# =Coastal Engineering 

 Research Center

# COMPILATION OF LONGSHORE CURRENT DATA 

Namendichown abounds
LIBRARY
MAY 291967
WOODS HOLE, MASS.

Material contained herein is public property and not subject to copyright. Reprint or re-publication of any of this material shall give appropriate credit to U. S. Army Coastal Engineering Research Center.

Limited free distribution of this publication within the United States is made by the U. S. Army Coastal Engineering Research Center, 5201 Little Falls Road, N. W., Washington, D. C. 20016

When this report is no longer needed, please return it to the originator.


# COMPILATION OF LONGSHORE CURRENT DATA 

by<br>Cyril J. Galvin and Richard A. Nelson



U.S. ARMY

This paper is a compilation of published longshore current data available from North American sources as of January 1966. The data comprise 352 separate observations; of these 225 were obtained fròm four laboratory studies and 127 from four field studies. Each observation includes (at least) measured longshore current velocity, in feet per second; wave direction; a wave height, in feet; wave period, in seconds; and beach slope. Values of breaker height and breaker angle were computed for those observations lacking measured values. Longshore current velocity is usually less than 2 feet per second under both field and laboratory conditions. The maximum velocity observation from the field is 5.5 feet per second; from the laboratory 3.8 feet per second.

## FOREWORD

Coastal engineers are examining longshore currents with increasing interest in the hope of predicting longshore current velocity from measurable characteristics of the waves and, eventually, the littoral transport rates that result from the flow of the currents. This compilation brings the available data together in a format that will be convenient to researchers. However, additional data are still needed, especially data accompanied by statistics of their variability and by a description of experimental procedure. Others working on this problem are invited to send copies of their published longshore current observations to CERC.
.The paper was prepared by Cyril J. Galvin, Jr., Oceanographer, Research Division, U. S. Army Coastal Engineering Research Center, and Richard A. Nelson, graduate student, Department of Civil Engineering, Massachusetts Institute of Technology, assisted by J. D. Waggoner of the National Bureau of Standards.

At the time of publication, Colonel F. O. Diercks was Director of CERC, and J. M. Caldwell the Technical Director.

NOTE: Comments on this publication are invited. Discussion will be published in the next issue of the CERC Bulletin.

This report is published under authority of Public Law 166, 79th Congress, approved July 31, 1945, as supplemented by Public Law 172, 88th Congress, approved November 7, 1963.

1. Introduction ..... I
2. Variables Listed ..... 1
3. Difficulties in Measuring ..... 2
4. Descriptions of Investigations ..... 2
a. Putnam, Munk, and Traylor Laboratory Observations ..... 4
b. Saville Laboratory Observations ..... 4
c. Brebner and Kamphuis Laboratory Observations ..... 4
d. Galvin and Eagleson Laboratory Observations ..... 4
e. Putnam, Munk and Traylor Field Observations ..... 5
f. Inman and Quinn Field Observations ..... 5
g. Moore and Scholl Field Observations ..... 5
h. Galvin and Savage Field Observations ..... 5
5. Discussion of Data ..... 6
LITERATURE CITED ..... 8
I LLUSTRATIONS
Figure
1 Definition of Longshore Current Variables ..... 3
Tables
I Laboratory Data by Putnam, Munk, and Traylor ..... 10
2 Laboratory Data by Saville ..... 11
3 Laboratory Data by Brebner and Kamphuis ..... 12
4 Laboratory Data by Galvin and Eagleson ..... 15
5 Field Data by Putnam, Munk, and Traylor ..... 16
6 Field Data by Inman and Quinn ..... 17
7 Field Data by Moore and Scholl ..... 18
8 Field Data by Galvin and Savage ..... 19
by

Cyril J. Galvin, Jr. and Richard A. Nelson
Research Division
U. S. Army Coastal Engineering Research Center

## 1. Introduction

The principal goal of longshore current studies has been the prediction of longshore current velocity from measurable characteristics of the waves generating these currents. In order to test theoretical predictions of velocity or to calculate empirical predictions of velocity, data are necessary. Some data have been obtained and published in scattered journals. To make this data conveniently available, this article reprints, in standardized form, eight previously published sets of longshore current data, including four sets of field measurements (Putnam, Munk, and Traylor, 1949; Inman and Quinn, 1951; Moore and Scholl, 196I; Galvin and Savage, 1966)* and four sets of laboratory measurements (Putnam, Munk, and Traylor, 1949; Saville, 1950, Brebner and Kamphuis, 1963; Galvin and Eagleson, 1965). These data are presented in tables following the list of references.

These eight sets of data, obtained under varying conditions using differing experimental procedures, are not equally reliable. The purpose of this paper is to merely list the data in convenient format and to briefly describe how they were obtained as a background to the review and evaluation given by Galvin (1967). Because the available data cannot be easily evaluated, a secondary purpose of this paper is to suggest the full publication of experimental procedure and statistics indicating the reliability of the data obtained by future research.
2. Variables Listed

The eight sets of data, listed in the table, contain a total of 352 observations. A longshore current observation, for the purpose of this report, is the approximately simultaneous measurement of five variables: a mean longshore current velocity (VMEAS), in feet per second, the direction of the wave at breaking (THETAB) in degrees, the period of the breaking wave (TB) in seconds, the height of the breaking wave (HB) in feet, and the beach slope (SLOPE) dimensionless. These variables are defined in Figure 1. Other measurements in the table include mean water depth at the breaking point (DB) in feet, given with Putnam, Munk, and Traylor's laboratory data, the direction of the wave (THETAO) in degrees, and the height of the wave in deep water (HO) in feet, as computed by Saville and Brebner and Kamphuis for their laboratory data, and the horizontal distance from the breaking position to the stillwater line on the beach (BVAL) in feet,

[^0]measured in the experiments of Galvin and Eagleson. In some of the eight studies additional information was obtained, and this is discussed in the description of each investigation given in paragraph 4.

In the tables, laboratory data are listed first, followed by field data, each in chronological order. The compilation of data in the tables is reasonably complete, but other published studies may exist, especially in foreign literature. Other unpublished data are known to exist (Johnson, 1953, and Harrison and Krumbejn, 1964), and field data obtained at Nags Head, North Carolina, by the Coastal Studies Institute of Louisiana State University (Sonu and McCloy, 1966).

The first column of the table is an identification number (ID) consisting of the initials of the investigators (as PMT), the letter $L$ or $F$ to indicate laboratory or field studies, and a number identifying the observation within the particular set of data. The last column of the table, labeled COUNT, is an identification number running from 1 to 352.

## 3. Difficulties in Measuring

Wave direction (THETAB) is the variable most difficult to measure with necessary accuracy. Visual field estimates are probably least reliable (Galvin and Savage, 1966) and even vertical photographs must have accurate horizontal control. The possibility of relative error increases markedly as THETAB decreases.

Longshore current velocity measurements (VMEAS) are more reliable than angle measurements, but this variable must be measured carefully because of the unsteadiness typical of field examples (Putnam, Munk, and Traylor, 1949) and the non-uniformity typical of laboratory examples (Brebner and Kamphuis, 1963; Galvin and Eagleson, 1965).

Wave height at breaking (HB) can be measured with reasonable accuracy, but care must be taken that measured values are representative. The wave gage must be fixed offshore of the mean breaking point and those waves which break before reaching the gage must be eliminated from the averages. Other problems arise because waves in nature have a finite crest length and are almost always subject to refraction effects; and on laboratory beaches, reflection causes partial standing waves which locally distort wave heights.

Wave period and beach slope can be measured within desirable accuracy under laboratory conditions. Under favorable conditions, wave period can be measured reasonably consistently in the field, either from oscillographs of the water surface or by visual observation. Well-controlled sounding from a pier permits accurate measurement of beach shape from which a slope may be defined. Similar sounding is necessary for laboratory sand beaches.

## 4. Descriptions of Investigations

The following paragraphs describe the peculiarities of each set of data, in the order that they are listed in the tables, based on


SIDE VIEW


## FIGURE I. DEFINITION OF LONGSHORE CURRENT VARIABLES

information obtained from the papers of the respective authors.
a. Putnam, Munk, and Traylor Laboratory Observations (COUNT 1-37)

At the University of California at Berkeley, longshore current velocity was measured by timing the travel of potassium permanganate ( $\mathrm{KMnO}_{4}$ ) dye on the central l0-foot section of a 39-foot (?) test beach. The breaker angle was obtained from vertical photographs, and wave height was measured by electric point gages.

