe? + Livi pes? + dkvtptet?, (31) 

Further, to this order, it is sufficient to replace G, by 

G, = txpe™ (Supe !? — gev'pre*”) 
fu LK2p?e?"9(Ly2pe—28) = qigk3 p33? (Lupe), (32) 

and G,, Gs, G, by similar expressions. 
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We now obtain the result of putting in the integrals of (30) a typical term 

vrpre™? or iv™pre'”4 instead of f(v); we then apply these results to each of 

the terms in (31) and repeat the process until we have obtained all the terms 

of the required order. For the integrations with respect to v which occur 

in the process we use the notation 

© p—2va _ ( = iN) 72 e—2vb 

Pe =| ez vndv, (33) 

2 y—2vd 

Tn = i [—en20d vdv, (34) 

n not being zero in the second case; these integrals may be evaluated in 

finite form. 

We now give the result of this process; we obtain 

f(k) = k—dixpB, ec” —iK2p?B, ce? + Liki By e3 + A Kxpt Bet 4..., (35) 

with B, = 1+kprysin 6 + 4p?(r, — 2rj cos 20) 

+ tkp*{ro(4 sin’ 6 — sin @) + 479(7, — 2r; cos 20) sin 7} 

—tp*{rs cos 20 — 275 cos 40 — 2(r, — 2r} cos 20)?}+ ..., 

By = k—ikp?(r, — 2r}) cos 20+4p%7.sin0+..., ee) 

B, =1+kprysiné+..., 

B,=k+.... 

6. We consider in particular the case in which the circulation is such that 

the fluid velocity remains finite at the rear edge of the plate; the condition 

for this in an infinite stream is 

[= 2nepsiné, ork =1. 

Returning to the expression (21) for the elliptic cylinder, the condition 

requires that the imaginary part of dw/d¢ should be zero for € = +77. 

This gives, after putting & = 0 for the flat plate, 

iT ee ee Cn CA) = OF (37) 

From (23) we obtain 

Z(=1)"G, = —4ope” 
0 7n—1 Fl (,-)\ p—2ka _ ( __7\n—1 F)*/( _ ,-) p—2kKb - | ir7-1F¥(k)e (—2)"-1 F*(—k)e nud, (pet) 

0 l— e—2Kd 

+2" {ir F( aig kK) = ( —i)jrt F(k)} ed aan GUE ary ; Tae nJ, (Kpe*”) ae (38) 
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Hence, writing A, = te 
w, 

A, = J,(Kpe’*) a iJ, (Kpe*’), 
( 

this gives 

2) * —2ka _ Cl ees —2Kb 

+(-1)"C, = — Jepe”— pe A, F*(k)e Bell (—k)e as 

0 l—e-« 

2 — = a —2«d 

+ he] {4, F(-«) A, ED ike (60) 

i 0 1 Se-2 

Hence the equation for k, to give the required circulation 27kcp sin 0, is 

, ; 20 4 fi(k)e*t*-—A f*(=k) e—2Kb 

bes 1+ Ipe| s aero dk 

of NV —2xkd 

~ Ipe'#| (Af oa dx, (41) 

d 

with A,, A, given by (39). 

We substitute (35) in (41) and also use the power series for A, and A,; 

carrying out the integrations and using the same notation as before, we find 

k = 1+kprysind + 4p, (k cos 20+ B,) — p*ri(k + B,) cos 20 

— 41 p*r.(k sin 30 + B, sin @ — B, sin @) 

— 1, p1r,(k cos 40 + 2.B, cos 20 + 2B, + Bs, cos 20) 

+i ptr(k+2B,+2B,+B,)cos40+.... (42) 

Finally we substitute from (36) and solve the equation for /; we obtain 

k= 1+4, p+. p?+a,p?+a,p*+..., 

a, =7osind, 

dy = r2 sin? +r, cos? 0 — 27; cos 20, 

dz = resin? 6 + 2r97, sin cos? 0 — tr, sin 30 — 4797; sin 8 cos 20, (43) 

a, = résin?6 + 3r27, sin? 0 cos? 6 — drory sin @ sin 30 

+472(3 —6 sin? 6 +4 sin‘ 0) —+4r5(2 + 3 cos 20 + cos 40) 
, — 6r27} sin? @ cos 20 — 37,17; cos? 0 cos 20 + 371? cos? 20 + 3r3 cos 40. 

7. We may now obtain the lift from (11) and we express it in terms of 

the corresponding lift in an infinite stream; that is, we write 

VS lig Vn = iby = 2s 
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Using (35) in (11) we obtain 

L/L, = k+k*prysin 6 + kp?r,B, sin? 0 — }p3r,(2kB, cos 20 — B?) sind 

—}p'r,(kB, sin 30 —2B,B,sin@)siné+. .. (44) 

Substituting from (36) and (43) and collecting the terms we obtain 

L/L) = 1+6, p+, p? +b, p? +b, pt + Me 

b, = 2rysin 0, 

by = 3rgsin?@ +7, —2r} cos 20, 

3 = 4r§ sin? 6+ 27ro7r,(2 sin 6 — sin?) —7r, sin 6 cos 20 — 8ryrj sin 0 cos 20, 

by = 5r§ sin? O + 3r27,(3 sin? @ — 2 sin’ @) + 37? — 37, cos 20 

— 3% o1o(7 sin? 6 — 12 sin* @) — 18727; sin? 6 cos 20 — 3r, rj cos 20 

+ 377? cos? 26 + 375 cos 40. 

(45) 
The integrals given in (33) and (34) give for the coefficients, 

To= 5qtan a, 

a\e 
Pa =(5) sec? a, 

Tr \3 

tT. = 2s) sec?a tana, (46) 

2d 

4 
7 ‘ 

a 25) sec? a(sec? a + 2 tan? x), 

77 , a 

"1 24g? "3 ~ 940q2” 

with a = 7(b—a)/2d. 

We may derive limiting cases from (45). If we make 6 and d infinite, we 
have a semi-infinite stream bounded by an upper plane wall; the limiting 
values of the coefficients are then 

1 . 1 . 1 . 3 . 

pa Tage Ta Tage US =e fh Sits = Os (47) 
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With these values we obtain 

1/2 1 /2p\2 ifilg, = 145 ( 7) sino+7,(-”) (1+8sin?d) 2 

1 /2p\*) ae 1 /2p\* Be Ble 
+352] (sin + 3sin 0) 52] (3 — 13 sin? 6 — 22 sin*9)+.... 

(48) 
This agrees with the expansion which may be found by the same method 

applied directly to this case. If we make a and d infinite, the stream is 

bounded by a lower plane wall. In this case the coefficients have the same 

numerical values, but ry and r, are now negative, and we see that the result 

is the same as (48) but with the terms in the odd powers of 2p/a negative. 

Another special case is when the mid-point of the plate is midway be- 

tween the walls, or a = b = 3d. In this case 

7 =0; 7, =7°/4d2; 1r2=0; 1s = 74/8d!; 

ry = 77/24d?; rr = 74/240d?, (49) 
and we obtain 

Ms 7? (2p\? Rig m* (2p\4 Sis ais eta 
L/L, = 145 (72) (1+sin 0)— sas) (11—53 sin? 6—22sin*@)+.... 

(50) 

This agrees with the expansion given by Tomotika (1934) for this parti- 

cular case. 

In general, calculations may be made from (45) and (46), and the variation 

in lift examined as the plate is moved across the channel. The following 

values illustrate this for one particular case: 

0 = 10°; 2p/d = 0-2 
ald 0-3 0-4 0-5 0-6 0-7 
Iii MOT 1-037 1-017 1-002 0-989 

8. We now obtain a similar expansion for the moment of the forces 

about the origin. If M) is the moment in an infinite stream, 

M, = 7pc*p? sin 0 cos 0. (51) 

Using (35) in (14), we obtain, after some reduction, 

M/M, = B,+kpry B, sin @ + 2kp*r, By sin? 0 

— 4p*r\ (kB, —4B}) sin? 0—} pr, {3k B,(sin 6 — 4 sin? 6) — 2B, B, sin J} 

—tp'r,(4kB, cos 20—2B, B,) sin? 0 

+ pri(kB,—2B, B,+2B3) sin? 6 cos 20+.... (52) 
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Substituting from (36) and (43), and collecting the various terms, we 

obtain 
M/M, = 1+¢, p+. p?+c, p> +c, p*+..., (53) 

¢, = 2rysin 8, 

Cy = 3r2sin?@+ 47,(1+4sin?6)—7}, 

C, = 4rg sin? @ +797,(3 sin 0 + 2 sin? 4) 

— ir,(sin 0 — 8 sin’ @) — 2ryrj(3 sin 0 — 4sin3 0), 

C, = Srgsint 6 + 13727, sin? 6 — 2ryro(sin? 6 — 3 sin* 0) 

+4r2(1+ 14sin? 6— 12 sin*@) — 47r,(1— 8 sin*0) 

— 3r27rj(5sin? 0 — Ssin* @) —7,7{(1 + 10 sin? 6 — 20 sin* 0) 

+772(1+ 6 sin? 6— 16 sin? @) + 474(1— 4 sin? 6). 

When 0 and d are made infinite, this reduces to the expression for a semi- 

infinite stream with an upper plane boundary, namely 

1/2 1 /[2p\2 M/M, = 1+5(=) sind +35( 2 (1+ 10sin?@) 

5 (2p\?. es 1 /2p\* ates se 
+f waa(—") (sin + 4sin 0) s5(" (1—14sin?9—40sin*@)+.... (55) 

There is also a similar reduction for a lower plane boundary. 

With a = b = id, the mid-point of the plate being midway between the 

walls, we have, from (49), 

Es 1 (2p\? ok 

ae {{4ON> : ; 
- su) (11—174sin?6—170sin*@)+.... (56) 

For the general case, we have (54) with the coefficients given by (46). 

As a numerical example, we obtain the following values: 

G = 10°; 2n/d = 0-2 

a/d 0-3 0-4 0-5 0-6 0-7 

M/M, 1-059 1-030 1-010 0-994 0-977 

FLAT PLATE BETWEEN FREE SURFACES 

9. These results may easily be modified to give approximate expressions 

when the stream is bounded by parallel free surfaces. At a free surface the 
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resultant velocity is constant; we shall take the usual approximate form of 

this condition which amounts to assuming the deformation of the free 

surface to be small and making the tangential component of the fluid 

velocity constant. 

Thus, instead of (2), we have the boundary conditions 

dw 
R= 6 Z2=x2+ia; z=2—1b. (57) 

Following out the same process as in § 2, the appropriate form is now 

dw matt Nn ! A, ies) F*(k) e—tke—2Kxa ay P*( => k) etke—2Kb d : 

dz Ore ntl 0 it en 2kd K 

20 F( + k) e—tke—2xd _ F(k) eike—2Kd 

_ c 58 I a dk, (58) 
and it may be verified directly that this form satisfies the boundary con- 

ditions (57). ‘ 

It follows that the expressions for the lift and moment are now 

Kk) P* (x) e2*¢— F(—x) F*(—k) e- 2X? 
l — e—2Kd 

Y =pcl'— 2mp| a dk, (59) 
0 

oO A (pe * (jc) p—2Ka — Fl" ( — pe o3// — —2kb iq = 2npRi| c4,— | F'(k) F*(k)e F'(—k) F*(—k)e d 
= e—2Kd KK 

Ih {P'(k) F( = re F(k)} re ar | : (60) 

It is clear that we may write down the expansions from those in the 

previous sections by replacing each coefficient 7,, by —7,, and leaving the 

coefficients r/ unaltered in sign. 

Hence, instead of (45) we have, 

L/L) = 1+6, p+b. p? +b, p? +b, p?+.... (61) 

b, = —2r)sin8, 

by = 3r2 sin? @—r, — 27} cos 26, 

bs = —4r8 sin? 6 + 2797,(2 sin 6 — sin’ 0) 

+r, sin 7 cos 26 + 8797; sin 0 cos 26, (62) 

b, = Srésint 6 — 3r27,(3 sin? 0 — 2 sin @) + 37? + 373 cos 20 

— dror2(7 sin? 6 — 12 sin* @) — 187g7r; sin? 6 cos 20 

+ 37,7} cos 20 + 3777 cos? 26 + 3r5 cos 40. 
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With 6 and d infinite, this gives, for a semi-infinite stream with an upper 

free surface, 

2 PN on a Ze r bily = 1~3(°) sind w6( 2) (1 8sin 0) 

1 [2 1 /2\4 
+35 ai (3 sin 0 — Ssin®4) + 515 (”) (6—41 sin? + 46 sin40)+.... (63) 

With a = b = id, we obtain 

Bf Th malt) @ —sin?6) 
d 

m* (2p\* ae = 4 
+7as0(z) (64—97 sin? 6+ 66 sin*0)+.... (64) 

For numerical comparison, we take the same case as before, and obtain 

the following: 

0 = 10°; 2p/d = 0-2 
a/d 0-3 0-4 0-5 0-6 0-7 
L/Lp 0-924 0-951 0-969 0-983 0-994 

Similarly, for the moment, we have 

M/My = 1+¢,p+c, p?+¢cs p?+c,ptt+..., (65) 

¢, = —2r)sin8, 

Cy = 3r2sin?@—4r,(1+4sin?O)—7;, 

C3 = — 473 sin? 6 +797,(3 sin 6 + 2 sin? 0) 

+ 47,(sin 6 — 8 sin? @) + 2797;(3 sin 0 — 4 sin? 9), (66) 

C, = Sr§ sin? 6 —42737, sin? 0 — 2797,(sin? 6 — 3 sin? 0) 

er dr3(1+ 14sin? 6 — 12 sin* 0) + 47,(1—8 sin? 6) 

— 3r27r{(5 sin? 6 — 8sin*@)+7,7}(1+ 10 sin? 0 — 20 sin’ 6) 

+72(1+ 6 sin? 6 — 16 sin4 @) + 473(1—4sin26). 

With } and d infinite, we obtain 

1/2p)\.. 1 (2p\? ube 1 (22)\ee : 
M/M, = 1=5 (7) sino-5,(2*) bape (7sin 6— 12 sin?@) 

1 2p i i 
g( 2 Jasin 0+ 8sin*@)+.. (67) 
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The lift and moment on a flat plate 191 

and with a = b = 3d, we have 

M/M, = 1c) (1+3sin?@) 24 
m* (2p\4 ie Wy 

“rm | (GEAR TEPO SSRN G) sh c000 (68) 

For numerical comparison with previous sections, we take the same 

numerical case: 
6 = 10°; 2p/d = 0-2 

a/d 0-3 0-4 0-5 0-6 0-7 

M/M, 0:938 0-965 0-982 0-998 1-011 

PLANE BOUNDARY AND FREE SURFACE 

10. Although the problem is not, perhaps, of practical interest, we may 

note that the same method can be extended to the case when one boundary, 

say the lower, is a rigid plane while the other, upper, boundary is a free 

surface; we note, again, that for a free surface the boundary condition is 

taken here in an approximate form. 

Considering, as in § 2, the image systems formed by successive reflexions 

in the two surfaces, we see that these infinite series of images now consist 

of terms of alternate signs; summing these series we obtain 

dw ie gntin! A,, -} F*¥(k) e—tkz—2Ka a8 F*( Be, k) Cat oy 

GB e etl 4 1 + e-2«4 us 

o {F(- Klemens pare F(k) ES e—2Kd 

+f peated dx. (69) 

It may be verified directly that (69) satisfies the boundary conditions 

ig =c; 2=2+14, 
dz 

(70) 
1@ =0; z=x—1b. 

The expressions for the lift and the moment are 

Kk) FA(c)e-2t + F(—n) F(— nye Y=pcl'-2 = [pea dk, (71) 

kK) F*(x) e-*¢ + F'(k) F*(—k) e240 

{F'(k — F’(—k) F(k)}e-*4¢ : oe eee ate dij] yen (22) 
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We use the notation 

© p—2va ae ( me 1)” e—2ub 

oi = 1+e-2d 
ondv, 

(73) 
. 2 e—2vd 

s =|. Tags 

By comparison with the expressions for the flat plate between two rigid 

boundaries, it is easily seen that we may write down the corresponding 

results by replacing the coefficients r,, by —s, and rj, by —s/. 

Thus we obtain, making these changes in (45), 

L/[Lo = 1+6, p +b. p? +b, p?+byptt..., 

b, = — 2s) sin 0, 

b, = 3s? sin? 0 —s, + 28} cos 20, 

b, = — 4s? sin? 0 + 2sys,(2 sin 6 — sin? @) + s, sin @ cos 20 — 8s) 8; sin 8 cos 20, 

b, = 5s$sin* 0 — 3s2s,(3 sin? 6 — 2 sin*@) + $5? + 3s, cos 20 

— 4598_(7 sin? 0 — 12 sin? @) + 1882s; sin? @ cos 20 — 3s, 5; cos 20 

+ 38}? cos? 20 — 385 cos 40. 

(74) 
Similarly, for the moment, 

M/My = 1+e,p+Cyp?+C3 p> +e pi +..., 

¢, = — 2s)sin 0, 

Cy = 3sésin? 6 —4s,(1+ 4sin?0) +5), 

Cs = —4s§ sin? 0+ sys,(3 sin 6 + 2 sin?) 

+ ts,(sin @— 8 sin? @) — 2s)5;(3 sind — 4 sin? 6), (75) 

C, = 5s4sin* 0 —43s?.s, sin? 0 — 2s)s,(sin? 0 — 3 sin’ 6) 

+4s7(1+14sin?6—12sin*@) + 4s,(1—8 sin‘ 0) 

+ 3s2.s{(5sin?6 — 8 sin*@) —s,s}(1+ 10 sin?0— 20 sin’ 6) 

+81?(1+ 6 sin? 6— 16 sin4 @) — 4s3(1—4sin?6). 
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From (73), the coefficients are given by 

2 

So = Fy S06 a $8, = (z,) sec a tan a, 

NG 
a |r sec a(sec? a + tan” a), 

4 

Gy = (3) sec a tan a(5 sec? a + tan? a), 

8, = 77/48d?; 83 = 7774/1920d?, 

with a = 7(b—a)/2d. 

193 

(76) 

It may be verified that if we make b and d infinite, or a and d infinite, 

these expressions reduce to the former results for a semi-infinite stream 

bounded, respectively, by an upper free surface or by a lower rigid plane. 

For the particular case, a = b = dd, we obtain 

/), 2 (9n\2 

ijl = 1-5 (F)sina +5 (+ (1 + 18sin?) 

»\3 
4 (sin #— 14 sin?) 

+) (11+ 882 sin? — 3712 sin? @) + 

and M/M,=1- 2p) 4 2p | sind +2, rae “(1 +36sin2 0) 

aS a sin’ @) 

‘a l + 3 sin® 12 

The follo W Ing numerical V alues may be compared with 

previous sections: 

6 = 10°; 2p/d = 0-2 

ald 0-3 0-4 0-5 0-6 
De 0-924 0-942 0-953 0-956 
M/M, 0-928 0-943 0-949 0-951 

(77) 

(78) 

those in the 

0-7 

0-960 

0-948 

Tn this case the relative variation near the middle of the channel is much 

less than when the boundaries are of the same kind. 
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ELLIPTIC CYLINDER 

11. The expressions for a flat plate have been obtained as limiting cases 
of those for an elliptic cylinder. We shall consider now the general case 
when the cylinder is in a stream between plane parallel walls, and we shall 
examine the moment of the forces; further, in order to simplify the caleu- 

lations, we assume in this case that there is no circulation. 

Referring to § 4, we have to determine F(x) from (27) and (28) with 
ISO, 

The process of approximation is carried out as before, and we record the 
result up to terms necessary to give the moment to the required approxi- 
mation. We obtain 

P(k) = — $ep(dxpB, e + x2p?B, €29 — 1 x33 B. e310 

~ ork p Bye + sag p? Bee" + ...), (79) 
B, = e —ge- + I p?r, (2qe — q2e-19 — e-i#) 

— h pri (e3! — get? — ge-Bi8 + ge~i?) 

— 5 p'r,{2q(e + e308) = (1 ae q’) (e? + e8t8) 

+ TEP ri{(1 + 39?) e” —9(3 +97) e-} 
a 3 pry ry {4qe3? ata (1 ab 3q7) (e? ale GW) ae 2q(1 dt q°) Ck (80) 

ab tptrsqen = Creme + q(l as q’) e—t0 — 2q7er? 4k ger? ie eb 

+4 piri(qe9 + Ge 89 — ge3i0 4 e5i8) 4 

IB Ne Gem tee 

B, = e—qe" +... 

B, and B, are of order p? and do not contribute to the value of the moment 
up to terms in p?. 

Using (79) and (80) in (14), we obtain, after some reduction, 

M |mpe*p? sin 0 cos 6 = 1+ p*{4qr,+73(q— 2 cos 20)} 

+76P {ri(1 + 3g?) + 7r3(1 + 9? —4 cos 20) + 4r,7/(1 + 3q2— 8 cos 26) 

+ 4r7°7(3 + 3q° — 8q cos 26 + 6 cos 40) + 275(3 + 2 — 8¢ cos 20 + 6 cos 40)}+.... 

(81) 

In this expression, @ is the angle the major axis makes with the direction 
of the stream, a, b are the distances of the centre of the ellipse from the two 
walls, and the coefficients r are given in (46); further, if a’, b’ are the semi- 
axes of the ellipse, we have p? = a’?—b’? and q = (a’ +b’)/(a’ —b’). 
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The lift and moment on a flat plate 195 

The moment for a flat plate in a stream between plane walls, and without 

circulation, has been obtained, by conformal transformation, by Tomotika 

(1933), who also gives an expansion for the case a = b = 3d; it is 

2 2 

M/M, = 1+55(7) (14 2sin26) 
48\ d 

4 4 

~ 000) (11—106sin?0—66sin*@)+.... 
(82) 

If in the general result (81) we put q = 1 and use the values of the coefti- 

cients given in (46) and (49) we obtain again this particular result. 

We shall use (81) to illustrate one point, namely the change in the moment 

when a flat plate is replaced by an elliptic cylinder whose major axis is of 

length equal to the width of the plate; thus we examine the effect of rounding 

the edges of the plate and giving it a finite thickness. 

To simplify the calculation, we take the cylinder in the position given by 

a = 6 = 3d. Then (81) gives 

2) /a'\2 
M |7pec?a’* sin 6 cos 6 = aja +7) (2q — cos 20) 

ie mA? (a’ 

23040\d 

where A=1-b/a2, g = (a'+b')/(a’—0’). 

4 

{99 + 1689? — (300 + 44¢) cos 26 + 33 cos 46} + | , (83) 

We begin with a flat plate of width 2a’, and then keeping a’ constant we 

increase b’; to simplify the calculations we have taken the position given 

by 6 = 45° and the following table shows the result of the calculation for 

various values of the ratio a’/d. 

a’/d 0 0-1 0-2 0:3 0-4 

b’/a’ 

OR 1-0 1-0165 1-0673 1-1561 1-2885 

0-05 0:9977 1-0159 1-0714 1-1690 1:3149 

0-09 0-9917 1-0113 1-0717 1-1734 1-3361 

0-13 0-9830 1-0038 1-0679 1-1799 1-3484 

0-2 0-9600 0-9829 1-0535 1-1773 1-3640 

0-5 0-7500 0-:7780 0-8655 1-0227 1-2664 

For an infinite stream (a’/d = 0), this process of increasing the ratio 

b’/a’ with a’ constant gives a moment which steadily decreases to zero when 

b’ =a’. Aninteresting point which arises from these calculations is that in 

a stream of finite width, with plane walls, the moment rises to a maximum 
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196 T. H. Havelock 

before decreasing to zero; with decreasing width of the channel, this maxi- 

mum increases in amount and occurs at a higher value of the ratio b’/a’. 

SUMMARY 

The paper gives a new treatment of the problem of a flat plate in a stream 

bounded by plane parallel walls, including circulation round the plate. The 

plate is considered as the limiting case of the elliptic cylinder; an integral 

equation is obtained, whose solution by continued approximation leads to 

expansions for the lift and moment on the plate. The solution is modified 

to give similar results when the stream is bounded by parallel free surfaces, 

taking the condition at a free surface in an approximate form; and a further 

modification gives the case when one boundary of the stream is a:plane wall 

and the other is a free surface. The problem of the elliptic cylinder in general 

is also considered with reference to the moment of the forces when the 

stream is bounded by plane walls and when there is no circulation. 
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Note on the sinkage of a ship at low speeds. 
By T. H. Havelock in Newcastle-on-Tyne. 

Zusammenfassung. Um einen Anhalt fiir die Zunahme des Tiefganges eines Schiffes 
bei geniigend kleinen Geschwindigkeiten zu haben, ersetzt Verf. den eintauchenden Teil des 
Schiffes durch ein Halbellipsoid, dessen ebene Grenztlache mit den Halbachsen a und 6 in 
der Héhe des Wasserspiegels liegt. Um diesen Kérper nimmt er eine Potentialstrémung an, 
fiir die die Wasseroberfliche eben bleibt. Aus dieser wird die Abnahme Q des Druckes nach 
oben berechnet und die Zunahme h des Einsinkens mittels der Gleichung Q=aba-og-h 
bestimmt. Die so gefundenen numerischen Resultate stimmen mit denen aus einer empirischen 
Formel von Horn fiir wirkliche Schiffskérper der Gréfenordnung nach gut iiberein. Weiter 
geht Verf. auf eine andere Hornsche Niherungsformel ein, die es erlaubt, aus dem Einsinken 
die Zunahme des Reibungswiderstandes eines Modelles, verglichen mit dem einer ebenen 
Platte, abzuschiitzen. 

1. The general problem of the position of relative equilibrium of a ship in uniform 
motion is a complicated one. and the following note deals only with a simplified form of the 
problem suitable for low speeds. It is generally assumed that at sufficiently low speeds 
the fluid motion approximates to the stream-line flow round the ship, neglecting the distur- 
bance of the surface of the water; the sinkage is then due to the defect of vertical pressure 
caused by the fluid motion and should be proportional to the square of the speed. There do 
not seem to have been any calculations made to test whether these assumptions lead to results 
of the right order of magnitude. Such calculations might be carried out numerically for 
ordinary ship forms, but it is sufficient for the present purpose to take a simple form. We 
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assume the submerged part of the ship to be ellipsoidal. The solution of the corresponding 
potential problem is well-known, and an exact expression can easily be found for the total 
defect of vertical pressure, and hence we obtain a certain equivalent sinkage. 

The problem is of some interest since Professor Horn’) has proposed to estimate the 
so-called form effect upon resistance by an approximate formula involving the sinkage at low 
speeds, The expressions obtained here for ellipsoidal forms are compared numerically with 
these results and with other experimental data, 

2. A solid, whose surface is given by 

ae y? 2? 

San yg GS CO SSOM ioe one aeenoneen DE 

is moving through an infinite liquid with velocity U parallel to the axis Ox. The velocity 
potential of the fluid motion is given by 

abe | adi 

One, U2 | (Gay eaye oe yee Neh 
i 

in which («, y, 2) are given in terms of orthogonal coordinates (A, 4, ) by 

»_(@ +4) (a? + w) (a +») 
(a? Se, b*) (a? ai Cc’) (3), 

with similar expressions for y and 2z. 

In these coordinates the, ellipsoid (1) is given by 2=0; and we have also 

C di 2abe 
a,—=abe | (2 As? (e+ Aji (c? Lye TE — 3?) GS cyt? (i= E) So, 6 9 8 (4). 

() 

F, E being elliptic integrals with parameters given by 

Sina—NOa—102))) (Qz—c2) csi (2 C2) 2) ee ee nn()e 

The fluid pressure is given by 

ee AI es =0pm 1 
P=P.+e < OU = — OU OW aa a poe o 6 (Oh 

If (l,m, ) are the direction-cosines of the normal at any point of the ellipsoid, the required 
total defect of resolved pressure Q is given by 

=0\\(uS24 ae )nds. SEL Nar. PEM Gy ent Sg Te (7) 

the integral being taken over the half surface of the ellipsoid lying on one side of the x y-plane. 
Using well-known properties of the coordinates 2, u,v (as given, for example, in Lamb’s. 
Hydrodynamics, p. 149), it can be shown that, on the ellipsoid 20, we have 

Op U J 2b* ce? (a? + mw) (a? +») 

0x 2—a, \% (a? — 8) (a? — ce?) wv J’ 

and 

0) zy +(¢ a =, 0c (a? + a) (a?-+ 7) 

oy (a? — b*) (a? —c?) wy 
(8). 

| Ay ) 7? { (6? + w) (c? + w) (6? + v) c? +) | @(e + we +v) 

=a ula? + Ww) (u—yr) ° v(a? +) (vy —p)J (a? — B?) (a? —e2) 

Further, we also have 

/2 
1 (4u— v) (vy — we) ; 

IS) ace Hea nG = wees CBee. al) 

1) Horn, Intern. Tagg. der Leiter der Schleppversuchsanstalten, 1937, S. 20. 
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Hence we obtain 

72 162 

ie abo U? | om iy slain 

0= gar=ayer ayn \an\ 3) ae \==cu 2) (G@a=ab3) (G2 =e) ya 

+( a, \ get ee (Cee te 
" \2—a,) 2 (a — 6°) (a? — cc?) \u(@ +) (u—») 

(u—) vw) 7 
@F DEL @ +) +7) 

Carrying out the integrations, and writing 

(8 +) (2? +) \ » 2) @O:. 
¥@L)0—M 

OQ srig oral O hi MIEN. PER RSN OSES ING See AAS Teen ean (i101) 

we obtain, for a>b>c, 

gh _ Ao J 2+a, — be? [ey 

> 2—a, " 220—a)@+b)(e@—e) * \2—a, HeF Ha) 

2 abe? b (a*® — c?)*? + a (b? — cc?) ° 
lo 

[eda 

~ Oa) @ ey — ot 8 oa ey Lc (Fey 

3. We require also the corresponding expression for an ellipsoid with a>c>6. This 
may be deduced directly from (12); or, alternatively, we may proceed as in the previous 
section but replacing ndS in (7) by mdS, given by 

(u — v) (v — pw) Ne 

(b? —c?) (8? —a@*) (24+ w(@+7) (F+W (e+ r)f 

After carrying out the integrations, we interchange 6 and ¢ so that we may express the 
result by means of (11). 

l 
maS= act dudy. .. . (13). 

We obtain, for a>c>b 

gh Ay a 2+ a, be ' a, ) a(a>+ab—c*) 

iy 2=a,  2CSa) C20) (Ge) "\2—ai) 2@+b(e@—c) 
; (14). 

2 abe? a {(a? — c?) (CP — 67)? 
9 =< ()° (a? ay Gz) uie(G2 ae Game ar ctan a b +¢? 

In this case, instead of (4) and (5), we have 

2abe 
OTe 2 2 2)1/2 vi E ) | 8 (a? — c?) (a? — b?)!! ( ) (15). 

sin a={(a? —c*)|(a? — b?)H, siny = (a — oa 

4, The prolate spheroid may be considered separately, or may be deduced from the 
two previous cases. Taking limiting values, both (12) and (14) reduce to the expression for 
this case. 

For a>b; b=c, we obtain 

gh Ao 2+ ao b? | Ay a (a+ 2b) 

72 2=a, 2@=0, Gt’ Ba) 2@+0): (16) 
and in this we have 

MLA 1dbe : a, 
=> = 5 log, e); PS WGP oo 8 0 6 a 6 (Mb 

5. To apply these results to the problem under consideration we imagine a ship for 

which the immersed portion is ellipsoidal, the « y-plane being the water surface and the sides of 

the ship above water being vertical. Owing to the defect of buoyancy, which has been 

denoted by Q, the ship will sink in the water. This will, of course, alter the fluid motion; 

but for approximate comparison with experimental results, we define the equivalent sinkage 

h so that Q is equal to the weight of a volume of water of height h and of cross section 
equal to the section of the ship by the water surface; that is, h is defined by (11). 
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If the length, beam and draft of the ship are L, B, D respectively, then L—2a, 
B=2b, D=c; for B>,<,=2Dwe use the expressions (12), (14) and (16) respectively. The 
numerical values shown in Table I have been calculated from these formulae. 

Table I. Values of gh/U’. 

B/D L|D=10 | LL|D = 16 

1 0.0253 0.0138 

2 0453 0231 

3 0612 .0318 
4 0735 0397 

6. The measured sinkage of ship models at low speeds has been analysed by Horn’), 
who has given an empirical formula derived as an average from available data for many 
different forms of model. His expression for the sinkage is, in the present notation 

h =55p (0.85 + P) {x (1125 — 3) +25} (18-55) apieyl pee Gay comet: LS): 

where L, B, D are length, beam and draft respectively, and P is the prismatic coefficient of 
the form; the formula is valid, as an average, for suitable ranges of these parameters. 

It should be noted that this formula is for actual measured sinkage, and is probably 
derived from velocities rather higher than those for which the preceding simple calculation 
is valid; moreover, the ellipsoid is not one of the ship forms included in the data. However 
we may use it to test the order of magnitude of the results. If we apply (18) to an 
ellipsoidal form with L/B=8 and B/D=2, we obtain h=0.0283 U*/g; this compares with 
the value 0.0231 U/g for this case given in Table I. 

Horn’) has suggested using the sinkage at low speeds to estimate the increased 
frictional drag for a model compared with a flat plate; his formula for the percentage increase 
in the resistance R is 

dL OOVARE/IE == 200 GTA TIM Perea Wes (lies | Aarne IRAs (9): 
For the prolate spheroid with L/B=8, the value of h in Table I gives, according to the 
formula (19), an increase of 4.6 per cent in the resistance. 

Amtsberg’) has recently determined the resistance of a submerged prolate spheroid 
experimentally; he gives two values for the increase, namely 5.2 per cent and 3.7 per cent, 
the smaller value being obtained after applying certain corrections. Amtsberg also 
investigated certain other surfaces of revolution, for which the velocity potential is given by 
a source distribution along the axis. He gives numerical values of the ordinates of the 
surface and of the theoretical distribution of velocity along the contour; from these, it is 
possible to evaluate numerically the integral we have denoted by Q in the preceding sections. 
Taking, for example, the values given by Amtsberg for his model #1257, we obtain 

approximately @ = 0.0284 o U? (area of section). This gives an equivalent sinkage of 0.0284 U?/g 
and, according to (19), an increase of resistance of about 5.7 per cent; the values deduced by 
Amtsberg from his experimental results are 7.3 and 4.9 per cent, the latter being the 
corrected value. 

It is well-known that in models of this type the measured distribution of pressure over 
the surface only differs appreciably from the theoretical value near the rear end of the model. 
Hence the effect of this divergence upon the resolved vertical pressure will only be a small 
correction; taking, for example, model #1257 and using Amtsberg’s measured values of 
the pressure instead of the theoretical values, a rough approximation gives a factor of 0.0288 
instead of 0.0284. 

7. Summary. The sinkage of a model at sufficiently low speeds is assumed to be due 
to stream line fluid motion round the submerged part of the model, neglecting the disturbance 
of the water surface. Taking an ellipsoidal form for the submerged part, exact expressions 
are found for the total defect of vertical pressure and hence for a certain equivalent sinkage. 
The results are compared numerically with available data and are found to be of the right 
order of magnitude. Further, reference is made to Horn’s approximate formula connecting 
the sinkage with the increase of resistance of the model compared with that of a flat plate. 

949 

2) Amtsberg, Jahrb. der Schiffsbautechn. Gesellsch., Bd. 38, 1937, S. 177. 

461 



From the PoitosoPHicaL Maaazing, Ser. 7, vol. xxix. p. 407, 
April 1940. 

Waves produced by the Rolling of a Ship. 

By T. H. Havetock, F.R.S. 

1. Tue first part of the following paper deals with the surface waves 

produced by an elliptic cylinder, or a flat plate, submerged in water 
and performing small linear or rotational oscillations. The second 
part contains a short discussion of the energy dissipated in wave motion 

by a rolling ship, together with an estimate of the magnitude of this 
effect obtained from the preceding results. 

Submerged Elliptic Cylinder. 

2. The method adopted is to replace the oscillating body by some 
suitable distribution of sources and sinks or of doublets. Although 
the analysis could be extended to three-dimensional problems, we limit 
consideration at present to two-dimensional motion in a frictionless 

liquid. We begin with the solution for a horizontal doublet which was 
obtained for an oscillating circular cylinder (Havelock, 1917). Take 

the origin O in the free surface of deep water, Ox horizontal and Oy 
vertically upwards. Let there be a horizontal doublet of oscillating 
moment M cos ot at the point (0, —f) in the liquid. The velocity potential 
¢ is given by 

j= we eet Met | 
1 

GTO TS 6 S—Wsin pach, 5 2 (Il) 
0 gk—o*--t a 

with r,2=2?+(y+f)?. The real part of the expression is to be taken, 
and, further, the limiting value when the positive quantity py’ tends to 

zero; this latter process ensures that, at great distances from the origin, 

the motion will reduce to waves travelling outwards on either side. We 
may write (1) in the form 

@ e—K(Ff—Wsin Kx 4 
= — ett — ett Ve Met | = Pre Me resi (2 p r2 ar ro ar 0 i K—Ky tip ( ) 

with Pe "+ (f—y)? and p—=p'o/g, RpSeel We 
The integral in (2) may be transformed by taking « to be a complex 
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variable and integrating round suitable contours according as x is positive 
or negative. We obtain, taking the real part and making p zero, 

= COS of -F 2k y7Me™ “ of" )cos (otk a) = ue cos of ++ 
ist 2 

Ky Cos K(f—y)-+K sin «(f—y) eF de, (3) 

K+ Ko? 

the upper or lower signs to be taken according as 2 is positive or negative. 

The corresponding surface elevation 7 is given by 

2k M cos at | 
0 

2 t n= aL ein (ot Fk yx)— aie cin at 
g Gg Bay 

4 Peco i | eocosil i Bin of eF die. (4) 
g 0 K"-+-Ko 

The first term represents the regular waves, while the other two terms 
give a local oscillation whose magnitude diminishes with increasing 
distance from the centre of disturbance. 

Similar expressions may be obtained for a source of oscillating mag- 
nitude, or for a doublet with its axis in any direction. It may be remarked 
that for a doublet at a given point in the liquid, so far as the regular 
waves are concerned the direction of the axis affects only the phase of 

the waves and not their amplitude. 

3. Consider the motion produced by an elliptic cylinder moving through 
an infinite liquid. If the motion of the cylinder is one of translation, 
it is well known that the fluid motion is that due to a certain distribution 
of doublets along the line joining the foci of the elliptic section of the 
cylinder; a similar proposition may also be readily proved when the 

motion is one of rotation. 
In particular, let the cylinder be moving with velocity V parallel 

to the minor axis of the section ; let S, S’ be the foci of the section and 

h the distance of a point on SS’ from the centre C. The moment per 

unit length of the doublet distribution is 

MPS Vid@=O), 3 5% 6 = « 6 @&) 

in the usual notation, the axes of the doublets being perpendicular to SS’. 

If the cylinder is rotating round C with angular velocity w, the moment 
per unit length along SS’ is 

w(a+b)h(a%e2—h2)t/2n(a—b), . . . . . . (6) 

the axes being perpendicular to SS’. 
Combining (5) and (6) with a suitable value of V, we may obtain the 

distribution when the cylinder is rotating about any point on the major 

axis, 
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4. Suppose that the cylinder is wholly immersed in liquid with the 

axis of the cylinder horizontal and at a depth f below the free surface 
of the liquid, and let the cylinder be making small rotational oscillations 
about its axis. Let the angle 6 between the major axis of the section and 
the vertical be given by 

DSO MVC p54 a oe Mo ele e. CA) 

where 6, is small. 
For a first approximation we neglect the effect of the free surface. 

The angular velocity of the cylinder is of, cos ot, and the velocity potential 
is that due to a certain distribution of doublets along the instantaneous 
position of the major axis. We shall make a further approximation for 
small oscillations and assume that this distribution is along the mean 
position of the major axis, that is, the vertical through the centre of the 
ellipse. Thus we consider the motion to be due to a distribution of 
horizontal doublets of oscillating magnitude along the line between the 
foci of the ellipse in its mean position. From (6), the moment per unit 
length at a distance # from the centre of the ellipse is 

Fe Mate? —I?)!00s CET Te eee Ce) 

the limits for h being --ae. 
We replace M in (3) by this expression, write f+-/ for f, and integrate 

with respect to h; we obtain then the velocity potential for the given 
distribution when the condition at the free surface is satisfied. Similarly, 
from (4) we may obtain complete expressions for the corresponding 
surface elevation. This consists of a local oscillation whose amplitude 
diminishes rapidly with distance from the cylinder, together with regular 
waves travelling out on either side. We shall examine here only the 
amplitude of these regular waves ; from (4) and (8) the amplitude A of 

these waves, that is, the coefficient of sin (ct—« x) for positive values of x, 
is given by 

ae 

A=—k "8 Fi =j h(a2e2— h2)te—F + dh 

—ae 

=—K/?V (0? 0) (a+5)?0e-*° | ‘sin? Acos Ge "0% ©5 9q9,.. (9) 0 
0 

This may be expressed in terms of the modified Bessel function I,(z), 
and we obtain 

same {gael o(Koae)—21,(kgae)}e““F. . . . (10) 

If «ae is small, that is, if the wave-length is large compared with the 
linear dimensions of the cylinder, the first term in the expansion of (10) 

gives, as an approximation, 

A=4n(a—b) (a+b) ew wee (2) 
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Consider a cylinder of given vertical dimension 2a, with varying breadth 
2b. Naturally, for the circular cylinder (b>=a) the disturbance is zero. 

It is of interest to note that for the approximation (11) the maximum 

wave amplitude occurs for b=}a, its value being then nearly twice the 

value for the limiting case. of the flat plate (b5=0). 
Suppose that the cylinder has its major axis vertical, and is making 

linear horizontal oscillations in which the displacement is d sin of. ‘Then 
from (4) and (5) the amplitude of the regular waves is 

Ne aS i (a2e2—h2)te— "+ dh, 
a— —ea 

t 
= med (7) TA (ee) ema Maen nei) Pena (2) 

a—b 

If xoae is small, this gives, approximately, 

Meola, 9 5 oo ot oo (lS) 

Finally, combining (10) and (12) with d=a6,, we obtain the amplitude 
for an elliptic cylinder with its major axis vertical in its mean position, 
and making small angular oscillations given by 8=@) sin of about the 

upper end of its major axis; in this case we obtain 

a+b\} i 6) 2 —Kof Ant (=) {kyae(a-+ b)1p(K gue) —2(a+- b4- ya") 1, (x ae) }e~ “7. (14) 

For « ve small, the first term in the expansion is the same as (13) with 

d=abp. 

In all these cases the expressions take simpler forms in the limiting 

case of the flat plate, for which we made 6 zero; but it should be noted 
that the ideal solution then implies infinite fluid velocity at the edges 
of the plate. In particular, consider a plate of height 2a, making small 
oscillations about its upper edge, the centre of the plate being at a depth f. 
Tf «oa is small, the first term in the expansion of (14) gives 

bene MOO KIT ee 3 a8 oo 0 (LS) 

This, naturally, is equivalent to replacing the oscillating plate by a single 
doublet at its centre. If, in addition, «,f is small, we may take 7K97a*6, 
as a first approximation for the amplitude of the regular waves. A 
similar approximation could be made for a cylinder of any cross-section, 
using the corresponding inertia coefficient for lmear motion and the mean 

horizontal velocity of the cylinder. 

Rolling Ship. 

5. The expressions given in the previous section are approximations 

suitable for wholly submerged bodies ; it is not permissible, in general, 
to apply them to the oscillations of floating bodies. The approximation 
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used for the doublet distribution loses accuracy with diminishing depth 
of submergence of the body ; moreover, when the surface of the body 
cuts the free surface some of the expressions for the surface elevation may 
take infinite values. It may be noted, however, that such infinities 

generally occur in the local part of the disturbance, the expressions for 
the amplitude of the regular waves at a distance from the body remaining 
finite. 

For the rolling ship the period is such that the wave-length of the 
corresponding waves is large compared with the draught of the ship. Thus 
if we consider the analogous problem of the oscillating plate with its upper 
edge in the surface, the quantity x,)a of the previous section is small, 
in most cases about 0-1. In these circumstances, treating the motion 
as two-dimensional, we propose to regard the ship as a single oscillating 
doublet at a depth which is small compared with the wave-length ; 
thus, from (4), we take 277 oM/g as a first approximation for the amplitude 

of the waves at a distance from the ship. Further, as we cannot expect 

more than an estimate of the order of magnitude from this assumption, 
we shall regard the ship as a plank, of length L and draft D, oscillating 

about the water-line through an angle 0, on either side of the vertical ; 
using the result given at the end of § 4 and writing T for the complete 
period of rolling, this gives for the height of the regular waves 

4D? 
tat g?T4 0° 

It should be noted that the wave-height, as the term is commonly used, 
is measured from trough to crest and is twice the amplitude. 

h (16) 

6. Before applying this result, we may review briefly calculations which 

have been made from a different point of view. 
The part played by wave propagation in causing resistance to rolling 

was first recognized by W. Froude (1872) and was advocated by him in 

a series of papers. Froude showed that the energy propagated outwards 
in the wave motion corresponds to a resisting couple proportional to the 
angular velocity of rolling, and also that the energy actually dissipated 

in rolling, or a large part of it, could be accounted for by waves ot 
extremely small height ; in one case, for example, his calculation gave 
a height of 1} inches for waves 320 ft. long. The same method has been 

applied by other writers subsequently, and it may be worth while repeating 
the argument in a somewhat different form from that in which it is usually 

given. 

Suppose the ship to be rolling about a horizontal axis through its 

centre of gravity, and take the equation of motion in its simplest form as 

NOL ie=O, 2 oe ee 8 aa) 
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where I is the moment of inertia, W the weight, m the metacentric height, 

and N@ the resisting couple. 
The exact solution of (17) gives damped oscillations with a damping 

coefficient h=N/2I, and the rate of dissipation of energy is N6?. Suppose 
now that the dissipation is small and assume an undamped motion 
6=6) sin ot, holding approximately for a sufficient time, with 

o?'=Wm/1=47?/T?. 

With this assumption, the average rate of dissipation of energy 

=4No"6.?=Wmhé,?. 

In the usual notation for the rolling of ships, a0) is the decrement of rolling 
angle for one swing ; hencea=3hT. Thus the average rate of dissipation 
of energy is 2Wmaé,?/T. Assume, with Froude, that when the ship 
is rolling, regular straight-crested waves are sent out on either side, the 
breadth of each train being approximately equal to the length L of the 
ship ; further, let A be the amplitude of the waves, the wave-length, 

T the period, with A=gT?/27. In each train energy is propagated out- 
wards at half the wave velocity V, that is, at an average rate }gpA?VL 
on each side. Hence, equating the average rate of dissipation of energy 
to the average rate of propagation of energy outwards in the waves 
on both sides, we have 

2Wmab,?/T=t9pA2VA, 
or 

Wi PpSeokeln 5 5 2 a 0 a o (U8) 

This is, in effect, the equation given by Froude and used by later writers, 
the left-hand side of (18) being the loss of energy in one swing ; the other 
side of Froude’s equation was, however, twice that given in (18), owing 

apparently to neglect of the difference between group velocity and 
wave velocity. The statement given here, besides including this correc- 
tion, shows the various assumptions and brings the argument into line 

with the usual method of approximating to the damping coefficient in 
isochronous damped oscillations when the damping is sufficiently small. 
Froude recognized that his solution was not in any sense rigorous and 
hoped that it would be supplemented by some direct estimate, even if with 
no greater exactness, of the wave-making property of a ship when rolling ; 
it is also of interest that he proposed to attempt direct observation of the 
waves produced by the rolling of models of simple form. However, 
nothing further seems to have been done on this particular aspect of the 
problem since that time. Other writers have used Froude’s expressions 
to estimate the wave height, and it appears to be accepted that wave 
motion accounts for a large part of the dissipation of energy in rolling, 
that due to fluid friction or eddy-making being relatively small apart 
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from exceptional resistance due to bilge keels; it has been remarked, 
for instance, that no reasonable values of head resistance and skin friction 

coefficient account for more than one-third of the actual decrement 
obtained by experiment, and in one case such a calculation gave only 
one-seventeenth of it (Baker, 1914). Nevertheless, no attempt appears 
to have been made to compute the wave resistance to rolling from the 
characteristics of the ship. 

7. We shall now compare wave heights calculated from (16) with 

various cases to which Froude’s energy method has been applied. 
In the case examined in Froude’s first paper already quoted, the data 

are T=8 sec. ; 0)—5-65°. The draught of the ship was not stated, but 
we may assume D=15 ft. With these values, (16) gives h=1-2 inch. 
Froude’s estimate from energy dissipation was a wave height of 1} inch. 
Other writers who have used the same formula assume that that part of the 
resisting couple which is proportional to the angular velocity of rolling 
may be attributed to the loss of energy in surface-waves. Thus 
Sir W. White (1895), for the rolling of H.M.S.‘ Revenge’ without bilge 

keels, deduced a wave height of about 1}inch. In this case T=15-5 sec. ; 
6)=13° ; D=27 ft. ; and these give from (16) a wave height of just over 
1 inch. 

L. Spears (1898), from the rolling of U.S.S. ‘ Oregon,’ deduced a wave 
height of 0-62 inch. Here T=15-2 sec. ; 0)=12°; D=23 ft.; and (16) 

gives a wave height of 0-67 inch. 
It should be remarked that in all these cases Froude’s formula was used ; 

according to the argument given in § 6 and expressed in equation (18), 

these estimates of wave height should be increased by a factor V2. 
A final example is taken from a recent paper by G. S. Baker (1939) 
on the rolling of ships under way. We take the data for model R 8(a), 
for rolling at zero speed ahead, given in Tables 1 and 3 of the paper ; 
in the notation already used 

W=10,150 ton; m=4-4 ft.; T=11-52 sec. ; 

A=680 ft. ; E4004. D=23:2 4. < a=0-022. 

In this case we shall use equation (18) to see what height of waves would 
suffice to account for the whole of the dissipation of energy, neglecting 
for the moment any due to friction or eddy making. With the given 
values we find from (18), A=2A—2-65 inch. Again, using the values 
of D and T in (16), we find h=1-58 inch. 

It should be noted that (16) was derived by regarding the ship as a thin 
plank. The formula could be modified in an empirical manner to take 
into account the displaced volume and the inertia coefficient of the ship ; 
this might be represented by multiplying (16) by a factor whose probable 
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value would lie between 1 and 2, but the modification is not worth while 

at this stage. 

Both the energy method and the present calculation are no more than 
first approximations, and therefore we may not attach any great 
accuracy to the estimates by either method ; nevertheless, it is interesting 
that both methods give results of the same order of magnitude. On the 
theoretical side the problem should be treated as three-dimensional, 
and also the boundary conditions at the surface of the ship satisfied 
more closely ; in addition, the actual motion of the ship and its axis 
of rotation are important factors in a more detailed investigation. On 
the other hand, it would be desirable to have experiments on models 

of suitable form designed to provide better estimates of frictional and 
eddy-making resistance to rolling, and so to afford more reliable knowledge 
of the amount left to be accounted for by wave propagation. 

Summary. 

Expressions are obtained for the surface disturbance produced by a 
cylinder, of elliptic cross-section, submerged in water and making small 
oscillations. A simple form of these results is used as a first approxi- 
mation for the height of the waves, supposed two-dimensional, sent out 

on either side by a rolling ship. Numerical calculations are made 
for cases for which a similar estimate has been made by an energy method 
due to W. Froude ; the results by the two methods are of the same order 
of magnitude. 
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The pressure of water waves upon a fixed obstacle 

By T. H. Havetock, F.R.S. 

(Received 29 March 1940) 

The diffraction of plane water waves by a stationary obstacle with vertical 
sides is examined, in particular the variation of amplitude along the sides 
and the average steady pressure due to the wave motion. Results similar 
to those in other diffraction problems are obtained for an infinite plane and 
for cylinders of circular or parabolic section, and approximations are made 
for sections of ship form. The examination was made in view of possible 
applications in the problem of a ship advancing through a train of waves, 
and the results are discussed in relation to the average additional resistance 
in such circumstances. It appears that the mean pressure obtained on 
diffraction theory from the second order terms can only account, in general, 

for a small proportion of the observed effect; the motions of the ship, 
and in particular its oscillations, are essential factors in the problem. 

1. The problem to be considered is the resultant fluid pressure upon an 

obstacle held in position in a train of plane waves advancing over the surface 

of the water. In a previous paper (1937) I considered the additional 

resistance on a ship moving through waves, the work being restricted to the 

first order effect, a purely periodic force which may have an amplitude 

comparable with the resistance to the ship in still water; further, for the 

type of ship considered, the usual approximations were made and these 

included neglecting the effect of reflected or scattered waves as being of the 
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second order. One purpose of the present work is to examine that assump- 

tion; the approximate method is extended in a certain case to give the 

variation in amplitude of the surface oscillation along the side of the ship. 

The view has been put forward recently that the mean extra resistance 

to a ship advancing through waves is due to the reflexion of the waves by 

the sides of the ship, being in fact analogous to the pressure of radiation: 

it has been stated, for instance, that the resultant amplitude at the bow is 

about one-third greater, and that at the stern one-third less, than the 

amplitude of the incident waves, and empirical formulae for the pressure 

have been constructed on that basis. The problem requires, however, 

a consideration of second order terms which does not appear to have been 

made for water waves even in simple cases. We consider total reflexion, 

normal or oblique, by a plane wall, and diffraction by a cylinder of circular 

or parabolic section, together with approximations for a section of ship 

form: the results are discussed in relation to the ship problem. 

DIFFRACTION OF WATER WAVES 

2. Consider a fixed cylindrical obstacle in the water, the sides vertical 

and extending down to an infinite depth; let C be the contour of any hori- 

zontal cross-section. We suppose plane waves of amplitude A to be travelling 

in the negative direction of Ox; the origin O is in the free surface and Oz 

is vertically upwards. The velocity potential of the fluid motion is of the 

form 

g ze DE piotsraines + plots $! (a, 4). (1) 

The pressure condition at the free surface is satisfied, to the usual first order 

terms, by o? = gx. Further, we have 

CP OP ay 2 
ie oye =O (2) 

and 0¢/dv = 0 on the contour C. The potential may be expressed in terms 

of a source distribution over the surface of the cylinder, but that is, in 

general, merely a restatement of the problem. We are concerned meantime 

with an approximate solution when the contour C is of ship form; that is, 

we assume C to be a contour of small breadth compared with its length. 

We take Ox in the direction of the length and to be an axis of symmetry 

of the contour. The approximation is the same as that used in determining 

the waves produced by a moving ship. We take the source strength at any 
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point to be determined by the horizontal fluid velocity in the primary 

motion and by the gradient of the surface at the point. We then replace the 

obstacle by a plane distribution of sources over the vertical section by the 

za-plane. The primary fluid motion in the present case is that of the plane 

waves. Thus, if (€, 0, —f) is a point on the vertical section, and if dy/0z 

is the gradient at the corresponding point on the contour, the required 

distribution of sources over the vertical section is of strength per unit area 
given by 

= ixgh oy etlottKe)—Kf (3) 
270 0& 

Consider now a point source m cos ct in the liquid at the point (0, 0, —f). 

The velocity potential was obtained by Lamb (1922) and we use his result 

with a slight change of notation. The surface elevation ¢ is given by 

g6 = 0p/0et with z = 0; we have 

Ziom __| 
_giat 

ST GEE 
— inxetH® (kr) 

Pe [2 ry sin fv + K cos fu 
F F € 

0 KER 
—vr cosh u du av} ; (4) 

where 7? = x?+y?, kK = 0?/g, H?) = J,—7Y), and the real part of the expres- 

sion is to be taken. 

Let there be a vertical line source extending from the origin downwards, 

the source strength per unit length at depth f being me~*’. We substitute 

this value for m in (4) and integrate with respect to f from 0 to 00. For the 

last term in (4) this integration gives 

De [2 (2 eur cosh uw OK (°K (vr 
x e dudv = = Mol dy > By 

2 29 TJoJo K2+v? CHO Kae 
2 co e-kt df (5) 

—_— Ae TT lo o 

I aE 

Hence the terms in (4) which represent the local oscillations disappear 

from the integrated result for this particular vertical source distribution; 

and we obtain the simple result 

ace elt) (Kr) = el(at—xr cosh u) du, 

g i J aN 

mom Ziom [ ° Le LG | (6) 
0 

representing circular waves diverging from the origin. Returning to (3) 
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we see that the source distribution is made up of vertical line sources of this 

type, and we obtain for the complete surface elevation 

€ = thetttka) _ Lishe' H® (kr) ! e5 dk, (7) 

Tn (7), the first term represents the incident waves; further, r? = (~—)?+ y?, 

and the integration extends over the axial length of the form. It should be 

noted that this result is comparatively simple because we have taken the 

obstacle to be of infinite draft; for a ship of finite draft there would be terms 

representing a local surface elevation in addition to the diverging waves 

from each element. Further, the result is only an approximation and 

assumes, in fact, that the additional surface elevation is relatively small. 

