ASIA

$$
\cos ^{2}+
$$

DATE DUE

Cornell University Library

The original of this book is in the Cornell University Library.

There are no known copyright restrictions in the United States on the use of the text.

GHOLOGICAL SURVRY OP CHINA
 F. 㑔. THING ANH w. HI. WONG HIHPRECTDHES

【Talwontologia Gíníca
 TMDTMDIRE:
 V. K. TING ANB W. H. WONG

Eeries $\mathfrak{J B}$. Volume 1
Jagcicle 1.

OHRTDOWHCHAN FOSSHILS

HiReDN
NODRTHE CHINA
18Y
ANAHDTUS W. GHPABBAU S. D.

Dalæontologist to the $\mathfrak{m u r v e g}$ and professor of paiæontologe in the IRational aniversity, Deking.

HPGMNG 19\&2.

Palæontologia Sinica．

SERIES A．FOSSIL PLANTS OF CHINA．

VOL．I．
Fascicle I．Zur alttertiären Flora der sïdlichen Mandschurei， von Rudolph Florin（Riksmuseum，Stockholm，Sweden） 46 pages text， 1 plate， 3 text－figures．（In press）．

Other numbers of this series now in preparation will contain descriptions and illustrations of the Palæozoic and Mesozoic Floras of China by Dr．Th，G．Halle and associates in the Palæobotanical Department of the Riksmuseum Stockholm，Sweden，based on extensive collections made by the Geological Survey and associate collectors．

SERIES B．FOSSIL INVERTEBRATES OF CHINA．

VOL．I．
Fascicie 1．Ordovician Fossils from North China，by A．W．Grabau． 127 pages text， 9 plates， 20 text－figures．Published April 28， 1922. Price $\$ 5.00 \mathrm{Mex}$ ．

Fascicle II．Devonian Fossilz of Yunnan by A．W．Grabau．（In preparation）．
YOL．II．
Palsozoic Corals of China，Part I．The Tetraseptata，by A．W．Grabau．
Fascicle I．Introduction，and descriptions of Petraiidx，Streptelasmaidx and Cyathaxonida with 1 plate and 74 text－figures．（In press）．

Fascicle II．Zaphrentidx and Cyathophyllidre．（In preparation）．

SERIES C．FOSSIL VERTEBRATES OF CHINA．

This series will contain descriptions and illustrations of Tertiary and Quaternary vertebrates of China，by Prof． Carl．Wiman of Uppsala，Sweden，Prof．M．Roule of Paris，and others，based on large collections made by Dr．Andersson and others for the Survey and by other organisations and private individuals．

SERIES D．ANCIENT MAN IN CHINA．

VOI. I.

Fascicle 1 ．The Cave－deposit at Sha－Kuo－T＇un in Fengtien（in preparation）．
Article I．Topographic notes and description of artifacts by J．G．Andersson．
Article 2．Human skeletal remains hy Davidson Black．

Ordovician Fossils

 ofNorth China. BY

AMADEUS W. GRABAU S. D.
Palæontologist to the Survey and Professor of Palæontology in the National University Peking.

With Plates I IX and 20 Text figures

Published hy the Ceolngical Survey of China
Peking 1922.
G

```
Was.
Q.t
    A3
Series B, Vol.1, Fa.sc. 1-4
We\alpha545%
```

PCBIISIED APRTL $2 S, 162$

Printed liy
THE COMMERCIAL PRESS
PEKCNG.

CONTENTS:

Page
Introduction 3
Stratigraphic Summary 6
Fauna of the Machiakou or Actinoceras limestone 7
Lower Ordovician 9
Peilintze Limestone 10
Liangchiashan Limestone. 11
Description of Species 12
Anthozoa. 12
Brachiopoda 15
Pelecypoda 19
Gastropoda 20
Cephalopoda 36
Holochoanites 36
Phylogenetic significance of the siphuncle of the Holochonnites i3
Orthochoanites 0.3
Cyrtochoanites (i.)
Trilobita 91:
Bibliography 96
List of Chinese localities referred to in the text, arranged alphabetically under the several provinces. 99
Explanation of Plates 101

Pour bien savoir une chose, il faut en sayoir les détails.
La Rominsoucauld.

ORDOVICIAN FOSSILS FROM NORTH CHINA.

13Y

A. W. GRABAU,

INTRODUCTION.

In his classical work on China, Ferdinand von Richthofen classified the great limestone formations which underlie the coal-luearing scries of north China as "Kohlenkalk " and referred them to the Carhoniferous Limestone of Europe. In this he was not altogether wrong, for we now recognize the existence of Lower Carboniferous (Dinantian) limestones in north China, which carry many elements of the Carloniferous Limestone fauna of western Europe.

The greater part of the limestone series here under consideration was expressly excluded by v. Richthofen from his Sinian System which comprised the Cambrian and older rocks. It and a part of the rocks included in the Sinian are now known to be of Ordovician age, as was indeed recognized ly Frech, who in the fifth volume of v. Richthofen's monumental work, published in 1911, described two specimens of Actinoceras, (A. vichthofeni Frech) collected hy von Richthofen in Manchuria, and correctly referred them to the Upper Ordovician. Frech further recognized that this form was similar to, or even identical with, a species of Actinoceris from Camada which was figured hy Barrande under the name Actinoceras tichardsoni Stokes. Frech also described a fragmentary gastropod collected loy von Richthofen in the same strata, and referred it tentatively to Raphistoma rquilaterum Koken which occurs in the Chasmops-Kalk (Upper Ordovician) of western Europe. He also notes the occurrence of specimens of lctinoccrus sp. and Trochoceias sp, from Shantung, in the British Muscum, together with Dalmanella cf. testudinaria (p. 8).

Previous to the appearance of Frech's monograph, G. C. Crick (1903) had described and figured several specimens of Actinoctias oltained by the Rev. Samuel

Couling from the neighl,orhood of Tsingchou-Fu, Kiaochow, Shantung. Crick however did not identify his specimens specifically, referring to one as closely allied to Actinoceras (Ormoceras) temifih,m Hall from the Black River formation of New York, and to another as possilly representing the genus Gonioceras, a reference which now appears to be prolaldy correct. Busides the cephalopods, Crick mentioned the occurrence of several small brachiopods. According to Buckman "the general appearance suggests Oithis (Dalmonella) testudinuriu Dalman, an Ordovician species" *). This is the first published demonstration of the Ordovician age of the limestome in north China. In 1!on; Th. Lorenz ** descriled the following species from the Ordovician of Shantung the first three from Ho-shan the fourth from Santefan.

$$
\begin{array}{ll}
\text { 1. Ismplus bulmi Lorenz. } & \text { 3. Hymlithes sp. } \\
\text { 2. Ifulmen logani Salter. } & \text { 4. Plectumbonites sericcus (Buwerby). }
\end{array}
$$

Frech (in Richthofen V p. 14) referred the first three of these to the Middle Ordovician the fourth to the Upper Ordovician.

In their investigations of the geology of parts of northern China which appeared before Frech's monograph, Bailey Willis and Elliott Blackwelder (in 1903-1904) recognized that the greater part of won Richthofen's Kohlenkalk was to be referred to the Ordovician. Professur Stuart Weller, of the University of Chicago, who studied the fossils collected ly Blackwedme, recognized the existence of the cephalopod genus
 and the hrachiopests. Strmphomenu and withis (Immmetlu?) in the Ordovician rocks of Shantung hut he was unable to make suecific determinations because of the poor state of preservation of the fossils. Ho howerer described a number of species collected ly Blackwelder in thw Yangtze regim (south China) *** and recognizol their affinities with European Diddle Ordovician speries. I'winusly, several authors had described Ordovician fossils from south China among them S. P. Woodward (1s.it) Kingsmill (1s6!) and Gricve (1-n7). The first describert the well-known "Pagoda steme" as Orthoceras sp. and this was later redweribed hy Foord as Orthocerws chincose Foord (1sac). Kayser and Frech also deseriled a number of Ordovician suecies from southern China, (v. Richthofen Vols. IV and (') ant a number of these have since been redescribed with others ley H. Yabe and I. Haryasaka in their work "Palæontology of South China" (1!20). Several Ordovician species from south China were also described and recorded

[^0]Vol I.
by Martelli (1901) Mansuy (1902) Brown (1913) and G. Pellizzari (1913).
In all these studies howerer, only one new species was recognized in addition to the Actinoceras from the Ordovician of north China, namely Asaphus Jrithi Lorenz from Shantung, though a number of gencric determinations were made and a few forms identified with European species. Actinoceras richthofeni has remained ip to the present the only specifically identificd cephalopod known from the Ordovician of north China, but this species was definitely known only from Manchuria.

During the progress of investigations carried on hy the Geological Survey of China, a considerable number of specimens of Actinoceras was obtained from the provinces of Chihli and Shantung. Material was also sent to the Survey ber residents in various districts. Only a few other fussils were however obtained. Early in the present year some additional species were oltained from Tangshan in the Kaiping coal basin by Messrs. Fred. K. Morris, Geo. B. Barbour and A. C. Terrill, and later, a survey expedition, in charge of the author, began a systematic study of the stratigraphy of certain parts of the Kaiping basin. The party included Profescor George B. Barhour of Yenching college (Peking Christian University) and Messrs. I. C. Sun and S. C. Chean of the Survey. In the field we were joined ly Dr. F. F. Matthien, Geologist of the Kailan Mining Administration and Mr. Jacques Gerard enginecr and geologist of the Chaokouchuang mines and later ly Mr. C. H. Huang of the Machiakou mining staff *). The greater part of the fossils from the upper beds herein described was collected at that time.

The discovery of the Lower Ordovician fauna of the Ching-wang-tao region north of the Kaiping lasin is to the credit of Dr. F. F. Matthieu who placed the material in my hands for description, and with true scientific spirit has deposited the types and illustrated specimens in the muscum of the Survey, where they are accessible to all students and specialists.

The Ordovician species at present known from north China comprise 31 genera

[^1]and 58 species 4.5 of these leing suecifically identified.* All exerpt five of the speries are new. Three new genera, and anm fanily of ecphalopods, that of the Chiliocerthar are described.

sTRATIGRAPHIC SUMMARY.

Willis and Blackwelder applied the name Tsinan formation to the entire Ordovician series of North ('hina, which they regarded as a unit. The name was taken from Tsi-nan-fu in shantung near which the upper leds of the series are well wxposed. It is now known that there are several Ordovician formations in north China, with probably a disconformity between the higher and the lower divisions. The base of the Ordovician has leen definitely located in the vicinity of the little hamlet of Yehli, about 9 li or about 3.6 miles east-north-east of Machiakou in the Kaiping Coal Basin. Here the Ordovician beds rest disconformahly upon the Upper Cambrian or Cambro-Ordovician transition beds, the Firnts:lum formation, which carries a fauna recalling the Ceretopyge fauna of Europe, including a new species of Cerntopyge. The disconformity is marked by an irregular crosion surface of the Fengshan formation followed hy a basal conglomerate which marks the heginning of the Ordovician limestones **).

To the limestone immerliately sucecoling this lasal conglomerate we have given the name Lelui formution, and from it the following species have been obtained.

CEPHALOPODA

Sucoreras ! frhienser Grabau Sueroceras uttomuatum Graban

Extremely meager as this fann is, it is sufficient to indicate carly Ordovician, but whether it is Lower or early Mikde Orlovician must for the present remain undetermined. The limestones of this resion have a total thickncse, according to the measurements of Mr. H. C. T'an, of approximately 800 nuters, wat whether this series is continuous or separated into two divisions ly a hiatus, has not yet leen ascertained.

LTIER ORDOHTCLAN

The upper heds of the Ordovician of the Kaiping hasin are well exposed at Machiakou, south-west of Yhli, and from this locality the formation is named the lruchinkou divisiom or Machiakou formation. This is the trpicel detinoceres limestone, wibly exposed in the Kaiping lasin from Chankouchuang on the cast to Tangshan on the west. It is again linown hy lissils from the Western Hills of Peking, from the Shansi horder,

[^2]from south Chihli, from various parts of shantung and from Manchuria. The fossils so far oltained from it occur in the upper 10 to 15 meters, lut it must he clearly understood that over this entire region of its known-exposure it has suffered pre-Carboniferous erosion, and that beds of late Palacozoic age usually Lower ('artoniferous or Dinantian, but sometimes Upper Carboniferous or Uralian and in some cases perhaps Permo-Carboniferous leds rest upon them. Thus the fossiliferous upper lueds are prolably not always of the same horizon, though it is possible that Actinoceras may have only a limited vertical range, in which case the pre-Carloniferous erosion over wide areas wat relatively uniform in amount.

The following species have been oltained from the upper part of the Machiakuu or Actinoceras limestone *).

BRACHIOPODA

1 Orthis calligramma Dalm. var. orthembonites (de Vern.), (hinhli* 2 Othis? sp., Shantung (Weller)	
* 3	3 Datmunella cf. testudinaria Dalm., Shantung (Crick, Frech)
	4 Strophomena cf. incuratu (Shepard), (hiobl
* 5	5 Stroplomence sp., Shantung (Wedler)
6	6 Plectambonites sericeus (Sow.), Shantung (Lorenz)
PELECYPODA	
	7 Ctenodonta symmetrica Grabau, Chihli

GASTROPODA

* 8 Itachrea? or Helicrtomu? sp., Shantung (Weller)
* 9 Ifuclureal logani Salter, Shantung (Lorenz)

10 Eccyliopterns kushonensis Grabau, Chilli
11 Eccytiomphahes tangshanensis Grabau, Chihli
12 Lophospira morisi Grabau, Chihli
13 Lophospira pulchelliform is Grahau, Chihli
14 Lophospira trochiformis Gralau, Chihli
15 Lophospira ucrta Gralau, Chihli
16 Lophospira !erardi Grabau, Chihli
17 Lophospiru gerardi var. laxa Gralma, Chihli
*). The species proceded by and asterisk are recorded by Crick, TVeller, Lorenz, Frechetc. from Shantung and one No. 34, from Manchuria. All of these, except the last, I have not seen.

```
    1s Lomhosira tornssa Gralmu, Chihli
    19 Lomhasivica obscura Grabau, Chihli
    * 20) Lrmhospirt sp., Shantung (Weller)
    21 Pagodispira derwinuii Grabau, Chibli
    22 Petgolispira dorothet Gralmau, Chihli
    2:) Pagodispira Iorothca var. Imra Gralmau, ('hihli
    24 Limpirn barbomri Gralma,Chihli
    * 25 Lisspirasp. (Raphistoma cf. r'quiluterum Koken, Frech), Manchuria (Frech)
    26 Sull泣ustomue terrlli Gralmu, ('hihli
```

CONULARIDA

(EPHALOPODA
28 Taginuer rus trimmense Grahau, Chihli
* 29 Ortloweres sp. (several), Shantung (Weller)

31 Storeoplesmuecros psombscptetum Grabou, C'hihli, Ghantung
32 Stereoplasmoceras multhltomuchse Grabnu, Chihli, shantung
33 Stereoplusmusern: urtinoceriforme Gralman, Chilsli
34 Actinocerws Mihthofeni Frech, C'hihli, Shantung, Manchuria (Frech)
35 Actinoceres tuni Grabau, Chihli, shantung
36 Actinocerus comlimfi Grabau, Shantung (Crick), Honan, Chihli
37 Actinucers shantumoides Crabau, shantung
34 Ictinoceras summmiginale ('ralau, C'hihli
39 Actinuceras mamm Grabau, 'hihli
t0 Actinoceras curcutmm Grahau, Shantung
41 C!ffectinoccits ficchi Cialbau, (hilhli, whantung
42 Goniocerus shomtun!rise Grabau, Shantung
* 43 Trochoceras sp., Shantung (Frech)
TRILOBIT.E
44 Lsrophus butmi Loremz, Shantung (Lorenz), Chibhli
15. Asuphus? sp). or Isotelus sp., C'hihli
* 1 (i Astiplms? sp., Shantung (Wellar)

A considuration of this fama clearly shows it to he of caly Upper Ordovician age corresponding to the fauna of the Black River limestone of New Iork and Canada and to
the early Trenton beds of the central and eastern United States and Canada. Although no species can be said to be absolutely identical, (except perhaps Actinocercts richthofeni, with which is identified a specimen figured by Barrande from Canada*) still the majority are representatives of species occurring in the American early Upper Ordovician formations, and indeed, in some cases these Chinese species are hardly more than geographical varieties of the American forms. As such they indicate a very close correspondence of horizons. The presence in our Chinese fauna, of forms closely analogons to species found in the Stones River or upper Middle Ordovician of North America, indicates that the horizon is to be regarded as at the boundary-line between Middle and Upper Ordovician. Thus it is quite safe to correlate the Actinoceras horizon essentially with the Black River formation of North America. How much of the underlying series of limestones represents Middle Ordovician and what part is of Early Ordovician age, cannot at present be determined.

The only European form I have noted in addition to those recorded by Crick, Lorenz and Frech, is Orthis calligramma variety orthambonites, of the type figured by de Verneuil from Russia.

LOVEER ORDOYI'TAN.

Undoulted Lower Ordovician fossils; were discovered ly Dr. F. F. Matthieu in the Shi-mun-chai region northwest of Ching-wang-tao in northeastern Chihli. The stratigraphic succession here is as follows according to Dr. Matthieu.**)

CARBONIFEROUS FORMATION
(Great hiatus and disconformity)
ordovician formation
Liangchiashan formation 275 m .
Gray massive more or less dolomitic limestone with fossiliferous horizon (F3) 53 m . below the top. 129 m .
Limestone conglomerate (intraformational) 1 m .
Gray massive limestone 118 m.
Conglomeratic limestone, grayish blue 1 m .
Pale grayish limestone in thin layers 2 . m.
Shihmunchai formution 155 m .
Interstratified sill 6 m.

[^3]

Totul erposed thictimes. of Oidoriciun $. . . \quad . .$.
The most significant fact revealed by the stuly of this section is the absence of the Machiakon or Actinoccras limestone, which over such a wide area directly underlies the Carboniferous formations. This indicates a very pronounced precerminerous erosion in this region and further, a marked irregularity of attitude of the Ordovician strata, for a short distance to the south the higher limestones are present, and they are again found further to the north in Manchuria.

Peilintze Limenone.-A noteworthy fact is the apparent entire distinctness of the two famas found in the limestones of this section. The fanna of the lower or Peilinte limestum at present compriws the following puries:

ACTINOZOA (?)

Gastropoda

2 ophilete stun, muset (iralan
: Fusispinite il
CEPHALOPODA

. Chiblinecres matheni Gralmu
6 Chilliocerets chingurangterothser Grabanu
? 7 Piloceras plutymemim (iralan (doulbtul from this horizon).
The presence of Aecherocyathus in this fauma is noteworthy. This genus, and indeed all of the Acharorymime, are typical of (imnlmian horizons, occurring most
commonly in the Lower Cambrian. One species however A. minganense Bill. has heen obtained from the Lower Ordovician of the Mingan Islands eastern C'analia. This species has no inncr wall and has heen mate by Hinde the type of his new genus Archaroseyphin. Our species is of the same generic type. The occurrence of this fossil, which appears to le fairly common, is sufficient indication that the Peilintze limestone represents lowest Ordovician. The presence of a Protocameroceras very similar to P. hrainarli of the American Beekmantown, further indicates the correcturs of this classification, as does also the presence of ophiltu. Chiminecres represents a new tyre of cerphatopod and for it the new family of the Chillinerntider is crected. Its nearest relation is Piloceros, but it is very distinct from this in its siphuncular structure, which, curiously enough, is much more specialized and complicated than is that of Piloceras. The presence in this fauna of the species of the latter genus, characteristic of the higher formation, is open to some doult, as it is possible that there may have leen a mislabeling of specimens in the field. If it really belongs here, it is the only species which the two divisions have in common.

The base of the Peilintze limestone has not yet been found, and its relationship to the older horizons is therefore unknown. All of the material here described comes from the lowest fossiliferous horizon (F 1) uxcopt one fragment which contains several specimens of Ophileta apparently of the same species as that in the lower horizon, though the material is rather imperfectly preserved. This comes from F 2 .

Lianchiashan Linestone. - No fossils have been obtained from the intermediate shales and limestone of the Shilnumelui formation. The upper or Liunchiashun limustones carry a fossil horizon (F 3) 223 metors above the base. At this level the following species occur.

GASTROPODA
1 Ophileta plana Gralaur
2 Hormotoma doquieri Grabau

CEPHALOPODA

3 Cameroceras styliforme Grabau
\pm I'locerns plutyuentrum Grablau

This is a small but distinctive fauna, and one confined to this horizon unless the presence of Piloceras platyventrum in the lower beds should he substantiated. Buth the Piloceras and the Ophiletu indicate Lower Orlovician, or a horizon aproximately equivalent to the upper Beekmantown of North America. Hormotnmu indicates a somewhat higher horizon and the fauna may perhaps represent early Middle (irdovician, lut can scarcely be higher so far as the known species permit 11.s to julg.'.

The relationship of these faumas to the Ordovician faumas of the Kaiping hasin farther south, is still olscure. The beds which there rest diseonformatly upon the Lipper Cambrian have so far furnished fow fosils only, all of which are entirely unknown in either of the two horizons in the Shih-mun-chai region. Further search may of course
bring common species to light, and demonstrate the correspondence of the Yehli limestone series to one or the other of the formations in the more northern region. When such new material is oftained, it will be described in further numbers of this publication.

DEACRIPTION OF SPECIEA

Class ANTHOZOA
 Family ARCHAEOCYATHINAE
 Genus Archeocyathus Billings

(Subgenus Archroscyphia Hindo)

Archæocyathus (Archæoscyphia) chihliense Grabau (sp.nov.)

Plate I Figs. 1-3
Caliculum irregularly sult-conical, apparently expanding in a uniform manner. Basal portion unknown. Adult portion sulfcircular to sul-oval in transverse section, the latter possibly accentuated by compression in some specimens. Septate portion (thecarium) thick, enclosing a hollow calicular cavity which, in the sulcelindrical specimens, has a diameter something over one third the diameter of the entire caliculum. This cavity is well defined by the inner ends of the main septa, which attain a uniform length, lout are not hounded ly any definite inner wall, or endotheca. Outer wall or exotheca formed by the thickening of the outer conds of the septa, and their irregular confluence, the result being a very porous wall.

Septa thin, formed apparently ly a series of small confluent tralecule, this resulting in the production of thin radial plates of a very porour nature, so that in transverse section they appear as disconnected tralrecule, disposed in radial lines. They are very numerous and arranged in groups of thee or four each, the group being separated by interspaces which are about twice as wide as the interspere hetwn the adjoining septa of a group. Occasionally one of these hroader interepaces is oceupied hy a short septum in the peripheral region.

A section 28 mm . in diametcr (Pl I fig. 3), shows alont 33 groups of septa, making a total of from 100 to 120 septa. The specimen from which this section is cut appears to have had a somewhat flaring outer edge to its calyx, a section of this showing on one side, because of slight obliquity of the cut. In this outer portion the septa are

Vol I.
nostly continuous, very thin, and slightly serrate. They form a pronounced contrast with the inner portions of the septa which, in section, are discontinuous. Occasionally two of the outer septa lucome confluent.

The following are the measurements of this section:-

Longer diameter, exterior	36 mm .
", ", interior	13
Thickness of thecarium	10
Thickness on opposite side	7
Transverse diameter, exterior	24
,, ", interior	11
Thickness of thecarium	8
Thickness on opposite side	

A specimen (Plate I, fig. 2), which evidently has heen compressed laterally, has a present maximum diameter on the exposed weathered surface of 80 mm ., while the shorter diameter is 40 mm . A series of sections cut acrosis this caliculum 25,27 and 80 mm . from the exposed surface, and parallel to it, shows so little difference in measurements that we must infer that the caliculum, in this part at least, was subcylindrical. These facts are brought out by a comparison of the following measurements. (Section No. 4 is nearest the top of the caliculum).

If the tapering was fairly uniform the length of the specimen must have been between 35 and 40 centimeters; actually it was probahly alout half that.

A third specimen, the largest ohtained (Plate I fig. 1.) shows the following measurements on the exposed weathered surface and in a section 50 mm . helow this and parallel to it. The total length was prolably 20 cm . or over.

[^4]| SECTION | | Interval | Outside of caliculum | | Inside of caliculum | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | Maximum Diameter | Minimum Diameter | Maximum Diameter | Minimum Diameter |
| | Weatherent surface | | .i) mm. | 112 mm . | (i) mmm | (i) mm . | 14 mm . |
| | Polished sertion | (M)?, | | 71) , , | 42 , | 30 , |
| Rate of tapering | | | 1 in $2 \cdot 8$ | 1 in \% | 1 in 2.4 | 1 in 3.5 |

These measurements clearly indlicats the gently tapering character of the caliculum and the variation in the thickness of the wall or thecarium vertically. We have no means at present of deternining the length of the caliculum, lut that it was very great is shown ly the fact, that in ore of the specimen there is an little variation in diameters in the known length of nearly 90 mm . It is quite pesill, that this anecies grew to be over 30 cm . in length.

There is considerable variation in the thicknes of the wall around the periphery as shown in the sections. Mrasurments at four sucestive juints around the periphery gave for three different specimens:

Section pl. 1 fig. :	Smetion pl. 1 fig.	Suction pl. 1 fig. 1
16	$1!$	8
S	12	16
7	4	1.5
9	111	21

From the several sections it appears that the form was subeylindrical with the surface of the thecarium searerly undulating, nor did it exhilit such marked protulerances as characterize A. minyonense, though scattered tulcercles mạy have existed.