A fixed, artificially roughened, plane beach was used in these experiments. For numbers 1 through 14, the beach surface was roughened by bonding natural sand to it. For numbers 15 through 28 , the beach was covered with sheet metal or smooth cement. For numbers 29 through 37, the beach was covered with $1 / 4$-inch gravel bonded with a thin grout.
b. Saville Laboratory Observations (COUNT 38-46)

At the University of California at Berkeley, additional longshore current data were obtained during a study of sand transport. The travel of $\mathrm{KMnO}_{4}$ dye along a l0-foot segment of the 60 -foot beach was timed to obtain velocity. Wave heights offshore were measured with point gages. Offshore of the surf zone, the beach was concrete, and inshore it was 0.3 mm sand. The slope listed in the table (0.10) is that of the concrete, but the slope in the surf zone may have been lower.

Breaker angle (THETAB) and breaker height (HB) were not measured, but the theoretical values in deep water (THETAO and HO) were computed from small-amplitude wave theory. THETAB and $H B$ were computed in this study for the table using refraction graphs (Johnson, O'Brien, and Isaacs, 1948) and (Le Mehaute, 1961). The zero value of VMEAS in observation number 46 (SAVL 9) is for a run in which little net longshore current was observed.

## c. Brebner and Kamphuis Laboratory Observations (COUNT 47-187)

These data were obtained from a model study at Queens University, Kingston, Ontario, Canada. THETAB and HB were not measured, so the values listed in the table were also computed by using refraction graphs as for Saville's data. Velocity was measured by timing the travel of an immiscible, neutral-density fluid along the beach between 15 and 20 feet from the upstream wall. The concrete beach was at least 30 feet long and roughened by indentations spaced on one-inch centers. Offshore wave heights (not in table) were measured with an electric point gage.
d. Galvin and Eagleson Laboratory Observations (COUNT 188-225)

At the Massachusetts Institute of Technology, Hydrodynamics Laboratory, wooden floats and a current meter were used to measure longshore current velocity. The listed velocity is that observed at 18 feet from the upstream wall but considerable additional data are available on the two-dimensional velocity distribution in the surf zone, as well as
the distribution of setup over the whole beach. The overall beach was 30 feet long, of which 20 feet made up the test section. Most values of THETAB are the average of twenty measurements with a protractor. Wave height was measured with a parallel-wire resistance gage.

All blanks in the table for the data of Galvin and Eagleson indicate that the quantity was not measured.
e. Putnam, Munk, and Traylor Field Observations (COUNT 226-243)

At Oceanside, California, velocity was measured using weighted floats and fluorescein dye. Additional data was obtained showing the unsteadiness of the current. THETAB was measured with a compass from a pier or from photographs taken from a blimp. Slope was obtained by sounding from a pier. Observations 238 and 242 were obtained during a 22-knot following wind approximately parallel to the shore.

## f. Inman and Quinn Field Qbservations (COUNT 244-276)

Velocity was measured at the water surface and at the bottom of the surf zone by timing the travel of floating kelp and weighted, tethered soccer balls. The velocities given by Inman and Quinn are already the averages of measurements made at 15 stations spaced at about 300-foot intervals at Torrey. Pines and Pacific Beach (near La Jolla), California. Their statistics show that the standard deviations often exceed the mean velocity. In table 6, the velocity listed is the average of the bottom and surface velocities whenever both are given. $H B$ was estimated by an observer on the beach. More than half of the values of THETAB were measured with a transit sighting bar. Zeros in the table mean that the variables, averaged over the 15 stations, had approximately zero magnitude.
g. Moore and Scholl Field Observations (COUNT 277-347)

Daily measurements were made during the summer of 1960 at Ogoturuk Beach, Alaska. THETAB was measured to the nearest $5^{\circ}$ by compass, HB was estimated to the nearest tenth of a meter;, and VMEAS in $\mathrm{cm} / \mathrm{sec}$ with dye. Moore and Scholl's data, given originally in the metric system, are presented here in English units to conform with the other studies. SLOPE was not measured during the study and the value listed under SLOPE is a nominal one taken from a profile in their paper. The gravel beaches in this area produce steeper slopes than the sand beaches in the other field studies. Zeros listed in the table are measured values.

During observations numbered 285, 287, 295, 300, 302, and 322, the direction of the longshore current flow was opposite the direction from which the waves approached (indicated by minus signs on the velocity in the table).
h. Galvin and Savage Field Observations (COUNT 348-352)

At Nags Head, North Carolina, velocity was measured by timing the travel of balloons filled with freshwater. Most values of THETAB were
obtained by compass but some were also obtained by measuring the speed of the plunge point of the breaker or by crude triangulation. Wave height (HB) was measured visually or from oscillographs of the water surface. SLOPE was the average slope between the mean water line and a point 6 feet below mean water level. Other data include histograms showing the distribution of some of the measured variables from this CERC field project at Nags Head. THETAB in observation 352 is a single measurement at a time of changing wave conditions. VMEAS in observation 351 was small but not actually zero. Wind speed was high during nearly all the Nags Head measurements.

## 5. Discussion of Data

The data in the tables and the foregoing descriptions indicate differences among the sets of data. Among the laboratory studies, some differences are in the magnitude of the variables tested. For example, the Iaboratory conditions of Putnam, Munk, and Traylor are for conditions producing high values of VMEAS and THETAB. Of the 225 laboratory observations in the listing, six observations in the data of Putnam, Munk, and Traylor account for the six highest velocities ( 2.2 to $3.8 \mathrm{ft} / \mathrm{sec}$ ) ar.d the six highest breaker angles ( $39^{\circ}$ to $38^{\circ}$ ). No value of THETAB in their laboratory experiments was less than $10^{\circ}$, but all of Saville's data, and most of the measurements of Galvin and Eagleson were for conditions producing THETAB less than $10^{\circ}$.

There are also differences in the variables which the investigators chose to measure. In the laboratory experiments of Saville and of Brebner and Kamphuis, THETAB and HB were not measured, but THETAO and HO were computed from offshore measurements instead. As explained in paragraph 4, the values of THETAB and HB for these two studies were newly computed for this paper; thus they will vary more regularly, yet they may be less accurate than actual measurement.

The experimental conditions of the laboratory tests also differ considerably. No two of the basins were alike in size and layout, and Saville's measurements were the only ones made on a deformable sand beach.

Large differences among the data from the field studies are also evident. The data of. Inman and Quinn, although they provide useful statistics on variability, cannot be readily compared with other field measurements because their data are spatial averages along the beach. The data of Moore and Scholl are for lower waves, steeper beaches, and weaker currents than the other field studies. The few observations in the Nags Head study are accompanied by documented uncertainties, many of which were probably present in the other studies as well. Putnam, Munk, and Traylor velocities and Nags Head velocities are, on the average, significantly higher than in the other studies.

Viewed as a whole, the difference in magnitude between the laboratory and field data is greatest in wave height, and less for wave period and beach slope. Surprisingly, there is little difference between the average
magnitudes of the field and laboratory measurements of THETAB and VMEAS, despite the fact that wave heights differ by nearly two orders of magnitude.