3. We shall apply (7) to one case only, so as to estimate the magnitude 

of the effect due to the scattering of waves by a narrow ship of great draft 

and of form similar to those for which previous calculations of wave 

resistance have been made. 

The model is of symmetrical form with straight sides, of total length 21, 

beam 26, and with a parallel middle body of length 2a; the bow and stern 

are equal wedges of axial length /—a and of semi-angle «, where 

tana = b/(l—a). We take the origin at the centre of the axis, with the 

positive direction of Ox from stern to bow. Thus we have 

dy/0& = a, for —l<&é<-—a 

= 0, for —a<&<a 

==, ioe <<), (8) 

From (7), the surface elevation at any point (2, y) is given by 

r—a l 
C = thetottxa) _ Likhace'| A? (Kr) et§ dé + bikhacta H® (xr) e*d&. (9) 

a =U 

We shall use this only for the elevation along the axis y = 0, as in the 

corresponding calculation of wave profiles for a ship. We note that in these 

expressions the quantity r is essentially positive. Asan example, for a point 

in the bow wedge, that is for a<a<l, we have 

—a 

Cet! = the*® — Lixha AHP {K(x— &)} e d& 

x 1 

+ hikha| H2{K(a—&)t e§dé + tixha| H{K(E—x)e*S dé. (10) 
a =x 
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These expressions may be evaluated in terms of two integrals which may 

be shown to have the following values: 

Dp 2 
i HP (u) edu = pe? {H?)(p) + iH? (p)} +— (11) 

p >) 

} AP (u)edu = pe’{ HP? (p) —iH#?(p)} — = (12) 
vO 

We shall write (11) as L(p)+ 2/7, and (12) as M(p)—2/7. We also put 

p, = 2kl;  p,—K(l+a); p,=K(l—a); p, = 2ka. (13) 

We select five points at which to make the calculations, the bow, stern, 

shoulders and amidships; and, in the notation indicated, we have 

el) = ihetettl 1 — Ja} Ln) — Eps) ~ Eps ml 

ie tetova] 1 — Sol Lp) L (py) — M(ps) 4 tl 

€(0) = ihe'™[1 — 4o{ L(4p,) — L(bpy)— M(kp,)+Mpo}], (14) 
(9) 

¢(—a)= iheiet oof — ha) L(p3) + IM (p.)— M(p,)+ ll 5 

in 2 
¢(—l) = al - 3a{ M(ps) + M(p,)— M(ps) — a : 

We apply these results to Model No. 1144 of the National Physical 

Laboratory. This was a model of the given form used by Wigley (1931) 

in comparing calculated anc observed wave profiles along the sides of the 

model when advancing through still water. For the present purpose we 

suppose the model held at rest while regular plane waves of amplitude h 

and wave-length 277/« are moving past it. The dimensions of the model were 

f= ites C7 = 2GOite3 1 = O-0S ith, (15) 

We calculate only one case, namely, when the wave-length is equal to the 

total length of the model. Thus, in the notation of (13) we have 

ji, = O28 Dy = GEOR Py = 2PZSS Ya = lle, (16) 

We have also ~ = 0-129. Using tables of Bessel functions, € may be calcu- 

lated from (14). We are not concerned with the phase of the total oscillation 

at each point, but only with its amplitude. We find the ratio of the amplitude 

474 



414 T. H. Havelock 

to that of the incident waves at the points x = 1, a, 0, —a, —1 to be 1-05, 

1-08, 1-09, 0-99 and 0-95 respectively. 

The alteration in amplitude at bow and stern would be greater for a fuller 

model, and especially for a bluff-ended form. Nevertheless, these approxi- 

mate calculations confirm the view that for a fine model the modification 

caused by the reflexion of the incident waves may be treated as a second 

order correction. It should also be noted that these results are for a model 

of infinite draft; it may be presumed that the effect would be much smaller 

for one whose draft is small compared with the wave-length. 

4. For a vertical obstacle of infinite draft, we may readily transfer 

results from other diffraction problems. The effect of a cylinder of elliptic 

section would be of special interest, but the analytical solution does not 

lend itself to computation when the wave-length is of the same order as 

the length of the axis. It is, however, worth while examining briefly two 

other cases from the present point of view. 

Let the cylinder be circular, its water plane section being the circle r = a. 

For plane waves of amplitude h moving in the negative direction of Oz, 

the complete solution is given by 

@ = (ghia) ete**\ Jy(kr) +2 y i".J_, (Kr) cos nd| 
1 

—(gh/c) cite bp Hr) +23 7"b, H® (kr) cos nh aay liz) 
1 

where o?= gk, and 6b, = J,(ka)/H®” (ka). 

Putting r = a in the expression for the surface elevation, and reducing by 

means of relations for the Bessel functions, we obtain on the cylinder 

2hert C = nC 9 
=— 4 7 On S G a ( ot x |, COS N \; (18) 

where C,, = 1/H®” (ka). 

Computation from this expression, which involves tabulation of J/?+ ¥/?, 

can be carried out without much difficulty except when xais large. A detailed 

study might be of interest, but for the present purpose the following results 

suffice to show the variation of amplitude round the cylinder. The numbers 

in table 1 give the ratio of the amplitude at each point to the amplitude of 

the incident waves; 4 = 0° corresponds to the bow and 6 = 180° to the 

stern. 
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TABLE 1 

NG 0° 45° 90° I1BES 180° 

Ka 

0-5 1:44 1:28 0:97 0-91 1:00 

1-0 1:71 1-62 1-16 0-68 0-82 

3-0 1:92 1:75 1:35 0-82 0-62 

5:0 1:96 1-86 1:36 0-64 0:48 

5. For the parabolic cylinder we may use the expressions given by Lamb 

(1906) for the diffraction of sound waves, making the necessary modifica- 

tions for water waves. In this case we take the plane waves to be moving 

in the positive direction of Ox; the water-plane section of the cylinder 

is given by 
Key? = 4) 4+ 4kyeu. (19) 

In the parabolic co-ordinates defined by «(a+iy) = (€+7”)?, the section 

of the cylinder is given by 7 = 7p. 

The velocity potential of the motion is 

db = (gh/c) ciel - ace ay, (20) 
7 

where the constant C is given by 

2ino|I £6 | eee a — Cetin? = 0. (21) 

For the surface elevation on the cylinder, we have 

‘ae inet +0 | * en2ie al : (22) 
0 

It follows that the amplitude of the oscillation is constant round the 

boundary. From (21) and (22) we find that this amplitude is h/p, where p 

is given by 

p? = 1+ 2ming{(} —c) sin 293 —(—s) cos 23} + mm8{(—c)? + (4—s)?}, (23) 
in which ¢ and s denote Fresnel integrals of argument 27)7-?. 

From (19) we have 27? = xa, where a is the radius of curvature of the 

parabola at its vertex. Table 2 gives the ratio of the amplitude of the 

oscillation to that of the incident waves, calculated from (23) for certain 

values of Ka: 

TABLE 2 

Ka 0:05 0-1 1:0 3-0 5-0 

amp./h. 1-28 1-40 1-65 1-86 1-93 
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These may be compared with the corresponding values at 9 = 0 for the 
circular cylinder. When xa is small, we obtain from (23) the approximate 
value 1 + (Ka/2)? for the ratio of the amplitude to that of the incident waves. 
We may, possibly, use this to give an upper limit for the resultant amplitude 
at the bow of a ship if we regard the front half of the ship as a parabola with 
its vertex at the bow. For instance, consider the model examined in § 3. 
Instead of a wedge-shaped bow, suppose it is rounded off into a parabola 
with its vertex at the bow and joining on to the parallel middle body at 
a distance of 5-81 ft. from the bow, the beam at that point being 1-5 ft. 
With these data, and taking the same wave-length of 16 ft., we find that 
ka = 0:019. From the approximate formula, this gives a relative amplitude 
at the bow of 1-17. Comparing with the previous calculations, this seems 
a reasonable estimate, in spite of the various assumptions; the ratio would, 
of course, be greater for smaller wave-lengths. 

THE PRESSURE OF WATER WAVES 

6. For the resultant pressure upon the obstacle, the first order effect 
is a purely periodic force with zero mean value; this was the effect considered 
in the previous paper (1937) and applied to a ship among waves. To obtaina 
steady mean force different from zero we have to proceed to second order 
terms; although much work was done at one time on the pressure of vibra- 
tions, water waves do not seem to have been considered in this connexion. 
We begin with plane waves, and the only general result we need is that 

given by Rayleigh (1915), that the usual first order expression for the 
velocity potential is also correct to the second order, the next term being 
of the third order; this was shown to be the case both for progressive waves 
and for stationary oscillations. There are, however, second order terms in 
the surface elevation. 

Consider plane waves incident directly upon the plane x = 0 as a fixed 
boundary. We take 

@ = (2gh/c) e cos kx sin ot, (24) 

€ = 2h cos xx cos ot + 2kh? cos 2xx cos? at, (25) 

with o? = gx. We have 0¢/éx = Oat x = 0; for the pressure we have 

2 ge pee — lf C2V (GF 5 p= F(t)—gpz+p Ar ~40l(=) +( I (26) 

It may be verified that, with 

P = — 2gpxh? cos 20t — gpz + 2gphe cos Kx cos ot — 2gpKhe?*? sin? ot, (27) 
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the pressure conditions at z = €, given by (25), are satisfied to the second 

order, namely p = 0 and 
Op opdp odd op 

Gt) Oa Ox Oz dz 

To the first order, (24) and (25) represent plane waves of amplitude h 

reflected at the plane x = 0. We may now evaluate the additional pressure 

upon this plane per unit width. We put x = 0 in (27) and integrate with 

respect to z from —o to €. The first order term is the periodic force 

(2gph/«) cos ot; for the additional quadratic terms we obtain 

— hgpC? + 2gph€ cos ot — gph" sin? ot, (28) 

the second term in (28) coming from the expansion of e*¢. We put in the 

value of € from (25), noting that we only need this to the first order; and we 

obtain for the additional steady force P per unit width of the plane, taking 

mean values, 

P = 39ph?, (29) 

where h is the amplitude of the incident waves. 

It may be remarked that instead of using the fact that the second order 

term in the expansion of ¢ is zero, it would have sufficed for the present 

purpose to assume ¢ to be purely periodic, an assumption made by Larmor 

(1920) in the corresponding calculation for sound waves. It is well known 

that waves of finite amplitude possess linear momentum in the direction 

of propagation; the average amount, to second order terms, is mph2V per 

wave length, V being the wave velocity. On the other hand, if we calculate 

the rate of transfer of linear momentum across a vertical plane, we obtain 

an average rate of 4gph?; this gives in one period one-half the average 

momentum in one wave-length. The average pressure P given by (29) may 

be regarded as due to the reversal of this flow of momentum. We notice 

also that P is equal to one-half the average density of energy in the standing 

oscillations, and this may again be connected with the fact that the group 

velocity for water waves is one-half the wave velocity. For plane waves of 

amplitude / incident upon the plane x = 0 at an angle « to the plane, we 

may take 
@ = (2gh/c) e cos (ka sin a) sin (ot — Ky cos ig an 

€ = 2h cos (kx sin a) cos (ot—Ky Cos @). 

We obtain now, instead of (28), the quadratic terms for the additional 

pressure as 

— dgpl? + 2gph" cos (ot — Ky cos a) 

—gph?{ cos? a cos? (at — Ky cos %) + sin® (ot — Ky COS &)}. (31) 
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Taking mean values, this gives 

P = toph* sin? a. (32) 

7. We proceed similarly for any fixed cylinder of infinite draft with 
vertical sides; it is not necessary to examine the second order terms for the 
surface elevation, and we assume that the velocity potential is correct up 
to that order, or at least that any second order term is purely periodic. 

Consider the solution for the circular cylinder which was given in § 4. 
We write it as 

@ = (gh/c) e(Lcosot— M sin ot), | 2) 

¢€ = —h(Lsinot + M cosot), | 

where L, M are functions of r, 6 which may be obtained from (17). 
At any point on the cylinder we have 

p = F(t)—gpz—gphe*(Lsin ot + M cos at) 

— (p/2a?) e={x?a?(L cos ot — M sin ot)? + (L’ cosot— M' sin ot), (34) 

with r = a, and the accent denoting 0/00. 
We integrate with respect to z from — oo to € and expand to second order 

terms; then for the resultant force we multiply by acos6d6 and integrate 
round the circle. 

It is readily seen that the first order term in the additional force is a 
periodic effect of amount 

4gph J;(ka) sin ot + Y‘ cos ct 
K? J1?(Ka) + Y{?(ka) (35) 

From the quadratic terms we get, after taking mean values, the steady 
additional force 

ip tapha| fave (L24M")} cos 0dé, (36) 0 

Oy ee) 
where Ib RINE (+, PAO. cos 8), (37) 77K \ 1 

and b, = i”/H,®’ (xa). 
We have 

Hy C) 4 ok [iz oF M?) cos 0d@ = Ae = (Ono ay DSc) 

(38) 
P) 12, Be! Sa * 4 pe [az +M ) cos 0d0 ap a n(n + 1) (6, bF 1+ Op, Pnsa)> 
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where the asterisk denotes the conjugate complex. Putting in the value 

of b,, and using properties of the Bessel functions, these expressions may be 

reduced to a simple form; we obtain finally 

4 27 2 2 

= oe eee) 7°Ka3 0 Ka? j (War ar 14) (Jnat Yen) 

the argument of the Bessel functions being xa. 

The series in (39) occurs also in an expression given by Nicholson (1912) 

in a similar problem for electromagnetic waves. Some values had been 

calculated before this reference was known, and with Nicholson’s values 

for the series we have the results in table 3. 

TABLE 3 

Ka 0-5 1:0 2:0 3:0 5:0 

R/gpha 0-429 0-998 0-940 0-950 0-965 

It was shown by Nicholson that when xa is large, the series approximates 

to the value §7?x%a’; hence when the wave-length is small compared with 

the diameter of the cylinder, we have approximately 

P = 29ph?a. (40) 

This agrees with the limiting value if we assume total reflexion over the front 

half of the cylinder and a complete shadow over the rear half, and apply 

to each element the expression (32) for total oblique reflexion from a plane; 

for we then have 
t 

P=| igph?acos6d0 = 2gph2a. (41) 
=i7 

Although this limiting valué is obtained theoretically as an extreme case 

for short waves, it is interesting to note from the preceding table that it is 

practically attained for comparatively long waves of wave-length even 

larger than the diameter. This consideration suggests using the method to 

give an upper limit for cylinders whose section is more like that of a ship. 

8. Consider a cylinder with vertical sides, the horizontal section being of 

ship form and symmetrical about Ox. We assume total reflexion by the 

sides of the ship from the bow back to where the sides become parallel to 

Ox, and we assume a complete shadow aft of that point. 

For the model of § 3, in which the bow is a wedge of semi-angle «, we obtain 

for the total resistance 
R = tgph?B sin* a, (42) 

where B = 2b = beam. 

480 



420 T. H. Havelock 

In general, for any form of the front portion of the model, we have 

R = tgph? | 
b = 

sintady = gph? Bsin® «. (43) 
b 

In (43), « is the angle the tangent to the form makes with Ox, and the bar 

denotes the mean value of sin? « with respect to the beam of the ship. 

Suppose, for instance, that the section of the model is the ellipse 

a2/a2+y?/b? = 1. It is easily shown that in this case 

b2 a2 az— 52 

aot ee wo ae a 
This would be a full form of model. If we take a = 8b, as an average ratio of 

length to beam, we find from (44) that the mean value of sin? is 0-17. 

The mean value is less for models with moderate bow angle; probably an 

average value would be about 0-1, with still smaller values for models with 

fine lines. 

In a recent paper Kreitner (1939) has put forward the proposition that 

the extra resistance to a ship among waves is nothing else than the radiation 

pressure of the ocean waves. The semi-empirical formula given by Kreitner 

for this force upon a ship at rest in a train of waves is 

sinta = 

R = gph? Bsing, (45) 

in the present notation, in which h is the amplitude of the incident waves; 

the last factor is a mean value for the angle of entrance not clearly defined. 

The derivation of this formula is not clear, but it appears to be based upon 

an estimate of the difference of resultant amplitude at bow and stern, and 

upon taking the mean value of the hydrostatic pressure due to the surface 

elevation. This latter assumption is incorrect; and further, we found in (43), 

that the last factor should be the mean value of sin’ «taken across the beam. 

Numerically, for usual ship forms, these differences result in (43) giving 

about one-fifth of the value from (45). 

For a certain model, a ship with full lines, the relevant data are 

B = 69-2 ft., L = 530 ft., h = 24 ft. If we assumed the fore half of the ship 

to be an ellipse and used (44), we should have 0-175 as the mean value of 

sin?a; but this is certainly too large and we take a smaller value, say 0-12. 

With these values, (43) gives a force of 0-6 ton. This is, moreover, an upper 

limit and also assumes the ship to have vertical sides and to be of great 

draft. The recorded extra resistance for this ship is given as about 2-8 tons; 

but this was for a model advancing through the waves. 

The steady pressures we have been considering will certainly be increased 

if the ship is itself in steady motion through the waves, but the problem 
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then becomes complicated and, in practice, many other factors must be 

taken into account. The wave resistance of the ship, as calculated for 

uniform motion through still water, is probably altered; moreover, the 

motion of the ship, and in particular its pitching and other oscillations, 

must have an important influence. It may well be that interactions between 

first order effects which in themselves are purely periodic may, through 

phase differences, give rise to steady additional resistances. 

The calculations which have been made here refer to a model held at 

rest in a train of waves. The only reference to experiments of this nature 

appears to be in a paper by Kent and Cutland (1935). The model was 

No. 1255 of the National Physical Laboratory, and the dimensions were: 

length = 16 ft., beam = 1-92 ft., draft = 0-52 ft. For this model the mean 

value of sin?« was probably not more than 0-1. If we suppose the wave 

amplitude, that is half the wave height, to be 2 in. for waves, say, 5 ft. in 

length, then (43) gives as an upper limit a force of 0-17 lb. The experimental 

results were not published, no doubt because this particular experiment 

was only incidental to the main investigation; but it may be taken that the 

calculated value obtained here is of the order of one-half the measured 

value for waves of the given height and length. Here, again, although the 

model is said to be at rest, it has necessarily a certain small amount of 

freedom for oscillatory motion. While such motion might be expected to 

diminish the magnitude of the pressures we have been considering, it may 

also bring other effects into operation. Further experiments of this nature, 

with more detailed measurements, would be of great interest. 

The immediate object of the present work was to examine, in cases 

amenable to calculation, the magnitude of the mean force obtainable on 

the analogy of radiation pressure. The general conclusion is that while such 

a force exists as a contributory cause, it is insufficient to account for the 

extra resistance observed in a ship advancing through waves; in those 

circumstances the total effect is probably the result of several factors of 

approximately equal importance. 
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June 1942. 

The Drifting Force on a Ship among Waves. 

By T. H. Havetocg, F.R.S. 

1. WHEN a ship is advancing through a train of waves it experiences 
an average steady resistance greater than that at the same speed in 
smooth water. ‘There are no doubt several factors operative in producing 

this result ; one, for instance, may be described as wave pressure due 

to the reflexion or scattering of the ocean waves by the surface of the 
ship (Kreitner, 1939). This must certainly be taken into account in a 

complete theory, but investigation of it involves second-order terms in 
the hydrodynamical equations and a satisfactory solution of the problem 
would be difficult. Certain calculations which I have given recently 
(1940) seem to show that this cause is not likely to account for more 

than a small’ fraction of the observed results. Experiment shows that 
the effect is most prominent when the period of encounter of the ship 
with the waves is near the natural periods of the ship’s oscillations ; 
whether directly or indirectly, the phenomenon is clearly associated with 

the heaving and pitching motions of the ship. In the paper already 
quoted (1940) it was suggested that it may well be that interactions 
between first-order effects which in themselves are purely periodic may, 
through phase differences, give rise to steady additional resistances. 
The object of the present note is to give some tentative calculations 
amplifying and illustrating this suggestion. For this purpose we fall 
back on the approximate theory which neglects the disturbing effect of 
the ship’s surface upon the wave motion. In suitable cases we may 
perhaps regard the necessary additions for the reflected waves to be 

small corrections, as, for instance, for a long narrow ship (1937). This 

assumption was the basis of the theory developed by W. Froude in his 
work on the rolling of a ship among waves, in which case the wave- 
length is assumed large compared with the beam of the ship. It was 
also used explicitly by Kriloff in his well-known analysis of the heaving 
and pitching of a ship among waves. This latter work dealt only with 
the oscillations of the ship, and not with the extra resistance to motion 
which is now under consideration. It is true that the problem involves, 
in some form at least, second-order terms, and any partial separate 
examination of such terms is unsatisfactory ; the following calculations 

483 



468 Prof. T. H. Havelock on the 

are therefore subject to correction by a more complete analysis, bat 

they may serve to bring out a new point of view. 

2. It is interesting to recall the development of the similar problem 
in rolling. Some years ago Suyehiro (1924), experimenting with a small 
model, announced the discovery of a drifting force sideways upon a ship 
when rolling in waves. This interesting result does not seem to have 
been studied by other workers, and either confirmed or disproved. The 
effect is small and probably needs suitable conditions of forced rolling 

in resonance with the natural period of roll. Suyehiro himself ascribed 
the force to reflexion of the waves by the side of the ship and supported 
this view by observation of the motion of the fluid particles near the ship. 
No calculation was made of the reflexion or scattering of the waves by 
the ship, and this is a problem which still awaits solution. Here, again, 

no doubt this form of wave pressure contributes to the result, but there 

is no reason to suppose it adequate in itself ; moreover, the experiments 
showed a close association of the drifting force with the rolling of the 
ship. Recently an alternative theory has been put forward by Watanabé 
(1938). Starting from the Kriloff equations, Watanabé deduced an 

expression for the drifting force involving the angle of roll and the phase 
lag between the roll and the actuating moment; applied to Suyehiro’s 
model, this expression gave a force of rather more than half the observed 

value. 
In the following sections we derive similar expressions for the drifting 

force due to heaving and pitching when the ship is head-on to the waves ; 
we assume throughout the usual theory of irrotational waves of small 

height. 

3. Take the origin O in the undisturbed surface of the water, Ox 
horizontal and perpendicular to the wave crests and in the direction of 
the ship from stern to bow, Oy horizontal and Oz vertically upwards. 

We shall suppose first that the ship has no forward motion or, more 
precisely, we may suppose it constrained so that it is free to make small 
vertical oscillations and free also to make small rotational oscillations 
about a horizontal axis parallel to Oy through some point G. We consider 
plane waves of small amplitude h and of wave-length 27/« moving in the 
negative direction of Ox. To the first order the velocity potential is 
given by 

¢=(gh/c)e” sin (ot-+- Kx), oo Evo: Fee ee GD) 

with o?=gx, and the pressure by 

D=Po—992+ pL. oo 6 6 6 0 6 «6 6 o (4) 

=P)—9pz+gphe cos (ct+nxr), . . . . . (3) 

Po being the pressure at the free surface. 
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A complete solution would include an addition to (1) necessary to 

satisfy the boundary condition at the surface of the ship in its actual 
motion and also the condition of constant pressure over the free surface 
of the water. We are, meantime, neglecting this additional term, and 

assuming the conditions such that for a first approximation we may 
calculate the resultant forces from the pressure given by (3). The 
resultant horizontal force backwards is given by 

Hs | [GS oe ape 8 ©) 

taken over the immersed surface of the ship in any position, (J, m, ) 
being the direction-cosines of the outward drawn normal at any point. 
This may be transformed into a volume integral taken throughout the 

immersed volume V of the ship, and using (3) we have 

rf 
=~gprh| | { e sin (GiseKx)adVig 5) (8) 

Let S,, V, be the immersed surface and volume, respectively, when the 
ship is in its equilibrium position in smooth water. If the ship is held in 
this position in the waves, the corresponding force F, calculated from (5) 
is a purely periodic force with mean value zero (1937). Suppose now the 

ship to be in a slightly displaced position S due to heaving and pitching. 
The additional horizontal force is given by (5) integrated throughout the 
volume between S, and S. If dv is the distance from any point of So 
normally outwards to S, we have dV=SvdS,. Let the pitch be measured 
by a small angle @ of rotation round an axis through a point G on Oz 
at a height c above O, taking 0 to be positive with the bow up ; and let 
the heave be given by a small vertical displacement ¢ upwards. Then, 
to the first order in ¢ and 0, we have 

ou—net ne —1 (=e ue ee) (8) 

Hence the horizontal force backwards in the new position is given by 

F=F,—gpkh¢ ff e” sin (ot-+Kx)ndSo 

—gpkhé ff e sin (ot+xx){na—I(z—c)}dS, . (7) 

where the integrals are taken over the equilibrium position of the ship’s 
surface. 

Calculations may be made directly from this expression, but we put 
it into another form to show that it leads to an average steady force 

backwards. 
Let B be the extra buoyancy for the ship in its equilibrium position 

due to the wave motion, that is, the additional force upwards arising from 
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the term pdd¢/dt in (2). Similarly, let P be the additional moment of 

this pressure about the axis through G in the direction of @ increasing. 
Then we have 

B=—gph | e cos (ct--Kx)ndS,, . . . .. - (8) 

P=gph i | e cos (ot-++Ka){l(z—c)—nz}dS). . . (9) 

Hence we may write (7) as 
K,0B «,0P 

The usual] approximate equations for the motion of the ship are obtained 
by taking into account also the hydrostatic buoyancy and moment arising 

from the term gpz in (3). With M, I as effective mass and moment of 

inertia, respectively, and assuming a simple law of damping in each case, 
the equations are 

MGS EIN (CeGjaNG=sIB, gg og 2g yo (itil) 

NDT OD 6 sk es 4 3) OP) 
A being the area of the water plane section and m the metacentric height 
for pitching. 
When calculated from (8) and (9), B and P are of the form 

B=B, sin (cf-+«); P=P, sin (ct+a’), . . . . (18) 

Bo, Po, «, «’ depending upon the wave-length and the form of the ship. 
To obtain from (10) quadratic terms giving a mean value different 

from zero, we need consider only the forced oscillations in £ and 6. These 
are given by 

€=kB, sin (ot+a—f) (14) 

0=k’P, sin Ba tas 

k, k’ being the usual magnification factors, and f, B’ the corresponding 

phase lags, obtained by solving (11) and (12) for the forced oscillations. 

Using (13) and (14) in (10) and taking mean values of the quadratic 

terms, we obtain for the mean backward force 

R=4kkB,?sin B+4ck'P,?sin B’, . . . . . (15) 

an expression which is essentially positive. 
With ¢, and 6 the amplitude of the forced heaving and pitching, 

respectively, and By, P, the amplitudes of the buoyancy and pitching 
moment as in (13), we have from (15) 

R=4xB,, sin B+4xP)% snp’. . . . . . (16) 

4. We have only used equations (11) and (12) to show that the average 
steady force is a resistance. In attempting comparison with experi- 
mental results one cannot rely upon calculations from these equations, 
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except for general descriptive purposes. Among other reasons, there is 

a lack of precise information about the damping of natural heaving and 
pitching. A common statement is that the damping in both cases is 
large, the natural oscillations in uniform waves diminishing rapidly and 
the motion reducing to the forced oscillations. On the other hand, this 
is difficult to reconcile with certain experimental results when the period 

of encounter with the waves is near a natural period ; in such cases the 
amplitude of the resultant oscillation has a slow periodic variation from 

a minimum to a maximum in a manner suggesting the superposition of 
natural and forced oscillations of nearly equal period. The only published 

estimate from experimental results appears to be that given by Horn 
(1936), who states that the damping of heaving and pitching is of the 
same order of magnitude ; his estimate gives a logarithmic decrement of 
about 1-4, an extremely large value compared, for instance, with the 
damping of rolling. 
We have assumed the ship to have no forward motion, but, so far as 

the present approximation goes, we may suppose it moving with uniform 

speed; the only difference is that the quantity o in (13) is such that 
27/o is the period of encounter of the ship with the waves. 

We may make a rough estimate of the order of magnitude of the extra 
resistance given by (16). For a cargo boat of 400 ft. in waves of 500 ft. 
in wave-length and of height 6 ft., the amplitude P, of the pitching 
moment may be about 80,000 ft.-tons while the amplitude B, of the 
buoyancy might be, say, 300 tons. Hence from (16) we should have 

Teo, gira GY Gh Sa 85 og oo 5 oo 0 (ile) 

If the period of encounter is not near a natural period we might assume 
a total heave of 4 ft. and a pitch of 3° ; whence 

R= 3-ssin)P-- U3isingBy | ss ae 2 (8) 

A value of 15° for the phase lags 6, 8’ would not be unreasonable. This 
would give R=4-4 tons, of which three-quarters would be associated 
with pitching and one-quarter with heaving. 

5. For a more detailed analysis, we consider a simple form of wall- 
sided model of uniform draft d, with a rectangular middle body of length 
2a and beam 2b, and with entrance and run each of length J and of 

parabolic form. Thus with O at the centre of the parallel middle body, 
the equation of the contour from «=a to x=I-+a is 

YSHI—@=GHP se goo 0 6 o o (UD) 

at all depths, from z=—d to z=0; and there is a similar equation for 
the run at the stern from x=—(l/--a) to x=—a. 
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The model is symmetrical fore and aft, and for simplicity we assume 
G, the position of the axis of rotation, to be at O ; thus we take c=0 in 
(9). The integrations in (8) and (9) over the sides and keel of this model 
are readily carried out, and we obtain eventually 

8g pbh } ; 
B— a e“{sin (p+p1)—p cos (p+p;)—sin p,} cos ot. . . (20) 

8gpbh_. , : 
We a [(p°-+P1— 3) sin (p+-p,)—(p1+ 3p) cos (p+p,) 

+3 sin p;—P, Cos p,}e- 2+ (l—e4—ge 4) {sin (p+-p,) 

—p cos (p-++-p,)—sin p,}]sin of, ~ (21) 

where p=kl, p,=ka, q=kd. 

Tn (21) under usual conditions, the second part is small compared with 
the part which is factored by e~“; if this latter factor be also neglected, 

the expression is simply the conventional pitching moment obtained 
from the hydrostatic pressure due to the wave elevation integrated over 

the water-plahe section of the ship. This form of model is not quite 
suitable for the approximations on which the calculations have been 
made, but there are no experimental results available for simple 
symmetrical models of small beam. 

From experiments, carried out at the National Physical Laboratory, 

on a model of a single-screw cargo ship, Kent and Cutland (1941) have 
obtained some very interesting results. We give the relevant data for 
the ship: length 400 ft., beam 55 ft., draught 24 ft., and displacement 

11,332 tons. The natural pitching and heaving periods are given as 
6:2 and 7:42 sec. respectively. Measurements were made of pitch and 
heave, of resistance and of other quantities, under various conditions in 
waves of 175 ft., 350 ft., and 490 ft. In the shortest waves it is probable 

that a considerable part of the increased resistance arises from the 
reflexion of the waves by the ship. Applying an expression which I 
gave recently (1940) for this resistance, Kent and Cutland show that it 
accounts for rather more than half the measured resistance for a ship 

moored in the waves. That expression gave a limiting value for a ship 
of great draught held at rest, assuming total reflexion by the front 
portion of the ship. It seems reasonable, therefore, to suppose that the 
force arising from reflexion would be much smaller for a ship of usual 

form floating on the water, and especially so for the large wave-lengths. 
Moreover, in the short waves the pitch and heave are slight and are 
irregular in period ; in the medium waves the periods are approximately 
equal to the period of encounter between ship and wave, but the amplitude 

changes from a minimum to a maximum in regular cycles: in the long 
waves the pitch and heave are approximately uniform. In the present 
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calculations the amplitudes in (16) are those of the forced oscillations of 
heave and pitch ; hence we attempt only a comparison with the results 
of Kent and Cutland for the 490 ft. wave-length, when presumably the 
motions are purely forced vibrations. Another reason for limiting 
comparison to waves of length greater than the ship is that the expressions 
for the buoyancy and pitching moment are probably better approxima- 
tions than for shorter waves. Without attempting any close approxima- 
tion to the form of the ship, we shall simply use the expressions (20) and (21) with 

a=140 ft.; 1=60 ft.; d=20 ft.; 

6=27-5 ft.; h=2-5 ft.; A=2n/e=490ft., . . . (22) 
these dimensions giving a ship of about the same displacement, and 
waves of 490 ft. in length and 5 ft. in height. 

With these values (20) and (21) give 

B=345 cos of; P=—83880sin of, . . . . (93) 
in tons, and ft.-tons respectively. 

The numerical factors in (23) are the values of By and P, in (16). The amplitudes €, and 0) we shall take from the observed results, assuming that these refer to forced vibrations in the period of encounter. The remaining factors are the phase differences, and these are more uncertain. Tt may be noted that the effect which is under discussion arises from the damping and the phase lag produced thereby ; if there is no phase lag 
there is no force. On the simple theory expressed in equations (11) and (12) the phase factor, sin or sin B’, has its maximum value of unity at resonance and diminishes on either side of this period, the diminution being more rapid the less the damping. The importance of the phase of the ship’s motion in relation to that of the waves from a practical point of view is well known, but there are not many precise measurements suitable for the present purpose. The problem was attacked in an early paper by Kent (1922), and the recent paper by Kent and Cutland (1941) gives further detailed observations. They give a diagram showing positions of wave crest and trough along the ship at maximum pitch with the bow down, and from this one should be able to deduce the value of 8’ for use in (16). However, it must be remembered that the model was not a simple symmetrical form, with the axis of pitch at the centre of the water-plane section ; in fact, the position of this axis probably varied during the motion. It is also clear that the motion is not ade- quately covered by the theory of equations (11) and (12). For the authors state: “In general, as the ship’s pitching period was not isochronous owing to the changing resistance to pitch, successive pitches 
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showed a periodic movement of the wave crest position, backwards and 
forwards along the hull.” The diagram given in the paper shows the 
mean positions. From this diagram, it seems that we may assume there 
was no measureable phase lag for the ship moored, with zero speed, in 
490 ft. waves. Hence, from (16), the corresponding mean force is 
negligible, and this agrees with the observations. For the same wave- 

length when the ship had a speed of 8 knots, a rough estimate of the 
phase lag from the diagram is about 12-5°, and we take that value for 
B’ in (16). As the free periods of heave and pitch are nearly equal, and 
the damping probably of the same order, we take the same value for f 
in (16). From the measurements given in the paper for 5 ft. waves, we 

have ¢,=2-1 ft., 6) =1-6°. With these values in (16) we get the extra 
resistance for the ship in tons; expressing the result for the model, 
16 ft. long, we obtain from (16) a mean resistance of 0-63 lb. The 

measured value was 0:37 lb. 

It is not worth while pursuing these tentative calculations further at 

present, but at least it seems that one can obtain results of the right 
order of magnitude ; in fact, the calculated results are generally too high, 

especially at the peak values under resonance conditions, but that might 

have been anticipated. On the theoretical side, the various limitations 

and assumptions have already been sufficiently indicated in the course 

of the work. On the experimental side, there is a lack of suitable data 
obtained under conditions sufficiently approximating to the simplifica- 
tions which have to be made before any calculations are possible. 

6. In the present work, with the ship head-on to the waves, heaving 
and pitching have been considered together ; for if the argument is valid 
for one kind of dispiacement it should also apply to the other. Moreover, 
the natural periods of heave and pitch are usually nearly equal and so 
resonance effects for the forced vibrations overlap. Reference has been 
made to Watanabé’s work on the drifting force when rolling, that is, 

when the ship is broadside-on to the waves ; in that work, as in Suyehiro’s, 
the effect of heaving was entirely neglected. The expression (16) given 
here for the drifting force in heaving and pitching may also be used for 

heaving and rolling when the waves are broadside on, with the quantities 
in (16) having the appropriate values for those conditions. However, 
the natural periods of heave and roll usually differ considerably, and 
therefore the resonance effects are separated. The data for Suyehiro’s 
model are not sufficient for these calculations to be made, otherwise one 

might compare the drifting forces due to heaving and rolling ; it would 

be of interest if experiments could be devised to test whether these 
separate effects are observable, and to have experiments made under 

conditions suitable for comparison with theory. 
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Summary. 

The problem considered is the drifting force on a ship when head-on 

to a regular train of waves. A satisfactory theory would have to include, 

among other factors, the effect of reflexion of the waves by the surface 

of the ship; in the present note this is neglected in order to make 

tentative calculations from another point of view which associates the 

effect directly with the oscillations of the ship. A steady average 

drifting force is obtained depending upon the phase differences between 

the heaving and pitching motions and the periodic forces and couples 

due to the wave motion. An examination is made of experimental 

results and, although available data are not suitable for detailed com- 

parison, it appears that the calculations give drifting forces of the right 

order of magnitude. 
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From the PaitosopuicaL Maaazine, Ser. 7, vol. xxxiii. p. 666, 

September 1942. 

The Damping of the Heaving and Pitching Motion of a Ship. 

By T. H. Havetock, F.R.S. 

1. In a recent paper (1940) I discussed the damping of the rolling of a 
ship in still water due to the radiation of energy in the wave motion set 
up by the rolling. The following note is a similar examination of heaving 

and pitching oscillations ; an attempt is made to estimate the dissipation 
of energy in wave motion and comparison is made with such experimental 
results as are available. 

The problem may be stated first in relation to heaving motion. Con- 
sider a body of mass M floating freely in water, and suppose it is acted 
on by a periodic force E cos pt and is making small vertical oscillations ; 
let ¢ be the vertical displacement upwards from the equilibrium position. 
The equation of motion, for a frictionless liquid, is 

Mt=X—Mg-+E cos pt, Soe Po eran vege, CL) 

where X is the vertical resultant of the fluid pressures on the immersed 
surface. For an exact solution we should have to determine the velocity 
potential of the fluid motion so as to satisfy the boundary condition at 
the moving surface of the solid and the condition of constant pressure 

over the free surface of the liquid. Failing such a solution we proceed 
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by approximations. One part of the force X-Mg is the additional 
hydrostatic buoyancy, gpS¢ upwards, assuming the solid to have vertical 
sides near the water-line and § to be the area of the water plane section. 

Suppose now that the motion of the body is a forced vibration of frequency 
p and that the energy radiated is relatively small; then, as in similar 
problems, for instance the scattering of sound waves by a movable 
obstacle, it is assumed that the rest of the resultant fluid pressure may 

be expressed as the sum of two terms, one proportional to ¢ and the other 

to ¢. The factor of the first term represents the so-called added mass, 

while the second corresponds to the loss of energy by propagation of 

waves outwards. In these circumstances, equation (1) is reduced to the 
form 

M’C-+N¢+gpSf=Ecospt, . . . . . . (2) 
where M’ is the total effective mass. 

2. Various empirical formule have been devised for the effective mass 
of a ship for heaving motion, and for flexural vibrations. Reference may 
be made in particular to Lewis (1929) for ship forms, and to Browne, 

Moullin and Perkins (1930) for the added mass of prisms floating in 
water. The basic assumption in these studies is to neglect the wave 
disturbance and to suppose the fluid motion to be that due to a certain 

solid moving in an infinite liquid, the solid being made up of the immersed 
part of the floating body and its reflexion in the free surface of the 
water. The experiments of Browne, Moullin and Perkins showed that 
this leads to a reasonable value of the added mass, the calculated values 

being rather higher than those deduced from the experiments. 

It is the second term of equation (2), namely NZ, with which the present 
paper is specially concerned. Instead of calculating the fluid pressures, 
an alternative method is to work out the mean rate of propagation of 
energy outwards in the wave motion, and equating this to the mean 

value of NZ? we obtain a value for N for the given frequency. This 
procedure is permissible under the assumed conditions under which the 
motion is a forced simple harmonic vibration and the radiated energy 
is small. To obtain the corresponding logarithmic decrement for the 
damped natural vibrations, these may be taken as approximately of 
period 2z7/c, with 

Geis GS etm tei bil het ante! af ssh) 

Then the logarithmic decrement is given by 7N/oM’, with N having its 
value for the frequency co. There is very little work, theoretical or 
experimental, to which reference can be made. Browne, Moullin and 
Perkins (1930) measured the damping for prisms vibrating in air and when 
immersed in water; they conclude ‘The damping added by the water 
is negligible compared with the damping due to the supports, a result 
which might not have been expected.” But in those experiments the 
prisms were not floating freely and the frequency was of the order of 
13 per second ; it can readily be estimated that the energy in the wave 
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motion would then be very small. However, the experiments show that 
damping by fluid friction and eddies was also negligible. Reference 
may be made specially to work by Schuler (1936) with a vibrating prism 
of rectangular section, in which direct measurement was made of the 
amplitude of the waves. The logarithmic decrement was also measured, 
and it was concluded from the dimensional form of the results that the 
damping was due to wave motion, viscous and other damping being 
negligible in comparison. Schuler gives no theoretical calculation of the 
damping, and unfortunately the data necessary for making a comparison 
with theory are not recorded, such as the effective mass and restoring 
force and the free or forced nature of the vibrations. 

Coming to the ship problem, as far as published work is concerned 
there is practically no accurate information about the damping of 
natural heaving. It is usually stated to be very large, any natural 

vibrations dying out very quickly. The only numerical estimate appears 
to be that given by Horn (1936) and said to be an average result derived 
from a large number of models ; his estimate gives a logarithmic decre- 

ment for natural heaving of about 1:45. This is very large, and would 
mean that the amplitude is reduced by about one-half in each swing. 
It is also stated that the decrement for natural pitching oscillations is 
of the same order of magnitude. 

3. We now examine the waves produced by an oscillating body, and 
we adopt the method of replacing it by some suitable distribution of 
alternating sources. 
We consider first two-dimensional fluid motion, and we take the origin 

O in the free surface, Oa horizontal, and Oz vertically upwards. If 
there is a source of strength m cos pt per unit length at a depth f, that 
is at the point (0, —f), the velocity potential is given by 

, on (OO 2 COS LEE =—me'P log -2me™ | i Seana ) me” Jog pias me ea ea K, (4) 

where p®=gky, 7,2=2x?+(z+f)?, ro2=a+(z—f)?; and we take the 
limiting value of the real part of the expression as y is made zero. 

This leads to a surface elevation given by 

2amp 2mp.. r® ¢ COS Kf—Ky Sin Kf 
C= —— e—f cos (pt x ,x)— —— sin ot | - : et dk, (5) 

g (p ae 0 ) g Je K+ Ko? 

where the upper or lower signs are taken according as 2 is positive or 

negative. 
The first term in (5) gives the regular waves propagated outwards on 

either side ; if A is the amplitude of these waves and E the mean rate 
of propagation of energy outwards per unit length, we have, taking 

account of both sides of the origin, 

E=gppA2/2x)=20?m2ppe 7, nries oa asd lg ae (6) 

By summation, or integration, we can obtain the corresponding expression 
for any given distribution of periodic sources in the liquid. 
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4. Consider a long prism, of rectangular cross-section and of breadth 
2b, immersed in water to a depth f and made to perform small vertical 
oscillations asin pt. For an approximate solution we suppose the 
motion to be two-dimensional and to be that due to a uniform distribution 
of sources, of density (pa/27) cos pt, over the immersed base of the prism 
at its mean depth f. The regular waves on the side x>0 are given, 
from (5), by 

C= (pale | cos {pt—x,(v—h)}dh 
—b 

=2ae-" sin (gb) cos (pi—Koz). . . - . . - (7) 

Hence, for the mean rate of radiation of energy per unit length of the 

prism, we have 
DE=(Hrypyaerips a= eae (es 9 2 2 0 « (&) 

If the wave-length 27/«, is large compared with the breadth of the prism, 
we have the simpler forms 

Ce Ge a ee Pe) 

ESA aMe awe No ee be ee LD) 

In the experiments by Schuler (1936) a rectangular prism was used 
and the amplitude of the waves and other quantities measured directly. 
Schuler obtained the expression (7) by an indirect energy method sug- 
gested by Prandtl, and it was contrasted with the source theory of the 
effect ; however, we have seen that it follows from assuming a uniform 

distribution of sources over the base of the prism. ‘The interesting point 
is that the experimental results agree reasonably well with the expression 
(7) for periods such that the wave-length 27/«, is greater than the breadth 
26 of the prism. 

5. We now apply these results to the heaving of a ship in still water. 
We may, as in similar cases, treat the motion as two-dimensional in the 

first instance, an approximation which may be supported by the experi- 
ments of Browne, Moullin and Perkins. These authors also give an 
approximate formula for the added mass of a ship of normal form in 
vertical heaving motion ; this is given as 0-95pb7/, where p is the density 
of water, 2b the maximum beam and / the total length of the ship. 
We take an example from recent work by Kent and Cutland (1941), 

carried out on models at the National Physical Laboratory. The data 
for the corresponding ship are: length 400 ft., beam 55 ft., draught 
24 ft., displacement 11,332 tons, natural heaving period 7-42 sec. From 
the formula just given the added mass comes out as 8200 tons; thus 
the total effective mass M’ in equation (2) is about 20,000 tons. It is 

of interest to check this result in a different way. If 27/o is the period 
when damping is neglected, we have the relation given in (3). The 
change in period due to damping is relatively small, so we may use the 
recorded period ; further, estimating the water plane area S as 17,600 

sq. ft., we obtain from (3) a value for M’ of about 20,000 tons. 
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Suppose now that the heaving motion is given by C=asinot. The 
wave-length for a period of 7-42 sec. is about five times the beam of the 
ship. It is thus permissible to take a simple distribution, namely a 
uniform line source, of strength m cos ot per unit length, extending over 
the length L of the ship at some suitable mean depth f. We take the 
value of m to correspond to the rate of alteration in displaced volume 

of the ship, which is St or Sac cos ct. Hence we take 

m= SaG/2Aloe «sok we ah eis s,s aD 
We put this value of m in (6) and, using 

SNO202 = i rie ter i rae eon ete ta Le) 

we obtain NES(HOSHID ES, a 6 bo to 5 GS) 

For the corresponding logarithmic decrement we have 

3-20 = Hc Meu ath erat htt aca (1) 

Putting in the values already given for this case and taking f=20 ft. 
as a mean depth, (14) gives the value 5=1-4. The agreement with 
Horn’s estimate is, of course, merely a coincidence. Clearly, this large 
value of 6 goes beyond the assumption on which N has been calculated, 
namely that the damping is small enough to allow approximately simple 
harmonic waves to be established. Nevertheless the calculation is 
sufficient to show that wave motion is quite adequate to account for the 
large damping which has been observed in practice. 

6. There does not seem to have been any experimental work on cases 
of three-dimensional fluid motion. We shall examine the corresponding 
theory, as it will allow of more detailed calculation for other source dis- 
tributions and also of application to pitching. Consider a point source 
of alternating strength m cos pt at a depth f below the surface, that is, 
with the source at the point (0, 0, —f). In this case the surface elevation 
is given by 

Qipm . _ 2k k SiN Kf—Kg COS Kf «f , an! 
(aE el = I 7 cosh % Joy dic 

g Cage ER 

siege "H cat) Cee ceete Wer we LO) 

where r2=27+y?, p?=gky, Hy'=J y—7Yo, and the real part of the 
expression is to be taken. There is a corresponding expression for the 

velocity potential. The first two terms in (15) represent local standing 
oscillations of the surface, and the third term the symmetrical circular 
waves propagated outwards. For the present purpose we only require 
the wave motion at a great distance, and the first term in the asymptotic 
expansion of the Bessel functions is sufficient ; hence, for this part of 
the velocity potential and surface elevation, we obtain 

Y t 
b~2megm(— ) e trter sin (pet 7 — xg) Pai abet @ \)) 

TK 0”, 
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2 mf 2 \* as muh ( —) eof cos(pt+7 or). 5 - 6 (17) 
g TK o” 

The rate of transmission of energy outwards is obtained from the rate 
of work of the fluid pressure over the surface of a vertical cylinder of 
radius 7, that is, from 

DY Go 
<f ge tem de, S Aehiyed ln Space ea LS) 

Using (16), we obtain for E, the mean rate of transmission of energy 
outwards, 

Deo Pore joe Aw, 5 5 6 8 oo (IG) 

This result may be generalized to cover any given distribution over a 

surface S in the liquid. Let m cos pt be the source strength per unit area 

at a point (2’, y’, 2’) on this surface ; we have to substitute for 7 in (15) 
the quantity 

(7? 2rax’ cos @—2ry’ sin 0+ x’2+-y’2)?, ae <eean((20) 

and then integrate over the distribution. 

It is readily seen that we only need the approximation for r large, 
namely 

8 + 
pm ( ms) te sin (+4 —«¢"] -+Q cos (+7 ~«a)} > (i) 

where P+1Q= {J Oe, Of, NE Oe CT OG 5 no (BD) 

From these expressions, we obtain for the mean rate of outflow of 

energy 
270 

H—2npeop |, (ESOP, 65 0 4 4 5 CR 

7. Consider a circular cylinder, of radius 6, immersed with its axis 

vertical to a depth f and making forced vertical oscillations given by 
asin pt. As in the two-dimensional problem, if 27g/p? is larger than the 
diameter of the cylinder, we may assume the wave motion to be due to 
an alternating source m cos pt at a depth f, with 47m=b2pa. Hence, 
from (19), we have 

Bay nt gfe) oe ke eo a eS) 

Assuming that this may be used to evaluate N for the natural damped 
vibrations when the cylinder is floating freely, we obtain 

2, 

Nay Avi. fee Phe Pees HAIN) 

From the usual hydrostatic theory, o*=g/f. Without attempting to 
evaluate the effective mass in this case, we write M’=(1+-.)M=(1-+y)zpb?f. 
Hence, with these values, the logarithmic decrement is 

Nl Gre 

~ oM’ (1+ pf?” 
For instance, with f=4b and neglecting x. we should have 6=0-04. 

(26) 
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8. We may now attempt to apply these results to the pitching motion 
of a ship. For a long narrow ship the appropriate source distribution 
could be taken over the longitudinal vertical section of the ship as in 
the theory of wave resistance for such forms. On the other hand, the 
keel of the ship may play a large part in wave production in pitching. 
As a suitable example for calculation, we choose a rectangular form with 
vertical sides, of length 27 and beam 26, and floating immersed to a 
depth f; such a form will clearly exaggerate the wave-making effects 
of bow and stern. We suppose the form to have an angular pitching 
oscillation given by 0=6, sin pt. We neglect the effect of the vertical 

ends and consider only the flat base. With the present procedure, we 
take the source strength at each point such that 47m cos pt is equal to 

the normal velocity, that is, equal to x’ in the notation of (22). Hence. 

from (22), we have in this case 

290 (! ® hae eek P+iq—ho ae | wletoftiva(e’cost+y' sin) Jy? | |, (27) 
J = =i 

__ tpg sin (Ky D sin) , . a an “ep 
= ae Ga {sin (9! cos 0)—K pl Cos @ cox (Kol cos A) }e 7, 

(28) 
From (23) this gives 

Aa 15 | sin? («gb sin @) 
Fa atncaeHe {sin (xl cos) —k 9! cos @ cos (il cos A) }* dd. 

0 hs JIE 

(29) 
Ko? 

= se ea] 

For the pitching of a ship, as for heaving, «,b !s a moderately small 
quantity ; (29) then reduces to a simpler form, which might have been 

derived directly by assuming a line distribution of sources and sinks. 

We have then 

r 
bo Spp°b?6,° dé Oo © . 

= alee eof | {sin (cl Cos 6)—x gl cos @ cos (Kgl cos #)}2 —_. 
TK ¢: Ja cos! 

(30) 

EK 

For pitching oscillations of a ship, the usual equation for natural 
pitching in still water is 

I6+Né+gpVmd=0, . ..... . (31) 

where I is the total effective moment of inertia of the ship, V the displaced 
volume, and m the longitudinal metacentric height. As before, we 

estimate N by equating the mean value of N6? to the value of E given by 
(30), with p equal to the natural frequency o. There do not seem to be 

any direct determinations or calculations for the added moment of 
inertia. We shall therefore derive the effective value of T from the 

relation 

o*l=gpVm, WA) MOT on Wy Anta a eon am (D2) 
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with 2n/o the natural period of pitching when damping is neglected. 
With this relation, the logarithmic decrement is given by 

_7N 7a N 33 

Y ol YF gpVm (23) 

Collecting these results, and expressing the integrand in (30) in terms 
of Bessel functions, we find 

cs 

SiikcgUslmee a d6 
=a 6 | alice! 0058). Sse eae (are) 

To obtain a numerical result we take a case from an early paper by 

Kent (1922). The relevant data for the ship are: length 400 ft., beam 
52 ft., draught 22 ft., displacement 10,000 tons, longitudinal metacentric 

height 458 ft., natural pitching period 6-11 sec. 

In (34) we take the distribution of the same length as the ship, that is 
J=200 ft.; we assume a mean beam of 40 ft., and we take f=20 ft. 
These values suffice for a rough approximation. The integral in (34) 

was computed from tables of Bessel functions ; and we obtain finally 
the result 6=1-6. The same general remarks apply to the limitations 

of this calculation as in the case of heaving motion; however, it is 

interesting that the decrement 6 comes out at about the same value in 
the two cases. 

9. Summary.—Using expressions for the wave motion due to alternating 
sources in a liquid, application is made to the heaving and pitching 
motions of a ship, and, in particular, to estimating the damping from the 
rate of propagation of energy outwards in the wave motion. This 
method of approximation assumes the damping to besmall, and the results 
obtained are too large for much importance to be attributed to the 
actual numerical values. Nevertheless, it may be concluded that the 
wave motion gives rise to large damping for both heaving and pitching, 
and that the decrements are probably comparable with those obtained 
experimentally. 
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THE APPROXIMATE CALCULATION OF WAVE 

RESISTANCE AT HIGH SPEED 

By T. H. HAvELock, F.R.S. 

SYNOPSIS.—The main purpose of the paper is to explore the possibility of 
applying the present theory of wave resistance to models whose lines are not 
given by mathematical equations. A brief survey of the wave theory is given and 
this leads to a sub-division of the ship and the corresponding source distribu- 
tion ; the determination of the latter is based on sectional areas and local pris- 
matic coefficients. For low speeds a large number of divisions is necessary for 
reasonable approximation and the calculations become too laborious, but results 
have been obtained for speeds higher than a Froude number »/(v/gL) of about 0-4. 
These approximations are applied first to experimental models with mathematical 
lines, and the results compared with those calculated from the usual integrals 
and with the measured resistances. Finally the method is applied to two models 
with non-mathematical lines, the necessary data being obtained from the plans 
and the results compared with measured resistances. 

Introduction 

ile IN recent years the comparison of calculated and measured wave 
resistance has been the subject of much research and considerable 

success has been achieved ; but the work has necessarily been limited 
to relatively simple forms of model whose lines can be expressed by 
mathematical equations. The chief desideratum at the present stage would 
seem to be an extension of this comparison to a wider range of types and 
to more normal forms of model ; this would, no doubt, disclose defic- 
iencies in the present theory of wave resistance but would provide a 
basis for further development and improvement. These considerations 
suggest an examination of the application of the present theory to models 
with non-mathematical lines, with a view to seeing whether the diffi- 
culties of the calculations can be avoided by approximations giving 
reasonable accuracy and consistency, even if only over some limited 
range of speed. The present paper is the record of an attempt to make 
such calculations ; whether the particular method prove useful or not, 
it is hoped that the general statement will stimulate interest in the problem 
and lead to further investigation, both experimental and mathematical. 

From one point of view the problem is quite simple. If we assume the 
well-known integral expressions for wave resistance (4, 6), the matter is one 
of approximate integration over the ship’s surface. The main difficulty arises 
from the double computation ; intermediate integrals have to be evaluated 
not only for a sufficient number of stations on the ship but also for a sufficient 
number of values of a parameter so that the final resistance integral may be 
computed. The labour involved has prevented any direct calculation on these 
lines. It is proposed here to examine the problem differently by returning to 
first principles of the theory of wave resistance, beginning with the simplest 
possible expressions and trying to find how far it is necessary to go before we 
get results of sufficient accuracy. 

2. We consider a ship moving steadily through the water, and we neglect 
meantime any effects due to fluid friction. The motion of the water must 
satisfy the laws of fluid dynamics, together with the necessary conditions at the 
surface of the ship and at the free surface of the water. Although the problem 
can be stated thus precisely, and formulated in mathematical terms, it has 
not been possible to obtain an exact solution for even the simplest form of 
floating body ; we have therefore to approximate to a solution by successive 

500 
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steps. The first step is to neglect the wave motion and consider the fluid 
motion produced by the ship assuming the water surface to remain plane ; 
the next step is to obtain the wave disturbance produced by this fluid motion 
while ignoring the presence of the ship. A third step would then be to evaluate 
the influence of the ship on the waves so calculated, and so on by successive 
steps. Meantime the theory has not in fact proceeded further than the first 
two steps. 