Compurisons. This species agres with Arrmoryuthers minganense Billings in the alsence of the inner wall of the thecarium. Its alsence in A. minganense has been insisted upon by Hinde (1889) though Billings' figures (18i62, figs. 8. $5: 3$-34) inclicate its presence (see also Roemer 1476 , pl. II, fig. $2 \mathrm{Za}, 1$). Because of the alsence of the inner wall, Hinde erected for this species the new gemus Achatwerymin. Hind and subserquent authors (see especially Taylor 1910) wre in error in helieving A. minguense to be a Combrian
species. The Mingan Islands in the Gulf of St. Lawrence north of Anticosti Island, are composed of Ordovician strata, hoth Beckmantown and Chazy lueing present, while Potsdam sandstone (possibly only a hasal sandy phase of the Beekmantown rather than true Postdam) occurs on the mainland to the north. A minganense and A. chifliense thus appear to be the last survivors of the Archæocyathine, which continued into the Lower Ordovician. Our species has a proportionately thicker thecarium than A. minganense, while the arrangement of the sheta in groups of 4 or 5 further differentiate it from the American species. The strong annulations and nocies characteristic of the latter, are not developed in the Chimese form, or only slightly so.

Horizon and Locality: This species was collected by Dr. F. F. Mathicu from the Peilintze limestone of Pei-lin-tze, Shih-mun-chai region eastern Chihli province, at horizon No. 1. It is associated with Ophileter squamoxt, Cammoceras and Chihlioceras. The age is Lower Ordovician.

Class BRACHIOPODA

Order Protremata Beecher
Family ORTHIDAE Woodward
Genus Orthis Dalman
(Emend. FIall and Clarke)
Orthis calligramma Dalm.
var. orthambonites von Buch (de Verneuil)
Plate I. Figs. 4a-c, 5a-d
1827 Orthis caligramma Dalman, Kun. Vet. Acad. Handl. p. 114, pl. 2 fig. 3.
$1 \$ 45$ Orthis calligramma de Verneuil, in Murch. De Vern. \& Kayserl. Geology of Russia and the Ural Mountains, Vol II, p. 2h, plate XIII, figs. Ta-7f, and var. orthambonites von Buch, ibid. figs. $8 \mathrm{a}-8 \mathrm{~g}$.
1868 Orthis calligramma Davidson, British Silurian Brachiopoda (Palaontographical Society Monographs), p. 240, pl. XXXV figs. 117 (Bibliography and synonymy).
1883 Orthis calligramma Kayser, in Richthofen, China Vol. IV, p. 40, pl. III, figs. 10-13.
1901 Orthis calligramma var. scrica Martelli, Boll. della Soc. (ieol., Ital. vol. XX, p. 29', pl. 4, figs, 1.4 ; var daeidsoni Martelli, idem. p. 301, pl. 4.5, figs. 5-6.
1913 Orthis calligramma Weller, in Willis, Research in China, vol. III, p. 2n2, pl. 2.5, fiqs, 3-6.

Whell small sulhemincircular, witw than high, with the pedicle valve strongly, and the liachial valve more gently convex. Hinge-line forming the greatest width of the slebl, cardinal anglesenetangular, sion and front regularly rounded.

Pediche valve sumenhat shaply aremate in transerse section, the greatest clevation leetwen one third and wne half the distance forward from the beak, which is elevated and rery slightly incurved were the area. Cardinal area high, arched, and of triangular outline, with a median triangular delthyrium which is higher than its basal width.

Brachial valer sub-semicircular, with a wighty salient beak which is not incurved. Cardinal areanmon, ahnot one third as high, in the center, as the pedicle area. Contour depmesedeonver, the ervatest weration alout one third the length forward from the beak. A rery faint median depmesion themets the front.
surface of shell marked ly strong regular rounded plications, with deep interspaces almut erqual in width to the plications in the earlier part, hut wider towards the front. There are from 19 to 21 of them on the pedicle valve, and a corresponding number on the hachial valle. The plications decrease very gradually in size towards the lateral margins, except on the cardinal extremities where the lant there or more are fine and narrow. Growth-linw very fine and rather obscure. In sone peceimens the plications become rather widely separated near the front, as their own width does not increase in proportion. This gives a very marked chameter th that part of the shell, as compared with specimens in which the plications thicken more in proportion.

 hinge aroa rij mon. Fragments of larger indiviluals al=o nceur.

The numerous varietins currently chased under this specific name require a thorongh revision, when it will monably appear, that there are a number of distinct genntic series. Thw (mmmon LTMer Ordovician (Caradocian) form of western Europe illustrated havembon in plate XXXY fig. 1 and \because, is strongly biconvex, and belongs probably to the gamm I'lectorthis which is derived from (hithis proper liy the increase, among other features, of the combexity of the hachial valve, until in that respect it is cescontially erpal to the pealicle valre. On the other hand, in more primitive mutations (primitive at least, su far as convexity of the lrachial valve is concerned) the two valves are very unlike, and to this group our peecimens belong. That transitional forms connect the two serime dows not justify us in uniting then, for transitional forme hetween sjecties of a genetic serices are normal and to be expected. The increase in the size of the
plications (or of the interspaces) is characteristic of a distinct evolutional direction, and the increase in number is equally characteristic of another, the two evolutional lines heing divergent. Interpreted in terms of mantle growth, which is, after all, the key to the surface features of the shell, the regular increase in size of the plications without intercalation of new strix, signifies a uniform interstitial growth of the marginal or shellbuilding mantle-tissues, i. c. a uniform rate, and a uniform distribution of growth. The development of intercalated plications on the other hand, signifies a proportionately more rapid mantle growth of the portions corresponding to the interspaces, and this excess of growth has to be compensated for by a folding of the mantle, and the corresponding formation of plications. In other words, individuals with intercalated plications indicate unequal mantle growth, while those in which nuw plications are added only at the hingemargin, indicate relative uniformity of mantle growth. It is evident, that the two groups represent divergent lines of evolution. Our varicty belongs to the latter group, and it is the one figured and described by de Verncuil as varicty orthambonites, and it is to his figures $8 b-d$, that our form most nearly corresponds.

The variety described by Weller from eastern Szechuan has fine radiating striæ intercalated leetween the coarser ones, while that described and figured ly Kayser from the "Light gray Brachiopod limestone of Kiau-tchang-pa," though larger, agrees in all essentials with the specimens from Chihli.

Horizon and Locality: In the upper part of the Machiakou (Actinoceras) limestone of Chaokouchuang in the Kaiping coal basin, eastern Chihli province. Collected by survey experlition.

Family STROPHOMENIDAE King Genus Strophomena Rafinesque

Strophomena of incurvata (Shepard)

Plate I fig. 6.
cf. 1893 Strophomena inclurata (Shepard), Winchell and Schuchert. Palarontolugy of Minnesota, Vol. I, (With billiography and synonymy.)
cf. 1909 Strophomena incuriata (Shepard), Grabau and Shimer, North American Index Fossils, Vol. I, p. 223, figs. 271, a-d.
cf. 1913 Strophomona sp. undt. Weller, in Willis. Research in China, Vol. III, p. 281, pl. 25, figs. 1, 2.
 the: upper Machiakou limestone. It is of medium size, moderately concavo-convex, with the hingeline forming the greatest width of the shell.

Padicle valve gently concaro with a well dreveloped hinge area. In some of the pereimens the carlinat stage of thin valve, now forming the heak, is more or leas strongly compex but this is usually a were small apical portion, and in some shells this is not shown at all. In comsuruene these suggest the characters of the brachial valve of a Renfincermina. I sumemen of this kind however shows a high hinge area, thus inclicating that it is the pedicle valve, and that the erneric reference is to Strophomena. Only half of the area is shown, hut this is enough to show the triangular delthyrium partly covered ly a rather short deltidial plate. The contour of the valve varies in different specimens from nearly flat to pronouncedly concave, the greatest concavity being in the anterior third.

Brachial valve strongly convex. No specimen has been observed in which the apical portion in momessod on concave, as is often if mot generally the cate in the genus. In whue pereimene the center of the valye is nust strongly ele vated, the sides leeing
 In wher epeeimens, the contour of the valler is regularly areluel transpersely, while the longitudinal contome show the greatest convexity somewhat in front of the midde. In a few specimens the longitudinal contour is slightly undulating, due to faint and ill-clefined concentric wrinklinge, while near the front, the valve tends downwad rather abruptly.

Surface markerl her rather strung radiating striae which increase in strength forward, and are mentiplied by the interalation of other stries. These are at first much finer, but also berome sterengemed townem the front, while at the same time other fine striee appear in the wikening interspaces. Thus the aspect of the surface is that of strong strixe with frenn thren to five finer ones hetween each pair of conser ones. Very fine concentric lines eancollate the strian and mark the interspaces, where they are strongest. They are vory numerous and close-nct.

The n irth of an arorage sereimen is $1 t$ mom. the height 8 mm . or more.
Hontzon and Lomeitess: This is a common forn in the massive dark-gray

 to frepare the sucimme, and oharvations are limited th the fracture exposures. Only
 and preparation with the neede point is possible.

Weller described similar shells as abundant in the Ki-su-ling limestone on the Titning River in eastern Szechuan, where they were collected hy Blackwelder. His specimens indicate a somewhat larger size than our form, but appear to he of the same species. The reference of our species to the American S. incrovata is tentative, and incleed is probably not warranted. Better material is however necessary before it is possible to make a complete characterization of our form. It will probably be found to lee a new species.
S. incerrate is a characteristic and ahundant fossil of the Trenton limestone of New York and of the central United States, whre it is widely distril)uted.

Clasis PELECYPODA

Order Prionodesmacea

Family CTENODONTIDAE Hall
Genus Ctenodonta Salter
Ctenodonta symmetrica Grabaul (sp, nov.)
Plate I Fig. 7.
Shell small, transverse, beak subeentral; hinge-line somewhat sharply arcuate: marked with rather strong transverse denticulations; ends sulangularly rounded; ventral margin nearly straight. The anterior end is somewhat broader than the posterior, but the difference is not very pronounced. The anterior muscle-scar also appears slightly larger than the posterior, but again the difference is slight. It is however more strongly excavated than the posterior. There is a rather strong though low rounded ridge, extending from the posterior ventral margin of the anterior adductor scar towards the rostral cavity, dying away before it reaches this. Surface characters unknown, but apparently the shell is marked by simple growth-lines.

This small shell has some resemblance to Ctonodonta loguni Salter of the Black River of Wisconsin and Ontario, but the ents are more nearly equal and the denticulated hinge-line is more arcuate. The muscular impressions also are more pronounced, while the short internal anterior muscular ridge is distinctive. From C. frcundm Hall of the Upper Ordovician (Maquoketa shale) it differs in the straight ventral margin, and the strong muscular impressions. It has the charactur of binge, and of muscular impressions of C. pectunculoides Hall, of the Cincinnati group, but is of less rounded form.

Horizon and Locality: In the upper Machiakou (Actinoceras) limestone of Tangshan, associated with Lophospira, Pagorispirn etc. Collected by Goo. B. Barbour. Only a single right valve of this species is so far known, this showing the interior, while the characters of the exterior are not visible.

The genus Ctenorfonta is aloundant in the Upper Ordovician of North America, where it is represented ly many species. From Chinese rocks Ctenodonta has heretofore been reported only from the Lower Ordovician of Pupino in western Yumnan (CowperReed) but the species has not beem identified.

Class GASTROPODA *
 Order Rhipidoglossa Troschel
 Family EUOMPHALIDAE de Koninck
 Genus Ophileta Vanuxem
 Ophileta plana Grabau (sp. nov.)

Plate II, figs. 1, 2a-b.
Shell with the spire flattened to a plane, except for a faint sulb-marginal kecl, the cffect of which is to give the upper surface of the whorl, i. e. the shoulder, a faint concavity. There are ahout six volutions in what appears to le an adult specinen, the

[^5]upper surfaces of which all lie at the same level, or are depressed so faintly as to be scarcely noticealle. Side or body of the whorl at first vertical, thus making the shoulder angle 90 degrees. This verticality is most marked in the last or loody-whorl of the adult shell, whereas in the young, the contour quickly becomes rounded off inwards, this rounding leing progressively more pronounced in the younger portion of the shell. On the under or umbilical side, the inner whorls are prolably depressed, though so far only weathered specimens have been oltained, in which the whorls appear entirely flat. In these however the outer whorls are quite evidently worn down to the level of the inner. In a young specimen partly freed from the matrix, this depression of the inner whorls is indicated.

In an adult specimen, (Plate II, fig. 1) the greatest diameter of which is 24 mm . the width of the final whorl (shoulder width) is 6.5 mm . In a young specimen (pl . II. figs. 2a-b) with a maximum diameter of 14 mm ., the final whorl has a diameter of 4 mm .

The most characteristic features of this species are: the flat surface of the spire formed by the shoulder, the position of which is at right angles to the axis of the shell, and the submarginal carina. The lines of growth are not sufficiently shown in any of the specimens so far found to indicate whether or not there is a deep notch upon the keel such as characterizes typical species of Ophileta. Nevertheless the general characters are such as to make reference to the genus Ophileta most reasonable.

Of American species of the genus known to me, the present form comes in many respects near to O. complanata, of the Beeknantown (Lower Ordovician). It differs however from that species in the flat spire, and the sunken or depressed umbilical area, which in the American form is flat, while the spire is depressed and the whorls concave. As in the American form, the upper keel is sulmarginal and the sides of the shell flat and nearly vertical, except in the lower portion, where they curve inwards in the Chinese species.

In general appearance the Chinese species is very like that descriped and figured by de Verneuil as variety A, of Euomphalus qualteriatus Salter, in the Palæontological volume of the great work on the Geology of Russia and the Ural Mountains (p. 334, pl. XXII, figs \geq_{a} a, 2 b , , Indeed our form might be considered conspecific with the Russian form (obtained from the Ordovician rocks of St. Peterslurg), which is most certainly distinct from Salter's species. The two forms are very similar, except for the absence in the Russian form of the outer keel, which is distinctly shown in the Chinese species, and for the fact that the shoulder angle of the Russian form is less than 90 degress.

Horizon and Locality: This species was collected hy F. F. Mathieu, geologist of the Kailan Mining Administration, in the Liangchiashan limestone at Liang-Chia-

Shan, Shih-mun-chai (Shihmenchai) region near Chingwangtao eastern Chihli province (horizon F3). The formation is Lower Ordovician.

Ophileta squamosa Graban (sp. nov.)
Plate II Figs 3-6
Shell with sunken spire, the whorls nearly in a plane but asymmetrical, gradually enlarging and in contact except, in some cases in the last part of the final whorl. Umhilicus very large. Whorls with a gently concave, slightly inward sloping shoulder, limited within ly a blunt angulation and without ly a rathor sharp carina wreel, which is howerer not greatly "levated. Outer surface of whorl regularly convex, in such a manner that werem frome the carina is something lese than one third of the width of the whorl within the periphery. Lines of growth curving strongly backirads at the carina, forming a pronounced apertural notch at that point.

On the umbilical side the whorls are gently convex or sightly angular at the center with a pronomed lut romded carina next to the inner manerin. On this side the lines of growth are very squamose projecting at regular intervals, in the adult, in the form of small sharp varices. These die away at the outer margin, lat continue on the inner carina and along the insike of the whind to the point of contact with the preceding whorl. Preceding the strongly squamose portion of the final whol is a part where these squance have more the apmarance of costar and are farther apart (plate II fig t). This condition is still slightly visible on a portion of the frecerling whorl.

The largest adult individual of this species found (pl. II fig. (i), has a maximum
 characters. The width of the final whorl of the aprture is 15.5 mm., the enlargement lueing rather rapid in the last stage. The growth lines are strongly squamose projecting about. 0.7 mm . from the shell.

A section of another adult shell has a dianeter of 36 mm ., lut shows only the outer whorl (pl. II. fig. 5), the maximum diameter of which is 12 mm , this leing some distance behind the peristome. The outer surface of the shell is regularly rounded, from the keel of the shoukler angle to the margin of the umbilicus which is characterized lis a faint roundmed ked. The shoulder angle or keel lios ahout whe third the distance in from the priphery of the whol as wen from alowe and it foms nowly a right angle. The
shoulder slopes strongly inward and is gently concave. The inner side of the whorl is rounded with a very faint suggestion of an impressed zone where it was in contact with the preceding whorl. The growth lines are squamose and crowded.

This species is of the type of Ophileta bella Billings which is found in the Beekmantown (Div P) of Newfoundland. The upper carina is however nearer to the outer margin in the Chinese species and the shoulder more regularly concave. Again, the lines of growth are not squamose on the upper surface of the Chinese species, as they are in the Newfoundland form. On the umbilical side, the Chinese species is marked hy a rounded carina near the inner margin, this leing absent in the Newfoundland species. On this side too, the growth lines are much more strongly squamose in the Chinese than in the Newfoundland form. Though related, these two forms are markedly distinct.

Horizon and Locality: This species was olitained by Dr. F. F. Mathicu from the Peilintze or lower limestone of the Lower Ordovician, at Pei-Lin-Tze, Shihmunchai, province of Chihli. It is not an uncommon form.

Genus ECCyliopterus Remele

Eccyliopterus kushanensis Grabau (sp. nov.)
Plate IL Figs 7a-e.
Shell of medium size consisting of about four volutions, which enlarge gradually and regularly. Spire sunken; umbilical side nearly flat. Whorls of sub-rhomboidal section, the shoulder sloping inward, with a sharp shoulder angle, which was scarcely elevated into the marginal "collar". Shoulder angle of the inner whorls somewhat greater than that of the outer ones, the shoulder itself sloping inward to a lesser degree than in the adult, and being flat, whereas that of the outer whorls hecomes slightly concave. The successive whorls embrace to within a very short distance of the shoulder angle, which, however, projects slightly in each whorl. Outer surfaces of the whorls very gently convex, less so in the adult than in the earlier whorls, but not actually flattened. Towards the umbilical side the whorls become regularly rounded, and separated by depressed sutures. On this side the whorls are only very slightly depressed, so that a very large and very shallow umbilicus results.

This species is related to Eccylionterus sinensis (Frech) (Raphistoma sinense Frech) from southern China. Comparison with a characteristic specimen from Hupeh, (Pl. II, fig. 8) shows it to be a flatter as well as larger shell. The whorls of the present
species are not so high laterally as in E. sinensis, and the shoulder angle is somewhat less pronounced. The silles of the Hupeh form too are less convex, hecoming almost flat in the last whorl, and the umbilicus is more depresser than in the northern species. In E. simensis too, the embracing is much more pronounced so that each outer whorl rises, on its inner margin, ahove the shoulder angle of the preceding whorl, whereas in E. kushanensis the shoulder of the outer whorl meets the whorl next within, a very short distance helow the shoukder angle. This is shown in the sections on plate II. of which fig. Fe represents the whorls of $L \therefore$ kushanensis and 8 d those of E. sinensis.

Horizon and Iocality: The only specimen so far known comes from the Machiakou limestone of Ku-Shan, in Huo-Luh-Hsien western Chihli. This region has also furnished 1 atineseres richthofeni from apparently the same horizon.

Genus ECCYLiomphalus Portlock

Eccyliomphalus tangshanensis Grabau1 (sp. nov.)
Plate II Fig. 9.
Shell large, laxy coiled, whorls not in contact, coiling essentially in a plane. Whorls rather rapidly enlarging from about 10 mm . at the beginning, to 2.5 mm . at the end of the final volution in the tre specimen, in which only alout one and a half volutions are preserved. Earliost whorls unknown. Under side broadly rounded, inner angle sharp and rectangular outer angle rounded. Upper surface unknown.

The specimen exposes only the lower side of the whorls which is partly worn. Its large size (maximum diameter about 7.5 mm .) and rapidly enlarging whorls are however very characteristic features. A rection of a second specimen shows nearly two complete volutions but the final portion is crusher inward giving the shell a smaller proportional diameter. The diameter of the final volution is only alout 1 s mm . at the end, and 7 mm . at the loginnins, giving about the same rate of enlargement. This specimen is worn down from the upper sille. A comparison of the two specimens suggests an ovate-triangular cross-section of the whorls. Only a portion of the shell is preserved on the under side and this shows indistinct regular lines of growth. In general form and character, and in the rato of enlargement this shell suggests Eicyliomphuly: undulatus Hall from the Stones River (late Middle Ordovician) of the central United States. It is however a much larger shell than any member of that species with which I am acquainted.

Horizon and Localities; In the upper beds of the Machiakou or Actinoceras limestone, at Tangshan in the Kaiping Coal Basin, Chihli province, T. C. Wang coll. Also in the same formation at Huo-Luh, (Hwo-Luh) Chihli, Miss Clarke, coll.

Family PLEUROTOMARIIDAE d'Orbigny
 Genus LOPHOSPIRA Whitfield

Lophospira morrisi Grabau (sp. nov.)

Plate III Figs. 1, 2a, b.

Shell of medium size for the genus. Spire consisting of about five angular whorls which embrace to within a very short distance of the peripheral carina. Apical angle 57 58 degrees. Whorls with flat or very gently concave shoulder, pronounced peripheral carina, obtuse shoulder angle, and faint lower carina. In well-preserved specimens, the shoulder angle is marked by a sharply rounded carnia with a narrow peripheral band on the outer edge of the shoulder, delimited by the peripheral carina and a fainter spiral above it. Lines of growth fine and sharp, beginning at the suture, where the shoulder is sometimes thickened as lyy a faint sulsutural carina. From this point the lines of growth bend lackwards, at first very gently, then, as they approach the land, move abruptly, crossing the land with a distinct semilunar curve. In this respect the growth-lines and land are very similar to those of Lidsipicu barbouri from the same horizon. They evidently indicate a rather pronounced supra-marginal notch, a feature not usual in the genus Lophospira where the notch is generally at the peripheral carina.

The lower carina is faint and scarcely affects the contour of the hody of the whorl; it may indeed le absent altogether.

Aperture sul)-rhomboidal, the inner lip slightly reflected and covering the umbilicus.

Length of a perfect specimen (Plate III fig. 1), 17.in nim., greatest diameter of lody whorl, 12.5 mm .

This species is very similar to Lophuspira medialis Ulrich and Scofield, from the Trenton limestones of New York and the central United States, the chief difference being the pronounced marginal land on the shoulder of the Chinese species, and its somewhat sharper peripheral carina. In other respects the two species are closely allied, and somewhat worn specimens of the Chinese species might readily be taken for the American form.

Horizon and Locality: A nearly perfect specimen was olitained hy Messrs. Morris, Barbour and Terrill in the upper quarry heds of the Machiakou or Actinoceras limestone at Tangshan in the Kaiping coal hasin castern Chilhli province. This specimen was associated in the same slab, with Selpingustomuterilli and Antimocurs teni. Another specimen, olitained ly Mr. Geo. B. Barhour, from the same locality and horizon, is associated with Lophospim pulchellifumis and Pugotixpiat dewituil. These specimens are deposited in the Museum of the Surver. The specifie name is given in honor of Frederick K. Morris, Profesor of conlogy in Peiyang University Tientsin, in recognition of his actiwe interest in the stratigraphic and structural frohlens of this whuntry.

Lophospira pulchelliformis Grabant (sp. nov.)

Plate III Figs. 3, 4.
Spire elevated, the apical angle abut $\cos ^{0}$, whorls embracing only to the lower carina which is strong and occupies the middle of the body of the whorl.

Shoulder flat or vary gently concave, the shoulder angle about 90°, and marked ly a rounded, well defined, peripheral band which uccupies the apex of the angle, and is defined ky an impresecd line on either side. Lower part of whorl divided into two parts hy the strong hody carina which is roumbed and nearly equal in strength to the shoulder angle. This carina is partly shown just abowe the sutme in the earlier whorls. That part of the whorl hetwern the shoulder angle and the Lower carina is concave, while that hew the carina is gently concare near the carina hut fecomes gently convex towards the umbiliens, which is narmw. Lines of sron th deflected hackwards on the periphery, where they indicate a notch of moderate repth.

This species is the ('hmere analogne of the North American L. pulchella U'rich and fonfield, which is fomd in the Iback IRiver hurzon of the central States. The apical
 form. The lower carina in our sjecios is alsesmewhat lower down on the whorl than in the American form. Nevertheless the two are very much alike.

Hontzon and Lowhimm: In the upper part of the Actinoceras or Machiakou limestonn at Tangshan, wreal we.imens, collected by Surver expectition; also one from the same section collected her (im). B. Barhour.

- Lophospira trochiformis Grabau (sp. nov.)

Plate III Figs. 5a, 5b.

Shell with trochiform spire, the whorls embracing to the peripheral angulation. Shoulder concave, the periphery formed by a round band delimited by linear depressions above and below. Body of whorl without carina, concave below the peripheral band but convex for the greater portion; umbilicus small. Apical angle about 75°, shoulder angle 100°.

This species resemlles L. morrisi, but is more strongly embracing, so as to entirely cover the preceding whorl. There is, further, no indication of an accessory carina on the body of the whorl.

Horizon and Locality: In the upper part of the Actinoceras or Machiakou limestone at Tangshan.

Lophospira acuta Grabau (sp. nov.)