Accurate measurement of longshore currents in the field and laboratory are still needed, particularly measurements of currents produced by conditions intermediate between laboratory and ocean wave conditions. The nonuniformity and unsteadiness of longshore currents should be studied under controlled laboratory conditions, including how they are affected by variations in the geometry of the laboratory basin. In future studies, more effort should be made to document the reliability of the experimental procedure and the variability of the data.
I. Brebner, A. and J. W. Kamphuis, MODEL TESTS ON THE RELATIONSHIP BETWEEN DEEP-WATER WAVE CHARACTERISTICS AND LONGSHORE CURRENTS, Queen's University, Kingston, Ontario, Canada, C. E. Research Report No. 31, 25 p. 1963.
2. Bruun P., LONGSHORE CURRENTS AND LONGSHORE TROUGHS, Journal of Geophysical Research, Vol. 68, p. 1065-1078, 1963.
3. Galvin, C. J. Jr., LONGSHORE CURRENT VELOCITY: A REVIEW OF THEORY AND DATA, accepted for publication in. Reviews of Geophysics. 1967.
4. Galvin, C. J. Jr. and P. S. Eagleson, EXPERIMENTAL STUDY OF LONGSHORE CURRENTS ON A PLANE BEACH, U. S. Army Coastal Engineering Research Center: Technical Memorandum No. 10, 80 p. January 1965.
5. Galvin, C. J. Jr. and R. P. Savage, LONGSHORE CURRENTS AT NAGS HEAD, NORTH 'CAROLINA, U. S. Army Coastal Engineering Research Center Bulletin ll (I966) p. II-29.
6. Harrison, W. and W. C. Krumbein, INTERACTIONS OF THE BEACH-OCEANATMOSPHERE SYSTEM AT VIRGINIA BEACH, VIRGINIA, U. S. Army Coastal Engineering Research Center, Technical Memorandum No. 7, 102 p. 1964.
7. Inman, D. L and R. A. Bagnold, LITTORAL PROCESSES, in The Sea, Vol. 3, Interscience Publishers, p. 529-553, 1963.
8. Inman, D. L. and W. H. Quinn, CURRENTS IN THE SURF ZONE, in Proceedings 2nd Conference on Coastal Engineering, edited by J. W. Johnson, Council on Wave Research, Richmond, California, p. 24-36. 1951.
9. Johnson, J. W., SAND TRANSPORT BY LITTORAL CURRENTS, in Proceedings of the Fifth Hydraulic Conference, State University of lowa Bulletin 34, p. 89-109. 1953.
10. Johnson, J. W., M. P. O'Brien and J. D. Isaacs, GRAPHICAL CONSTRUCTION OF WAVE REFRACTION DIAGRAMS, U. S. Navy Hydrographic Office Pub. No. 605, 1948.
11. Le Mehaute, B., A THEORETICAL STUDY OF WAVES BREAKING AT AN ANGLE WITH A SHORELINE, Journal of Geophysical Research, Vol. 66, p. 495-599, 1961.
12. Moore, G. W. and D. W. Scholl, COASTAL SEDIMENTATION IN NORTHWESTERN ALASKA, U. S. Geol. Survey TEI-779, p. 43-65, 1961.
13. Putnam, J. A., W. H. Munk and M. A. Traylor, THE PREDICTION OF LONGSHORE CURRENTS, Trans. American Geophysical Union, Vol. 30, p. 337-345, 1949.
14. Saville, T. Jr., MODEL STUDY OF SAND TRANSPORT ALONG AN INFINITELY LONG STRAIGHT BEACH, Trans. American Geophysical Union, Vol. 31, p. 555-565, 1950.
15. Sonu, C. J. and J. M. McCloy, LONGSHORE CURRENTS AND NEARSHORE TOPOGRAPHIES, Summaries of Papers, Tenth Conference on Coastal Engineering, Tokyo, September 1966.

## LABORATORY DATA BY PUTNAM, MUNK, AND TRAYLOR

| ID |  | $\begin{aligned} & \mathrm{HB} \\ & \mathrm{FT} \\ & \hline \end{aligned}$ | $\begin{aligned} & \text { TB } \\ & \text { SEC } \\ & \hline \end{aligned}$ | THETAB DEGREE | SLOPE | VMEAS FPS | $\begin{aligned} & \mathrm{DB} \\ & \mathrm{FT} \\ & \hline \end{aligned}$ | COUNT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PMTL | 1 | 0.47 | 1.00 | 18.3 | 0.066 | 0.78 | 0.75 | 1 |
| PMTL | 2 | 0.32 | 1.06 | 13.8 | 0.066 | 0.64 | 0.44 | 2 |
| PMTL | 3 | 0.40 | 1.14 | 14.6 | 0.066 | 0.82 | 0.56 | 3 |
| PMTL | 4 | 0.31 | 1.15 | 12.6 | 0.066 | 0.68 | 0.41 | 4 |
| PMTL | 5 | 0.30 | 1.25 | 11.7 | 0.066 | 0.76 | 0.39 | 5 |
| PMTL | 6 | 0.32 | 1.32 | 11.7 | 0.066 | 0.75 | 0.40 | 6 |
| PMTL | 7 | 0.29 | 1.40 | 10.9 | 0.066 | 0.64 | 0.37 | 7 |
| PMTL | 8 | 0.16 | 1.90 | 17.6 | 0.144 | 0.75 | 0.24 | 8 |
| PMTL | 9 | 0.15 | 2.13 | 17.2 | 0.144 | 0.66 | 0.23 | 9 |
| PMTL | 10 | 0.15 | 2.22 | 17.3 | 0.144 | 0.50 | 0.24 | 10 |
| PMTL | 11 | 0.28 | 0.72 | 18.2 | 0.241 | 1.33 | 0.48 | 11 |
| PMTL | 12 | 0.35 | 0.92 | 16.5 | 0.241 | 1.27 | 0.52 | 12 |
| PMTL | 13 | 0.22 | 1.14 | 10.4 | 0.241 | 0.53 | 0.28 | 13 |
| PMTL | 14 | 0.22 | 1.22 | 10.6 | 0.241 | 0.69 | 0.27 | 14 |
| PMTL | 15 | 0.24 | 0.99 | 28.0 | 0.100 | 1.68 | 0.32 | 15 |
| PMTL | 16 | 0.22 | 1.32 | 22.8 | 0.100 | 1.45 | 0.27 | 16 |
| PMTL | 17 | 0.16 | 1.63 | 18.8 | 0.100 | 0.96 | 0.23 | 17 |
| PMTL | 18 | 0.16 | 1.98 | 18.4 | 0.100 | 0.76 | 0.22 | 18 |
| PMTL | 19 | 0.28 | 0.83 | 56.6 | 0.139 | 2.46 | 0.43 | 19 |
| PMTL | 20 | 0.23 | 0.91 | 45.3 | 0.139 | 2.31 | 0.33 | 20 |
| PMTL | 21 | 0.22 | 1.00 | 38.8 | 0.139 | 2.22 | 0.29 | 21 |
| PMTL | 22 | 0.20 | 1.12 | 33.2 | 0.139 | 1.93 | 0.24 | 22 |
| PMTL | 23 | 0.20 | 1.35 | 31.1 | 0.139 | 1.52 | 0.25 | 23 |
| PMTL | 24 | 0.34 | 0.80 | 57.5 | 0.260 | 3.78 | 0.62 | 24 |
| PMTL | 25 | 0.29 | 0.90 | 52.5 | 0.260 | 3.34 | 0.43 | 25 |
| PMTL | 26 | 0.28 | 0.98 | 47.2 | 0.260 | 3.00 | 0.41 | 26 |
| PMTL | 27 | 0.20 | 1.23 | 32.5 | 0.260 | 1.91 | 0.26 | 27 |
| PMTL | 28 | 0.22 | 1.27 | 31.9 | 0.260 | 1.76 | 0.23 | 28 |
| PMTL | 29 | 0.26 | 0.95 | 30.1 | 0.098 | 1.03 | 0.36 | 29 |
| PMTL | 30 | 0.21 | 1.33 | 21.4 | 0.098 | 0.46 | 0.27 | 30 |
| PMTL | 31 | 0.16 | 1.67 | 18.0 | 0.098 | 0.20 | 0.20 | 31 |
| PMTL | 32 | 0.12 | 1.99 | 16.4 | 0.098 | 0.15 | 0.19 | 32 |
| PMTL | 33 | 0.33 | 1.08 | 30.4 | 0.143 | 1.32 | 0.47 | 33 |
| PMTL | 34 | 0.29 | 1.36 | 24.6 | 0.143 | 0.63 | 0.38 | 34 |
| PMTL | 35 | 0.20 | 1.58 | 19.3 | 0.143 | 0.36 | 0.27 | 35 |
| PMTL | 36 | 0.20 | 1.91 | 18.4 | 0.143 | 0.32 | 0.26 | 36 |
| PMTL | 37 | 0.22 | 2.32 | 19.1 | 0.143 | 0.18 | 0.30 | 37 |


|  |  | HB | HO | TB | THETAB | THETAO |  | VMEAS |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | ---: |
| ID | FT | FT | SEC | DEGRREE | DEGREE | SLOPE | FPS | COUNT |  |
| SAVL | 1 | 0.147 | 0.146 | 0.71 | 7.7 | 10.0 | 0.10 | 0.32 | 38 |
| SAVL | 2 | 0.138 | 0.129 | 0.85 | 6.7 | 10.2 | 0.10 | 0.27 | 39 |
| SAVL | 3 | 0.132 | 0.116 | 0.94 | 6.3 | 10.5 | 0.10 | 0.25 | 40 |
| SAVL | 4 | 0.130 | 0.110 | 1.00 | 5.6 | 10.8 | 0.10 | 0.21 | 41 |
| SAVL | 5 | 0.171 | 0.169 | 0.74 | 7.2 | 10.0 | 0.10 | 0.40 | 42 |
| SAVL | 6 | 0.154 | 0.147 | 0.85 | 6.7 | 10.2 | 0.10 | 0.32 | 43 |
| SAVL | 7 | 0.144 | 0.126 | 0.99 | 5.6 | 10.7 | 0.10 | 0.24 | 44 |
| SAVL | 8 | 0.137 | 0.106 | 1.17 | 5.2 | 11.4 | 0.10 | 0.07 | 45 |
| SAVL | 9 | 0.127 | 0.082 | 1.50 | 4.7 | 13.1 | 0.10 | 0.00 | 46 |