Equivalent Source Distribution 

3. The first step in the process may be expressed in another form. Consider 
a double ship formed of the immersed volume of the ship and its inverted 
reflection in the water plane, and suppose this complete solid entirely immersed 
in water and moving forward with uniform velocity v. Over the fore part of 
the ship the water is moving forwards and outwards, and over the after part 
it flows in to follow the motion of the ship. This fluid motion can be repre- 
sented completely by a definite continuous distribution of sources and sinks 
over the surface of the ship at each instant and moving with the ship. Let o 
be the source strength per unit area at any point of the ship’s surface, o being 
positive over the fore part and negative over the after part for a normal form. 
(The notation used in this paper is that if m is the strength of a point source, 
4xm is the volume of liquid flowing out in unit time). It is clear that, since 
the total volume of water is unaltered, the integrated value of o over the whole 
surface is zero, or the sum of the positive sources is equal to the sum of the 
negative sources. On the other hand, if x is the distance of any point from 
some transverse reference plane, say the mid-ship section, the integrated value 
of cx taken over the whole surface is a definite amount and is the moment M of 
the distribution. A simple expression for M can be derived from general 
Ree: without knowing the actual distribution. It can be shown that 

=(1+k) Vo/4r . : : : ol) 

In ae expression V is the volume of ne bodes armel ea iS the inertia coefficient 
for longitudinal motion ; that is, gpkV is the added mass due to the motion 
of the water. 

If v, is the component of the velocity v normally outwards at any point 
of the ship’s surface, it is convenient to write the corresponding source distri- 
bution in the form co = (1 + k*)v,/4r. In general, k* varies from point to 
point, but for an ellipsoid it is constant and equal to k. The added mass for 
longitudinal motion is not very important in ship problems and there are few 
estimates of its value. It is of interest to note that W. Froude investigated 
this effect in his well-known experiments on H.M.S. Greyhound. He made 
two sets of experiments, one with retarded motion and the other with accelera- 
tion ; the former gave a coefficient of about 20% and the latter of about 7%, 
and on experimental grounds Froude attached more value to the larger esti- 
mate. Whatever may be the interpretation of experimental results, we are 
concerned here with the theoretical coefficient for non-viscous fluid motion ; 
and there is reason to regard the lower value as more appropriate for normal 
ship forms. Although this correction should be noted for future examination, 
we may meantime regard it as relatively small, at least for the so-called narrow 
models to which the wave theory has so far been limited. The usual approxi- 
mation amounts, in fact, to neglecting the inertia coefficient k for longitudinal 
motion ; and, in what follows, we take the source strength per unit area to 
be given by o = v,/4x. We can easily verify the total moment M of the distri- 
bution in this case. Imagine a horizontal cylinder of small cross section cutting 
the midship section in an area dS, and cutting out an. area dS, at a point P,; 
on the fore part of the ship’s surface and an area dS, at a point P, on the after 
part. Then we have 

6, dS, = 2, dS,/4n = vdS/4x (2) 
6, dS, = — vdS/4x Os . . . . . . . . 

Hence 

M = |vp,P,dS|4n = vV/4r Mery en aA eR ra Tel ce tran) 
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the integral being taken over the midship section, and V being the immersed 
volume. 

To sum up, with this approximation, the source distribution on the ship’s 
surface is specified as follows: the total source strength on any portion of 
the surface is given by v/4m times the area of the projection of that portion 
on to the midship section, with an obvious rule for determining the sign of the 
projected area. 

Formule for Wave Resistance 

4. We give now expressions which will be used for the calculation of wave 
resistance ; for general formule for any distribution of sources reference 
may be made to Roy. Soc. Proc. A. 138, p. 339 (1932). We take the origin O 
on the centre line of the form and in the water plane, Ox in the direction of 
motion, Oz vertically downwards, and Oy horizontally at right angles to the 
other two axes. We shall be concerned here with sources only in the longi- 
tudinal zx-plane. If we have any distribution of which a typical source is 
of strength m, at the point (x,, 0, z-), the corresponding wave resistance -is 
given by 

co 

Res Niuha (Pspdpiceieds 5 5s oe a © 
where 

I = Imye~ Ker cosh*u sin (kx, cosh uv) 

J = Imye— Ker Cosh’ cos (kx, cosh u) 
where & = g/v? and the summation extends over the given system of sources. 

(5) 

If we make the assumptions for a narrow ship, outlined in the previous sections 
from a somewhat different point of view, it can easily be verified that these 
expressions lead to the usual integrals for the wave resistance. We have the 
same form for R with 

l= meal (dy/dx) sin (kx cosh u)e7kz cosh®u dadz 

ee ; 
(6) 

J= ae i i (dy/dx) cos (kx cosh u)e~kz cosh®u dadz 

The integrals are taken over the longitudinal section of the ship, and (3y/¢x) 
is taken from the equation of the surface of the ship. 

First Approximations 

5. After this preliminary survey we proceed to the immediate problem, 
namely dividing the ship into a finite number of sub-divisions. Although of 
no practical value, we begin with the most extreme simplification to illustrate 
the point of view of the present study. We have seen that the total moment 
of the source distribution is Vv/4m where V is the immersed volume and v the 
speed. We now suppose this moment to be concentrated at a point as a source 
and sink doublet with its axis in the direction of motion. The longitudinal 
location of this doublet is immaterial so far as the resistance formula is con- 
cerned and we may suppose it to be in the midship section. For its depth 
we use here, and throughout the work, the principle that for a first approxi- 
mation we replace any system of sources by a source of the total strength placed 
at the centroid of the system. Since the source strength on any element of 
the ship’s surface is proportional to the projection of that element on the mid- 
ship section, it follows at once that the depth of the centroid of the distribution 
is the depth h of the centroid of the midship section. Thus the first approxi- 
mation is a horizontal doublet of moment Vv/4r at a depth fh. Putting these 
values into the expression for the wave resistance of a doublet, which may 
be deduced from (4), (5), we obtain 

ee) o 

R = (go/n) ks v5 e —2khcoshttcoshtudu . . . ... @) 
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This integral can be expressed in terms of Bessel functions, and its value obtained 

readily from tables of these functions. 

It is clear that this extreme simplification can only be an ideal limit for very 

high speeds, and it is no use comparing it with experimental results. It is, 

however, of interest as the limit towards which the usual complete theoretical 

expressions should tend. Consider, for instance, the simplest type of experi- 

mental model with parabolic lines, the surface being specified by 

y=b0 — 2a) (1 — x /P?) . : : ; P i 5 , a(S) 

Calculations, meantime unpublished, from the complete integrals (4) and (6) 

have been made recently for very high speeds by Mr. W. C. S. Wigley, who 

has placed his results at my disposal. Taking the Froude number f = v/1/(gL), 

the highest value for which calculations were made was f= 1-77. With length 

— [ = 2/= 16 ft., beam = 25 = 1-5 ft., draught = d= 1 ft., at this value 

of f the complete formula gives a wave resistance of 31:8 lb. Calculating from 

(7) with V = 103 cub. ft., h = 3 ft., we obtain a resistance of about’40 lb. The 

comparison is not so far out as might have been anticipated, and to that extent 

it may be taken as confirming the argument by which the simple formula was 

obtained. 

6. The next simplest dissection of the ship is to divide it into two by the 

midship section. We consider the fore and aft parts separately, replacing 

each part by a single source at the centroid of the distribution in each case. 

For the positive sources on the fore part of the ship we have seen that if M is 

the area of the midship section the total source strength is Mv/4x. From the 

argument in the previous sections it is readily seen that the moment of the 

distribution with reference to the midship section is V, 0/4x, where V, is the 

volume of the fore part ; hence the centroid is at a distance V,/M, or Pil, ahead 

of the midship section, where /, is the length of the fore part and p; its prismatic 

coefficient. Similarly the controid of the negative sources on the after part 

is at a distance p./, astern of the midship section, where /, is the length of the 

after part and p, its prismatic coefficient. Thus we have a pair of sources, 

positive and negative, each of numerical strength Mv/4z, at the depth A of the 

centroid of the midship section, and at a distance pL apart, where L is the 

length of the ship and p its prismatic coefficient. Applying the formule (4), 

(5) to this combination, we obtain for the wave resistance 
co 2 

R = (4ge/n) ke, e — 2kh-cosh’u sin? (4 kpL cosh w) cosh*u du (9) 

This is an interesting expression from a theoretical point of view, as it brings 

in factors which are adinittedly of the first importance in wave resistance : the 

area of the midship section and the depth of its centroid, or roughly the depth 

of the centre of buoyancy of the ship, the length of the form and its prismatic 

coefficient. But it will clearly exaggerate, in general, the interference between 

bow and stern systems ; and it is too simplified for practical purposes, except 

possibly for special types of model over a limited range of speed. 

General Sub-division of the Ship 

7. The total moment of the ship is distributed in a continuous source 

distribution over the surface of the ship: distributed in length, in depth, and 

in beam. The last of these is neglected in the usual theory and we leave it on 

one side meantime, noting the possibility of including it in further developments. 

Of the other two, the distribution in length is specially important. _ We now 

divide the ship by taking transverse sections at any required number of stations ; 

for simplicity at first we consider complete sections, leaving subdivision in 

depth till later. Let S,, S, be the areas of any two transverse sections, say 

in the fore part of the ship with S, > S,. The total source strength on the 

ship’s surface between these stations is 

(Sea = Si) OB 9 oo . (10) 

The ship being symmetrical with respect to the vertical longitudinal section. 

the centroid of the distribution lies on this median plane. Its depth is the 
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depth of the centroid of the area between the corresponding traces of the sec- 
tions on the body plan of the ship. The longitudinal location of the centroid 
may be specified by a kind of local prismatic coefficient for the increase in 
volume in relation to the increase in cross-sectional area. It is readily seen, 
from the argument in the previous sections, that if x is the distance of the 
centroid ahead of the station 2, x,. the distance between the stations and V,, 
the volume between them, we have 

B= (he — Seta — Sd) s 92 6 My eos ee Meee CLL) 

The same construction holds if we take porontal sections in addivon and 
subdivide in depth as well as in length. We replace each subdivision so formed 
by a single source at a certain point ; the strength of the source and its location 
are easily derived from the usual data for the ship, for example the curves of 
sectional areas and volumes, the body plan and principal dimensions. We may 
exhibit this information in the form of a diagram representing the longitudinal 
section of the ship divided into compartments ; in each compartment is placed 
a number for the strength of the source at a given point in that compartment. 
The diagram gives quantitative information about the wave-making quality 
of the ship, and may be useful even if we do not carry out the subsequent calcu- 
lation for the wave resistance. It may be noted that we have tacitly assumed 
a normal form of ship, with the sources all positive on the fore part and all 
negative on the after part. For a bulbous bow, for instance, we should have 
a superposed source and sink combination which could be calculated by the 
same procedure. Of course, if we pursue this process far enough to arrive 
at very small subdivisions, we are back at the original problem of approximate 
evaluation of the complete theoretical integrals ; in particular, the precise 
location of the elementary source within its compartment would lose signi- 
ficance. It remains to be seen whether, with the particular method described 
above, a relatively small number of subdivisions will give any accuracy in calcu- 
lation. It is obvious in advance that high speeds will give conditions most 
suitable for comparison ; roughly speaking, the deciding factor is the relation 
between the distance between stations and the predominant wave length, and as 
we come down to lower speeds it will be necessary to increase the number 
of stations. 

Comparison with Experimental Models 

8. Before applying the method to models with non-mathematical lines, we 
test it by comparison with experimental models of simple form. We take 
first the parabolic form, the equation of whose surface has been given in (8). 
Extensive calculations have been made for this form from the usual complete 
integrals and tables of the various integrals have been given by Wigley in a 
recent paper.* We shall take, at first, complete transverse sections at 
x = 0, + 4/, + #/. The sections are all similar and their centroids, and there- 
fore those of their differences, are all at the same depth $d. The sectional area 
is given by S = M(1 — x°//*). Using the formule (10) and (11), we obtain 
sources of strengths, omitting the common factor vM//4z, 

4 it is ‘ 

Eye Sees YL NE a Tg dy eae 1 gciay ited OLD) 

respectively. The model being cymmetrical fre ana aft and alecting vis- 
cosity, there are corresponding negative sources at similar negative values of x. 
urs to (4) and (5), the cosine terms cancel out, and we are left with 

R= (ge/)kM*| F2COSH AIAN: WPS yin <ul WA ee Mae pes lanes CLES) 

T = 2e — 8kd cosh'u! .95 sin (-333 kl cosh u) 

+ +3125 sin (-633 kl cosh u) + -4375 sin (-881 kl cosh uw) } : . (14) 

*“Calculated and Measured Wave Resistance of a Series of Forms defined Algebraically, the Prismatic Coeffici- E 
ent and Angle of Entrance being Varied independently,’’ by W. G. S. Wigley, M.A. J.N.A. Vol. 84, p. 52, 
1942. 
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Calculations have been made for the standard model with length = 16 ft., 
beam, = 1-5 ft., draught = 1 ft. We note that k = g/v? = 1/f*L, where f is 
Froude’s number. The integral was evaluated by direct quadrature, and 
no attempt was made to attain any high degree of accuracy in the numerical 
values as the work is regarded mainly as an exploration of possibilities ; if 
necessary, more systematic methods of computation could be devised, but 
meantime it is hoped there are no errors serious enough to invalidate the general 
deductions. ' 

For a given value of f, the sines in (14) were calculated for values of wu in- 
creasing by 0-2, or in some cases by 0-1 ; it was not found necessary to go beyond 
u = 4, because of the decrease in the exponential factor. The integrand in (13) 
was then calculated for these values and graphed as a function of u, so that 
additional values could be inserted where needed ; finally the value of the 
integral was obtained by the usual rules for the area under the graph. In 
Table 1, the wave resistance in lb. calculated in this way from (13) and (14) is 
denoted by R,; the corresponding values R- have been obtained from the 
tables given by Wigley, using the complete theoretical integrals and omitting 
any correction for viscosity. 

TABLE 1 

i 265 -303 341 404 522 607 884 

Ra 1:93 3-48 2:44 8:0 20:7 23-7 27-1 

Re 1-08 3:25 2:43 Ve 20-4 23:6 26:1 

The agreement in the range -341 to -607 is surprisingly good ; the differences, 
it should be stated, are well within the limits of possible error in the present 
numerical computations. At lower speeds it was expected that the subdivision 
would be too coarse-grained, and the approximation gives unreliable results 
due to accidental coincidences between the various sine terms. One way of 
expressing it is that replacing the model by a small number of finite sources 
introduces interference effects between these sources taken in pairs and these 
become important at the lower speeds ; whereas in the actual model with 
its continuous lines these are smoothed out. To obtain the same result by 
calculation we should have to increase the subdivision in length. Suppose 
we take, in addition, a horizontal section at half-draught, then, considering 
any transverse section, 11/16 of the area is above and 5/6 is below this level ; 
further the centroid of the upper portion is at a depth 21d/88, and that of the 
lower portion is at a depth 27d/40 below the water plane. Hence all that is 
necessary, for this model, is to replace the exponential factor in (14) by 

—: kd cosh?u — 4ikd cosh*u 
1be a8 a re BU 

Various calculations have been made in this way, and also with different trans- 
verse sections. In general it may be said that numerical values are increased 
by greater subdivision in depth and diminished by additional transverse sections ; 
increasing both enables one to increase the range of speed for which effective 
agreement can be obtained. 

9. We have now to examine the extent to which the approximation reflects 
changes in form and whether it is sufficiently sensitive in that respect. In 
the paper already quoted, Wigley compares calculated and experimental values 
for a set of models defined by two parameters, the general equation of the 
forms being 

y= 6b (1 — 23/d?) 1 — x2/l?) + apx®/l2? + ayxt/I) . . . . (15) 

It is a simple matter to obtain general formule for the sectional areas and 
their differences for any scheme of subdivision, and for the positions of the 
respective centroids in accordance with (10) and (11), and they need not be 
reproduced here. We shall take three particular cases, for two of which experi- 
mental results are also given in the paper quoted. 
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Model 1,970 B. This is specified by 

a, = -4375 3 ag = — -4375 

21 = 16 ft. ; 2b = 1-5 ft. ; d= 1 ft. 
For comparison with the previous case we take the same subdivision : no 
horizontal section, and transverse sections at x = 0, + 4/1, + 3/1. The approxi- 
mate source distribution could be shown on a diagram of the longitudinal 
ection of the model ; it is given here in Table 2, with the divisions not drawn 
to scale. 

TABLE 2 

— -485 | = Byi/ | — 188 | 188 | S27 | “485 

These numbers, when multiplied by vM/4r, give the source strengths. The 
depth of the sources is 3d, while the longitudinal distances from the midship 
section are found to be x// = + -349, + -638, + -879. 

Comparison may be made with the distribution for the previous model 
with a, = a,= 0. Since we have not taken any horizontal section, the dif- 
ferences correspond to those on the curves of sectional area—or, rather, to 
the differences in the gradients of those curves. Using these coefficients for 
the sine series we calculate R from (13). Using the same notation as in Table 1, 
the comparison between calculated values from the complete integrals and 
from the approximation is shown in Table 3. 

TABLE 3 

i 303 341 404 522 607 884 

Ra 5-82 4-23 8-67 21-74. | 24-9 28-4 

R, 5-34 431 8-83 eT 27-9 

Model 1970 C. In this case 

a, = °8125 ; ay = — 1-3125 

A = 16 ttt, 8 Ap = leit, & al il it, 

With the same subdivision, we find the distribution shown in Table 4. 

TABLE 4 

— -456 | = Bhs) | = cilsf) | “159 | “385 

For the horizontal location of the sources, we obtain. 

edi se Sith ae WSL se COL 

For comparison with experimental results, the calculated values have been 
expressed in terms of ©,=R { 25-41/8 tv}?, where 8 is the displacement and v the 

velocity. The results are shown in Fig. 1, in which the two curves have been 
reproduced from Wigley’s paper. One curve is for the residuary resistance, 
obtained in the usual way by deducting from the total measured resistance the 
part due to skin friction calculated from Froude’s coefficients ; the other 
curve is for the wave resistance calculated from the theoretical integrals, without 
viscosity correction. The results obtained by the present approximation are 
shown by a cross for each of the speeds for which calculations were made. 
Model 2038 C. This model is specified by 

a, = —0:5'; a, = 0; 

DI N6itt. 2 bI—s leita —1O-5tts 
In addstion to the wariations,in the parameters, we have larger beam and only 
half the draught. Taking the same sections we obtain the scheme in Table 5. 
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The sources are at depth 3d, and the longitudinal positions are x/J = + -327, 
627, *869. Making calculations with this plan it was found that the 

values at the lower speeds tended to be too large. This is probably due to 
the large source strength in the middle compartments compared with the 
previous cases, and possibly to the shallower draught. It was decided to 
take additional transverse sections so as to divide each middle compartment 
into two of equal strength ; this can be calculated from the general formule 
(10) and (11). Thus the scheme finally adopted is 314, 342, O72, 
— 172, :172, -172, :342, -314, with the longitudinal positions given by 
x/l = + -227, + -418, 627, -869. The depth is the same as before. 
The consequence is that we have now four sine terms to evaluate. The results 
are shown in Fig. 1, the curves being reproduced from Wigley’s paper and 
the values from the present approximation denoted by crosses. 

TABLE 5 

The agreement shown in Fig. 1 between the two sets of calculated values is 
reasonably good. The four cases which have been examined, taken together, 
give some idea of the scope of the approximation and of the measure in which 
it responds to changes in the form of the model. It is not the present purpose 
to compare calculated results with experimental, but the latter have been 
included in Fig. 1 for the last two cases. It should be noted that viscosity 
effects have been neglected, but these are comparatively small at the speeds 
under consideration ; moreover, the residuary resistance has not been corrected 
by any allowance for form effect upon the frictional resistances, or similar 
refinements. It is generally considered that the main difference between 
calculated and experimental values of wave resistance at these speeds is due to 
sinkage and trim of the model. From the point of view of the present work, 
this would be reflected mainly in an increase in the effective area of the mid- 
ship section ; and it can be seen from the formule that the values are very 
sensitive to changes in this factor. 

Models with Non-mathematical Lines 

10. We proceed now to apply the method to models with lines not given by 
mathematical equations, for which the wave resistance has not hitherto been 
calculated. For obvious reasons, in view of the range of speeds under con- 
sideration, it is not possible to deal with recent models. Data have, however, 
been obtained for two models ; these include complete plans and dimensions, 
together with the record of actual measurements of resistance. (I am indebted 
to Mr. J. L. Kent, Superintendent of the William Froude Laboratory, for per- 
mission to use this material, and to Mr. W. C. S. Wigley for much valuable help.) 

Model A. The body plan and other data for this model are shown in Fig. 2. 

It is obvious that the problem is more complicated than for the simple 
model, symmetrical fore and aft and with similar transverse sections through- 
out. After some preliminary calculations it was decided to take the following 
subdivision : one horizontal section throughout at half draught ; in the upper 
half, transverse sections at stations 1, 2, 5, 8 and 9; and in the lower half, 
transverse sections at stations 2, 5, and 8. The various sectional areas and 
the depths of their centroids, and the corresponding volumes were obtained 
from the plans. From the sectional areas in the upper and lower halves, we 
obtain the source diagram shown in Table 6. 
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The midship section area is 0-4306 sq. ft., so the source strengths are the 
numbers in Table 4 multiplied by -4306v/47, with v in ft./sec. For the depths of 
the sources, those in the upper row range between -094 ft. and 1-43 ft., while in 
the lower row they range from -3 ft. to -32 ft. Instead of using all these depths, 
giving separate exponential factors for the terms in the formule, we shall use 
a mean depth for each row. It is obvious from the construction that the mean 
depth in each case is the depth of the centroid of the corresponding half of the 
midship section ; these depths are -107 ft. and -302 ft. respectively. For the 
horizontal positions of the sources we carry out the calculations required 
by (11); with x measured forward from the midship section, we obtain, with 
Xo eimtites 

x (upper) : 6-218, — 4-869, — 2-806, 2:782, 4-804, 6-157 

x (lower) : — 5-16, — 2:635, 2:778, 5°586. 

Since the model is not symmetrical fore and aft, we have to consider both 
sine and cosine series in (5). The expressions for J and J can now be written 
down ; each of them contains ten terms, but we simplify them further for 
approximate computation. We group the terms in pairs for corresponding com- 
partments fore and aft of the midship section. For instance, in the upper 
row we have the pairs. 

-183 sin (2-782 g) + -110 sin (2-806 q) in J, 
and 

-183 cos (2:782 q) — :110 cos (2-806 q) in J, 

where we have written q for (g/v?) cosh u. We replace these by -293 sin (2-794 q) 
and -073 cos (2:794 q) respectively, the difference so made being unimportant. 
Making a similar change for all the pairs of terms, we find that the cosine 
terms are small compared with the sine terms ; further, their contributions to 
the resistance integral are proportional to their squares, and we propose to 
neglect the cosine terms. It has, however, been verified by approximate calcu- 
lation at one or two speeds that the cosine terms would not add more than 
about one per cent. to the resistance. Finally, we are left with 

T=e 107P {.293 sin (2:794 g) + -299 sin (4:83 q) 
+. -624 sin (6-187 q)} 

+e 302P {.271 sin (2:706 g) + -513 sin (5-373 q)} Bg 6 CG) 
where p = (g/v?) cosh? u, g = (g/v*) cosh u. 

With (16) and (4), the wave resistance has been calculated for six speeds 
ranging from f= :352 to f= :749. The results are shown in the dotted curve 
of Fig. 4 as values of R/b?v?, where 25 = beam. The experimental curve has 
been obtained in the usual way, the residuary resistance being the actual measured 
resistance less the skin friction calculated from the wetted surface at rest and 
the appropriate Froude coefficient. The difference between experimental and 
calculated values is much the same as for the previous cases. The falling off in 
calculated value at very high speeds is rather more than usual ; this may be due 
in part to the approximation, but most of it could be accounted for by the 
effect of sinkage and trim. 

Model B. The body plan and other data are shown in Fig. 3. This model 
has the same displacement, length and beam as Model A, but has greater 
draught. 

With the same sections as before, the corresponding source distribution 
is shown in Table 7. 
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The midship section are is 0-4671 sq. ft., and the depths of the centroids 
of the upper and lower portions are 0-113 ft. and 0-334 ft. respectively. For the 
horizontal distances, in ft. we obtain 

x (upper) : 6-11, — 4-89, 3-09, 2-71, 4-763, 6:11 

x (lower) : — 4:6, — 3-53, 2-42, 5-355 

Comparing with the scheme for Model A, we see that there is a greater 
degree of dissymmetry between the positive and negative distributions ; this 
makes the calculations more troublesome, as we cannot neglect the cosine 
terms altogether. Grouping the terms in pairs as before, we neglect the cosine 
terms for the lower row of sources as unimportant, and we obtain 

T= e 113? { .314 sin (2-9 q) + -38 sin (4-826 q) + -515 sin (6-11 q)} 

+ e— 334? {.4 sin (2:975 q) + -391 sin (4:978 q)}, 

J=e, 113p {:164 cos (2:9 gq) — -027 cos (4-826 q) 

= 37/7 GoS@Ul™ so « so 9 6 » WD 

The resistances have been calculated from (17) and (4) ; it was found that 
in this case the cosine terms add about six per cent. to the final values. The 
calculated and experimental curves are shown in Fig. 4 ; the calculated values 
are in general rather higher than might have been anticipated. For both these 
models, the calculated values at the lower speeds could probably be improved 
by a more suitable subdivision and more detailed computation. 

General Remarks 

11. A few notes may be added on matters left over for further investigation. 

Beam. In addition to subdivision in length and depth, we might also take 
longitudinal sections ; for instance, suppose we take a section through the 
median vertical plane. Then instead of a distribution of sources in one plane, 
we have a space distribution which could be specified and located by the 
same methods ; and expressions for the wave resistance could be obtained from 
the general formule. The effect might be examined theoretically in some simple 
case ; but if is only likely to be of importance at low speeds where several 
other factors also affect the results. 

Viscous Effects. One effect of viscosity is that the frictional belt round 
the ship makes the run and stern less effective in wave-making. This can be 
represented, somewhat empirically, by a reduction factor for the after part of the 
ship. This reduction factor, if obtained from comparison between calculated 
and measured resistances, will include other effects of viscosity than that just 
mentioned ; in fact, it will also probably include in some cases effects for 
non-viscous.flow which have been left out of account meantime—for instance, 
what might be called a screening effect of the bow for models with broad beam. 
However that may be, any empirical factor could be used in the present scheme 
by making the necessary reduction in the numerical magnitudes of the negative 
sources for the after part ; this would mean including the cosine series in the 
formule ; otherwise the calculations would be the same. At sufficiently 
low speeds, if we assume that—for one reason or another—the stern contri- 
butes little to the wave-making, then the same number of sections as were 
necessary for the whole length of the ship might, if concentrated over the effective 
length of the bow, give a sufficiently fine subdivision for approximate calculation. 

Location of Sections. Probably the best method of locating the transverse 
sections would be one which was to some extent related to the type of model ; 
there are some indications to that effect in the present work. For convenience 
in a first survey the sections have been taken at fixed stations, both thé strengths 
of the sources and their positions varying from model to model. Another 
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plan would be to take sections giving equal differences of sectional area, and 
this would lighten the numerical work to some extent. On the other hand, it 
would be possible to locate the sections so that the sources were for the most part 
in fixed positions relative to the length of the model, and such a scheme would 
have the great advantage of allowing of tabulation of the sine and cosine terms 
in advance. Obviously any scheme which permits tabulation and systematic 
procedure in the computation would not only give greater accuracy in the 
calculations but would make it possible to extend their range of application. 

As a general conclusion from the present work it may be said that, although 
the method needs further testing and systematizing, it indicates a possibility 
of calculating wave resistance from the plans of the model, at least for high 
speeds ; and that the results so obtained would agree fairly well with those 
that could be calculated from the usual integrals if the lines of the model were 
given by mathematical equations. If this should prove to be the case, it would 
be possible to have a greater variety of form in experimental models, so pro- 
viding more material for comparison between theory and experiment and 
giving ultimately a better basis for application of the calculations in practice. 

Fig. 1—see next page. 

G6 9% LWL. JO 

Fig. 2—Model A. 13:57’ x 1-28’ x 0-434’. 

Displt. 259°4 lb. M.S. coefft. 0°775. Prism. coefft. 0°711. 

Fig. 3—Model B. 13-57’ x 1-28’ x 0-455’. 

Displt. 259°4 lb. M.S. coefft. 0°802. Prism. coefft. 0°656. 
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jis u/M gl 

+32 “36 40 “44. 48 “52 56 -60 64 

Fig. 1—Values from Approximation compared with Curves of Measured 
and Calculated Values from Wigley (1942). 

—- 

Model B 

ZA, 
Model A 

-08 a f= u/Vg¢L)| Hes baa 

-50 35 -40 “45 “55 -60 “65 “70 “715 
Fig. 4 —_____ from experiment. ———— — from approximation 
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NOTES ON THE THEORY OF HEAVING AND PITCHING 

By Professor T. H. HAveLock, M.A., D.Sc., F.R.S., Honorary Member.* 

Summary 

The main points in the paper are (i) a calculation of the 
damping of heaving and pitching due to the waves produced 

by the motion of the ship, (ii) an examination of the extra 
resistance caused by the reflection of a regular train of waves 
by the ship’s surface, (iii) a suggested theory which gives an 
extra resistance more closely associated with the heaving and 
pitching motions. 

No attempt is made to formulate a complete theory; the 
work is based, in the main, on the usual approximate first- 
order equations of motion and the hydrodynamical theory is 
that of potential fluid motion under gravity and neglecting 
viscosity. Details of mathematical analysis are given in an 
appendix, and the paper gives an account of the work together 

with numerical calculations and comparison with experi- 
mental data. 

Oscillations in Smooth Water 

The usual approximate equations for heaving and 
pitching in smooth water are 

ME+Ni6+g¢pSl=0 (1) 
16+N,6+Wm6=0 (2) 

In these equations € = upward displacement of the 
centre of gravity G, 0 = angle of pitch about the trans- 
verse axis through G measured positive with bows up, 
S = area of water plane section, W = g p V = displace- 
ment in the equilibrium position, m = longitudinal 
metacentric height. Further, it is assumed that the ship 
has a simple symmetrical form so that there is no 
coupling between heaving and pitching so far as first- 
order equations are concerned. Nj and Ng are coef- 

ficients which are considered later. 
Effective Mass and Moment of Inertia.—It has been 

observed that the periods of heave and pitch in still 
water are approximately equal, and it is easily seen 
how this arises. Suppose at first that we neglect the 
damping terms in (1) and (2), and also ignore the effect 
of the inertia of the surrounding water. Then (1) gives 
for the period of heaving 2 7 Va/a), where d = ee 
mean uniform draught. Turning to equation (2), the 
longitudinal metacentric height is of the order of the 
length of the ship and a usual first approximation is 
to take 

m=GM=BM=SKH/V=Kyd 

where k is the radius of gyration of the water plane 
section about the transverse axis. 

If K is the radius of gyration of the ship about the 
transverse axis for pitching it can be seen that, at least 
for uniform loading, K? differs from k? by a quantity 
of the order of the square of the ratio of draught to 
* Professor of Mathematics, King’s College, Newcastle-on- Tyne. 
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length; thus, except for special types of form or mass 
distribution, we may take K? as approximately equal 
to k?. Hence in (2), we have I = W k2/g and m = KJ, 
and the result is the same approximate period 2 7 //(d/g) 
for pitching as for heaving. 

For mean uniform draught ranging from 20 ft. to 
30 ft., this means a period of from 5 sec. to 6 sec. The 
natural periods for usual types of cargo ship generally 
range from 6 sec. to 7 sec. The difference arises from 
two causes, damping and the inertia of the water. Even 
with large damping the effect on the period is com- 
paratively small, and practically all the difference is due 
to the inertia of the surrounding water. 

The calculation of added mass for heaving usually 
proceeds on the assumption that we may replace the 
immersed volume of the ship by a double ship wholly 
immersed in an infinite liquid; this underlies the work of 
F. M. Lewis (R.17) and of Browne, Moullin and Perkins 
{R.2). There do not seem to be any similar calculations for 
rotation, or any with direct application to ship forms. 
One remark may be made about such calculations for 
a floating body. A complete solution, satisfying the 
condition of constant pressure at the free surface of the 
water, would include wave motion of the water. Neg- 

lecting gravity there are two alternative assumptions for 
the surface condition, that it is either a rigid plane surface 
or an open surface of constant pressure. We might take 
the condition at the free surface to be zero normal 
velocity or zero tangential velocity. The calculations on 
added mass have, taken the latter condition. It is of 
interest to note that the former condition, of a rigid 

plane boundary, has been used by Brard (R.3) in work on 
the corresponding inertia effects in the rolling of a ship. 
In my view, the choice of appropriate boundary con- 
dition depends not only on the mode of motion of the 
ship, but also upon whether its oscillations are of short 
period or of long period. However that may be, the 
inertia coefficients in the present problems are generally 
estimated by indirect methods, or in effect by comparing 
observed periods with those calculated without allowing 
for the inertia of the water. The only difficulty that 
arises is that often the stated periods have not been 
directly observed, but have themselves been deduced 
indirectly. There is, however, general agreement that 
a normal value for the added mass for heaving would be 
from 80 to 100 per cent of the displacement, with even 
more for broad, shallow forms; while for pitching the 
added moment of inertia might be normally 40 to 50 per 

cent of the moment of inertia of the ship—reference may 
t References at end of paper. 
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be made, for instance, to G. S. Baker (R.4). We may 
examine this in a few cases from the point of view of 
the same approximate basic period 2 7 »/(d/g) for both 
heaving and pitching. 

With data from Kent andCutland(R.5) for a cargo ship 
of 400 ft. x 55 ft. x 24 ft., we take the mean uniform 

draught as 21-5 ft. This gives a basic period of 5-13 sec. 
The natural resisted periods of pitch and heave are given 
as 6:20 and 7-42 sec. respectively; taking the ratio of 
each of these to the basic period and squaring, we get 
the corresponding added moment of inertia and added 
mass, namely about 46 per cent and 100 per cent 

respectively. 
Similarly, from the details given for the motor ship 

San Francisco (R.6) with a mean draught of 22 ft. the 
basic period is 5-19 sec. The observed periods of pitch 
and heave are given as 6:51 and 7:34 sec.; and we deduce 
corresponding inertia increments of 57 and 100 per cent. 
For a different type, a fast ship 400 ft. « 48 ft. x 13 ft., 

we have data taken from Kent and Cutland (R.7). The 
mean uniform draught of 10-5 ft. gives a basic period 
of 3-59 sec. From resonance effects in rough water 
the natural resisted periods of pitching and heaving were 
assumed to be approximately 5-4and 5-8 sec. Accepting 
these values, we get an increase of moment of inertia of 
about 125 per cent, and of mass of about 160 per cent. 
These values seem too high, though increased values 
would naturally be expected from the greater ratio of 
beam to draught. 

Leaving aside the approximation in using the same 
basic period for both pitching and heaving, the total 
effective mass and moment of inertia can, of course, be 

calculated if we know the requisite data and the observed 
periods; for from (1) and (2) we have M = g pS 13/4 x 
and I= m W T2/4 7?. 
Damping.—We consider now the second term in 

equations (1) and (2), representing the damping of the 
natural oscillations. This arises partly from frictional 
effects and partly from energy lost in the wave motion 
produced by the oscillation. In order to evaluate the 
latter contribution we ignore for the present all effects 
due to viscosity. In the problem of rolling the associa- 
tion of damping with wave motion has been familiar 
since the time of W. Froude. Some recent calcula- 
tions (R.8) have shown that it is certainly capable of 
accounting for a large proportion of the observed 
damping for a ship with zero speed of advance. The 
rolling problem is simpler than that of heaving and 
pitching in that the damping is small; on the other hand, 
it is more difficult to calculate the wave motion directly 
in terms of the form of the ship. 

For damping due to heaving, reference may be made 
to some small-scale experimental studies. In particular, 
Schuler (R.9) examined the waves produced by a prism 
making vertical oscillations, and, among other results, 

deduced that the damping was due to wave motion, 

viscous and other damping being negligible in com- 
parison. In theapplication to ship motion, Kreitner (R.10) 
has emphasized the importance of this kind of damping 
in heaving and pitching. 
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Calculations of the magnitude of this effect have been 
given in a recent paper (R.11), and also in the Appendix 
to the present notes. 

Suppose the ship is acted on by a periodic force, 
say Ho cos pt, so that it is making forced heaving of 
period 27/p. We could write the equation of motion 
in the form 

Mf+ ¢pS6=X+ Hocospt (3) 

where we consider X as the vertical resultant of the 
additional fluid pressures due to the wave motion. The 
assumption is that if X could be calculated it would be 
a resistance proportional to the velocity ¢ and could be 
transferred to the other side of the equation and be the 
term N, ¢ as in equation (1). Meantime we can only 
evaluate N, by indirect methods. The impressed force 

Ho cos p t does work at a rate just sufficient to maintain 
the forced oscillations; if the latter are of amplitude fo, 

this mean rate of work is }p?N; @. This is equated 
to the mean rate at which energy is propagated outwards 
in the wave motion, and so we obtain an expression 
for N;. To determine the wave motion we replace the 
ship by a suitable distribution of alternating sources 
over its surface and hence deduce an expression for the 
mean rate of outflow of energy (A.1 and 2).* The same 
argument applies to the pitching motion with reference 
to the forced oscillations, and we derive an expression 

for the corresponding factor N2. Calculations have been 

made for a simplified form of ship; wall-sided, of 

length L, beam B, of constant draught d, the horizontal 
sections being the same and elliptical in shape. The 
expressions for N, and N2 are given in A. 5, 6, 10 and 11. 
For numerical values we take L = 400 ft., B = 55 ft., 

d= 20 ft.; these dimensions giving a rough corre- 
spondence with a cargo ship of about 10,000 tons dis- 
placement. Calculations for N; from A.5 and 6 have 
been made for six different values of the period T = 2 m/p 
and the results are shown in Table I in |b.-ft.-sec. units, 
the Ib. being the unit of force. 

TABLE I 

N, x 10-6 

SCOAmMANAMN — 

For the values of N,/M in the third column, we 
have assumed an added mass of 90 per cent and have 
taken the effective mass M to be 19,000 tons. If the 
ship were heaving in a natural damped motion of 
period T, the logarithmic decrement of the motion 
would be given by N,1T/2M. If, for instance, the 
natural period is 7 sec., then taking the corresponding 
value from Table I, we should get a logarithmic decre- 

* A. refers to the appendix, and R. to the list of references. 
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ment of 1-41. This is a very high degree of damping 
compared, for instance, with rolling. It seems probable 

that any numerical estimates have been deduced from 
resonance curves under forced heaving. The only 
published estimate appears to be that given by Horn (R.6). 
It is stated that the result of observations on various 
models gave an average value of 0-45 for the quantity 
NT/2 7M, in the present notation, or a logarithmic 
decrement of 1-41; it is also stated that the corresponding 
damping coefficient for pitching was of the same order. 

For pitching, calculations for the same model from 
A. 10 and 11 are shown in Table II. 

TABLE II 

N,/l 

SOM IUDAN cooooo BRUAMAWwWl NRK OW — 

For an appropriate value of I we use data from a 
model of Kent and Cutland (R.5), to which reference 
has already been made; this was a cargo ship 400 ft. 
x 55 ft. x 24 ft. of 11,332 tons, with a longitudinal 
GM = 467 ft. and a natural resisted pitching period 
of 6-2sec. Using I = T? W m/4 7, we get an effective 
moment of inertia I= 11-85 x 10°. It may be noted 
that this gives an effective radius of gyration of 0-31 L, 
which seems about the right value. With this value of I, 
the third column in Table II gives the values of N;/I. 
We notice the striking similarity in the values of N,/M 
and N>2/I in Tables I and II, with some interesting 
differences in detail. This agrees with the statement that 
the damping coefficients for heaving and pitching are 
of the same order. For a period of between 6 and 7 sec. 
Table II gives a logarithmic decrement of about 1-16. 

The form of model used for these calculations was 
chosen for simplicity to give the order of magnitude of 
the effect. The work could be carried out in detail for 
any form given by mathematical equations, with the 
corresponding source distribution over the surface; but 
such calculations are hardly worth while meantime, or 
at least not without corresponding experimental work 
on simplified forms specially arranged to test and develop 
the theory. 

Oscillations among Waves 

If, instead of being in smooth water, the ship is 
subject to the action of a regular train of waves, there 
are many new factors which should be taken into account: 
for instance, the disturbance of the wave train by reflec- 
tion from the ship, and the wave system produced by the 
forward motion of the ship. The hydrodynamic forces 
acting on the ship will no doubt affect the amount of 
damping and may alter the effective periods of pitch 
and heave. A first approximation involves neglecting 
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these complications and evaluating the forces on the ship 
from the pressures in the undisturbed train of waves. 
This was the simplification adopted by W. Froude in his 
theory of rolling, and it was also the basis of the well- 
known work of Kriloff on pitching and heaving. The 
conventional method is to suppose the ship held in its 
equilibrium position and to calculate the excess or defect 
of buoyancy and its moment from hydrostatic pressures due 
to the instantaneous position of the wave profile relative 
to the ship. We confine the discussion in this section to 
the first approximation, but we calculate the forces and 
couples directly from the pressure system in a regular 
train of simple harmonic waves. Reference may be 
made to A.§2, where results are obtained for the par- 
ticular model we are using, a wall-sided ship with 
elliptical horizontal section. For this model, equa- 
tions (1) and (2) for smooth water are replaced by 

ME+NiE +g pS6=Hocospt 
16+ No6+Wmd= — Posinpt . 

with Ho, Po given by A.16 and 18. 

(4) 

(5) 

The forced oscillations are then 

€ = {ocos (pt — B;); 8 = — Msin(pt —f2) (6) 

with fo, 9, B:, B2 given by A.21. 

In attempting any comparison with observed results, 
it must be remembered that the expressions have been 
obtained from a very simple form of model. In general, 
model results are for forms not readily adapted to 
mathematical calculation, and moreover there are other 
factors arising from lack of symmetry fore and aft; 
in particular, if the centre of buoyancy is fore or aft of 
the centre of flotation there is coupling between heaving 
and pitching. 
We make numerical calculations for the dimensions 

used in the previous section: L = 400 ft., B = 55 ft., 

d= 20 ft., and we take the wave height 2r = 5 ft. 

There are various possible methods of exhibiting the 
results. We choose that of graphing the total pitch 
2 @ on the period of encounter as a base, in each case 
for a given speed of the ship. Thus fora given period of 
encounter at a given speed we find the corresponding 
wave-length A, and then the value of Po from A.18. 

For the effective moment of inertia I we take the value 
used in the previous section and also the same natural 
period 6:2 sec. Further we obtain the corresponding 

value of N2 p/I from the data given in Table II. 
In Fig. 1 the two curves show the graphs for the ship 

at rest and for a speed of 8 knots. The double humps 
on these curves are of interest; they arise because not, 
only does the magnification factor have a maximum at 
resonance but the pitching moment Po has maxima 
depending upon the wave-length. This effect can be 
clearly seen in some curves of results from models; in 

particular, reference may be made to Kent (R.12), Fig. 3, 
and (R.13), Fig. 3. Of course in actual model results 
there would be no definite zeros of the pitching; the 
curves would be smoothed out by viscous and other 
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effects. On Fig. | are also shown values extracted from 
model results given by Kent and Cutland (R.5); these 
results were for wave-lengths of 175, 350 and 490 ft., 
in waves of 5 ft. in height. It should be noted that no 
attempt has been made to fit this model beyond taking 
the main dimensions and displacement about the same. 
The points marked by a cross are for zero speed of 
advance, and they fit fairly well into the calculated curve. 
Points marked by a circle are for a speed of 8 knots. 
In the calculated curve for 8 knots we have used the 
same natural pitching period as for zero speed. There 
seems to be some evidence that the effective natural 
period increases with the speed. The large divergence 

MAXIMUM PITCH IN DEGREES 

6 7 8 
PERIOD OF ENCOUNTER IN SECONDS 

Fic. 1 

at the lowest period of encounter at 8 knots may be due 
to various causes; for one thing the calculated pitching 
moment Po is more subject to error at the smaller wave- 

lengths, and for another it is probable that the pitching 
in the smaller wave-lengths is not the simple forced 
pitching to which the calculations refer. 

Similar graphs could be made for heaving, but it 
should be remarked that observed maxima in long waves 
are generally greater than those given by calculation. 
This has been noted previously in regard to model 
results; it may be that the calculated buoyancy is more 
susceptible to change in wave-length or possibly that in 
long waves the damping is less—it might, for instance, 
be a better approximation in such cases to calculate the 
damping from the motion of the ship relative to the 
fluid motion in the wave train. Finally, in this brief 
review we may consider the phase lags for heave and 
pitch denoted by the angles B; and f>2 in (6). It is a 
simple matter, so far as the approximate equations are 
concerned, to determine the position of the ship in 
relation to the wave profile at maximum pitch or heave. 
This is, of course, a very important point. It has been 
examined by J. L. Kent in various papers; and, in 
particular, in Kent and Cutland (R.5) a diagram is given 
showing the wave crest and trough positions along the 
ship at maximum pitch. It is difficult to derive from this 
diagram results suitable for the present calculations. 
The model was not designed for the purpose; moreover, 
it is stated that successive pitches showed a periodic 
movement of the wave crest position backwards and 
forwards along the hull, the diagram giving mean 
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positions at the instant of lowest pitch. Referring to (6), 
there is maximum pitch with bows down when 
pt—fB2.=7/2. From A.13, it follows that the wave 
profile relative to the ship at that instant is given by 
¢ = —rsin(kx +2). Hence there is a trough at a 
distance } A — B2 A/2 7 ahead of amidships. 

If T, is the period of encounter and T, the natural 
period of pitch, and if damping were entirely neglected, 
we should have 8; = 0 for T,> T,, and B, = 7 for 
T, <T,. In the former case there is a trough 4A 
ahead of amidships and in the latter it is 4A astern of 
amidships. The damping smooths off this sudden 
change of phase; but whatever the damping we should 
have 6, = 7/2 for T, =T,. Hence there should be a 
trough at amidships, for a simple symmetrical model, 
at lowest pitch at the resonance period of encounter. 
In the diagram referred to above, there is a trough 
amidships for zero speed of advance at a wave-length 
of about 230 ft.; this corresponds to a period of en- 
counter of 6-77 sec., the natural period for the model 

being 6:2 sec. But, for various reasons, it is not possible 
to push the comparison so far as to determine the phase 
lags. The possible magnitude of surging effects, for 
instance, needs examination; and in various respects the 

theory is only a first approximation and requires 
amplification in conjunction with suitable experimental 
data. 

Resistance of a Ship among Waves 

A ship when moving through a regular train of waves 
is subject to an average steady resistance greater than 
that experienced at the same speed in smooth water. 
There are various obvious factors which may be supposed 
to contribute to this result: for instance, the disturbance 

of the wave motion by the surface of the ship, the 
alteration in the wave resistance due to interference with 
the wave train or due to altering attitude of the ship, 
or a more direct effect of the surging, heaving and 
pitching motions. 

If we consider only the first order approximate 
equations used in the previous sections, the regular wave 
train supplies an alternating addition to the resistance, 
such as that given in A.17; a more detailed examination 
of this periodic force may be found in R.14. 

In order to obtain an increased average resistance we 
have to take into account second order terms. When 
we are dealing with first order effects it is, generally, 
legitimate to consider factors separately and obtain the 
combined result by simple superposition; but this is not 
the case when we have to include second-order terms. 
Noting, however, that a complete theory including all 
second-order effects might well modify partial results, 
we shall examine two possible factors which lead to 
increased average resistance. 

Wave Reflection—The first possibility is the effect of 
reflection, or scattering, of the regular wave train by the 
surface of the ship, and this is undoubtedly a true con- 
tributing cause. It has been put forward recently as the 
sole basis of the extra resistance in a very interesting 
paper by Kreitner (R.10). The underlying hydro- 
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dynamical theory has been examined in a recent paper 
(R.15) to which reference may be made for details of the 
analysis. The ship problem is the reflection of the 
wave train by the ship, which is itself free to move and 
does take part to some extent in the motion of the 
surrounding water; it is in fact the dynamical problem 
of the motion of the complete system of ship and water. 
Leaving this on one side we consider the forces on a fixed 
obstacle in waves. The fundamental case is that of a 
regular train of waves incident normally upon a fixed 
vertical plane, which we may take of infinite draught. 
There is perfect reflection of the waves; if r is the ampli- 

tude (half wave height) of the incident train, there is an 
oscillation of amplitude 2r at the plane. The usual 
first order theory for waves of small height gives a 
periodic force of (g prAjfm)cospt for the additional 
force per unit width of the plane, A being the wave- 
length and 2 7/p the corresponding period. Carrying 
the theory to second-order terms, the result of the 
analysis is to give an additional average steady force on 
the plane amounting to 4g p77 per unit width. If the 
waves are incident at an angle « to the plane, the cor- 
responding average force is 4gpr?sin?a per unit 
width. An interesting problem would be the reflection 
of waves by a vertical cylinder of elliptical cross section, 
like the model used in the previous calculations of this 
paper; it is possible to obtain an analytical solution, 
but the functions involved have not been tabulated 
sufficiently to allow of numerical results. The correspond- 
ing work has been carried out for a vertical cylinder of 
circular cross-section, giving the variation of amplitude 
round the cylinder and the resultant steady force and 
the dependence of both these quantities on the wave- 
length. When the wave-length is small compared with 
the diameter of the cylinder, the resultant steady force 
approximates to the value 3gpr*a, where a is the 
radius. An interesting result shown by these calcula- 
tions is that this limiting value is practically attained so 
long as the wave-length is not greater than the diameter. 
We may obtain this limiting value by making an extreme 
assumption. Imagine the waves to be completely 
reflected by the front half of the cylinder, leaving smooth 
undisturbed water round the rear half. Then treat each 
element of the front half as if it were part of an infinite 
plane upon which the waves are incident at an angle «. 
On this assumption we should have for the resultant force 

a 

R=t¢p sin? ady (7) 
(44 

taken over the transverse diameter of the cylinder; and 

this gives the result 3 g pr’a. 
This suggests a similar expression for a vertical 

cylinder of any horizontal cross-section. With the 
extreme assumption of reflection round the front half 
and smooth water round the rest, it appears that the 
steady average force due to wave reflection should not 
exceed the amount 

R=t¢gprBsin?a (8) 

where B is the maximum beam, and the last factor is 

516 

the mean value of sin?« with respect to the beam, 
a being the angle which the tangent at any point makes 
with the fore- and aft- central axis. 

Kreitner (R.10) gives an expression which, in the 
present notation, is 

R=gprBsinag (9) 

In deriving this, it is apparently assumed that the 
average pressure on a plane can be calculated from the 
instantaneous value of the hydrostatic pressure due to 
the elevation of the water surface. When numerical 
values are obtained for ship forms, the general result is 
that the expression (8) gives about one-quarter or 
one-fifth of the value given by (9). 

If we take the elliptical model used in the previous 
sections, an expression for the mean value of sin? « can 
be readily obtained; with L = 400 ft., B = 55 ft., the 

value of this factor is 0-183. In waves of 5 ft. in height, 
(8) then gives an extra resistance of about 0-9 ton. 
With a normal ship form with moderate bow angle, the 
mean value of sin? « would be about 0-1, reducing the 

extra resistance by this calculation to about 4 ton. The 
observed extra resistance for a ship of that type would be, 
on the average, about 2% tons. 

It should be noted again that the expression (8) is put 
forward only as an outside limit for a fixed obstacle of 
great draught. In the actual problem the ship is free 
to respond to the wave motion; further, unless the 

wave-length is very much less than the length of the ship, 
the finite draught of the ship seems likely to reduce the 
amount of the reflection effect. The general conclusion, 
so far as the present calculations go, is that, while wave 

reflection is a true contributory cause and must be in- 
cluded in a complete theory, it is only capable of 
accounting for a fraction of the observed extra resistance; 
we must, however, add the reservation that forward 

motion of the ship through the waves might modify 
that conclusion. 
A possible application of the formula (8) would be to 

determine the mean pull on the mooring rope of a ship 
subjected to waves which are short in comparison with 
the length of the ship. This has been investigated by 
Kent and Cutland (R.5) and details of the comparison 
with model results will be found in that paper. The 
experimental conditions most nearly approximating to 
the theoretical assumptions were for a 16-ft. model 
moored in waves of 7 ft. in length; the height of the 
waves was given values ranging from 0-12 ft. to 0-32 ft. 
It was found that, on the average, the value calculated 
from (8) was about 56 per cent of the observed mean pull. 

Resistance associated with Heaving and Pitching.— 
Another possibility is suggested by the consideration that 
first-order effects which in themselves are purely periodic 
may, through phase differences, give rise to a steady 
additional resistance. Such a theory would associate 
the resistance directly with the oscillations of surging 
heaving and pitching—though it is probable that the 
first of these plays only a minor part. There are different 
views of the extent to which the resistance depends upon 
the heaving and pitching motions; but the effect is 
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certainly most prominent when the period of encounter  _ the phase lags produced thereby; if there is no phase lag, 
is near one of the natural periods and, directly or 
indirectly, the phenomena are closely associated. The 
problem involves to some extent second-order terms 
and the analysis is therefore subject to correction by a 
more complete theory; but meantime we ignore the 
disturbance of the wave train by reflection and use the 
approximate equations for heaving and pitching as in 
the previous sections. The analysis is given in detail 
elsewhere (R.16) and a short account in the Appendix 
to the present paper. 
We calculate the force on the ship from the pressure in 

the undisturbed wave train; but, instead of taking the 
equilibrium position of the ship, we make the calculation 
for a displaced position, with a vertical displacement ¢ 
due to heave and a rotation 0 due to pitch. To the first 
order in ¢ and 6, the resultant force backwards is found 
to be (A.25) 

27,.0H 

eA aaeats Vt ean OE d 

In this, 2 z/p is the period of encounter with the waves 
and also the period of the forced oscillations; H and P 
are the buoyancy and pitching moment and are also of 
period 27/p. The first term Fo is the purely periodic 
horizontal force to which reference has been made earlier. 
Taking average values of the quadratic terms in the rest 
of (10) we obtain for the average steady resistance 

Re (a]A) Ho Co sin By + (aA) Po A sin Bo . (11) 

with Hop and Po the amplitudes of the buoyancy and 
pitching moment, f and 6 the amplitudes of the forced 

heaving and pitching, and f,; and f2 the phase lags of 
the oscillations. 

It is of interest to recall the history of the similar 
problem in rolling. In 1924 Suyehiro (R.17), experi- 
menting with a small model, measured a drifting force 
sideways on a ship when rolling in waves. The effect is 
small and probably is only appreciable in suitable con- 
ditions of forced rolling in resonance with the natural 
period of roll. Suyehiro himself ascribed the force to 
reflection of the waves by the side of the ship; however 
no calculations have been made of the magnitude of 
such an effect. In 1938 an alternative theory was put 
forward by Watanabé (R.18). Starting from the Kmloff 
equations, Watanabé deduced an expression for the 
drifting force involving the angle of roll and the phase 
lag between the roll and the actuating moment; applied 
to Suyehiro’s model, this expression gave a force of 
rather more than half the observed value. 

Returning to (11), consider the various factors when 
making numerical comparison with observed results. 
The values of Ho and Po have to be taken from such 
calculations of buoyancy and pitching moment as can 
be made for any given form. The amplitudes Co and 4% 
we shall take from observed results, assuming, as is 

necessary, that these are for forced oscillations. The 
most uncertain factors are the phase lags. It will be 
noticed that these are important in that on the present 
yiew the extra resistance arises from the damping and 

Dp - OP 
(10) 
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there is no resultant steady force. Reference has been 
made to the diagram given by Kent and Cutland (R.5) 
from which the phase lag for pitching might be deduced. 
It is not suitable for the present purpose, however the 
attempt may be made so as to obtain some idea of the 
magnitude of the resistance given by (11). 

If we take the results in waves of 490 ft. in length, the 
diagram shows that for zero speed of the model there 
was no appreciable phase lag. Hence, according to (11) 
there should be no resistance; and, in fact, the measured 

resistance under those conditions was very small. 
Incidentally the observed results also confirm the view 
that resistance due to wave reflection must be very small 
when the wave-length becomes greater than the length 
of the ship. — 

If we take next the same wave-length with a speed of 
8 knots for the ship, a rough estimate from the position 
of the wave trough gives a phase lag for pitching of 
about 12-5 deg. We shall assume the same value for 
heaving, and we take 8; = B2 = 12-5 deg. For Hp and 
Po we take the wall-sided ship with elliptical horizontal 
section which has been used in the earlier calculations. 

With L = 400 ft., B = 55 ft., d= 20 ft., A = 490 ft., 
and in waves of height 2r =5ft., we obtain from 
A. 16 and 18 

H,=358 tons; P, = 67,633 ft.-tons 

The observed measurements in 5-ft. waves give 

Co = 2-1 ft. and 0% =1-6 deg., approximately. With 
these values we get from (11) a resistance R = 3-66 tons, 
of which about 1 ton comes from the term in the heaving 
motion. From the given results in the same paper, the 
measured resistance for the 16-ft. model was 0-37 lb. 
or a resistance of 2:58 tons for the full-sized ship. The 
measure of agreement is perhaps as much as could be 
expected considering the uncertainty of the data and 
also that no special attempt has been made to calculate 
values for the particular model used in the experiments. 
It is not worth while adding further similar calculations 
at the present stage; but it may be said that the suggested 
theory is capable of giving results of the right order 

of magnitude. 
On the theoretical side, it is hoped that the various 

limitations and assumptions have been sufficiently 
indicated. On the experimental side, there is a lack of 

suitable data obtained under conditions approximating 
to the simplifications which have to be made before any 
calculations are possible; such experimental results 
would be a valuable and, indeed, essential aid in develop- 
ing and modifying any tentative theory of such a 

complex problem. 