Plate III Figs. 6.
Shell small, high-spired, apieal angle about 57 degrees, whorls enbracing to lower carina, which is pronounced and sharp. Shoulder concave, characterized ly revolving spirals, and forming an acute angle with the hody of the whorl. Shoulder angle sharp. There are indications of rather sharply pronounced growth-lines which cancellate the spirals. Umbilicus minute.

This species differs from L. pulchelliformis, in the more acute shoulder angle, and in the sharp peripheral and lower carina. The apical angle is also somewhat smaller in L. acuta than in L. pulchelliformis.

This species resembles in form, acutencss of whorl, and sharpness of carinæ the American L. acuminata (Ulrich and Scofield) from the Upper Ordovician (Richmond) of the central United States, and like that form, appears to have strong growth lamelle. Our species is however characterized by a minute umbilicus, which is absent in the American species.

Horizon and Locality: This species was collected by the Survey party in the upper Actinoceras limestone (Machiakou limestone) near Chaokouchuang, province_of Chihli (Kaiping coal hasin). Its age is early Upper Ordovician. Cat. Mus. Geol. Survey Nos 47 and 48.

Lophospira gerardi Grabau (sp. nov.)
Plate III, Fig. 7.
Shell of less than medium size, with an apical angle of 65 to 70 degrecs. Whorls embracing to a point about midway between the two carinæ, exposing the lower portion of the whorl for an amount equal to about half the shoulder width. Shoulder flat to very gently concave, with a well-marked peripheral carina, bordered above and below by a distinct spiral line. The upper of these spiral lines is separated from the median carina ly a distance about twice that hetween the carina and the lower bordering spiral, producing the appearance of a peripheral hand on the margin of the shoulder. Shoulder angle about 9.5 ${ }^{\circ}$. Lower carination gencrally well marked, its distance from the periphery being somewhat less than the wilth of the shoulder. The space between the two carinations is gently concave or nearly flat, while lelow the lower carina, the whorl slopes rather abruptly to the umbilical region. Aperture subquadrate; umbilicus not olserved.

Lophomitu gerardi has many of the characters of L. proangulata Hall, from the Stones River and Jowville-Black River groups, of the central United States, New York, and Canada, the chief differences leing the greater apical angle of our species. In the American form the final whorl is also often laxly coiled, and the peripheral carina is trilineate.

Horizon and Locality: This species and its variety were found $1, y$ the Survey expedition in the Machiakou or Actinoceras limestone of the Chaokouchuang region in the Kaiping coal basin. The specific name is given in honor of M. Jaques Gérard, geologist and engineer of the Chaokouchuang mines of the Kailan Mining Administration.

Lophospira gerardi

variety laxa Grabau (var. nov.)
Plate III, Fig. 8.
This is a gerontic mutation of L. gremeti. The carly whorls are slightly more embracing than in the normal form, making a greater apical angle (nearly sogrees), but the later whorls become slightly separated, producing a lax-coiling adult. This results in a pronounced sutural channel, hounded without ly the sharp urpre angle of the
shoulder. The shoulder itself at the same time becomes more pronouncedly concave, and the peripheral carina becomes more prominent. The trispiralled cbaracter of the peripheral carina is still maintained, with the median spiral thickest, but the lower spiral becomes more distant, so that the space between it and the median one is slightly wider than that between the median and upper spirals. The space between the paripheral and lower carinæ has also become more pronouncedly concave. Umbilicus not observed.

Horizon and Locality: Occurs with the preceding.

Lophospira terrassa Graball (sp. nov.)
Plate III, Fig. 9.
Shell of medium size, and somewhat rohust aspect; apieal angle ahout 62 degrees. Earliest whorls not preserved. Neanic whorls with a shoulder angle of about 95^{0} which in the adult becomes between 100 and 110°. Whorls moderately ambracing, leaving the lody exposed to a height equalling about half the shoulder width, or somewhat less. Shoulder moderately convave, with a broad and rather ill-defined upper (subsutural) carina and a well-defined sutural shelf or terrace, which is flat or may slope slightly inwards. Shoulder angle marked by a rounded carina bounded by impressed lines. Body of whorl, below shoulder-angle, gently convex, without lower carina. Lines of growth sharp and crowded, bending at first gently backwards on the shoulder, and then crossing the periphery with a pronounced backward curve. After crossing the periphery, they bend forward, and then more abruptly downwards. They thus indicate a pronounced peripheral notch. Axis with a minute median hollow, as seen in the broken apex. Diameter of final whorl 15 mm .

This species differs from L. gercrdi in the absence of the lower carina, and in the terrassiform sutural shelf. From L. morrisi it differs in the presence of this shelf, and the lesser amount of embracing. It is closely related to Lophospira ampla Ulrich of the Lorraine and Richmond (Upper Ordovician) of the central United States, but that species has a less developed subsutural shelf, and the whorls embrace somewhat more, giving the shell a slightly greater apical angle. The two species are however very similar.

Horizon and Locality: In the Nachiakou limestone oi Tangshan, Chihli. Survey collection.

Lophospira obscura Grabau (sp. nov.)
Plate III Fig. 10
Shell turretinl, consisting of about 5 whorls which expand rapidly and are angulated ly a pronounced shoulder angle and a less marked lower carina. Apical angle about 90 degrees. Shoulder flat, bounded beln hy a heavy carina and embracing to the lower carina of the preceding whorl. Exposed part of the horly of the preceding whorl somewhat less than the wilth of the shoulder. Shoulder angle about 115 degrees, characterized ly a rather strong rounded carina or keel. Lower earina moderately strong, tise surface of the whorl between it and the shoulder angle being flat or slightly concave. Below the lower carina the whorl is rounded. Cmhilicus apparently closed. Surface characters nut asecretained.

In it a gen rall form and character this suecies resembles L. bicincta of the Stones River and Trenton groups of the central United States, but it is without the marked carina near the upper ent of the shoulder. That is however faint in some cases in the American species. It differs from L. gerardi in the greater shoulder angle, smaller apical angle and less degrec of embracing.

The mold of the interior of our species presents rounded outlines owing to the thickening of the shell on the interior.

Horizon and Lecality: In the Actinoceras beds of the Machiakou limestone at Tangshan. Collected hy Gurvey expedition.

Genus Pagodispira Graban (gen. nor.)
Shell with comparation! small apical angle and subrectangular whorls, giving the shell a pagodiform aspect. Whorls without slit, but bearing a peripheral carina like that of Lophospira. One or more additional carince may be present. Aperture subquadrangular to trapezoid, gencrally with a faint anterior emargination. Unlbilicus generally covered by the reflexed inner lip.

This genus is closely related to Lophonitu from which it differs primarily in the much drawn-out form of the spire, and the resultant small apical angle. It may indeed be regarded as a more primitive branch of the Lophospiter serics in which the whorls embrace only to a very small degree, or lettir as a lateral branch from the ancestral stock, in which the culracing of the whorls remains in the primitive state. This is suggested by the fact, that in other gastropod series the more specialized members show a larger amount of embracing, while further, members of a degencrating scrics, show a
tendency towards a decreasing amount of cmbracing in the adult, which in certain cases is followed by a loosening or laxness of the coil.

Genotype: Pagodispira derwiduii Grabau, Ordovician.
Of foreign species referable to this genus, we may mention Pagodispira bowdeni (Safford) from the Upper Ordovician of North America. So far as known the genus is confined to the Ordovician.

Pagodispira derwiduii Grabau (sp. nov.)

Plate III Fig. 11.

Shell slender, with the apical angle varying from 28 to 32 degrees; whorls 8 to 10 (at least 9 in the holotype) angular, and divided near the center of the exposed part by a sharp peripheral carination which consists of a median strong rounded spiral, closely flanked by a fainter and much weaker spiral on each side. Shoulder gently concave, apparently smooth, though there is a suggestion of faint spiral lines. Shoulder angle varying from about 95 degrees in the young, or in more retarded individuals, to about 112 degrees in the adult. Exposed portion of whorl below the shoulder angle of the same width as the shoulder, and like that gently concave. A lower carina, situated just below the suture of the whorls is present at least in the adult portion, where it is of moderate strength on the body-whorl. Umbilicus covered ly reflexed inner lip. Length of holotype about 3.5 mm . (the apex is imperfect), diameter of last whorl 14 mm .

This species differs from the American P. boudeni (Safford) (Lophospira bowdeni Ulrich and Scofield) from the Lorraine and Pichmond of the central United States, in the sharper shoulder angle (that of P. bow deni heing from 122 to 125 degrees) and in the more strongly concave shoulder, that of P. bowdeni becoming convex near the suture, forming an obscure carina. The whorls of our species also embrace to a lesser degree than is the case in P. bowdeni, where the part below the periphery is only about two thirds as wide as the shoulder. Finally the Chinese species has a sharper peripheral carina and a stronger lower carina, the latter in P. bowdeni being faint or absent. From I. dorothea Grabau, it differs in the sharper shoulder angle and peripheral carina and the lesser degree of embracing.

Horizon and Logadities: In the Machiakou or Actinoceras limestone near Chaokouchuang in the Kaiping coal basin, Chihli province. Collected by the Survey expedition. Also in the same horizon at Tangshan, collected by George B. Barhour.

The specific name is given in honor of M. Maurice Derwiduee, chief of the Chaokouchuang mines, whese interest in, and recognition of the practical value of geological and palroontological science, has contributed not a little to the distinguished success of the great mining operations under his charge, and who gave us every facility and aid in his power, in our investigation of the stratigraphy and palseontology of the Chaokouchuang region.

Pagodispira dorothea Graban (sp, mパ.)
Plate III Fig. 12
High pired, with apical angle of about 24 degrees; consisting of alout in angular whorls. Shoulder flat or very gently concave, without change of slope at suture; shoulder angle in the young whorls about 90 or 95 degrecs, increasing in the adult to 117 degrees. Exposed portion lelow peripheral carina, about two thirds as wide as the shoulder in the adult, apparently more nearly equal to it in the young; flat. or appearing slightly concave because of the strong peripheral carina, which is somewhat thickened. Lower carina strong, situated at the suture, and exposed in the penultimate whorl, hecaluse of the shight separation of the final whorl.

The species differs from P. derwituii in the greater shoulder angle and more pronounced embracing of the adult whorls, as well as in the laxity in growth of the final whorl. From P. bow deni it differs in the character of the shoulder and in the sharper peripheral, and stronger lown carina.

Hontzos axif Locality: In the upper Machiakou or Actinoceras limestone of Tangshan. The specific name is given in honor of Mrs. Dorothy Dickinson Barbour, wife of Prof. Gowrge B. Barbour the discoverer of the holotyre, and ly whom it was presented to the museum of the Surver.

Pagodispira dorothea var. laxa Grabau (var. nov.) Plate III Fig. 13

This varicty differs from the species in the laxness of coiling characteristic of the whorls. This is shown in the submature whorls hey the fact that the lower carina shows above the suture and in the last whorl hy actual looseness of the whorl. The apical angle is about 18 degrecs. The lower carina is strong.

The earlier whorls, some of which are shown on the same rock fragment, have the normal character of the young of P. dorothea, which is also essentially like that of the adult P. derwiduii.

Horizon and Locality: This variety occurs in the upper beds of the Machiakou or Actinoceras limestone of Chaokouchuang, where it was collected by the Survey party.

Genus Liospira Ulrich \& Scofield
Liospira barbouri Grabau (sp. nov.) Plate II [, Figs. 14a, b., 15a-c.

Shell of medium size but somewhat higher spired than in the majority of species of that genus. Height of spire somewhat variable, the apical angle ranging from 110° in the lowest to 95° in the highest spired individual. Whorls subrhomboidal, with a gently concave shoulder and a sharp shoulder angle which varies from 60° in the more strongly conical to 55° in the more depressed forms. Lower part of the whorl very gently convex or alnost flat; with a sharp angle at the rather large umbilicus.

Peripheral land on the outer margin of the shoulder fairly well defined by a low but sharp carina or spiral, the succeeding whorl embracing to the outer edge of the peripheral band, i. e. to the shoulder angle; so that the suture is not depressed. Lines of growth nearly vertical or slightly oblique backwarls in the upper half of the shoulder, after which they are strongly deflected backward to the peripheral band which they cross witl a definite curve, producing a pronounced marginal notch (Plate III, Fig. 15c). Aperture not fully preserved in the known specimens.

This species has the rather flat base and sulitrochoidal form of a Eucmice, but the sharp shoulder augulation, the usual concavity of the shoulder, the large umbilicus with angular margins, and the slightly defined land on the peripheral margin of the shoulder, indicate its relationship to the genus Liospitu. The character and position of the peripheral band, and the deep notch are features also suggestive of Euconia.

I am not acquainted with any American or European species with which this species is likely to he confounder. It has many of the characters of I. citime (Billings) of the Middle and early Upper Ordovician (Ntones Liver to Trenton) of ('anada and the United States, but the spire is higher and the apical angle therfore less, in our swecies, while the shoulder angle of our form is also sharper and the lower part of the whorl flatter.

Measuremexts. The fullowing are the masurements of the types:

$$
\begin{array}{ll}
\text { Height } & \text { Diumeter of } \\
\text { body-uhorl }
\end{array}
$$

Diameter of umbilicus

1. ($\operatorname{Hjg} 14$), 1ٌ2. inm.	19, 5 mm .	-5.5
O. (Fig 15), 11. imm. (ammox)	20. 11 n)lı. \pm	(i.

Hohezon axis Localitrs: In the upper portion of the detinnceras or Machiakou limestone at Tangshan, province of Chihli. Collected by Gerrge B. Barbour, Professor of Geology in Peking C'hristian University, in whose honor the shell is named. Also Survey collection.

Family MURCHISONIDAE Livken

Genus Hormotoma salter
Hormotoma doquieri Graban (sp. nov.)
Plate III Figs. 16a b
Shell small, high spired with 7 or more whorls (the apex is imperfect), which embrace very slightly, leaving the larger part of the preading whorls expered. Apical angle about 16°. Shoukke flat or gently convex. shutder angle obtuse, characterized hy a revolving land, which is hordered hy a spiral on either site. Lower part of whorl rounded, and broader than the shoulder. Lines of growth prominent, producing a subdued surface ornamentation. Iperture not fully shown, but apparently with an anterior notels.

This shell has the gencral character of Hormotome gencilis Hall from the Chats and Stones River, and the Trenton of North Anerica, but the shoulder is Hatter in the C'hinese form and the luwer "xpered part of the whorl proportionately higher than in the American species. The lines of growth are also more prominent in the chinese form.

Inorizan ante Lonality: In the Liangehiashan limestone of the Shih- ILun-Chai region, castern Chilli province, collected ly F. F. Mathieu. Thw specific name is given in honor of M. Alexandre Doquier chief of mines of the Kailan Mining Administration.

Vol 1.
Graban-Ordocician Fossils from North China

Family BUCANID A U Ulrich \& Scofield

Genus SAlpingostoma Roemer

Salpingostoma terrilli Grabau (sp. nov.)

Plate II, Figs. 10a-c

Shell bellerophontoid with rather rapidly enlarging whorls, coiled in a single plane; the carlier whorls cmbraced lis the later, so as to produce a rather small and deep unbilicus. Outer contour of whorls rounded, except where this is interrupted by the pronounced slit, the sides of which are slightly elevated. Apertural portion suddenly and flaringly expanded into a broad bellerophontoid lip, which extends on all sides of the whorl, and closes the slit in front. Surface markings not preserved.

The only specimon so far known is crushed on one side and on the front, but shows all the essential characters of the genus. The slit is wider than is usually the case in this genus and its borders are somewhat thickened. How much of this is due to silicification cannot Je stated.

Compared with other species of this genus, the whorls of this form expand mor" rapidly and embrace more closely, thus giving a much smaller and deeper umbilicus than is usually found in this shell. The lip also appears to be broader and more extended than in other species. This genus is well represented in the Stones River (Chazy), and Black River formations of interior North America and in the Trenton of New York and Canada. It also extends into the Richmond group of the highest American Ordovician. The genus is further well represented in the Upper Ordovician of Esthonia (formations (11, C2 and F1)

Our species is more nearly of the type of those found in the Echinospharites limestone (C1) of Europe and those of the Trenton limestone of America, but is distinct from all of these forms.

Honezon and Lucalify: Ansociaterl with Lophospirn morrivi and Iectingeres temi in the upper Machiakou or Actinocuras linnestone of Tangshan, 1 wovince of Chihli. At present represented by only one specimen. Collected ly Messrs. Morris, Terrill and Barbour.

Holotype in the collection of the Chinese Geolugical Survey, Cat. No 32. Named after Mr. Arthur C. Terrill, Professor of mining in Peiyang University, the discoverer of the specimen,

Order Ctenobranchiata Schweigger Family PYRAMIDELLIDAE Gray
 Genus Fusispira Hall

Fusispira sp.
Plute III, Figs. 17, 18.
Among the material collected by M. Mathieu from the I'cilintze limestone, are two specimens of a gastropod, which, from the general form of the fire and the contour of the whorls, is referable to the genus Fiusispicu. The apical angle is 11 or 12 acgrect, and the shell consists of about 10 whorls if not more, the apical portion of both Heceimens being imperfect. The whorls are of soncwhat greater diameter than their length, uniformly rounded, and gradually enlarging. The amount of embracing is slight, producing a loose-coiled shell, with a leep suture, which is rery oblique, and forms an angle of $\bar{J} 1$ to. 5 degrees with the axis of the shell. Character of aperture and nature of surfice markings not ascertained.

This shell has the general form and proportions of Fusispion enguste Ulrich and Frofiche, from the Trenton of the eentral Lniterl states, but the apical angle of the Chines secens is smaller by perhaps is degrees, the whorls shorter, and the suture cererer.

Hurizon and Locality: In the Peilintze limestone of the Shih- Dun-Chai region, assuciated with Upliletu squamosa. Collected ley F. F. Mathi u.

Clas CEPHALOPODA

Order NAUTILOIDEA Zittel
Sulurder Holochoanites Hyatt
Family ENDOCERATIDAE II yatt
Genus Proterocameroceras Ruedemann
Proterocameroceras mathieui Graban (sp. nov.)

Plate 1V, Figs. 1-3

Orthoeeracones of unknown size, represented so far only ly fragnments, which suggest that the shell had a length of a foot, and prolally much more. Moreover the fragments may represent only the carlicer part of the conch.

Shell oval in section, the largest fragment known having a derso-ventral diameter of 23 mm ., while the transverse diameter is something over 30 mm . At the same point the siphuncle has a diameter of 12 and 15 mm . respectively, thus being at this stage about one half the size of the shell. The ventral side is distin:ctly flattened, this being shown both in the shell and in the siphuncle, which lies in close juxtaposition to the flat ventral side of the shell. The thickness of the shell-wall at this point is half a millimetre. The camerae average 3 mm . apart at this stage, and their concavity, as nearly as can be ascertained, is equal to about twice their distance apart at the center, or a little more.

Siphuncle distinctly flattened on the ventral side where it is in contact with the shell, the flattened part in the apical portion of the largest specimen being 9 mm . It tapers at the rate of about 1 mm . in 16 . There is a well-defined and distinct wall, which encloses the siphuncle (embosidholining of Ruedemann). This siphuncular wall or inner shell is obliquely annulated by the edges of the siphonal necks, which are slightly but distinctly constricted just before reaching the next lower septum. The suture forms a distinct ventral saddle on the flattened surface of the shell. The anterior empty portion of the siphuncle (the endosiphocylinder of Ruedemann, i. e. the inner living-chamber) is broken away to the edge of the last-formed endosiphosheath (inner conical septum). The depth and apical angle of the endosiphocone, delimited by this last sheath, cannot be ascertained, but the former is at least 20 or 25 mm . Which would make the latter about 20^{0}. The interior of the siphuncle below this cone is filled by crystalline calcite which has a distinct radial structure as in belemnites. In its center or nearly so, lies the subtriangular chdusiphocoleon, flattened on the ventral side to correspond to the flat ventral face of the siphuncle. Its ventral diameter at the lower end of the specimen is about 3.5 mm .

Another specimen (Plate IV fig $2 \mathrm{a}-\mathrm{c}$) shows an earlier portion of the shell, apparently of a different individual. The shell is strongly oval, the maximum transverse diameter being 18 mm . While the dorso-ventral diameter is only 11 mm ., though the shell appears to $7 x$ somewhat crushen dorsally. The corresponding diameters of the siphuncle are 8 and 7 mm . respectively.

The septa are a little over 1 mm . apart. The siphuncle is in close juxtaposition to the flat surface of the shell, which is about 6 mm . wide. The sides of the siphuncle are obliquely annulated ly the septal necks, which form an angle of 70° with the ventral surface of the siphuncle, this being essentially the angle formed by them in the larger specimen. The endosiphocoleon lies somewhat dorsad of the center. Rate of tapering of siphuncle 1 mm . in 26.

On the exterior of the shell there appear to be broad very shallow and ill-defined concentric constrictions, but these are observed only on the ventral side, the rest of the shell not leing visille.

Three fragments of the collection appear to represent parts of a single siphuncle of this species (Plate IV fig 3a-c). This is long and slender, but its cutir length is not known, thongh the fragments preserved indicate a length of wrer somm. At the smallest cond preserved, the diameter is 6.5 mm ., at the larges 9 mm . The rate of tapering in about 1 mm . in 2. The younges fragment is fightly flattemen ventrally and shows broad ill-defined undulations. It las a sub-central endosiphuncle, and the organic limefilling (stereoplasm) of the remainder is olscurely radiate. In the: larger fragments, the shell is circular in section, and appears cntirely smooth, and is half a millimeter in thickness. Incertain positions, however, very faint oblique lines are visille, suggesting septation. Within it, is at least one well-defined thick-walled conical sheath, tapering at the rate of 1 mm . in 10. Around this the crystalline lime has a radiating structure. The interior of the cone, formed by the sheath, is alsw filled withe crystalline calcite, (xcept at the larger end (3l), where an open semilunar cavity exists, clue to removal of softer filling. At the upper end of the largest fragment this has a vertical diameter of 1.1 mm. and a hasal width of 4.s mm. On the other sitle of the fragment, which is 2011 m . long, this semilumar tube, here still retaining its filling, has been rectuced to about half thew dimersions. The structure of the interior filling of calcium carmonate is alsu railitw. The fresuce of three other sheaths is indicated by concentric tulular interruptions of the crystalline (generally radiate) lime-filling, hut these were exceeding! thin wallen, pusibly membranous. *

Excent for the very faintly indicated oblique rilys these siphuncular fragments suggest the fereptate apical end of Irotememerocres, and for such they were at furst takne This is also suggested by the circular cruss-section, but on the other hand, their size agres with that of the siphuncle of the species where still surrounded hey the camerae (Plate: IV fig 2).

Honeman ane Lomarty: This pecies oceurs in the Lower Orlovician Peilintze limnstone of Pei-lin-tar, Shiln-Mun-Chai region near Chingwangtan eastern Chihli. It is associated with Chilhioccos, Achaveyathas etc. Collected loy F. F. Mathieu, in whose honor the specific name is given.

[^6]Genus Cameroceras Conrad (emend. Hyatt)
Cameroceras styliforme Grabatı (sp. nov.)
Plate IV Figs. 4-6
A small slender siphuncle of Crmeroceras occurs in the upper or Liangchiashan beds but no portion of tho shell remains in the specimens so far obtained.

A specimen (Plate IV fig. 4) measuring 30 mm . in length, and of suboval section, measures 3.5 mm . in transverse, and 2.5 mm . in dorso-vental diameter at the lower end. The corresponding measurements at the upper end are 6.6 mm . and 4.8 mm . respectively. The vental side is distinctly flattened. The siphuncle was evidently enclosed hy camere. Their distance apart near the upper end, as shown by the annulations, was 2.2 mm . and the angle which these annulations form with the ventral line of the siphuncle is about 68 degrees. Wall of siphuncle of moderate thickness; interior filled with crystalline calcite, hat showing in the center, at the smaller end of the siphuncle, an empty endosiphocolcon of semi-lunar section, its flat base corresponding to the flat side of the siphuncle. The width of this side is 1.3 mm . while its dorso-ventral diameter is 0.5 mm . (Plate IV fig. 4l). There are three other lumens irregularly placed around the periphery, but cqui-distant from the outer wall, indicating that they represent part of an endosiphosheath. *

Another fragment (Plate IV, figs. 5a-c) representing a larger portion of the siphuncle, musures 7.3 and 5.9 mm . respectively in lateral and dorso-ventral diameters. The ventral side is not so much flattened, but is more broadly rounded than the dorsal. The siphuncle at this point was not absolutely in contact with the shell, for the septal edges form a distinct, broad, rounded saddle upon the ventral side. Septa 2.2 mm . apart. Siphuncular wall (silicified) rather thick, the interior filled with crystalline calcite, except for a central sheath of similar section as that of the wall of the siphuncle, and like that, silicified. Its diameters, at the upper end are: lateral, 5 mm ., dorso-ventral, 3 mm ., the dimensions of the siphuncle at this end being 7.3 and 5.9 mm . respectively. At the other encl, 8 mm . distant, where the dimensions of the siphuncle are 6 and 5 mm . the inner tube measures 3 and 1.8 mm . respectively. Thus, while the lateral tapering of the siphuncle is $1.6 t \mathrm{~mm}$. in 1 mm . and the dorso-ventral tapering 1.12 mm . in 1 mm ., that of the inner tube is 2.5 and 1.5 in 1 , respectively.
Λ third specimen (Plate IV figs. Ga-c) represents a still larger portion of the siphuncle of apparently the same species. Its length is 13 mm ., while the diameters at

[^7]the larger end are 10 and 9 mm ., and the corresponding measurements at the smaller end 8.2 and 8 mm . respectively. The corresponding measurements of the endosiphuncle are: -upper end, 5.7 mm . and 4.7 mm ., lower end, 2.5 mm . and 2 mm ., respectively. Although somewhat compressed, there is no flattening of the siphuncle and the septal ends, which still adhere to the silicifield siphuncle, form only a very gentle obliquity with its axis. This indicates that the siphuncle at this stage was no longer in contact with the wall of the shell, but had been surrounded by the cameræ on all sides, including the ventral. This is further shown ly the fact that the ends of the septa still remaining, are stronger on the ventral side (side of forward convergence) than elsewhere. The septa average about 2 mm . apart.