## LABORATORY DATA BY BREBNER AND KAMPHUIS

| ID |  | $\underset{F T}{\mathrm{HB}}$ | $\mathrm{HO}$ | $\begin{aligned} & \text { TB } \\ & \text { SEC } \end{aligned}$ | THETAB DEGREE | THETAO DEGREE | SLOPE | VMEAS FPS | COUNT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| BKL | 1 | 0.092 | 0.075 | 1.13 | 7.0 | 21.9 | 0.10 | 0.44 | 47 |
| BKL | 2 | 0.097 | 0.089 | 1.00 | 7.5 | 20.9 | 0.10 | 0.47 | 48 |
| BKL | 3 | 0.110 | 0.112 | 0.87 | 9.0 | 20.3 | 0.10 | 0.67 | 49 |
| BKL | 4 | 0.118 | 0.124 | 0.78 | 10.0 | 20.1 | 0.10 | 0.82 | 50 |
| BKL | 5 | 0.118 | 0.106 | 1.13 | 7.5 | 21.9 | 0.10 | 0.49 | 51 |
| BKL. | 6 | 0.138 | 0.129 | 1.00 | 8.0 | 20.9 | 0.10 | 0.67 | 52 |
| BKL | 7 | 0.153 | 0.157 | 0.87 | 10.0 | 20.3 | 0.10 | 0.83 | 53 |
| BKL | 8 | 0.159 | 0.172 | 0.78 | 12.0 | 20.1 | 0.10 | 0.99 | 54 |
| BKL | 9 | 0.157 | 0.151 | 1.13 | 9.0 | 21.9 | 0.10 | 0.63 | 55 |
| BKL | 10 | 0.159 | 0.167 | 1.00 | 9.5 | 20.9 | 0.10 | 0.80 | 56 |
| BKL | 11 | 0.200 | 0.207 | 0.87 | 12.0 | 20.3 | 0.10 | 0.96 | 57 |
| BKL | 12 | 0.203 | 0.212 | 0.78 | 13.0 | 20.1 | 0.10 | 1.07 | 58 |
| BKL | 13 | 0.177 | 0.174 | 1.13 | 9.0 | 21.9 | 0.10 | 0.63 | 59 |
| BKL | 14 | 0.220 | 0.211 | 1.00 | 11.0 | 20.9 | 0.10 | 0.88 | 60 |
| BKL | 15 | 0.228 | 0.242 | 0.87 | 12.5 | 20.3 | 0.10 | 1.04 | 61 |
| BKL | 16 | 0.231 | 0.257 | 0.78 | 14.0 | 20.1 | 0.10 | 1.16 | 62 |
| BKL | 17 | 0.092 | 0.076 | 1.13 | 10.0 | 33.1 | 0.10 | 0.60 | 63 |
| BKL | 18 | 0.112 | 0.089 | 1.00 | 11.0 | 31.4 | 0.10 | 0.81 | 64 |
| BKL | 19 | 0.110 | 0.11 .3 | 0.87 | 13.0 | 30.5 | 0.10 | 0.84 | 65 |
| BKL | 20 | 0.118 | 0.125 | 0.78 | 15.0 | 30.1 | 0.10 | 0.91 | 66 |
| BKL | 21 | 0.118 | 0.107 | 1.13 | 11.0 | 33.1 | 0.10 | 0.83 | 67 |
| BKL | 22 | 0.133 | 0.130 | 1.00 | 12.5 | 31.4 | 0.10 | 0.97 | 68 |
| BKL | 23 | 0.153 | 0.158 | 0.87 | 15.0 | 30.5 | 0.10 | 1.04 | 69 |
| BKL | 24 | 0.159 | 0.172 | 0.78 | 17.0 | 30.1 | 0.10 | 1.14 | 70 |
| BKL | 25 | 0.170 | 0.153 | 1.13 | 13.0 | 33.1 | 0.10 | 0.94 | 71 |
| BKL | 26 | 0.158 | 0.168 | 1.00 | 14.0 | 31.4 | 0.10 | 1.12 | 72 |
| BKL | 27 | 0.200 | 0.208 | 0.87 | 17.0 | 30.5 | 0.10 | 1.25 | 73 |
| BKL | 28 | 0.194 | 0.212 | 0.78 | 18.0 | 30.1 | 0.10 | 1.32 | 74 |
| BKL | 29 | 0.184 | 0.176 | 1.13 | 13.0 | 33.1 | 0.10 | 1.07 | 75 |
| BKL | 30 | 0.204 | 0.212 | 1.00 | 16.0 | 31.4 | 0.10 | 1.25 | 76 |
| BKL | 31 | 0.231 | 0.244 | 0.87 | 18.0 | 30.5 | 0.10 | 1.29 | 77 |
| BKL | 32 | 0.234 | 0.258 | 0.78 | 21.0 | 30.1 | 0.10 | 1.32 | 78 |
| BKL | 33 | 0.085 | 0.077 | 1.13 | 12.0 | 44.5 | 0.10 | 0.70 | 79 |
| BKL | 34 | 0.097 | 0.090 | 1.00 | 14.0 | 42.1 | 0.10 | 0.83 | 80 |
| BKL | 35 | 0.110 | 0.113 | 0.87 | 17.0 | 40.7 | 0.10 | 0.88 | 81 |
| BKL | 36 | 0.112 | 0.125 | 0.78 | 18.0 | 40.2 | 0.10 | 1.05 | 82 |
| BKL | 37 | 0.118 | 0.109 | 1.13 | 14.0 | 44.5 | 0.10 | 0.91 | 83 |
| BKL | 38 | 0.133 | 0.131 | 1.00 | 16.0 | 42.1 | 0.10 | 0.96 | 84 |
| BKL | 39 | 0.141 | 0.158 | 0.87 | 18.0 | 40.7 | 0.10 | 1.10 | 85 |
| BKL | 40 | 0.147 | 0.172 | 0.78 | 21.0 | 40.2 | 0.10 | 1.22 | 86 |
| BKL | 41 | 0.151 | 0.156 | 1.13 | 17.0 | 44.5 | 0.10 | 1.08 | 87 |
| BKL | 42 | 0.153 | 0.170 | 1.00 | 18.0 | 42.1 | 0.10 | 1.18 | 88 |
| BKL | 43 | 0.176 | 0.209 | 0.87 | 22.0 | 40.7 | 0.10 | 1.36 | 89 |
| BKL | 44 | 0.187 | 0.213 | 0.78 | 24.0 | 40.2 | 0.10 | 1.53 | 90 |
| BKL | 45 | 0.177 | 0.179 | 1.13 | 17.0 | 44.5 | 0.10 | 1.21 | 91 |