Appendix 

(1) Damping in Smooth Water.—If a ship is making forced 
oscillations of heaving or pitching, we may calculate the wave 

motion by supposing each element of the ship’s surface to be 
the seat of an alternating source, say of strength mcos pt 
per unit area. Knowing the velocity potential of the distribu- 
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tion of sources, it is possible to calculate the average rate at 

which energy is being propagated outwards in the wave 
motion. It has been shown (R.11) that this mean rate of 
outflow of energy is given by 

27 

E = 2 7p (p3/g)| (P2 + Q2)d0 . 
0 

qd) 

where 

P+iQ= [> (x, y, z) epile.(@ + ix cos® +iysin0) dS (2) 

the integral in (2) being taken over the immersed surface of 
the ship in its equilibrium position. The axis O x is taken 
along the longitudinal axis of the water plane section with 

the positive direction from stern to bow, O y transversely at 
the midship section, and O z vertically upwards. We shall 
assume the source strength at each point to be such that 4 7 m 
is the amplitude of the normal component of velocity of the 
ship’s surface at each point, this being a reasonable approxima- 
tion in view of usual ship dimensions. A further simplification 

may be made by neglecting the distribution in the transverse 
axis O y, since the length 2 7 g/p2 is usually several times as 
large as the beam of the ship. 

Suppose the ship to be wall-sided, of uniform draught d, 
and with the horizontal sections ellipses of axes L and B. 

Let the ship be making forced heaving oscillations of 
amplitude £0. and period 2 7/p. The source strength over the 

flat bottom is of amplitude p C/4 7 per unit area; and we 
treat it as a line distribution at constant depth d along the 

central line, with strength proportional to the beam at each 
point. Hence from (2) we have 

AL 

A _pD& = 4] 4 x? 2 x/g. cos P+iQ= = Be va (1 _ EN eip?x/g.cos® d x 

—4L 

=$p (,BLe-rdie J, (q cos 8)/(q cos 8) 

where q = p? L/2 ¢. 
Hence from (1) the mean rate of propagation of energy 

outwards is given by 

oe Boe L2 (2 p5 e202 #/@ 

We now equate this to the mean value of N, (2, namely 
+p? N, 2, and we obtain 

GQ) 

1(q Cos Wee a0. (4) 

qcos 6 

N,; = (7/4 g) B2 L2 p3 e~ 2 P*d/e F, (5) 

where F, has been written for the integral in (4). 
This integral may be evaluated by quadrature using tables 

of Bessel functions. It was, however, found more satisfactory 

to calculate it from an equivalent series. It can be shown that 

sa (=l)™ (2m)! (2 m+2)! 

8 2 (m!)? {+i}? (m+2)!*4 

Similarly, if the ship is making forced pitching oscillations of 
angular amplitude 4, and period 2 z/p we have 

© 

Go". © 

aL 
4 x2 

P+ iQ =P Be “ra (1 =) eip?x/g.cos® qx (7) 

AL 

in which we have neglected the contribution of the vertical 

sides of the ship compared with the effect of the flat bottom. 
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The integral in (7) may be expressed in terms of Bessel func- 
tions, and we find 

P+iQ= a 0, BL2 e~ 2P*4I/e J, (q cos B)/(q cos 4) (8) 

Thus for pitching motion we have 

E= uae g BLS Pe cana ites? ha. 

qcos 8 

Equating this to 4 p? N, 62, we obtain 

= (mr p/16 g) B? L4 p3 e — 2r%dle F, (10) 

where F, is the integral in (9). This may be evaluated from 

the series 

ma (— 1I)"™(2m4+2)!(2m+ 4)! 
8 —yin\{ (m + 1)! (m+ 2)I\2 (m + 4)! 

ES Caper? Ci) 

(2) Buoyancy and Pitching Moment in Waves.—Suppose at 
first that the ship has zero speed of advance, and that the 
waves are moving directly towards it. The velocity potential 
of the fluid motion is 

b = (grip) ek2sin(pt+ kx). (12) 

with p? = gk; this corresponds to waves of elevation given by 

€=rcos(pt+kx) (13) 

the amplitude r being one-half the height measured from 
trough to crest, and the wave-length A being 2 7/k. The 
pressure p at any point is 

P) 
p=Po—epz+ pre. (14) 

The second term is the hydrostatic pressure whose effect is 
included in the equations of motion of the ship in smooth 
water. The third term 

a¢ Dae (15) 
is the additional pressure due to the undisturbed wave system. 
The resultant forces and couples are obtained, to this approxi- 

mation, by integrating this pressure, and its moment, over the 

immersed surface of the ship in its equilibrium position. 
With the same simplified model, we have for the additional 
buoyancy H, 

=gprekzcos(pt+kx). 

1L 

H = apres) 

SE, 

= Hy cos p t, 

4 x2)? 
los) cos(pt+kx)dx 

where 

(16) 

There is also a resultant horizontal force from the pressures 
on the vertical sides; measured in the negative direction of 
O x, from bow to stern, it is 

H, = +g prBAe274 J, (7 LIA) 

0 27 

18 =|42[teprBet cos(pt +4kLcos 6) cos 0d6 
d Jo 
=}4gprBA(l — e274) J, (@ L/A) sinp t (17) 

This force might be used as a similar first approximation in 
regard to the surging motion of the ship. By comparison 
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with (16), it can be seen that in general it is only a fraction 

of the corresponding vertical force. 
In evaluating the pitching moment we take moments about 

the transverse axis Oy, assuming for simplicity that the 
centre of gravity G of the ship coincides with O. The 

pressures on the vertical sides will contribute to the total 
moment; but this part will be of the order of the horizontal 

force Fy multiplied by some fraction of the draught, and it 
can be seen to be negligible compared with the moment of the 

pressures on the flat bottom. We have then for the pitching 
moment 

i 4 x2? 
P=gprBe-*4 x(t ~ =) cos(pt+kx)dx 

-#L 

where 

— Posinp t, 

Pp = 48 prBLie-2r4 J, (7 LIX) (18) 

For a ship advancing through the waves, we have the same 

expressions, so far as this approximation goes, with 2 z/p 
the relative period of encounter; thus if A is the wave-length 
and v the corresponding wave velocity, and V is the speed 
of the ship, then 2 z/p = A/(v + V). 

On this theory, the equations for heaving and pitching on 
waves are, for this symmetrical model 

Mf+N,2+8pS6=Hycospt (19) 

I16+N,6+Wm0= — Posinpt (20) 

The forced oscillations are 

C= %ycos(pt — By); = — A sin (pt — fy) 
with 

bo = HolM{(p? — p2)? + k2 p2}*; ky = Ny/M: 

Oy = Poll {(p3 — v2)? + k3 p2}#; ky = NoJI; 

tan B, = ky p/(p? — p?); tan B, = ky pl(p3 — p?) . (21) 
the natural periods of unresisted heaving and pitching being 
2 mp, and 2 z/p, respectively. 

(3) Kesistance in Waves.—Let (I, m, n) be the direction- 
cosines of the outward-drawn normal at any point of the 
immersed surface of the ship. Then with the pressure in the 
undisturbed wave motion given as in (14), the resultant 
horizontal force backwards 

F= |[pras = ~gpkr||[ekssin(p r+ kx)dV_ (22) 

the latter integral being taken throughout the immersed 
volume of the ship at any instant. 

If we calculate this for the immersed volume Vo when the 
ship is held in its equilibrium position we obtain a purely 
periodic force Fo, such as was found in (17). Let the ship 

be in a slightly displaced position due to heaving and pitching, 
with the centre of gravity G raised a distance ¢ and with a 
pitch 6 about a transverse axis through G; we shall suppose 
G to be on the axis O z at a height c above O. Then, to the 
first order in € and @, it can be shown (R.16) that the horizontal 
force backwards in the displaced position is 

F=Fy—epkrE|]etssin(oe + kaynds 

~gpkr ol ebssin (ot + kx) {nx Ce= c)} dS (23) 
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where the integrals are taken over the equilibrium position 
of the immersed surface. 

The additional buoyancy and pitching moment, which were 
calculated for a special case in (16) and (18), are given in this 

more general form by 

H=—spr|[etcos(pit kx nds 

P= gpr|] etcos(pr + kn {I2 0) napa (24) 

Hence we may write the backward force as 

ep Oicl le moi? 

$ Pp DE De OE @») 
F= Fo — 

When calculated for any form of ship, H and P are in general 
of the form Hg sin (p t + a) and Ie sin (pt a a) respectively. 
The corresponding forced oscillations of heaving and pitching 

are then given by equations such as 

C = py Ho sin (p t + a — By) 
6 = py Posin (pt + a — Bs) 

4, and j2y being positive factors. 
Putting these expressions in (25) and taking mean values 

of the quadratic terms, we obtain a mean backward force 

on the ship 

R= pm, H2sinB, + 5k py P§sinB, . 

(26) 

(27) 

This is an essentially positive expression, so that this force is 

always a resistance. 
With ¢) and 0) the amplitudes of forced heaving and 

pitching respectively, this expression is equivalent to 

R = (aA) Hy So sin B, + (aIA) Po 9% sin By (28) 

where 8, and B, are the phase lags of the forced heaving and 

pitching behind the buoyancy and pitching moment 

respectively. 
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SOME CALCULATIONS OF SHIP TRIM 
AT HIGH SPEEDS 

By T. H. HAVELOCK 

(Presented to the International Congress of Applied Mechanics, at 

Paris, 1946. The Proceedings of this Congress have never been 

published) 

SUMMARY 

Although much work has been done on the theory of wave resistance, that 

is on the horizontal resultant of the pressure system round a ship, there do 

not seem to have been any calculations of the resultant moment of the pres- 

sures about the transverse axis. 

The present note records some work on this problem and a comparison of 

the results with measured trim in experimental models. Assuming the 

usual approximate theory of the pressure system, the effective part of the 

pressure for a symmetrical model is put into a suitable form and an expres- 

sion is obtained for the moment for a certain series of models, used at 

Teddington, for which experimental results are available. Numerical cal- 

culations have been made for three models of this series over a consider- 

able range of speed and curves are given Showing the comparison between 

calculated and measured trim. The agreement is reasonably good, especially 

at the higher speeds, and in general the order of agreement is much the same 

as between calculated and measured wave resistance. 

1. The pressure changes established by the forward motion of a 

ship may be considered in two parts: (i) those associated with the 

so-called local disturbance, (ii) those due to the wave motion trailing 

aft from the ship. In the usual approximate theory of wave resistance, 

neglecting viscosity, the pressures from (i) give no resultant hori- 

zontal force on the ship as a whole and we only need to calculate the 

resultant of these from (ii). If we wished to examine the sinkage of 

the ship, we should require the vertical resultant of the total pres- 

sure system and such calculations would be too laborious in general; 

though we may estimate the effect at low speeds by ignoring the sur- 

face disturbance of the water [1]. On the other hand, if we limit con- 

sideration to a model which is symmetrical fore and aft, the moment 
of the pressure system about the transverse axis will only involve 
the pressures from the wave system (ii). As this calculation does 

not seem to have been carried out hitherto, it was thought of interest 

to see how the results so obtained compare with the measured trim of 

experimental models. 
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The part of the pressure system which is effective for this purpose 

is first put into a suitable form, and an expression is obtained for the 

moment for a certain type of model whose form is given by an equation 

involving one parameter. This moment is then turned into an equiv- 

alent angle of trim for the ship, using the ordinary righting moment 

as if in still water. Finally, numerical calculations are made for 

three models of this series, with different values of the parameter, 

for which experimental results are available. Curves are given show- 

ing the calculated and measured trim for these three models. 

2. We take the origin O in the undisturbed free surface of the 

water, Ox in the direction of motion, Oz vertically upwards and Oy 

transversely, » being the velocity. If there is a source of strength 

m at the point (h, 0, -f), the velocity potential is given by [2] 

Dah cata lh | © Geka 
| sectead | $$. (1) 

™ 7, 7 k—K, Sec’ 0 + iusecd pees i 

with 

r2a(w—hyr+y?(2tf)?s yg? = (eA)? +9? +(2-f)"s 

@ =(x—h) cosé+ysin 0 Ko =g/v’. 

The pressure p, other than the hydrostatic pressure, is given by 

0 
p= pv ee. (2) 

We require the part of the pressure due to the waves trailing aft from 

the source. From (1) and (2), taking the limit for p+ 0, we find this 

effective pressure at a point (x, 0, 2) due to the given source at 

(A, 0, -f) is 

mr / 2 

p= Spxgrom| ene o(f-2)see? Pcost x .(e—h) seco} sec*@d@, (3) 

0 

for z —Ah<o; and p=o forr-—h>o. 

For a ship form given by y = +F (a,2), we have the usual approxima- 

tion of a source distribution over the section by the plane y = 0, the 

source strength per unit area being 

~ On da © 
For a model of length 27, draft d, with O at the midship section, we 

obtain:— 
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4 oR d 7/2 

p=-Spngo?| Sarl af| e “olf-z)sec ? 6 

—l 0 0 

x cos{x .(— A) sec otsec30dé. (5) 

The horizontal component of this pressure integrated over the surface 
of the ship gives the wave resistance; it may be noted that, with the 

usual approximation, we evaluate the pressure not at the actual sur- 

face of the ship but over the plane y = 0. We use this expression 
similarly for evaluating the moment of the pressure about the trans- 

verse axis Oy. Consider the total moment in two parts. First, for 
the horizontal component of the pressure, the moment will be of the 
order of the wave resistance multiplied by some fraction of the draft; 
it is found that this part is small compared with the moment of the 
vertical component and we neglect it meantime. However, when com- 
paring calculated and experimental results we allow for this correc- 

tion by estimating the moment of the total resistance of the model. 
For the moment of the vertical component of the pressure we have 

M = few dz dy, (6) 

taken over the water plane section of the ship, with p given by (5). 

3. We confine the calculations to a simple type of symmetrical 

model used at Teddington, for which experimental results are avail- 
able, and for which the numerical calculations are not unduly labori- 
ous. This set of models is defined by 

y=0(1-47)(1 + 0, %)(t ~3r) (7) 

For this form, we have 

l 
8 h ne 

p(2,2) = pond | {a — a) pt 2a, a dh x 

l 

d 2 7/2 [Galan 
0 0 

x cos{« (x -A) sec 6}sec*9d6, (8) 
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and 

r @ 2 2 M = -5 il i we ( -=)(u a, =) Pw, 2) dede (9) 
SUG) 

Carrying out the integrations and, for convenience in computation, changing the variable from @ to u with sec 6 = cosh wu, we obtain 
the result 

{oo} 

649pb? 
u- “or X,(B)X (8) X4(0) sech? udu, (10) 

OS “0 

eh B=«x,dcosh*u; a= k )/coshu; 

z ZU fh AON Os 

4 8 Q\ 4 3 
Xa= Zr get (1-ae)singa+ (4-2) con20, 

4 42 96 64 192\ . + Gy4— — — — —_ 4 Je erg sin 2a + 

16 150 96 
+ = —3, +t =, ]Cosi2ia> + 

a a “a 

2f 2 3 96 720 74 768 1440\ . + a, {ats eo a ae) aeweaes sin2 a+ 

12) 291 1344 720 9 aP Toes cra ar ae a aro COS zZQ>. 

The moment M given by (10) will, if positive, tend to give a trim of angle @ which is positive with bow up and stern down. In comparing with model results, we note that the model is towed, the point of attachment of the tow-line being at the water level in the midship section; if R is the total resistance, we have therefore a reverse moment Rd’, where d' is some fraction of the draft d of the model. The effective positive moment is M ~ Rd’. 
We have also the restoring moment due to the hydrostatic pressure and for this we take, as a sufficient approximation for the present purpose, gpAk?0, where Ak? is the moment of inertia of the area of the water plane section about Oy. For the models defined by (7), 
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Ahk? = wi'(z es a,). (11) 

With these assumptions we turn the calculated moment into an equiv- 
alent trim @ given by 

M — Rd’ 
OS area ae 

gp Ak 

calculating values from (10) and (11), and using the measured total 
resistance for R and an estimated value of d’; the actual value of d' 

is not important as in any case Rd’ is found to be a small fraction of 
the value of M. 

(12) 

4. Numerical calculations were made in the first place for two 
Teddington models of this type, with extreme values of the parameter 

a: namely 

Model 1805A, with a, = -0.6 

Model 1846A, with a, = 0.6 

For each model we have 

length = L = 27 = 16 ft; 
beam = 26 =1.5 ft; 

draft =d=1 ft. 

Further details of the models, and measured values of the trim are 

given by Wigley [8]. 
For these models d‘ was taken to be 5 inches. The integral in 

(10) was computed by quadrature, the value of the integrand being 

calculated for values of wu differing by 0.1; it was not generally neces- 

sary to go beyond about 3.6 for the upper limit of wu. This process 
was carried out for six values of the Froude speed ratio f in the 

range 0.32 to 0.54, f being equal to v//(gL). Finally the results 
were expressed as trim by the stern in inches for the 16-foot model, 
that is by 1920 the experimental results for these models ‘being 
recorded in that form. 

As an example of numerical values, at a speed ratio f = 0.5, the 

calculated trim for model 1805A is 6.45 inches, while the measured 

value was 6.0 inches; of the calculated value, the moment M of (10) 

gave 6.72 inches and the term — Rd’ reduced this by 0.27 inches. 
Similarly for Model 1846A at f = 0.5, the calculated trim is 4.82 
inches, the measured value being 4.7 inches. 

The results for the two models are shown in Fig. 1. The full 
curves are the measured values, and the broken curves show the 

values obtained from the present calculations. 
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A third example of this series was also examined, because it has 
a larger beam and only half the draft: namely Model 2038C, with 
a, = —0.5; length = 27 = 16 ft; beam = 26 = 1.75 ft; draft = d = 0.5 ft. 

Further details with the measured trim, may be found in Wigley’s 
paper [4]. 

In this case for the small correction Rd‘, the value of d' was 
taken to be 2.5 inches. The calculated trim at f = 0.5 was found to 

be 4.75 inches, the measured value being 4.37 inches. The com- 

plete results are shown in Fig. 2, the full curve being the measured 

values and the broken curve those found by calculation. 
Considering the three cases together, the general measure of agree- 

ment between calculated and experimental curves is perhaps as good 

as could be expected from a first-order theory with the various ap- 

proximations involved and including the neglect of viscosity effects. 
The order of agreement is much the same as that between calculated 
and measured curves of wave resistance, the greater discrepancies 

in trim occurring at speeds at which there are corresponding differ- 

ences between calculated and measured resistances. It may be said 
that the present calculations afford further confirmation of the ap- 

proximate theory of wave resistance. 

REFERENCES 

T.H. Havelock, Zeit. f. Ang. Math. Mech., 19, p. 202 (1989). 

T.H. Havelock, Proc. Roy. Soc. A, 138, p. 340 (1932). 

W.C.S. Wigley, Cong. intern. Ing. Navals, Liege, p. 174 (1939). 

W.C.S. Wigley, Trans, Inst. Nav. Arch. 84, p. 52 (1942). Pwd ee 

526 



CALCULATIONS OF SHIP TRIM AT HIGH SPEEDS 

527 

Figure 2 



CALCULATIONS ILLUSTRATING THE EFFECT OF BOUNDARY LAYER ON 
WAVE RESISTANCE 

By Professor T. H. Havetock, M.A., D.Sc., F.R.S., Honorary Member (Associate Member of Council) 

Summary 

The main object of the paper is to examine the possible 
effect of the boundary layer in producing a virtual modifi- 
cation of the lines of the ship near the stern. This is re- 
garded as a deflection of the streamlines due to increased 
displacement thickness of the boundary layer in this 
region. By superposing a source distribution to produce 
this additional deflection, expressions can be obtained 
for the modified wave resistance. No attempt is made to 
attack the problem directly for actual ship forms. Instead, 
an indirect method is taken of considering some ideal 
simple forms and assuming small modifications of the 
lines near the stern such as might reasonably be ascribed 
to boundary layer effects. It is shown that such variations 
suffice to eliminate the humps and hollows on resistance 
curves at low speeds while making relatively much less 
difference at high speeds, a result which would improve 
the general comparison between calculated and measured 

wave resistances. The paper also includes some remarks 
on experiments with plank-like forms whichare not wholly 
submerged, and an attempt is made to assess numerically 
the wave-making resistance in such experiments on skin 

friction. 

Introduction 

The theory of wave resistance in a frictionless liquid 
leads to a resistance curve Which oscillates rapidly and 
excessively at low speeds, and such oscillations do not 
Occur in resistance curves derived from experimental 
results. This is commonly ascribed to the wave making 
at low speeds being mainly due to the bow of the ship; 
and an obvious explanation is that the effect of viscosity 
has been to render the stern relatively ineffective in wave 
production at low speeds. Some years ago! the author 
considered the matter from the point of view that the 
effect of the friction belt surrounding the ship is equiva- 
lent to smoothing out the lines in the rear portion and 
some calculations were made to show that this would lead 
to a diminution of interference effects at low speeds; 
however, the calculations were too complicated to pursue 
in any detail at that time. Later? the direct assumption 
of a reduction factor for the rear half of the model was 
made; the assumption was as simple as possible so as to 
make calculations practicable, the wave-making proper- 
ties of the whole of the rear half being reduced by an 
arbitrary factor less than unity. Subsequently this idea 
of a reduction factor was largely extended and examined 
in detail by Wigley. In particular, Wigley compared 
theoretical and experimental resistance curves for a 
large number of models, deducing the necessary re- 
duction factor to give reasonable agreement and obtain- 
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ing an empirical formula for the variation of the factor 
with the speed. In this work also the factor was applied 
to the whole of the rear half of the model and it was found 
to vary in value from zero at the lowest speeds, where 
only the front half is effective, to unity at the highest 
speeds, where front and rear are equally effective. This 
extension and analysis by Wigley is very useful in giving 
a practicable way of modifying theoretical resistance 
curves, but, admittedly, it leaves much to be desired from 

a theoretical point of view. In particular, the variation 
of the factor from zero to unity seems rather para- 
doxical; no doubt viscous effects vary with the velocity, 
but not to such an extent as is implied by that range of 
values. I believe an explanation can be found in the 
fact that boundary layer effects on wave formation are 
appreciable over only a small length of the model near 
the stern; just as one has a similar comparison between 
actual normal pressures and those calculated for a 
frictionless liquid. It is well known that for a friction- 
less liquid the wave-making effect of bow and stern 
angles is predominant at low speeds, while at high speeds 
this is not the case. Hence if the modification of the 
form is confined to a region near the stern, and even if 
that modification does not vary much with the speed, it 
will automatically have greater effect at the lower speeds 
than at the higher. The present paper is an attempt to 
find out how far this is the case. 

The general point of view so far as the friction belt is 
concerned has been well expressed by Baker* in the 
remark: “In the after body two things take place, first 
the contraction of the virtual body, round which the free 
flow is taking place, which includes the slow-moving 
portion of the friction belt—a rather indefinite extension 
of the real form—causes an expansion of all the stream 
tubes and of the frictional belt, and second expanding 
stream lines are never very stable and do not adhere 
to the form from midships to stern post.” It must be 
admitted that this “rather indefinite extension” of the 
form still remains undefined. In principle, if we know 
the thickness of the boundary layer and can deduce its 
displacement thickness, we know by how much the 
streamlines of the outer flow are deflected. We can 
then, in theory, superpose on the original form a source 
distribution which would produce the required extra 
defiecticn and hence calculate the modified wave re- 
sistance. It may be said at once that the necessary data 
are not available, and in any case the calculation would 
be almost impracticable. The scope of the present paper 
is much less ambitious, and the work may be described 
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as an illustration of the possible effect of boundary 

layer on wave resistance. The problem is attacked in- 

directly by taking a simple form and making small modi- 

fications of the lines near the stern so as to obtain the 

required kind of change in the calculated resistance 

curve; one may then consider whether such modifica- 

tions can reasonably be ascribed to boundary layer 

displacement. We consider first the ideal case of a 

thin plank, with some incidental remarks on wave- 

making in experiments with planks. Then we consider 

a form with simple parabolic lines and with vertical 

sides: in the first place of infinite draught, and then 

of finite draught. Finally calculations are made for a 

form which is unsymmetrical fore and aft, in order to 
show the difference in resistance between motion with 

bow leading and motion with stern leading. 

Wave Resistance of Planks 

We begin with the ideal case of a plank of negligible 
thickness. Assuming the boundary layer to be turbulent, 
we take for its thickness 6 at a distance x from the leading 
edge the expression 

S = Os OD ae o 5 3, 6 (@) 

where » is the velocity. In the present problem it is the 
displacement thickness 5, with which we are concerned, 
as this gives a measure of the outward deflection of the 
streamlines; in general, 5, is defined by 

Oy HICh = DAM so 6 oo @M) 

where uw is the fluid velocity at a point in the boundary 
layer, u, the velocity at the outer limit of the layer, and 
the integral is taken along a normal through the layer. 
Assuming the usual velocity distribution we have 
8, = 46. At the rear end of a plank of length L, the 
displacement thickness 5, has a value*b given by 

E10, 0462 5¢Ruic yin aon (3) 

R being Reynolds number. Some values for a plank 
16 ft. long are given in the following table for various 
values of the Froude number f= /,/(gL); taking 
vy = 1-228 x 10-5, and with 6 in inches, we have 

We suppose the plank to be immersed in water and cut- 
ting the free surface. We might devise a source dis- 
tribution which would give this displacement boundary 
as a streamline. Knowing the surface waves produced 
by the source distribution and hence the energy required 
to maintain the system, we can deduce the corresponding 
wave resistance. Of course, for any body with form the 
wave resistance is associated with the normal pressures, 
and the skin friction with the tangential forces; there 
must always be some interaction between these, but the 
usual practice of treating them as entirely independent is 

a valid approximation in most cases. It is obvious that 
in the present hypothetical case any wave resistance 
must be associated with a change in the tangential 
frictional forces with, no doubt, a consequent disturbance 

of the conditions in the boundary layer. However, 
leaving aside this interaction for the time being, we may 
attempt to find some numerical value for a possible wave 
resistance. It is clear, from the values of b given above, 

that on any assumption it will be very small compared 
with the usual skin friction; but a rough estimate may 
be made. 
We quote now expressions for the wave resistance of 

a given source distribution.> We take the origin O in 
the free surface, Ox in the direction of motion, O z 

vertically downwards, and Oy transversely. If the 
source distribution is in the z x-plane and is of amount o 
per unit area at any point, the corresponding wave 
resistance is 

rr ]2 

R= 16 7x3p | P+ Q) sect 0d 0 . 4) 
0 

with P+iQ=|[oermnetiaseega dz (5) 

where xo = g/v?, and the latter integration is taken over 
the distribution. 
We shall be concerned with streamline forms which 

are narrow compared with their length, and if the form 
is given by an equation for y as a function of x and z, 
we use the approximation 

Ge ee et (0) 

Further, in the present paper, all the forms have vertical 
sides; so that, if dis the draught, we have 

1/2 
qy2 

Res =o [a — e~ Kodsec?®)2 (2 + J2)cos0d@ . (7) 
0 

cy Tas oy ikoxsec 6 with r+is=| oe EX eA (8) 

Returning to the immediate problem, we simplify it by 
replacing the displaced streamline by a simple parabolic 
curve which starts from the front edge of the plank and 
leaves the rear end parallel to the plank and at a distance b 
from it; the resulting integrals are familiar in this work 
and can be readily computed and the approximation will 
serve for the immediate purpose. Taking the origin at 
the rear end of the plank, we use (7) and_(8) with 

peb@=si) 2. sic 6 ©) 

and we obtain 
r/2 

R 16 p pi 2.2 ; 
pean) ol Oe) Pear ape’. 

2 
mie cos 7) cos? 6d 0 (10) 

with 

Yo = & LIv?; Bo = g dfv?; y = yo Sec 8; P = Bo sec? 8. 
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Computation was made for a plank 16 ft. long, with a 
draught of 1 ft. at a speed of 8 ft. per sec., or a value of 
f= 0-3535. Further, 6 as given by (3) was taken to be 
0-03 ft. The result was R = 0-003 lb., compared with 

the usual skin friction of about 5-861b. The point of 
this calculation is simply to confirm that the effect of 
the plank boundary layer may be taken as inappreciable. 
It will be still less relatively when we consider a form of 
finite beam with any appreciable wave resistance. When 
we deal with such forms we shall therefore simplify the 
work by neglecting that part of the boundary layer 
which is the same as that for a plank, and shall consider 
only the region near the stern where the boundary layer 
becomes appreciably and rapidly thicker on account of 
the curvature of the form. 

Before proceeding, a few remarks may be made on 
skin friction experiments with planks. Actual planks 
have thickness and form, and if the upper edge is above 
the free surface there will be wave disturbance due to 
the form, modified to some extent by the boundary layer. 

Reference has often been made to the possibility of wave 
resistance being included in some measurements of skin 
friction, but usually only in the form of a caution; there 
do not seem to have been any attempts to give a numerical 
estimate of its value. Perring® refers to the possibility 
of having to make allowance for wave-making in experi- 
ments with plank-like forms, and Schoenherr,’ in re- 
ferring to his experiments with 3-ft. planks, remarks that 
the speed should not exceed about 2:7 ft./sec. on account 
of appreciable wave-making; it may be noted that this 
is a Froude number f of about 0-27, but other experi- 

ments with partially submerged planks have been made 
up to f= 0-4 or even higher. 

Knowing the form of the plank it would be possible to 
calculate the wave resistance from the usual formulae, 
but such results would be of doubtful value at low speeds 
because of the viscous effects which are now under dis- 
cussion. However, wave resistance theory suggests 
another line of attack. According to the formulae, for 
models with the same mathematical lines and with con- 
stant length and draught, the wave resistance varies as 
the square of the beam. This relation was examined by 
Wigley® for a series of three models satisfying these con- 
ditions. The residuary resistance, deduced from the 
total resistance by the usual method, did not quite obey 
this law; but the divergence was attributed to the neglect 

of form effect in estimating the skin friction, and small 
increases in this part of the resistance would give a wave 
resistance approximately obeying the theoretical relation. 
It may be remarked in passing that form effect is not 
easy to estimate for these narrow models because it is 
not sufficiently greater than the possible experimental 
errors in measuring resistance and velocity at low speeds, 

where in addition there may be the complication of 
laminar flow. For a general discussion of the relevant 
data for form effect reference may be made to Todd.? 
For our present purpose we choose Model 1970B, an 
experimental model used at the N.P.L. by Wigley.!° 

The model lines are given by 
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Ge ae x4 2 
y=b(1-F)(1tan tae) (I >) . (11) 

with a, = 0-4375; a, = — 0-4375; length = 2/= 16ft.; 
beam = 2b = 1-5 ft.; draught = d = 1 ft. 

The skin friction has now been calculated from the 
standard plank formula corrected for temperature.!! 
Form effect has been allowed for by adding a constant 

amount 0-05 to the corresponding © values, which is 

equivalent to increasing the skin friction by an amount 
ranging from 5% to 6%. The skin friction so increased 
was subtracted from the total measured resistance, and 
the residue was taken to be pure wave resistance. We 
now reduce these values according to the square of the 
beam for a plank-like form, with lines given by (11), 
length 16 ft., draught 1 ft., and beam 3 in.; this value 
of the beam gives.an angle of entrance (to the middle 
line) of 1:75°. The wave resistance for this plank-like 
form, so estimated, is given as R,, in the following Table; 
R, is the skin friction derived from the standard plank 
formula. 

v, ft/sec 

0 

2 
4 

6 

8 
0 
2 
4 

6 

8 
0 OSDKRNANAAWORON BWrANDKHONOH 

0-2 
0:2 
0-2: 
0:2 
0:2 
0-3 
0-3 
0:3 
0:3 
0:3 
0-4 OMAAININDDUAUNAL 

It appears that the wave resistance is about | per cent of 
the total resistance at f = 0-24 and rises to about 3 per 
cent at f= 0-4. Direct comparison with planks used in 
skin friction experiments is not intended, because these 

have different forms and, in particular, their smaller area of 
vertical cross sections would diminish the wave-making. 
Further, it is clear, from the various steps in the above 

calculation, that the results cannot be more than a rough 
approximation; nevertheless they will serve as an indi- 
cation of the possible numerical magnitude of wave- 
making resistance in plank experiments: 

Parabolic Form of Infinite Draught 
Returning to the main probiem, we consider a model 

with parabolic lines and make small modifications near 
the stern. We suppose at first that the draught is 
infinite, as the integrals can then be expressed in 

terms of functions for which tabulated values are avail- 
able, and the general character of the results is not 

much affected by the draught. . 
Putting y= by and x = /é, and the model having 

vertical sides, the form is given by 

Helo e. 5 oe) 
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Hence from (7) and (8) 

22 prl2 
Ra APP (e+ Peos edd. (13) 

0 

1 

with 1+iJ=—2|éereae. 5 8 CO) 
-1 

where y = yo sec 8; Yo = Kol = gl? 

Using P functions, which are defined for integral values 
of n by 

r/2. 

Pn) = (& 1p [ cos 6 sin (p sec 6) d 0 
‘0. 

x/2 (15) 

P41 (Pp) =(— 1)"*! [costes Acos (psec 6) d0 
0 

we obtain 

RES? p28 1 
Fe galatisgt ew 

D, 1 
— 5 PQy) + GPs v)| Bac) 

This has been graphed on a base fin curve A of Fig. 1, 
corresponding to the form section A in the same diagram. 

Suppose this form has, say, a length of 16ft. and a 
beam of 1:5 ft., and consider the virtual modifications 
which might be ascribed to boundary layer effect. Let 
BMS be one side of the contour of the model. The 
wave resistance formulae are, in fact, derived by follow- 

ing the streamline which starts from the bow B, follows 
the contour BMS to the stern S, and then goes off 
along the central line. Suppose we know the displace- 
ment thickness of the boundary layer at each point and 
set it off to form a new curve B M’S’; we propose to 
take this as the virtual streamline form and to apply 
wave resistance theory to this line instead of the original 
curve BMS. This new line starts from the bow B, 
deviates slightly from the model except possibly near the 
stern, and we shall suppose that it becomes parallel to 
the central line at a point S’ somewhat to the rear of 
the stern S and possibly at some small distance from the 
central line. In default of sufficient information about 
the boundary layer in such cases, we shall make some 
arbitrary assumptions and see what effect is produced on 
the wave resistance. 
We shall neglect the displacement thickness calculated 

as if for a plank, as we have seen already that this has 
no appreciable effect; this simplifies the work consider- 
ably, as it enables us to follow the actual form from the 
bow to some point near the stern. We suppose that the 
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new streamline then leaves the form tangentially, and 
gradually becomes parallel to the central line at some 
small distance to the rear of the stern. It may be noted 
that this departure of the virtual streamline from the 
form does not necessarily mean separation of flow in the 
usual sense; the latter phenomenon might be represented 
on this scheme by the new line leaving at an angle to the 
form. We shall take two examples and in both we shall 
suppose the new curve to reach the central line at its 
rear end; we are then dealing effectively with closed 
forms and this simplifies the work, though it could be 
extended to include a permanent wake to the rear. 

First, considering a 16 ft. model, we take the point of 
departure to be 1 ft. before the stern and suppose the 
new line to close in at a point 2 ft. behind the stern. If 
this new curve is given by 

n= H+agé+al+aeé (17) 

the conditions are 

15 dyn 7 a 
eet oa Wane aac Saline g 

4 A (18) 

7 = 0; qe7% for Sen 

These determine the coefficients in (17) and we get 

1075 35 41 32 
2 3 

Ds ays wa ae cys CY) 

This curve is shown starting from the point B on the 
section in Fig. 1. It passes the stern at a transverse dis- 
tance 55/72 from it, and represents little more than 
smoothing out the stern angle of the model. 
We now have instead of (14) 

1 

I+iJ=—2]| €etvidé 
5 

amit 

+|EBerBejencae . ao 
By 

From (13) this gives the result 

R 16p[2 2128 1 32768 1 32 

Poaay Romande BIS 9 34) 
32 64 2 

— 3s Od t age (p,) + yf Pd 

62 64 32 
+ zyaPs (Pd) — 303 Po (Pa) + 93 Ps (Ps) 

320 2048 sf ee PE (pee | 21 3% 6 (Ps) 9" 7 (Ps) (21) 

where py = 15 yof/8; P2 = 9 yol4; P3= 3 yol/8 

This is graphed in curve B of Fig. 1. It shows how 
this small modification practically eliminates the humps 
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and hollows at very low speeds and reduces them con- 
siderably up to about f = 0-24. 

To make a rather larger change, we suppose next that 
the point of departure is 2 ft. before the stern, the line 
closing in as before at 2ft. behind the stern. The 
coefficients in (17) are now determined from 

3. 

URI Gar Ae = = 7 
4 (22) 

Rayan len (ye Ea 
7=9; Bs for € = 4 ; 

These give the curve 

D Samal Ss ; 
Diet 16 Sr Do (23) 

The curve is shown starting from C on the section in 
Fig. 1. It passes the stern of the model at a transverse 
distance $5 from it. In this case, we have 

1 
1+is=—2| eertag 

-3 

+ [(G-s¢-se) ema . (24) 

and hence we obtain 

R 16 p[2 731 , 288 1 
3 + Pe wy 15iy2 1) 354 

19 6 9 
~— P;(p,) — aP, — pp one 5 (Pi) ¥ s(t 7, 4 (P2) 

7 
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27 
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+ 5 Pee) — Pr 0 

6 63 
P; (2) + 3 Pola) + gia Ps (Ps) 

(25) 

where py = 7 yol4; P2 = 9 yol4; Ps = vol2 

This is graphed in curve C of Fig. 1. Here the dif- 

ference from curve A for the original model is very 

marked, and the modification is probably more than is 

needed so far as low and medium speeds are concerned. 

It remains to be seen what difference is made at high 

speeds, but a model of infinite draught is not suitable 

owing to the exaggerated values obtained at high speeds. 

Parabolic Model of Finite Draught 

We turn now to a model of the same form, with 

vertical sides, and of draught d. We shall take the 

draught d to be one-twentieth of the length 2 I, because 

this ratio was used in some previous work!? and the 

results given there can be used to check the present work. 

For the model itself, we have from (7) and (8) 
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Re _ 2 
Re fa — emi + cos 2 

2 
—-sin2 y+ —(1 — cos2 | cost aa . (26 7 Y > y) (26) 

with 

= gI|v*; By = g dfv?; y = yosec 0; B = By sec? 0 

Tn this, and similar integrals, it has been found more 

convenient for computation to change the variable from 
@ to u given by cos @=sechwu. The integral was then 
evaluated by direct quadrature, together with an asymp- 
totic expansion for low speeds when the parameter yo is 
large. The curve is shown as D in Fig: 2. 
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We shall not use the same modifications as in the 
previous section, simply because the cubic curve adds so 
much to the numerical work. It is sufficient for the 
present to assume a simple parabolic curve 

N=4+aé+a,2 . . . (27) 

for the new part of the streamline near the stern. First 
we suppose the curve leaves the form tangentially at 
1 ft. before the stern and becomes parallel to the central 

line at 1 ft. to the rear, assuming a model length of 16 ft. 
Hence the conditions are 

15 dn 7 7 
GB aie ae ES Sr 

(28) 
BN Vion oe dé 2 org =—% 

These give the curve 

10 63 
= Wer le fo se eo(29) 

which is shown starting from the point E of the section 
in Fig. 2. It passes the stern at a transverse distance 

9 5/128 and it finishes at a transverse distance b/64. We 
have now 

1 ae 

I+iJ= ~2|eercars (Bs re)erae 
-4 —3 

(30) 
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and this leads to 

ett +2 | 7 sin Gr) 

7) + pla +teo+(57) 
(2) Mma — > 008 

(31) 

Values computed from this are shown in curve E of 
Fig. 2. 

In the next place we take the new curve to extend 
similarly from 2 ft. before the stern to 2 ft. behind the 
stern. The conditions are thus 

3 

I= 16 Tae oe 
(32) 

dy Os tires a= 
dic SLOT: = A 

From these we get 

Ties 3 
D> att a6 ara (33) 

the curve shown starting from the point F on the section. 
It passes the stern at a transverse distance 5 5/32, and 
finishes leaving a narrow wake of half-width 5/16. 
In this case 

1 as 

I+iJ= ~2 | ereaes (Bi se)enae 

4 fis (34) 

and for the resistance we obtain 

alo p —8y2) 4 4 t 3 si 2 m7), e | 1 sin | 47 

wife 1 9 9 
era) Assent 

scos (77) 7 05(57) | }eos oa 
2 

(35) 

This resistance is graphed as Curve F in Fig. 2 

It is submitted that inspection of the curves in Fig. | 
and Fig. 2 supports the general conclusion that these 
small modifications give the required kind of change in 
the resistance curve for the original model, namely 

elimination of the humps and hollows at low speeds 
with a much smaller relative effect at high speeds; 

= 
‘ 
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further, it is considered that the modifications of form 
are such as might be caused by displacement of the 
streamlines by boundary layer effects near the stern. 
No doubt the results could be improved by further 
detail: for instance, by change of boundary layer with 
velocity which might possibly correspond to a change 
in the point of departure of the new line, or by assuming 
a greater virtual extension of the form to the rear with 
a permanent wake. However, the.simple cases given 
now are sufficient to illustrate the point of view. 

Unsymmetrical Model 

We consider finally a model which is unsymmetrical 
fore and aft. The difference in resistance according to 
the direction of motion may have various contributing 
factors; for example, wave reflection might be important 
if there were considerable difference between bow and 
stern angles. However, the main effect may be taken as 
due to boundary layer modifications. We choose, as 
the simplest case, a model with vertical sides and with 
draught equal to one-twentieth of the length, and with 
the lines given by 

N= USAC 38) (36) 
This gives a bow angle twice the stern angle. When 
going bow first, we take the new streamline near the 
stern to be given by (27) with the conditions 

i ee 
dyn : 9 
GS OF fore = — 8 

from which we obtain the curve 

Be ee 
With the fine end leading, the model is given by 

T= (Wes) (es) (39) 

To lighten the numerical work, we assume the two 
ends of the new streamline to be in the same relative 
positions as when going bow first. The conditions are 
now 

155 dy 419. 
I= FOP ie op 2es= 
4 9 (40) 

n : Man ca Fs 0; for é = 3 

and hence the curve 

341038 sil 419 5 

1= Gia + gaa $+ 96 & Gw) 

The form of the model with the modifications (38) and 

(41) is shown in the section in Fig. 3. 
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We shall examine only the difference in resistance 
between the two cases. Forming I? ap J? from (42) and 
(43) and using the difference we obtain eventually 
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These integrals have been computed and the curve is 
shown in Fig. 3; the ordinates in this curve are the 
corresponding difference in © values for this model. 

This curve may be compared with results from experi- 
ments with unsymmetrical models, for instance in work 
at the N.P.L. by Wigley.!° The curve has the same 
general character and the right order of magnitude, 
except that in the experimental models the difference in 
resistance diminishes to zero at about f=0-5. The 
agreement could probably have been improved in the 
calculations by taking the point of departure of the new 
curve at different points for the full end and the fine end. 
However, there is little to guide one meantime in making 
these assumptions, and moreover, in dealing with actual 
ship models boundary layer structure is still more 
difficult to unravel in its dependence upon form. 
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THE WAVE RESISTANCE OF A CYLINDER 
STARTED FROM REST 

By T. H. HAVELOCK (King’s College, Newcastle-on-Tyne) 

[Received 13 August 1948] 

SUMMARY 

A method of obtaining expressions for wave resistance in accelerated motion is 

given, but the particular problem examined is the motion due to a circular cylinder 

submerged at a given depth below the free surface, the cylinder being suddenly 

started from rest and made to move with uniform velocity. The surface elevation 

at any time is discussed, and expressions obtained for the finite wave resistance 

at any time after the start. Numerical calculations have been made for three 

different speeds, and curves are given showing how the resistance rises initially 

and oscillates about the steady value for each speed. 

1. Introduction 

CALCULATIONS of wave resistance have hitherto been made only for a body 

moving with constant velocity, the problem being treated directly as one 

of a steady state when referred to axes moving with the body. The case 

of non-uniform motion is of interest in itself, and also has possible applica- 

tions. For instance, in measuring the resistance of ship models, the question 

arises how long it is before the effect of the starting conditions becomes 

inappreciable. As a matter of fact, measured resistance curves always 

show oscillations about the steady value for a given speed, but these are 

no doubt mainly due to the natural period of the measuring apparatus; 

however, it would be of interest to have some examination of the approach 

to the steady resistance after the initial stage of accelerated motion. 

Expressions for wave resistance in accelerated motion have been given 

by Sretensky (1), who obtained them by transforming the hydrodynamical 

equations to a form suitable for axes moving with acceleration, but the 

formulae are too complicated for numerical calculations in general; 

Sretensky has, it is understood, made some calculations more recently for 

a particular law of acceleration, but the results are not available. 

In some early work (2), instead of assuming the steady state as estab- 

lished, I used an alternative method for uniform motion. This may be 

described as finding the disturbance due to an infinitesimal step in the 

motion of the body and then integrating. It was pointed out at the time 

that the method could be applied to motion with variable velocity. It is 

shown now that this method leads directly to expressions equivalent to 

those obtained otherwise by Sretensky. However, the present note deals 

mainly with one particular problem, namely, a circular cylinder submerged 

(Quart. Journ. Mech. and Applied Math., Vol. II, Pt. 3 (1949)] 
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T. H. HAVELOCK 326 

in water at a given depth, suddenly started from rest with a given velocity 
and maintained at that speed. It has been found possible to make numerical 
calculations in this case, and the results illustrate various points of interest. 

2. Circular cylinder 

Take the origin O at the centre of the circular section, of radius a, at 
a depth f below the free surface, with Ox horizontal and Oy vertically 
upwards. Ifthe cylinder is given a small horizontal displacement c 57, from 
rest to rest, the velocity potential of the subsequent fluid motion is given 
by 0 

$ = 2ca°gt Sr | e-K2f—W sin («ar)sin(gttict) ict die, (1) 
0 

This is equation (12) of the paper already quoted (2), obtained there by 
a Fourier integral method; it can also be derived in the manner given later 
by Lamb (3) for the three-dimensional case. 

The velocity potential for continuous motion with variable velocity can 
be found by a direct integration. We consider first the simple case when 
the cylinder is suddenly started at time t = 0 and made to move with 
uniform velocity c. We obtain, noting that the origin is at the centre of 
the moving cylinder, 

ZS ca*x ca*x 

Pty wEOf—ye 
foo} t 

+ 2ca?g* {| dr | ePID sin{x(x-+-ct—cr)}sin{gtxt(t—7)}x? de. (2) 
0 0 

Deriving the surface elevation 7 from the relation 

CaP SCPE ON 

we obtain 
t (ce) 

7 = 2ca? [ az | e-*F sin{x(x-+-ct—cr) }cos{gixi(t—z) hc di. (4) 
0 0 

Hence we have 
co 

2a*f COSKX _ 
q = appt ina | ee "Fdie— 

0 

i [ (stench) ane nde 5) 
Ke+gx? KC—g*k* 

0 

where x) = g/c, and the principal values of the integrals are to be taken. 
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The first two terms in (5) give 

2a*f 
= — 27K, a2e-"oF sin Ky xv — 1 af? 0 0 

oa . 

P sin —kK COS 
— 2k) a | £6 f = Fore dic (x > 0), 

Ko ko 
0 

2a2f 
— —— Q7K, a2e-Kof sin ky X— 1 Bape 0 0 

oa) é 

: sin kf —k cos 
—%k,a2 | © eal a Force dic (27 <0). (6) 

k°-+ ko 
0 

The expressions for 7, represent a steady state relative to the moving 

cylinder and symmetrical fore and aft of it. With x+ct = € = distance 

from a fixed origin at the starting-point, the last two terms in (5) represent 

the surface elevation at any time due to an initial displacement and velocity 

which is the negative of that given by (6); this must be the case in the 

present problem and it can be directly verified. With a change of variable, 

and with wi = xo, the last two terms in (5) are given by the real part of 
oo 

F etléur—g'u) - i - etlEu?+g*lu) é : 

Ns, = —2a?2 | ——— we! du—4a? wet du. (7) 
J U—U U+ Up 

=o 0 

The limiting value of 7, as t becomes infinite is derived from the principal 

value of the first integral in (7); taking the real part, we find that 

No > 2K, ae—T singe as t—+> +00. (8) 
n 

Turning to (6), we see that ultimately (8) cancels out the regular waves 

in advance of the cylinder and doubles the amplitude of those in the rear. 

Without examining the surface elevation in detail, we may specify more 

closely the part which at any time consists of a regular train of waves 

accompanying the moving cylinder. It is clear from the form of the integrals 

in (7) that the oniy contribution to such a train comes from the first 

integral, or from o 2) 

¢ (En2—ghu) 
© Dy 2 

—2a7UG [ Se UAC (9) 
U—Upg 

we) 

and is due to the pole at w= w. Regarding wu as a complex variable, the 

path is along the real axis indented at w= w). There is a saddle-point at 

u = g't/2&. First suppose € > 0. The path of integration may be rotated 

round the saddle-point to the line of steepest descent, namely, the line 

u = g't/2é+ret'7, the contribution of the circular arcs required to complete 

the closed contour being zero in the limit. We have also to take account 
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of the indentation at uw) according as wu) > or < g*t/2é, that is, according 

as € > or < ct. In this manner, it is found that as far as the regular 
waves are concerned, (9) gives 

2rkyare-F sinkyx (€ > dct), 

—2rk,areFsinkyx (€ < dct). (10) 

Similarly if € < 0 the line of steepest descent is the line w = g!t/2é+re?*7 

and the corresponding contribution is —27K) a?e-*/ sin Ky x. 

Summing up this outline of an analysis, the surface elevation at any 

time is made up of three parts: (i) the local symmetrical disturbance 

travelling with the cylinder given by the first and third terms in (6); 

(ii) a regular train of waves 47x, a?e-"/ sin kx behind the cylinder extend- 

ing from x = 0 tox = — et; (iii) the part given by the remaining integrals, 

representing a disturbance which spreads out in both directions and 

diminishes in magnitude as time goes on. 

The second part agrees with the general description using the idea of 

group velocity. The third part has not been examined in detail, but an 

asymptotic expansion suitable for large values of € and t may be found 

from the transformed integrals indicated in the previous discussion. For 

large positive values of € and (gt/2&)—u,é?, the first term in such an 

expansion is 1/2,,1/2 
ra 1 

= cos( zn — gt¥*2). (11) 
REWAE = z ct) 

For € = ct, that is, at a point over the centre of the moving cylinder, 

this reduces to 

2 nfl act enete/sé 2 

ar( 72) tnt cos 1(m—k,y ct), (12) 

a result which can be obtained directly from the integrals in (7) by using 

the method of stationary phase. After a sufficient time, (12) gives approxi- 

mately the departure of the motion over the cylinder from the quasi- 

steady state consisting of the local symmetrical disturbance and the regular 

train of waves to the rear. If Aj (= 27/k,) is the wave-length in the regular 

train, the wave-length of the disturbance near the cylinder is 4), the wave- 

length for which cis the group velocity. The usual direct solution for motion 

with uniform velocity leads to the surface elevation (6) with regular waves 

in advance as well as to the rear. The so-called practical solution is then 

obtained by superposing a free infinite wave train cancelling out those in 

advance and doubling the amplitude to the rear. Another well-known 

method of obtaining this practical solution directly is to use the frictional 

coefficient introduced by Rayleigh. In the present analysis we have not 

used this frictional coefficient, the values of the integrals being interpreted 
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as principal values wherever necessary. The chief point of the discussion 

is that there is no ambiguity when the motion starts from rest. The motion 

which is gradually established as time goes on is the practical solution for 

the steady state, with regular waves only to the rear of the cylinder; this 

result is in fact associated with the group velocity being less than the wave 

velocity. 

3. The Wave Resistance (Revised, 1959). 

The velocity potential (2) is sufficient for the surface elevation to 

the usual approximation; but, in order to calculate the forces on the 

cylinder from the fluid pressure, it is necessary to add a further ap- 
proximation so as to satisfy the correct boundary condition on the 
surface of the cylinder with 2 = x + zy and V = (g/x)!/?, the complex 
potential of which (2) is the real part is given by 

t (os) 

nips aca a d P Oban sino TA 
0 0 

te ~ix(e-V) (t-7)_p-(e+V) C2: xe EKzZ 2K RAK , (13) 

We may expand this in the neighbourhood of the cylinder in the form 

2 
+ Ey Age” (14) 

Hence the required form for the complex potential is 

ca’ CawAL* 
W=—-+2A ar +d (15) 

gm 

valid near the cylinder, the asterisk denoting the conjugate complex 
quality. 

If X and Y are the horizontal and vertical forces on the cylinder, 
we have from 

2 
: (V/A . 0 

X -iY = 5 pi|(32) dz — pia w*da* (16) 

the integrals being taken round a small contour surrounding the origin 
From (14) and (15) we get, to the first order in the co-efficients A, 

X — ty = 4zpca*A, — Qmpa” ue A, (17) 

*EDITOR’S NOTE: In preparing this 1959 revision of Section 3, pages 329, 331, and 332 of 
the original paper were modified and page 330 was deleted completely. 
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with 

{es (GAY) =P) ey HO) Oe Sh. 

pe ans (18) 
wca 1 2, AVP ary Peon ial 

f 0 0 

Senin (eV) (t-7)_g-in (et V)(t-7M bg 2a S 5/2 dy 

Taking the real part of (16) and integrating with respect to 7, we 

obtain for the wave resistance 

ongped if “Bes k(e - oye sin k(¢ + Mh. Miivte. (GO) 
Gao) Coe 

Putting x = x,u* = gu*/c* this becomes 
0 

{oo} 

R= tngox iat | [Selene Ot Dh + ene | e Bury sdy (20) 

0 

with d=x,ct, B = 2x of. 

For suitable values of the parameters a@,8 the integrals in (20) may 
be computed by direct quadrature, or from convergent and asymptotic 

expansions which may readily be deduced. In particular, the limiting 
value as ¢ becomes infinite follows directly from the first term in the 

integrand and is 

R = 42? gpx ate ?* of (21) 

the wave resistance for uniform motion. The next approximation for 
t large is of order ¢7!/? and can be obtained from the same integral by 
the method of stationary phase. This gives, as t > ~ 

204 R +4 Baio! ap uf 7 gpk 4 2a4e + + T9PK a Kot J eat’ fein (Teg ct-7) 22) 

Thus ultimately the resistance oscillates about the steady value, 
the amplitude of the oscillations diminishing slowly with the distance 
travelled and the period being roughly 4A), corresponding to the per- 
turbation of the wave motion given in (12). 
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4. Three-dimensional motion 

Turning to the general problem, we take the origin O in the free surface, 

with Oz vertically upwards. Suppose a point source of strength m is 

suddenly created at the point (0,0, —f) and maintained for a short time 

5r. To satisfy the condition at the free surface for the initial motion, we 

take 

to=———, (23) 
with r? = x?+y?+ (2+f)?; 72 = a+y?4+ (z—f)?. 

The initial surface velocity found from (23) acting for a time 67 gives 

a surface elevation which can be put in the form 

i= LS | dé | e—*T cos(kar)K dk, (24) 
7 

=a 0 

with wo = xcos6+ysin 0. 

The velocity potential of the fluid motion at any subsequent time ¢ due 

to this initial displacement without velocity is 

= mg or i dé [ e*I+2 cos(Ka)sin(g!tx?)«? dk. (25) 

igen raat 
Consider now a source moving parallel to Ox at constant depth f, the 

strength m being a function of the time. Let 2 be measured from a moving 

origin vertically over the source, é from a fixed origin at the starting-point; 

and let s, be the €-coordinate of the source at any time t. Then we obtain, 
from (25), 

t 7 oe) 

= 0 ee | m(r) dr | dé | e-H+ cos(iear’)sin{giid (t=r) je! dr, 
1 2 au 

0 Ur 0 (26) 

with w’ = (€—s,)cos0+ysin 0. 

We may generalize this result for a solid body moving through the liquid. 

If the solid moves through an infinite liquid with unit velocity, we may 
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take the fluid motion to be that due to a certain distribution of sources 

and sinks over its surface and of amount o per unit area at each point. We 

assume this distribution in the present problem in order to obtain the wave 

motion to the first approximation. Thus in (26) we replace m by oc(t), 

where c is the velocity at time ¢; if (h,k, —f) is a point on the surface of 

the body we also put x—h for x, y—k for y, and 

ow’ = (€—h—s,)cos 6+ (y—k)sin 0, 

and the required velocity potential is obtained by integrating over the 

surface of the body. 