In spite of the variations here shown, I am disposed to think that we are dealing with on species only. This is however quite distinct from the species found in the lower horizon (i. e. P'oteroctmernceras mathicui).

Hortzon and Locility: A numleer of fragments were olitained ley Dr. F. F. Mathieu from the upper or Liangchiashan limestone of Liank-Chia-sian, near Chingwangtao, eastern Chihli. The age is late Lower or perhaps early Middle Ordovician. (inol. Survey cullection cat. nos. 1 (1: to tor

Genus Suecoceras Holm

Suecoceras yehliense Grabau (sp. nov.)

Plat IV, Figs. 7a, b.

Represented only by the apical portion of the endosiphuncle which shows the slight but distinct inflation characteristic of the genus. The most perfectly preserved specimen (Plate IV, fig. 7), has a length of about 40 mm . Its apex is pointed and its diameter increases rapilly at first, then more slowly, until at a point about 20 mm . from the apex, it has a diameter of 13.2 mm . Then it decreases slowly, its diameter at the upper end of the specimen being 12.5 mm. A second specimen shows a maximum diameter of 11.3 mm . at a point about 21 mm . aloove the apex and then decreases to 10.5 mm . at a distances of about 28 mm . from thr apex.

Neither specimen has the surface well preservel, but on the larger one the oldique septal lines are indicated in the apical portion. At first they are 1.5 mm . apart, this distance incrasing to nearly 2 mm . shortly after. The obliquity of the septal lines, with

Horizon and Locality: In the lower Yehli limestone of Lower Ordovician age, at Yeh-li, northern rim of Kaiping coal basin. (Y. C. Sun coll.).

Suecoceras attenuatum Grabau (sp. nov.)

Plate IV, Figs. 8, 9.
Like the preceding, this is known only from the siphuncle, which clearly shows it to be a more slender form, and one which never reaches the siphuncular diameter of the preceding species.

The siphuncle (in fig. 8) gradually increases in diameter from the initial point, reaching its maximum of 9 mm . at a point distant about 20 mm . from the apex. After that it decreases again, until at the uppermost preserved end, it is 7.5 mm ., this being about 40 mm . from the apex. In another specimen, the greatest diameter is 9.3 mm . at a point about 25 mm . from the apex, narrowing subsequently to 8.9 mm .

In one specimen, apparently of this species, the diameter of the siphuncle is 9.8 mm . at the upper end, this being the aperture of the endosiphocone or uppermost one of the conical fillings (endosiphosheaths) of the siphuncle (see Plate IV fig. 9). The position of the endosiphosheaths in the siphuncle seems to be oblique, their axis not coinciding with the median line of the siphuncle as a whole.

Horizon and Locality: In the lower beds of the Yehli limestone near Yeh-li northern border of the Kaiping coal field, Chihli. (Y. C. Sun coll.).

Genus Vaginoceras Hyatt Vaginoceras tsinanense Grabau (sp. nov.)

Plate IV, Figs. 10a, b.
Represented at present only by the siphuncle, which however has certain very definite characters from which some of the other characters of the shell can be deduced.

The form of the siphuncle is sub-cylindrical, increasing from 9.6 mm . at the lower prescrved end, to 10.8 mm . at the upper, the distance leing 40 mm . This gives a rate of tapering of 1 mm . in a length of $331 / 3 \mathrm{~mm}$.

The siphuncle is filled solirly with the endosiphosheaths lat these have been converted into crystalline lime. The upper portion of the specimen however shows the andosiphocone or funnel-like prolongation of the living-chamber into the siphuncle, lountled by the last endosiphosheath. This part of the specimen is partly filled with the lime matrix in which the shell is embedded. Endosiphuncle unknown.

The sides of the siphuncle are distinctly marked by the necks of the septa, and those show that the later ones extend beyoncl the upper edge of the preceding one, thus showing that the shell belongs to the genus Vaginncerts. The direction of the septal lines is strongly oklique, forming an angle of about 50° with the axis of the siphuncle and mecting on the ventral side in an angle of about $70{ }^{\circ}$. This indicates that the siphuncle is sulwentran in position. The septa average ahout 3.8 mm . apart.

The suldeylindrical character of this siphuncle is its most marked feature, and this together with the obliquity of the septal lines, and their relative closeness, sure to differentiate this species from othere found in the Ordovician beds of China.* In the characters noted, our apecies is not unlike the early stages of Taginoceras oppletum Puedemann, from the Chazy herls of the Lake Champlain region of the eastern United States, but there is no indication that the Chinese species ever reached the size of the adult American form.

Hortzon and Loceality: In the upper rquarry liode of the Machiakou limestome, associated with Actinocries. Lophospirl rete. Cement quarry Tangshan. Siurvey expedition coll.

Family PILOCERATIDAE Hyatt

Genus Piloceras Salter
Piloceras platyventrum Grabau (sp. nov.)
Plate IV, Figs. 11 a-c, $12 \mathrm{l} \cdot \mathrm{c}$. Text figures 1 a-e.
Siphuncle with broadly subconical apex with endosiphuncular scar or slightly protruding endosiphuncle; enlarging rapidly until at a point 15 mm . from the apex (in one surecimen fig 11), it has reached a diamoter of 21 mm ., after which it enlarges more gradually at the rate of about 15 mm . in 10 of length, while later on it appears to lee sulacylindrical. The apical portion of the siphuncle (for ahout $\because=\mathrm{mm}$. in the only focimen showing this part) appears smooth, this part onding in a faint lroad but

[^8]unmistakable constriction, after which the expanding shell of the siphuncle kecomes annulated. This suggests that the apical portion of the siphuncle was not enclosed by camere. The annulations (shown well in specimen fig. 12) are oblique, forming on the side an angle of about 60° with the axis of the siphuncle. They become fainter on the ventral side, mecting in a broadly rounded forward curve or saddle. About five of these annulations occur in the space of 20 mm .

In transverse section, the siphuncle appears slightly broader than high, the ventral surface being somewhat flattened.

Interior of siphuncle with endosyphosheaths and crystalline lime-filling between them. Two or possibly more of these older endosheaths are indicated. The endocone formed ly the final (last-formed) sheath of the most mature individual seen (fig. 12c), is of subcircular section in the upper part, with the ventral surface slightly flattened. In the lower part, or at least in the earlier sheaths, this ventral surface becomes strongly flattened and the greater part of the endocone lies dorsad of the center (fig. 11c). It is continued posteriory in the dorso-ventrally compressed endosiphuncle. The thickness of the last endosheath (the wall of the endocone) is about equal to that of the wall of the siphuncle.

In the specimen shown in fig. 11, the dorso-ventral diameter is 31 mm ., the corresponding diameter of the endocone is 11.5 mm ., the space between it and the ventral surface being 11.5 mm ., while that between its dorsal surface and the corresponding surface of the siphuncle is 8 mm . This point is about 13 mm . from the apex of the endocone.

A series of sections of another specimen shows the following relationship. (Text figs. 1a-e).

Figs 1 a-e. Succesive crnss-sections of the siphuncle of Piloceras platyventrum (For distances apart, and measurements see table p. 44); la, largest section preserved; 1e, last section before end of endocone. Natural size.

Section No.	Distances hetween Sections	Dorso-ventral diameters		Distances between ventral surfaces of siphuncle \& endocone	Lateral diameters	
		$\begin{gathered} \text { of } \\ \text { siphoncle } \end{gathered}$	of Endocone		$\begin{gathered} \text { of } \\ \text { Siphomele } \end{gathered}$	$\begin{gathered} \text { of } \\ \text { Endocone } \end{gathered}$
a	$\left\{\begin{array}{l} 15 \mathrm{~mm} . \\ 2 \mathrm{~mm} . \\ 6 \mathrm{~mm} . \\ 2 \mathrm{~mm} . \\ : 6 \mathrm{~mm} . \end{array}\right.$	27.5 mm .	15.3 mm .	8.5 mm .	32. mm.	21.5 mm .
b		26.8	10.5	9.3 ,	30. ,	13.2 ,
c		26.6;	9.5 ,	10.	29.5 "	12.3 ,
d		26.	$6 . \quad$ "	11.	25.5,	A. ,
e		2.50	5.5 ,	11.3	- - ,	7. ",
f		23.7 ",	-	-	26. ",	-

In the specimen from which these sections are taken, the annulations of the shell of the siphincle are finer, there being 5 in the space of 10 mm . This specimen is recorded as from the lower horizon, the Peilintze limestone, whereas the others occur in the upper or Liangchiashan limestone of the Shih-Mun-Chai district. The specimen in question may represent a distinct species.

Horizons ani Locality: Two specimens of this species were obtained hy Dr. F. F. Mathicu from the Liangchiashan limestone at Liang-Chia-Shan, Shih-Mun-Chai near Chingwangtao, eastern Chihli province. Another specimen with finer annulations and siphuncle lus flattened ventrally, was olatained from the (hilliocerus or Peilintze limestone of the same region (this may possilly be a casc of mislabelling). The former horizon is the upper part of the I wher Ordovician.

Family CHIHLIOCERATIDAE Grabau (fam. nov.)

 Genus Chihlioceras Grabau (gen. nov.)Text Figures 2-16
Breviconic orthoceracones with large and stout siphuncle, which is surrounded by a definite wall or siphuncular shell; with rounded apical end, the center of which is marked by a mammillary elevation with a circular scar, representing the beginning of the endosiphuncle. Siphuncle filled with endosheaths and organically deposited mineral matter as in Pitocrics. Endosheaths flattened ventrally, at least in the adult. In the final one, this flat face is produced anteriorly in the form of a blade-like prolongation, which is
either flat or slightly arched inwards with depressed sides. In its general form and character the final endosheath suggests the conotheca of the Belemnite which is prolonged forward into the delicate blade-like proöstracum, or the similar blade of the odern ${ }^{-c}$ cuttle-fish. This hade-like prolongation slopes ventrad until it apparently joins the wall of the siphuncle on the ventral side. On the dorsal side, the l,lade may have been covered by the shell of the siphuncle, but of this there is no positive evidence. Indeed the sections negative it, although it is of course conceivable that the shell was broken away before burial.

The endocone is triple in character. In the genotype the main part has a subquadrangular to sub-crescentric cross-section, but appears to taper into a more or less flattened conical alveolus towards the apex. On the ventral side, where the wall of the endocone is prolonged into the blade, the inner surface is gently convex i. e. arched upward

Fig. 4.

Fig. 5.

Fig. 4. Chihlioceras nathemi. Dorsal view of a model of the final endosheath, which forms the compound endocone of the siphuncle of this species. Two thirds natural size.

Fig. 5. Chihlioceras natheni. Side view of the model of the endocone shown in fig. 4. Two thirds natural size.

Fig. 2.

Fig. 3.

Fig. 2. Chihliocpins muthemi. Dorsal view of a model of the siphuncle of this species with the compound endocone in place. Two thirds natural size.

Fig. 3. Chithliocras nathomi. Side view of the same. (The annulations of the surface are not represented.)
(dorsally) with the sides sharply depressed (see text fig. 7). The upper surface of this cavity is flat or nearly so, except for the median portion, which is prolonged dorsally into a broad notch or emargination, on either side of which lie the dorso-lateral alveoli. The outer wall of these is rounded, but the inner wall consists of two limbs, approximately at right angles to each other, one, the dorsoventral limb, separating it from the median prolongation of the main cavity, the other being horizontal and dividing the lateral and main alveolar cavities (see text figs. 4 and 7). The position of this
final endosheath is nearer the dorsal than the ventral side of the siphuncle (text fig. 6) as is shown by the two parallel sections (text figs. 8 and 9), taken essentially parallel

Fig. 6. Chimiuseras nathani. Restored longitudinal section, constructed from actual measurements along section $a-b$ and $c-d$, and the exposed worn surface of the ventral side (lower dotted line), and with the aid of other specimens. x - y line of section shown in fig. 7. Two thirds natural size. " $\%$-final sheath, or endoconic lining; sh-shchwall of siphuncle (ectosiphuncle). st-stereoplasmic filling of siphuncle; si-endosiphotube; rk-section of rock matrix.

Fig. 7.

Fig. 8.

Fig. 9.

Fig. 7. Chihlioceras muthani. Transverse section along line $x-y$ of fig. $6 ; 2 / 3$ natural size. e-f. line of section of fig. $10 ; \mathrm{g}-\mathrm{h}$. line of section of fig. 11 ; $\mathrm{i}-\mathrm{j}$. line of section of $\mathrm{fg} .12 ; \mathrm{k}-\mathrm{l}$. line of section of fig. 13 ; en-parts of endoconic lining or linal sheath; le-lateral alvenlus; mut-median alveolus; sh-shell of siphuncle (ectosiphuncle); st-stereop'asmic filling.

Fig. 8. Chihtiorpras nathuni. Nomewhat restored section along line $a-b$. fig. 6. (For actual appearance of section see Plate II, fig. 11.) - $2 / 3$ natural size. The section is cut obliquely to the axis of the lateral alveoli (see text fig. 2), and cuts the lateral walls (u^{\prime}) as well as the lower walls ($\|^{\prime \prime} \mathrm{m}$) of the lateral alveoli; ens-older endosheaths buried in the filling of stereoplasm st. (Other notations as in figs. 6 and 7.) 2/3 natural size.

Fig. 9. Chimioceras nathani. Corresponding restored section along the line $\mathrm{c}-\mathrm{d}$ in fig. 6. This section is here reversed, so that the parts have the same orientation as in fig. 8. Notation as in fig. 8. 2/3 natural size (See Plate II, fig. 12).
to the ventral surface of the siphuncle, as indicated $1, y$ the lines a-b and c-d in text fig. 6, which is drawn to scale, and is two thirds natural size. The sections (text figs. is and 9) show that the walls of the alveolar cavities are infolded portions of the sheath, which, when considerel separately i. e. as if freed from the enclosing organic lime - deposit, represents the aspect shown by the morlel, illustrated in text figs. 4 and 5. The walls,
which separate the lateral from the main alveolar cavities, are thus double, with the addition of the crystalline, organically deposited lime (stereoplasm) between the two layers. This is diagrammatically represented in text figures 7 and 10, which represent respectively transverse and longitudinal sections through these walls, (for location see text fig. 7), and can be recognized from an inspection of figs. 8 and 9 , which represent the actual oblique sections through both walls.

That an endosiphuncle extends from the base of the main alveolus to the apex of the siphuncle is suggested by the occurrence of the apical endosiphuncular scar seen on all the specimens, and is further suggested by the appearance of what seems to be a part of this tube in the natural section shown in fig. 13, Pl. IV, i. e. the specimen from sections of which the reconstruction of the sheath is mainly developed.

A consideration of the structure of the final endosheath

Fig. 10. Chihlioceras nathani. Diagrammaticlongitudinal section along line e-f. in fig. 7, parallel to axis of lateral alveoli. (Notation as in fig. 7.). in the second species (C. chingwangtaoense (Plate II, figs. 13a, b.) shows very striking differences, but nevertheless a unity of plan. The main or median alveolar cavity has been much reduced, being subtriangular in outline, and only occupying the central

Fig. 11. Chihlioceras nathani. Diagrammatic longitudinal section through the broadest part of the median alveolus, along the line $g-h$. in fig. 7. (Notation as in fig. 7.) third of the endosheath. The cavity too is short, though probally prolonged in the endosiphuncle. The dorso-lateral alveolar cavities are deep, and lenticular in section, the inner side being gently concave instead of rectangular. The partitions between the cavities are very thick, formed by the bent-over endosheath, with a thick filling of crystalline lime between. The crystalline filling (proluably aragonite) has a radial structure where seen in section of the entire siphuncle. The outer wall of the dorso-lateral alveolar cavities was apparently formed by the wall of the siphuncle. The sections (text figs. 14,15 and 16) show this structure. The length of the two lateral alveoli may be quite different on opposite sides as shown in the specimen figured (Plate II, fig. 13a).
In none of the specimens so far obtained has a camerate portion been preserved. All the specimens are annulated, the annulations being essentially of the type seen on the siphuncle of Piloceras. This suggests a camerate structure but does not prove it. The annuli appear to be slightly oblique, converging forward on the ventral side. This suggests, that if cameræ were present they were mainly developed on the dorsal and lateral
surfaces of the siphuncle, as would naturally be the case in a structure which, as these evidently did, rested upon the ventral surface. No specimen is however known with a complete ventral surface, and the convergence is only shown by a slight obliquity upon the sides.

Flg. 12. Clihliweras methani. Diagrammatic longitudinal section in the median plane along the line $i-j$. in fig. 7. (Notation as in fig. 7.)

As indicative of the position of the specimens, it may be noted that in one slab of rock, both sides of which were weathered, and in which four specimens of C. nathani were found, three, on the same side of the slab, exposed the dorsal side (Plate V.) (this was apparently the upper surface of the slab though sufficient care was not taken at the time of collecting to determine this) while the fourth, on the opposite side of the stratum (apparently the under side), exposed the weathered rentral surface (Plate IV fig. 13). This slab was cut apart, essentially parallel to the hedding plane, and the two cut surfaces show the sections of the dorsal portion of the lower specimen, these being shown in Plate II, figs. 11 and 12. The position of the longitudinal axis of the lower specimen was however approximately at right angles to that of the upper specimens.

The remarkalle character of the siphuncle warrants the placing of this genus into a distinct family, that of the Chihlioceratide. The characters of this new family may be summarized as follows:

Relatively short and stout holochoanitic othoceracones (and cyrtoceracones?) with large siphuncle, generally divided by endosheaths, and filled with organically deposited calcium carbonate. Final endosheath prolonged into a ventral blade, and characterized by median and latiral endocones. Cameræ unknown, but if present, apparently as in Piluceros. Ordovician.

Chihlioceras nathani Grabau (sp. nov.)

Plate I. fig. 10; Plate II, figs. 11, 12; Plate IV, fig. 13; Plate V; Text figures 2-13.
Siphuncle beginning with a regular rounded end, characterized by a sulcentral mammillon with a large central scar, which marks the beginning of the endosiphuncle. The expansion is rapid so that in the space of about 16 mm . from the apex (in the
central specimen shown in Plate V) it has reached a diameter of 30 mm . From this point the expansion is regular, until at about the point near the apex of the median endocone, about 40 mm . farther (or 56 mm . from the apex of the siphuncle) the lateral diameter is 40 mm . This gives a rate of tapering of 1 mm . in 4 . The earlier portion is regularly rounded, while the part occupied by the endocone is somewhat flattened on the ventral side. The endocone occupies something more than one half the length of the shell, inclusive of the anterior blade. The apical portion in the center is rounded dorsally and flat or gently concave on the ventral side, its section thus being semi-circular or compressed suboval, with the ventral side curved to a greater radius. Procecding forward, the concave central portion narrows and flattens, while the sides of the blade become strongly and sharply depressed, until near the anterior portion of the blade they form less than a right angle with the side. The aperture of the endocone, i. e. the edge formed by its mecting with the shell of the siphuncle, is oklique to the axis of the siphuncle, the most projecting portion keing the center of the blade (see the restoration, text figs. 2 and 3). Lateral alveoli of the endocone shorter than the main cavity. In the specimen shown in the center of Plate V the alveoli are not seen, but in the somewhat crushed right hand specimen of that group, they are recognizable (Plate I fig. 10), being displaced somewhat to one side. The inner walls of these lateral alveoli form approximately a right angle, and consist of the reduplication of the

Fig. 13. Chihlioceras nathani. Diagrammatic longitudinal section half way between median plane and lateral marsin, along line $k-l$. in fig. 7. passing through lateral part of median, and one lateral alveolus (Notation as in fig. 7.) endosheath with crystalline calcium carbonate filling between. The outer wall of the lateral alveoli is convex and between it and the wall of the siphuncle, there is a thick layer of crystalline lime (organic deposit) which decreases wedge-like towards the rim of the endocone. (Text figure 10).

These lateral alveoli of the endocone hold a position above the base of the main endoconic cavity, so that there are distinct lateral chambers proceeding from this main median chamber, and in position ventral to the lateral alveoli. This is clearly shown by the sections (Plate II figs. 11 and 12) and is represented in the model of the endosheath illustrated in text fig. 4. The endosheath itself (i. e. the wall of the endocone) has a thickness of half a millimeter or less, but because of the filling of crystalline lime between the reduplicated portions, which form the lateral and median alveoli, the thickness of the compound wall separating these alveoli may le from 2.5 to 6 mm . (See the sections of these walls in figs. 11 and 12 Plate II).

The older portion of the siphuncle is filled solidly with crystalline calcium carbonate, this occupying the entire space between the wall of the endocone (final endosheath), and probally its endo-siphuncular prolongation, and the wall or shell of the siphuncle. There are however indications of one or more earlier endosheaths (See sections figs. 11 and 12 Plate II, and Plate V middle figure). The difference in the character of the outer zone of the solid portion of the siphuncle from that forming the inner portion, observalle both in the worn specimen (Plate V, middle figure) and in the sections (Plate II figs. 11 and 12) suggest that at first the siphuncle was filled with closely set endosheaths (which in the large specimen of the group on Plate V formed a thickness of about 7 mm .), and then crystalline calcium carbonate (aragonite?) was deposited ly the animal, without further formation of definite endosheaths, until the final one was formed hy the adult animal. The appearance of these older endosheaths suggests their similarity to those of Piloceras, or to a primitive form from which both Chihlioceras and Piloceras were derived.*

The wall or shell of the siphuncle is thin but continuous. It is annulated, though indistinctly so, near the apical portion, while forward, the annulations become pronounced and regular. The annuli present a long gently convex forward slope and a shorter more albupt, but still convex apical slope. There are 10 of these annuli in the space of 35 mm ., giving them an average width of 3.5 mm . There is however a gradual increase in the width, the posterior ones heing less than 3 mm . wide. The depressions between the annuli are very shallow. While this is the character in the earlier portion of the siphuncle, continuing for varying lengths in different specimens, it gradually changes in the later-formed portion, where the annuli become narrowly rounded, with broad gently concave interspaces. In the specimen shown in fig. 13 Pl. IV, this type of annulation begins about 30 mm . from the apex, and there are 10 annuli in the space of 38 mm ., these also increasing slightly in width forward.

The annuli are oblique, bending forward on the ventral side. The angle which they form with the axis of the siphuncle on the side of the siphuncle, was found in one case to be about 30 degrees, but less than that in another specimen. Their ventral aspect is unknown.

Cameræ not known, none of the specimens showing any indications of them other than the annulations of the siphuncle. Though this annulation is suggestive of a camerate nature of the shell, it is not a positive indication, as camerate shells with

[^9]obliquely annulated outer wall are found in higher Ordovician beds of this region. The general similarity of the annulations to those of the siphuncle of Piloceras may indicate, however, a similar camerated shell.

Horizon and Locality: This species has been found in the Peilintze limestone associated with Archxocyathus, Ophileta squamosa etc., in the Shih-Mun-Chai region near Chingwangtao, Lingyühsien district, Chihli province. Several specimens were collected by Dr. F. F. Mathieu of the Kailan Mining Administration. The horizon is Lower Ordovician. The specific name is given in honor of Mr. W. S. Nathan, president of the Kailan Mining Administration, in appreciation of his keen interest in the development of Chinese geology, and his recognition of the important place which stratigraphic and paleontologic problems hold in the practical development of mining interests.

Chihlioceras chingwangtaöense Grabau (sp. nov.)

Plate II, Figs. 13a b. Text figures 14-16

Siphuncle longer and more cylindrical than in the preceding species, tapering at the rate of 1 mm . in 6 ; section sulbcircular. Interior filled with crystalline calcium carbonate, which has an indistinct radial structure. This occupies the space between the shell or wall of the siphuncle on the one hand, and the wall of the compound endocone (final endosheath) on the other. There are no indications of older sheaths, though these may occur in the apical portion which is unknown. Endosiphuncle apparently central, but the indications are faint. Wall of the endocone prolonged forward in a flat blade which slopes forward, forming an angle of 12 degrees with the dorsal surface of the siphuncle (See text fig. 14). If the rate of tapering is uniform, the length of the anterior blade would approximate 110 mm .

The blade is flat, except for a slight median longitudinal depression, most marked in the alveolar portion. The lateral margins of the blade form a sharp angle with the sides of the siphuncle, and the wall or shell of the latter was evidently continued over at least the posterior part of the blade. Posteriorly the hade ends in the median alvcolus, the base of which occupies one third of the width of the siphuncle. Its height is slightly less than the basal width, and its form is subtriangular but with curvel sides. Its position is approximately in the center of the siphuncle or slightly above it. Its depth has not been ascertained, as some of the matrix which filled it, has not heen removed. The partition between it and the lateral alveoli is thick, being from 7 to 8 mm . at the
roundel forwarl end, and increasing in thickness apicad. (Fee section, text figures 15 and 16). It consists of the thin endoconie walls (rerluplications of the endosheath) and the filling of crystalline calcium carbonate between these.