| 10 |  | $\begin{aligned} & \mathrm{HB} \\ & \mathrm{FT} \\ & \hline \end{aligned}$ | $\begin{aligned} & \mathrm{HO} \\ & \mathrm{FT} \\ & \hline \end{aligned}$ | $\begin{aligned} & \text { TB } \\ & \text { SEC } \end{aligned}$ | THETAB DEGREE | THETAO DEGREE | SLOPE | VMEAS FPS | COUNT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| BKL | 46 | 0.189 | 0.214 | 1.00 | 19.0 | 42.1 | 0.10 | 1.34 | 92 |
| BKL | 47 | 0.204 | 0.243 | 0.87 | 23.0 | 40.7 | 0.10 | 1.48 | 93 |
| BKL | 48 | 0.085 | 0.077 | 1.13 | 12.0 | 44.5 | 0.10 | 0.66 | 94 |
| BKL | 49 | 0.097 | 0.090 | 1.00 | 14.0 | 42.1 | 0.10 | 0.74 | 95 |
| BKL | 50 | 0.110 | 0.113 | 0.87 | 17.0 | 40.7 | 0.10 | 0.90 | 96 |
| BKL | 51 | 0.112 | 0.125 | 0.78 | 18.0 | 40.2 | 0.10 | 1.03 | 97 |
| BKL | 52 | 0.118 | 0.109 | 1.13 | 14.0 | 44.5 | 0.10 | 0.85 | 98 |
| BKL | 53 | 0.133 | 0.131 | 1.00 | 16.0 | 42.1 | 0.10 | 0.95 | 99 |
| BKL | 54 | 0.141 | 0.158 | 0.87 | 18.0 | 40.7 | 0.10 | 1.10 | 100 |
| BKL | 55 | 0.147 | 0.172 | 0.78 | 21.0 | 40.2 | 0.10 | 1.26 | 101 |
| BKL | 56 | 0.151 | 0.156 | 1.13 | 17.0 | 44.5 | 0.10 | 1.03 | 102 |
| BKL | 57 | 0.153 | 0.170 | 1.00 | 18.0 | 42.1 | 0.10 | 1.14 | 103 |
| BKL | 58 | 0.176 | 0.209 | 0.87 | 22.0 | 40.7 | 0.10 | 1.35 | 104 |
| BKL | 59 | 0.187 | 0.213 | 0.78 | 24.0 | 40.2 | 0.10 | 1.56 | 105 |
| BKL | 60 | 0.177 | 0.179 | 1.13 | 17.0 | 44.5 | 0.10 | 1.09 | 106 |
| BKL | 61 | 0.189 | 0.214 | 1.00 | 19.0 | 42.1 | 0.10 | 1.29 | 107 |
| BKL | 62 | 0.204 | 0.243 | 0.87 | 23.0 | 40.7 | 0.10 | 1.42 | 108 |
| BKL | 63 | 0.085 | 0.081 | 1.13 | 14.0 | 56.7 | 0.10 | 0.61 | 109 |
| BKL | 64 | 0.097 | 0.092 | 1.00 | 17.0 | 53.1 | 0.10 | 0.75 | 110 |
| BKL | 65 | 0.104 | 0.113 | 0.87 | 19.0 | 51.0 | 0.10 | 0.89 | 111 |
| BKL | 66 | 0.109 | 0.125 | 0.78 | 22.0 | 50.3 | 0.10 | 1.06 | 112 |
| BKL | 67 | 0.118 | 0.113 | 1.13 | 16.0 | 56.7 | 0.10 | 1.02 | 113 |
| BKL | 68 | 0.123 | 0.133 | 1.00 | 19.0 | 53.1 | 0.10 | 0.97 | 114 |
| BKL | 69 | 0.137 | 0.159 | 0.87 | 22.0 | 51.0 | 0.10 | 1.13 | 115 |
| BKL | 70 | 0.147 | 0.172 | 0.78 | 26.0 | 50.3 | 0.10 | 1.35 | 116 |
| BKL | 71 | 0.157 | 0.163 | 1.13 | 19.0 | 56.7 | 0.10 | 1.06 | 117 |
| BKL | 72 | 0.153 | 0.173 | 1.00 | 21.0 | 53.1 | 0.10 | 1.19 | 118 |
| BKL | 73 | 0.184 | 0.209 | 0.87 | 26.0 | 51.0 | 0.10 | 1.43 | 119 |
| BKL | 74 | 0.178 | 0.213 | 0.78 | 28.0 | 50.3 | 0.10 | 1.52 | 120 |
| BKL | 75 | 0.177 | 0.187 | 1.13 | 20.0 | 56.7 | 0.10 | 1.29 | 121 |
| BKL | 76 | 0.184 | 0.218 | 1.00 | 23.0 | 53.1 | 0.10 | 1.43 | 122 |
| BKL | 77 | 0.208 | 0.246 | 0.87 | 27.0 | 51.0 | 0.10 | 1.73 | 123 |
| BKL | 78 | 0.215 | 0.258 | 0.78 | 32.0 | 50.3 | 0.10 | 1.79 | 124 |
| BKL | 79 | 0.085 | 0.092 | 1.13 | 16.0 | 70.9 | 0.10 | 0.74 | 125 |
| BKL | 80 | 0.092 | 0.096 | 1.00 | 18.0 | 64.7 | 0.10 | 0.83 | 126 |
| BKL | 81 | 0.104 | 0.115 | 0.87 | 22.0 | 61.5 | 0.10 | 0.87 | 127. |
| BKL | 82 | 0.103 | 0.125 | 0.78 | 24.0 | 60.5 | 0.10 | 0.99 | 128 |
| BKL | 83 | 0.112 | 0.130 | 1.13 | 19.0 | 70.9 | 0.10 | 0.86 | 129 |
| BKL | 84 | 0.112 | 0.139 | 1.00 | 21.0 | 64.7 | 0.10 | 1.01 | 130 |
| BKL | 85 | 0.129 | 0.161 | 0.87 | 25.0 | 61.5 | 0.10 | 1.10 | 131 |
| BKL | 86 | 0.140 | 0.173 | 0.78 | 28.0 | 60.5 | 0.10 | 1.25 | 132 |
| BKL | 87 | 0.138 | 0.186 | 1.13 | 21.0 | 70.9 | 0.10 | 1.03 | 133 |
| BKL | 88 | 0.143 | 0.180 | 1.00 | 23.0 | 64.7 | 0.10 | 1.15 | 134 |
| BKL | 89 | 0.172 | 0.212 | 0.87 | 28.0 | 61.5 | 0.10 | 1.28 | 135 |
| BKL | 90 | 0.169 | 0.214 | 0.78 | 31.0 | 60.5 | 0.10 | 1.48 | 136 |
| BKL | 91 | 0.151 | 0.214 | 1.13 | 22.0 | 70.9 | 0.10 | 1.12 | 137 |
| BKL | 92 | 0.179 | 0.227 | 1.00 | 26.0 | 64.7 | 0.10 | 1.27 | 138 |
| BKL | 93 | 0.192 | 0.248 | 0.87 | 30.0 | 61.5 | 0.10 | 1.42 | 139 |