We shall not carry the general problem further meantime, but consider 

the case of a slender ship form. Here the usual! approximation is to take 

o = —(éy/eh)/27, where the surface of the form is given as an equation 

for y in terms of h and f; further, the source distribution is taken to be in 

the longitudinal section of the form by the plane y = 0. We obtain, in 

this case, 

trots tt 
yest Z{z Soa | and ar fa [ext costein(g itr) 

(27) 
with w’ = (&—h—s,)cos6+ysin#@. This result is equivalent to that 

obtained by Sretensky by a different method. 

The pressure at any point is given by p @¢/ét, neglecting the square of the 

fluid velocity; and the resistance is found from 

pea | [vo _f") oY aN df’, (28) 

taken over the longitudinal vertical section. Hence, from (27) and (28), 

we find 

=* | I3 oF a'df’ x 

x ff [le arene ies rn bahay + 
t 7 

gp CO) sm9 a0 oy +2] &Y an'af [| fanar | eemar i As 
0 —T. 

x | eI Neos(kw’ )cos{g!x?(t—7)}« dk, (29) 

0 

with ow’ = (h’—h+s,—s,)cos 0. 
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The coefficient of é is an effective mass for this particular problem, 

taking account of the free surface and assuming no wave formation and 

noting that the square of the fluid velocity has been neglected. 

As a special case, suppose the model to be started from rest with a 

velocity c which is then maintained constant. The finite resistance at any 

time after the start is given by the second term of (29), with c a constant 

ae a’ = {h'—h-+c(t—r7)}cos 0. 

The result can be reduced to the form 

mages [a J wo (I?+ J*)cos{xc(t—7)cos O}cos{g?x?(t—r)}« dx, 

(30) 

with rg | | OW e-wisicheos Odd. (31) 

Integrating with respect to 7, this gives 

47 es} 
9, i —aqtkt)tt inf bit) pt pit 2gpe do [ (2-402) sin{(«c cos 6 g’« é} intone rg i )e} oe 

xc cos 0—g' x? Kc cos 6-+-g?k? 

(32) 
It can be verified readily that the limiting value to which this tends as 

t becomes infinite is 
40 

R= smoke | (2-+J2)sec36 dO, (33) 
7 

0 

where J,+iJ, is given by (31) with « replaced by xy sec?6@. 

This result (33) is the known expression for the steady resistance at 

constant speed. 
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THE RESISTANCE OF A SUBMERGED CYLINDER 

IN ACCELERATED MOTION 

By T. H. HAVELOCK (King’s College, Newcastle-on-Tyne) 

[Received 8 March 1949] 

SUMMARY 

The problem considered is the resistance to motion of a circular cylinder at a 

constant depth below the free surface, in particular when the motion starts from 

rest and has uniform acceleration. The resistance is expressed as the sum of two 

terms ; one corresponds to the wave resistance for uniform velocity, and the other 

may be taken as giving an effective inertia coefficient, the variation of which during 

the motion is of special interest. The expressions are carried to the second order 

of approximation and have been reduced to forms suitable for numerical computa- 

tion. Curves are given showing the variation of both parts of the resistance during 

the motion, for various values of the acceleration. 

1. For the steady motion of a submerged body with velocity c parallel to 

Ox, the condition at the free surface of the water is 

02074 /éx?-+-g éd/ey = 0, 

where ¢ is the velocity potential, Ox is horizontal, and Oy upwards. For 

small values of c this becomes formally equivalent to 0¢6/éy = 0, while for 

large velocities the corresponding limit may be taken as d = 0. The same 

effect may be seen if we consider the expressions for, say, a moving point 

source at a given depth below the surface; it is easily seen that in the limit 

the image system becomes a point source for small velocities, while it 

approximates to a sink for large velocities. Some discussion has arisen as 

to the appropriate surface condition to use when estimating the effective 

inertia of submerged or floating bodies; but any argument based on steady 

motion assumes a state which has been uniform for a long time, and 

cannot be applied directly to accelerated motion or motion started at a 

given instant. In a previous paper (1) expressions were given for resistance 

in accelerated motion, but no case has hitherto been worked out. It can 

be seen from equation (30) of that paper that, if we proceed only as far 

as the first approximation, the total resistance separates into two parts, 

the wave resistance and the inertia resistance; further, the latter part is, 

to that approximation, the same as for motion under a free surface 

neglecting gravity and thus corresponding to the surface condition ¢ = 0. 

To obtain a more accurate result it is necessary to proceed further in 

the approximation to the solution. In the present paper we consider the 

problem of the circular cylinder moving at constant depth below the 

surface, examining, in particular, motion with uniform acceleration starting 

(Quart. Journ. Mech. and Applied Math., Vol. II, Pt. 4 (1949)] 
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420 T. H. HAVELOCK 

from rest; the solution is carried to the second order of approximation. 

It has been found possible in this case to reduce the expressions to forms 

which are not too difficult for numerical computation, and curves have 

been drawn to show the influence of the acceleration upon the resistance 

and upon the effective inertia coefficient. 

2. We shall construct the expressions by the method used in the 

previous paper. With the origin O at a depth f below the free surface, 

Ox horizontal and Oy upwards, suppose a singularity of order n created 

at the origin at time ¢ = 0, maintained for a short time 67 and then 

annihilated. To satisfy the condition at the free surface during this 

impulsive motion, we have for the complex potential function 

hy >S Tee Pz 2uf)-”, (1) 

where P, may be complex, and P* denotes the conjugate complex 

quantity. 

To obtain the surface elevation in a convenient form we write (1) as 
ioe) 

(=1) ye nN—1 pike (a)” * N—1p—tK2—2kKf 9 Hh = Gail a iip) || ie ei ermee GPO ES aire. (2) 

0 

The result of the Saha vertical velocity acting for a time 67 is to leave 

the free surface with an elevation 7 given by 

oO 

2(2 yale ia Np—ikx—Kf N= ES = D! dr | Ke dk, (3) 

0 

where Re denotes the real part. 

The potential function for the subsequent fluid motion due to this 

initial surface elevation, without velocity, is 
ive} 

Qghn ; 
P* or | Kr —he—tk2—2KF sin (ght?) dk. (4) 

we (n—1)! 

We now consider this to be a continuous process occurring as the origin 

moves parallel to Ox with a velocity c, with c and P, functions of the time. 

Let s, be the distance travelled by the origin from the starting-point; then 

in (4) we replace ¢ by t—7, and z by z—(s,—s,), so that z is now referred 

to the moving origin. Integrating from the start up to the instant ¢, we 

obtain for the complex potential 

= Prt) Prt) ws ep A | Pe dr | Dente F,en-t dc; (5) 

BO (B= NP. (a 

with DL = en ilesr—sz)—gh el} __ gif xis, -s7) +27}, (6) 
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RESISTANCE OF A SUBMERGED CYLINDER 421 

This result may be confirmed by using the pressure condition at the free 
surface, when the axes are moving parallel to Ox with velocity c and 
acceleration é. For these relative coordinates we have 

p CoC OME fh as a 1¢2_gy, 7 Bae ae he) (7) 

_ 106 céd 
tic cramdion: (8) 

The condition that p is constant on the free surface leads to the condition 

GD. CD pa GOD @ [dw 
= 9) — - = 7]. Re| ap OO apa 4) dz at (Z| Co OE (9) 

It may be verified by direct substitution that (5) satisfies this condition. 

3. Suppose a circular cylinder, of radius a, centre at the origin, is 
moving horizontally with velocity c. We assume that the potential can 
be expressed as an infinite series of terms like (5) for integral values of n; 
and the quantities P, are to be determined from the boundary condition 
on the circle |z| = a. If we write 

F(k,t) = » (—i)"P,(t)"2/(n—1)}, (10) 
we have the general expression 

w= SP, (te— [ B*(1, the-He-2F die — 
0 

t (oo) 

—igt { P*(«,7) dr | Bete-tutich dic. (11) 
0 0 

We may expand the second and third terms in positive powers of z in the 
neighbourhood of the circular boundary, and we get w in the form 

We » (a Bes Qn 2”), (12) 
with 

Qn os \ P(e, eS die 
0 

(<iyrragt f ; a \ IT) 0 | Liet+4e-2S de, (13) 
0 0 

The boundary condition on the circle gives 

P, = ca?+a?Q¥; JE, = POG. (14) 
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Hence, for the quantities P, we have the infinite set of equations 
os t co 

P,(t) = ca?—1a? | F(«, t)ke—**F dx —gta? ( E(k, 7) dr | L*xke—"F dic, 
0 0 i) 

qrqen 

P(t) = — al | F(t, there2F die + 

0 

pr+1 7k 720 e 

a i eras | Lit tte2F dc. (15) 

4. We shall only attempt an approximate solution of these equations 

as far as the second order, that is, up to m = 2. It may be noted that the 

condition at the free surface is satisfied exactly, but the condition on the 

circular boundary is only satisfied approximately to the order indicated. 

For the forces (X, Y) on the cylinder we use the general expression suitable 

for axes moving with the cylinder (2), which is in this case 

X—1Y = tpi {Gy dz-+-mpa?é— pis, | w* dz*. (16) 

We shall find it convenient to take the corresponding resistance in two 

parts; thus, to the present order, 

. [ [dw\? 
i = Re{ —4pi | (a) az| 

Pa —mpaé-+Re pic, | w* dar} = ee 2p Re| apy. (18) 

8 Re {P, P*} (17) 

Further, from (15), P, and P, are oe by, 

a2 

B= oa? FP watt me FRO APE ie ae te-2S dic 

(19) 

4 4 : _ tat, 3a Palen at } £ clo—2Kf P= — FP iat i (P(r) Plo a |B oF dic. 

i (20) 
If we neglect gravity, we have approximately 

P, = ca?(1—a?/4f?); P, = —ica’/8f?. (21) 

From (17) and (18), A, is zero and 

R, = mpa*é(1—a?/2f2), (22) 
the coefficient of zpa?é being, to this order, the effective inertia coefficient 

for a free surface, neglecting gravity. The next step is to use these first 

approximations for P, and P, in the integrals in (19) and (20) and so 

obtain the next approximation. 
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RESISTANCE OF A SUBMERGED CYLINDER 423 

5. Before proceeding, we may confirm this process by applying the 
method to the case of uniform velocity c, for which the results have 
previously been obtained by direct consideration of steady motion. We 
require the limiting values of the integrals in (19) and (20) for ¢ becoming 
infinite, the quantities P being constant. Putting in the appropriate form 
for L from (6), we have, for instance, the integral 

t (ve) 

/ ae | {eitwe—gbcbyt—1)__gitec taht cBe—2F de, (23) 
0 0 

Integrating with respect to 7 and taking the limiting value of the 
integral in « for ¢ > 00, it is readily found that (23) has the limiting value 

2g? c~*[ me-* + i{a 1 e-*Hi(a)}], a (24) 

where ky = g/c?, « = 2x, f, and Hi is the exponential integral. The similar 
integral with x? in eee of x? converges to 

Ke C[ me * + tf? +t — e- *Hi(a)}]. (25) 

The integral with a factor x? is not required at this stage; being factored 
by £,, it clearly does not enter into the second-order approximation. 

Hence, to this order, (19) and (20), give, for uniform velocity, 

Pea rete 1+ 2iKG ca re-*-+ fa! e-°Hi (a) ], 

i igh at P| me-% 4 i{a-?+ 0-1 e-*Hi(a)}]. (26) 

The resistance R, is zero in this case; and from (17) and (26) we obtain 

Ry = 417? p06 ate-o[ 1— 2? a2fy-2 + 2a-1— 2e-*Hi(a)}]. (27) 

This result agrees, to the second order, with the more general expressions 
obtained previously for the wave resistance at uniform velocity (3). 

6. Returning to the general expressions (19) and (20), we shall examine, 
in particular, motion with uniform acceleration y, starting from rest; thus 
we have c = yt, s = }yt”. The first approximation to P, is ya2¢( (1—a?/4f?), 
and it is sufficient for the next stage to put P, = ya27 in the integrals in 
(19) and (20). Hence, to the required order, we have 

é 

P= vat oP, bigtaty oe 7 dr { Detrte es dics 
0 

P ta" p AAG * $0 —2Kf 2 — — 5p 1— 397ay | cdr | Lexie dk, (28) 

when L* = etttey—7?)-98 ee rele 7) +98 %(-7)}. (29) 
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We now reduce the integrals to a more convenient form. The integration 

with respect to 7 can be expressed in terms of Fresnel integrals ; after some 

reduction we obtain the result 

t 

| LAr dr = p-etwt-0"(gP(pt—q) + gP(q)— He} — 

—p~etrt+9"{q P(pt+q)—qP(q)— die}, (30) 

where 2p? = ky, gq? = g/2y; 

and P(u) = O(u)—iS(u) = i e~iu? dy, 
0 

For the integration with respect to x, we change the variable from « to v, 

given by k = Agu? |-y2t2: and we obtain finally 
t co 

| 7dr i L*xte-2F dic = A, +iB, = k°g-t3 | (A-+iB)v2e-88"* dv, (31) 
0 0 0 

t ce) eo) 

| 7dr | L*«he-2f dice = Ay +i By = hg i (A +i B)v'e-86e* dv, (32) 
0 0 0 

with 

k= 2g/y, B= gflyrPs py=kv—}); Pp, = k(v+9); 

A = O(p,)cos p}+ S(p,)sin pj+ C(p2)cos p3+ S(p3)sin p+ 
+{C(ik)—k-1 sin tk?}(cos pj—cos p3)-++ 

+{S(4k)+k- cos $k?}(sin pj—sin p3); (33) 

B = C(p,)sin p}—S(p,)cos p+ C(p,)sin p3— S(p_)cos p3— 
—{S(4k)+k-1 cos +k?}(cos p?—cos p§)-+ 

+{O(4k)—k4 sin 4h?}(sin p?—sin p3). (34) 

7. For the resistance, we consider first the part R,. This could be obtained 

to the second approximation, but it was thought sufficient meantime to 

examine only the first approximation. The general effect of the second 

approximation is known in the case of uniform velocity; it consists in 

increasing the value somewhat at lower speeds and diminishing it slightly 

at higher speeds. From some rough calculations it appears that the effect 

in the present case would be similar; but for a general idea of the effect of 

acceleration upon R,, which reduces to the wave resistance for uniform 

velocity, it is sufficient to take the first approximation. From (17) and 

(28), we have 

Ry = InpygtattA, = 128ngpa2kB2(a2/f2) | Avite-88* dv, (35) 
0 

in the notation given in (33). 
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RESISTANCE OF A SUBMERGED CYLINDER 425 

For the second part of the resistance we include second-order terms: 
from (18) and (28) we have 

Ry = —Tp@*y + 27pa*y(1—a?/4f2)—2mpygtatdB,/ at. (36) 

From (31) and (33), this leads to 

R, = mpa’yp, 
with p = 1—(4+32h6)(a2/f2), 

b= | (—3-+16Bv2)v? Be-88"* dy, (37) 
0 

Numerical computations have been made for the integrals in (35) and 
(37). The quantities A and B depend only upon the acceleration, while 
the instantaneous value of the velocity enters through 8. The integrals 
were calculated for two different accelerations, and for about a dozen 
values of 8 in each case—ranging from + to 40. For small values of B it 
was necessary to go as far as v = 4-0 or further, but subdivisions of 0-1 
for v were usually sufficient. For large values of B the necessary range 
for v was less, but subdivisions of 0-02 had to be taken, especially for the 
larger values of k. For various reasons it was difficult to obtain any high 
degree of accuracy in the final results; but it is considered that the 
calculations are sufficient to show the general character of the effect of 
acceleration upon the resistance. 

8. Some of the results are shown in the curves of resistance. These 
curves show the resistance for a particular value of the ratio of the radius 
of the cylinder to the depth of its centre, namely the value given by 
a*/f? = 0-1. We have chosen to graph the curves on a base of velocity c, 
or yt, the abscissae being c/(gf)?. This was partly so as to bring into the 
diagram the wave resistance curve for uniform velocity; this curve is 
shown as R, in the diagram. 

Taking the resistance R, first, the curve A, shows its value for k2 = 97/2, 
or for y/g = 0-1418; while the curve B, is for k2 = 7/2, or for y/g = 1-276. 
The effect of greater acceleration is shown in the lower maximum wave 
resistance and the higher velocity at which it occurs compared with the 
curve £, for uniform velocity. It should be noted that if we had graphed 
the curves on a time base, the abscissae for curve B, would be reduced 
to one-ninth compared with those for A,. 
We turn now to the resistance R,, which is of greater interest. In 

general, the relative magnitudes of R, and R, depend upon the two ratios 
y/g and a/f. In the diagram, the curve A, shows the resistanee R, for the 
case y/g = 0-1418, and a2/f? = 0-1; the total resistance in that case is 
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given by A,+A,. It is seen, from (35) and (37), that the part of the total 

resistance which is simply proportional to the acceleration is 

mpa*y(1—a?/2f?). 

If we define the effective mass as the coefficient of y in this term, then 

the inertia coefficient is the same as for a free surface neglecting gravity. 

We could, on the other hand, divide the total resistance by y and so define 

0 05 10 15 20 25 30 

the effective mass at each instant. However, from the way in which R, 

and #, arise and from their variation, it seems convenient to refer to R, 

as the wave resistance and to regard &, as the product of the effective 

mass and the acceleration; with this convention, the inertia coefficient for 

motion with uniform acceleration from rest is given by the quantity p 

of (37). It can be seen from (37) that p converges to 1—a?/2f? for both 

c—+>0O and coo. In the particular case being considered, the inertia 

coefficient would be 0-95 for a free surface without gravity, and 1-05 for 

a rigid surface. Its variation with velocity can be seen from the curve A,, 

which gives the resistance R,. The coefficient p begins with the value 

0-95, rises to a maximum of about 1-07 near c/(gf)? equal to 0-4, falls to 

a minimum of 0-78 near c/(gf) = 1-4, and then rises towards. the value 

0-95 with increasing velocity. 

Similar calculations were made for the case y/g = 1-276, for which the 

wave resistance is shown in the curve B,. The curve for R, in this case 

is not shown in the diagram, because on the scale its magnitude would be 

nine times that of A,. However, the curve, in its relation to B,, is of the 

same type as in the case of the curves A, and A,, but with less variation 

in the inertia coefficient; this coefficient begins at 0-95, rises to a maximum 
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of 0-975 near c/(gf)! = 1, falls to a minimum of 0-91 near ce/(gf )t = 2:5, 
and then rises gradually towards 0-95. It is of special interest to notice 
that while the coefficient begins with the free surface value its rise towards 
the rigid surface value occurs before the wave resistance fk, has become 
appreciable. A few calculations were also made for a very small accelera- 
tion, with y/g = 0-035, to confirm the general trend of the variation; in 
this case, the coefficient p has risen to a value of 1-05 at about cl(gf )? = 0-2. 

Referring to (37), some of the approximate values found in these 
calculations are given for reference. 

For y/g = 0-1418, the quantity 32k6%) has the value —0-52, —1-2, —1-1, 
0:92, 1-66, 0-4 for B equal to 40, 10, 4, 1, 0-5, 0-25 respectively. For 
y/g = 1-276, the values of 3282) are —0-04, — 0-24, 0-3, 0-4 for B equal to- 
10, 1, 0:25, 0-125 respectively. 

The motion which has been examined in detail is uniform acceleration 
starting from rest. Similar calculations could be made for other cases of 
variable velocity, in particular for motion with uniform acceleration with 
a given initial velocity. In the latter case the results are not likely to be 
much different in general character; it appears that in any case the initial 
value of R, would be the inertia resistance for a free surface without 
gravity, and its subsequent variation would be similar to that shown by 
the present calculations. 
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The forces on a submerged spheroid moving 

in a circular path 

By T. H. Havetock, F.R.S. 
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Expressions are obtained for the tangential and radial forces on a sphere moving in a circular 
path at constant depth; similar calculations are made for a prolate spheroid, including in this 
case the couple acting on the spheroid. Numerical computations have been made, and curves 
are given to show the effect of curvature of the path upon the wave resistance. 

1. The forces on a ship moving in a curved path are, no doubt, affected to some 

extent by the wave motion produced, but it is not easy to estimate the magnitude 

or nature of this influence. In the following paper an approach is made to some 

aspects of this problem by considering some cases of a submerged body moving in 

a circular path, namely, a sphere and a prolate spheroid. The motion of a sphere has 

been examined recently by Sretensky (1946), but the results given by him are in- 

correct. In the present work a different method is adopted; it is one which can be 

used for bodies of other forms, and also for non-uniform motion. 

2. We may derive first expressions for the ideal case of a simple source moving in 

any manner at constant depth f below the free surface of the water. We take fixed 

axes with O in the free surface, Oz vertically upwards, and we use cylindrical co- 

ordinates (o, 6,z). If at time 7 the strength of the source is m and its horizontal 

distance from O is wp, the velocity potential due to an infinitesimal step in the motion 

is given, as in equation (27) of a previous paper (Havelock 1949), by 

gb = 2mgtdr ie Jy(k@) e*F sin {g?k?(t —7)} Kt dk. (1) 

We may regard the effect due to a point source, varying in strength and moving in 

any manner, as made up of the superposition of small steps of this nature. In 

particular, for the present problem, we suppose the source of constant strength and 

to be moving in a circle of radius h; further, we take the motion to start at ¢ = 0 and 

the angular velocity to have a constant value ©. Hence we obtain the velocity 

potential at any time ¢ as 

p= am a + 2ng* | ar | * o(KWy) e *F sin {g?x?(t—7)} Kt dk, (2) 
1 

where 7? = wo? +h?— 20h cos (8— Mt) + (2+f)?, 

r= w2+h?— 20h cos (8— Qt) + (2—f)?, (3) 

we = w+ h? — 2h cos (9— Q7). 

For the relative steady state which is ultimately established we require the limiting 

form of (2) as too. We substitute in (2) 

Ig Dp) = Jol) Jp ch) + 25 (kt) Jy(kh) cos n(0 — Or). (4) 
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We then integrate with respect to 7 term by term and obtain the limiting form of the 

resulting integrals in x as t->0o. This process readily gives the result 

K e-k(S—2) 
b= 7-7 +amsP |” xO] J, (kw) J,,(Kh) cos n(@ = Ot) dt 

Lemos. dn? J, (v?O2a/q) J, (n?Q?h/g) exp [ — n?07( f —z)/g] sinn(O— Ot), (5) 
1 

where P denotes the principal value of the integral. It may be verified directly that 

this solution satisfies the conditions for the quasi-steady state. 

3. If a sphere, of radius a, is moving uniformly in a circle we may, as a first 

approximation, take it as equivalent to a doublet of moment M equal to 4a*hQ. 

It is easily seen that the velocity potential for this doublet can be derived from (5) 

by taking 0¢/ot and replacing mhQ by M. Thus we obtain 

a Qt) Masin (6— Qt) 

re 

4M 2 © K mel 
plea uP EEOUE ko) J, (Kh) sin n(8 — Qt) dk 

ee 
Sm, (n?Q?a/9) J, (n?Q7h/g) exp [ — n?.Q?2(f —z)/g] cosn(O— Qt). (6) 

It may be noted that the second term in (6) is acai to 

2Mosin (0 — 4) | 4MQ? @ {= et 

ie gh 4 0 K— — 

We may deduce the wave resistance from the energy propagated outwards through 

a cylindrical surface, namely, 
foXe) 

-[ dz p $ sods (8) 
Taking the cylinder of large radius, we require the first terms in the expansion of 

(6), which are seen to be of order 7 ?. One such term comes from the integral in (7). 

Referring to (4), since we are concerned with large values of w, we may replace 

J,(K@) in the expansion by H®)(xaw) and take the real part. Thus we have to evaluate 

the real part of 

n3J,, (ko) J,(Kh) sin n(6— Qt)dk. (7) 

—k(f—2) 
| = = HH (ka) J,(kh)dk (o>h;z<0), (9) 

0 US, 

where we have put x, = n?Q?/g. Regarding « as a complex variable, we may change 

the path of integration to the positive half of the imaginary axis; taking account of 

the indentation at k = k,, we obtain for (9) 

) K,(@m) [, (hm) dm 

— TY (Ky @) In (Kh) exp[—K,(f—z2)]. (10) 

Collecting the results from (6), (7) and (10), and using the asymptotic expansions 

for J, and Y,, we obtain, for @ large, 

4MQ (= 
De a =) 3 AACS) SSO EN CO OES Ga ee (11) 

2 (°msin m(f—z)+«, cosm(f—z 

m+ Ky 
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With this value of ¢ in (8) we obtain the rate of propagation of energy outwards, 

and this must be equal to RhQ with R the steady wave resistance. Finally, replacing 
M by 4a%h, we obtain for the wave resistance of the sphere 

4r*pabQ* 2 

gh 

It is of interest to examine the limiting form of this expression as hoo, Q>0, 

hQ->c. The series then becomes an integral, and by using appropriate asymptotic 

expansions for Bessel functions of large order and large argument, it is found that 

(12) reduces to ia 
R = 4rpa’k§ Al sec 6 exp[—2k,fsec? 6] df, (13) 

0 

with ky = g/c?, and this is the wave resistance for a sphere in steady rectilinear motion 

with velocity c. 

R= Bim dnk (n?.Q2h/g) exp [ — 2n?Q?f/g]. (12) 

4. Returning to the general expression (6) we may evaluate the resultant fluid 

pressure on the sphere and so obtain both the radial force and the tangential force 

or wave resistance. The effective part of the pressure comes from pd¢/et, and we 

notice from (6) that the terms divide into two groups, (i) those symmetrical in the 

angle 0—t, (ii) those anti-symmetrical in that angle. Obviously the resultant 

radial force on the sphere comes from the terms in group (i), while the tangential 

force is due to those in group (ii). It is necessary to note that, in using this method, 

the expression for the velocity potential must be carried to a further degree of 

approximation, because the boundary condition at the surface of the sphere must 

be satisfied to the same stage. Let (r,a, /) be spherical polar co-ordinates referred 

to the centre of the sphere so that 

mw cos (9— Qt) = h+rsina cos f, 

o@ sin (9— Qt) = rsina sin £, | (14) 

z2=—f+rcosa. 

The first term in (6) is the doublet D giving the correct normal velocity at the surface 

of the sphere. The remaining terms in (6) may be expanded in the neighbourhood of 

the sphere in spherical harmonics so that we have (6) in the form 

o= D+ 3 ria)" S,,(%, 8). (15) 
The required extension is then 

fa) r \ 2 nN a n+1 

O= p+3 (7) + (6) | s,(aA). (16) 

Taking the tangential resultant force, the effective terms in p0¢/0t from (6) are 

(2mpa%Q?/g) ¥ n4J,(k,) Jy(k,,h) exp [—K,(f—2)] sin n(0— 2). (17) 
1 

In this, we put 

J,(K,@) exp [—K,(f—2)] sin n(8— Qt) 

= ( a exp [|—«,(f— aif” exp [ix,,w cos (9 — Qt —u)] sin nudu 

ak — exp[— ZF exp [ik,, r(sina cos # cosu+sin« sin £ sin u—1 cosa) 

—ik, heosu]sinnudu. (18) 
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Expanding under the integral sign, we obtain the required expression in terms of 

spherical harmonics. Obtaining the resultant force involves multiplying the pressure 

by a surface harmonic of the first order and integrating over the sphere. Thus we 

only need the first-order term from (18), which is 

(=1)" 
27 

7 

iK,@ exp [— 2 qf] (sina cos f cosu+ sine sin f sinu—1 cos @) 
—7 

exp[—ik,hcosu]sinnudu. (19) 

In accordance with (16), this must be multiplied by 2 to get the correct operative 

value of the pressure. We insert these results in (17), multiply by sing sinf and 

integrate over the surface of the sphere. It is easily verified that this process gives 

the same expression (12) for the tangential resistance. 

5. For the resultant radial force outwards, we carry out the same process on the 

pressure derived from the first three terms of (6), noting that in accordance with 

(16), the first-order surface harmonic from the second and third terms of (6) must 

be multiplied by 3. We then multiply by sina cos/ and integrate over the surface 

of the sphere. The details of the calculation need not be given; after some reduction, 

we find for the resultant radial force outwards the expression 

3 a? K ens 

pari c(t — a + 47pa®Q? »y il Kang 

This expression does not lend itself readily to numerical computation. We notice, 

however, that the first term in (20) represents an effective mass 377pa3(1— 3a3/16f*), 

which is the first approximation for a sphere under a free surface, neglecting gravity. 

On the other hand, when the angular velocity is small the last term in (20) approxi- 

mates to t7pa®Q?/f3, since Ln?J,(Kh)J),(Kh) = txh. Thus for small velocity, the 

effective mass approximates to 27pa3(1+3a/16f%), as for a sphere under a rigid 

surface. 
It is of some interest to make calculations from (12), so as to obtain some idea of 

the nature and magnitude of the effect of curvature of the path upon the wave 

resistance. Curves showing the results are given in figure 1. The abscissae are values 

of hQ/ J (gf), so as to include rectilinear motion for comparison; the ordinates are 

values of R/M’g(a/f)?, where M' is the mass displaced by the sphere. Curve A is 

for steady rectilinear motion, that is, for the limiting case h/f—oo, and calculated 

from (13). Curve Bis for h = f. Even in this case the mean curve approximates to A, 

but it is of interest to note the hump and hollows due to wave interference when the 

sphere is making complete circles. For curve C we have taken h = 4f; it shows. how 

with increasing radius of the circular path these interference effects disappear and 

the wave resistance approximates quite closely to that for straight-line motion at 

the same linear speed. 

6. We consider now a prolate spheroid with its axis at a constant depth f below 

the surface, its centre C describing a horizontal circle of radius h with constant 

angular velocity Q, the axis of the spheroid remaining at right angles to the rotating 

radius through C. We use the same fixed axes as before, with cylindrical co-ordinates 

O(a, 0, z); and, when required, we use rotating axes C(x, y,z) with Cx along the axis 

of the spheroid in the direction of motion and Cz vertically upwards. 

nd, (Kh) J,(Kkh)dk. (20) 
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M’g(a/f)° 

0-4 0:8 Ses 1-6 

hQ/V (Gf) 

FIGURE 1 

The motion of the spheroid is made up of a linear velocity hO parallel to Cx and 

a rotation Q about Cz. In terms of spheroidal co-ordinates given by 

a=aeul, y=ae(l—p*)i(C?—1)Feosw, z=ae(l—p?)i(€2—1)'sinw, (21) 

the known solution for this motion in an infinite liquid is (Lamb 1932) 

= 2AaehQAP,(1) Q,(6) — xBare?QP3(11) Q3(C) cos@, (22) 

with A-1 = 2e/(1 —e”) —log {(1 + e)/(1—e)}, a 
B= ee arene Mena) ee 

It is well known that the linear motion can be expressed in terms of a certain source 

distribution along the axis of the spheroid, and it can easily be shown that the angular 

motion can be ascribed to a doublet distribution along the axis. In fact, (32) is 

equivalent to 
ae kdk a k(a*e? — k?) dk 

= re —— 
? 410” acne A cscercees: 

We may now obtain the required solution by integration of the expression for a 

source given in (6). For the first term in (24) we have to replace a typical factor 

J,,(Kh) cos n(8— Qt) in (6) by J,,{K(h? + k?)*} cos n(@ — Qt—«), where tana = k/h; and, 

taking account of the integration in k, this may be replaced by 

J,,{k(h? + k?)*} sin nx sin n(8— Qt). 

Further, so far as the co-ordinates x, y, z are concerned, the second term in (24) may 

be derived by taking 0/éy of the first term; and when the expressions are put in terms 

of the fixed co-ordinates this is equivalent to operating by 0/ch. Also we have 

(24) 

= [J,,{k(h? + k?)*} sin na] 

= 4k[J,_,{k(h? + hk?) sin (n —1)a—d,,s{x(h? + k)#} sin (n+ 1) a]. (25) 

558 



The forces on a submerged spheroid moving in a circular path 302 

Carrying out these operations we obtain for the rotating spheroid at depth f, its 

centre describing a circle of radius h, 

oe | “ (AhOKF + BOK(a?e2— k) Q} dk, (26) 

1 2. P@peesst-a ‘ : 
F= an thP| FER I, (KD) J, {K,(h? + k?)*} sin na sin n(6 — Qt) dk 

0 re 

+ (4702/9) 5 NPI, (Ky) In{k,(h? + k?)*} exp [—K,(f—z2)] sin na cosn(6— Qt), (27) 
1 

_ h-weos(6—Qt) _h—weos(0—t) 

¥ re re 

© K2 eKU—2 
“af (ko) [Jn 4.{K(A? + k?)#} sin (n + 1) 

- mee ie + k?)#} sin (n — 1) a] sin n(@— Qt) dk 

oy YT (ky) [Tn ya{Kn (h2 + k2)H sin (n+ 1) 

—J,_3{Ky(h? + k*)?} sin (n— 1) alexp[—«,,(f—2)] cosn(@—Q#). (28) 

In this k,, = n?2/g, tana = k/h, and 

r? = {osin (0— Qt) —k}? + {h—weos (8— Ot)}* 4 (z oH (29) 

= {osin (0 — Qt) —k}? + {h—w cos (6 — Ot)}*? + (z—f)?. 

By comparison with § 3, we see that for w large we have 

$ © 

ars 2nor(=2) 3 {2nAL, +n3B(Q2/gh) M,,} 
1 

exp [—K,(f—2)] cos {n(0 — Qt— 47) +k, 0-47}, (30) 

with L, = | Tuc (EE oie ain nade 
—ae 

eZ (31) 
a k(a?e? — k?) [J {Ky (h? + k?)#} sin (n +1) a 

—ae 5 

—J,,_1{K,(h? + k?)?} sin (n— 1) a] dk. 

Using this in (8) we obtain the rate of propagation of energy outwards; if R is the 

tangential resistance and G the couple required to maintain the uniform motion, 

this leads to 
2 2Q5 © 

RAO+G0 = 
2 2 

yy (2.4L, +B = 1?) exp [ — 2n?Q2?f/q]. (32) 
1 

7. We may obtain the resistance, the couple and the radial force by calculating 

the resultant fluid pressure on the spheroid. For the wave resistance the only part of 

the pressure which gives a resultant is the term p0¢/0t, and we have 

2a 

R= [vas = par(1 -2)[" Ho of ndudo, (33) 
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in terms of the co-ordinates (21), with ¢ = ¢ = 1/e on the spheroid. Taking from 

(26) the terms which contribute to the resultant tangential force, we have 

ae al (AWOKE, + BOK(a%e? — 12) Gy} dk, (34) 
with 

= my WI, (Ky, @) I, {Kp(h? + k*)*} exp [—«k,(f—z)]sinne sinn(O— Qt), (35) 

and a similar aa for G',, derived from (28). If (34) is expanded in the form 

= BS (Atcossu + Bysin sw) Pru) PHS), (36) 
Tr=1 s=0 

we must add a similar expression with Q3(¢) in place of P3(€) so as to maintain the 

boundary condition at the surface of the spheroid; for this part of ¢ this is 0g/0¢ = 0 

for € = ¢). Hence on the spheroid we have 

SE = S&S CH(Apcossu + Bpsin se) PAG) Pew), 

with Cy = 1— Ps'(Eo) Or(Eo)/Pr(So) Or (So)- (37) 

We now expand (34) in the form (36), noting that for the value of R we only require 

the term in P9(z). For this purpose we have 

J, (Kn @) Xp [K,(f—2z)] sin n(8 — Qt) 

_ = exp[—2k,f +2] |" exp [2k,(xsin u—y cos uw) + 7k, h cos u]sinnudu, 

(38) 

with the origin now at the centre of the spherqid. Substituting from (21), we multiply 

by “dudw and integrate over the surface of the spheroid. It can be shown that 

1 2a 

| ndye| exp [7x,,{ay sin u — b(1 — 7)# (cos u cosw +7 sin w)] dw 
—1 0 

= 47i(7/2k,,ae°)tsin-*uJ;(k,aesinwu). (39) 

Using (39) in (38), we have, so far as this typical term is concerned, the integral 

cs 

4ni(77/2k,, act) | exp [ik, h cos u] J3(k,, ae sin u) sin wu sin nudu. (40) 
Su 

It is of interest to find that (40) can be put in the form (47?/a?e3)i"L,,, in the notation 

of (31). Collecting these results and including the factor C? from (37), we obtain for 

the wave resistance 

2 

R=— ae A Sn nL, (24 D,+B 7 0M) exp [— 2n?0?f/g]. eD) 

We could obtain the couple @ by similar calculations; or, using (32), we have 
2h O6 z ¢ eS nM, (2AL, + BO n?M,) exp[—2n20%f/g]. (42) 
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The radial force can be obtained by the same method from the remaining terms in 

the velocity potential; but the expressions are lengthy and not suitable for numerical 

computation. 

If we take limiting values as h > 00, Q>0, hQ—c, the couple G becomes zero and 

R reduces to the wave resistance given previously (Havelock 1931) for the linear 

motion of a spheroid. On the other hand, if we take h = 0, we find that L, = 0, 

M,,,,, = 9, and we obtain the couple for pure rotation as 

25766 co 

G = ET OME 0482 Sn Ph, exp [— 8n2Q%flg], 
1 

1 
with P;,, =| (1—w?) Jy, (4n?O7%aeu/g) du. (43) 

0 

8. For numerical computation the integrals for L, M can be expanded in various 

forms; for instance, one which proved useful can be derived from the expansion 

JA p( + u*)*} sin (n tan wv) = (Jp4+Jn41) (2p) 
(3pu)? 

) 3! 

the Bessel functions having the argument p. For some values of the parameters it 

was found more convenient to evaluate the integrals by direct quadrature. 

La (Jn—s ar 3I 4 a 3S 44 ar In+3 Hee (44) 

hQ// (Gf) 

FIGURE 2 

As a particular case we take a spheroid for which 2a = 5b, so that e = 0-9165; and 

for the depth we take f = 2b. This was one of the cases for which calculations were 

made previously for rectilinear motion. To bring out the effect of curvature we take 

for the radius of the path h = 5b. The results for the wave resistance are shown in 

figure 2. The ordinates are values of R/7gpb?, and the abscissae are hQ/,/(gf). The 

curve A is for linear motion and is taken from the paper already quoted (Havelock 
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1931). Curve B shows the effect of circular motion in this particular case; the 

difference between the two curves is quite small even in this rather extreme case. 

A curve is not given for the couple G, as the quantities M are rather difficult to 

evaluate with sufficient accuracy for this purpose; however, approximate computa- 

tions were made and the maximum value appears to be at about AQ/,/(gf) = 1:25 

with a value of G/7gpb* of about 0-026. It might be expected that the couple would 

be small for a solid of revolution in this particular case; it would probably be larger 

for a flat ellipsoid, for which similar calculations could be made by the methods used 

in the present work, the appropriate source and doublet distributions being then 

over the plane area enclosed by the elliptic focal conic. 
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Wave Resistance Theory and Its 
Application to Ship Problems 

By T. H. Havetock, Visiror? 

It is now just over fifty years since the first 
mathematical analysis was made of the wave re- 
sistance of a ship form, and during the latter half 
of that period there has been a considerable out- 
put of work, both theoretical and experimental. 
It is impossible to give any adequate survey of 
this work here, and fortunately it is unnecessary 

to make the attempt; there are excellent sum- 
maries which have been published from time to 
time, and in particular I would refer, for a com- 

prehensive account with references, to Wigley’s 
recent paper, ‘“The Present Position of the Cal- 
culation of Wave Resistance’ (L’Association 

Technique Maritime et Aeronautique, Paris, 
1949). 

In the following notes I deal first with a solid 
body which is completely submerged; a short 
descriptive account of one method of developing 
the mathematical theory is followed by some re- 
cent results on motion in a curved path and on ac- 

celerated motion. The second section deals with 
floating bodies, or surface ships. Reference is 
made to the need for improving the approximate 
theory for models of fine form and extending its 
range of application; and a short account is 
given of some attempts, dealing in particular with 
(1) models of fuller form, (2) models of non- 

mathematical form and methods of approximate 
calculation, (3) the inclusion of the effects of vis- 
cosity and the possible interaction between fric- 
tional resistance and wave resistance. 

Submerged Bodies. Consider a solid body 
wholly submerged in water and moving in a hori- 
zontal line with given velocity. Assuming the 
water to be frictionless, the fluid motion is speci- 

fied by a velocity potential ¢ satisfying given 
boundary conditions: (1) the normal fluid veloc- 
ity on the solid is equal to the normal velocity of 
the solid at each point, (2) the pressure is con- 

1 Paper presented at meetings of the New England Section, August 
28, 1950, and of the Chesapeake Section, September 7, 1950. 

2 Kings College, Durham University, Newcastle-upon-Tyne. 

stant at the free surface of the water, (3) for deep 
water the velocity diminishes to zero with in- 
creasing depth. We may also impose a condition 
for the motion far in advance of the solid, such 

as, for instance, to insure that in the usual phrase 
the solid is advancing into still water. In gen- 
eral, this problem has only been attacked by some 
method of continued approximation. We may 
suppose that the wave motion at the surface is a 
relatively small effect, and we take ¢) for the 

velocity potential as if the solid were moving in 
an infinite liquid, and satisfying condition (1). 
We then add a correcting potential ¢, so that ¢) + 
¢; satisfies condition (2) at the free surface; and 
then a potential ¢. to maintain condition (1), and 
soon. Thus we may picture the solution ¢ as an 
infinite series do + ¢1 + ¢2 + .... We may as- 

sume this process to be convergent; but the ex- 
pression of it in any particular mathematical form 
would involve consideration of convergence and 
of the uniqueness of the solution so obtained. It 
has only been possible to carry out this process in 
any detail for solids of simple form, such as a cir- 
cular cylinder, sphere, or spheroid. In fact, for 
most cases it has not been carried further than 
the first three terms; while for bodies of ship- 
shape form nearly all the results have meantime 
been built up on the first two terms—denoted 
here by ¢@) + ¢;. Assume now that we know the 

first function ¢o, giving the solution if we neglect 
the wave motion completely, and consider the 
determination of the next function ¢,. There 

are various methods available; the one I wish to 

outline may not be the best from a mathematical 
point of view, but it has some advantages for dc- 
scriptive purposes. The method is one which was 
used long ago by Kelvin for the waves produced 
by a pressure disturbance traveling over the sur- 
face of the water. Consider for a moment the 
classical problem of the traveling pressure point. 
Instead of treating this directly as a continuous 
process, we may regard the motion as the limit of 

563 



14 WAVE RESISTANCE THEORY AND APPLICATION 

a succession of small steps, at each step an impulse 
being applied to the surface of the water. Each 
impulse starts a series of ring-waves traveling 
out in all directions; and to get the total effect 
at any time we have simply to sum up the effects 
due to all the previous elementary steps, the well- 
known wave pattern emerging from the mutual 
interference of these elementary ring-waves. The 
process can be expressed mathematically to give 
the complete solution of this problem. 

Returning to the submerged solid, we regard 
the continuous motion as the limit of elementary 
steps and examine what happens at any given 
step. We picture the solid as suddenly started 
from rest with a given velocity and then stopped 
after a short interval of time. For this impulsive 
motion ¢o is the potential as if the solid were 
started from rest in an infinite liquid. But the 
form of the surface condition for this step is that 
there shall be no impulse at the free surface and 
we must add the appropriate function ¢,. This 
may be written down directly as a reflected po- 
tential, but we may picture it in this way. Sup- 
pose the water continued above the free surface 
and place in it the image of the given solid. When 
the solid is moved through its elementary step, 
we move the image suddenly through an equal 
small step in the opposite direction. The poten- 
tial for these two motions in an infinite liquid 
gives the required approximation ¢» + ¢1. We may 
notice, in passing, that gravity does not come into 
play during this impulsive motion. We now cal- 
culate the vertical velocity of the free surface, 
and the result of the step from rest to rest is that 
the free surface is left with a known elevation. 
The subsequent motion due to this elevation can 
be worked out, the elevation spreading out in all 
directions in the form of free gravity waves. 
Finally, for any continuous motion of the solid 
we sum up the total effect of all the previous ele- 
mentary steps in the motion. The process can be 
set out in mathematical form, and so we obtain 

the first approximations for the assigned motion; 
it may be remarked that further approximations 
are possible by generalizing this process. An in- 
teresting point is that this formulation of the 
problem automatically leads to the so-called prac- 
tical solution with the solid advancing into still 
water, and with the main wave pattern to the 
rear. This result is connected with the fact that 
for water waves the group velocity is less than the 
wave velocity; if the contrary had been the case, 
we should have arrived at a steady state with the 
solid pushing the wave pattern in advance in- 
stead of leaving it to the rear. It will be seen 
also from this description that this impulse 
method can be applied equally well to nonuniform 

motion or to motion of any kind in a curved path. 
Although not necessary, it is convenient often 

to introduce the idea of sources and sinks. The 
potential ¢» due to the motion of the solid as if in 
an infinite liquid can be regarded as due to a dis- 
tribution of sources and sinks, or other singulari- 

ties, on or within the boundary of the solid, and 

an elementary step in the motion corresponds to 
establishing this distribution for a short interval 
of time. Consider in Fig. 1, a point source of 

strength m established at time 7 at the point (0, 0, 

—f) in the liquid, where we have taken the origin 
O in the free surface with OZ vertically up- 
wards. During the short interval of time 67 we 
have the velocity potential 

Fic. 1 

with 

Ae = Gee Case aes ta = ae ap ah sp (B= i }F 

The initial elevation left by the elementary step is 

Qmf br * _ mor (= ee) 

oper py = S#f pe 
x cos [k(x cos 6 + y sin 0)]k dk 

and the motion at any subsequent time ¢ due to 

this elevation is given by 

= mg'/2 or (Ee dé ihe ek S—-) x 

Tw —* 0 

x cos [k(x cos @ +y sin @)] sin [g'/2k!/2(t — 7)]k'/2 dk 

In particular, suppose the source starts from rest 

at time ¢ = 0, is of constant magnitude, and 

moves with uniform velocity ¢ in a horizontal line 

parallel to OX. The velocity potential at time 

tis given by 
1 t C) 

on mm 4 MEE far f" ao f eH) X 
Ty Te Tv 0 —7 0 

cos [k{(x + ct — cr) cos 6 + ysin 8}] X 

sin [g'/2k'/x(t — r)]k'/2 dk 
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The limiting form as — © gives the steady state 
which is ultimately established for uniform mo- 
tion in a straight line; namely, 

AIC (gl 2) le oe reese Fale =e if e—ko(S—2) se? sin (kosec 0)x 

xX cos (koy sin 6 sec? 0) sec? 0 dé — “er 

7 © p—k(fi=2) Pf, /1 Bes eao f e cos (kx cos Deen 0) dk 

0 k — Ro sec? 0 

where ky = g/c?, and the origin O is now a moving 
origin vertically over the source. 

Calculating the surface elevation from this ex- 
pression, it is found that the wave pattern at a 
great distance to the rear approximates to the 
form 

Akom fe 
& = eé 

( —1/2 

cos [ky sec? 6 (x cos 6 + y sin @)] sec? 6 da 

—kof sec29 

From these results for a single source we can 
derive expressions for other singularities, or for 
any distribution of sources and sinks. Knowing 
the wave pattern at a great distance to the rear, 
we can, from energy considerations, write down 
the corresponding wave resistance of the solid 
body which is represented by the given distribu- 
tion. It may be remarked that the forces and 
moments on the submerged body can be calcu- 
lated as the resultant of the fluid pressures on its 
surface, but in that case the approximation must 
be carried to the next stage, that is, to the stage 
oo + di + de in the notation used here; this is 
necessary in order to satisfy the condition at the 
surface of the solid to the required degree of ap- 
proximation and it is a point which has sometimes 
been overlooked. 
We leave this brief description of fundamental 

theory with the remark that nearly all the work 
on such problems has been limited to uniform mo- 
tion in a straight line. More recently, Sretensky 
has given some formulae for accelerated motion; 
and Brard has examined the motion of a source in 
a straight line, the strength of the source being 
subject to periodic variation, with a view to ap- 
plying the results to the interesting problem of 
the pitching of a ship under way. 

Using the integration method outlined in the 
foregoing, I have worked out the case of a sphere 
moving with uniform velocity in a circular path 
at constant depth below the surface. If a is the 
radius of the sphere, / the radius of the circular 
path, f the depth of the center of the sphere, and 
c the linear velocity in the path, the wave resistance 
is given by 

Ar? 4n*pasc* 

gh phy In? (He) e— (antes 
/ah?) R= 

J, denoting the Bessel function. 
If we make / tend to infinity, keeping c con- 

stant, this reduces to the known result for a sphere’ 
in linear motion with uniform velocity c, namely 

Ro = 4rpa®ko'c? bia e—2kof see? B sec’ B dB 

These expressions can be evaluated numeri- 
cally, and Fig. 2 shows some results. 

R 

M'g(a/f)® 

Curve A is the resistance-velocity curve for 
linear motion with constant velocity. Curve B is 
for circular motion with h = f; we notice here 

the humps and hollows due to the motion of the 
sphere in the waves produced by previous revolu- 
tions in the path. Forcurve C, h = 4f and we see 
how quickly these effects diminish with increasing 
radius of the path and the resistance approxi- 
mates quite closely to that for linear motion at 
the same speed. A more interesting case is that 
of a prolate spheroid whose center is describing 
a circular path. The motion of the spheroid in- 
volves both translation in the direction of the axis 
at each instant and rotation about a vertical 
axis; the analysis is rather complicated but ex- 
pressions were obtained for the wave resistance, 
the radial force outwards and the couple on the 
spheroid. 

Fig. 3 shows calculations of the wave resistance 
for a spheroid whose length is 24 times the maxi- 
mum breadth, the radius of the path being equal 
to the length of the spheroid. Curve A is for 
linear motion and eurve B for motion in this cir- 
cular path; even in this extreme case the wave re- 
sistance is not much affected by the curvature of 
the path. These problems are, no doubt, chiefly 
of academic interest in themselves; but the de- 

velopment of such work may have a bearing on 
questions of great practical interest in the theory 
of steering, stability and so forth. 
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Another matter of interest is the question of 
accelerated motion and effective mass or effective 
moment of inertia in such cases. There has been 
some discussion, for instance, about the suitable 

condition to take at the free surface of the water 
for an approximate estimate of effective inertia 
in ship problems; we may, on the one hand, 
neglect the wave motion completely and take the 
surface to be rigid, or, on the other hand, we may 

neglect gravity and treat it as a free surface. 
Very little work has been done in this field and it 
seemed worth while to attempt a more detailed 
examination of some simple case which could be 
carried far enough to allow of numerical calcula- 
tion. I have worked out the problem to a certain 
stage for a circular cylinder moving with con- 
stant acceleration and starting from rest; some 
of the results are shown in Fig. 4. 

BERS Raa 
AAS OCG aS 
EB SSeS 72bNa 
ND 
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The abscissae give the velocity acquired from 
rest with the given acceleration, and the total 
resistance at each speed has been divided into 
two parts. For the first case, the acceleration is 
g/7 and the two parts of the resistance are shown 
by the curves A, and A». From the way in which 
the two parts emerge from the calculations, it is 
convenient to call A, the wave resistance, and for 

comparison the curve Ry shows the wave resist- 
ance for uniform motion at each speed. At uni- 
form speed the ordinates of A, would, of course, 

be zero; in accelerated motion it is appropriate 
to call A, the inertia part of the resistance, al- 
though, as the curve shows, it depends upon the 
velocity as well as upon the acceleration. If we 
had used the approximations of treating the sur- 
face of the water (1) as rigid, or (2) as free but 
neglecting gravity, the part A, would be zero and 
A, a straight line of constant ordinate; for (1) the 
ordinate would be 0.15.0n the diagram, and for (2) 
it would be 0.135. It is interesting to note how, 

in fact, A. varies between these extremes as the 

velocity increases. The curve B, is the wave re- 
sistance part for a greater acceleration; namely, 
1.276g. The corresponding curve Bz is similar in 
character to A, but is not shown on the diagram 
as its ordinates would be nine times those of Ag. 

These results are obviously not of much value 
for direct application; but they may serve to show 
the need for further work in a region which has 
been somewhat neglected, in which there are 

problems which could be studied both theoreti- 
cally and experimentally with a view to practical 
applications. 

Floating Bodies of Ship Form. If the solid is 
only partially immersed in the water we have a 
much more difficult problem, even when we as- 

sume the water to be frictionless. In the usual 
theory of wave motion we neglect the square of 
the fluid velocity. Further, except in special 
circumstances, the first two or three terms of an 
approximation similar to that for a submerged 
solid may be inadequate. 

Then there are also complications arising from 
the intersection of the solid and the water, with 

the different conditions over the two surfaces; 

and, in general, any solution which has been ob- 

tained involves a mathematical infinity in the 
vertical component of fluid velocity at the bow 
and stern. Meantime most of the work on ship 
forms has been limited to cases of small ratio of 
beam to length where these difficulties may be 
neglected in the first place, and further approxima- 
tions made later to improve the theory. How- 
ever, a more direct approach is much to be de- 
sired, so as to give an adequate theory of wave re- 
sistance for a floating solid. In particular, a de- 
tailed study of simple forms would be valuable. 
for instance, a vertical circular cylinder, or a 

sphere or spheroid half immersed in water. One 
may apply to such problems a remark made by 
Kelvin in regard to the motion of a wholly sub- 
merged circular cylinder, which was solved some 
years later by Lamb; after suggesting the prob- 
lem he left it with the remark, “‘it is a mathemati- 
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WAVE RESISTANCE THEORY AND APPLICATION 17 

cal problem which presents interesting difficulties, 
worthy of serious work for anyone who may care 
to undertake it.” 

It may be added that such work would give a 
better idea of what has been neglected in the pres- 
ent approximate theory, and might lead to a fresh 

approach to the problem of the ship with more 
usual values of the ratio of beam to length. 

The approximate solution for a slender ship 
form was given more than fifty years ago by 
Michell in a classical paper, which unfortunately 

was overlooked and forgotten for many years. 
Michell’s approach was different from that out- 
lined in the previous section. He considered a 
semi-infinite uniform stream of water with a free 
upper surface and bounded by a vertical plane 
parallel to the stream; and he solved the prob- 
lem of the motion due to a given distribution of 
normal velocity over this vertical plane. A ship 
of narrow beam placed in the stream was pictured 
as producing a normal velocity outwards on both 
sides of amount given approximately by the prod- 
uct of the stream velocity and the horizontal 
gradient of the level lines of the form; finally, this 
was treated as a given distribution of horizontal 
velocity outwards on the two sides of the longi- 
tudinal vertical section of the ship. Such a dis- 
continuity of normal velocity is equivalent, of 
course, to a corresponding distribution of sources 
and sinks over this vertical plane; and so we ar- 
rive at Michell’s results as a particular case of 
the source distributions we have considered in the 
previous section. In particular, we may quote 
for reference the well-known resistance integrals. 
With one-half of the submerged form given by 
y = f(x, 2) we have 

R = Hee f° (7 + J) sect 08; by = & 
0 T ge 

with 

T+ iJ = Hui [sf e Koz sec? 9 + ikor sec @ dy dz 

Ox 

taken over the longitudinal vertical section of the 
ship. 

Although, as might be expected, this formula 
does not enable us to predict with certainty the 
resistance of a given model at a given speed, it 
proved to be near enough to the general run of 
the resistance-velocity curve to give much in- 
teresting qualitative information: in particular, 
in the changes produced by small variations in 
the form of the model and the general explanation 
of such changes. 

Fig. 5 shows the resistance curve A for the 
simple parabolic model given by y = 6(1 — x?//?) 

(1 — 2?/d?), for the case with the draft one- 

sixteenth of the length, showing the humps and 
hollows which are so much exaggerated at low 
speeds compared with experimental curves. It 
is interesting to recall that Kelvin ended his lec- 
ture on ‘Ship Waves’ (1887), in which he first 

described the ship-wave pattern, by making 
“with some diffidence’’ a practical suggestion. It 
was to the effect that since wave disturbance is 
so much a surface effect, it might be an advan- 
tage to put as much displacement as possible be- 
low the waterline, assuming no doubt that one 

would not then increase other resistance by a 
greater amount. It is, of course, well known that 

the form of the lower level lines has compara- 
tively little influence on the wave resistance as 
compared with the form of the level lines near 
the LWL; and one can see this confirmed by 

work on pressure distribution round the hull, such 
as that of Eggert. This point may be illustrated 
quite simply in Fig. 5 by inverting the parabolic 
model and putting the keel in the surface; thus 
the equation of the form is now 

y = 0(1 — x2/l?)(22/d — 2?/d?) 

Curve B shows the result. The operative fac- 
tor is the ratio of draft to wave length at each 
speed. As one would expect, the wave resistance 
in the second curve is negligible at low speeds, 
but ultimately would rise to equality with curve 
A; the difference is rather striking even when the 
wave length is several times the draft. 

I wish to refer now to some attempts which 
have been made to improve the theory and to ex- 
tend its range of application. It may be remarked 
that the Michell resistance integrals can be ap- 
plied to a much greater range of forms than was at 
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18 WAVE RESISTANCE THEORY AND APPLICATION 

Comparison of Calculated.Wave Resistance with Residuary Resistance 
Derived from Experiments for Model 1846B and Model N43 

The Relation of the Quantity © tothe Resistance is as follows 
5 R = Resistance of Modelin Lbs. 