Fig. 14. Withiocpres chimgumgtunensp. Diagrammatic longitndinal section along the median dorso-rentral plane of a restored individual; m - n.-section line of lig. 15 ; (s-1, -section line of fig. 16 ; sh.-sliell (ectosjphuncular wall); st. stereoplasmic fuling; si-endosiphotube; m-endoconic lining or terminal endnsheath; du.-lorsal alveolus; ma.-median alveolus.

The lateral alveoli arr lenticular in scetion, only the inner, gently concave wall leing formed by a part of the endosheath, while the outer is formed hy the wall of the siphuncle, and in the trpe specimen, as preserved, is broken away. In this specimen the

Fig. 15. (hihliocerces rhingnamgrumense, Diagrammatic crosssection along line m-1. in fig. 1t; g-r.-median Anroo-ventral plane (line of section of fig. 14); s-l.-line of section of fig. 16; la.-lateral alveoli; other notations as in fig. 14. from the slopes of the lateral alveoli, this leing indicated in the restored longitudinal section (text figure 1t).

The inner shell or siphuncular wall, is alwut 11.3 mm . in thickness and strongly and regularly annulated upon the sides, these annulations forming an angle of approximately 82° with the dorsal surface, or $7 \omega^{\prime \prime}$ with the plane of the anterior endoconic lide.

[^10]This indicates that on the ventral surface they formed a broad, low, forward arching curve or saddle, though the actual condition has not been olserved. The annulations are broadly and regularly rounded and separated by concavities of equal form and width. There are six annulations in the space of 18 mm . giving an average width, between the centers of adjoining concavities, of 3 mm . Camere unknown, but their existence is apparently indicated by the annulations of the siphuncle.

Measurements: Diameter at aperture of alveoli 3.5 mm ; at point of confluence of lateral alveoli 28 mm . Width of median alveolus at hase 13.5 mm . ; height of same 10 nm.

Horizon and Lorality: A single sucimen of this species (Pl. II figs. 1:3 a-l) was olitained ly Ior. F. F. Mathieu from the weathered, iron-stained Peilintze limestone at Peilintze, associated with the preceding species and with Archeocyathus

Fig. 16. Chihlioceras chingwatulturnsi. Diagrammaticsectwomy/tur, Dise. Diagrammaticsect-
ion along line $o-p$. in fig. $1 t$ and line $s-t$. in fig. 15 (notations as in figs. 14 aud 15). etc. The horizon is Lower Ordovician.

PHYLOGENETIC SIGNIFICANCE OF THE SIPHUNCLE OF THE HOLOCHO INITES.

It has long been known that in certain members of the sulorder Holochoanites the carly part of the siphuncle, so-callerl, is entirely devoid of surrounding camera. The genus Proterocameroceras shows perhaps the most extensive pre-camerate development of this part of the shell. This has been fully descriled hy Whiteaves and erpecially hy Ruedemann, who in discussing the siphuncle of Pioterocameroceras lrainerdi from the Fort Cassin or upper Beckmantown (Lower Ordovician) of Lake Champlain (U. S. A.) speaks of the apical portion as "projecting beyond the chamlered shell for a distant of alrout Th mra., gradually expanding from the blunt apical end, which here has a dianmeter of alout 3 mm ., to 11.5 mm . at the beginning of the phragmocone, where it contracts to 10 mm . and then gradually expands again'.,*

[^11]In Cameroceras on the other haud the nepionic bulb or swollen end of the siphuncle, is largely or wholly surrounded by camerre, and this is also the case in Endocerts, and generally in Vuginocerts except in such forms as Vaginoceras belemnitiforme Holm. These two genera differ from Cuncroccras and Proterocameroceras in the alosence of the siphuncular wall or shell, (the endosipholining of authors).

Another genus in which this preseptal cone or nepionic bulb exists before the camerate portion begins, is Nanno Clarke, also of Middle and early Upper Ordovician (Chazr and Black River) age. In this genus the siphunclo is strongly contracted at the beginning of the camerate portion, after which it remains in contact with the whter shell of the camerate portion, on the rentral side.

The presence of the siphonal wall or shell (endosipholining) in the more primitive genera is of marked significance. This wall is known to occur in Proteroctmeroccus, ('umerocerts, N'mmu, Pilucers and Chilliocters, and perhaps in others. Where the shell begins with a nom-emmate apical portion, i. e. with only the siphuncle, this siphuncular wall is the outer shell of the cephalopod hard structure. In other words the young cephalopod legan shell-building with the "siphuncle" which consisted of the siphuncular shell-wall and the filling within it.

When we consider the length of this preseptal portion in Pioterocomeroctras (7. mm . in P. brainerdi) it is evident, that the filling of the interior hy endosheaths and solid lime matter (stereoplasm), must have leen carried on puri poeswe with the building of this shell, after the formation of a short initial hollow conical tuln For not only would such a long hollow tule he an element of extreme Weakness, and therefore not likely to be preserved, but also, it is difficult to conceive that the cephalopod grew into such a long rod-like body, before it hegan the building of cancrie, and that this body soon thereafter hegan to shrink into the slencer thread which occupied the endosiphuncle. But if the endosheaths and solid calcareous matter were formed progressively as the tule grew in length, then it appears that these entusiphonal structures are more primitive shellfeatures than the camere. In other worls, for a considerable period of its carly history the cephalopod built only a slender shell, which it progressively filled with calcareous matter, marked at certain periods ly resting stages, when the conical endosheaths were built. If that is the case, the endosheaths have the same significance, in these primitive shelle, as the septa have in a shell of (hithocerts, and must le considered the homologues of these septa, whereupon the endusiphuncle leecomes the homologue of the siphuncle of Urthocerus, and the shell of the "siphuncle" of the young Proternemervecius the homologue of the shetl of Chtherers. That the cudosheaths, or septa of the primitive Proterocumeroceras are deeply conical, while those of dithocercir are saucer-shaped, is only a aetail
of structure, which cannot effect the general question of homology. Again the filling with solid lime in the primitive shell of Proterocameroceras (and of the socalled siphuncle of the majority of the Holochoanites), while the outer septal spaces of Orthocerus are generally empty, is another detail, not relevant to the general question of homology. Indeed there is sometimes the beginning of such an organic deposit about the siphuncle of Orthoceras, while in Stereoplasmoceras and in Actinoceras this is the rule. In these genera too, a secondary septum terminates the deposit of organic lime, this supplementary septum or pseudoseptum being comparable to the sheaths of the "siphuncle" of the Holochoanites (see Plates VI - IX, and discussion on a subsequent page of this memoir). Moreover such deposits are also found in certain Endoceratidæ such as I'aginoceras oppletun * where both crystalline lime and "pseudosepta" are formed. This, according to our interpretation, is a new feature, developed in the outer cameræ, and homoromorphic with, rather than homologous to the filling of the cameræ of Stereoplasmocerus and Actinoceras. It apparently represents a repetition of a structure which had its inception in the formation of the inner shell or "siphuncle" of the Holochoanites, and may perhaps indicate phylogerontism in the group.

We may here consider briefly the subject of lime deposition by the mollusks, and its bearing upon the problem luefore us. On the basis of some experiments, and the consideration of others by Murray and Irvine, Steinmann (1889) concluded that the precipitation of calcium carbonate by organisms was a purely chemical process, and was due to the formation of ammonia and carbon dioxide through the processes of decay which are constantly going on in the organism. These sulustances will precipitate calcium carbonate from the sca water where it is present in the form of calcium sulphate ($\mathrm{Ca} \mathrm{SO}_{4}$) and chloride $\left(\mathrm{CaCl}_{2}\right)$. Because of the relatively small amount of lime salts which the animal takes into its body, Steinmann assumed that a part of the lime was directly derived from the surrounding medium. Such precipitation could of course take place only on the edge of the shell if the mantle were free, and its shell-building surface in contact with the sea water. It has however been shown that this is not the case, at least not in those forms, chiefly fresh-water mollusks, which have so far been studied, for there the periostracum or outer horny covering, lends over the edge of the shell and joins the mantle-border by which it is indeed secreted. Thus lime deposition at the growing edge of the shell goes on entirely under cover of organic structures, and unless it can he shown that by some process of osmosis the sea water finds its way into the spaces between the mantle and the shell, direct precipitation of lime salts seems impossible. Physiologists

[^12]generally appear to stand on the ground that all the lime of the mollusk shell is furnished by the animal, being derived from the food-supply (see especially Stempell 1900, and Biedermann 1901), but it must be recognized that their generalizations are based on the investigation of only a limited number of types. That marine mollusks derive all their lime from the food, seems highly questionakle when we consider the vast amount of lime deposited ly some of these organisms, especially sedentary trpes such as oysters, hippurites ete. The conclusion seems unavoidable, that in some way the animal appropriates lime from the sea water direct, or that in some manner the sea water gains access to the region where lime is clepositerl. If this is the case, we must allow that the calcium is precipitated as carhonate ly the C 1 , produced by the animal itself, together with some other product to satisfy the sym ion. For the sater does not contain a sufficient quantity of Cu; ions rady to combine with the ('a ions and there is an excess of Sll A_{4} ions which must be taken care of. Steinmann's hypothesis of the formation of ammonium carbonate, through normal decay of tissues, satistins these requirements. The whole matter is a prollem for the physiolugical chemist and its solution must be left to hinn.

One thing, howerer, semberertain, namely that in different arganisms there is a vast difference in the ability to deposit lime. Momencer in sulentary forms, lime deposition is lar more active than in free moving typer being least in planktonic types. One need recall only the giant Fridecou shells of the Gireat Barrir recf, or the Hippurites of the Cretareous. Furthermore, other clasers of organisns, numally thin-shelled, have sedentary members in which the shell is enormonsly and grotesquely distorted hex excessive lime deposition. Such is Rimhthteniu among the brachinpuls, an organism originally classed as a coral tecause of its remarkalle form. Agrin, type such as the orster, which are thin-shelled when bery young (prodissoconch stan'), becomw heavy-shelled ly abundant lime deposition after attachment, while the related $I^{\prime} c t e n$, which leads a freeswimming existence, only builds a relatively thin shell. Any one who has seen the ponderous orster shells of the Tertiary, sometines several inches thick, must agree that lime deposition here has passed heyond the normal stage required for the protection of the individual.

Of course it may be argued that the nature and abundance of lime-secreting cells, and their relative activity serves to determine the habitat of the organism. That, in other worls, types with a teudency towards excessive lime formation will assume a sedentary life, and so give rise to genera and species normally of sedentary habit. In this connection it is noternothy that many mollusks will build excessively heary shells in all age, and from this it might beamum that fymis which in momal adulthom deposit
much lime, belong to phylogerontic series. Why senile individuals and senile races (if such they are) should have their lime-secreting mantle cells over-stimulated so that they deposit an excess of lime, is not quite clear. Nor is it easy to understand why they should absorb more lime salts from the sca or from the food (if that is the sole source of the lime salts, which is very doubtful) in old age than in their younger stages, especially as there is often no corresponding increase in size of the shell-luilding mantle. If on the other hand, deposition of lime is more or less a purely chemical process, as Steinmann holds, and that its rate and amount of formation depends upon the rate of production of reagents which precipitate the salts, either from the normal secretion of the animal, or from sea water, which in some way (ly osmosis?) has gained access to the regions of deposition, then we can understand that with increasing old age, or increasing senescence of the race, increased decay of organic cells hrings with it the increased production of ammonium carbonate, with the result that lime deposition also becomes augmented.

The fact that lime is not deposited upon the periostracum, which hoth Stempell and Biedermann cite as ample refutation of Steinmann's theory, can in reality not be regarded as such, for the completed priostracum, though of conchyolin, has essentially the character of an inorganic body, and does not produce the necessary reagents.

I am not advocating the direct precipitation theory of Steinmann, but it appears to me that the pure secretion theory, which refers lime deposition in molluscan shells solely to the epithelial cells of the mantle, or to special lime-secreting glands, meets with great difficulties when it is invoked for the explanation of excessive lime deposits, especially if all the lime salts are regarded as derived from the food of the animal and none from the sea water direct.

If in a cephalopod shell, the processes which make for lime deposition are most active at the growing edge of the mantle, the shell is rapidly elongated, while, by the rest of the mantle surface, only a thin nacreous shell-layer is formed. If the growth at the mantle edge is so rapid that the length of the shell eventually exceeds the stretching power of the animal, a periodic forward movement of the whole animal in the shell takes place, whereupon the continued separation of lime over the now free basal portion of the mantle-enclosed body, results in the formation of a septum. If the lime-separating processes are uniform all over the mantle surface of a cepbalopod, (as they are in oysters among pelccypods), the basal part of a tubular or conical shell, such as an orthoceracone, will be filled solidly by successive layers of lime. These may have the form of consecutive endosheaths, or of crystalline lime with definite layers marking resting stages at intervals, i. e. of successive distant endosheaths with crystalline lime-filling or stereoplasm
between. Thus viewed, the filling of the shell, whether with air-chamber-enclosing septa, with successive close-set endosheaths, or with solid lime, punctuated at intervals by endosheaths, is a matter of the relativity in the intensity of the lime-depositing ability, between the edge of the mantle and the entire surface.

Viewed in this light, the structure of the Holochoanites appears to be the natural result of a sedentary life-habit, or perhaps the tendency towards rapid lime deposition all over the mantle-surface, forced the animal to assume a benthonic mode of life, which eventually must have been sedentary to all intents and purposes. That the Holochoanites, or the majority of them, led such a life on the bottom of the sea, is abundantly attested by their structure (especially the ventral flattening), and by their general mode of occurrence in the rocks (vide position of Chihlioceras as discussed on p. ti).

The building of cameril in the Holochoanites must on this view be regarded as a newly acquired character, these structures being analogous to, but not homologous with, the camerre of the Orthochoanites (Orthocerct etc). They must represent an expansion and reflexion of the mantle-edge, resulting in the addition of a new shell outside of the shell proper (the so-called siphuncular shell or wall, or the endosipholining), and we thus have the original shell enclosed by a secondary one, analogous to, but of course not strictly homologous with, the so-called shell of the Irgonauta, the guard of belemnites, and the "apical cap" of Orthoceras truncatum. These new shells would thus form sub-annular structures of triangular, and later, more or less rhombic sections, like an automolile tire or a life preserver compressed into a triangular or rhombic section; but in most cases not extending entirely around the original shell, because this rested upon the bottom. The first of these veritable life-preservers, which probably aided the animal in keeping its oral end from sinking into the mud of the sea-bottom, formed the new shell by its outer or exposed side, and its first " camera ', by its upper and inner side, which latter lay next to the original (inner) shell, and formed the so-called siphonal funnel of the cameræ.

This interpretation meets with the difficulty of conceiving the modus operandi of the building of such an outer, closed air chamber around the shell. Especially would it seem hard to explain the manner of building of the inner wall of this chamber, i. e. the so-called siphonal funnel of the camere, that part next to the inner shell or endosipholining. This difficulty may perhaps be obviated by assuming that the animal built at first a sul)-annular or semi-lunar trough around the margin of the shell, by a compound reflexed portion of the mantle-edge as shown in the following sketches (Figs. 17 and 18). Such a structure is entirely analogues to the lateral alveoli of the final endosheath of Chithimerus. (Plate II, figs. $13 \mathrm{a}, \mathrm{H}$, also text-figs. 4, 5, 7, 10, 13 pl . 45-49). The second outer trough, luilt in this manner, would then chose the preceding one and convert it into an
air-chamber, first by effecting the elongation of the outer part, that which forms the new shell built by the mantle edge, and then, by the subsequent withdrawal, for a space, of the base of the reflexed part of the mantle, effecting the building of the basal layer of lime, which is the so-called septum of the camerate portion of the Holochoanites.

Fig. 17. Iypothetical restoration of a primitive holochoanitic cephalopod, represented as resting with its ventral or hyponomic side upon the sea-floor, and with the shell sectioned. The stage here represented is at the beginning or the bnilding of the camerm, previous to which it consisted only of the precamerate portion of the "siphuncle". This is here represented in section with several conical endosheaths, the spaces between which are filled with solid stereoplasm, except the median tube or "endosipho-tube", which ends in the embryonic bulb, this being however non-calcareous and not preserved. The animal rests upon the final endosheath of the stage which surrounds the endronce of this period. The hypothesis of camera-building by a reflexed fold of the mantle, analogous to the dorsal fold of the mantle in Noutilus, is here illustrated, the beginning of the first camera on the dorsal side being shown.
ANIMAL: a, mantle; b, marginal reflexed fold of the same, which is assumed to be functional in camera building; c, shell-muscle; d, hood; e, sipho, occupying the "endosipho-tube"; f, embryonic bulb, non calcareous (when calcifield it forms the protoconch) ; g, hyponome; h, tentacles or arms; i, eye (left side). SHELL: j, shell of early stage i. e. of preseptal part of "siphuncle", (ectosiphuncle of Ruedemann); i", continuation of same into camerate state at the contraction of the "siphuncle", forming the "endosipholining" of authors; k, last-formed endosheath at this stage, enclosing the "endocone" which is continued in the "endosipho-tube"; ll-73, earlicr sheaths (septa of primitive shell); $m 1-m t$, "siphonal" chambers (cameres of primitive shell) filled solidly with stereoplasm; ", new shell or shell of camerate portion; o, shell-lining of first camera, deposited next to the continuation of the "old shell" (i. o. the continuation of sheli of "siphuncle", the so-called endosipholining) and forming on the hypothesis here suggested the "siphonal funnel" or "neck" of the first " septum" which has not yet been built.

I am perfectly well aware that this interpretation merts with a grave objection because of the fact that in Endoceras, Traginoceras cte., the septal portion of the camerre is continued downwards in the siphonal neck, not upwards as such a mode of construction would require. But it must be remembered that in these forms, the septal necks take the place of the inner shell or the endosipholining, which is absent in these genera. Whitfield has recorded the observation, that the septal necks of Vaginoceras are continuous with the sheaths of the siphuncle though Ruedemann holds that this needs verification. If it is correct, then the septa merely mark the rapid outward expansion of the mantle above the edge of the endosheath (which is really the upper edge of the siphonal neck) there leing no further need for a reflex of the mantle on the suppression of the inner shell.

That such a reflexing of the mantle has occurred in some of these ancient cephalopods, is shown by the structure of Orthoceras truncatum Barrande, from the Ordovician and Silurian rocks of Bohemia and England. In this form the earlier camere
are frequently dropped off or destroyed, whether by accident or design, remains undetermined. The truncated end of the shell is then covered over by a new deposit of calcareous material of distinctive form and design. This "apical cap" or calotte conique, is evidently formerl ly the animal, and for its formation a reflexed shell-secreting portion of the body is necessary. Barrande supposed that the animal possessed long palmate brachial appendages more or less analogous to those of Argonauta. These were capable of

Fiy. 1. Diagram to illustrate the dorsal portion of the early camerate part of the shell of a holochoanitic nautiloid cephatopol. (See fig. 17). i, "old" shell or shell of "siphuncle". j ', j, continuation of same into camerate portion forming the mhdosipholining; $l 4$, embsheath which at the stage represented by fig. 17 was the last one formed enclosing the endocone, (k. fig. 17); $75,76,17$, endosheaths since formed, 77 repreming th e last-formed one at this stage, and enclosing the endocone, 1 this stage; $m t$ to $m 7$, intersheath spaces filled with stereoplasm; n, and 0 , as in fig 17 ; $p, 4$, inner shell-lining of canner:", forming the septal necks or funnels; $r 1, r 2$, sopta of camerate portion; (o. forms septal neck of $r 1$; p, of $r 2$; 4 , of 13 which has not yet been formed) ; $s 1, s 2, s 3$, first second and third camere the last still open in front, and forming with the endocone t, a part of the liring chomber.
reaching the hasal portion of the shell, and having the power of scereting lime, they repaired the broken apex, reproducing the characters of the shell. Hyatt, on the other hand, considered that this outer shell-secreting organ was homologous with the fold of the mantle in Nautilus "This" he says, "is an active shell-secreting organ, which was certainly present, and also functionally active, in the Ammonites and Nautiloids, and prohably more important in these ancient forms than it is now in the modern Nautilus. This is also more consistent with the structure of the Belemnoid, which, as is casily seen in the famous example of the preserved animal, had no slich pair of enlarged arms and yet deposited exteriorly, a solid covering, the guard, which is in our opinion the homologue of the solid filling of the truncated end of Orthocercrs." *

A similar organically deposited layer of lime covers the initial ent of Traginoceras belemnitiforme Holm, before the commencement of the outer camere.

It has been frequently noted, that when the outer cameree begin building, the diameter of the inner shell or "siphuncle" is more or less abruptly contracted. This is found in Cameroceras in Nanno and in I'aginoceras belemuitiforme. This can be accounted for by the abrupt elongation of the animal's horly necessary at this stage, if the animal
forms a reflex fold of a part of its mantle, that which builds the initial outer "collar", which eventually becomes the first outer camera.

Whether this suggestion regarding the mode of building of this outer series of camere will be shown by future discoveries to le correct or not, I believe that the very existence of the initial precamerate stage of the "siphuncle" with its own shell-wall and with conical, septa-like sheaths, prolonged into an endo-siphuncle, indicates that it is a primitive shell-type which was complete in itself, and that the development of outer camere at a later stage adds a new feature to the shell as a whole. The continuance of the "siphuncular wall" or the shell of this primitive non-camerate organism, into the camerate portion in primitive forms, further cmphasizes the independence of this inner structure. The homology of this inner shell with the shell of Orthoceras, and of the sheaths with the septa of Orthoceras, would therefore seem to admit of little doubt. Moreover, as we have learned to take ontogeny as an infallible guide to phylogeny, if rightly applied, we are forced to conclude that the most primitive Holochoanites were without the outer camerate portion, thus representing in their adult stages, the condition seen in the young of Proterncameroceras, Nanno and others of this type of structure. That the existence of such has not been absolutely determined, signifies little, for our knowledge of the earliest cephalopod faunas is still very meager. As noted in the description of Chihlioceras, it is possible that that genis was non-camerate, the annulations being merely surface "ornamentations" such as are found in the shells of many later cephalopods. Certainly there is no indication whatever in these shells, of the presence of camere, such as in found in other annulated "siphuncles" in our rocks, where portions of the "septal necks" still adhere to the shell of the "siphuncle", though there is no other trace of the cameræ. • Furthermore the remarkable form of Chillioceras, its oblique aperture, and the long anterior ventral blade, are hardly consistent with the idea of the former presence of cameru. Possibly the same holds true of the rapidly expanding "siphuncles" of Piloceras platyventrum Grabau, of our rocks (Plate IV figs. 11 and 12), for although some specimens are annulated, these annulations show no trace of adhesion of "septal necks '", while the apical portion shown in Plate IV fig. 11 is entirely without such annulations. It seems at least likely that this species too began with a non-camerate portion, and if cameræ were added, this took place only in the later stages, when the "siphuncle" had become cylindrical.

If we now enquire into the genetic re': tionships between the Holochoanites and the Orthochoanites, it would seem to be evident, that they can only represent divergent branches from a common ancestral stock. I have elsewhere suggested * that this

[^13]ancestral stock is represented ly the sul)-order, Protochoanites Grahau and Shimer, to which we have referred the only known Cambrian cephalopod Tollorthella. This genus has been defined as a small orthoceracone with conical-shaped septa, pierced by a simple hole in the apex, though the presence of such a siphuncular hole hats been questioned. Whether or not it occurs is of secondary importance as it appears that in some of the Holochoanites the "endo-siphuncle" is not present in the earliest part. But whether the known Cambrian protochoanite is the direct ancestor of both Orthereras and the Holochoanites is of little moment. Certain it seems that shells so distinctive must represent divergent evolutional lines, one the orthochoanite branch becoming successful hy the assumption of the chambered type of shell, the other, the holochoanite trpe disappearing with the close of the Ordovician, because its heavily weighted shell made active migration impossible in spite of the secondarily adopted device of outer cameric. The extinction of the various gencra of this group is in general coincident with great changes in physical geography, notally the extensive withdrawal of the seas at the end of the Paleo-Ordovician, and again at the end of Neo-Ordovician time, when practically the last members of the group perished. Nor is it an unwaranted assumption that the excessive development of the sedentary hal it may have affected the reproductive powers of these animals in une way or another, so that extinction may be in part due to this cause.

We would then interpet the phylugeny of the carly cephalopods in the following mathiner:

$$
\begin{aligned}
& \text { Molm-rhomite: } \\
& \text { (Ordovician) }
\end{aligned}
$$

(to Trias,)
()ithochoctnite:
(Ordovician)
 Cydtuctinoctas, and rimincerus, nay have heen derived from primitive Oithochoanites, or they may represent an indepentent line of arolution from the ancestral stock. The discovery of the genus serenplasmoces.as, with characters intermediate hetween onthoceres and Artimeros, makes the former view the more likely one.