| 10 |  | $\mathrm{HB}$$\mathrm{FT}$ | $\begin{aligned} & \mathrm{HO} \\ & \mathrm{FT} \end{aligned}$ | $\begin{aligned} & \text { TB } \\ & \text { SEC } \end{aligned}$ | THETAB DEGREE | THETAO DEGREE | VMEAS |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | SLOPE |  |  |  |  | FPS | COUNT |
| BKL | 94 |  | 0.203 | 0.259 | 0.78 | 35.0 | 60.5 | 0.10 | 1.66 | 140 |
| BKL | 95 | 0.092 | 0.075 | 1.13 | 7.0 | 21.9 | 0.05 | 0.49 | 141 |
| BKL | 96 | 0.097 | 0.089 | 1.00 | 7.5 | 20.9 | 0.05 | 0.56 | 142 |
| BKL | 97 | 0.110 | 0.112 | 0.87 | 9.0 | 20.3 | 0.05 | 0.62 | 143 |
| BKL | 98 | 0.118 | 0.124 | 0.78 | 10.0 | 20.1 | 0.05 | 0.68 | 144 |
| BKL | 99 | 0.118 | 0.106 | 1.13 | 7.5 | 21.9 | 0.05 | 0.66 | 145 |
| BKL | 100 | 0.138 | 0.129 | 1.00 | 8.0 | 20.9 | 0.05 | 0.61 | 146 |
| BKL | 101 | 0.153 | 0.157 | 0.87 | 10.0 | 20.3 | 0.05 | 0.67 | 147 |
| BKL | 102 | 0.159 | 0.172 | 0.78 | 12.0 | 20.1 | 0.05 | 0.69 | 148 |
| BKL | 103 | 0.157 | 0.151 | 1.13 | 9.0 | 21.9 | 0.05 | 0.71 | 149 |
| BKL | 104 | 0.159 | 0.167 | 1.00 | 9.5 | 20.9 | 0.05 | 0.73 | 150 |
| BKL | 105 | 0.200 | 0.207 | 0.87 | 12.0 | 20.3 | 0.05 | 0.80 | 151 |
| BKL | 106 | 0.203 | 0.212 | 0.78 | 13.0 | 20.1 | 0.05 | 0.81 | 152 |
| BKL | 107 | 0.177 | 0.174 | 1.13 | 9.0 | 21.9 | 0.05 | 0.84 | 153 |
| BKL | 108 | 0.220 | 0.211 | 1.00 | 11.0 | 20.9 | 0.05 | 0.80 | 154 |
| BKL | 109 | 0.228 | 0.242 | 0.87 | 12.5 | 20.3 | 0.05 | 0.82 | 155 |
| BKL | 110 | 0.231 | 0.257 | 0.78 | 14.0 | 20.1 | 0.05 | 0.84 | 156 |
| BKL | 111 | 0.092 | 0.076 | 1.13 | 10.0 | 33.1 | 0.05 | 0.63 | 157 |
| BKL | 112 | 0.112 | 0.089 | 1.00 | 11.0 | 31.4 | 0.05 | 0.61 | 158 |
| BKL | 113 | 0.110 | 0.113 | 0.87 | 13.0 | 30.5 | 0.15 | 0.65 | 159 |
| BKL | 114 | 0.118 | 0.125 | 0.78 | 15.0 | 30.1 | 0.05 | 0.64 | 160 |
| BKL | 115 | 0.118 | 0.107 | 1.13 | 11.0 | 33.1 | 0.05 | 0.76 | 161 |
| BKL | 116 | 0.133 | 0.130 | 1.00 | 12.5 | 31.4 | 0.05 | 0.68 | 162 |
| BKL | 117 | 0.153 | 0.158 | 0.87 | 15.0 | 30.5 | 0.05 | 0.76 | 163 |
| BKL | 118 | 0.159 | 0.172 | 0.78 | 17.0 | 30.1 | 0.05 | 0.78 | 164 |
| BKL | 119 | 0.170 | 0.153 | 1.13 | 13.0 | 33.1 | 0.05 | 0.86 | 165 |
| BKL | 120 | 0.158 | 0.168 | 1.00 | 14.0 | 31.4 | 0.05 | 0.78 | 166 |
| BKL | 121 | 0.200 | 0.208 | 0.87 | 17.0 | 30.5 | 0.05 | 0.90 | 167 |
| BKL | 122 | 0.194 | 0.212 | 0.78 | 18.0 | 30.1 | 0.05 | 0.90 | 168 |
| BKL | 123 | 0.184 | 0.176 | 1.13 | 13.0 | 33.1 | 0.05 | 0.96 | 169 |
| BKL | 124 | 0.204 | 0.212 | 1.00 | 16.0 | 31.4 | 0.05 | 0.92 | 170 |
| BKL | 125 | 0.231 | 0.244 | 0.87 | 18.0 | 30.5 | 0.05 | 0.98 | 171 |
| BKL | 126 | 0.234 | 0.258 | 0.78 | 21.0 | 30.1 | 0.05 | 1.03 | 172 |
| BKL | 127 | 0.085 | 0.077 | 1.13 | 12.0 | 44.5 | 0.05 | 0.66 | 173 |
| BKL | 128 | 0.097 | 0.090 | 1.00 | 14.0 | 42.1 | 0.05 | 0.80 | 174 |
| BKL | 129 | 0.110 | 0.113 | 0.87 | 17.0 | 40.7 | 0.05 | 0.68 | 175 |
| BKL | 130 | 0.112 | 0.125 | 0.78 | 18.0 | 40.2 | 0.05 | 0.83 | 176 |
| BKL | 131 | 0.118 | 0.109 | 1.13 | 14.0 | 44.5 | 0.05 | 0.79 | 177 |
| BKL | 132 | 0.133 | 0.131 | 1.00 | 16.0 | 42.1 | 0.05 | 0.89 | 178 |
| BKL | 133 | 0.141 | 0.158 | 0.87 | 18.0 | 40.7 | 0.05 | 1.00 | 179 |
| BKL | 134 | 0.147 | 0.172 | 0.78 | 21.0 | 40.2 | 0.05 | 1.07 | 180 |
| BKL | 135 | 0.151 | 0.156 | 1.13 | 17.0 | 44.5 | 0.05 | 0.87 | 181 |
| BKL | 136 | 0.153 | 0.170 | 1.00 | 18.0 | 42.1 | 0.05 | 1.07 | 182 |
| BKL | 137 | 0.176 | 0.209 | 0.87 | 22.0 | 40.7 | 0.05 | 1.04 | 183 |
| BKL | 138 | 0.187 | 0.213 | 0.78 | 24.0 | 40.2 | 0.05 | 1.12 | 184 |
| BKL | 139 | 0.177 | 0.179 | 1.13 | 17.0 | 44.5 | 0.05 | 1.06 | 185 |
| BKL | 140 | 0.189 | 0.214 | 1.00 | 19.0 | 42.1 | 0.05 | 1.07 | 186 |
| BKL | 141 | 0.204 | 0.243 | 0.87 | 23.0 | 40.7 | 0.05 | 1.15 | 187 |

## LABORATORY DATA BY GALVIN AND EAGLESON

| ID |  | $\begin{aligned} & \text { HB } \\ & \text { FT } \end{aligned}$ | $\begin{aligned} & \text { TB } \\ & \text { SEC } \end{aligned}$ | THETAB DEGREE | SLOPE | $\begin{gathered} \mathrm{BVAL} \\ \mathrm{FT} \end{gathered}$ | VMEAS FPS | COUNT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| GEL | 1 | ---- | 1.00 | 5.4 | 0.109 | 0.83 | 1.62 | 188 |
| GEL | 2 | 0.21 | 1.12 | 5.1 | 0.109 | 0.82 | 1.53 | 189 |
| GEL | 3 | 0.14 | 1.25 | 3.3 | 0.109 | 0.68 | 1.33 | 190 |
| GEL | 4 | 0.19 | 1.37 | 2.3 | 0.109 | 0.53 | 1.24 | 191 |
| GEL | 5 | ----- | 1.50 | 3.7 | 0.109 | 0.52 | 1.17 | 192 |
| GEL | 6 | 0.03 | 1.25 | 2.6 | 0.109 | 0.34 | 0.62 | 193 |
| GEL | 7 | 0.12 | 1.25 | 3.1 | 0.109 | 0.50 | 0.87 | 194 |
| GEL | 8 | 0.17 | 1.25 | 3.8 | 0.109 | 0.67 | 1.21 | 195 |
| GEL | 9 | 0.17 | 1.25 | 3.7 | 0.109 | 0.71 | 1.07 | 196 |
| GEL | 10 | 0.19 | 1.25 | 4.0 | 0.109 | 0.84 | 1.44 | 197 |
| GEL | 11 | 0.07 | 1.50 | 1.1 | 0.109 | 0.21 | 0.76 | 198 |
| GEL | 12 | 0.09 | 1.00 | 2.9 | 0.109 | 0.45 | 0.98 | 199 |
| GEL | 13 | 0.18 | 0.90 | --- | 0.109 | 1.81 | --- | 200 |
| GEL | 14 | 0.17 | 1.00 | 14.1 | 0.109 | 1.76 | 1.52 | 201 |
| GEL | 15 | 0.19 | 1.12 | 12.1 | 0.109 | 1.60 | 1.51 | 202 |
| GEL | 16 | 0.19 | 1.25 | 10.1 | 0.109 | 1.61 | 1.44 | 203 |
| GEL | 17 | 0.19 | 1.37 | 9.2 | 0.109 | 1.42 | 1.13 | 204 |
| GEL | 18 | 0.16 | 1.50 | 6.9 | 0.109 | 1.23 | 1.04 | 205 |
| GEL | 19 | 0.09 | 1.25 | 6.1 | 0.109 | 0.56 | 0.68 | 206 |
| GEL | 20 | 0.13 | 1.25 | 6.6 | 0.109 | 0.96 | 0.85 | 207 |
| GEL | 21 | 0.15 | 1.25 | 8.6 | 0.109 | 1.23 | 1.11 | 208 |
| GEL | 22 | 0.17 | 1.25 | 9.8 | 0.109 | 1.49 | 1.33 | 209 |
| GEL | 23 | 0.17 | 1.25 | 11.0 | 0.109 | 1.77 | 1.55 | 210 |
| GEL. | 24 | 0.11 | 1.50 | 3.7 | 0.109 | - | 0.77 | 211 |
| GEL | 25 | 0.11 | 1.00 | 9.7 | 0.109 | ---- | 0.94 | 212 |
| GEL | 26 | 0.18 | 1.00 | 28.0 | 0.109 | 2.15 | 1.40 | 213 |
| GEL | 27 | ---- | 1.12 | 21.8 | 0.109 | 1.89 | 1.15 | 214 |
| GEL | 28 | 0.19 | 1.25 | 18.6 | 0.109 | 1.91 | 1.22 | 215 |
| GEL | 29 | ---- | 1.37 | 15.7 | 0.109 | 1.81 | 1.32 | 216 |
| GEL | 30 | 0.10 | 1.50 | 8.6 | 0.109 | 0.91 | 0.91 | 217 |
| GEL | 31 | 0.16 | 1.25 | 13.3 | 0.109 | 0.65 | 0.69 | 218 |
| GEL | 32 | 0.13 | 1.25 | 14.3 | 0.109 | 1.20 | 0.83 | 219 |
| GEL | 33 | 0.16 | 1.25 | 19.6 | 0.109 | 1.57 | 1.19 | 220 |
| GEL | 34 | ---- | 1.25 | 19.6 | 0.109 | 1.88 | 1.27 | 221 |
| GEL | 35 | ---- | 1.25 | 22.5 | 0.109 | 1.96 | 1.29 | 222 |
| GEL | 36 | ---- | 1.50 | 6.0 | 0.109 | 0.18 | 0.57 | 223 |
| GEL | 37 | -- | 1.00 | 20.1 | 0.109 | 1.46 | 0.88 | 224 |
| GEL | 38 | ---- | 1.00 | 18.9 | 0.109 | -- | 1.11 | 225 |