© =645.8 R/é5v? Where {6 = Displacement of Model in Lbs. 
v = Speed of Model in Ft./Sec. 

9 R = Resistance of Model in Kgs. 
©=78.08 R/873-v2 Where +6 = Displacement of Model in Kgs. 

v = Speed of Modelin Ms/Sec. 

©vw From Calculated Wave 
Resistance in Perfect Fluid 

Resistance Corrected for Effect 
of Viscosity on Wave-Making 

Vf | ZamN 

PRVAS Ss a a Ea | 
PURSE ENE AENGEea ew EIEALIS 

a ara | AS ©pg From Ex: ADI 

VALS 

Particulars of Forms 

Equation of 1846 Bis 3-(I-f2)(I-§°)(1+0.257 
Equation of N43 is 3-(I-f 

Both Forms are Symmetrical Fore and Aftand 
the Bowand Stern Endings are Vertical Edges 

©vw From Calculated Wave 
Resistance in Perfect Fluid, | 

Scale of ©,,©Qwand ©yc for Model N43 

Length=16 Ft. Beam=!.5 Ft., Draft=.0 Ft.for Both Forms 

§ ) 2 8 24 
I-§)(1+0.252)+F°UI-F)(1-§7) 

Both Forms have Vertical Sides above the LWL. 

Le Gee ee 
Yh Body Plans of Forms 

Model 
1846B 

Block Coefficient = 0.462 
Prismatic Coefficient = 0.693 

Mid-Section Coefficient = 0.667 
1 Waterplane Coefficient = 0.693 
=z Angle of Entrance on LWL = 12.7° 

} Model 1846B 

Sections are Spaced at Intervals of 9.6 Ins. for Both Forms 

0.12 0.14 016 O18 020 022 0.24 026 028 030 032 034 0.36 038 040 042 044 046 048 0.50 052 0.54 0.56 058 0.60 

Fic. 6 

one time thought permissible. Recently Wigley 
and Lunde have worked with forms of fuller mid- 
section and Fig. 6 shows some of their results. 

The original fine form was altered by adding a 
bulge which widened the form amidships as indi- 
cated, and the resistance curves for the two models 

are shown. The comparison is made in a more 
striking manner in Fig. 7, which shows the differ- 
ence between the two models, with calculated and 

observed values. 
The models were tested in different tanks 

(Teddington and Trondheim) and the lack of 
agreement at very high speed is probably a depth 
effect due to the difference in depth of the two 

tanks. As the authors remark, the presence of a 
full mid-section, and therefore of a rather flat 

bottom, does not cause more discrepancies be- 
tween calculation and fact than occur with finer 
mid-sections. 

It is desirable to be able to calculate results for 
non-mathematical forms or for ordinary ship 
models. In essence the object is to replace the 
continuous distribution which represents the ship 
by a finite number of elements; these elements 
must be such that their super-position gives an 
approximation to the form of the model, and the 

elements must be of a simple character so that 
the necessary functions for each element can 
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be calculated and tabulated in sufficient detail. 
The element proposed by Guilloton is a semi- 
infinite wedge; or, if we prefer, we may think of it 
as a certain semi-infinite source distribution. 
Guilloton has tabulated many of the necessary 
functions and has had noteworthy success in cal- 
culating wave profiles and so forth; and the ap- 

plication of the method to a survey of stream 

+0.6 

+0.5 

+0.4 

+0.3 

+0.2 

+0.| 

Scale of © Model N43 Less © Model 1846B I © 

0.35 

19 

lines around a fine hull promises results of great 
value, especially if it can be carried out for models 
for which experimental results are available. 
Another method, proposed for approximate cal- 
culation at high speeds, is to replace the continu- 
ous source distribution over the longitudinal ver- 
tical plane by a finite number of sources and sinks 
of suitable magnitudes and positions; it is ob- 

Differences Between Model N43 
and Model 18468 

—-— In ©we from Calculated Wave- 
Resistance Corrected for Effect 
of Viscosity on Wave-Making 

———In Ow from Calculated Wave- 
Resistance in a Perfect Fluid 

In © , from Experiment 

04 0.45 0.5 0.55 0.6 
Scale of Froudes Number=v/VgL 

Fic. 7 
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20 WAVE RESISTANCE THEORY AND APPLICATION 

vious that this method would not be worth while 
for low speeds, as the number of elements would 

be too large and other methods of calculation, 

such as that used by Weinblum, would be less 
laborious. However, one possible extension is of 

some interest; we may subdivide the ship into 
compartments also by longitudinal vertical planes, 
so that the sources are not just located in one 
plane but are distributed in space. This repre- 
sents an attempt to extend the theory to models 
of fuller form than can be represented adequately 
by a plane distribution; although the method is 
rather crude, it might give some better idea of the 

15.0 

effect of finite beam. I reproduce some diagrams 
to show the sort of results which have been ob- 
tained by these methods. 

Fig. 8 shows calculated and observed wave pro- 
file for a certain model. The calculations were 
made both by the wedge method and by the 
source method, and there is not much difference 

in the first approximation; it should be added 
that Guilloton has considered various second 
order corrections by his method, and his cor- 

rected curve in this diagram shows extremely good 
agreement with the observed profile. 

12.5 | 

Longeur:4.8 

5.0 

Profils de Vague calcules et mesurés 

Model 755 Equation n=(1-Z?) cos ( E/2) 
6m. Largeur: 0.610m. Profondeur 0310m 

Vitesse: c=3.5| m/s. Numbre de Froude: C/VgL=0.505 

Profil mesuré 
75 ———— Calcul de Guilloton 

i —-—-— Calcu] de Guilloton avec correction 
Calcul par la methode des Sources 
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WAVE RESISTANCE THEORY AND APPLICATION 21 

Fig. 9 is from Guilloton’s work on stream lines. 
Fig. 10 shows resistance curves for two models, 

the calculations being made by the source method. 
The forms were not experimental models but 
were actual ships, of high-speed form and not sym- 
metrical fore and aft. The models were divided 
into ten compartments and the strengths and 
positions of the sources determined directly from 
the plans of the model, the chief point of the work 
being to show that the calculations can be carried 
out in such cases. 

Finally, I reproduce in Fig. 11 a diagram from 
Lunde’s recent paper in which he examined the 
effect of placing sources and sinks off the longi- 

tudinal vertical section. Here the model was of 
destroyer type, but it is unnecessary to enter into 

details of the comparison except to note that some 
improvement was obtained by the space distribu- 
tion of the sources. 

Wave at Surface 

“ee 

Model No. ie (Mr. Wigley) for ae 0.274 

Tangents Sac the Streamlines 

In Dotted Lines,Approximate Traces of 
are treamlines 

Fic. 9 

In some cases, and not only in those cases 

which have been reproduced here, one may sus- 
pect that the agreement with experimental re- 
sults is too good; or perhaps one should say 
rather that the agreement may be deceptive when 
pushed too far in view of certain considerations 
which have been neglected. There are, for in- 

stance, the effects of trim and sinkage at higher 
speeds, of which it is possible to make a rough es- 
timate; but, specially, there is the question of 
the effects of viscosity. 
We talk of comparing calculated wave resist- 

ance with experiment, but there is no such thing 
as an experimentally measured wave resistance; 
for that we must wait for the day when someone 

From Experiment 
From Approximation 

iol | = 
CPSs 

0.08 
035 040 045 050 055 060 

f=v/V(gL) 
Fic. 10 

065 070 O75 

invents a frictionless liquid. The only experi- 
mental result is the measured total resistance. We 
may adopt the usual procedure, which has been 
so well justified for most practical purposes, of 
considering the frictional resistance and the wave 

resistance separately, and we use some standard 

method, Froude’s coefficients or some more recent 

formulation, for determining the frictional re- 

sistance. Then we begin to realize, when we re- 

quire greater accuracy, that the ship is not a 
plank and that we should make some allowance for 
the effect of form upon frictional resistance; 
and, as the importance of boundary layer theory 
becomes recognized in ship problems, we find how 
necessary it is to know more of the conditions in 
the boundary layer, the extent of laminar flow, 
turbulent flow, separation and so forth, a matter 

which may be described as a burning question at 
the moment. It may well be the case that some 
of the differences between calculated wave re- 
sistance and so-called experimental values may 
prove to be due to error in estimating the fric- 
tional resistance. No doubt as we push on to 
greater accuracy, we may find it inadequate to 

treat the two parts of the resistance as independ- 
ent; the problem is one, and the two must have 

mutual interaction, the important point being 
whether it is of appreciable magnitude. On the 
one hand, it is obvious that viscosity effects have 

a very considerable direct influence upon the 
wave-making; on the other hand, it seems pos- 
sible that the wave motion may have an appreci- 
able effect upon conditions in the boundary layer 

in special circumstances, as, for instance, the po- 

sitions of crests and troughs in relation to the 
lines of the model. 
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WAVE RESISTANCE THEORY AND APPLICATION 23 

In regard to the effect of viscosity upon wave- 
making, some attempts have been made to allow 
for this, but no adequate theory has yet been pro- 
vided. It is well known that at low speeds we do 
not observe the oscillations in the resistance curve 
indicated by theory for a frictionless liquid and 
due to interference between bow and stern waves; 

in fact, the wave resistance is due very largely to 
the bow and entrance only, the effect of viscosity 

being to reduce the wave-making properties of 
the stern. We may begin then simply by intro- 
ducing an empirical reduction factor into the 
calculations, and for simplicity this factor was 
taken as constant and operative over the whole 
of the rear half of the model. This idea was im- 
proved by Wigley and made more useful from a 
practical point of view; comparing calculated 
and observed results for a large number of models, 

Wigley deduced a simple expression for such a re- 
duction factor and for its dependence upon veloc- 
ity. When we remember other considerations 
which have not been taken into account, it must 

be admitted that this viscosity correction prob- 
ably includes other effects than those due to 
viscosity alone; nevertheless it serves a very use- 
ful purpose. The difference made by this correc- 
tion can be seen in the curves of Figs. 6 and 7. 
The latter diagram illustrates a promising field of 
application of the theory as it stands at present; 
although it is not possible to give with sufficient 
certainty absolute values of the resistance, yet it 
is within reach to forecast differences made in the 
resistance curves for two models of a series with 
small variations in form. However, for a satis- 
factory account of viscous effects it will be neces- 
sary to link up wave theory and boundary layer 
theory. Starting with a much simplified concep- 
tion, consider a ship of streamline form with its 
boundary layer over the surface and becoming 
of any appreciable thickness only near the stern. 
The displacement thickness of the layer gives 
some measure of the amount by which the stream 
lines of the flow are displaced outwards; suppose 
then that we take the effective form of the ship 
for wave-making as the actual form increased by 
the displacement thickness of the boundary layer. 
Some calculations were made on these lines 
recently; but, needless to say, it was not possible 
to deal with actual boundary-layer structure. 
What was done was to make small modifications 
of the lines near the stern such as might reason- 
ably be ascribed to boundary layer effect, the 
main point being that these modifications were 
confined to quite a small region near the stern. 
The purpose of the calculations was to illustrate 
the possible effect of such boundary-layer modi- 
fications of the form and to see if they were suf- 

ficient to eliminate the excessive resistance oscilla- 
tions at low speed given by theory for a friction- 
less liquid, while at the same time not materially 
affecting values at high speeds. 

Figs. 12 and 13 show some of the results, with 

the modified forms and the corresponding re- 
sistance curves. They agree fairly well with the 

anticipated effect, except that the hollow at a 
Froude number of about 0.34 still remains too 
pronounced; but the latter is a persistent dis- 
agreement between calculated and observed re- 
sults for which some other explanation must be 
found. 
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24 WAVE RESISTANCE THEORY AND APPLICATION 

This inadequate survey of wave-resistance 
theory and its applications may be concluded by 
indicating briefly some directions in which further 
work would be specially useful. Even with the 
theory as it stands at present, much could be done 
to extend its range of application: for instance, 
by a systematic study of methods of approxima- 
mation and by the computation of necessary 
tables of functions, so that numerical calculations 

could be carried out more readily. But the two 

main problems, broadly speaking, are those of 
the ship of finite beam and of the effects of vis- 
cosity. It may well be that in both cases it may 

only prove possible to advance by successive 
stages of approximation to a solution: but the 
former problem, leaving viscosity out of account, 

is essentially a mathematical one for which a new 
approach is much to be desired. On the other 
hand, our knowledge of boundary-layer condi- 
tions is insufficient and the latter problem is pre- 
eminently one for combined theoretical and ex- 
perimental investigation. Indeed the whole sub- 
ject calls for a close association between mathe- 

matical and experimental work, especially if we 
keep in view its practical application to ship 
problems. 

Note: 
sources: 

Figs. 2 and 3: T. H. Havelock, Proceedings 
of the Royal Society, (A), Volume 201, page 297 
(1950). 

Fig. 4: T. H. Havelock, Quarterly Journal of 
Mechanics and Applied Mathematics, Volume 2, 
page 419 (1949). 

Figs. 6 and 7: W. C. S. Wigley and‘J. K. 
Lunde, 7vansactions of the Institution of Naval 

Architects, Volume 90, page 92 (1948). 
Fig. 8: W.C.S. Wigley, Bulletin, L’ Associa- 

tion Technique Maritime et Aéronautique, Vol- 
ume, 48, page 533 (1949). 

Fig. 9: R. S. Guilloton, Transactions of the 

Institution of Naval Architects, Volume 90, page 

48 (1949). 

Fig. 10: T. H. Havelock, Transactions of the 
North East Coast Institution of Engineers and 
Shipbuilders, Volume 60, page 47 (1943). 

Fig. 11: J. K. Lunde, Transactions of the 
Institution of Naval Architects, Volume 91, page 
182 (1949). 

Figs. 12 and 13: T. H. Havelock, Transactions 
of the Institution of Naval Architects, Volume 

90, page 259 (1948). 

The illustrations are from the following 
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THE MOMENT ON A SUBMERGED SOLID OF 
REVOLUTION MOVING HORIZONTALLY 

By T. H. HAVELOCK (King’s College, Newcastle upon Tyne) 

[Received 20 February 1951] 

SUMMARY 
The moment, due to surface waves, on a submerged solid of revolution moving axially at constant depth below the surface of the water is examined in detail. 

1. A SUBMERGED solid of revolution moves axially with uniform velocity - 
and with its axis at a constant depth below the surface of the water. If the 
solid is such that the motion in an infinite liquid can be represented by a 
known source-sink distribution along the axis, the horizontal and vertical 
forces on the solid due to the wave motion can readily be obtained to the 
usual approximation; however, for the moment about a transverse hori- 
zontal axis it is necessary to obtain the velocity potential to a higher degree 
of approximation, a point which was noticed in an early paper on the 
circular cylinder (1) but which has sometimes been. overlooked. In the 
present note we consider a prolate spheroid, for which this extension can 
be carried out; the form of the additional term in the moment in 
this case suggests an approximation applicable to other elongated solids 
of revolution, such as a Rankine ovoid, generated by an axial source 
distribution. 

2. We suppose the spheroid to be held at rest in a uniform stream of 
velocity c in the negative direction of Oz, the axis being at a depth f below 
the free surface of the water. We take O at the centre of the spheroid, 
Oz along the axis, Oy transversely, and Oz vertically upwards. Using the 
known axial distribution for motion in an infinite liquid, the velocity 
potential is given by 

ae 

¢ = cx+Ac [ bale 
{y?--2?+ (x—k)*} 

(oo) 6 

ae sep | dé | KP ose) __ gait +iee de, (1) K—kKy Sec?0-+ iu sec 0 
0 

where 

AQ — 2e/(1—e?) —log{(1+e)/(t—e)}, @ = («—k)cos 0+ ysin 8, 

ko = g/c?, and the limit is taken as p> 0. 
{Quart. Journ. Mech. and Applied Math., Vol. V, Pt. 2 (1952)] 
5092.18 
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The first two terms in (1) satisfy the condition at the surface of the solid. 

The third term, which we shall denote by 9s, is the first approximation to 

the wave motion; its form is determined so as to ensure that the three 

terms together satisfy the condition at the free surface of the water (2). 

The second term in (1), which is the velocity potential for the axial 

motion of a prolate spheroid, is usually given (3) as 2AcaeP(u)Q,(¢) in 

terms of coordinates specified by « = aeul, y = ae(1—p?)?(€?—1)? cosa, 

2 = ae(1—p,7)}(€2—1)'sinw; it can readily be verified that the two forms 

are equivalent. This equivalence is a particular case of a general relation 

which does not seem to have been stated explicitly, and the opportunity 

is taken of recording it here in view of its use in problems dealing with the 

motion of a spheroid. The relation expresses prolate spheroidal harmonics 

in terms of axial distributions of poles or multi-poles. Using the appropriate 

form of the known general expansion of reciprocal distance (4), it follows 

at once that ne 
ba! P. (k/ae) dk EOO=— | Se 

“ 

—ae 

For the general case, forming the corresponding expansion for the potential 

of a multi-pole, it can be shown that 

s SA comb iC AOUNG ( (ae? ~ k*)*SP S(k/ae) dk. 
P*(u)Q_ (Oe =+(5;+ taal | (y2 4 22 +(e@—k yt 

We use the theorem that the forces on the solid can be obtained as the 

resultant of forces on the internal sources, the force on a typical source m 

being —4zpmq, where q is the fluid velocity at the point other than that 

due to the source itself; in fact, we may omit the part of the velocity due 

to all the other internal sources and sinks. Thus for the horizontal force, 

or wave resistance R, we have 

ib 

[ Acx(éd3/x) dx, ( 
—ae 

R = —4zp bo ~— 

taken along the axis y = z = 0. 

Taking 4, from (1) and omitting terms which, on account of the integra- 

tions in x and k, give no contribution to the final result, this reduces to 

ae ae $7 

a /19 1 ale 36 d6 r e—2f +ix(x—k)cos 8 

R= —16px?c?A* | x dx | f | see (_—= = Kk, 

0 0 

(3) 
a 

—ae —ae 

where the imaginary part is to be taken. 
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The integration in « may be transformed in the usual manner by treating 

« as a complex variable and integrating round a suitable quadrant accord- 

ing as ~—k > or < 0. Finally we obtain 

in 
R = 327°gpa%e? A | sec? J3(Ky ae sec A)e-2xof sec*d 1g), (4) 

0 

which is the known expression for the wave resistance. 

The vertical force, Y, apart from that due to buoyancy, can be obtained 

similarly from a 

Y = 4p | Acx(éf4/éz) dev. (5) 
—ae 

This involves the real part of the contour integrals in « referred to above, 

and leads to double integrals; the expression for Y can easily be written 

down, but it is not very suitable for numerical computation. 

3. The moment of the forces about Oy requires more consideration, and 

we shall take it in two parts. 

We calculate first the moment on the initial source distribution arising 

from the vertical component of the velocity derived from the term ¢3 

in (1); we denote this part by G,. Thus 

ae 

G, = 4mp | Acx?(6b3/0z) dv, (6) 

—ae 

taken along the axis. 

But we have to proceed to a further approximation to the velocity 

potential, because the uniform stream produces on this second approxi- 

mation a contribution to the moment of the same order as G,; we denote 

this second part by G,. Let 4, be the term to be added to (1) for the next 

approximation. This term represents some distribution of sources and sinks 

within the spheroid; if M is the total moment of this distribution resolved 

parallel to Oz, then we have 

CG, = —4npcM, (7) 

and the total moment on the solid to this stage is G+ Gs. 

4. From (6) and (1), we have 

too) 
ae ae 7 

G, = spate [ atde | kak [ «| K (ict Hey 800%) 
K— 

—ae =u 0 

Kg sec?0-+-1p sec 0 
—ae 

sen 2kf+ix(e—hcos8 de, (8) 

ae 
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Treating the integration in « as before, and carrying out the integrations 

in x and k, this leads, after some reduction, to 

G, = 647pa?e?A?(c?/K9) | sec a=? — cos] x 
P 

0 

x (psinp +2 cosp— 2 SE |e tess db (9) 
Pp 

with p = x,aesec 0. 

We now determine the next approximation to ¢ so as to satisfy the 

condition at the surface of the spheroid, namely that the normal component 

of velocity from ¢,+-¢, must be zero over the spheroid. 

We use coordinates p,f,w given by 

x=aenl, y= ae(l—p*)?(C?—1)!sinw, z= ae(1—p?)'(f2—1)? cosw, 

(10) 
the spheroid being given by ¢ = ¢, = l/e. 

If, in the neighbourhood of the spheroid, ¢, is expressed in the form 

$s; = > > (AScossw-+ Bisin sw) P%(u) PX), (11) 
r=1 s=0 

then the required next approximation is given by 

= ie Q"( nn yharses soc Brains) ry )Qs(Z). (12) 

By considering the behaviour of the terms in ¢, as ¢— oo, we see that 

the only one which contributes to the moment JM referred to in (7) is the 

term in P}(.)Q}(¢)cos w; this latter quantity approximates to — 2a?e*z/3r3 

as > oo. Alternatively, we may get the same result from the expression 

of this term as a line distribution of doublets parallel to Oz along the axis 

of the spheroid between the two foci. Hence, putting in the value of the 

factor P}’())/Q1’ (fo), we have 

M = 2a°e? BA}, (13) 

with B- = flog{(1+e)/(1—e)}+-e(2e2— 1)/(1—e?). 

To. determine A} we take from the expression for ¢3 in (1) the term in the 

integrand involving the coordinates, namely 

Tr=1s= 

exp «(z-++72 cos 6+ iy sin 6), 

and expand the value of this on the spheroid in the form 

r 

S > (C8cos sw +Dssin sw) Psu). (14) 
s=1 
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The coefficient C1 is then given by 
4 1 2cr 

= Oh = | (l—p?)! dw i exp{«b(1—.2)#(cos w+-i sin w sin 6)+ 
“1 

++ ikap cos O}cos w dw. (15) 
The integrations can be reduced to known forms, and we obtain 

Cl = 3(7/2xa3e3)*b seci@ J(«ae cos A). (16) 
Hence, from (11), the corresponding term in the integral for A} is 

3(77/2xae)? sec!O J, («ae cos 8). (17) 
Using (7) and (17) in (1) we obtain the expression for G, which may be 
written in the form 

ae 47 co % 

Gh = IG p20 | k dk \ sec? dé | DAF —cosg)e-ts-ik se ds, 
—ae 0 0 

(18) where the real part is to be taken, and 

gq = xae cos 6, D = (+ K9sec?6)/i(e— Kg sec?4 iu sec A). 
After carrying out the integrations in « and k this leads to 

407 
1 2 

Gy = — 647pa’e?A B(c?/K,) | (“2 — eos) exo f sec’) sec @ dG, (19) 
Pp 

0 
with p = x aesecé. 

For computation it is convenient to express these results in terms of the 
so-called spherical Bessel functions, of which tables are available. If we 

iti 
ee S43(P) = (77/2p)'Jy 4a(p), 

T, = | S\(p)S4(p)e-21 =? seot9 a, 
0 

40 

1, = [ S3(p)e-27 #0"? e029 a, 
0 

Be tbewe R = 6479p, ate+A?],, 

Gy, = 64mgpatetA (ic, ael, —21,), 
Gy = —64ngpate4A BI,. (20) 

5. These results may be checked, to some extent, by taking the limiting 
case of a sphere. In the first place we may calculate directly the case for the sphere by the same method. For a sphere of radius a, we obtain 

+7 

G, = 4npc?a%3 | sec? e—2xof sec*d gp (21) 
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For G, we expand the corresponding term ¢; in spherical harmonics, and 

we find that G,, reduces to the same expression (21) with a negative sign; 

thus the total moment is zero, as should be the case. Turning to the 

expressions in (9) and (19) for the prolate spheroid, we find their limiting 

values for e > 0 reduce to the correct values for the sphere. 

6. Returning to the spheroid, we notice that G, may be positive or 

negative according to the speed; on the other hand, G is essentially 

negative. Further, from (20) we have 

G, = —BR/K, A. (22) 

If k, and k, are the inertia coefficients for axial motion and transverse 

motion respectively, we have 2e3A = (1—e?)(1++k,) and a similar relation 

between B and k,. Hence (22) may be put in the convenient form 

Gy = —(1+k)R/xo(1+hy). (23) 

The ratio (1+-4,)/(1+4,) is unity for a sphere, and approximates to two 

for a spheroid of large length-beam ratio. When c—> oo, or x)— 0, the 

integrals in the expressions for Rf, G, and G, all reduce to the integral 

given in (21), which can be expressed in terms of Bessel functions; hence 

we may find the limiting values of these quantities as the speed increases 

indefinitely. It appears that as c—> oo, R becomes zero of order c-?; on the 

other hand G, and G, approach finite limiting values, with 

G,> ngpaeA2/f?, Gy > —Eaxgpa%e®A B/f?. (24) 
Thus the moment G approaches the limiting value 

G = G+ G,—> —gngpa*b*(1--ky)(ky—ky)/f?, (25) 
and this is negative for a prolate spheroid. 

Some numerical values have been calculated from (20) for a spheroid of 

a length-beam ratio of 10. The moment at low speeds may be positive or 

negative and is small numerically; after a Froude number, c/,/(2ga), of 

more than about 0-4 the moment remains negative and increases rapidly 

towards its limiting value. 

It may seem unexpected, as compared with surface ships, to find the 

moment remaining negative at high speeds. The model of a surface ship 

is usually allowed to trim and at high speeds it takes up a position with 

bow up and stern down, corresponding to a positive moment; the attitude 

of the model is then roughly parallel to the mean line of the water surface 

in its vicinity. But the submerged spheroid we have been considering has 

its axis maintained horizontal; so we may describe it roughly as being in 

a stream whose effective direction in the vicinity of the spheroid is inclined 

to the axis and this provides a moment tending to increase this angle, that 

is, a negative moment. For a numerical case take a spheroid with a = 106 
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and immersed to a depth f = 2-56; we calculate the part G, of the 
moment for a Froude number 0-5. For a spheroid in a uniform stream at 
a small angle 6 to the axis the moment tending to increase this angle is 
g7pab*c*(k,—k,)8. Comparing these two;moments in this particular case, 
we find that G, would be accounted for in this way by an angle 6 of about 
0-03, which seems not unreasonable. However, this comparison cannot be 
pressed far; it is only intended to indicate a possible physical explanation 
of the negative moment at high speeds. 

7. Consider now any solid of revolution which, so far as axial motion in 
an infinite liquid is concerned, can be specified by a known axial source 
distribution. The part G, of the moment can be obtained at once by the 
method used in the previous sections: but it is not possible, in general, to 
calculate the part G,. Turning to the connexion between G, and R for the 
spheroid given in (23), it is proposed now to use this as a suitable approxi- 
mation for any solid of revolution, and in particular for one of large ratio 
of length to beam. The inertia coefficient k, can be calculated; if M is the 
total moment of the given axial source distribution and V is the volume 
of the solid, we have 47M — (1+h,)V. It is not possible, in general, to 
calculate k,. However, for a long slender solid, k, is small; on the other 
hand, k, approximates to the value unity which it has for the transverse 
motion of a circular cylinder. Thus, in such a case, it is sufficient for a 
fairly close approximation to take 

C= Ren (26) 
where FR is the wave resistance of the submerged solid. The simplest case 
is that of the solid specified by a single source and sink. If mis the strength 
of the source or sink, 2h the distance apart, 2/ the axial length of the solid, 
and 2b the maximum beam, we have 

4mlh = c(l?—h2)2: 4mh = ch?(h?-+b?2)!. (27) 
Taking the axis at depth f, the velocity potential can be written down 

to the same approximation as for the spheroid in (1). The process of 
determining F and the part G, of the moment is the same as before, and 
the details need not be given. Using (27) to express m in terms of the 
dimensions, we obtain 

tn 
R = 2mgpxy,b4(1-+-b2/h2) || {1—cos(2xyh sec O)}e-20 sec*8 see39 dO, (28) 

0 

377 

Gi, = 2mgprg hb*(1+b%/h?) | sin(2e,h sec Be 26/50" sect9 dO, (29) 
0 
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For G, we should work out the next approximation for the velocity 

potential, as in the case of the spheroid; but this does not seem feasible 

for the given solid. Meantime, as already indicated, we shall take (26) as 

giving a sufficient approximation and thus we assume 

a0 

Gy = —4gpb*(1-+-b?/h?) | {1—cos(2k,)h sec 0) eof sec"? sec39 dO. (30) 
0 

Computation of the total moment G can be made from the integrals in 

voice ] 

0:5 

G/rgpbi(1+8/h’) 

1-0 

03 c/v(2gl) 04 

(29) and (30) either by direct quadrature or by asymptotic expansions 

suitable for large values of the parameter 2x )h. To show the nature of the 

results calculations have been made for an ovoid with h = 10b, giving a 

length-beam ratio of about 10-5. Two depths of immersion were taken, and 

the results are shown in the figure with values of G/mgpb4(1-+-b?/h?) graphed 

on a base of Froude number c/,/(2gl). Curve A is for f = 2-5), and curve B 

for f = 5b. Curve A shows the typical oscillations at low speeds due to 

interference between bow and stern waves; these would no doubt be 

damped by viscous effects in an actual liquid. For curve B at greater 

depth these oscillations are too small to be shown on the scale of the 

diagram. 
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SHIP VIBRATIONS: THE VIRTUAL INERTIA OF A SPHEROID IN SHALLOW WATER 

By PRorEssor Sirk THOMAS H. HAVELOCK, M.A., D.Sc., F.R.S. (Honorary Member and Associate Member of Council) 

Summary 

It is known that certain motions of the surface of a spheroid expressed by spheroidal 
harmonics are similar to flexural 2- and 3-node vibrations, and can be used to obtain 

virtual inertia coefficients for motion in an infinite liquid. These calculations are now 
extended so as to include the effect of a plane boundary, and are given in a general form 

which includes translation and rotation as well as the flexural vibrations. 
Consideration is given, in particular, to the vertical and horizontal vibrations of a float- 

ing spheroid, half-immersed, in water of given depth. Graphs are obtained for the variation 
of the relative increase of inertia coefficient with the depth of water. These show how 

the variation depends upon the type of vibration, and a result of special interest is the 
striking difference between horizontal and vertical vibrations; the relative increase is less for 
the horizontal vibrations, and decreases much more rapidly with increasing depth of water. 

PART I 

1. In this part we give a general account of the work, 
leaving details of the analysis to Part II. 

In calculating the frequencies of the natural flexural 
vibrations of a ship, allowance has to be made for the 
added inertia due to the surrounding water. This is 
usually carried out by a two-dimensional strip method 
which consists in obtaining a suitable expression for an 
elementary transverse section and integrating longitudi- 
nally; an empirical factor is then added to allow for the 

fact that the motion of the water is three-dimensional. 
The only direct three-dimensional calculations which 
have been made are for a prolate spheroid deeply im- 
mersed, or in an infinite liquid. It was shown by 
Lewis,” and about the same time independently by 
Lockwood Taylor,™ that certain motions of the surface 
of the spheroid expressible by spheroidal harmonics are 
approximately the same as for the 2-node and 3-node 
flexural vibrations, and so can be used to give an esti- 

mate of the increase of kinetic energy due to the 
surrounding water. 

Recently the influence of depth of water upon the 
added inertia has become of interest. Here, again, the cal- 
culations have been made by the two-dimensional method 
extended to allow for finite depth of water; reference 
may be made, in particular, to work by Prohaska.© 

In the present paper no attempt is made to examine 
afresh the general theory of the natural vibrations of a 
solid which is partially, or wholly, immersed in water, 
although a more complete theory is much to be desired; 
nor is any attempt made to deal explicitly with solids of 
ship form. Although the analysis may have wider 
applications, the main object of the paper is to carry 
out three-dimensional calculations for a prolate spheroid 
so as to include the effect of finite depth of water, and, 
in particular, to examine the vertical and horizontal 

vibtations of a spheroid floating in water of finite depth. 
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2. After a brief summary of the analysis for a spheroid 
in an infinite liquid (§ 6), we proceed to the case of 
finite depth of water. We consider a prolate spheroid, 
major axis 2 a and transverse axis 2 b, wholly immersed 
in water with its axis horizontal and at a height f above 
the bed; in the first place we suppose the water deep 
enough so that we can ignore any effect of the upper 
free surface. The surface of the spheroid is given a 
prescribed motion and we calculate the kinetic energy of 
the resulting fluid motion. Naturally, an exact solution 
is not obtained, and the degree of approximation may 
be indicated by reference to known simple cases. If a 
circular cylinder is moved transversely to its length, 
either parallel to the boundary or at right angles to it, 
the approximate relative increase in the virtual inertia 
coefficient is b?/2 f?. For a three-dimensional case, the 
only known result appears to be the similar approxima- 
tion given by Stokes for a sphere; if the motion is 
parallel to the boundary the relative increase is 3 57/16 f3, 
while for motion at right angles to the boundary it is 
3 b3/8 f3. We obtain the corresponding approximation 
for a prolate spheroid. The analysis is given in general 
form for motion of the spheroid specified by a harmonic 
of order n, for motion both parallel to the boundary 
and at right angles to it; particular cases of the solution 
include translation and rotation of the spheroid and also 
2- and 3-node vibrations. 

3. We turn next to the more interesting problem of a 
floating spheroid, which we suppose to be half immersed 
in the water. For a complete theory we should include 
the surface waves produced by the vibrations, but we 
neglect these meantime; having in view application to 
ship vibrations we adopt what seems to be the appro- 
priate simplification, the so-called free surface condition 
neglecting gravity. A modification of the previous 
section gives expressions for the relative increase in 
inertia coefficient for the various types of motion and in 
§ 11 we consider the vertical vibrations of the. floating 
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spheroid. Numerical computations have been made for 
a spheroid whose length 2. is just over 10 times the 
beam 2 5, and the results are shown in Fig. 1; the com- 
putations were troublesome, and a high degree of 
accuracy was not attempted. 

ie) 15 20 2:5 3:0 2:5 

Fic. 1.—RELATIVE INCREASE OF VIRTUAL INERTIA COEFFICIENT (OT/To) 
FOR RATIO OF DEPTH OF WATER TO DRAFT (f/b), VERTICAL VIBRATIONS 

(V), HORIZONTAL VIBRATIONS (#7). 

The ordinates are the relative increase in inertia 
coefficient, that is the ratio of the increase to the value 
in deep water; the abscissae are the values of //b, or the 
ratio of depth of water to the maximum draught. The 
curves in question are those marked V. Those marked 
OV and 1 V are for translation and rotation respec- 
tively; but we may regard the set of curves as repre- 
senting vertical vibrations specified by the number of 
nodes, 0, 1, 2, 3, respectively. From this point of view, 
it is of interest to note the varying influence of depth 
according to the type of vibration; it is clear, for 
instance, that using values derived from pure translation 
would give misleading results for 2- or 3-node vibrations. 
The curves V in Fig. 1 were obtained from the general 
results given in equation (35). These expressions have 
simple approximate forms when the spheroid is very 
long; the values are 0-658, 0-470, 0:439, 0-429 times 
bf? for n=1, 2, 3, 4 respectively. In the present 
case, for which the length-beam ratio is 10, the curves 
approximate fairly closely to these values for small depth 
of water. As regards actual measurements, there are 
no experimental results which are strictly comparable. 
Prohaska® has given a formula 2 Cy d?/f?, where Cg is 
the block coefficient and d is the mean draught. As the 
form indicates, this is based on two-dimensional theory, 

with the coefficient chosen to agree as well as possible with 
results from actual ship forms. The prolate spheroid 

40 
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is not a normal ship form, nevertheless it is of interest to 

note that this formula gives 0-466 b*/f?, which may 
be compared with the approximate values given above. 

4. The remaining sections of the work are devoted to 
the similar horizontal vibrations of the floating spheroid, 
dealing first with deep water. It is generally known that 
if inertia coefficients for horizontal motions are calcu- 
lated using the free surface condition, the values are 
much less than if the rigid surface condition had been 
used. Ifa circular cylinder, half immersed, is oscillating 

horizontally at right angles to its axis the inertia coeffi- 
cient is 4/7 compared with the usual value unity. Fora 
log of square cross-section, Wendel™ has calculated that 
the value for horizontal motion is about 0-337 of the value 
for vertical motion; for a general account of virtual 
inertia coefficients reference may be made here to a 
recent paper by Weinblum.© Calculations for three- 
dimensional motion do not seem to have been published, 
though no doubt the general nature of the results is 
known. We give in §12, general expressions for a 

prolate spheroid, half immersed, from which the inertia 

coefficients could be found for the various types of 
horizontal motion we have been considering; these 

include translation, rotation, and 2-node and 3-node 

vibrations. Approximate calculations have been made 
for the particular case of a length-beam ratio of 10, and 

these indicate that the values are of the order of 0-4 of 
the values for a deeply submerged spheroid. 

5. The last section deals with the same problem for 
water of finite depth. Here the mathematical difficulties 
are such as to preclude a general form of solution for 
the various types of vibration. However, taking the 
simplest type n = 1, an approximation is obtained in 
(53) for the relative increase in inertia coefficient due to 
the finite depth of water; it is considered that this 
approximation is sufficient to show the essential character 
of the effect of depth of water. Taking the same 
particular case of a length/beam ratio of 10, numerical 
computations have been made from this expression and 
the results are shown in the curve labelled OH in Fig. 1. 
The two curves to be compared are the curves OV and 
OH;; they are both for the same type of vibration, the 
former being vertical and the latter horizontal. The 
point of special interest is the remarkable difference 
between vertical and horizontal vibrations as regards 
the influence of shallow water. This difference is 
expressed simply if we take the approximate values for 
a long spheroid; in that case, it is easily shown that the 
expression (53) for horizontal motion is of the order of 
(b/f)*, while we have already seen that for vertical 
motion the approximation is of order (b/f)*. This may 
be confirmed by working out a simple two-dimensional 
case, a circular cylinder half-immersed. In this case the 
conditions of the problem may be satisfied to any 
required degree of accuracy in the ratio b/f; it may be 
sufficient to state the results here. If the motion is 
vertical, the inertia coefficient in deep water is unity; the 

relative increase in shallow water is given by 

0-8225(b/f)? + 0-3382(b/f)* + 0-1391(b/f)e +... 
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If the motion is horizontal the inertia coefficient in deep 
water is 4/7”, and the relative increase in shallow water 
is given by 0-6314(b/f)* — 0-2190(0/f)§ +... If we 
graph these two expressions we obtain curves of the 
same character as the curves OV and OH in Fig. 1. 

As regards observed results for actual ship vibrations, 

it has been stated that there is no measurable change of 
frequency of horizontal vibrations in shallow water, in 
striking contrast to the observations on vertical vibra- 
tions. If that should prove to be the case, it would 

confirm the assumptions underlying the present analysis; 
however, it would be of value to have a direct examina- 

tion of the problem under conditions which would allow 
both of theoretical calculation and of precise experi- 
mental determination. 

PART I 

Infinite Liquid 

6. Consider a prolate spheroid, of semi-axes a,b and 
eccentricity e, in an infinite liquid. We take axes with O 
at the centre, Ox along the axis of the spheroid, Oy 
transversely, and Oz vertically downwards. We shall 
use non-dimensional space-co-ordinates, giving the ratio 
of any distance to the length ae. We have then 
spheroidal co-ordinates (u, ¢, w) with 

x= pl; y= (1 — #)(0 — 1) cosa; 
z= (1 — )”? — 1)fsinw (1) 

The spheroid is given in these co-ordinates by ¢ = 
= l/e. Consider the fluid motion given by the velocity 
potential 

$ = CP(u)Q)(C) sin w cos ot (2) 

This motion would be produced by a distribution of 
normal velocity over the surface of the spheroid given by 

— offv = — (C/ae)[(1 — e%)f(1 — eu2)]* 
P!(wJQU(L) sinw cos ot . (3) 

where the dot denotes differentiation, a notation we 
shall use throughout. We make the usual approxima- 
tion for vibrations of the spheroid of small amplitude, 

assuming this to be equivalent to a distribution of normal 
velocity given over the spheroid in its mean position. 

It is well known that, with suitable values of the 

constant C, for n = 1 or n = 2 the fluid motion given 

by (2) can be produced by motion of the spheroid as a 
rigid body; if n = 1, this motion is translation parallel 
to Oz, while if n= 2 it is rotation round Oy (eg. 
Lamb, Hydrodynamics, p. 141). For higher orders of 
harmonics, deformation of the spheroid is necessary 
The present application is, chiefly, to the transverse 
flexural vibrations of a spheroid of large ratio of length 
to beam. We may then regard the deformation as a 
simple shear of transverse sections of the spheroid. It 
can be shown that the normal velocity (3) is produced 
by such a transverse motion with the velocity distribution 

along the axis proportional to P,(x/a). For instance, 
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with n= 3 the nodes of the vibration are given by 
x/a = + 4/5, while for n=4 we have a 3-node 
vibration with nodes at x/a = 0, + »/3/7. It is 
possible to improve this approximation to the natural 
vibrations, as pointed out by Lewis” and by Lockwood 
Taylor,” by taking combinations of spheroidal harmonics 
or by other refinements. But the additional complica- 
tion is not worth while for the present purpose; we are 
concerned not so much with the absolute value of the 
inertia coefficient as with its relative increase in shallow 
water. 

From (2) and (3) we obtain the kinetic energy of the 
fluid by integrating over the surface of the spheroid; and 
we have 

T = —4p|b¢)ov) dS (4) 
= —7pa(l — ee. [n(n + DI2n +1] 

C? Qi (Lo) Qi(So) cos?a t . (5) 

The kinetic energy of the spheroid can be obtained from 
the corresponding velocity distribution in the solid, and 
hence the virtual inertia coefficient; but these results are 
already known. 

Semi-Infinite Liquid, with Rigid Boundary 

7. Let the axis of the spheroid be parallel to a plane 
rigid boundary given by z=f/ae. If To is the kinetic 
energy of the fluid for a given type of motion when the 
spheroid is in an infinite liquid, and 6 T is the increase 
in kinetic energy due to the boundary, we are concerned 
with the ratio 6 T/T, which is, of course, the relative 
increase in the corresponding virtual inertia coefficient. 
If we imagine this quantity expressed in powers of the 
tatio b/f, the approximation at which we aim is the 
leading term in such an expression. This can be 
obtained in the following way. Let 49 give the motion 
in an infinite liquid with the given normal velocity over 
the spheroid. Let ¢, be the image of this in the 
boundary, giving zero normal velocity over the boundary; 
and let ¢, be the image of ¢; in the spheroid, so that the 
normal velocity over the spheroid is unaltered. Then, 
using ¢o + ¢, + ¢, in the usual surface integral for the 
kinetic energy, we obtain this approximation. 

It is convenient to give here some formulae which are 
used throughout the analysis. 
We require the expansion of the inverse distance 

between two points whose spheroidal co-ordinates are 
(uw) and (1, €, w,); this is (Hobson) 

pla z@ n + 1) P, (14) Q, (61) P, (4) PD) 
2 n n— s)!]? 

+22@n49 3 (0s 5)| 
PS (444) Q5 (C1) PS (4) Ps (6) cos s(w, — w) (6) 

an expansion which is valid for ¢, > ¢. 
We also need the relation 

POGVO-POw® 
=(— I)! [@+5Y¥a —s) YC — 1) (7) 
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Another relation, given by the present writer™ is largely 
the basis of the following calculations; it is, in the 
present notation, 

rn) . 0 
PW Wet =4(5 +855) 

1 

(1 — h?)** Ps (h) dh 

[@ =m +P +2 
-1 

This result expresses the spheroidal harmonic as a line 
distribution of multi-poles along the axis of the spheroid 
between the two foci. 

& 

(8) 

Transverse Motion at Right Angles to the Boundary 

8. We begin with the form for an infinite liquid, 

do = P,, (H) Q;, (2) sin w (9) 

For convenience, we omit the time factor and the con- 
stant C. Take parallel axes O'(x’, y’, z’) with the 
origin O’ at the point x = 0, y = 0, z = 2f/ae; and let 
ph’, 6, w’ be spheroidal co-ordinates referred to these new 

axes. It is easily seen that to maintain zero normal 
velocity over the plane z = f/a e, we must take 

o) = — P, (#) Q, @’) sin (10) 

To obtain ¢, we expand (10) in the neighbourhood of 
the spheroid ¢ = ) in the form 

— 3 3S (As cossw +Besins wo) P*(y)P5(Q (11) 
n=0 s=0 

Then ¢, is given by 

b2 = 

x & (A; cossw + By, sin sw) Pr (u) Qi (2) Pr (S0)/Q), (So) 
(12) 

General expressions for the coefficients could be obtained; 

but it is easily seen that in order to calculate the kinetic 
energy we only need the coefficient B}, noting that the 
normal velocity on the spheroid is unaltered and also 
using the orthogonal properties of the functions. From 
(8) we have 

(22)! Pl(k) dk 
Slesarei ey 

=i 

Plu’) QC) sin w! = 5 

d (1 — k*)! Pi (k) dk 
dq Ike —k)?+y?+(z—q)*}? 

(13) 

with g = 2f/ae. If the point (x y z) is (uf w) and the 
point (Kk oq) is (4; ¢,@,) in the same spheroidal co- 
ordinates, we have in (6) the expansion of the inverse 
distance between these two points, with 

k= py 2); 0= (1 — pi)? (G — 1)* cos w; 

qg= (1 — pi)? (G — 1)Fsin & 
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Further, the expansion is valid in the neighbourhood of 
the spheroid, since €, > Cp. 
We substitute this expansion for the denominator in 

(13), and B} is the coefficient of the term P! (1) P'(£) sin w. 
Hence, from (6) and (13) we have 

2n+1 a 

n(n + 1)? dq 

[4 PLO) P12) QE G)sin oy de (1) 
24 

raft = 

We may put this into a symmetrical form by noting that 
P! (u,) Q' (¢,) sin, is the value of this spheroidal 
harmonic at the point (k 0 q); hence, from (8) 

1 

(1 — #2) PL(h) dh : ed 
Ph (141) Q, (¢;) sin w, = 2 dq aG =hy + rap (15) 

This gives 

B} — ntl ey 
n n2 (n ae 1)? dq 

(1 — h?)k (1 — k?)# P! (h) P! (k) I [‘ (aera dhdk (16) 

To calculate the kinetic energy, we see that d4/d¢ on 

the spheroid is P! (u) Q! (4) sinw; and from (9), (11), 
(12) the corresponding term in the value of ¢ on the 
spheroid is 

[Q! (Go) — BLP} (Go) + BL PI (£0) Qh (Co)|/ 
QI (Go) . Ph (w) sin w 

or using (7) 

[l —n(m + 1) BUG — 1) Qk) Qi (£0)] 

Qi) (Go) Ph () sin @ (17) 

It is obvious that the kinetic energy is increased by the 
factor within square brackets in (17); hence from (16) 
and (17), the relative increase in kinetic energy, or in 

the inertia coefficient is given by 

8 T/Ty = —2n+1)D,/ ' 
2n (nm + 1) (& — 1) Q) (So) Qi (Lo) (18) 

with 

(i =) — kt P,P, (&) 

ee a) [ [(k — h)? + a}? ana 
re (19) 

Transverse Motion Parallel to the Boundary 

9. When the vibrations are parallel to the boundary, we 
begin with 

$o = Pr (#4) Q; (2) cos w (20) 
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In this case, we have 

$; = Ph (#') Qh (6) cos w’ 
1 

mn) 
lim 

wea == Hin 

Using the expansion (6) in (21), with the point (kK pq) 
being (4; 6; w,) in spheroidal co-ordinates, we obtain 
the coefficient of P! («) P! (¢) cos w as 

Zeal Oo 

n(n + 1)? dp 

el — k?)? P! (k) dk 1 

[@—b2+0—p2+e-arp CP 

M= 
1 

{a — 2) P! (ke) P! (uy) Q! (L,) cos wo de (22) 
=i 

Further, we have 
1 

12 | @—) PL) dh 

2 op | [(k—A)?+p* +47}! 
—1 

Px (#41) Qn (£1) cos wy, = (23) 

Taking the limit of 07/) p* as p->0, this leads to a 
fractional increase of kinetic energy, or of the inertia 
coefficient, given by 

r) T/Ty = : 

—Qn+ IE J2n@ + 1) (GB — 1) Qo) Q (Go) (24) 
with 

1 1 

1—Ah) (1 z= | | i 
oi 

These integrals can, of course, be evaluated explicitly in 
closed expressions for any given value of m. However, 
the expressions become very lengthy for the higher 
orders and we shall not reproduce them here in general. 
For numerical computation it proved somewhat better 
to express the double integrals in terms of subsidiary 
single integrals. Also one can obtain, either from the 
double integrals or from the explicit expressions, approxi- 
mate forms suitable for q large or qg small. 

10. We give now the results for some special cases. 
n= 1. For motion at right angles to the boundary, 

(18) and (19) give 

C) T/To = 

=f 
= $log {[2 + 4 + @)']/q} 

spa (2a == Ie =2ar)G = GA) 

Prq+ae@ . (7) 

For motion parallel to the boundary, (24) and (25) give 

8 T/T) = —F E[(G — 1) Qi (£0) Qi (Lo) (28) 

— Ky? Pn (A) Pn (Kk) 
= hy = ep? dhdk (25) 

—3DK(Q — 1) Qi (4) QS) - (26) 
with 

d=”) —2) 
[kip Hep dhdk 
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with 
1 1 

ue @ Pa =2 
= [(k es hy? ae Gg |? 

== 

—$ flog [2 + 4 + @)!]/a} 

f 2 (Fs Gia f 

dhdk 

52 4 
45 45 q)(4 + 9) 

=59 = 257 (29) 

It is readily verified that as gq — 00, or e 0, we recover 
the known results for a sphere, namely 3 53/8 f? and 
3b7/16f? respectively. We may also find the limiting 
values for a long spheroid with b/a small, by making 
e—>1, ao, while retaining b? = a?(1 —e?). The 
limiting values are the same for the two types of motion, 
as is the case for a circular cylinder; but the value of 

the ratio is 2b7/5f? instead of b7/2f?._ Thus in this respect 
the circular cylinder is not the limit of a long spheroid. 
This value can also be obtained directly by the two- 
dimensional strip method. For this purpose we con- 
sider a circular section of the spheroid of radius y; take 
its contribution to the kinetic energy of the fluid motion 
as proportional to y?(1 + y?/2f?), and integrate along 
the axis of the spheroid. 
n= 2. Considering only motion in a vertical plane 

(18) and (19) give 

8 T/Tp = —15 A/4 (GB — 1) Q5 Go) Q5 (Lo) 
with 

(l—R) (1 —k)hk 

al, 
Togugsie [é-—yter 

dhdk (30) 

= For a 2-node vertical vibration 

) oe = —21 A/32 (65 — 1) Q3 (4) Q4 (Co) 

with 

ere h?) (5 h? — 1) (1 — k*) (5k? — 1) 

~ OG (=F = GP 
: (31) 

n= 4. For a 3-node vertical vibration, 

8 T/Ty = —45 A/32 (65 — 1) Qh (Lo) Q4 (£0) 
with 

=< 

(1 —h*) (7 h3 —3 A) (1 —k?) (7 3 —3 k) : 
Pi i (Gaara dhdk 

x (32) 

For a longs Spins! the limiting values of these expres- 
sions are 2, +, 22b°/f* for n= 2, 3, 4 respectively. 
These can also be obtained by the two-dimensional strip 
method, taking into account the distribution of trans- 
verse velocity along the axis of the spheroid. 
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Vertical Oscillations of a Floating Spheroid 

11. We suppose the spheroid to be floating with one- 
half immersed. As before, Ois at the centre of the 
spheroid, and Oz vertically downwards; the free surface 
of the water is the plane z = 0, while the bed is the plane 
z=flae. We have now to consider the condition at 
the free surface. For simple harmonic motion of 
frequency o we have the usual linearized condition 
¢+(g/o*)d¢/3z=0. Using this condition we should 
have to take into account the wave motion of the free 
surface, but that is beyond the scope of the present 
work. There are two limiting simplifications which may 
be made according to the conditions of the particular 
problem; we may take ¢ = 0, the free surface condition 
neglecting gravity, or we may take d ¢/d z = 0, the rigid 
surface condition. Taking into account the frequency 
of ship vibrations, the appropriate alternative seems to be 
¢ = 0; the measure of agreement between calculated and 
observed frequencies justifies this assumption as a working 
hypothesis. 

The conditions for the velocity potential are now 
(i) the given normal velocity over the submerged half of 
the spheroid, (ii) }¢/)z = 0 for z=fJae, (iii) 6=0 
for z= 0. This is the same as considering the complete 
spheroid in water contained between two parallel planes 
z= +/f/ae, with the normal velocity given over the 
whole surface. For a vertical vibration we begin, as 
before, with 

bo = Pr (4) Q; (4) sin w 

In order to satisfy conditions (ii) and (ili) we now have 
an infinite series of image systems alternatively positive 
and negative, associated with the points z= + 2s/f/ae. 

Hence we have 

(33) 

d= —2 & (— 1) 1 Pi) Q() sine, (34) 
Sa 

We have obtained in the previous sections, the value of 

¢, for any one of these image systems, and also its 
contribution to 6 T/T). Hence for the vertical vibra- 
tions we have 

Saye (One) (— 1)-"D,,/ 

n(n + 1) (G3 — 1) QL (Gy) Qh (Lo) 

with D,,, given by (19) with g = 2sf/ae. 
For instance, for n = 1, 5 T/Tp is given by (26) with 

(35) 

1D) = 2 (= Wea? 1D (36) 
1 

with D, given by (27) with q = 2s fJae. 
The limiting form of this result for a long spheroid is 

(2 b7/5 f?) Z(— 1)8-1 s-2, or a? 57/30 f?. 
For any given case, having computed and graphed the 

double integral involved as a function of the parameter gq, 
it is a simple matter to obtain from the graph the 
summation with respect to s. 

588 

Horizontal Vibrations of Floating Spheroid 

12. Deep water. If we retain the same condition at 
the free surface, the horizontal vibrations are a more 

difficult problem. With the given normal velocity on 
the immersed half of the spheroid, the conditions are 
now 

d PofdS = Pi (u)cosw; C=4; OK wer 

do =0; w=0 (37) 

This is equivalent to considering the complete spheroid 
in an infinite liquid with the conditions 

> dofd C= Pr(u) cos w; 0 < 
> dod 6 = —P, (H) cos w; — 

$9 =0; w=0 (38) 

To satisfy these conditions, we express the value of 
0 go/d ¢ in a suitable infinite series of Legendre functions, 
of the form 

XD AS, PS (u) sins w (39) 

Forming the series by the usual methods, it is seen 
that s must be even, and the coefficients are given by 

Mae (GARB AGE Psa so Tat Gone FOP wide (40) 

It follows that if m is even, the coefficients are only 
different from zero if m is odd; while if n is odd, m 

must be even. The velocity potential is then given by 

bo = DAN Qn (fo). PS, (4) Q5,(Q sins (41) 

This form of solution gives the assigned normal velocity 
on the spheroid for all points other than those for which w 
is actually zero, that is for points not actually on the water 
line. There is, in fact, a discontinuity in the normal 

velocity on crossing the water line; there will be a 
corresponding infinity in the tangential velocity at these 
points. However, as in similar problems involving 
what is effectively flow round a sharp edge, the usual 
surface integrals for the kinetic energy lead to a finite 
result. 

From (38) and (41) we may obtain the kinetic energy, 
and if we introduce the suitable factor according to the 
motion of the solid, the corresponding inertia coefficient 
can be calculated. 

13. Water of Finite Depth—tIf the water is of finite 
depth we should have, as in § 11, an infinite series of 

image systems in subsidiary spheroidal co-ordinates, each 
system being an infinite series of terms. Further, 
expanding any one term so as to obtain the image in the 
spheroid would involve infinite series. Finally, in con- 
trast to the conditions for vertical motion, from the 

form of the conditions all the terms in the series con- 
tribute to the kinetic energy. Thus, in general, the 

method becomes much too complicated. 
However, when we form the expression for the kinetic 

energy for cases with which we are dealing, it appears 
that the first few terms of the series account for much 
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the greater part, and a useful approximation is obtained 
by taking only one or two terms. For instance, if we 
take the simplest case n = 1, representing a transverse 
vibration with no node, we have, omitting the time 

factor and any constant multiplier 

$o = A3/Q3 (Co) . P3 (x) Q3 (OQ) sin2 w 

+ A/Q3 (o) . P3(u) Q3(Osin2w +... 
the coefficients being given by (40) with n= 1. 
gives AZ = 5/16, AZ = 1/64,... 

For the kinetic energy for the complete spheroid in 
an infinite liquid, we have the usual surface integral (4), 
in which 0¢/)¢ = + P!(u)cosw@ according as w is 
positive or negative. We obtain 

T= = PE —e)fe. LEQ (Co)/ 

Q3 (Co) + z8z Q5 (o)/Q5 (Go) +. --] (43) 

For the case we have been using for numerical com- 
putation, ae = 105, the terms in the square brackets in 
(43) are 0-9375 + 0-0195 +... Although the rest of 
the series converges rather slowly, much the greater part 
is given by the first term. 