We may here briefly refer to the remarkable early Ordovician cephalopod Diphrogmencrus Fyatt. This has the "siphuncle"" divided by tabula alternating with the septar of the camerate outer shell. Both the cameres and the chambers of the siphuncle are empty. This genus hat sometimes been refered to as representing a transition from the Holochomites (Endoceran type) to the Orthochoanites (Orthoceran
type $)$, but it is difficult to see how it can he so regarded. It represents really an Endoceran type in which the sheaths have assumed the form of tabuls separated by interspaces, and as such rather supports the explanation of the relationship between the endosheaths of Holochoanites and the septa of Orthochoanites given above. Thus it is a case of parallel development to Orthoceras, or the assumption, by the inner or true shell in a holochoanitic type, of the orthoceran character. Unless we assume that the outer shell is suppressed in the development of the Orthoceran type, we cannot regard this form as in any way showing ancestral characters. Moreover, if such were the origin of Orthocerus, the close genetic relation of the endosheaths of the one to the septa of the other type, would be demonstrated.

Sulorder Orthochoanites Hyatt
Family CYCLOCERATIDAE Hyatt
Genus Cyclocerās McCoy
Cycloceras (?) peitoutzense Grabau (sp. nov.)
Plate VI, figs. 1-4
A number of fragments of an annulated orthoceracone have been obtained from the upper bechs of the Actinoccras limestone a short distance west of Chaokouchuang. Although they belong to different individuals and show considerable variation in size, they are nevertheless regarded as representing a single species. As this is the only annulated orthoceracone known from north China, it will be described despite the imperfect character of the material.

The smallest shell fragment (Pl. VI, fig. 1) is about 30 mm . long, the diameter ranging from 5.3 mm . at the lower (partly concealed) end, to 7.2 mm . at the upper end. Eight annulations are shown in a distance which is 23 mm . from the center of the first to the center of the eighth annulation. The annulations appear to he straight, encircling the shell without deflection, rounded, but separated hy broad, strongly concave interspaces which gradually increase in length with the growth of the shell. Very faint longitudinal lines are visible upon the early portion of this fragment, but the greater part seems destitute of them. Siphuncle somewhat excentric, its diameter at the upper end of the fragment being 1.2 .5 mm . Sutures and septa not visible.

A second fragment (Plate VI, fig. 2) shows 7 annulations the distance leetween the centers of the first and seventh leing 26 mm . The diameter of the shell at the upper end is 12.2 nm .

This fragment too shows no longitudinal lines, but in some of the interspaces occur very faint indications of concentric lines. The specimen appears to represent the filling of the living chamber, as a longitudinal section shows a total alsence of septa.

A still larger specimen, which is a partly crushed and incompletely exposed shell, has a diameter of about 13.5 mm . and is characterized by abrupt annulations, the centers of which range from 4.5 to 4.5 mm . apart. The annulations themselves have a thickness of about 1 mm . ; the summit is rounded, and the interspaces are very nearly flat in some parts, though they show a concavity in others. No longitudinal sculpture is shown, but there is again a faint indication of fine concentric lines in the interspaces.

Only a few septa are indicated, their position corresponding apparently to the annulations. Their concavity is about equal to half the distance between the annulations. Siphuncle slightly excentric, large, its diameter heing about 2.5 mm . where the diameter of the shell is about 13.5 mm .

Another specimen of this type (Plate VI, fig. 3) has the annulations slightly oblique, hut sharply elevated, compressed and separated loy deep flat interspaces. The distance between five amnulations (including 4 interspaces) is 24 mm . the width of the annulations being a little over 1 mm . at the hase but only about half that at the top. The diameter of this fragment is approximately 14 mm . and it appears to be slightly curved.

A still larger fragment apparently a part of the same individual as the preceding (Plate VI, fig. :3) shows annulations 5.5 num. apart, their thickness leing nearly 2 mm . at the lase, and their height alout the same. This specimen shows fine sharp concentric strice somewhat narrower than the interspaces hetween them, covering the entire shell, including the annulations (Plate V'I, fig. 4). There are about five of these strix in 1 mm . The diameter of this fragment was prohably letween 18 and 20 mm . Siphuncle unknown.

The last three specimens described differ rather strongly from the fragments illustrated in figs. 1 and 2 of Plate VI especially in their narrow compressed and high annulations, and the very lroad and nearly flat interspaces. It is quite possible that two species are represented, but the material is too incomplete to warrant such a scparation, especially as the internal characters are not ascertainable.

The generic position of this shell is in dould. The entire absence of longitudinal sculpture except in the very young stages, would suggest that it belongs to the genus Protocyclocerils of Hyatt. The faintness of the longitudinal sculpture on the young, however, together with the pronounced character of the annulations, and further the
general weathered character of the surface, suggests the possibility that if more perfect material were obtained, the longitudinal sculpture would be found to persist into the later stages as discontinuous ridges in the interspaces. In that case the shell would be referable to the genus Cycloceras. One might also argue, from the fact, that these fossils are associated with Actinoceras, and other late Middle and early Upper Ordovician fossils, that they belong more likely to Cycloceras, rather than to Protocycloceras, which is most distinctive of the Lower Ordovician. Nor does the siphuncle help in the proper determination of the generic position of the form, as it is at present known only in section or on the septal surface. The presence, in the largest fragment, of fine sharp concentric strix, without indications of longitudinal strix, however, makes reference to Cycloceras doubtful. Indeed this feature rather suggests Dawsonoceras, but the concentric strix are regular, instead of being the frilled edges of the growth-lines as in that genus. Such a surface character has not been recognized in other Ordovician cephalopods, and it is possible that we are dealing here with a new genus. However, as the material is too incomplete, and as too little can be ascertained oi the septa and the character of the siphuncle, it seems best for the present to place the specimens in the genus Cycloceras, especially as in species of that genus the longitudinal sculpture is not always preserved.

Horizon and Localities: In the upper beds of the Actinoceras or Machiakou limestone, in Limekiln Ravine, near Pei-tou-tze N.W. of Chaokouchuang, Kaiping basin, Chihli. (Coll. Geo. B. Barbour) also in the same formation in other outcrops near Chaokouchuang and Pei-tou-tze. (Collected by the Survey expedition).

Suborder Cyrtochoanites Hyatt
 Family LOXOCERATIDAE Hyatt
 Genus Stereoplasmoceras Grabau (gen. nov.)

Non-annulated, regularly expanding orthoceracones with nummuloidal siphuncle, the nummuli more or less irregular and extending from septum to septum, widest near the centers of the cameræ, but without secondary annular deposits, or if these are present, they are irregular. Septa generally compound, or complicated by pseudosepta which extend only partway across the phragmocone, and join the preceding or succeeding septum. The space thus enclosed by the pseudosepta is commonly filled with crystalline stereoplasm deposited by the animal, this being present in varying amount, sometimes filling the whole or nearly the whole camera, especially in the older (earlier) parts of the phragmocone.

This genus is closely related to Lororeras, McCoy, with which it agrees in the character of the siphuncle. Its distinctive character however is seen in the development of the compound septa, or septa and pseudosepta, with stereoplasmic deposit between. In these respects the genus is related to letinoceros. Indeed this genus may he considered as intermediate between Loxoceras, and Actinoccros, partaking of some characters peculiar to the one and of others characteristic of the other.

The exterior of the shell is unknown except that it is not annulated. So far-as can be ascertained, the surface is smooth. Expansion is regular, and although the living chamber is still unknown, there is no reason for assuming that it is other than in orthncerts.

Genotype. Sterpolmsmoct ras perudusptatum Gralau, Ordovician.
It is highly probahly that the specimen figured hy Crick as (hithomerts or Ictinoferu: (Geol. Mag. New Ser. Dec. IV'. Vol. X, Pl. XXII fig. A) belongs tw this genus, for as far as can be ascertained from the reproduction of the photograph it shows the pseudosepta and streoplasmic filling of s. pembuseptutum.

Stereoplasmoceras pseudoseptatum Graban (sp. nov.)

Plate VI, figs. 5-7. Plate IX, fig. 11.

Shell regularly tapering, apparently at a varialle rate, though this may be due to the variation in direction in which the sections are cut. In a specimen from Lincheng, Shantung (cat. no. 80) the rate of tapering appears to he 1 in 6.5 while in a sectioned fecimen from Ningyang Shantung (Plate VI, fig. (; eat. no. .j6) it is only 1 in 12.5 . Still another section of an typical specimen from Tangshan (Plate VI, fig. 5, cat no. is) shows a rate of tapering of $1: 3.7 \pi$. These variations are prohahly due to the fact that the sections are cut somewhat obliquely and so do not give the true rate of tapering. The true rate lies probably letween the two extremes - i.e. about 1:9.

Section subcircular, apparently a little flattened on one side. Septal distance alout 4.6 mm . (varying in the different specimens from 4.5 (rarely 4) to 4.7 , the shell diameter varying from $25-30 \mathrm{~mm}$. but not in the same proportion). Towards the apertural end in the longer specimens, the interval increases to 5 mm . or to a little more, the maximum shell diameter observed being somewhat less than 40 mm . The depth of the septa is from $1 \frac{1}{2}$ to $1 \frac{3}{4}$ camera. The septa are conspicuously compound, owing to the numerous pseudosepta. On the upper side of the suptum, the psendosepta extend alout
one third the diameter of the shell towards the center. At first they are more or less parallel to the septum, then slope more or less abruptly to the septal surface near the center where they either join the septum, becoming confluent with it, or continue as an independent layer in contact with the septum at the center. At the shell margin these pseudosepta again join the main septum. The pseudosepta on the under side of the true septa are more irregular. As seen in section, some are annular, joining the main septum in the center as do the pseudosepta above. In other cases the pseudosepta diverge from the main septum some distance in from the shell-margin, and continue across the center to within a similar distance of the opposite shell-margin. These pseudosepta thus have a greater curvature than that of the true septa. When the pseudoseptum is confined to the marginal portion of the section, it is in close contact, for a space, with the pseudoseptum which joins the next preceding septum on the upper side. Again, the pseudoscptum on the under side may become irregular, as it approaches the center, being abruptly bent down, before it bends up again to join the under side of the septum aluove it. The space between the pseudosepta and the septum to which they belong both above and below this true septum, is filled solidly with stereoplasm in the form of crystalline calcium carbonate (probably aragonite, at least originally). Thus in general the septa appear thickened on both upper and lower marginal portions by nearly equal amounts of stereoplasm, while the center is free from such thickening, the cameræ being filled only by the lime-mud in which the shell was buried. In the older parts, where the lower pscudosepta seem to extend across the center (possibly due to the position of the section) nearly the whole of the cameræ appears filled with the stereoplasm.

The siphuncle is excentric, situated about half-way between the center and the margin of the slightly flattened side, or a little nearer to the latter. Around it the camerre are often free from stereoplasm for some considerable space. The siphuncle is nummuloidal, expanding to 7 mm . in the center, where the septal distance is 4 mm . but it does not appear to be regular. At the septa it contracts to about 2.5 mm . There are either no stereoplasmic deposits, or, when present, they are irregular, and have the nature of a norrower tube within the more expanded outer nummulus. Characters of exterior of shell and of living chamber unknown.

A section of a specimen of Stereoplasmoceras from the Machiakou limestone of Wên-nan, Shantung (Plate IX fig. 11), appears to belong to this species, representing the carlier portion of the conch. The shell tapers at the rate of 1 in 6 . The siphuncle, though appearing centran in the section, is only about 4 mm . from the ventral margin at the lower end of the specimen, and 5.5 mm . at the upper end. The diameter of the nummuli is 7 mm . where the shell section is 28 mm . wide, in the upper end of the
section, and 5 mm ., where the section is 18 mm . wide. The septal interval ranges from about 3.8 mm . in the lower, to 4 mm . in the upper part. The concavity of the septa is equal to nearly 2 camera lengths. In the median portion of the specimen, the nummuli show a distinct narrow central tule, which extends from septum to septum. Around these septal necks, there is an irrcgular deposit of stereoplasm which partly fills the nummuli, the remainder leing filled ly crystalline calcite of secondary origin. The central tubes or septal necks, stop alruptly at a septum about one-third the length of the fragment from the bottom, this abrupt cessation suggesting that they are not present in the earlier nummuli, which contain only an irregular deposit of stereoplasm. The pseudosepta are of the type described for the larger specimens of this species.

Horizon and Localities: So far as known, this species is confined to the Machiakou limestone where it is associated with Actinocerces. Characteristic specimens have been oltained_from Lincheng in Shantung (F. F. Mathieu), from Ningyang, Shantung, and Tangshan and Lushan, Chihli, (Survey collection), from Wên-nan, Mon-Yin-Hsien Shantung (V. K. Ting coll.) and from Chaokouchuang, C'hihli (Survey expedition of 1921). It is thus seen to be a widespread species.

Stereoplasmoceras machiakounense Grabau (sp. nov.)

Plate VI, Figs. 8
Shell subcylindrical, tapering very gently, section apparently circular, siphuncle subcentran.

Septa moderately concave, the depth equal to alout one camera. Septal distance varying from 4 mm . in the lower part of the fragment, to if mm. in the upper, the diameter of the shell leing ahout 20 and 21 mm . respectively. Pseudosepta irregularly developed, occurring in one part of a chamber but absent in another. Some camere are without pseudosepta, and are solidly filled with stereoplasm. In other cases, the camera on one side of the section is without stereoplasm, while on the other side, where a pseudoseptum is present, it may be partly filled by this deposit. So far as can be ascertained the stereoplasm is confined to the upper surface of the septum.

Siphuncle gently nummuloidal the nummuli swelling to a diameter of 5.3 mm . in the center, and contracting to 3 mm . at the septal ends. There is no stereoplasm in the siphuncle which is filled only with the matrix.

Another specimen from Lincheng Shantung, referred to this species, has a septal distance of 7 mm . where the shell is 21 mm . in diameter. The rate of tapering of this specimen, as indicated in the section, is 1 in 8.5 . There is comparatively little stereoplasm in the camere, and it appears to be confined to the upper surface of the septum and bounded above by a pseudoseptum. The siphuncle is not shown in this specimen.

This species differs from S. pseudoseptatum in its proportionately more distant and somewhat shallower septa, in the narrowly nummuloidal siphuncle, the comparatively few pseudosepta and the frequent complete filling of the camere with stereoplasm.

Horizon and Localities: In the Machiakou limestone at Machiakou Chihli province, (H. C. T'an, cat. no. 15,) and in the same horizon at Lincheng, Shantung province (F. F. Mathieu, cat. no. 79). In both places the species is associated with Actinoceras richthofeni, A tani etc. and is of early Upper Ordovician age. A specimen referred with some hesitation to this species, because of its narrower septal interval (4 where the diameter is 14 mm ., 4.5 where it is 18 mm .) came from Tse-yan, Ning-yang Hsien, Shantung. It has the same rate of tapering, and slight amount of stereoplasm found in the Lincheng specimen. (Survey collection cat. no. 82).

Stereoplasmoceras actinoceriforme Grabau (sp. nov.)

Plate IX, figs. 9a-b, 10a, b.
Shell rather strongly tapering, the rate varying from about 1 in 6 , to 1 in 7 , with the cross-section either subcircular to suboval, and the siphuncle nearly centran, or circular with the siphuncle slightly excentric. The dimensions of the lower end of a well-preserved section (Plate IX, fig. 9b) are: transvese diameter, 17 mm ., distance from center of siphuncle to ventral (?) side, 7 mm ..

Siphuncle strongly nummuloidal, giving the shell an Actinoceras-like appearance, but without the regular siphonal fillings characteristic of that genus. In one specimen (Plate IX, fig. 10a) the siphuncle appears to have been wholly empty, becoming filled with the fine matrix of calcilutyte, in which the shell was embedded. This, in the lower two nummuli preserved, has separated out, showing the inside of the wall of the nummulus which is quite regular and fairly smooth. In a second, larger, specimen (Plate IX, fig. 9a, b) the nummuli are filled with coarsely crystallized calcite, the outlines of which are distinct from the walls of the nummuli.

Diameter of nummuli varying from 5 to 5.5 mm . and their length, which is also the septal interval, from 2.7 mm ., where the diameter of the shell is from 16 to 18 mm . (Plate IX, fig. 10a), to 3 mm . or a little over, where the diameter is 20 mm . (Plate IX, fig. 9a). Depth of septa a little more than one camera length. Pseudosepta and stereoplasmic deposits in the camerse vry irregular.

This species differs from the others of this genus in its suboval section, nearly centran siphuncle, and short septal interval, as well as in its irregular pseudosepta and stereoplasmic deposits. From A^{\prime} muchickounensw it differs, moreover, in the strongly nummuloidal siphuncle, the nummuli of which are much broader than long, whereas it is
 the subcentran position of the siphuncle, and in the irregularity of the pseudosepta and stereoplasm; also in the regularity of the siphonal nummuli, and their complete freedom from deposits of stereoplasm. The species might easily be mistaken for an Ictinoceras, but the absence of annular deposits shows that it belongs to the Lormeiatida.

Horizon and Localities: In the Machiakou limestone of early Upper Ordovician (Black River) age at Kushan, Chihli, and at Wên-nan Mon-Yin-Hsien Shantung (V. K. Ting coll.).

Family ACTINOCERATIDAE Samann.
 Genus Actinoceras Bronu

The type of this genus is Actimocfia bigst!li Bronn, a widely distributed Amcrican species, which occurs in the late Middle and early Upper Ordovician (Stones River, Black River and Trenton). It ranges from Tennessee northward to arctic America (Iglook Island, Fox Channel), westwarl to Iowa and Lake Vinnipeg, and eastward to New York. The shell expands rapidly at first forming an irregularly conical apical end which is characterized by a large foramen, surrounded by a distinctly swollen ring. This feature has been figured by Foord for A. bitslny from arctic America and Canada, and it is equally well shown in a specimen of 1 . tani in the survey collection (Plate VII, figs. 7a, b). The apical cone of Actinncertes, in the specimens figured by Foord, and in our form, is somewhat asymmetrical. In the Amcrican form the apical foramen or scar is moreover situated obliquely, while in the Chinese form it is normal to the axis. This foramen apparently marks the point of decortication of the embryonic chamber or protoconch.

After the initial rapid expansion, the rate of increase of the tube is diminished, being in some cases more nearly that of an ordinary Uitloceras, but more rapid in others so as to produce a very stout structure. In some cases as in A. richthofeni the rate of expansion diminishes again after a while so as to produce a more cylindrical final portion. In rare cases the form is slightly curved. The cross-section varies from circular to oval.

The Siphuncle. This is generally large and inflated in the camerr so as to produce a pronounced nummuloidal character or a succession of nummuli. * In size the siphuncle varies from less than one fourth to more than half the diameter of the conch. In the rapidly expanding apical end of the shell the siphuncle quickly reaches a large size and thereafter expands very little if at all, although the diameter of the shell may increase. Thus in the older part of A. richthofeni the siphuncle may occupy more than half the diameter of the shell, while in the expanded portion it does not occupy much more than one third that diameter. In position the siphuncle is centran or excentric even submarginal, though it is not always possible in sections to determine with certainty that the centran appearing position is not due to the manner in which the section is made.

The walls of the siphuncle are thickened by secondary deposits of carbonate of lime. Frech (Richthofen Vol. V. Plate 2 fig. 1) has illustrated a section of 1. ciaisiventrum Wahl. which shows the manner of thickening of the siphuncular wall. According to this, the portions opposite the ends of the septa and those in the inflated portions in the camere are thickened independently, the former in advance of the latter. As a result of this addition of new material, the central cavity is reduced to a narrow central tube or endosiphuncle, from which lateral annular diverticula extend into the inflated portion of the siphuncle. Frequently the thickening has progressed so far that the whole or nearly the whole of the inflated portions (i. e. the diverticula) become filled solidly, leaving only a central more or less cylindrical tube, the endosiphuncle. This is the case in the majority of specimens of A. tani and I. richthofeni though the specimen figured by Frech (Richthofen V. Plate 2 fig. 8a,) still shows the presence of these lateral diverticula.

In some forms, as in A. richthofeni, the deposition of stereoplasm in the siphuncle is more pronounced in the anterior portion, this resulting in the formation of oblique diverticula from the central tube. This is fully described and illustrated under A. richthofeni (See text fig. 19, p. 79, and Plate IX, fig. 4.)

A specimen of 4 . richthofeni in the collection of the Survey, shows the interior of the siphuncle in a fair state of preservation and unfilled by foreign material, the former
filling having heen removed ly weathering. From this specimen it appears, that the thickening is not uniform all around the periphery of the siphuncle but rather in the form of bead-like enlargements. (Plate VII, fig. 3). This seems to be analogous to the structure of the siphuncle of A. bigshiyi figured by Foord (Cat. Foss. Cephalopoda Brit. Mus. Plate I. pp. 164-165 figs. 20-22) where a series of tubuli run from the endosiphuncle to the outer rim of the intra-cameral expansions, i. e. the nummuli. These tubuli have also been observed in specimens of A. tani from the Chinese rocks, and probably represent a feature usual in this genus.

According to Foord, the central tube or endosiphuncle is provided with a distinct wall of which the tubuli are diverticulations. Their number has been estimated by Bronn as 16 in A. biysbly, hut the number of foramina figured in this species by Foord is very much greater. Those so far oliserved in Chinese specimens are few, probably not more than 16.

The significance of these tubes and foramina is not clear. Owen (Palæontology, $1860 \mathrm{p} .8 .5)$) suggested that they may have served for the passage of blood-vessels to the living membrane of tiie septal chamber, which would imply that these chambers were not merely empty spaces, cut off as in Nautiloids generally. The thickenings of the wall of the siphuncle were regarded by Hyatt "as strictly homologous with the successive sheaths of the endoseptum of Piloceias and Endoceras". I would however interpret the endocones of the Holochomites as the crowded septa of an inner shell, comparahle to an orthoceracone, which would make them entirely distinct from the thickening of the siphuncle of Actinuecirs.

Suggestions have repeatedly been made regarding the significance of these siphuncular thickenings. Frech suggests that the thickening represents an attempt to render mechanically weak cylindrical structures more resistant against wave and current attack, the siphuncle thus being transformed into a supporting structure, or into a species of back-bone. That the solidified siphuncle lecame such a supporting structure, and that because of it the genus Iftinuceres was a long-lived onc, extending from the Ordovician to the Carboniferous, may le conceded, though it is by no means certain that Letinoceras as now understood is monophyletic. In other words it is not improlable that the Ictinureras type of siphuncle was independently developed in more than one phyletic series, representing thus parallelism in development, rather than genetic relationship. The origin of the structure however must be sought in the purely mechanical processes of lime separation as the result of the decay of the cells of the older part of the siphuncle, the gradual contraction of which was a concomitant phenomenon of the functional detereoration of that part of the animal's anatomy. I would regard this excessive lime
separation rather as evidence of senescence, and consider the Actinoceran type a phylogerontic phase of orthoceraconic development.

The apertural end of the siphuncle. A specimen of A. richthofeni from Huo-Luh, Chihli province, presented to the Survey collection by Miss Clarke, shows a section of the apertural end of the siphuncle (Plate VII, fig. 2). This has a maximum diameter of 12 mm . and shows a conical depression about 25 mm . in depth and 8 mm . across at the upper end. The sides of the apertural cone are formed by the obstruction rings or rosettes of stereoplasm deposited about the septal necks, this deposit being slight in the upper part and increasing in thickness downward. This gives the inner surface of the cone an undulating appearance, contracting at the septal necks, and expanding between the septa, in conformity with the expansion of the siphuncle. The continuation of the cone in the endosiphuncle is not shown in the section, but undoubtedly existed. The funnel-shaped apertural end of the endosiphuncle resembles that of the Silurian genus Discosorus Hall, but there is no lining membrane or sheath as in that genus. It merely represents the still unfilled portion of the siphuncle and shows that the filling by "obstruction rings " progressed regularly from behind forward. There are indications in the specimen that the cameræ of the shell continued beyond the upper end of this cone thus suggesting that the upper end of the siphuncle consisted of a series of hollow nummuli. If this was the case, the upper portion corresponds in character to the genus Stereoplasmoceras and as it represents a more primitive stage in development through which the shell passed as a whole (the filling being subsequent to the formation of the nummuli) the suggestion lies near that Actinoceras is a derivative from Stereoplasmoceras, which in turn is derived from Loroceras, and that from Orthoceras.

The septal thickening. In practically all of the specimens of Actinoceras from the Machiakou limestone, a striking thickening of the septa by stereoplasm or organic deposits of carbonate of lime has taken place, so that the cameræ are more or less completely filled by this calcareous deposit. Complete filling is rare, but has been observed in some cases, while in others the thickening has proceeded only far enough to fill about one half of the camerd. The thickening is most generally produced by addition of lime to the upper surface of the septum,' but in other cases it appears to be added to the under side as well. It is however possible that this appearance is deceptive, and due to the irregularity of the septum, which bends forward before reaching the inter-nummuloid contractions of the siphuncle (see A. coulingi, Plate VIII, fig. 1 cat. no. 4). The deposit is very often thickest near the siphuncle, close to which it frequently thins away abruptly, leaving a subtriangular area next to the outer margin of the
nummulus, which area was vacant space and has been filled in by the lime mud after burial of the shell. (Plate VII, fig. 6).

The material which forms the thickening of the septa is crystalline carbonate of lime, similar in all respects to that which fills the nummuli of the siphuncle. It is readily distinguished from the mud-filling of the open spaces, which is a uniform dark calcilutyte.

The thickening of the septa is not uniform. In a specimen of A. coulingi (Plate VIII, fig. 1) it is comparatively slight in the young or apical part of the shell, becomes most marked in the middle portion, and is comparatively slight in the apertural or last-built portion of the shell. This feature is also shown in a specimen of A. tani (Plate VII, fig. 6). In this specimen the upper surface of the organic deposit is smooth though somewhat undulating, having the appearance of a definite secondary septum. In this species, the thickening increases slightly near the siphuncle, and then thins away very rapidly, generally with a concavity of surface.