FIELD DATA BY PUTNAM, MUNK, AND TRAYLOR

|  |  | HB | TB | THETAB |  | VMEAS |  |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| ID | FT | SEC | DEGREE | SLOPE | FPS | COUNT |  |
| PMTF | 1 | 5.0 | 10.0 | 15.0 | 0.016 | 2.5 | 226 |
| PMTF | 2 | 5.5 | 9.0 | 12.0 | 0.020 | 2.2 | 227 |
| PMTF | 3 | 7.0 | 9.0 | 15.0 | 0.023 | 3.0 | 228 |
| PMTF | 4 | 6.0 | 7.0 | 7.5 | 0.017 | 1.8 | 229 |
| PMTF | 5 | 5.0 | 10.0 | 10.0 | 0.031 | 3.6 | 230 |
| PMTF | 6 | 8.0 | 10.0 | 10.0 | 0.022 | 2.8 | 231 |
| PMTF | 7 | 8.0 | 10.0 | 10.0 | 0.023 | 2.3 | 232 |
| PMTF | 8 | 6.5 | 12.0 | 10.0 | 0.020 | 2.4 | 233 |
| PMTF | 9 | 4.5 | 12.0 | 10.0 | 0.020 | 2.4 | 234 |
| PMTF | 10 | 4.5 | 12.0 | 10.0 | 0.019 | 2.7 | 235 |
| PMTF | 11 | 4.5 | 12.0 | 10.0 | 0.019 | 2.1 | 236 |
| PMTF | 12 | 6.5 | 15.0 | 5.0 | 0.016 | 1.7 | 237 |
| PMTF | 13 | 8.0 | 7.0 | 17.5 | 0.022 | 5.2 | 238 |
| PMTF | 14 | 5.0 | 8.0 | 10.0 | 0.030 | 3.3 | 239 |
| PMTF | 15 | 8.5 | 8.0 | 12.0 | 0.020 | 2.5 | 240 |
| PMTF | 16 | 5.0 | 15.0 | 5.0 | 0.026 | 2.4 | 241 |
| PMTF | 17 | 9.0 | 8.0 | 15.0 | 0.019 | 5.5 | 242 |
| PMTF | 18 | 9.0 | 8.0 | 15.0 | 0.019 | 3.9 | 243 |

## FIELD DATA BY INMAN AND QUINN

|  |  | HB | TB | THETAB |  | VMEAS |  |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| ID |  | FT | SEC | DEGREE | SLOPE | FPS | COUNT |
|  |  |  |  |  |  |  |  |
| IQF | 1 | 2.8 | 15.0 | 6.5 | 0.027 | 0.38 | 244 |
| IQF | 2 | 3.1 | 8.5 | 1.5 | 0.027 | 0.04 | 245 |
| IQF | 3 | 3.7 | 8.0 | 4.0 | 0.027 | 0.22 | 246 |
| IQF | 4. | 3.6 | 14.0 | 0. | 0.027 | 0.04 | 247 |
| IQF | 5 | 4.9 | 8.0 | 5.0 | 0.027 | 0.84 | 248 |
| IQF | 6 | 3.8 | 7.0 | 5.0 | 0.027 | 0.21 | 249 |
| IQF | 7 | 3.4 | 12.5 | 0. | 0.027 | 0.55 | 250 |
| IQF | 8 | 2.6 | 8.0 | 0. | 0.035 | 0.04 | 251 |
| IQF | 9 | 3.0 | 9.5 | 1.0 | 0.035 | 0.01 | 252 |
| IQF | 10 | 2.7 | 10.0 | 0. | 0.035 | 0.15 | 253 |
| IQF | 11 | 3.5 | 13.5 | 0. | 0.035 | 0.09 | 254 |
| IQF | 12 | 4.9 | 13.0 | 0. | 0.035 | 0.21 | 255 |
| IQF | 13 | 2.9 | 10.0 | 0. | 0.035 | 0.50 | 256 |
| IQF | 14 | 4.6 | 12.0 | 0. | 0.035 | 0.88 | 257 |
| IQF | 15 | 3.7 | 8.0 | 0. | 0.028 | 0.20 | 258 |
| IQF | 16 | 5.1 | 12.0 | 6.0 | 0.027 | 0.29 | 259 |
| IQF | 17 | 4.7 | 14.0 | 7.0 | 0.027 | 0.53 | 260 |
| IQF | 18 | 4.5 | 15.0 | 4.0 | 0.027 | 0.70 | 261 |
| IQF | 19 | 4.8 | 12.0 | 4.0 | 0.027 | 1.19 | 262 |
| IQF | 20 | 4.2 | 12.0 | 4.5 | 0.027 | 0.40 | 263 |
| IQF | 21 | 2.0 | 12.0 | 4.0 | 0.027 | 0.36 | 264 |
| IQF | 22 | 1.7 | 8.0 | 7.0 | 0.027 | 0.23 | 265 |
| IQF | 23 | 2.9 | 15.0 | 5.0 | 0.027 | 0.56 | 266 |
| IQF | 24 | 1.6 | 6.0 | 5.0 | 0.027 | 0.11 | 267 |
| IQF | 25 | 6.2 | 14.0 | 5.0 | 0.014 | 0.54 | 268 |
| IQF | 26 | 3.1 | 16.0 | 7.0 | 0.014 | 0.62 | 269 |
| IQF | 27 | 4.5 | 12.0 | 3.0 | 0.014 | 0.49 | 270 |
| IQF | 28 | 3.5 | 14.0 | 4.0 | 0.014 | 0.17 | 271 |
| IQF | 29 | 2.7 | 16.0 | 3.5 | 0.014 | 0.13 | 272 |
| IQF | 30 | 4.7 | 13.0 | 7.0 | 0.014 | 1.37 | 273 |
| IQF | 31 | 2.6 | 11.5 | 2.0 | 0.014 | 0.04 | 274 |
| IQF | 32 | 2.0 | 14.5 | 4.0 | 0.014 | 0.11 | 275 |
| IQF | 33 | 1.8 | 12.0 | 2.5 | 0.014 | 0.06 | 276 |
|  |  |  |  |  |  |  |  |