Consider now the same problem in water of depth f. 
To avoid prohibitive complications, we shall take only 
the first term. Although this leaves somewhat uncertain 
the degree of approximation, yet, as we are concerned 
more with relative increase than with absolute value, we 

may expect to get at least the main character of the 
variation with depth of water. Omitting unnecessary 
factors, we begin, in the notation of previous sections, 

with 

(42) 

This 

0 = P3(n) Q3 (¢) sin2w 
and suppose the bed to be given by z = //ae. 

(44) 

We now have an infinite series of image systems 
associated with the points z = + 2s fJae, and we have 

b= —2 E (— 1 PE) BG) sin2, (45) 
To expand a typical system associated with z = qg, we 
have, from (8), 

P3 (5) Q5 (Z,) sin 2 w, 

» (1 — k*) 3 (kA) dk 
 dydz|[@ —kh? +y?4+  —@)’}? 

= 

Y (1 — k*) P3(k) dk 

Ipoq|(@ —kK? +0 —P? +e -—o} 
=1 peulahees (46) 

Wit eG pil —)per) (Gra) COs ay 
q=(1 — -)! (G — 1) sin; we select the required 

= lim 
p—>0 

589 

term using the expansion (6), giving for the coefficient of 
P3 (1) Q3 (0) sin 2 w the expression 

Boo 
288 dpdq 

1 

(1 — k?) P3 (k) P3 (144) Q3 (¢,) sin 2 w, dk 
—1 (47) 

Further we have 
1 

2 (1 — A?) P3(h) dh 
PA) iG) sa Ion = | 3 Deg Cl) ees aaal 

-1 
(48) 

Putting this into (46), and taking the limit as p — 0, the 
contribution from a typical term may be written as 
= 5 B,, with 

1 1 

¥ (1 —2)2(1 — kK)? dhdk 

Bg [& = AP +P] 
=I -1 

(49) 

and the required term in the expansion is 

& E(— 1)°-' B, P3 (u) P3(O) sin2w (50) 
G=i1l 

to which, in order to maintain the normal velocity on 
the spheroid, we add 

= 5 E(— 11 B, PH (Co)/Q (Lo) . PS (H) (CO) sin 2 w 

(51) 

Finally, after using (7), the value of ¢ on the spheroid, 
to this approximation, is 

QB (Go) [1 — 15 E(— 1 BY 
2 (4 — 1) Q3 (Co) Q3 (Eo)] P3 (u) sin 2 w 

Since the value of 0 4/)¢ on the spheroid is unaltered, 
the kinetic energy is increased by the factor in square 
brackets in (52). Hence the relative increase in kinetic 
energy, or in the inertia coefficient is given by 

8 T/T. = — 15 E(— 11 BY/2 G — 1) V (Lo) Q8 (Lo) 
. (53) 

(52) 

with B, given by (49) in which gq = 2s /f/ae. 
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THE FORCES ON A SUBMERGED BODY MOVING UNDER WAVES 

By PROFESSOR Sik THOMAS H. Havetock, M.A., D.Sc., F.R.S. (Honorary Member and Associate Member of Council) 

Part I. MOTION NORMAL TO THE WAVE CRESTS 

Summary 

A theoretical investigation of the forces and moments on a submerged spheroid moving 
close to the surface under waves. Expressions are obtained for the surging force, heaving 

force and pitching moment taking into account the speed of advance and also the disturbance 

of the wave train by the solid; graphs are given to show the variation of these quantities with 

the speed of advance and with the wavelength. 

1. Introduction 

The theory of the forces on a submerged spheroid 
moving through smooth water was examined in a 
previous paper (Ref. 1), and has been discussed in detail 
recently by Wigley in these TRANSACTIONS (Ref. 2). An 
interesting and important extension is the same problem 
when the spheroid is moving steadily either with or 
against a regular train of transverse waves. In con- 
sidering the similar problem for a surface ship it is usual 
to assume the pressure on the ship to be that due to 
the undisturbed wave train, as, for example, in the 
so-called “Smith effect” or as in the classical theory of 
the motion of ships among waves as developed by 
Froude, Kriloff and others; broadly speaking, this is 
equivalent to neglecting the various virtual inertia 
coefficients of the ship. Moreover, the effect of the 
speed of advance of the ship is assumed to be simply 
an alteration of the frequency of encounter with the 
waves. A more adequate theory for surface ships 
presents great difficulties; however, for various reasons, 
it is possible to carry the theory further for a wholly 
submerged body uncer certain conditions, and the 
present paper deals with the motion of a submerged 
prolate spheroid. The mathematical analysis is given 
in Sections 2, 3, 4, and the notation and main results 

are summarized in Section 5. General remarks are made 
in Section 6, together with graphs for the force and the 
moment coefficients; a point of special interest is the 

effect of speed of advance and the difference between 
moving against the waves or with the waves. 

2. Velocity Potential 

A prolate spheroid, of major axis 2 a and eccentricity e, 
is moving axially under water with velocity V parallel 
to the surface and there is a regular train of transverse 
waves, of wavelength 2 z/« and wave velocity c, moving 

in the opposite direction; the axis is at a depth d below 
the surface. It is convenient to reduce the spheroid to 
relative rest by superposing a uniform stream V in the 
opposite direction. We now take fixed axes with the 
origin O at the centre of the spheroid, Ox axially, 
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O » transversely, and O z vertically upwards. We begin 
with the velocity potential for a spheroid in a uniform 
stream (as given for instance in Ref. 3), 

$= Vx —aeVPi (pe) Qi (€)/Qi1 (60) (1) 
when the dot denotes differentiation, and the spheroidal 

co-ordinates ¢, #, @ are given by 

3 = Gen ce 

y = ae(l — pp?) (2 — 1)t sin w; 
z=ae(1 — p2)* (@ — 1)? cos w (2) 

In these co-ordinates the spheroid is given by 
€ = () = l/e. We add the velocity potential ¢; giving 
the assigned train of waves moving in the negative 
direction of O x on the surface of the stream; it is easily 

verified that 

di = —hce"4**7 cos(k x + ot + a) (3) 

with « an arbitrary phase angle, gives a wave train on 
the surface with elevation 

=hsin(kx +ot+a) (4) 

provided 
o=K«(V+0o); c2= glk 

We now take 

f = Vx —ae VP; (1) Qu (2)/Qi (So) + gi + bo - ©) 
with 4; given by (3). ¢2 represents the disturbance of 
the wave-train by the spheroid, and is to be determined 
so that the normal fluid velocity is zero over the spheroid; 
thus we must have 

d (gi + G2)/9F=0; C= lo (6) 
We should also add a further term to (5) to represent 
the steady wave pattern produced by the spheroid 
itself, which would be determined as in Ref. 1 for motion 
through smooth water; to a first approximation the forces 
due to the transverse waves would be simply additive. 
Meantime we shall assume the conditions to be such 
that the former forces are small compared with the 
latter, an assumption which can be checked by calcula- 
tion from the results given here in Section 5 and those 
given in Refs. 1 and 2. 



THE FORCES ON A SUBMERGED BODY MOVING UNDER WAVES 

To determine 42 we have to expand ¢; in a suitable 
series of spheroidal harmonics so that condition (6) 
may be used. We shall take ¢, in the form 

dy ——— h CETKIHEKZ + ilex + ot + x) (7) 
where the real part is to be taken. 
We first expand exp (« z+ ix) on the surface of 

the spheroid in spherical harmonics. On ¢ = 0 = le, 

we have x = a p, z = b(1 — p22)? cos w, and we assume 

exp [« b (1 — p22)? cos w +ixap] 

=ZYDAPi(y)cossw . (8) 

By the usual process for determining the coefficients 
we have 

As 2n+1(a—s)! 

a De Grom 
27 1 

[eos a) desl et —wtcose +ixay Ps (u) dp . (9) 
) 1 

noting that A, is given by (9) with s=0, but with a 
factor 4 

Taking the integration in w first, we have 

27¢ 

[ew [x b(1 — p2)? cos w] coss wdw 
0 

=?) mI. b (1 — p2)] 

where I, is the Bessel function of that type. 
It can also be shown that 

1 

|e (4) I,[« b el = 
p22) jeixeu du 

=1 
= (2 m)# ()" Pi (Lo) Ina (« ae) (x ae) 

J denoting the ordinary Bessel function. 
Hence we have 

(10) 

(11) 

atl ! 

AS=(2 7) ()""5(2n + 1) “ = 

Pr (Co) Ina (k @e)/(k ae)? 
A,, being given by s = 0, with a factor 4 

Hence the required expansion is 

exp(kz + ik x)= x x AS PS (11) PS (C)/PS (fo) cos s w 

ee (n —s)! - (27) 3 30 Ont DT 

Tres (ka e) PS() Ps(2) cos sw 
with a factor 4 for the terms with s = 0. 

To satisfy (6) we take for ¢2 a similar series with the 
typical term 

— ASPs (1) Q; (2) [Ps (Lo)/PS (Co) Q;(Zo)] cos sw (14) 
Hence ¢; + ¢2 is given by the real part of 
—he ea Kd tiCot+a) 

woe OF(Lo) PS () — BS (£0) (2) 
2D An Pa (1) Be (Lo) QS (Lo) 

with the coefficients A given by (12). 

(13) 

cossw . (15) 
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3. Pressure Equation 

The variable part of the pressure, omitting the 
buoyancy term, is given by 

p=po¢g[dt—4Lp(qe +a, + 4G) 

with qz, qu, Go for component velocities in the three 
corresponding directions. On the spheroid, the normal 
velocity g, is zero. Also the tangential component q,, 
comes only from ¢; + ¢2 and is of the first order, and 

as usual in wave-theory we neglect g2. So we have only 
to consider the tangential component q,,, which is given 
on the spheroid, using (5), by 

qu = —[(l — piace (5 — ?)*] 0 Pf pw 

ee 
ae(G— p) 

fav f Q ey | n) 

SON yh +} 
The square of the term in V in (17) corresponds to the 
pressure on a spheroid in steady axial motion in an 
infinite liquid, and the resultant forces and moments 
due to this term are zero. The square of the second 
term in (17) is of the second order and is neglected, 
and we are left with only the product term. Hence we 
need only consider, on the spheroid, 

(16) 

(17) 

) 
P= py, (hi + $2) 

Vii+k) 1— Pp = to ae Git és) 

where we have simplified the form by using the fact 
that the axial virtual inertia coefficient ky, is given by 

= € Qi (£0)/Qi (£0) (19) 
Turning to (15) for the value of ¢; + ¢2 on the spheroid, 
we use the relation 

PQ) — PQs = (— 1)°*! (n+ 8) —3)! (G — 1) (20) 
Introducing the coefficients A from (12) we obtain, on 
the spheroid 

gi + $2 = 

with 

B= 3, y M2 Dae 1) Oe Ynan (a) 

Ps (12) cos s wl(& — 1) Q§ (60) 
with a factor 4 for the terms in s = 0. 

Thus the effective pressure for calculating the forces 
is given by 

27? 
p= (=) phce “4 

’ (se Ke) WC = ) O13) pep step 
[ioe - a2 (2 — 2) smal? 2) 

with B given by (21), and noting that eventually we 
take the real part of the expressions. 

(18) 

(2 afeaejthce 4Becit# 

(21) 
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4. Resultant Forces 

If p is the fluid pressure at any point of the spheroid; 
(Z, m, n) the direction-cosines of the normal; (X, Z) the 

resultant forces in the directions Ox, Oz; M the 

resultant moment round O y, we have 

xe —|] pias; Vb, == —|] pnds; 

M=—|| pz—nxds (23) 

taken over the surface of the spheroid. In the spheroidal 
co-ordinates (2) we have 

T= (GS DG ae 
n= Co(1 — p?)? cos w/(f5 — y?)3; 

dS=@ e(@ —1)(G —wdpuda 

Hence we have 

(24) 

27 1 

X= —@e(G —1) [oranda 
0-1 
or 1 

Z= — ae (Co (GQ — 1)? cos w | p Pl (W) dude; 
0 =i 
Qn 1 

M = 343 63 (C5 — D! [cos w | pPLQ ded 
0 =i 

(25) 
For the horizontal force X, taking account of the 

integration in the angular co-ordinate w, we see that 
we only need the terms in B independent of w; and for 
the general term from the second part of (22) we require 
the value of the integral 

1 

[ta — p?)[(G — p)] Pi (uw) P, (uw) due 
=i 

It is easily seen that (26) is zero if n is odd; and if n is 

even, and equal to 2 m, it can be shown that the value 

of (26) is 

(26) 

= 2 (@ — 1) Op, (Co) (27) 

Hence from (21) and (25) we have 

X = (2 7)3? a? e? (CG — 1) phc(kae)te“4 

[o Jsol(S — 1) Qi (So) — Cl + x) (V/a e?) 

DH Gm + Tonle? . C8) 
m=1 

the argument of the Bessel functions being « a e. 
From the properties of these functions, the sum of 

the series in (28) is simply — (« ae) J3j2 (k ae). 
Using properties of the spheroidal harmonics such 

as (20) it can be deduced from (19) that 

1 + ky = —ef(@ — 1) Qi (4) (29) 

Thus the quantity in square brackets in (28) reduces to 

e'[—co(Q+h)+«V(l + ky)| Jap (k ae) (30) 

Noting that o =«(V +c), this simplifies further; and 
we obtain, taking the real part, 

X = —(2 7)? gp b2he—4 (1 + ky) (ka e3)-? 

Iso (« @e) COs (a t + a) (31) 
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From the expression for the vertical force in (25), we 
have to evaluate for the general term the integral 

1 

| [G = 2G — -2)] PEW) PL) du. G2) 
This integral is zero if nm is odd. If n is even and equal 
to 2 m, it can be shown to have the value 

(2/ £0) (G Ta 13? Qhn (Zo) 

From (21) and (25) we obtain 

Z=(2 7)? ab(kae)* phce*4 

[27 o Ispof(S — 1) Qi + iV Ge)" (1 + kx) (G — 1)? 
3 (HS WF Ea + ) yall ee? (34) 

the argument of the J functions being «ae, and that 
of Q being Co. 

The series in (33) sums as in the previous case; further 
if kz is the virtual inertia coefficient for transverse 

motion of the spheroid, we have 

(33) 

ko = — fo Qi (Lo) — 1) Qi (Lo) (35) 
from which we can deduce 

(Z —1)? G +k) =2/(G =) QI Gs 6s) 
Thus the quantity in square brackets in (34) has J). as 
a factor, and another factor is 

dd +k) WV +c) —C +k) V 
Collecting these results we obtain finally 

Z=(2 7)? gp b?he-*4 (x ae) + 

[1 + ke + (ka — kx) V/c] Ign (x ae) sin (ot + a) . (37) 

Similarly, for the moment M from (21) and (25) we 
have to evaluate the integral 

1 

[to PLB de . G8) 
=i 

In this case, (38) is zero when n is even. When n is 
odd and equal to 2m + | it has the value 

6 (G — 19? Qam+1 (So) (39) 
for all values of m except m = 0; when m = 0, (38) has 
the special value 

6 ( — 1) QI (Lo) — 8 
With these Values in (21) and (25) we have 

M = (2 7)3? a 3 (k ae) + (G —1)thce*4 

{2 o Ispl(& — 1) Q + (1 + ka) (Via e2) 
[= 4 Japl(@ — 1) Qi + (G — DF 

¥ (— 1)" (4m + 3) Tom gap} ett? (41) 
0 

The series of Bessel functions has the sum k ae J, (k ae). 
Also we substitute from (36) for Qj in terms of ky. We 
may also introduce the virtual inertia coefficient for 
rotation; k’ is defined as the relative increase in moment 
of inertia of the spheroid rotating like a solid of density p. 

It can be shown that 

ki = —QY(S)/6o(G — D2 — 1) Q (4) 42) 
Using (20) and the expressions for P} and P; we deduce 

2G —1)Q) = &(B—-MH1+AB—-wR] 43) 

(40) 
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We also replace J3,. in (41) in terms of Jj). and Isp 
and after some reduction we obtain, AGS: putting 
o=«(V +c), the form 

M=(2 7)? ¢pab?he—"4(« ae) + 

{[1+ (4) 7 jhe | “14 (G4) & 

—3(1+kh)0+ K)| Js. + 3 (1 + ka) 

(1 — 2 ko) Jin} co (ot + a) (44) 

where the argument of the J functions is «ae, and 
B = length-beam ratio = a/b. 

5. Summary of Notation and Results 

We may express these results more conveniently in the 
following notation, in which we also define suitable force 
and moment coefficients. 

L = Length of spheroid = 2 a. 

e = Eccentricity = (1 — 6?/a’)}. 
8 = Length-beam ratio = a/b. 
D = Displacement = $ 7 g pa b2. 

ky, k2, k’ = Axial, transverse, rotational virtual inertia 
coefficients, as defined and evaluated, for 
instance, in Ref. 3. 

V = Speed of advance (positive against the waves). 

f = Froude number = V/(g L)?. 
d = Depth of axis below the surface. 
h = Amplitude of waves = half wave height. 

A = Wavelength = 2 a/k. 
c = Wave velocity = (g/x)?. 

2 m/o = Period of encounter. 

o=«(V +c). 

6 = 2 7 (h[A) e774 = Maximum effective wave 
slope at depth of axis. 

X, Z = Resultant forces in directions O x, O z. 

M = Resultant moment about O y. 

C, = Surging force coefficient = X (max)/D @. 
C, = Heaving force coefficient = Z (max)/D 0. 
C,, = Pitching moment coefficient 

= M (max)/D L @. 

In this notation, the results obtained are 

X= —D20C,cos(ot+«);Z= — DOC,sin (ct + «); 

M=DL90C,,cos(ot + «) (45) 

3/2 A322 eL 
C=7,en tht) In (>) - 49) 
By? 2aL 

C= or [pte +0(A —) ‘(—4)] 
Oe yp Te a). (47) 
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4,5 -aeen(i) {1+ (4) # | In (A) 
A ) {hi + (GS = N Kk’ 

—2(+h)0+ K)| Isp (S— 
meL H+ e)C = 2h) (“)h} G8) 

6. General Discussion 

The phase relations between the waves and the forces 
can be seen from a comparison of (4) with (45). It is 
of interest that these relations are unaltered by the 
improved theory: there is, for instance, a difference of 
phase of 90 deg. between the heaving force and the 
pitching moment. It is also confirmed that the period 
of the forces and moment is the period of encounter 
with the waves. 

From (46) we have the unexpected result that the 
surging force coefficient is independent of the speed of 
advance. The coefficient is small and oscillating in 
value for small values of A/L; for a long spheroid, the 
highest zero position is at about A/L = 0-7. The graph 
of C,, except for a scale-factor, is the same as the curve 
labelled f= 0 in Fig. 1. For large values of A/L, the 
surging force X approximates to 

—(1 +k) D @cos(ct + a) 

assuming the wave slope to be kept constant. 
Similarly from (47), the heaving force Z approximates 

to —(1 + k2) D @sin (ot + «) for large values of A/L. 
In general C, varies with the speed of advance due to 
the difference between k; and ky. We take for illustra- 
tion the case of a long spheroid with e approximately 
unity and k,, ky approximately 0, 1 respectively. Fig. 1 
shows C, on a base of A/L for zero speed and for 
f=0-5 and — 0-5; we note that f positive is for motion 
against the waves and f negative for motion with the 

waves. 

2:5 

2:0 

1:8 LO tea yr 2Om2:2a4 

Fic. 1.—HEAVING FORCE COEFFICIENT FOR VARYING A/L; f POSITIVE 
AGAINST WAVES, NEGATIVE WITH WAVES 

There are several points of interest in the pitching 
moment coefficient (48). In passing, it may be remarked 
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that it reduces to zero for a sphere, as should be the 
case. The variation with the length-beam ratio is shown 
by the quantity in square brackets in (48); for instance, 
taking the corresponding values of the inertia coefficients 
this quantity reduces to 

1-823 Js + (2 7 LIA)* f (0-485 Jey — 0-279 Jy); B = 5 

1-883 Jsj. + (27 LJA)} f (0-549 Igy. — 0-313 Jyjo); B=10 

2 Isp + (2 7 LIA)* f O- 666 Js. — 0:333 Jy); B > © 

We choose the last case for numerical calculation; that 
is, we consider a long solid of revolution for which 
ky, k2, k’ are approximately 0, 1, 1 respectively, and 

we obtain C,, from (48) with these values. It is inter- 
esting that there are values of A/L for which the pitching 
moment is independent of the speed of advance; for 
this case, these are the roots of the equation 

2 Ss (7 LIA) — Sip (@LPA)=0 . . (49) 

The two highest roots are approximately A/L = 0-53 
and \/L = 1-51. 

This point is brought out in Fig. 2, which shows 
Cy on a base A/L for zero speed and for f=0:5, 
= — 0-5; the curves show how the effect of speed of 

“45 

-40 

“35 

+30 

N pees Se 
“4 “6 8 QO) 12 1:4 1-6 

Fic. 2.—PITCHING MOMENT COEFFICIENT FOR VARYING A/L; 
f POSITIVE AGAINST WAVES, NEGATIVE WITH WAVES 

fe) pL, L 
1:83992;O2-252:492:6 

advance on the pitching moment, with or against the 
waves, differs according to the value of A/L. The same 
result is also shown in Fig. 3, which gives C,, on a 
base f for given wavelengths. As this is a linear relation, 
the graphs are straight lines; those for A/L = 0-53, 1-15 
are parallel to the base line. 

OLE ee minal 

-O-1 ese | 3 
-O°5 -O-25 e) 025 O:5 

Fic. 3.—PITCHING MOMENT COEFFICIENT FOR GIVEN A/L, VARYING 
SPEED OF ADVANCE 

The results which have been given in this paper were 
obtained by direct calculation for a spheroid of any 
ratio of length to beam; nevertheless, in the form in 
which they are given in Section 5, they are probably a 
good approximation for any fairly long solid of revolu- 
tion. The conclusions are not directly applicable to 
surface ships; however, they may possibly indicate the 
nature of the difference to be expected when speed of 
advance and other factors are taken into account. 

The present analysis can be extended to include 
motion of the submerged solid obliquely to a train of 
waves, and it is hoped to examine the various forces 

and moments in subsequent work. 
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Part H. MOTION OBLIQUE TO THE WAVE CRESTS 

Summary 

Expressions are obtained for the forces and moments on a submerged spheroid moving 

under waves at any angle of attack. Graphs are given to show how these quantities depend 

upon the wavelength and upon the speed and direction of advance of the body. It appears 

that, when account is taken of the speed, pitching and yawing moments are developed when 

the body is moving parallel to the wave crests. 

1. The results given in Part I (which we shall refer 
to as I) can be extended to cover motion in any direc- 

tion. As the analysis is carried out by the same 
steps as in I, we need only indicate the necessary 
modifications. The solid moves in the direction O.x, 
and the wave train moves at an angle y to Ox; with 
y between 0 deg. and 90 deg. the motion is against the 

waves, while if it is between 90 deg. and 180 deg. the 
motion is with following waves. 
We have equation I(5) as before; and it is readily 

verified that we have now 

di = —hee-*4* cos [x (x cos y + ysin y) + ot + a] 

(1) 
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giving a surface elevation 

n =hsin[«(xcosy +ysiny)+ot+a] . 

provided o=x(Vcosy+c); c2=g/k 

To obtain ¢2 we have now to expand 

exp«[z +i(x cos y + ysin y)] 

in a series of spheroidal harmonics. It is found that 

instead of I(10) we require the two integrals 
27 

[er — p2)§(cosw + isin y sina) cosswdw 

= 27 C, 1, [kb (1 — p?)* cos y] (4) 

and the same integral with sin s w for cos s w, equal to 

(2) 
(3) 

S,I, [« 6 (1 — p2)! cos y] (5) 
in which 

C,=4[( + sin y)s + (1 —sin y)*]/cos y 4 

Sp 3 [@ =f sin’y)> —@— sin'y)s]/coss yy 6) 

Proceeding as in I Section 2, the only alteration required 
is to replace kae by kaecosy and Ajcossw by 
As (C, cos s w +78, sins w). 

Thus, as in I Section 3, we have for the effective part 

of the pressure 

2 7 $ 

Peal Cac caky) peers 
) Gl se Ken) WL fe) OV) cee 
jics (Ti) = ei(ot+a) (7) 

with 
Un t4 (K Ze COS y) 

B= DICnL howe 4 
(% — 1) Qi (4) 

PS (u) (C, cos s w + 7S, sin s w) (8) 

with a factor 4 for the terms with s = 0. 
The forces X, Z and the pitching moment M are 

given by I(25); and, owing to the presence of terms in 
sins w, we have a swaying force Y and a yawing 
moment M’ given by 

QT 1 

Y= — #2 o(— [sino [ pPi dude 
0 —1 

27 1 

M = —18e(2 — D> | sin w | pP\Wdude 
0 —1 

ai aes (9) 

The evaluation of the forces and moments follows as 
in I Section 4, noting that we must introduce the 

appropriate values of the coefficients given in (6) and 
also that o =x (Vcos y + c). 

2. We add to the notation specified in I Section 5 

C, = swaying force coefficient = Y (max)/D 6 

C,, = yawing moment coefficient = M’ (max)/D L @ 

The components are given by 

X= —D2@C,cos(ct + a); 
Y = —D0@C,cos (ct + «); 
Z= —D0C,sin(ct +a); 
M=DL@GC,,cos (ot + a); 
M’ = DL@C,,sin(ot + «) 

These relations give the connection between the phases 
of the components and the phase of the surface waves; 
if in varying the angle of attack y from 0 deg. to 180 deg. 
any coefficient C passes through zero and changes sign, 
the corresponding force or moment changes in phase 

by 180 deg. 
The force and moment coefficients are given by 

Cs Tee iS -) @ (Cae te) ap Ge gos ) 

C, = Csi 

B/D p Nh OP 
yee G cos =) 

E AL fy te ce = “feos (ke —k)| Jo (= 1098 y) 

C= G, sinvy, 

3/2 A 24] 

2D i To ) {fi 1 e = i) «| 

San(“o e087) + 2 
Peale 

Lal) Lea = 24a) ia(“-057) || 

(11) 

3. We note that the surging force is independent of 
the speed of advance except, of course, for the alteration 
in the period. Except for the surging force, all the 
components can be derived from the expressions in 
I Section 5 by replacing the wavelength A by A/cos y 
and the speed f by fcos y. Further, the coefficients 
C, and C,, differ from C, and C,, respectively only by 
a factor sin y. Putting 180 deg. — y for y in the expres- 
sions (60), we see that at zero speed C, and C, are 

symmetrical about the middle position y = 90 deg., 
while C,, C,, and C,, are anti-symmetrical. Taking 
account of the speed of advance removes this element 
of symmetry, for the effect is different according as the 

waves are from ahead or from astern. 
When y = 90 deg. the solid is moving parallel to the 

wave crests and this case is of some interest. The results 
can be obtained by taking the limiting values of (11) 
as y is made equal to 90 deg., or can be worked out 
independently. 
We have for y = 90 deg. 

C,=0; G=G=lt+hk 

PY feos 7 

eL 1+k)04 k:)| Isp (0087) 

GQ a=C= (=) nee 28). 
In this position the forces are independent of the speed 
of advance. As might be expected, the moments are 
zero at zero speed; but it is specially interesting that 
pitching and yawing moments are developed when the 
solid is advancing parallel to the wave crests. No doubt 
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this arises because when account is taken of the speed, 
the pressure distribution on the solid is altered and is 
no longer symmetrical fore and aft. 

The general character of the results in (11) can be 

shown best by diagrams, and for this purpose we take 
the case of a fairly long spheroid for which we assume 
the approximate values e = 1, kj = 0, k2 = k’ 1. Figs. 

4, 5, and 6 show curves of the coefficients of heaving 

force, pitching moment, and yawing moment for the 

0-8 
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Fic. 4.—HEAVING FORCE COEFFICIENT FOR A/L = 0-5, 1:0, 1-5; 
AT ZERO SPEED, -——— AT SPEED f = 0:5 

waves at any angle to the direction of advance. In each 
case the results are shown for three different ratios 

of A/L. The continuous curves are for zero speed; and, 
in order to bring out the difference, the dotted curves 

are for a speed of advance given by the Froude number 
jf =0-5. Thecurves give some indication of the manner 

in which these quantities depend upon the ratio A/L, 
upon the speed and direction of attack, and upon 
whether the waves are from ahead or from astern. 

“Oi 8090100 120 140 160 180 ° 20 40° 60 

Fic. 5.—PITCHING MOMENT COEFFICIENT FOR A/L = 0:5, 1:0, 2-0; 
AT ZERO SPEED, -——— AT SPEED f = 0-5 
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Fic. 6.—YAWING MOMENT COEFFICIENT FOR A/L = 0:5, 1:0, 2:0; 
AT ZERO SPEED, -——— AT SPEED f = 0:5 
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THE COUPLING OF HEAVE AND PITCH DUE TO SPEED OF ADVANCE 

By PROFESSOR SiR THomMAS H. HAveLock, M.A., D.Sc., F.R.S. (Honorary Member and Associate 

Member of Council) 

Summary 

The object of the note is to discuss a particular type of coupling and to estimate its 

probable magnitude. The coupling effect is isolated by considering a specially simplified 
problem, namely a spheroid floating half-submerged in a uniform stream with surface 

conditions which preclude wave formation and without damping. This problem is solved 
completely; numerical calculations indicate that the alteration in resonance frequencies due 

to the coupling is likely to be negligible in ship problems. 

1. The chief cause of coupling between heave and 
pitch is lack of symmetry of the ship fore and aft, as 
for instance in the well-known hydrostatic coupling or 
in that due to damping. There is one type, which may 
be called hydrodynamic coupling due to speed of 
advance, which seems to exist even if the ship is sym- 
metrical fore and aft. This effect was introduced into 
the equations of motion of the ship by Haskind. In 
that work Haskind replaced the ship by the approxima- 
tion used in wave resistance theory, namely a source 
distribution over the longitudinal vertical section; 
further, the expressions were left in a complicated form 
and no indication was given of the relative importance 
of the terms in the equations. Recently Stoker and 
Peters® have made a systematic study of the general 
problem of the motion of a ship in a seaway, developing 
the equations in terms of a single parameter, namely the 
tatio of beam to length. In the equations of motion 
to the first order, they do not obtain any coupling terms 
of the type in question for a symmetrical ship. This 
might be expected as in their work the ratio of beam to 
draught is also supposed small; in fact their model 
approximates to a thin flat disc. Haskind’s work is also 
criticized as implying damped oscillations since the 
coupling terms occur as first order derivatives; but we 
shall see later that this criticism is unfounded as far as 
the coupling terms are concerned. This type of coupling 
has been the subject of discussion recently, for instance 
Weinblum,® and it seemed of sufficient interest to 
attempt to estimate its importance or otherwise. It is 
easy to see on general grounds that the coupling exists. 
If a floating solid, symmetrical fore and aft, is made to 
oscillate vertically in a uniform stream, the alteration in 
pressure is anti-symmetrical and so we get a couple 
acting on the solid; if it is given pitching oscillations 
the alteration in pressure is symmetrical and we get a 
heaving force. It also seems likely that the effect will 
be small, and that is confirmed by the present calcula- 
tions. 

In the theory of wave resistance for a ship advancing 
steadily in still water, a first approximation based on 
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the linearized free surface condition is in general a good 
approximation for ships of small beam/length ratio, and 
this remark applies even when the beam/draught ratio 
is not also small. But in attempting further approxima- 
tions it is difficult to know how far one may go without 
amending the free surface condition by including some 
approximation to finite wave theory. 

On the other hand, consider heaving and pitching of a 
ship at zero speed of advance. Here we do not need 
to restrict the relative dimensions of the ship, either the 

beam/length or the beam/draught ratio; the linearized 
free surface condition is adequate for a good first 
approximation, except no doubt for exceptionally large 

motions. 
Turning to heaving and pitching in waves with the 

ship advancing, one can see the difficulty of combining 
the general problem in a single calculation which will 
give useful results for the ship problem. The present 
unsatisfactory theory consists more or less in simply 
superposing the two sets of calculations; or if it is rather 
better than that, we are still left in doubt as to the 

validity and relative importance of the various terms in 
the equations of motion. On the other hand, if we limit 
ourselves to a rigorous development based on, say, a 
thin disc form, we may miss the important effects for 
the ship problem as regards heaving and pitching. 
However, the present note makes no attempt whatever 
on the general problem. The object is to isolate the 
particular type of coupling and if possible to estimate 
its importance. For this purpose we consider a specially 
simplified problem. It may be regarded as the opposite 
of the work just referred to; instead of taking a thin 

.disc and including the wave motion, we consider a form 

more like a ship but we exclude the wave motion com- 
pletely. The conditions may be visualized in this way. 
Imagine a solid floating in water and suppose the free 
water surface covered by a smooth rigid plane; the solid 
being assumed free to heave and pitch in a hole in this 
plane, the periods can be calculated. If there is a 
longitudinal uniform stream in the water, the oscilla- 

tions are coupled and the periods can be obtained. The 
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results may be comparable with those for a ship 
advancing at slow speed; but in any case it seems likely 
that the coupling effects in the actual problem will be 
less than in this simplified case. The form of solid we 
consider is a prolate spheroid floating half-submerged; 
for this case the problem can be solved completely and 
the analysis is given in the Appendix. 

2. If his the heave and % the pitch, and U the stream 
velocity parallel to the axis of the spheroid, the equa- 
tions of motion for free oscillations are obtained in the 
form (25), 

(l+k2))Mh—pMUp+epSh=0 

(LK) I fp+qMUh+Mgmyp=0 

The first and third terms are in the usual notation for 
uncoupled heave and pitch; the second terms give the 
coupling effect. 2 and k’ are the virtual inertia coeffi- 
cients under the assumed water surface condition. 
k2, k’, p and q are positive numerical coefficients depend- 
ing only upon the length/beam ratio of the spheroid; 
explicit expressions are given in (18), (20), (22), and (23), 
from which numerical values can be calculated. 

If we write these equations in the form 

h—xUp+n2,h — 0 

b+ BUA + n2,4=0 

nm, and nz are the frequencies for uncoupled heaving and 
pitching, taking into account the virtual inertia. If we 
assume a periodic coupled oscillation of frequency p, 
we have 

pt — (ni + 1} + « B U2) p? + nin = 0 
Both roots of this equation in p2 are real and positive, 
and we have two simple undamped oscillations of, say, 
frequencies p, and p>. In each mode the heave and 
pitch differ in phase by 90 deg., and the motion alter- 
nates between heaving and pitching. Further, ifm, < n> 
and pj < pz, then we havé py <m and p2 > np; thus 

the coupling increases the separation between the reso- 
nance frequencies. This is a general effect of coupling 
terms; incidentally it may be remarked that for the 
coupling caused by damping, Korvin-Kroukovsky and 
Lewis“ observed that the resonance period for heaving 
was increased while that for pitching was diminished. 

3. To estimate the magnitude of the effect we take a 
numerical example. We choose a spheroid of length/ 
beam ratio equal to 10. The numerical values of the 
various coefficients were calculated with sufficient 
approximation for the present purpose. From (18) we 
find k2 = 2-42. This means an increase of about 
80 per cent in the heaving period as found without the 
added mass; no doubt this is rather large, but we have 
taken the extreme condition of a rigid water surface. 
Similarly from (20) we find k’ = 1-5, giving a corre- 
sponding increase of about 60 per cent over the basic 
pitching period. From (22) and (23) we obtain, approxi- 
mately, p = 1-16, g= 0-57. With f as the Froude 
number, we have U = f(2ga)}; and taking a 16-ft. 
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model as a definite example, that is, a= 8 ft., the 

equations of motion are 

h—T7-7fb + 17-657h =0 

~ +0-404 fh + 30-187 4 =0 

and the frequency equation is 

p* — (47-844 + 3-111 f2) p2 + 533-01 =0 

The periods of uncoupled heave and pitch are 
1-495 sec. and 1-144 sec. respectively. For f= 0-2, 
the coupled periods are 1-503 sec. and 1-138 sec. Even 
at a high speed f = 0-5, the periods are only altered to 
1-537 sec. and 1-112 sec. The curves in Fig. 1 show 
the variation in the coupled periods with increasing 
speed. At zero speed, the upper curve gives the period 
of uncoupled heave and the lower curve that of un- 
coupled pitch. The variation with increasing speed only 
becomes appreciable at very high speeds. 
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FIG. 1—VARIATION OF RESONANCE PERIODS WITH SPEED 

4. Although the surface condition 0 4¢/0z=0 is a 
severe limitation as regards application to the ship 
problem, it was thought preferable to work out the 
simplified problem consistently on this basis. In the 
last section of the Appendix comparison is made with 
the work of Haskind. It appears that if we use tenta- 
tively rather mixed conditions with the oscillation 
potentials satisfying the condition ¢ = 0 at the surface, 
then the coefficients of the coupling terms approach 
numerical equality for a long spheroid for which 6/a is 
small; the coupling terms approximate to the values 

—14MU, and 4}MUh. For another numerical 
example, take k2 and &’ at their limiting values of unity 
for this surface condition and the equations (29) approxi- 
mate to 

2Mh—IMU¢+epSh=0 

21¢+4i1MUA+Mgmy=0 

For the 16-ft. model of the previous calculations these 
give a frequency equation 

pt — (67-92 + 2-514 f2) p2 + 1139 = 0 

For f = 0, the uncoupled periods of heave and pitch 
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are 1-144 sec. and 1-023 sec. respectively. For f= 0-2, 
the coupled periods are 1-151 sec. and 1-017 sec.; while 
for f = 0-5, they are |-181 sec. and 0-991 sec. 

5. To sum up the discussion, it seems that the coupling 

terms are of the form — pM U #% and + qM UA, with 
p and q numerical coefficients approximately between 
unity and one-half. From the numerical examples, we 

may conclude that the alteration in resonance frequencies 
is negligible. It would be of interest to examine forced 
oscillations; for instance, with an impressed heaving 
force the response involves pitching as well as heaving, 
and similarly, with an impressed pitching moment. An 
effect of this sort seems to have been observed by Grim.©) 
It is, of course, possible that even a small coupling effect 
might be magnified into something appreciable at or 
near resonance. However, any satisfactory examination 
of this would involve introducing suitable damping terms 
and that is beyond the scope of the present note, the 
purpose of which was to isolate the coupling effect in 
its simplest form, together with the consequent change 
in the resonance frequencies. 

Appendix 

6. We take the origin O at the centre of the spheroid, 

O x along the axis, O z vertically downwards and O y trans- 

versely. We use spheroidal co-ordinates given by 

x=aeul: y=ae(l — p?)t(C — 1)} cosw; a a 
z=ae(l — p*)(C2 — 1)t sinw (1) 

The spheroid is given by € = f) = I/e, and for the sub- 
merged half w ranges from 0 to 7m. The spheroid floats 
half immersed in water, and there is a uniform stream U in 
the negative direction of O x; the solid makes small oscilla- 

tions, in which the heaving velocity at any instant is A upwards, 

and the angular pitching velocity is fb in the positive direction 
round Oy. If ¢ is the velocity potential, we assume the 
condition 0 $/dz =O at the upper surface of the water. 
For small oscillations we assume the condition at the 
immersed surface of the solid to hold at the mean equilibrium 

position; thus, in the subsequent work, we neglect the square 

of the fluid velocity due to the oscillations. 
We take for the velocity potential 

fp =Ux —aeUP, (np) Q (O/Q, (Go) 

—hF, (p, C, w) + pb Fo (u, 6, w) (2) 

with a = > y ALFs(H) Q5 (D coss | 
On ee Q) 

a= Dd Bi P5(H) Q5(D cos. | 
n=0s=0 

The expression (2) satisfies the condition 0 ¢/d z = 0 at the 
upper surface of the water. The first two terms represent 
the spheroid in a uniform stream and give zero normal 
velocity over the immersed surface; hence, as for instance in 
Lamb’s Hydrodynamics, p. 142, we must have 

IF IC =aelo(G— 1) + Pi()sinw | 
dFfd 6 = 4a? e?(@ —1)-+Pl(u)sinw { ~ 

for C= 0; 0 <w<rz. 

(4) 

599 

Putting the expressions (3) in (4) and determining the 
coefficients in the usual way, 

2ael) 2n+1(m—s)! G 
AS a 

i wG =e 2=1 (1 + 5)! Qs () ©) 

2a? e 2n+1(n—s)! Ds : 
BS n 

n 37 (G — 1)t 2 = 1 (n + s)! Q3 (fo) (6) 

with the factors C, D given by 

1 1 

=| Pr (Hw) Py (Ww) d os B= | P) (H) Pr (Hw) d (7) 
=r =i 

It should be noted that in the summations in (4) with (5) 

and (6) terms with s = 0 must be taken with a factor 4. 
Further, s is even throughout, while 1 is even in (5) and is 

odd in (6); this follows from the fact that the integrals in (7) 
are only different from zero under these conditions. 

7. The pressure is given by 

p=gpz+pddf[ot+tpU* —tpq’. (8) 

G =O Pd 5,)? + © P/d s_)? + O P/d 5)? (9) 

On the spheroid the last two terms in (9) come only from 

the last two terms of ¢ in (2) and are of the second order. 
Further, on the spheroid, we have the first two terms of ¢ 

in (2) given by 

aUpfl = € Qi (Lo)/Q (Lo)] =aU(l+k)p. 

where k, is the virtual inertia coefficient for axial motion of 
the spheroid; also, on the spheroid, 

d4/d 5, =[U — pHae(G— pW Pf pe . (I) 
Hence, to first order terms in h and ob, we have on the 

spheroid 

2 l= 

with 

(10) 

q lv U* (l +k)? —2aU(1 + kj) 

(— AIF pw + fd F/d pw] (12) 

If — Z is the upward resultant of the fluid pressures, and 
M is the moment about O y, we have 

-z=|| pnas 
1 

=e (3 — 0] sine da | p PL wan (13} 

0 =I 

M = -| (lz —nx)pdS 

7 1 

=1e@e(G= | sino dw | Phu) du (14) 

0 =i 

8. We shall consider separately the contributions of the 

various terms in the pressure defined by (8) and (12). The 

term gp z gives the hydrostatic vertical force, and moment, 
leading to the usual expressions for the restoring force pro- 
portional to the heaving displacement A, and restoring 
moment proportional to the pitching angle %. Then there 

is a steady vertical force arising from the terms in U, and 
corresponding to the bodily sinkage of a ship in motion. 
We obtain this by using for p in (13) the terms 
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tp U2? —$p U2 (1 +)? 0 — pyfe( — pw?) - (15) 
The integrals can be evaluated, and the result for this vertical 
force can be reduced to the simple form 

$apabU(l +k)? a(a + 2b)/(a + 6) —1] . 

This result was given in an equivalent form in a previous 
paper, which dealt with the sinkage of a general ellipsoidal 
form at low speeds. To estimate the magnitude of this 
effect we may equate (15) to mgpabs, and call s the 

equivalent sinkage. If, for instance, a/b = 10, we find 

s = 0-0157 U2/g = 0-314 f? b, with f as the Froude number. 
The effect in the present problem means simply an alteration 
of the origin O; but, as it is small except for high speeds, 

we Shall neglect it in what follows. 

9. Turning now to the term pd ¢/d1¢ in the pressure, it 
is easily seen from the various expressions which have been 
given, that the term from F, gives no contribution to the 
vertical force; and we have for this part of the vertical force 

(16) 

1 

ae? Cy (Q — D'phi| sino de | P! (w) Fy (4, Co, w) d 
0 =i 

(17) 

Substituting for F, from (3) and carrying out the integrations 

we can express this vertical force upwards as —k,M h, 
where M = a p.ab* = mass of spheroid and 

2n+ 1 (n = s)! Q@ (Zo) (Cs)? 

@—IP@F)(@—Na®eG) " 
ky 55753 

Wem ® 

(18) 

This expression is essentially positive, and k, is the virtual 

inertia coefficient for broadside motion of the submerged 
spheroid under the assumed condition of a rigid water 

surface. 
Similarly, putting the pressure term p 0 g/d t in (14), we 

find that F, gives no contribution to the moment, and we 
have for this part of the moment 

ud 1 

tpae(Q— 1) al sino de | P} (ju) Fo (tu, Co, w) dp 

0 = 
(19) 

The moment of inertia of the spheroid about Oy is 
I=47pab*(a +6’). We find that (19) can be ex- 

pressed as — k’ I ps with 

; 10 a? e3 2n+1 (n—s)! 

‘ 32a? + BS) UU (2 Zeal) (rates) 

sun (Co) (60) (Ds)? (20) 
(43 — 1) Q; (Co) 

k’ is the virtual inertia coefficient for rotation about Oy 
under the assumed surface condition. 

10. Lastly, from (8) and (12), the remaining terms in the 

pressure are 

1 — p? 
az e2 (C2 — (— ADF pw + PdFp/d yw) 

(21) 

With this in (13) and (14), it is seen that the only contribu- 

tion: to Z comes from the term in F, and the only con- 
tribution to M from the term in F,. Putting in the 

pail Lk) U 
ED 2) 
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expressions for F, and F, and carrying out the integrations, 
the results can be expressed as an upward vertical force 

pMU ¢ with 

2 20s) S 2 2p) C= 

me nate=ol(s2 cae 1)2 (n +s)! 

ade CDG Ds Es (22) 
(ZG — 1) Q, (Lo) 

and a moment — gq M UA, with 

220 sala) SS Zac | Go 
77 @ n=2 s=0 (s? oe 1)2 (n ar s)! 

aC AC UE oH (08) 
(Z — 1) Q5 (Go) 

where we have written 

1 

=| 4 =e > PH (uw) Ps (uw) ds n B= > 

1 

Re ae 1 . 
EF, = |e$ a 5 P§ (1) Ps(u) dw. (24) 

Summing up these results we get the equations of motion 
of the spheroid, with m as the metacentric height, 

1 +k)Mh—pMUp+amgpabh ei. an 

tk) 1p +qMUh+Mgmyp=0 

where k, k’, p, q are positive coefficients given by (18), (20), 
(22), and (23). It should be noted again that in these 

expressions s is even, the terms in s = 0 having a factor 4; 
further, in expressions involving the coefficients C and F, 
n is even, in those with D and E, z is odd. 

11. In the coupling terms in (25) the coefficients p and q 
are, in general, of unequal value numerically, but in the 

corresponding terms in Haskind’s equations they are equal. 

Haskind denotes these terms by — cUd and +cUh, 
with c defined by a double surface integral. On examination 
it appears that this expression for c does not involve the 

wave motion, but involves only the velocity potential due to 
the oscillations determined as if the free surface condition 
were ¢ =0. Further, it is based on replacing the solid by 

a source distribution over the surface of density o where 

470 equals the normal surface velocity, and this is then 
contracted to a distribution over the vertical plane section; 
this is a simplification which is appropriate when the form 

approximates to a thin disc. 
Turning to equation (2) the functions F, and F, were 

determined to satisfy the surface condition 0 ¢/dz=0. 
Suppose, for a moment, that we determine F, and F, from 
the surface condition ¢ = 0; then we should have 

¢=Ux—aeUP, (HQ ()/Q) (&o) 

eal ieICos a 
( — 1)! QI (G) 

a ers : so ESP TMV OL] 
1G= ea) = pan. 

make this velocity potential consistent and satisfying, 

P! (2) Q! (Z) sin w 

(26) 
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say, the linearized free surface condition, there would be 
additional terms expressing the effect of the surface dis- 
turbance. Meantime we shall simply assume that these 
terms are small, or at least that they do not affect appreciably 
the coupling effect which is under consideration. Taking 

(26) as it stands and calculating Z and M as in the previous 

sections, the values of k, and k’ will now be the usual values 

as if for motions in an infinite liquid. For the coupling 

terms, using (21) with (26), the vertical force upwards is 

—£rpae(1 +k) Uf [Qi (G)/Qs (&)] 
1 

[= 2 Benm@nary 

—trpae(I +k)Us(G— 1)? QY({) . 

Similarly for the additional moment we obtain the result 

—trpa@e(l + ky) UA[Q!(L)/Q! (L)] 

(27) 

1 

= 5 PS (1) Ph (w) dw 

—Airpa@e(l+k)Uh 

[3 (@ — 1)? Qt (Lo) — 4 QI (Lp)/Q! (fo)] 

In general, the coefficients of U b and UA in (27) and (28) 

are not equal numerically. For the case a/b = 10, they are 

(28) 
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It can easily be shown that as Cy > 1, we 

(2 — 1? Q) > —(@—-1) 

3 (22 — 1)? Q! (fo) — 4 QE (Lp)/Q! (Go) = + (G — 1) 

Thus for a long spheroid, with b/a small, 
approximate to 

nearly equal. 
have 

the equations 

\ . (29) 
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Waves due to a floating sphere making periodic 

heaving oscillations 

By Str THomas Have tock, F.R.S. 
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The paper gives a discussion of the fluid motion due to a sphere, floating half-immersed in 
water, which is made to describe small heaving oscillations. The velocity potential is obtained 
as a series for which the unknown coefficients are given by an infinite set of equations. These 
are solved approximately so as to obtain curves showing the variation with frequency of the 

virtual inertia coefficient and of the equivalent damping parameter. 

1. When a floating solid is made to describe periodic oscillations wave motion is 

produced, and it is required to determine the resultant pressure on the solid and the 

energy radiated outwards in the wave motion. The problem has been studied in 

general form by John (1950), especially as regards the necessary conditions for the 

uniqueness of the solution of the potential problem. The only cases which, to my 

knowledge, have been worked out in any detail are two-dimensional problems. In 

particular, Ursell (1949, 1953) has examined fully the heaving motion of a circular 

cylinder half-immersed in water. Similar work has been carried out by Grim (1953) 

for cylinders with various forms of cross-section, more especially with a view to 

application to ship problems in estimating virtual inertia and damping coefficients 

for heaving motion. In all these cases the virtual inertia coefficient approaches an 

infinite value as the frequency becomes small; this is no doubt connected with the 

fact that the condition at the free-water surface then approximates to that for 

a rigid boundary, and the two-dimensional potential problem with that boundary 

condition is indeterminate. This does not arise for three-dimensional motion; the 

general case approximates to determinate potential problems in the two limits as 

the frequency approaches zero or infinity. The point of special interest is the 

variation of the virtual inertia coefficient with frequency between these limiting 

values. The general character of the variation has been surmised, but there do not 

seem to have been any actual calculations. In this paper we consider the simplest 

case, a sphere half-immersed and making small vertical oscillations. The calcula- 

tions show that the virtual inertia coefficient rises to a maximum with increasing 

frequency, falls to a minimum and then presumably rises gradually to its final 

limiting value. The variation of the equivalent damping coefficient is also obtained. 

A solid of ship form would come between the two extremes of an infinite cylinder 

and a sphere, and could be represented better by, say, a spheroid. The limiting 

values of the virtual inertia coefficient for a spheroid can readily be calculated, 

but the general solution for any frequency leads to expressions too complicated for 

computation. 

2. We take the origin O in the undisturbed water surface, with Oz vertically 

downwards. The water is assumed incompressible and frictionless and the motion is 
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symmetrical with respect to Oz. For periodic motion of frequency o, the linearized 

condition for the velocity potential at the free surface is 

Kop +8 = 0; 2= 0; (1) 

with ky = o?/g. If there is a periodic singularity of order n at the point (0,0,f) in 

the water, we have the known solution 

— 1 nm (oo) 

Oz salle COs ain me cos atl pees Xo KnJ. (Ko) eked, (2) 
i 0 0 

valid for z+f>0. The principal value of the integral (2) is to be taken, and we 

have put 7} = 2+ y?+ (z—f)? = o?+ (z—f)?, and w, = (2—f)/r. If ry, 4, are polar 

co-ordinates referred to the image point (0,0, —f), the solution (2) can be expanded 

in the form 

@ Sead P,(1) nents) 5) n 1 P,_1(H2) ko 1| 

cosot—_r?+t Se) ret Tels eS ners segc tint n! Tf 

in n+ ss 
os is JP) wed, (3) 

nN. 0 K—Kg 

The principal value of the integral in (3) is 

— AVq(kyt) 0") K,(K@) dk, (4) 
2 (°K, cosk(z+f) )e«sin(Z +f) 

=|. K2+ Ke 

with the usual notation for the Bessel functions. We superpose on the motion given 

by (3) free symmetrical oscillations of frequency o so that as a >oo the motion 

approximates to circular waves travelling outwards. For this purpose we add to 

(3) the term _—1)r 
2! = TKR +S (Ky@) et) sin ot. (5) 

The motion as 7 >0o then approximates to 

b> ange)" ( z J’ sin ot w+inm) (6) 
. nm! \aky@. Oe eras 

In general as 7 +0, ¢ is of order w*; but from the expressions given in (2) and (3) 

it is possible to construct solutions in which ¢ is of order w~ or of higher order. 

These combinations of periodic singularities might be called wave-free singularities. 

They are given by 

o) a Ko P (41) 4 Frills) Ko Pi(Ms) _ (—1" nents) 
n+1 ret per rete wel eH cosot. (7) (aul) 

For instance, taking n = 1, the singularity {}« 97; 2P,(u,) +77 °P.(/4,)} cos ot at the 

point (0,0,f) gives a surface elevation proportional to (w?— 2f?) sin ot/(w? + f2)2 

For the particular application which is in view at present, we require the results 

when f is made zero. Thus from (7) we have wave-free solutions given by 

d ae {Ko Pen (Ht) , Pal) lon am antl cos ot, (8) 

with the origin O in the free surface. 
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3 Sir Thomas Havelock 

3. We suppose a sphere, half-immersed in water, to be given small periodic 

oscillations, the velocity of the centre being cos at. We take the boundary condition 

on the sphere to be satisfied at the mean position; thus, for all ¢, 

_ 0g 
Or me 

We shall assume that the velocity potential can be expressed in terms of a series of 

functions (8) together with a suitable periodic source at the origin. Hence we take 

1(u)cosot (r=a; 0<0<4n). (9) 

2k le K sin KZ + Ky COS KZ 

0 K2+ Ke 
K (ko) ar 

1 
= @?\—= —71Ky Yo(kyw) e 07 ? r oXo(ko ) T , 

x (C cos ot + Dsin ot) + 71k) a*Jo(Ky@) e “0 (C sin ot — D cos ot) 

+ Sam (Ro Pane =H!) , Pan(te = (A, cosot+B, sinct). (10) 
on yan y2ntl 

This expression satisfies the boundary condition (1) and also reduces to outward 

circular waves as woo. After some reduction, we obtain (9) in the form 

L(C cosat+ Dsin ot) + M(C sin ot — D cos ct) 

+ > {Pf Pon_1(4) + (2n + 1) Py, (4)} (A, cos ot + B, sin ot) = P()cosot, (11) 
1 

for all ¢ and for 0<6<4n. In (11) we have put £ = kya = o7a/g, and 

L = 1—7 {cos 0Y,(f sin @) + sin 0Y,( sin A)} e-4 © ? 

2h [? 2uwsin (fu cos 6) + (1 —u?) cos (fu cos 8) 

: J 0 (i+w? 
M = 7f?{cos OJ) f sin @) +sin 6S,( f sin 0)} eF 089. (13) 

K,(fusiné)du, (12) 
7 

The coefficients C, D, A,,, B,, are to be determined from (11). The functions defined 

by (8) are not orthogonal, but it turns out to be convenient to follow the usual 

procedure with (11) to give an infinite set of equations for the coefficients. Thus we 

multiply both sides of (11) by Py, 4(“) + (2m + 1) P,,,() and integrate with respect 

to « from 0 to 1; we take P,(u) for the case m = 0. 

We use the notation, with L given by (12), 

1 
Ly =| Ldp, B= {B Pom (#4) + (2m + 1) Py, (u)} Ly, (14) 

0 

with a similar notation for MW, derived from (13). Taking the terms in cos ot and 

sin ot separately, we obtain in this way a set of equations of which the first eight are 

I)C-M,D+4£A,—-1$A,+7%fAst+-.. = 4, 

LyC-MD+ +BY A+HPA,—sehAgt. = 84H 
LC — M,D+i8fA, + (22 +2304+4 6?) A.+ 3445+... =—-—de 

I,C —M, De PAy + posh 40 as + sceP + ih) 43h-- = 18: 

(Similar equations in D, —C, By, By, ... = 0.) (16) 
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It may be noted that it is only the second equation in (15) which includes a term in 

f on the right. 

4. For large values of the frequency parameter, that is foo, we may expect 

the solution to approach that appropriate to the free surface condition ¢ = 0, namely, 

g= 108 WY coset. (17) 

The equations (15) are consistent with this if C, D approximate to zero, Ay, Az, ... 

being of order /~ and fA, approximating to unity. However, there are difficulties 

in evaluating some of the integrals involved for large values of /, due partly to 

having takenaconcentrated point source at the origin instead of a distributed source. 

We shall therefore limit the calculations to moderate values of f. For large values 

the problem is better treated separately, possibly by the method used by Ursell 

(1953) for the similar two-dimensional case. 