That this lime-deposit is of organic origin, i. e. deposited ly the animal which occupied the shell, is beyond question, for only ly such an origin can the uniformity of the deposit be explained. That it was formed on successive floors of the living-charnber, i. e. that each deposit was formed lofore the next covering septum was built, seems to me also evident, for there is absolutely no indication that the camere were in subsequent communication with the animal, the small tubuli of the siphuncle notwithstanding. I would interpret the filling of the camcris as a process strictly analogous to the filling of the "siphuncle" by similar crystalline lime in the Holochounites, the "supplementary septum " or "pseudo-septum" which commonly terminates it, leing comparable to the endosheaths (as are also the true septa). Thus after the formation of each septum, deposition of lime continued upon it for a time, after which, during a resting stage, a pseudoseptum in close contact with the crystalline lime was formed. This was followed by a forward movement of the animal in the shell, and the formation of a new septum, which thus was distant for a certain space (generally less than half the height of the camera) from the pseudoseptum and crystalline deposit. After that the deposition of crystalline lime recommenced upon the surface of the new septum.

Mistribulion. Actinorerus appears abruptly in the Ordovician rocks of North America and north China. A doubtful species (A ? mendc.r Salter) has been described from the Durness limestone of Sutherlandshire (north Scotland), where it occurs in the higher beds (Balnakiel and Croisaphuil groups), a horizon representing essentially the Beekmantown or perhaps early Chazy of castern North America. * The species has also leen reported from Skye, and doubtfully from Newfoundland and the Mingan Islands.

[^14]Most of the American Ordovician species occur in the Black River or early Trenton formations, though some range down into the Stones River (late Chazyan), and others up into the Galena limestone (late Trenton) or even into the Cincinnatian. Their geographical distribution ranges from the south central United States to the Arctic regions. No species is known from the Ordovician of Europe with the exception of the Scottish form noted, but the formation in which this occurs, is an extension of the North American, not of the typical European Ordovician. * In the Silurian on the other hand, this species is not uncommon in western Europe as well as in North America, and it again occurs, though less abundantly, in the Lower Carboniferous (Mississippian or Dinantian) of these countries, though this may possibly be a distinct development of Actinoceran characters in another genetic series.

In China the genus appears to be practically confined to the northern provinces, though Yabe describes and figures two fragments of undetermined species from Hsingshou Hsien, northwest of Ichang, Hupeh province. As the Ordovician of south China is much better known than that of north China, and as these are the only fragment so far oltained from the neighbourhood, though still to the north, of the Yangtze, it would appear that the genus is unrepresented in the south of China.

Actinoceras richthofeni Frech

Plate VII, figs. 1-3, Plate IX, figs. 4-8.
1911 Actinoceras richthofeni Frech, in Richthofen, China, Yol. V., p. 8, Plate II, fig. 4a (4b?).

This species was figured but scarcely described by Frech, who merely states that the siphuncle is subcentral in position and occupies about one-third of the diameter of the shell. His illustration shows rather strongly concave septa about 3.4 mm . apart, while the siphuncle has a fairly regular diameter of 14 mm . in the large end, which is 36 mm . in diameter, and 12 mm . in the smaller end, which is 20 mm . in diameter. The distance between the two measured points is 46 mm ., giving a rate of tapering of nearly 1 mm . in 3, though this is only approximate, as it is not certain that the section is parallel to the axis of the shell.

Shell oval in section, the two diameters being as 1 to 1.4 in the younger, and as 1 to 1.5 in the more mature portion; tapering at the rate of 1 in 3 , or 1 in 3.5 laterally, but

[^15]only at the rate of 1 in 6 or 7 dorso-ventrally. Shell-surface apparently with longitudinal flexuous stris; sutures somewhat flexuous, sliglitly arching forward on one of the sides. Average distance hetween camerce :3.7.5 mm., loss in the younger stages. Depth of camerc, in center, equal to about 3 camera-lengths or slightly more. Siphuncle nummuloidal, large, centran, and oval in section, corresponding to the section of the shell. It increases less rapidly in diameter than does the shell, its lateral diameter being $1 \pm \mathrm{mm}$. where that of the shell is 41 mm ., (Plate LX, fig. $\overline{1}$); and 10 mm . Where that of the shell is 30 mm . while its dorso-ventral diameter is 11.5 mm . Where that of the shell is 25 mm ., and 9 mm . in the younger stage, where that of the shell is only $2 t \mathrm{~mm}$. (Plate IX, fig. s). It is thus more nearly circular in section in the younger stages, Siphuncle as a rule only partially filled by rosettes of stereoplasm, leaving a large central tube, from which lateral, more or less forward-lending diverticula oxtend into the nummuli.* Camerse only partially (seldom entirely) filled with secondary stereoplasm.

The most complete specinen olutained is a fragment of the lower part of a large conch preserving 12 carncre complete and portions of 3 others. This specimen is shown on Plate IX, figs. Ta-7e, and clearly shows the oval section which in the upper part is ± 1 mm . in lateral, and 27 mm . in dorso-ventral diameter. Three views of the specimen were drawn ($\overline{\mathrm{a}}$ - fc), after which it was sectioned, the two sections being shown in figs. $\overline{\mathrm{r}} \mathrm{d}-\overline{\mathrm{r}}$. The form of the siphuncle corresponds to that of the shell, and its two diameters at the upper end of the fragment are each about one third that of the corresponding diameter of the shell. The nummuli are only partially filled with rosettes of stereoplasm, leaving a large median tube from 2 to 2.5 mm . in diameter. At the lower end of the specimen the diameter of the lower nummulus is 11.5 mm ., the form being practically circular. At the upper end, the nummulus, next to tho highest complete nummulus, has a diameter of 15.3 mm . While the highest completely preserved one, has a diameter of only 14 mm . Here the dorso-ventral diameter is also 11.5 mm . This shows that while there is in general an increase in diameter laterally, ther is also some variation. From the median tube, a lateral tulne traveres the center of each nummulus, in some cases extending outward approximately at a right angle, in others bending slightly forward. Again it may bend forward and then outward as seen in the second nummulus from the top (fig. Te). In a few cases the opening of this tube in a pore on the periphery of the nummulus is well shown in the sections.

The septa are thickened ly secondary stoperplasm, which appears to occur hoth on the upper and under side of the septum, though this feature is somewhat olscured by

[^16]the development of crystalline calcium carbonate of inorganic origin in portions of the camerin, especially on one side of the siphuncle. Pseudosepta generally define the stereoplasm. Some cameræ were however empty, having been filled by the matrix only (a fine brownish calcilutyte) which also fills the median tube.

Only traces of the shell are preserved which appears to have been rather thin, and marked by more or less flexuous longitudinal striæ.

In a fragment of a smaller (younger) individual from the same locality (Plate IX, fig. 8) the sides are more sharply acute (slightly accentuated by pressure in the specimen), while the siphuncular nummuli are proportionately larger and have a nearly circular transverse section. The dorso-ventral diameter of the interior of the shell (the septate stone-mold) at the largest end preserved, is 24 mm ., and its transverse diameter about 34 mm . while the corresponding diameters of the siphuncle are and 10 mm . respectively. The depth of a single camera in this specimen is 12 mm . where its short diameter is 22 mm . The septal interval at this stage is slightly smaller than usual, being on the average $3.3: 3 \mathrm{~mm}$.

Because of the oval transverse section of the shell, the specimens practically always lie upon one of their broader sides, and hence the weathered sections always expose the transverse diameter of the shell, and the tapering seen is that of the lateral margins, and hence the greater of the two. A dorso-ventral section, if obtained, would show a very different rate of tapering, and a much narrower shell. The great depth of the camere would however appear in such a scction as well.

A larger specimen of this species from Tangshan (Plate VII, fig. 1), is 111 mm , long but incomplete at both ends. At the widest part preserved, it is 46 mm . in width, while at the lower end it is 24 mm . wide, the distance between these points being 66 mm . This gives a rate of tapering of 1 mm . in 3, essentially the same as that of Frech's figured specimen. The diameter of the siphuncular nummuli in this wider part is about 16 mm ., or about one third the width of the shell. In the lower part it is about 13.5 mm ., and therefore more than half the width of the shell.

The septa are about 3.8 mm . apart in the upper, and 3.6 mm . in the lower part. In a specimen on the same slab with the one just described, the interior of the siphuncle is well preserved (Plate VII, fig. 3). This shows that the secondary deposits at the inner ends of the septa are not continuous all around the siphuncle, but form a series of rounded thickenings, there being about six of these to the circumference, judging from the number shown in the specimen, which is one longitudinal half of the shell. This accounts for variation in thickness of these inner deposits, as observed in different
sections; sections through the centers of two opposite heads would show the greatest amount of thickening, while sections through the depression between the beads would show the least, others falling between these.

In the majority of specimens the septa show secondary thickening, either on one or on both sides. This is however seldom if ever as extensive as in A. tuni. In some cases, indeed, it is scarcely developed, or is strongly developed on one side only, as in the type figured ly Frech (low. cit. Plate \because fig. ta). The bowl-shaped depression Which is formed around the siphuncle ly the abrupt ollique truncation of the deposit near the siphuncle; in such species as . I. tani and some others, is seldom developed. I have not seen it in perfection in any specimen of this species, though it occurs in individual septa. Not infrequently the deposit widens towards the siphuncle, and comes in close contact with it. One or two pseudosepta are commonly present in each camera characterized by such deposit. One may divile the deposit into two parts, and the other terminate it, after which there is an interval represented ly an empty space (filled, except in weathered specimens, by the rock matrix *) and then a new septum follows.

In some cases the stereoplasm is included hetween the septum and a pseudoseptum next in front (see fig. (; Plate IX). Again there may be a slight deposit of stereoplasm loth on the upper and under sides of the septum, but this is generally irregular, especially on the under side, as if the septum had heen broken. Thickening by stereoplasm on both sides of the septa is indicatnd in Frech's figure of the type, but I have not seen any specimen in which the thickening is as regular as is shown on the right side of his figure. A fragment which I refer to this species (Plate IX, fig. 5) has the camera nearly filled with steroplasm, the septa appearing out of position, ending apparently against the numnuli. This would give the appearance of Frech's figure, if we assume that the septa are pseudosepta, and that true septa occur in the midst of the stereoplasm deposit. Of this there is however no indication. In fact, the septa are strongly lent backwards, so as to rest for a space against the upper or frontal surface of the next preceding nummulus. If a deposit of stereoplasm exists on the under side of the septum it could hardly be explained otherwise, than by assuming its formation to have taken place after the formation of the septum, in which case there must have remained some organic connection between the camera and the animal.

[^17]The inner tuln of the siphuncle (endosiphuncle of authors) varies in diameter with the progress of siphuncular filling. In a specimen (Plate IX, fig. 4) in which the siphuncle has a width of 15 mm ., it is only 1 mm . wide. In another (Plate VII, fig. 3), where the diameter of the siphuncle is about 11 mm ., the open central tube has a diameter of about 5 mm . In the latter specimen, broad open diverticula diverge laterally, terminating in the centers of the nummuli, apparently in fine tubuli. In the former example, where the central tube has been narrowed to a diameter of 1 mm ., the diverticula are reduced to tubes which curve obliquely downwards and outwards. Thus the tube which terminates in a pore in the center of a nummulus, reaches the endosiphuncle at a point almost in the median horizontal plane of the nummulus next forward. This peculiar structure is scen in a weathered section from Lincheng, province

Fig. 19. Diagrammatic section of the part of a shell of Antimurime richlthemi represented on plate IN, fig. t. drawn to scale. The siphuncle is here shown in the process of filling by stereoplasm. Tn the upper part it is shown empty, successive layers of stereoplasm are added, in such a way that the diverticula from the central tube curve from the periphery of the nummuli forward or orad, as shown in the lower part of the figure, and in the drawing of the specimen (plate IX, fig. 4). Twice natural size. (c, cameræ; $d v$, diverticula of endosiphotube; ' n, endosiphotube; s, septa; $s h$, shell; st, stereoplasmic filling of nummuli).
of Shantung, and appears also, but in a less marked degree, in the type specimen from Manchuria figured by Frech. It indicates that the deposition of material, was most pronounced on, and finally practically confined to, the anterior part of the floor of each nummulus as illustrated in text fig. 19. The deposits on the bottom of a single nummulus may be likened to a series of closely approximated superposed septa, the first slightly but normally concave, with a well-marked siphonal funnel, and thickened at the funneledge; each succeeding septum becoming more thickened at the funnel-edge, and having its funnel end invaginated into that of the preceding one. In consequence of the thickening of the septum at the funnel-edge, the central portion would rise more and more, the septum curving upwards from the rim to the funnel-edge, until the center of the septum, still pierced by the funnel-holes, is higher than the rim. This would mean a progressive collapse of the siphonal expansions, until they represented only a thin doulle membrane. Some slight additions of lime have meanwhile been made to the inside of the upper (forward) surface of the inside of the nummu- lus, by the upper surface of the siphonal expansion. Thus, what appears as a lateral tube in section, may in reality be the section of the space occupied by this collapsed siphonal
expansion, which is more or less continuous across the siphuncle, and into which the several pores of the siphonal wall open. This is well shown in the specimen illustrated in fig. 4 Plate IN, where the end of the siphuncle has been severed off along one of these planes of weakness.

Aperturally the endosiphuncle terminates in a conical expansion, as described on page $7: 3$. It may continue beyond this in a series of hollow nummuli.

The mural pores of the siphuncle, if they are present in this species, are not well preserved. In a specimen in which they might be expecter to appear prominently there appears to be no positive indication of them. This may be merely due to the manner of preservation, wr the pores may in reality he alsent, or may have heen completely filled during the progress of shell growth.

So far as can le determined from the fragmentary material, the exterior of the shell is without ornamentation except fine flexuous longitudinal lines.
(immprisims. Frech compares this species with a fragment figured ly Barrande * under the name (ithucrive (Atinocerts) richardsoni from Little Manitoulin or Cockburn Island Lake Huron, Canada, and calls attention to the fact, that Barrande's specimen can not le regarded as belonging to A. richecrlsoni i Stokes. This would suggest that the Chinese species, or a closely alljed lut unnamed specier, also occurs in the early Upper (ridevirian (Trenton) of North America. I know of no other descriled species with which our Chinese form can le compared.

Horizon and Loralititis: In the Machiakou (Upper Tsinan) or Actinoceras limestone, widely distributed in north (hina. The type comes from Hsiau-sörr, Fengtien, (Manchuria), and was collected by von Richthofen in 1869. Yabe cites the species as common at Kwa-sen-do, Ko-to-gun, Hei-an-nan-dö, in Korea.** In Chihli province it has heen oltained from Tangshan, Machiakou, and Chaokouchuang, all in the Kaiping loasin, and from Huo-Luh Hsirn in the southwestern part of the province (hy Miss Clarke). In Shantung province it has been found near Lin-cheng ly Dr. F. F. Mathieu and at Seng Chuang, Ningyang district and Wên Nan, Monyin-Hsien, ley Dr. Ting.

Actinoceras tani Graban (sp. nov.)

 Plate VII, fiys. 4-7.Shell slender, tapering at a rate varying from 1 in 5 to 1 in 7 according to the direction of the section measured. Cross-section faintly oval. Siphuncle excentric, on

[^18]the shorter axis of the section, and distant from the nearest shell-margin a variable amount, this ranging from about half, to a little more than its full diameter. From the opposite shell-margin it is separated between two to three times this amount. In a specimen from Tangshan (Plate VII, fig. 5, cat. no. 26) the diameter of the siphuncle is 5 mm . where the shell is 22.3 mm . in diameter, while in another specimen from Shantung, the siphuncle has a diameter of 4.5 , the shell diameter being 17.5 mm . (cat. no. 66). In the specimen illustrated in figure 6 Plate VII, (cat. no. 1), where the siphuncle is apparently centran, because of the position of the section, it retains a very uniform diameter of 6 mm . while that of the shell ranges, at the point of the section, from 16 to 20 mm . As this is a shell with excentric siphuncle, * the section does of course not represent the maximum diameter nor the true rate of tapering.

In a specimen from Chihli (Plate VII, figs. ta, 1, cat. no. 69) which shows the greatest rate of expansion observed (1 in 5), the siphuncle appears centran in longitudinal section, but the transverse section shows it to be about one half its diameter from the margin. The siphuncle is 8 mm . in diameter where the shell in the same section is $\because 4$ mm . The endosiphuncle (endosiphotube) is about 1.5 mm . in diameter or a little more, and appears as a regular cylindrical tube. The septa average 2.6 mm . apart. They are sometimes double, and the camera are largely filled with stereoplasm.

The nurnmuli, or expansions of the siphuncle in the cameræ, are generally regular and symmetrical, though now and then one is shorter, or of smaller diameter. When well exposed, the peripheral mural pores may be seen, ranged around the ambitus of the nummulus. In a specimen from Tangshan (Plate VII, fig. 7c), they are small, and each is situated at the summit of a low pustule, the pustules being separated by a space equal to about twice their diameter. I estimate their number on a single nummulus to be about 24 .

The septa are strongly thickened by the addition, on the upper side, of stereoplasm, which has a crystalline structure and is terminated by a smooth-surfaced supplementary septum or pseudoseptum in each camera. The thickening proceeds to within a short distance of the siphuncle, when it dies away abruptly, the pseudoseptum sloping steeply and generally concavely to the septum, which latter joins the siphuncle in the constriction between the nummuli. Thus a sort of saucer-like depression is formed around each nummulus, which appears to lie in it like the pudding in a dish.

The thickening, by stereoplasm, is not uniform inł|successive cameræ, nor within the same camera. As will be seen from the natural section of the specimen illustrated in

[^19]figure (6 on Plate VII, the same camera may show a thickening on one side to the extent of half the height of the camera, while on the opposite side the thickening may fill nearly the whole of the camera. In a general way, there is a decrease in the amount of the deposit from the older septa forward to the younger.

The apical end of this species is shown in a specimen from Tangshan (Plate VII, figs. $\overline{\text { a }}$, ll $)$. This begins with a somewhat asymmetrical subconical initial chamber, about * 9 mm . in depth. At its apex is the large siphuncular foramen, surrounded by a swollen annulus, the "hole producing an apical mammelon, ahout 7 mm . in basal diameter. The central scar or siphuncular opening is about 3.5 mm . in diamcter. At its upper end the initial chamber has a lateral diameter of 16.6 mm . and a dorso-ventran of 16 mm . The mammelon lies to one side of the lateral, but, on the dorso-ventral axis. Above the initial chamler the ventral (?) side (side nearest to which the siphuncle lies) becomes faintly concare longitudinally as if the shell were taking on a cyrtoceraconic form. This continues for about five clambers after which it disappears and the surface slope is normally orthoceraconic. Almost from the first the septa average 3 mm . apart at the suture, their concavity leing equal to about the depth of one camera. This early portion of the shell hals a somewhat greater angle of divergence than is characteristic of later stages, leing about 1 in 4 .

Surface features of shell unknown.
This form is readly distinguished ly its slender character, gentle rate of tapering, septal distance, character of stereoplasm and excentric siphuncle. The latter is not howerer always secn in its true relation in longitudinal section, for if this is normal to the dorso-ventral axis the siphuncle appears contran as in fig. "; Plate \II.

Horizon and Locality: A. limi is prolally as common as, if not more so than A. richthefeni, and occurs in practically the same localities, in the Machiakou limestone. Specimens have heen oltained from Tangshan (F. K. Murris, (i. B. Barhur), Machiakou (H. C. T'an), and (haokuchuang (Survey expedition) Chihli; from Lincheng, from Chan-chin-Hsien, and elsewhere in Shantung (F. F. Mathied, J. C. Andersson and V. K. Ting) and from Chilio, south of Shih-T'ou (hiang, Chihli (G. B. Bartour). The specific name is given in honor of Mr. H. C. T'iln of the Chinese Geological Survey.

Actinoceras coulingi Grabau (sp. nov.)
Plate VIII, figs. 1, 2.
1903 Actinnceru; (1)rmocercti) aff. temuiflum Hall. Crick, Geolugical Magazine N. Ser. Dec. IV, Vol. X, p. tist, pl. XXII fig. C.

1920 Actinoceras (Ormoceras) sp. indet. Yabe, Palæontology of Southern China, pl. XIX fig. 9. (not pl. XVIII fig. 12).

Shell large, tapering at the rate of about 1 in 5 to 1 in 5.5. Siphuncle centran or nearly so, increasing very slowly in diameter, the nummuli strongly flattened above and below so as to be in contact with the septum for nearly one fourth their width on all sides. At a point where the shell is 24.2 mm . in diameter, the siphuncle is 8.5 mm . (Plate VIII, fig. 2, cat. no. 27). In another specimen (Plate VIII, fig. 1, cat. no. 4) the diameter of the siphuncle is 9.5 mm . where that of the shell is 25 mm ; and 11 mm . where that of the shell is 31 mm . the rate of tapering being about 1 in 20 to 1 in 22 . Septa regularly concave, their depth at the center being equal to $1 \frac{1}{2}$ or $1 \frac{3}{4}$ camere, and their distance apart about 3 mm . or somewhat more, where the shell is about 30 mm . in diameter. Camere mostly filled with stereoplasm which often has the appearance as if it were deposited on both sides of the septum (See Plate VIII, figs. 2, cat. no. 27). I have, however not been able to satisfy myself that this is actually the case. Instead it would appear that the septa are more or less undulating, partly so away from the siphuncle, but more usually near it, where there is sometimes a marked annular depression of the septum, so that it comes to lie almost opposite the ambital portion of the nummulus. In other cameras again this depression is not seen, and sometimes in section one side appears regular while the other shifts backwards. Commonly the stereoplasm fills the camera almost or quite to the siphuncle and completely to the next succeeding septum. In other cases however, where the septa maintain their normal position, the stereoplasm stops before reaching the siphuncle, leaving a saucer-shaped depression around the nummulus as in A. tani.

The specimens on which this description is based, agree in all essentials with the photograph of a specimen collected by Samuel Couling M. A. near Ching Chow Fu, Kiao-chow, province of Shantung, and figured by G. C. Crick (loc. cit.) on his Plate XXII, fig. C. His specimen may have been larger than ours, for the scale is not indicated, but the proportions are essentially the same, the siphuncle being 15.8 mm . where the shell is 47 mm . and the septa 3.3 mm . apart. Crick compares his specimen with A. tenuifium Hall of the Black River beds of North America. In that species, however, the siphuncle is proportionately broader (the proportions being about as 1 to 1.9, whereas in the Chinese species, they are as 1 to 2.8). The septal interval is also greater, being in the American species 7 to 7.5 mm . where the shell is 27 mm . wide, the proportions of depth of camera to diameter being approximately as 1 to 6.5 instead of ranging between 1 to 8 and 1 to 10, as in the Chinese species. In A. tenuifilum the septa are also
frequently displaced apicad and made to appear doulle ly the development of pseudosepta.*

Crick describes a specimen from the Couling collection, apparently of this species, which has a length of 95 mm ., and a maximum width of ninm. tapering very slowly, and with a siphuncle at that point about it mm. in diameter. He describes the camerae as 11 mm . high, but that seems out of all proportion to the shell, (heing as 1 to 4.5 as compared with 1 to 8 or 1 to 10 in the trpical forms) and would argue a rapid elongation of the chamiers with the growth in length of the shell.

Horizon and Locality: This species has been obtained from the Machiakou (Actinoceras) limestone of Hsi-Hsien, province of Honan, (L. (. Taun), from Machiakou, Luan Hsien, Chihli province (H. C. T'an), and from Lincheng, Shantung province (F. F. Mathieu). The specimen collected ly Samuel Couling, came from Ching Chow Fu, Kiaochow, Shantung. Yalre (loc. cit. Plate XIX, fig. 9) figures a specimen of Actinnerras from No-lu-ping Hu-ch'i, Hsing-shan-Hsien, province of Hupeh, which may lelong to this specirs, though the specimen is in a very imperfect condition. The other specimen figured ly Yalic (Plate XVIII, fig. 12) from Pan-tse-ya, same district and province does not lelong here, the septal interval leing proportionately much greater than is normal for this species, while the siphuncle is submarginal.

The specific name is given in honor of Samuel Couling, A. M. Editor of the China Review, Shanghai, who first brought to the notice of scientific men the occurrence of the genus Actinnceres in the Ordovician rocks of China, and to whon the Survey is indelted for courtesies in connection with these studies.

Actinoceras suanpanoides Grabatu (sp. nov.)

Plate VIII, figs. : in, $h .4 a, b$; Plate IN. figs. $1 a, b$.
Shell slender, tapering at the rate of about 1 in 5.5 ; section apparently oval, with a slight flattening on the ventral side. Siphuncle excentric nearest the flattened side, from which it is separated hy a distance equal to about half its diameter. In the early stages the siphuncle occupies more than half the diameter of the shell ($\frac{2}{3}$ in some cascs?) but later the proportional diameter is not much over one-third that of the shell. The nummuli are smmewhat flatter on the forward as compared with the postcrior end and the

[^20]endosiphuncle seems to be obliterated by filling. Cameræ fairly uniform, their length averaging perhaps 3.5 mm . Where the shell has a diameter of 1.5 mm . ; nor do they materially increase with the increase in the shell diameter to 20 mm . Their concavity is nearly equal to the depth of two chambers. Stereoplasmic filling of the camere is pronounced in the earlier part of the shell, but bocomes less so in the later cameræ. For the most part it is added to the anterior portions of the septa, hut in some cases it appears also to be added to their posterior surfaces, but this is very irregular and may be a secondary deposit. The septa are sometimes undulating, in some cases bending back nearly to the center of the nummulus of the preceeding camera. In some cases the stereoplasm ends near the siphuncle in a saucer-like surface as in A. tani, while in other cases it extends nearly or quite to the nummulus. In still other cases it is more weakly developed in one part than in another of the same camera (see the section Plate VIII, fig. 3).