FIELD DATA BY MOORE AND SCHOLL

| ID |  | $\begin{aligned} & \mathrm{HB} \\ & \mathrm{FT} \end{aligned}$ | $\begin{aligned} & \text { TB } \\ & \text { SEC } \end{aligned}$ | THETAB DEGREE | VMEAS |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  | SLOPE | FPS | COUNT |
| MSF | 1 | 0.66 | 2.5 | 35 | 0.2 | 0.16 | 277 |
| MSF | 2 | 0.66 | 2.7 | 25 | 0.2 | 0. | 278 |
| MSF | 3 | 0.98 | 2.6 | 40 | 0.2 | 0. | 279 |
| MSF | 4 | 0.66 | 2.6 | 5 | 0.2 | 0.29 | 280 |
| MSF | 5 | 0.66 | 3.3 | 5 | 0.2 | 0.26 | 281 |
| MSF | 6 | 1.97 | 5.0 | 5 | 0.2 | 0.66 | 282 |
| MSF | 7 | 1. 64 | 4.8 | 5 | 0.2 | 0.49 | 283 |
| MSF | 8 | 1.31 | 4.3 V | 10 | 0.2 | 0.36 | 284 |
| MSF | 9 | 1.64 | 4.0 | 20 | 0.2 | -0.13 | 285 |
| MSF | 10 | 0.66 | 2.7 | 35 | 0.2 | 0.66 | 286 |
| MSF | 11 | 0.33 | 3.5 | 5 | 0.2 | 0.49 | 287 |
| MSF | 12 | 0.66 | 5.5 | 10 | 0.2 | 0.16 | 288 |
| MSF | 13 | 0.98 | 3.5 | 5 | 0.2 | 0.10 | 289 |
| MSF | 14 | 4.59 | 6.0 | 5 | 0.2 | 0.75 | 290 |
| MSF | 15 | 0.98 | 4.0 | 5 | 0.2 | 0.03 | 291 |
| MSF | 16 | 0.33 | 6.5 | 0 | 0.2 | 0. | 292 |
| MSF | 17 | 0.33 | 5.0 | 0 | 0.2 | 0.16 | 293 |
| MSF | 18 | 0.33 | 7.1 | 5 | 0.2 | 0.10 | 294 |
| MSF | 19 | 0.66 | 4.5 | 10 | 0.2 | -0.07 | 295 |
| MSF | 20 | 0.33 | 4.5 | 0 | 0.2 | 0. | 296 |
| MSF | 21 | 0.33 | 5.5 | 5 | 0.2 | 0.36 | 297 |
| MSF | 22 | 0.33 | 4.3 | 5 | 0.2 | 0. | 298 |
| MSF | 23 | 0.98 | 4.1 | 15 | 0.2 | 0.20 | 299 |
| MSF | 24 | 1.31 | 4.4 | 25 | 0.2 | -0.82 | 300 |
| MSF | 25 | 0.98 | 4.4 | 20 | 0.2 | 0.20 | 301 |
| MSF | 26 | 0.66 | 4.4 | 10 | 0.2 | -0.07 | 302 |
| MSF | 27 | 3.94 | 4.4 | 5 | 0.2 | 0.95 | 303 |
| MSF | 28 | 4.59 | 5.8 | 5 | 0.2 | 0.26 | 304 |
| MSF | 29 | 3.61 | 5.5 | -0 | 0.2 | -0. | 305 |
| MSF | 30 | 1.97 | 5.5 | -0 | 0.2 | 0.13 | 306 |
| MSF | 31 | 0.66 | 5.0 | -0 | 0.2 | 0.03 | 307 |
| MSF | 32 | 0.66 | 7.5 | -0 | 0.2 | 0.13 | 308 |
| MSF | 33 | 0.33 | 7.0 | -0 | 0.2 | 0.16 | 309 |
| MSF | 34 | 0.33 | 7.1 | -0 | 0.2 | 0. | 310 |
| MSF | 35 | 0.33 | 5.5 | -0 | 0.2 | 0. | 311 |
| MSF | 36 | 0.33 | 5.3 | 5 | 0.2 | 0.10 | 312 |
| MSF | 37 | 0.33 | 5.3 | -0 | 0.2 | -0. | 313 |
| MSF | 38 | 0.33 | 5.0 | 5 | 0.2 | 0.26 | 314 |
| MSF | 39 | 0.33 | 6.0 | 15 | 0.2 | -0. | 315 |
| MSF | 40 | 0.66 | 2.5 | 20 | 0.2 | 0.20 | 316 |
| MSF | 41 | 1.64 | 3.5 | 5 | 0.2 | 0.16 | 317 |
| MSF | 42 | 5.90 | 5.5 | 0 | 0.2 | 0.52 | 318 |
| MSF | 43 | 2.96 | 5.0 | 5 | 0.2 | 0.95 | 319 |
| MSF | 44 | 1.64 | 7.0 | 20 | 0.2 | 0.92 | 320 |

$\left.\begin{array}{llllllll} & \begin{array}{lllllll}\text { HB } \\ \text { FT }\end{array} & \begin{array}{l}\text { TB } \\ \text { SEC }\end{array} & \begin{array}{c}\text { THETAB } \\ \text { DEGREE }\end{array} & \text { SLOPE } & \text { VMEAS } \\ \text { FPS }\end{array}\right]$ COUNT

## TABLE 8

FIELD OBSERVATIONS BY GALVIN AND SAVAGE

|  |  | HB <br> FT | TB <br> SEC | THETAB <br> DEGREE | SLOPE | VMEAS |  |
| :--- | ---: | :--- | ---: | :--- | :--- | :--- | :--- |
| ID |  |  |  |  |  |  | COUNT |
| GSF | 1 | 2.0 | 5.2 | 19.5 | 0.030 | 2.42 | 348 |
| GSF | 2 | 3.2 | 9.9 | 19.0 | 0.026 | 4.33 | 349 |
| GSF | 3 | 1.8 | 5.9 | 11.0 | 0.029 | 1.96 | 350 |
| GSF | 4 | 1.5 | 8.8 | 3.2 | 0.027 | 0. | 351 |
| GSF | 5 | 8.0 | 12.3 | 12.0 | 0.026 | 1.27 | 352 |



| U. S. ARMY COASTAL ENGRG RESEARCH CENTER, CE WASHINGTON, D. C. . <br> COMPILATION OF LONGSHORE CURRENT DATA by Cyril J. Galvin, Jr. and Richard A. Nelson March 1967. 19 pp. including I figure and 8 tables. <br> MISCELLANEOUS PAPER 2-67 <br> A compilation of published longshore current data comprising 352 separate observations; 225 from four laboratory studies, and 127 from four field studies. Eight tables of data include measured longstiore current velocity, wave direction, wave height, wave period and beach slope. <br> 1. Longshore Currents <br> 2. Littoral Processes <br> 3. Ocean Waves <br> 4. Coastal Engineering <br> I Galvin, C.J. Jr. <br> 11 Nelson, R. A. <br> III Title | U. S. ARMY COASTAL ENGRG RESEARCH CENTER, CE WASHINGTON, D. C. <br> COMPILATION OF LONGSHORE CURRENT DATA by Cyril J. Galvin, Jr. and Richard A. Nelson March 1967. 19 pp . including 1 figure and 8 tables. <br> MISCELLANEOUS PAPER 2-67 <br> A compilation of published longshore current data comprising 352 separate observations; 225 from four laboratory studies, and 127 from four field studies. Elght tables of data include measured longshore current velocity, wave direction, wave height, wave period and beach slope. <br> I. Longshore Currents <br> 2. Littoral Processes <br> 3. Ocean Waves <br> 4. Coastal Engineering <br> I Galvin, C.J. Jr. <br> 11 Nelson, R.A. <br> 111 Title |
| :---: | :---: |
| U. S. ARMY COASTAL ENGRG RESEARCH CENTER, CE WASHINGTON, D. C. <br> COMPILATION OF LONGSHORE CURRENT DATA by Cyril J. Galvin, Jr. and Richard A. Nelson March 1967. 19 pp . including I figure and 8 tables. <br> MISCELLANEOUS PAPER 2-67 <br> A compilation of published longshore current data comprising 352 separate observations; 225 from four laboratory studies, and 127 from four field studies. Eight tables of data include measured longshore current velocity, wave direction, wave height, wave period and beach slope. <br> 1. Longshore Currents <br> 2. Littoral Processes <br> 3. Ocean Waves <br> 4. Coastal Engineering <br> I Galvin, C. J. Jr. <br> II Nelson, R. A. <br> III Title | U. S. ARMY COASTAL ENGRG RESEARCH CENTER, CE WASHINGTON, D. C. <br> COMPILATION OF LONGSHORE CURRENT DATA by Cyril J. Galvin, Jr. and Richard A. Nelson March 1967. 19 pp . including I figure and 8 tables. <br> MISCELLANEOUS PAPER 2-67 <br> A compilation of published longshore current data comprising 352 separate observations; 225 from four laboratory studles, and 127 from four field studies. Eight tables of data include measured longshore current velocity, wave direction, wave height, wave period and beach slope. <br> 1. Longshore Currents <br> 2. Littoral Processes <br> 3. Ocean Waves <br> 4. Coastal Engineering <br> I Galvin, C. J. Jr. <br> 11 Nelson, R. A. <br> 111 Title |




[^0]:    * Parenthetical notations refer to LITERATURE C1TED on page 8.