For small values of /, the free surface condition approximates to 0¢/0z = 0 and 

the solution is then 
{1 a> co qn 

b= orn + ont An Pon(t) cos at, (18) 

re (= 1)" (4n +1) Cn!) Pu) P, dats where 4, =I (1) Ponf ~ 22n(2n — 1) (2n + 1) (2n + 2) (n!)? ue) 

This is given by (15) and (16) with £ = 0, the coefficient Z) being then unity and the 

other L and M coefficients being zero. The series in (18) is convergent. We shall 

assume, in the general case, the convergence of the solution in (10) with the unknown 

coefficients derived from (15) and (16). 

5. The expression for J given in (12) may be put into a more suitable form for 

computation. If we write J for the integral in (12) we have 

@wsin (fu cos A) +cos(fucosf) ,/, .. 

ioe Pal, 
14tu2 De (Busia PNG, (20) 

u sin (pu) + cos (pu) 

1+u? 
Further, ifwe put XX =|. K (qu) du, (21) 

X reduces to }7*{H)(q) — Yo(q)} for p = 0, ¢> 0, where H is the Struve function. Also 

we have ax 

op 

ai 1 

2 (p+?) oe 
+X = =| Ky(qu) cos (pu) du = 

From this we deduce for the integral in (20) the form 

1 
47°{H,( 2 sin 0) — Yo( sin )} e708 + lr ef o8 al (tan? 0+ ¢2)-2e ftcostdt, (23) 

0 

Using (23) and (20), we find, after some reduction, 

L=1+/?—inf?e 4° {Hf sin @) + ¥)(f sin @)} cos 6 

+{H,(fsin@)+Y,(fsin @)} sin 0] — 62 cos Ae" (4 + f8Bcos@), (24) 
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with the notation 

1 ‘ 1 
A =| (tan? + ¢?)—2 effeos? dt, B =|| (tan? O + t2)2 efteos? de. (25) 

0 0 

The integrals A and B can readily be computed, either by quadrature or by expansion 

in powers of £. For 6 = 0, L reduces to 1+ 6 — fe? Hip). 

For any given /, values of L were computed from (24) at intervals of 18° from 

0 to 90°; then by numerical or graphical interpolation intermediate values were 

obtained. These were then used to compute the quantities from (14) by numerical 

quadrature. Expressions suitable for small values of # can be obtained. We find 

from (24) 

L=1+£+/(1—cos@) + 63(4 cos? 9 — 3 sin? 6 + 2 sin 6 cos @) 

— (f? cos 6 — f3 cos? @) log {t/y(1 + cos 6)} — 6? sin? @ log ($y sin@)+..., (26) 

with Iny = 0-57712. Using this in (14) we obtain expansions for the coefficients Z,,. 

The coefficients M,, were computed either by quadrature or from a power series 
m 

in £ which can be found from the expansion 

ie) n—1 

My == & (= 19" | Pag) (BP an als) + 2m-+1) Peale} ye. (27) 

Returning to (15) and (16), once the L and M coefficients have been calculated, the 

equations are in suitable form for approximate solution to any required degree of 

accuracy, at least for moderate values of £. 

Accurate computation has not been attempted, but a somewhat crude approxima- 

tion is sufficient to bring out the general character of the results. Calculations were 

carried out for £ = 0-1, 0-2, 0-4, 0-6, 0-8, 1-0, 2-0 and 3-0. As an example of the 

numerical values, we find for = 0-4, 

Ig = 1-4707, L, = 0-2391, L,=—0-0582, L, = —0-0547, 

M, = 0-2464, M, = 0-1400, M, =—0-0428, M, = 0-0262. 

With these values we solve the first four equations from (15) and from (16) for 

eight unknowns, neglecting the unknowns of higher order; this gives 

C= 0-3029, D= —0-0486, A,=0:2012, A, = —0-0352, 

A; = 0-0193, B,=—0-0146, B,=0-0039, B, = —0-0027. 

These may be compared with the corresponding values for the limiting case 

£ = 0, namely, 

O=0:5, D=0, A,=0-2083, A,=—0-0375, A,=0-0145, A,,=0, B,=0. 

6. The resultant hydrodynamic pressure on the sphere is given by 

oF 
Z=- 2mpa? | sind cos bdé. (28) 
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Waves due to a floating sphere making heaving oscillations 6 

On the sphere we have 

¢@ = aL'(C cosot + Dsinot) + mfaJ( sin 0) e4°? (C sin ot — D cos ot) 

ar x a © Py ait) + P,,(/) (A, cos ot+ B,, sin ot), (29) 

where, after using (21), (23) and (25), 

L’ = 1—4nfe-#es6 {H,( B sin 0) + Yo(fsin 6)} — BA e Fos’, (30) 

We obtain Z in the form 

Z = 2npatko sin ot — 37pa2ho cos ct, (31) 

with Pp = PO aA CYP) AAA esa lg= cons (32) 

2h = 11 D+nBM,C+ (6 +4) B,-— ag Bo t+ 73533 —--- (33) 

In (32) and (33) we have put 

1 1 
T= [UR (ude, Mi; =| (sin dyereo? Rly) dy. (34) 

0 0 

The velocity of the sphere being cos ot, the first term in (31) represents an addition 

to the effective mass, the virtual inertia coefficient being & as given by (32). The 

0-8 
k 

0-6 

Oe 2h 

0-2 

0 0-4 08 12 1-6 2-0 
oa/g 

Figure 1. Variation of virtual inertia coefficient k and damping 

parameter 2h with frequency 

second term in (30) being proportional to the velocity, the quantity / as given by 

(33) may be called a damping parameter; it gives some estimate of the damping 

factor if the motion were unforced damped periodic motion. We may obtain an 
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7 Waves due to a floating sphere making heaving oscillations 

alternative expression for h from energy considerations. The motion as 7-00 is 

given by 
3 

b>71k,a* (= =| eo? {C'sin (ot —Kyo +47) —Dcos(ot—Kyu+}m)} (35) 
0 

The average rate of flow of energy outwards is 7?poa3(C?+ D?); equating this to 
2 3 #npoa*h we have h = 3nB(C2 + D?). (36) 

For numerical evaluation, the L’ and M’ quantities were computed by methods 

similar to those used for the L and M quantities in §5. Asan example, from the values 

given above for # = 0-4, we find & = 0-656; from (33) we obtain h = 0-174, while 

(36) gives h = 0-177. It will be appreciated that the values for the B coefficients are 

more liable to error than for the A coefficients; however, the two values for h were 

in fair agreement. Although the numerical computations for k and h were only made 

approximately the results were sufficiently consistent to be represented by smooth 

curves; these are shown in figure 1. The virtual inertia coefficient k begins from a 

limiting value of 0-828, rises to a maximum of about 0-88, falls to a minimum of 0-38 

and it then, presumably, rises slowly to the limiting value of 0-5. In order to use the 

same ordinate scale, the damping parameter 2/ is shown in figure 1; this rises to 

a maximum of about 0:35, the largest values of the damping parameter occurring 

in the frequency range in which the virtual inertia coefficient varies most rapidly. 
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A Note on Form Friction and Tank Boundary Effect 

Sir Thomas Havelock 

The following remarks are concerned with a suggestion 
made by Professor Horn many years ago for estimating form 

friction by means of the sinkage of the model, and with the 
possible application of this method to motion in restricted 

water. 

The influence of the walls and bed of the tank can, in usual 

circumstances, be conveniently separated into wave effect and 
frictional effect. The underlying theory of the wave effect is 
well known; the bed contributes the so-called shallow water 

effect, while the walls may give rise to interference effects due 
to the waves reflected from them. It is true that the actual cal- 
culations are beset with difficulties, such as occur in wave 

theory generally; but at least it may be said that the funda- 

mental causes can be specified reasonably. The theoretical 
aspect of the frictional effect seems to me to be less clear. The 
point in question is the difference between the ship form and 
a plank. A thorough analysis, theoretical and experimental, 

seems impracticable in general; though useful and important 

results are available for completely submerged solids of 
revolution. Assuming the form friction to be small, the usual 
practical method is to use the idea of effective equivalent 

velocity; that is, the actual frictional resistance of the ship 

at a given speed is taken as equal to that of a plank at some 
slightly higher speed. Failing a complete analysis of the actual 

flow, we can only make some reasonable assumption for defin- 

ing this equivalent effective speed. 

Horn [1] proposed to use the measured sinkage of the model 
for this purpose. If v is the velocity, and h is the sinkage, 
he gives for the required effective mean velocity v,, the ex- 
pression 

Vm = (v? + 2gh)”, (1) 

or if v,, = v + Oy, the relative increase in velocity is 

bv/v = (1 + 2gh/v?)*# —1. (2) 

If the frictional resistance R is proportional to vy", the relative 
increase in resistance, or the form friction, is given by 5R/R 

= n 6v/v. It was shown from model data that this gave reason- 
able values for the form friction, of the order of 8 per cent. 

In a short paper a few years later [2], I examined the theore- 

tical solution for a particular form, namely the general ellip- 

soid, including the case of a spheroid. The problem was treated 
as the motion of a double model, that is, a complete ellipsoid 

moving axially in an infinite liquid: a problem which can be 

solved exactly. 

Taking the motion along a horizontal axis Ox with the trans- 

verse axis Oy horizontal and with Oz vertical, an expression 

was obtained for the resultant vertical fluid pressure on one- 
half of the surface of the ellipsoid with respect to the xy-plane. 
If we now suppose the ellipsoid to be floating half immersed 

and if the velocity is small so that we may neglect the surface 
disturbance of the water, we can define an equivalent sinkage. 
If Z is this defect of vertical pressure and S is the area of 

the water plane section, we take h = Z/goS. The results 
were compared numerically with Horn’s value and also with those 

obtained by Amtsberg [3] for totally submerged spheroids. The 
analytical expressions for the general ellipsoid were given in 

terms of ellipsoidal coordinates; I quote now the special case 

of a prolate spheroid, where the result can be put into a 
simple form. 

The value of Z is given by 

rp rae ime lene) 
(a + b)? 

and the sinkage, as defined, ish = Z/ noabg. 

—txeabv? (3) 

In this, 2a is the length of the spheroid, 2b the equatorial 
diameter, and k, the virtual inertia coefficient of the spheroid 

for axial motion. If, for example, we take a length-beam ratio 
of 8, we find h = 0.029 v?/g; and assuming n = 1.825, we 

get an increase in frictional resistance of 5.3 per cent, agreeing 

fairly well with Amtsberg’s values. 

BR 
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Comparing (3) with Horn’s definition of the mean velocity 
we see that in this case 

Ym = v (1 + k,)[a (a + 2b)]*/ (a +b). (4) 

For most cases of interest, a/b is fairly large, say 8 or more, 
and we have approximately 

Vm = v (1 + ky). (5) 
Hence we have the simple, and interesting approximation 

dv/v =k, ; BR/R=nk,. (6) 

For example, the virtual inertia coefficient for a spheroid 

of length/beam ratio of 8 is 0.029, and 5R/R = 0.053. It 
might be going too far to apply this to ship forms, where the 
inertia coefficient is itself subject to uncertainty; however, 

assuming an effective virtual coefficient of 5 per cent would 

give a form friction of about 9 per cent. 

Of course for a spheroid the velocity distribution is known 

exactly and we might take some other suitable definition of 

the mean velocity. For instance, it might be obtained from 
the mean of the square of the tangential velocity per unit area 

of surface. It can easily be shown that this leads to the same 
approximation (5) when a/b is large. The point of Horn’s 

definition is that the sinkage can be determined experimentally. 

Coming now to the corresponding problem in restricted water, 
the tank boundary effect or the so-called blockage effect has 

become important in view of the need for greater accuracy 

and certainty in interpreting experimental model results. 

Reference may be made, for instance, to two recent papers: 
the B.S.R.A. experiments on the Lucy Ashton [4] (Conn, 

Lackenby and Walker), and the scale effect in Victory ships 
and models [5] (van Lammeren, van Manen and Lap). In the 

discussion on the former paper, Professor Horn referred to 

his method of using measured sinkages to estimate form fric- 

tion and suggested that it might be used to determine the 

necessary correction due to the boundaries of the tank. How- 
ever it seems that, at least for the Lucy Ashton, the differences 

in sinkage were too small to be determined experimentally with 

sufficent accuracy. It might be of interest to extend my previous 

calculations to the similar problem in restricted water. Consider 

a spheroid half-immersed and moving along a tank of breadth 
B and depth H. With the same limitations as for unrestricted 
water, we consider the motion of the complete spheroid in an 

enclosed rectangular channel filled with water, B being the 
distance between the side walls and 2 H that between the upper 
and lower walls. We require to calculate the quantity Z of (3), 

that is the resultant vertical force on the lower half of the 

spheroid. It is possible to obtain analytical expressions in a 
series of terms involving spheroidal harmonics; but they become 

very complicated and it is difficult to assess the degree of 

approximation numerically. The particular case of a sphere 
can be worked out in more detail, but the spheroid is com- 

plicated by the additional parameter of the length-beam ratio. 

Taking only the first step in the approximation I give now 
the result obtained for the quantity Z; it is 

z= Aneaby!] (drape 

(a + b)* 
ab? be 

1 + (Ll + k)) ——a } — 1 7 pep) er @) 

If we write 

* q = (m? B? + 4n? H?2) / (a2=—=1b2) ; 

B = 4 fq + (q? + 4)"*], 

the coefficient a is given by 

PPP feel esamilba guP ey celle 2. a LD (eee -s-F eR (8) 

where the double summation is taken over all positive and 
negative integral values of m and n, excluding the pair 

m = 0, n = 0. This summation arises from the doubly infinite 

series of images involved in the solution. This result may be 
subject to correction if the analysis is carried to a further stage, 

and the range of applicability is uncertain on that account. As 
before, we may simplify the result if b/a is small; we have 
approximately, 

b2 

Vm =v (1 +ky){1 + — (+k) a (9) 
a 

and, instead of (6) for unrestricted water, we have 

5 b? 
ak tf = GPa. 

2 
Vi am 

(10) 

Numerical computation has been made for a few cases for 
the spheroid with a = 8b. We have taken B = 2H as a usual 

tank ratio and it also simplifies the computation. For B/2b 

equal to 12, 8, 4)/2 the approximate values of the coefficient 

a are 0.065, 0.160, 0.392 respectively. If we define the 

blockage coefficient as the ratio of the maximum cross section 

of the half-spheriod to the sectional area of the tank, this 
coefficient is 0.005, 0.012, 0.024. From (10) the percentage 

form resistances at these values are 5.46, 5.84 and 6.93 

respectively, the value for unrestricted water being 5.29. 

The differences are negligible for small values of the 
blockage coefficient. It is not worth while attempting any direct 

comparison with model results meantime. The calculations 

were made for a spheroid under the limitations specified; 
moreover they refer only to the effect on form friction and 
take no account of surface disturbance or wave effects. 
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THE DAMPING OF HEAVE AND PITCH: A COMPARISON OF TWO-DIMENSIONAL AND 

THREE-DIMENSIONAL CALCULATIONS 

By PROFESSOR Sik THOMAS H. HAVELOCK, M.A., D.Sc., F.R.S. (Honorary Member and Associate Member of Council) 

1. Damping coefficients for heave and pitch are usually derived 
by calculating the mean rate at which energy travels outwards 
in the wave motion produced by the oscillations. The calcula- 
tion is based upon approximate solutions for the two-dimensional 
motion due to heaving oscillations of a long cylindrical floating 
solid; the application to heaving and pitching for a ship then 

proceeds by the so-called strip method. Each thin section of the 
ship is treated as part of an infinite cylinder of the cross- 
section at that point, sending out two-dimensional waves on 
either side. The coefficients for the ship are obtained by inte- 
grating along the length of the ship. Reference may be made to 
Weinblum and St. Denis(2) for a detailed exposition with cal- 
culations. In the work of those authors no allowance was made 
~for the difference between the assumed flow and the actual 
three-dimensional flow; this may be justified to some extent in 
that results in practical cases seem to give reasonable agree- 
ment for heaving, but the application to pitching requires more 
consideration. 

In discussing this point, Korvin-Kroukovsky and Lewis®) 

remark that the damping coefficient for heaving may be assumed 

tc be correctly represented by the two-dimensional calculation, 
but they adopt an empirical reduction factor of one-half for the 

similar calculations for pitching. 
In a recent paper Korvin-Kroukovksy™) discusses the matter 

in considerable detail, and expresses the opinion that an important 
effect of three-dimensional flow may exist. He estimated the 

validity of the two-dimensional calculations by comparing the 
data with results from towing-tank experiments on two models. 
It was found that, at the natural frequencies of the models, the 

results were in substantial agreement both for heaving and for 
pitching within the limits of experimental error, which were 

admittedly rather wide limits. However, for more extended 
ranges of frequencies, it was found necessary to introduce 
empirical correction factors, in one case, for instance, reducing 
the damping coefficient for pitching to 75 per cent of the cal- 

culated value. Korvin-Kroukovsky remarks: “In the case of 
damping in heave, most of the force comes from the middle part 
of the body where the flow hardly differs from the assumed two- 
dimensional one. The good agreement in regard to damping in 
heave was therefore not surprising. The close agreement in the 
damping in pitch was not expected, however, and in fact was later 

not confirmed in the application of the calculations to the entire 
set of model motions. Most of the contribution to the moment 
coefficient comes from the ends of the ship, where one logically 

_ Should expect a large change from the assumed two-dimensional 
flow to the actual three-dimensional flow.” It is clear that the 
matter is not in a very satisfactory state, especially as the use of 

an inclusive empirical factor may hinder recognition of the true 
cause of the discrepancy. 

2. The present work is intended, not as a solution of the 
problem, but as a contribution towards elucidating the particular 
point of the difference between two- and three-dimensional 
calculations. Of course the only really satisfactory method would 

be to work out the problem for a floating solid. It is not difficult 
to formulate the mathematical equations; but even for a simple 

form, such as a spheroid half immersed, the expressions soon 
become very complicated and numerical computation of pro- 
hibitive length. In this paper we deal with the simpler problem 
of a solid which is wholly immersed in the water, and we obtain 

the damping coefficients by the two methods: strip-method and 

three-dimensional. Although the separate results would not be 
applicable to a surface ship, it is thought that the ratios of the 
coefficients obtained by the two methods should at least give a 
useful indication of the sort of difference that might be expected. 
The calculations are given in the Appendix, comprising the basic 
theory, application to a submerged spheroid, approximate 
expressions for any elongated solid of revolution, and some 
remarks on the general ellipsoid with unequal axes. 

3. We consider now some numerical results. for a spheroid 
submerged in water with its axis horizontal. The spheroid is 

made to describe (i) heaving oscillations, (ii) pitching oscillations. 
Ey is the rate of energy loss for heaving calculated from three- 
dimensional flow, Eys from the strip method. The corresponding 
damping coefficients in the equations of motion of the solid are 
directly proportional to the energy loss; thus E,;/Eys is the ratio 
of the coefficients by the two methods. Similarly, for pitching 

Ep/Eps is the required ratio. The general formulae are given 
in (23) and (24). We take a spheroid with a length-beam 

ratio of 8, as a fair value for comparison with ship models; in 

this case e = 0-996, ky = 0-945, k’ = 0-84. With these values 
(23) and (24) were computed for integral values of kg a, that is 
of o2a/g, up to 10. The results are shown in Fig. 1 on a base 

fe) 6 8 10 12 14 lb 18 20 

oly 
Fic. 1.—RATIOS OF DAMPING COEFFICIENTS FOR HEAVING AND FOR 

PITCHING 

of o? Lig, where o is the circular frequency of the oscillations 

and L the length of the model; this seems to be the suitable 

parameter for comparison with model results. 

The ratio for heaving rises rapidly at first and attains a maxi- 

mum of about 1-1, and then, with small alternations, it soon 

approaches unity. With the sort of accuracy attainable prac- 

tically, the ratio may be taken as unity when o? L/g is greater 

than about 6. The ratio for pitching rises slowly at first and then 

very rapidly up to a maximum of about 1-15. In this case it 
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might, for practical purposes, be taken as unity if o? L/g exceeds 
about 8. 

In addition to this approximation to unity above these 
respective values of o” L/g, a specially interesting feature of the 
curves is the rapid fall in both ratios for smaller values of the 

parameter. 
It has already been remarked that these results can only be 

taken as suggestive when applied to surface ships; however, it is 
of interest to see what are the relevant ranges of the parameter 
in such cases, referring in particular to work in which the damping 
coefficients have been calculated by the strip method over a 

range of frequencies. 
For free oscillations at the natural frequencies, there are data 

in the paper by St. Denis) for a ship of length 600 ft. and beam 
81 ft. The values of o for free oscillations are given as 0-706 
and 0:82! for heaving and pitching respectively. The corre- 

sponding values of o? L/g are 10 and 12-6 and these both lie 
within the ranges given above where no correction factor is 
needed. A similar remark would, no doubt, apply to the experi- 
ments with 5 ft. models used by Korvin-Kroukovsky, although 
the natural frequencies do not seem to be given in the paper. 
However, the present work may be taken to confirm his experi- 
mental result that for natural oscillations the two-dimensional 
calculation does not require any appreciable correcting factor 

either for heaving or for pitching. 
For forced oscillations we have a wider range of frequencies. 

In work for which data are available, the heaving and pitching 
are produced by driving the model at given speed through 
regular waves of given wavelength. For instance, from St. 

Denis, 2) for a 600-ft. ship moving against waves with A/L =1-25, 
o ranges from 0-518 at zero speed to 0-77 at 30 knots; thus 

o? L/g ranges from 5 to 11. From the curves in Fig. 1, heaving 
may be said to require no correcting factor; but for pitching, the 

lower values are well within the critical range where a large 

correction is needed and where it changes rapidly. 
There are similar data from Korvin-Kroukovsky™ for 5-ft. 

models. With one model and A/L = 1 the parameter ranges 
from 6-3 to 20, and with another model and A/L = 1-5, it ranges 

from 4-3 to 12-5. Here again the pitching calculation seems to 
require considerable correction at the lower speeds. 

It should be noted again that one can only expect general 
indications in applying the present results to surface ships. For 

one thing, a spheroid is not a normal ship form. A more 

important point is that the flow round a completely submerged 

solid may differ considerably from that round a floating body. 
However, it is possible that the strip method and the three- 
dimensional calculation might be affected in much the same way; 

if so, the ratios for the two methods may not be so far astray. 

Finally, in all calculations for forced oscillations due to 

advancing through waves, it is assumed that the only effect of 
the speed is to alter the frequency of encounter. But a satis- 

factory theory of heaving and pitching including the effect of 
speed of advance, for anything like a normal ship form, is one 

of the main outstanding problems. The corresponding theory 

for a wholly submerged body might prove more tractable, and 
it may be possible later to extend the present work to a sub- 
merged spheroid which is moving forward while making heaving 

and pitching oscillations. 

APPENDIX 

1. The underlying theory was given in a previous paper© for 
a source distribution; it is convenient to give now explicit 

expressions for a distribution of vertical dipoles. 
Take the origin O in the free surface of the water, with O x 

and Oy horizontal and O z vertically downwards. If there is 

a vertical dipole of moment M cos of at the point (A, k, f) in 

the water, the velocity potential of the fluid motion is given by 
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The motion as w’ —> © is given by 

b> — 27M Q/rky @)'2e—K0E+/ sin (o t — ky @ + 7/4) 

(2) 

representing circular waves travelling outwards. For a given 
distribution of vertical dipoles all at the same depth f, we obtain 
the velocity potential from (1) or from (2) by integrating with 
respect to A and k over the given distribution. The rate of flow 
of energy outwards through a vertical cylindrical surface of 
radius @ is given by the rate of work of the fluid pressure over 
this surface, namely 

o) 27 

og dg_ -| az| p3! sane 

tt) t) 

Taking the radius of the cylinder large, we only need ¢ to the 

order w—!/2 as @ — 00. 
If in (2) we put 

2-32 +@—fP 

(3) 

x=a@cos@: y=a@sin8@; 

w’2 = @2—2ha@cos6—2kosinO + h?2 + k? 

then, to the required order, (2) gives 

b> — 273 M( z 
TI Ky @ 

1/2 
) e—kole+/) 

sin (or— Ky @ +7 + ko h cos 8 + kok sin) (4) 

Hence, for a given distribution, we shall have 

$ > @—1/2 e-eaciP] A sin (¢ t—kK)@ + ) 

+ Beos (01 —xyo +) | (5) 

with A, B known functions of 0. 
Putting this form into (3) and taking the mean value with 

respect to the time, we get for the mean rate of flow of energy 

outwards 

(6) 

Finally, inserting the forms for A and B obtained by integrating 
(4) over the given distribution, 

E =tpo(A2 + B?) 

Qn 

B= 2apaxgente | (P2 + Q2)d@ (7) 

0 

(8) 

In the present work, we shall not need any more general expres- 
sions, but an obvious extension would give similar results for any 
distribution of dipoles not necessarily in a horizontal plane. 

2. Consider now a spheroid, of length 2a and equatorial 

diameter 2 6, immersed with its axis horizontal and at a depth f 
below the free surface. Suppose the spheroid made to describe 

small vertical oscillations, the velocity at any instant being 

Vcosof. It would be possible, theoretically, to proceed step- 

with P+iQ =| M(h, k) ei Kolhcos0 + ksin) dh dk 
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by-step with successive approximations to a solution satisfying 
both the condition on the surface of the spheroid and that on 
the free surface of the water. We could then, at any stage, 

obtain the fluid pressure on the spheroid and hence the resultant 
vertical force. Of this force, the part in phase with the accelera- 
tion represents a change in virtual inertia, the part in phase with 

the velocity is connected directly with the loss of energy in the 
wave motion. At present we are concerned only with the latter 

part of the force, and we adopt the simpler procedure of obtaining 
directly the energy loss, taking only two terms in a successive 
approximation to the velocity potential. 

For the first term we take the exact solution ¢o for the motion 
of the spheroid in an infinite liquid. Taking, momentarily, the 
origin O at the centre of the spheroid, and the usual spheroidal 
co-ordinates 

x=aeul; y=ae(l — pC — 1)1/2 cosa; 

z=ae(l — p7)'2 (2 — 1)2 sinw 

we have the known solution, as given in Lamb’s Hydrodynamics, 
p. 142, with a slight change of notation. 

$p = — $aV(QZ—1)(1 +k) Pi (uw) Q!(Q)sinweos ar . (9) 

where () = e—! = (a? — b?)-1/2, and ky is the virtual inertia 
coefficient for motion perpendicular to the axis. For the next 
step we add a potential ¢, such that ¢y + ¢, satisfies the con- 
dition at the free surface. For this purpose it is convenient to 
express gy as the potential of an equivalent dipole distribution. 

Using the general formula 

e 

(a2 e2 — h)112s Ps (h/ae) ; Ze. .O\s i 
PS (2) Qa(Oe =a(s5 T iss) [@—A)?+y2+Z2]!/2 ae 

(10) 

and taking the particular case in (9), we see that do is the potential 
of a line distribution of vertical dipoles along the axis of the 
spheroid between the two foci and of moment per unit length 

1 1 — é?2 
——(1 + k) (@ e? — h?) Veos ct 

4 @ cD) 

We could now obtain ¢, by integrating (1) with respect to h. 
For our purpose we proceed directly to the energy loss from 

(7) and (8). We require the integral 

ae 

I (a2 e2 — h?) ei Kohcoso dh (12) 

=H 

and this has the value 

Ave @ 112 J5/9 (Kg a e cos 8) 
2 (ko ae cos §)3/2 (13) 

Collecting thé various factors from (7), (8), (11), and (13), we 
obtain the energy loss for heaving, which we shall denote by a 
suffix H, namely 

7/2 

Ey =472p on3a2b4(1 +k,)2V20-240F | Jan (Koae cos 8) |p 
(ko ae cos §)3 

(14) 
3. Suppose the spheroid to be making rotational oscillations 

about the transverse axis with angular velocity cos af. The 
velocity potential for an infinite liquid’is 

do =3 e(G—-)[lL+2QZ—-12k] 
Q PI (u) Q!(Q sin w cos ot 

in which k’ is the virtual inertia coefficient for rotation. 

a5) 

Using 
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(10), we find that ¢o is the potential of a line distribution of 
vertical dipoles along the axis between the foci and of moment 
per unit length 

1/4 (9 (43 — 1) [1 + 2B — 1)? kK JQUN@ ce? — h?)coscr . (16) 

For (8) we require the integral 

ae 

| h (a e? — hh?) eikohcos0 dh 

ne 

(17) 

and this has the value 

m\ 12, Js) (Kg a e cos 8) 
4 a4 et (7) ea 2 

From (7), (8), (16), and (18) we obtain the energy loss for pitching, 
which we denote by a suffix P, 

7/2 

32/9 (ko a e-cos 6) 40 
(Ko ae cos A)3 

Ep = 4 7? p ok} at bf e2 
[1 + @ @ = 1)? kh’? e—2 kof 2 

(9) 

4. We obtain now the corresponding expressions by the two- 

dimensional strip method, denoting them by an additional 
suffix S. 

For a circular cylinder of radius r with its axis at depth f, 
making heaving oscillations Vcosat, we have the known 
expression for the energy. loss to the same approximation, 

E=2 7? pox r4 V2 e-2hof (20) 

per unit length of the cylinder. 

For the spheroid, this result is assumed to hold for each thin 

disc of width dh; in fact, we might picture the method by 

assuming thin partitions transverse to the axis, separating the 

elementary discs and making the fluid motion purely two- 

dimensional for each disc. Integrating along the axis, we obtain 
by this method 

Eys = 2 7? p ok§ vt etn | b4 (1 — h2/a2)2 dh 

= 2p o Ke a bt V2 e—2 Kof iG (21) 

For pitching oscillations by this method, we simply substitute 
hQ for V; hence 

a 

Eps = 2 72 p ok? (2 entect | b4 h2 (1 — h2/a?)? dh 
Ee 

oe 7 p o K2 a3 b4 Q)2 e—? Kof 
105 (22) 

5. The particular point in question is the ratio of the damping 
coefficients obtained by the two methods, which we take as equal 
to the ratio of the corresponding energy loss. 

From (14) and (21) we have for heaving 

7/2 

Ex 15 J3,, (ky a 8 cos A) pes, 1 e,)2 3/2 \Ko , (3 
aa © oils i) | (ko ae cos )3 ao > ES) 

0 

From (19) and (22) we have for pitching 

70/2 

Ep 105 9 J2)5 (Kp ae cos 8) 
—- = 2 2 — 1/2 k’/2 5 2A Oa Sane = gz Kore fi+@@-1) “P| Gala BeOS: dé 

(24) 

As the length of the spheroid is increased, with a given breadth, 
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both e and k, approximate to unity, further, it can be shown 

that the asymptotic value of the integral in (23) is 2/15 xg ae. 

Hence, as one would expect, the ratio (23) approaches unity for 
a sufficiently long narrow spheroid. Under the same conditions, 
k’ approaches unity and the asymptotic value of the integral 
in (24) is 2/105x ae; hence the ratio (24) approaches unity 
under these limiting conditions. 

For numerical computation we can obtain power series for 
the integrals by substituting the known expression for the square 
of a Bessel function and integrating term-by-term: thus we have 

7/2 

| Jp (Ky a e cos 6) sec? 6 dO 

Y 2 (— 1)" (m + 1)! (kp ae)?" +3 

mao (2m + 1) (2m + 3) (m!)2 (m + 3)! (25) 

7/2. 

| Jz) (ko ae cos A) sec? 6d A 

; 
2 (— 1)” (m + 2) (Ko a e)2m+5 

= 2 
22,2 m + 3)(2m+5)m!(m +5)! ~ 5) 

The series can be computed readily for values of ky ae up to 
about 6. For higher values, the integrals were computed by 

direct quadrature, using intervals of 5 deg. throughout the range. 
Owing to the lack of suitable tables, the Bessel functions had 

to be evaluated separately in each case; however kp @ e was not 
taken larger than 10 as, with the degree of accuracy attempted, 

there was no appreciable difference then from the asymptotic 

value. 
6. We may extend the method to give approximate formulae 

for any long solid of revolution which is completely immersed. 
There is a well-known approximate solution for the transverse 
motion of a long solid of revolution in an infinite liquid, in which 
the flow is treated as two-dimensional; it consists of taking a 

distribution along the axis of two-dimensional dipoles of 
moment S/z per unit length per unit velocity, where S is the 

cross-sectional area at any point. 
We have seen in (11) that the transverse motion of a spheroid 

is given by a line distribution of three-dimensional dipoles along 
the axis from — ae to + ae, of moment per unit length per 

unit velocity 

1 
“4 

For a long spheroid, for which e is nearly unity, (27) is approxi- 
mately (1 + k) S/4 77; and to the same order we may take the 
distribution as extending over the whole of the axis. This 
suggests that for any elongated solid of revolution we might 
assume a distribution of three-dimensional dipoles along the 
axis of moment (1 + k) S/4 7 per unit length. Thus for heaving 
oscillations V cos o t of such a solid with its axis at depth f, 

2 

(+ ky) (@ 2 — 12) a (27) 
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we may apply (7) and (8). If 2/ is the length of the solid, and 
we take the origin at the centre of the axis, we have 

Ey = 

21 

aap ons +k? vena | (P2+.Q%)d8 (28) 
0 

vl 

with P+iQ= | Sietmorcovas oo ol 

—e 

Similarly, for pitching oscillations to the same approximation 

ED Te 

27 

2 paca igeGe | (P2 + Q2)d6 (30) 
0: 

l 

with P+iQ= | AS(permicnrah . 0 o Gil) 

e 

It may be noted that k and k’ are the virtual inertia coefficients 

for the solid as a whole; though, under the given condition 

they both approximate to unity. 
7. All the foregoing calculations are for a solid of revolution. 

With a view to removing this limitation, expressions were 

obtained for a general ellipsoidal form. 
For an ellipsoid with unequal axes, a > b > c, and with the 

a, b axes horizontal, the dipole distribution is in a horizontal 

plane and extends over the area enclosed by the elliptic focal 
conic. Application of (7) and (8) leads to expressions for the 

energy loss. 
If the larger transverse axis is vertical, c > 6, the distribution 

lies in a vertical plane, and within the elliptic focal conic; a 
simple modification of (7) and (8) gives the required results. 

It was decided eventually that it was not worth while carrying 
out computations; the expressions are of the same type as for 
a spheroid, though more complicated. It appeared that if the 
transverse axes b, c do not differ greatly, the main difference in 

the results as compared with a spheroid is a scale factor arising 
from the different values of the virtual inertia coefficients. 
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A Note on Wave Resistance Theory: 

transverse and diverging waves 

Sir Thomas Havelock, Newcastle 

I wish to associate myself with this tribute to Professor 

Weinblum for his distinguished work in Ship Hydrodynamics, 

and I should like to add also that I am greatly indebted to 

him personally. This is my excuse for a few remarks on a 

certain aspect of wave resistance theory, though I have nothing 

new to add; the particular point is no doubt chiefly of theore- 

tical interest, but it happens to have come to my notice again 
recently. 

Considering an ideal frictionless liquid, the only resistance 

to the motion of a solid is the wave resistance, and it is 

obviously the horizontal resultant of the fluid pressures on the 
solid. Another method is to calculate the propagation of 
energy outwards in the wave motion, and so deduce the cor- 

responding resistance. These two methods give the same 

result, provided the calculations are made to the same degree 

of approximation in each case. It may be noted that, in gene- 

ral, this involves obtaining the velocity potential to a higher 

Schiffstechnik Bd. 4 — 1957 — Heft 20 

stage of approximation for the resultant pressure calculation 

than for the wave-energy method. The energy method was 
used at first only for two-dimensional problems, as for 

instance the motion of a submerged circular cylinder; this 

was because there was available the well-known connection 

between energy transfer and group velocity for straight- 

crested plane waves. For three-dimensional problems, such as 

a submerged sphere, the resistance was found at first by the 
resultant pressure method. Subsequently I gave a theorem 
for the energy transfer in a ship wave pattern and its appli- 

cation to the calculation of wave resistance (Proc. Roy. Soe. A, 

1932). This was done by considering control planes at great 
distances before and behind the moving solid, and calculat- 

ing the rate of work and the transfer of energy across these 

planes. If Ox is in the direction of motion of the solid, 0 being 

a moving origin, we assume that the surface elevation € at 

a great distance to the rear approximates to a form which 

can be expressed by 

= (YL co 
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© = f£(0) sin {ko sec? 9(xcos + ysin‘) } dd 
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+ J F(9) cos {ko sec? 0(x cos + ysin®) } dd, 
Tw 

2) 

where c is the velocity of the solid, and ko = g/c?. It was 
shown that the wave resistance is given by 

£(0)? + £(—0)? + F(0)? + F(—9)?} cos? 0.0. Es) I Be a — ic} to 

ofSsuls 
ont 

The wave pattern can be considered as made up of elemen- 
tary plane waves travelling in all directions. From our know- 

ledge of the ship wave pattern it appears that the transverse 

waves are made up of plane waves making angles with 0x 

ranging from zero to a certain angle B, while the remaining 
plane waves from B to 90° make up the diverging waves. The 
angle 6 is given by sin?B = 3, and is about 35°16’. With 
this in mind I suggested (I.N.A., 1934) that one might pos- 
sibly divide up the wave resistance integral similarly; thus 

the value of the integral in the range 0 to 6 would represent 

the part due to the transverse waves, and the part from f to 

90° that due to the diverging waves. Of course this, as it 

stands, is no more than a fairly plausible assumption. I have 

been examining the possibility of putting it on a better basis 

by a different analytical approach; however I leave that mean- 

time with the remark that I think it can be justified as a 

fairly reasonable assumption, which can be used to give some 

interesting results. Taking some simple cases, consider a 

sphere with its centre at a depth f; the total resistance is 

1 
= 

R=4nxgo0 ko? a® J sec® } e-2 Ky fsec* 0 do. 

0 

We see by inspection that for low speeds the greater part 

of the integral comes from the range 0 to B, while for high 
speeds the greater part comes from the range B to 90°; a 

direct calculation shows that at c/ Y(gf) = 2, the diverging 
waves account for about 80 per cent. of the total resistance. 

From another point of view, this illustrates the fact that 

diminishing draft increases the relative importance of the 

diverging waves, and vice versa. 

We may illustrate interference effects by taking a system 

of a source and sink each of numerical strength me, at a depth 

f, and at a distance { apart. The total resistance is given by 

R=32 20 m?ko?c? f {1 —cos(2 ko fsec 8) }e? Fn F8€C* sec? Hdd. 
0 

Consider the oscillating part of the integral due to the 

factor cos (2kolsec®) in the two parts of the range of inte- 

gration. Approximately, the last hump on the resistance curve 

in each case will be near a value of ko! given by 2kolsect 

=x. For the range 0 to B, sec 0 is not much different from 
unity; so the last hump on the transverse wave resistance 

curve will be near ko! = a/2, or a Froude number F = 0.56. 

On the other hand, on the range B to 90° we may take sec} 

as about 2 to give the maximum result; so the last hump on 

the diverging wave resistance curve will be near ko! = 1/4, 

or F = 0.78. The interference effects due to the superposition 

of two sets of transverse waves is a familiar idea; it is not 

so well-known that we may have interference of the diverging 

waves of two systems. 

In conclusion I may refer to some calculations which have 

been made for simple ship forms on this assumption for 

separating the contributions of the transverse and diverging 

waves, 

Wigley (I.N.A. 1942) has given numerical results for a 
simple parabolic model with two ratios of length to draft and 

up to a Froude number of 0.6. Inui (Intl. Conf. Ship Hydro 
1954) refers to some similar unpublished calculations by him- 

self, and gives an interesting diagram for water of finite 

depth: in which case there are only diverging waves above a 

critical speed. Finally, I would refer in particular to Lunde 

(S.N.A.M.E., 1951) who gives a diagram of curves of trans- 
verse and diverging wave resistance for a parabolic model. 

These curves are very interesting, bringing out clearly the 

humps and hollows on the two curves; for instance, the last 

hump on the transverse wave curve is at about F = 0.45, while 

that for the diverging waves is at some value greater than 
F = 0.6, outside the range shown on the diagram. It might be 
of interest to have calculations for other models, to show how 

the various elements of form affect the relative importance 

of the transverse and diverging waves. 
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THE EFFECT OF SPEED OF ADVANCE UPON THE DAMPING OF HEAVE AND PITCH 

By PRoFEssor Sir THomas H. HAvetock, M.A., D.Sc., F.R.S. (Honorary Member and Associate Member of Council). 

Summary 

Calculations are made for the damping coefficient for a specially simple case which may be 
taken to correspond approximately to a long narrow plank moving forward with velocity c and 
making forced pitching oscillations of frequency p. Curves are given for the variation of the 
damping moment with frequency at various speeds, the chief aim being to illustrate the effect 
of the critical condition when the parameter p c/g has the value 4. The results are discussed in 
reference to recent experimental work and the possibility of a steep rise and fall in the curve 
of damping near this critical point. 

The damping of the heave or pitch of a floating solid is mainly 
due to the energy lost in the wave motion produced by the 

oscillations. If the solid is at rest, apart from the oscillations, 
the problem can be formulated satisfactorily as a potential 
problem with the usual linearized condition at the free surface 
of the water. If the complete solution could be found in any 

given case, it could no doubt be also expressed in terms of some 
source distribution over the immersed surface of the solid. 
However, what is usually known as the source method of solution 
is an approximation which begins by assuming some simple 
source distribution and then adding the wave motion due to these 
pulsating sources; the method has obvious limitations on its 
application in general, but it has served to give interesting and 
useful results. If, in addition to the oscillations, the solid is 
moving forward with a constant speed of advance, the formula- 
tion as a potential problem with the linearized free surface con- 
dition is not satisfactory except in the limiting case when the solid 
is like a thin disc moving in its own plane. However, some pro- 
gress has been made by the approximate method of assuming 
some source distribution, and the calculations then require the 

wave motion due to a pulsating source advancing at constant 
speed. This problem has been examined by various writers and 
reference may be made in particular to Haskind,™ Brard,™ and 
Hanaoka.®) If p is the circular frequency of the pulsation and 
c the velocity of advance, it is known that the wave motion changes 

in character when the parameter pc/g = +4. It does not seem 
to have been pointed out explicitly that in fact some of the terms 
in the solution become infinite at this particular point. The 
object of the present paper is to examine this matter in some 
detail for a special case so as to see the effect of this mathematical 
infinity upon the damping for lower and higher values of the 
parameter. Consider for a moment a two-dimensional case, for 
instance a submerged circular cylinder making heaving oscilla- 

tions of frequency p and advancing with velocity c. At zero 
speed, there are two wave trains, one on each side of the cylinder. 
At speed c, if p c/g < 4, it can be shown that there are four wave 
trains, one in advance and three to the rear, the wave train in 
advance being that for which the group velocity is greater than 
the speed of advance. If the speed is increased, the amplitudes 
of two of these trains become infinite at the critical point when 
pc/g =4; and for higher values of the speed these two trains 
disappear, leaving only two wave trains both to the rear of the 
cylinder. The behaviour at the critical point clearly arises from 
a special, and interesting, case of resonance; and, as usual, the 
infinity could only be removed from the solution by introducing 
some frictional or other kind of dissipation. 

Turning to the three-dimensional case of a point source, one 
might hope that the infinity would disappear through integra- 
tion, but this is not the case; the solution contains integrals 
which are finite in general, but they become infinite at the critical 

value of the parameter. 
Calculations have been made by Haskind and by Hanaoka for 

the damping of a Michell-type of model with the source distribu- 
tion assumed to be in the vertical longitudinal plane; this assump- 
tion is the well-known approximation for wave resistance, and 
although it is of doubtful validity in general as regards the 

heaving or pitching oscillations it gives useful indications for 
simplified forms. Although the integrals used by Haskind 
become divergent at the critical value of the parameter, his curves 
do not show any infinity; possibly the range does not include the 
critical point. Hanaoka also gives a curve for the damping at 

various speeds; but the whole curve is explicitly for the value 
pclg = 0-6 and so is well beyond the critical point. 

Some recent experimental work by Golovato is of special 
interest. A model was made to perform heaving oscillations of 
given frequency while moving forward at some constant speed, 
and the forces and moment on the model were measured. In 
Fig. 13 of that paper the damping moment is shown in curves 
ona. base p(B/g)? for various values of the Froude number. 
A striking feature is the pronounced peaks at low values of the 
parameter. Golovato remarks: “‘The steep rise at low fre- 

quencies appears to coincide with a velocity-wave celerity ratio 
of 4 where the character of the waves generated by the oscillating 
body is known to change markedly.” This ratio is what we have 
denoted here by p c/g. It is curious that the curves for heaving 
do not seem to show the same effect, though one would expect 
the same cause to be operative for both heaving and pitching. 

The present calculations are for a simple line distribution of 
pulsating sources, but we can relate them to a possible physical 
problem. Suppose a long narrow plank, in a vertical plane, 
moving forward and at the same time making small pitching 

oscillations. Such a form, with pointed ends, is the most suitable 
for comparing wave resistance theory with experiment, and it 
might also be used similarly to test the approximate linear theory 
of heaving and pitching. However, even if it is not a practicable 
method experimentally, it is an appropriate form for the present 
state of theory. We may separate out the effects of the forward 
motion and the pitching; and we may assume the latter to be due 
to a simple source distribution over the flat submerged base of 
the plank, or for small enough beam to a distribution along the 
central line of the base. As numerical computation is rather 
lengthy in any case, we omit the pointed ends and reduce the 
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form to a long plank, of length L and beam B, submerged to a 
draught d, moving forward with velocity c and making small 
pitching oscillations with angular velocity Q sin p t. 

The theoretical work is given in the Appendix. It begins with 
a different derivation of the fluid motion due to a moving 
pulsating source. Then by integration of an assumed source 
distribution we obtain the velocity potential for the plank. The 
fluid pressure is obtained for any point of the base and hence the 

moment of this pressure. Dealing only with the moment due to 
the pitching motion, the periodic part will be of the form 
M, sinpt-+M,cospt. The second term is in phase with the 
angular acceleration and can be considered as giving a ‘Virtual 
addition to the moment of inertia. The first term is in phase 
with the angular velocity and gives the corresponding damping 
coefficient; this is the only term which is examined here, and 

expressions for M, are given in equations (13), (14), and (15). 
For numerical computation we have taken L/B = 20 and 

d/B = 2. These ratios do not allow any direct comparison with 
the usual models; they were chosen partly to lessen computation 
and partly so as to bring out certain points. Fig. 1 shows curves 

lO'nM, 
P giBALn 

O2 O3 O04 OSs 06 O7 O8 

Fic. 1.—DAMPING MOMENT FOR PITCHING ON A BASE OF FREQUENCY 
FOR FROUDE NUMBERS 0, 0:07, 0:14, 0:18 FOR SPEED OF ADVANCE 

for the variation of 10?>7M,/pg*B*L*Q with the usual 
parameter p (B/g)+ for certain values of the Froude number F. 

The curves do not need any detailed discussion, but one or 
two remarks may be made. The curve F = 0 is for zero speed 

of advance and is of the usual type. It may be noted that the 

integrals in equation (13) include an oscillating factor and we 
might expect humps and hollows on the curve; but they occur at 
higher values of the frequency where the value of the moment is 
small. These possible oscillations are not interference effects 
connected with the beam, such as have given rise to discussion 
in two-dimensional problems: the latter have been ruled out of 

the present calculation by the assumption of small enough beam. 

The interference effects here are in length, between bow and 
stern; no doubt the rectangular form of the base would tend to 
exaggerate any such effects. 

Comparing the curve for zero speed with the other curves, a 
general effect is like moving the curve towards the lower fre- 
quencies with increasing speed, and we can see the interference 
effects coming into evidence. The other main point is the 
infinity at the critical value with a steep fall after this point 
followed by a small gradual rise. The critical point for F = 0-07 

is at p (B/g)* = 0:8; it is not shown in the diagram as the infinity 
is highly localized and computation would be tedious. The 

critical points for Froude numbers 0-14 and 0-18 are at 0-4 and 
0-31 respectively. It should be stated that there are certain 
speeds for which M, does not become infinite at the critical 
point, though there are still peak values; these speeds are such 

that the Bessel Function in the integrals (13) has zero value for 
6 = 0 when p e/g = 

Naturally, in any experimental results the mathematical 

infinities would be smoothed down as in other resonance effects ; 
and also they are likely to be highly localized and sensitive to 
small disturbances. Nevertheless they have their effect upon the 
rest of the curve; and with suitably devised experiments one 
might expect peaks on the damping curves in the region of the 
critical value of the parameter. 
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Appendix 

A point source of strength m sin p ¢ is moving with velocity c 
at a depth d below the free surface of the water. We take moving 
axes with the origin O in the free surface immediately above the 
travelling source, O x in the direction of motion, O y transversely, 

and Oz vertically upwards. We suppose the motion to have 
been started from rest and the solution we require is that to which 
the motion approximates at a sufficiently long time after the 
start. The result can be obtained by integrating the effect of 
infinitesimal steps in the motion from the start up to the time f. 
Suppose the motion started at a time u before the present instant, 
that is at a time t — uw; then, using a general result for a variable 
source,©) we have for the velocity potential 

1 WN 
p=m(———)sinpt + $1 (1) 

where 

4megt ". 
= lim ——..] sinp(t—u)du by = im —t I p(t—w) 

7/2 

j a0 cos [« (x +c u) cos 6] cos (« y sin ) 

x sin(ugt K)Kte-K4-Ddxk (2) 

with r?=x?+y?+(z+d)?; R=x?+y+(2—d)? 

Carrying out the integration with respect to u we obtain 

1/2. fs in Gof 
u>a 7 

+ e—k(4—2) cos (K y sin 8) 

cos [k ccos 0 —p — (gk)4]u 
x (oe +po{ 

«ccos@ — p —(gx)t 

_ cos[kecos#@—p+(gk)t]u _ 2(g Kt 

«ccos@ —p+(gk)t (« ccos 0 — p)? —gK 

sin [k ccos 8 — p —(gk)*]u 

kccos@ — p —(g kt 
+ cos (« x cos 0 +po{ 

__ sin [k ccos 8 —p + (g cel) 

x ccos 6 — p + (g k)t 

— two similar terms with — p trp | Ke (3) 

Considering the integration with respect to « and the limiting 
value as u —> 00, we require the positive values of « for which 
the various denominators in equation (3) are zero, and the corre- 
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sponding positive square roots of these values. There are four 
such zeros in all and they are given by 

Ky, Ky = ky sec? O[1 + 2B cos @ + (1 + 4B cos 6)4] A 

3, K4 = $ Ko sec? O[1 — 2B cos 6 + (1 — 4B cos A)4] @) 

where ky = g/c?, B = p e/g, and x3, K4 only exist if cos 0 < 1/4 B. 
The integrals in equation (3) involving a factor of the form 

cos [u f (k)]/f(«) tend to zero as u —> 0, interpreting the inte- 
grals where necessary as principal value integrals. For the 

integrals in equation (3) of the form 

co 

j AcsialACMRG le 6 0 o ©) 
() 

where f («) has simple zeros, the contribution of each such zero, 
say ky, to the limiting value is 7 F (,)/|f’ («,)|. All the relevant 
zeros are included in the four values given in equation {4). 

After carrying out these operations, we obtain 

1 1 g=m(——— 
Tale) 

m/2 ee) 

_2me!| ag sin (x x cos 8 + pt) 

7 (k ccos 8 — p)*? —gk 

0 0 

sin (k x cos 0 — pf) 
(x ccos@ + p)? —gk 

m/2 

2 Ky e—ki(d—z) 6 ; 9 P 

Mea (ROIS Icosgyiy ery +B ers y sin) 
0 
7/2 

2 Ky e— K2d—2) 9 here 

™ | O+4B cos 0 (kz x cos @ + pt) cos (kz y sin @) d 
0 
7/2 

sin pt 

Joos (x ysin 0) ke“K4-DJ dk 

Kee K(d—2) 
2m| a SACRO) Cos (k3 x cos 8 —pt)cos («3 y sin 8) dé 

61 

7/2 

2 Kg e7 Kad—z 9 

pall ciE=ataicosteynces Gece ze concarysin bat 
01 F 6 A 

where 

6,=0if4B<1 

HSCs CAM wassl , 5 o so @ 

In the last two integrals in equation (6) the integrand becomes 
infinite at the lower limit 6,, but the integrals remain finite in 
general; however, they become divergent in the limiting case 
when 4 B = 1 and 6, = 0. 

The wave pattern at a great distance from the source need not 
be discussed here; it is obtained by combining the last four 
terms in equation (6) with the suitable contribution from the double 

integral in equation (6). Broadly speaking, the pattern at a great 
distance in advance is associated with the «4 value while at the 
tear it comes from the k,, Ky and «3 terms. Finally, it can be 
verified that for c = 0, the expressions reduce to the known form 

for a stationary pulsating source emitting circular waves at a 
great distance. 

Consider now a long thin plank, of length L and beam B 
and with short pointed ends, floating vertically in water and 
immersed to a draught d. The plank moves forward with 
velocity c and makes small pitching oscillations with angular 
velocity Q sin p t. We assume that the velocity potential due to 

619 

the pitching motion can be derived from a source distribution 
over the flat base of the plank; further, we assume the source 
strength per unit area at a distance x from the mid-point is 
1/4 z times the normal velocity at that point, and for a sufficiently 
thin plank we take this as equivalent to a line distribution of 
amount (B/4 7) x Q sin pt. These are rather drastic simplifying 
assumptions, especially for pitching; but perhaps they are not 
too far amiss under the specified conditions for illustrating the 
particular point under consideration. To reduce the computa- 
tion we extend the integration only to cover the rectangular part 
of the base, omitting the supposed short pointed ends. The 

velocity potential due to the forward motion could be obtained 
in the usual way by a source distribution over the curved sides at 

the two ends of the plank; as this does not enter into the present 
calculation we omit this part of the velocity potential. 

Returning to equation (6) we obtain the required result by sub- 

stituting x —h for x, multiplying by h B/4 7 and integrating 
between the limits +/ for 4, where L = 2/. All the integrals 
can be evaluated explicitly, but to avoid lengthy expressions we 
write F (x, y, z) for the contribution of the first term in equation 

(6). We obtain thus 

¢ = (BQ/4 m7) F(x, y, z) sinpt 

7/2 

+ £BQ (E27) | do | (ic sec 8) Js ( 10s 8) 
0 0 

eS 

(« ccos 6 — p)? —gk 

uli cos (k x cos 0 — p t) 

(x ccos @ + p)* —gk 
| cos (k y sin 6) e~K@-) dk 

1/2 

13 \4 (x, sec 6)* : 
+ Ba —;) | (+4 Bos pel? (x, Lcos ) sin (kK, x cos 0 

0 

+ pt) cos («; y sin 8) e~@-) dO 

+ similar terms in kK, K3, K4 RUM ie Gee eee BS) 

where J denotes the ordinary Bessel Function. 

The pressure on the base is given by 

p=p(ot—c22) | eg 3G) 
ot ox 

and the moment M of the pressure about the axis O y is given by 

M= || pxdxdy eae eN ee GLO) 

taken over the base. Or, to the present approximation, 

I 

op d¢ M= pa (Ge =e. )xdx (11) 

with y = 0 and z = — d in equation (8). 
On examination of the various terms in equation (8) it is easily 

seen that the only contribution to the terms in sin pf in equa- 
tion (11) comes from the last four terms in equation (8). From 
the first of these terms, for instance, the contribution to this 

part of M is found to be 

7/2 

kK, ccos 0 — p 
+4 feos 6) 2? (,1cos O)e—214 sec 6 dO pe POsnps | 

0 (12) 

For computation we change from the Bessel Function J to the 
Spherical Bessel Function given by S (x) = (7/2 x)? J (&), 
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because extensive tables of these functions are available. With 

F = c/(g L)}, and with M, sinpt being the required part of 
the moment, we obtain finally 

a Mi/p BEg? L4Q = } B/L F-3 
[2 

A, B, sec3 8 Ay 
(1 + 4 B cos 6)? 372\ 4 F2 

0 

7/2 

a A, B, sec? 6 

(1 +4 B cos 6)t 3? 
0 

7/2 

a, A3 B; sec? 0 2 A3 

(1 — 4 B cos 6)! 3/7 \4 F2 
61 

— 9A 0.29 
sec bye LF2 d@0 

A 
(7 

_dA2 
sec ye aR "8 769 

— 93 oo 
sec) ¢ aR 9 

[2 

Ag B, sec? 6 

+/ (1 — 4B cos )6# 
61 

with 6, given by equation (7), B = p c/g, and 

Ay, Ap =1+28Bcosé + (1 +48 cos 0) 

B,, B, = (1 +48 cos A+ +1 

A3, Ay = 1 —2Bcos@ + (1 — 4 B cos 0)+ 

B;, By, = 1 + (4B cos)! | nay 

If we write g = p (B/z)?, it can be verified that when c = 0, 
equation (13) reduces to the result for this case which can be 
obtained directly, namely 

dA , 
3). ( me sec 6) ear? 79] “(13) 

m/2 

7M, /pgtBtL!Q=q3 ese TAG 5? cos 8) d6 (15) 
0 
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