Outer surface of shell unknown.
This species has the general form and character of A. tani, but the camerm are about half again as long as in specimens of that species of the same diameter, and the concavity of the septa is much greater. The stereoplasmic filling is also more irregular in the present species than in A. tani.

A fragment of a shell 8 cm . in length, and apparently of this species was obtained from Wên-Nan, Mon-Yin-Hsien, Shantung. This is figured on Plate IX (figs. 1 a-b). The rate of tapering is not ascertainable with accuracy because the shell is slightly crushed on one side, but appears to have been about 1 in 7. At the lower end of the fragment, where the diameter is about 19 mm , the siphuncle has a diameter of about 8.5 mm . whereas that of the sections figured is about 7 mm .

The distance from the ventral margin is 3.5 mm . that from the dorsal 7 mm . Where the diameter of the shell is 24 mm ., the distance of the siphuncle from the ventral margin is still 3.5 mm . The average distance between the septa is 3.5 mm . The sutures visible on the exterior of the inner mold, are somewhat undulating, extending forward on the ventral side (the side to which the siphuncle is closest) in a gentle saddle, to the extend of about 1 camera-length beyond the lateral and dorsal sides. In the earlier portion, this saddle is less pronounced, its increase in length thus corresponding to the proportional approach of the siphuncle to the ventral side. The concavity of the septa in the larger portion of the fragment is equal to about the depth of two catamer.

Horizon and Localities: In the Machiakou limestone of Tai-an, Shantung province. Survey collection. A small specimen apparently representing the apical portion of this species was obtained from Sen Chuang, Ning Yang, Shantung, and
another from Lincheng，Shantung（F．F．Mathieu），and a fairly well－preserved internal septate mold from Wên Nan，Mon－yin－Hsien，Shantung（V．K．Ting）．

The specific name is given in allusion to the Chinese calculating frame or Suanp＇an（算盤），to the elements of which，i．e．the single row of Chii（珠）the siphuncle of this species shows a marked resemblance．

Actinoceras submarginale Grabau（sp．nov．）

Plate VIII，figs． 5 u，l ；Plate 1 A ，fig． 3.
Shell of medium size tapering at the rate of about 1 in 4 ，the siphuncle submar－ ginal and occupying about one－half the diameter of the shell or somewhat less，regularly swelling between the septa，and constricted at the septal openings to about two－thirds its width．Endosiphuncle large，its diameter about 3 mm ．Where that of the siphuncle is 15 mm ．with deverticula extending into the nummuli．Nural pores not observed．The section of the shell is apparently suboval while that of the siphuncle is circular．It is so close to the shell on one side，that it appears almost to touch it，but the septa are continuous around it，showing that the contact is not alsolute．In form the siphuncle tapers gently，the rate being approximately 1 in 19 in a characteristic specimen．

The septa range from 4 to 4.7 mm ．apart and are，as a rule moderately concave， though in one specimen（Plate IX，fig．3，cat．no．\％．）some of them exhibit rather marked curvature，involving in some cases as much as the depth of two chambers．The space between the septa ranges from 4 to 4.4 mm ．in specimens of about thirty mm． diameter．In a specimen sectioned so as to give the siphuncle a sulicentran appearance， although it is in reality close to the margin（Plate VIII，fig．Su，l）the septa are at first rather flat－lying，and somewhat undulating，after which，near the margin，they bend strongly forward（upward）．In this respect the two specimens figured show a marked contrast，but it must he remembered that they show the shell in sections practically at right angles to each other．

The stereoplasm is variable．In one specimen（fig．5）it fills the greater part of the camera leaving only a narrow space beneath the next septum．The filling extends to the siphuncle and makes the entire shell a very solid and compact mass．In another specimen（fig．3）the filling is comparatively slight，and the septa hence have weathered out in reliof from the section and were readily lroken away．

Sections of this species made so as to give the appearance of a centran siphuncle (Plate VIII, fig. 5a) might be taken for A. richthofeni. They can however be readily distinguished by the slight depth of the camerre. In a transverse section of course, the subcircular outline and submarginal position of the siphuncle readily distinguish this species.

Horizon and Localities: This species has been obtained from the Machiakou limestone of the Kaiping basin in eastern Chihli province. It has been found at Tangshan and more doubtfully at Machiakou (Survey expedition). A natural section, apparently of this species, has also been obtained from the same horizon at Wên-Nan, Mon-Yin-Hsien, Shantung (V. K. Ting coll.).

Actinoceras nanum Grabau (sp. nov.)
Plate VII, fig. 8; Plate 1X, fig. 2.
Shell slender, the longest specimen okserved being about 70 mm . in length and 10 mm . in diameter at the basal end. It tapers at the rate of about 1 in 4 . A second specimen (Plate IX, fig. 2) about 45 mm . long, has a basal diameter of 6.5 mm . and tapers at the rate of 1 in 5.75 . A third specimen (Plate VII, fig. . ${ }^{2}$), the most perfectly preserved, has a length of about 18 mm ., its basal diameter is 6 mm . and its rate of tapering 1 in 4.

Siphuncle centran, small, the greatest diameter of the nummuli leing 2.1 mm . where that of the shell is 9.4 mm . ; strongly nummuloidal, contracting at the septa to a diameter of 0.7 mm . Endosiphuncle subcylindrical, about 0.6 mm . in diameter.

Septa gently concave. In the best preserved specimen they are 1.3 mm . apart where the diameter of the shell is 10 mm . and practically the same where the shell diameter is 8.5 mm . In another specimen, (Plate IX, fig. ${ }^{2}$) the septal interval is 1.6 mm . where the shell diameter is 10 mm . and that of the nummuli about 2 mm .

Stereoplasm slightly developed or almost absent. When present, as in fig. 8 Plate VII, it is thickest near the siphuncle, but thins away rapidly before reaching this.

This species is readily recognized by its tapering to a very narrow end which is 6 mm . or less, a diameter found in no other species in these rocks; by the very approximate septa (from 1.3 to 1.6 mm . Where the shell is 10 mm . in diameter) ; and by the minute centran siphuncle, which is smaller than that of any other species known from these rocks.

Horizon and Locality: This species has so far been found only in the Machiakou limestone of Tangshan in the Kaiping kasin, eastern Chihli. It is less common than some of the other species.

Actinoceras curvatum Grabau (sp, nov.)

Plate VIII, fig. (is.

Shell gently curved, with large siphuncle close to the convex side, though not in contact with the shell. The diameter of the siphuncular elements or nummuli, in the only known specimen, is 12 mm . and their length 2.4 mm. giving a proportion of 1 to 5 . They are moderately contracted at the septal crossing su that their narrowed portion is about s mm. in diameter. Diverticula from the endosiphuncle (the latter not exposed in the sepcimen) (xtend nearly to the outermost margin of the nummulus where there appear to le rather widely-spaced mural pures, which are, however, not well shown except now and then in one or another of the numnuli.

There is some variation in the length of the individual nummuli, but no appreciahle change throughout the part of the shell shown, which is alout solm, long. The average length of the nummuli remains the same so far as exposed, but the diameter apparently decreases somewhat apicad, but this can not lee determined with certainty. The width of the shell cannot be ascertained lut judging from the septa preserved, it • could not be less than 20 mm . in the lower part, and probably was 2. mm . The septa are strongly oblique towards the siphuncular side. If the curvature was regular, with a shell width of 2.7 mm., the depth of the septa was cqual to that of two camere.

While the septal distance in the upper part of the shell was presumably that of the nummuli-length, or 2.4 mm . on the average, it was somewhat greater in the earlier part of the shell, where the septa are preserved. There the average is 2.7 mm ., some of the septa being separated by as much as 3 mm .

Stereoplasmic thickening of the septa is moderate, being confined to the upper surface of the septum and occupying one-half of the septal interspace or less. It is irregular, swelling in some parts, and thinning away in others. It seems to be least developed on the inner or concave side. It was apparently hounded above ly a pseudoscptum.

Horizon and Locality: A single imperfect specimen has been oltained by Dr. F. F. Mathieu from the Machiakou limestone of Lincheng, province of Shantung. Though imperfect, it is thought worthy of description, as it is the only curved . Ictinoceras
known from these rocks. The species is placed in the genus Actinoceras rather than Cyrtactinoceras, because of its slight curvature, moderate tapering, and large actinoceran siphuncle. Another smaller specimen with narrower siyhuncle (9 mm . where shell is 15 mm . wide), but otherwise similar, and also showing slight curvature, has been obtained from the same horizon, south of Wên-Nan, Mon-Yin-Hsien, Shantung. (V. K. Ting coll.)

Genus Cyrtactinoceras Hyatt.
This genus, founded by Hyatt, with Cyrtoceras rebelle Barrande as the genotype, was more fully defined by Ruedemann (N. Y. State Museum Bull. 90, 1906, p. 488), who referred to it two species from the Chazy limestone (Middle Ordovician) of the Lake Champlain region in eastern North America. They are rather short and stout cyrtoceracones with highly nummuloidal siphuncle, characterized as in Actinoceras, by stereoplasm which is arranged as obstruction rings or "rosettes" around the septal necks. The cameræ too are filled with stereoplasm, this being very extensive in one of the Chazy species. In the type of the genus, the section is depressed, the septa rather closely arranged, the siphuncle moderately nummuloidal shrinking somewhat in old age, and filled in the middle stages with rosettes. It is near the convex side of the conch, but somewhat variable in position, approaching the center again in old age (Ruedemann).

From curved forms of Actinoceras the species of this genus may be distinguished by their rapid enlargement, this producing relatively short stout shells. The siphuncle of the curved Actinoceras species is also much larger in proportion than is that of Cyrtactinoceras.

Cyrtactinoceras frechi Grabau (sp. nov.)
Plate VIII, figs. 7-10.
Shell a comparatively small breviconic cyrtoceracone of subcircular or somewhat oval section and gentle curvature, the shorter of the two transverse axes in the plane of curvature. The shell tapers at the rate of 1 . in 2.5 in the early stage, having a transverse diameter of 10 mm . at the second septum, below which it is rounded off acutely. Seventeen millimeters above the second septum it has a transverse diameter of 18 mm . while the
shorter axis measures 15 mm . At this point the siphuncle is situated about 4 mm . from the convex side and has a diameter of 4.5 mm . being approximately circular in section. The increase of the shorter axis in another specimen (Plate VIII, fig. 7 cat. no. 2) is from 9 mm . to 13 mm . in the space of 17 mm . giving a rate of tapering of 1 in 4.25 . In this specimen the siphuncle has a diameter of about 4 mm . at the lower end, not changing apprecially throughout. Its distance from the outer margin of the upper end of the specimen is alout 4 mm . but it is only ahout 2 or 2.5 mm . from this margin at the lower end: In a specimen from Chaokouchuang (Plate VIII, fig. 8) with a shorter diameter of about 10 mm . at the base, the siphuncle is 2 mm . from the outside and has a diameter of 3 mm . or a little more. The transvirse diameter here is about 11.5 mm . Fourteen millimeters higher, these diameters are 12 and 15 mm . respectively, giving rates of tapering of 1 in 7 and 1 in 4 respectively. In a sectioned specimen from Shantung (Plate VIII, fig. 10) the diameter of the siphuncle is 4 mm . where that of the shell is 15 mm ., and it is 2.5 mm . from the convex side. In form it is strongly nummuloidal and filled with stereoplasm deposited in rosette form as in Actinucius. There is a narrow sulcentral endosiphuncle.

Septa from 2.6 to 2.75 mm . apart, of moderate curvature, and with comparatively little stereoplasm in the cameræ, this being most extensively developed on the convex side.

This species differs from the American Middle Ordovician (Chazy) species mainly in its excentric siphuncle, and longer camerre in the roung. It has much less stereoplasmic deposit in the chambers than has ('. chomplaincose Ruedemann, and it curves less than does C. boycii Whitfield. A short section of the shell might easily be mistaken for a small species of Actinoccrot.

Horizon and Localities: In the Machiakou limestone of enrly upper Ordovician (Black River) age at Tangshan, Machiakou, and Chaokouchuang, all in the Kaiping basin of eastern Chihli province, (Collections: 'T. C. Wang, H. C. T'an and Y. C. Sun respectively). Also from Chingchuang, Ning-yang district, Shantung province (coll. V. K. Ting).

The specific name is given in memory of the late Dr. Fritz Frech of Breslau Germany, to whom we owe the fifth volume of Richthofen's great work on China, and whose labors have done so much towards increasing our knowledge of the invertelurate fossils of China,

Genus Gonioceras Hall

The presence of the genus Gonioceras in the Ordovician rocks of north Chinn was first suggested by G. C. Crick * in his discussion of the fossils collected by Mr. Samuel Couling, M.A., Editor of the China Review, south of Tsing-tshou-fu (Ching-Chow-Fu) in Shantung. In his plate (fig. B) Crick gives a photographic reproduction of one of the specimens which, if natural size, (the scale is not given) shows an actinoceran shell with apparently empty cameræ 2.2 mm . long, and a strongly nummuloidal siphuncle, the nummuli of which are 15.5 mm . in diameter. He further refers to a rubbing of another specimen, "about 25 centimeters long, displayed in section on the surface of a slab". Commenting on these specimens, he says "although the relative proportions of the parts of the shell, the relatively wide siphuncle and the very shallow chambers, agree fairly well with those of Actinoceras imbricatum Hisinger, sp. from the Silurian (Upper Ludlow) of the Island of Gotland, Sweden, it seems scarcely likely that an example of this species could be so worn down as to expose the siphuncle for a length of 25 centimerers "..** Crick therefore refers his specimen to the genus Gonioceras Hall.

I must confess that the evidence has seemed to me inconclusive, as the specimen might have been an Actinoceras with the siphuncle near one side. Nor is the photographic reproduction given by Crick entirely satisfying, as it leaves many of the characters of the specimen in an indeterminable state, especially the nature of the camerec. A specimen in the Survey collection showing a similarly wide siphuncle and short cameræ, appeared to be related to the form described loy Crick, but this too I was at first disposed to refer to Actinoceras, as aside from the proportions, it seemed to show no very decisive characters differentiating it from other species of that genus which occur in these rocks, except the empty cameræ, a feature not found in any other species of Actinoceras in the Ordovician rocks of China. This led to a more careful study of the specimen, with the result that several of the septa were found to show the true Gonioceras curvatures. This settles the question as to the presence of the genus Cionioceras in the Ordovician of north China, and it lends a strong measure of probability to the correctness of the interpretation suggested by Crick, and to him must be given the credit for the discovery of this unique organism in China, a discovery of very great importance, as already pointed out by Ruedemann. For, as this genus is otherwise only known in the Chazy, Black River and early Trenton of eastern and central North America, extending to the base of the Stones River group in Tennessee, it places beyond the question of a doubt the former intimate

[^21]marine connection of these two districte, a connection which nearly all of the other fossils so far obtained from the highest Ordovician rocks of north China have persistently pointed to.*

The specimen of Gonioceras described below, came from Seng Chuang in NingYang, province of Shantung, about 190 km . (315 li) southwest of the locality where Mr. Couling's specimens (described by Crick) were found. So far then this genus is only known from Shantung but its discovery in Chihli province may now be looked forward to with confidence.

Gonioceras shantungense Grabaut (sp. nov.)
Plate VIII, figs. 11a, b.
cf. Gonincercts sp. Crick. Geological Magazine, New Series Dec. IV. Vol. I. pl. XXII, fig. B, 1903.

Form of shell unknown, but apparently of the usual expanded and thin character of the genus. Siphuncle probably excentric, but the exact position in the shell not known, the only specimen in our possession having apparently been worn before embedding. The siphuncular elements (the nummuli) are apparently uniform or enlarge only very slightly forward. They are 11.5 mm . in greatest diameter in the section shown, which is prolably cut a short distance beyond the central plane, no evidence of an endosiphuncle appearing. From the fact that the transverse section shows only about 4 mm . of thickness for the siphuncle, it would appear that, provided it was circular, its diameter was originally about 1.3 mm . The stereoplasmic filling is distinctly actinoceran consisting of rosettes of olstruction rings at the septal necks. At this point the siphuncle contracts to 7.5 mm .

The septa average 2.4 mm . apart, and the cameræ are without stereoplasmic filling except for a very slight thickening at the points where they become free from the

[^22]siphuncle. Most of the septa are broken off a short distance beyond the siphuncle, but near the base of the section a few of them are found to continue outward, and although they are somewhat broken they show the undoubted rather sharp return curve, so characteristic of this genus. This is shown in the illustration.

In its general form and character this species comes nearer to Gonioceras chaziense Ruedemann* from the middle Chazy limestone of Chazy N.Y. on Lake Champlain (U. S. A.) then to either of the other two known species from the higher rocks. The siphuncle of the Chazy species is however only 7 mm . in diameter while the distance between the septa averages 2 mm . The greatest width of that shell is a little over 70 mm . that of our species can not be ascertained. In the Chazy species each septum rises within the body of the conch to the height of five cameras, before it forms the characteristic return curve. In our species this character is much less pronounced, the septum scarcely rising to the height of one and a half camera, and the angle of recurvature is rather charp, while beyond it the septum continues with a gentle forward concavity. It is at or near the angle of recurvature, that most of the septa are broken away.

Horizon and Locality: The single known specimen came from Seng Chuang, (Shen Tsun) Ning-Yang, province of Shantung, where it was collected by Dr. V. K. Ting. The specimens described by Crick, which may belong to this species (though the fact that one of his specimens was 25 cm . in length, makes this douktful) were collected by Mr. Samuel Couling near Chingchow Fu, Kiaochow, also in the province of Shantung.

Class CRUSTACEA Lamarck
Sub-Class TRILOBITA Walch
Order Opisthoparia Beecher
Family ASAPHIDAE Burmeister
Genus ASAPHUS Brongniart
Asaphus boehmi Lorenz

Plate I, figg. 8, 9.
1906 Asaphus boehmi Lorenz. Beiträge zur Geologie und Palæontologie von Ostasien, II. p. 84, pl. XVII, figs. 4, 5a, 5b.

[^23]Original Description:
" Wir haben hier zweifellos einen echten Asaphus und zwar die engere Gattung Asaphus vor uns, deren Grenzen Fr. Schmidt* umschrieben hat. Die Unterabteilungen Salters ** konnten keine passende Anwendung finden."
"Kopfschild ist nur in einem Exemplar vertreten. Glabella nach vorn birnenförmig verbreitert. An Furchen ist nur eine sehr tiefe und breite Basalfurche an der hinteren Glabella vorhanden. Hinter der tiefen Basalfurche ist eine schmale, flache Occipitalfurche entwickelt. Der zwischen den beiden Furchen gelegene Rand trägt einen kleinen Höcker. Die Augen liegen weit hinten. Durch den charakteristischen Verlauf der Gesichtsnaht bekommen die Wangen das Aussehen von zwei flügelartigen Lappen, die hinten zu beiden Seiten der Glabella liegen. Dic Gesichtsnälste laufen scheinbar vor der Glabella zusammen. Das Pygidium ist in seincr Gesamtform parabolisch. Ein breiter Randsaum bildet die Umrandung. Die Segmentierung ist zahlreich, aber schwer sichthar. Auf den Seitentcilen sind die Pleuren mit unbewaffnetem Auge kaum zu erkennen. Die Rachis hat cine charakteristische Form. In ihrem hinteren Verlauf gleichnässig schmal, verbreitert sie sich unvermittelt nach vorn. Die Schale ist geädert. Diese Skulptur entspricht wohl den Terrassenlinien von Fr. Schmidt.
"Ich nenne diese Art nach meinem früheren Lehrer, Herrn Prof. Dr. Georg Böhm an der Universität zu Freiburg i./Br.
"Ich sammelte diese Fossilien in einem gelblichen mergligen Kalkschiefer hart am Wege etwas unter dem Gipfel des Hoschan. Das Alter der Šchichten ergilt sich durch das Auftreten obiger Trilobitengattung als zweifellos untersilurisch. ***

Two small fragmentary pygidia from Chaokouchuang are referalle to this species. The axis is strongly elevated and broadens rather rapidly in the anterior portion; the sides are concave. The anterior ring is narrow and continued as a distinct but narrow ridge along the anterior border of the limb on either side of the axis. The other axial rings, of which 5 are partly preserved on one specimen, are about twice as wide as the first, separated by narrow and shallow transverse furrows, their shallowness making the annulation of the axis scarcely visible except in certain positions. Lateral furrows of axis rather pronounced. Limb, smooth except for the anterior bounding ridge; doublure of margin rather broad, marked ly irregular longitudinal lines. Entire surface of pygidium finely punctate.

[^24]Measurements: The following are the measurements of the pygidia described and of that figured by Lorenz.

	Chihli Specimens described		Shantung Lorenz type
	a	b	c
Anterior width of pygidium	12.5 mm .	12. mm .	16. mm.
Width of axis at anterior end	3.3 ,	3.5 ,	5. ,
Greatest length of pygidium	?8. ,	8. ",	11.5 ,
Length of axis	?6. ,	7. ,"	8. ",

Horizon and Locality: In the Machiakou limestone of Chaokouchuang in the Kaiping basin, Chihli province (Survey expedition coll.). Lorenz's type came from essentially the same horizon near the summit of the Hoshan in Shantung.

Asaphus sp .
There is at least one other species of Asaphus (or Isotelus?) in the collections from the Kaiping basin, but the material is too fragmentary for description. It indicates, however, a much larger species than A. boehmi. Asaphus? of an indeterminate species has also been recorded by Weller in these rocks near Tsai-Kia-Chuang in Shantung. Other species are found in south China, but these are excluded from the present discussion.

BIBLIOGRAPHY.

Barrande, J. Système Silurien du centre de la Bohême. Praha.
Biedfrmann, W. 1901. Untersuchungen über Bau und Entstehung der Molluskenschalen. Jenaische Zeitschrift für Naturwissenschaft. Bd. 36, pp. 1-164, Taf. I-VI.
Billings, E. 1865. Palæozoic Fossils, Vol. I, Geological Survey of Canada.
Brown, J. Cogarin. 1913. Contributions to the Geology of the province of Yunnan in western China, III. Notes on the Stratigraphy of the Ordovician and Silurian beds of western Yunnan. Records Geological Survey of India Vol. XLIII pt. 4, pp. 327-331.
Clarke, John M. 1897. The Lower Silurian Cephalopoda of Minnesota. Minnesota Geological Survey. Palæontology. Pt. II, pp. 761-812 plates 48-54.
Crick, G. R. 1903. Notes on some specimens of straight-shelled Nautiloidea collected by the Rev. Samuel Couling, M.A. Ching-Chow-Fu, Kiaochow, North China. Geological Magazine, New Series, Decade IV. Vol. X. pp. 481-485, pl. XXII.
Davidson, Thomas. 1865-1870. British Silurian Brachiopoda. Palæontographical Society. Monographs vols. XIX, XX, XXII, XXIV.
Ford, Arthur H. 1sish. Catalogue of the Fossil Cephalopoda in the British Museum. Part I Nautiloidea. London.

Frech, F. 1895. Ueber Palæozoische Faunen aus Asien und North Afrika. Neues Jahrbuch für Mineralogie Geologie und Paläontologie, 1895, Bd. II.*
Frech, F. 1911. Das Silur von China. In Richthofen, China. Vol. V, pp. 1-17, plates I-IV.
Grabau, A. W. \& Shimer, H. W. 1909. North American Index Fossils, Invertebrates. Vol. I. (Protozoa to Gastropoda), New-York.
Grabau, A. W. \& Shimer, H. W. 1910. Ibid. Vol. II (Conularida to Echinoidea). New York.
Grabau, A. W. 1916. Comparison of American and European Lower Ordovicic Formations. Bulletin Geological Socicty of America. Vol. 27, pp. 555-622.
Hall, J. 1ヶti. Palrontology of New York. Vol. I. New York State Geoly_ical Survey.
Hinde, J. G. 1889. On Archæocyathus, (etc.) from Cambrian Strata of North America, Spain, Sardinia, and Scotland. Quarterly Journal of the Geological Society of London, Vol. XLV, pp. 125-148, pl. V.

Vol I.
Kayser, E. 1883. Mittel-und Obersilurische Versteinerungen aus dem Gebirgsland von Tshau-Tien (China). In Richthofen China Vol. IV. article 3. pp. 37-49, plates III \& IV:
Lormanz, Th. 1906. Beiträge zur Geologie und Palæontologie von Ostasien, unter besonderer Berücksichtigung der Provinz Schantung in China. II Palæontologischer Teil, mit 3 Tafeln u. 55 Figuren im Text. (pp. 53-108 pls. IV-VI). Aus Zeitschrift der Deutschen Geologischen Gesellschaft. 1906.
Mansuy, H. 1912. Paléontologie, in Étude Géologique du Yun-nan Oriental par J. Deprat et H. Mansuy, $2^{\text {e }}$ Partie. Memoirs du Service Géologique de l'Indochine. Volume I. Fascicule II, Hanoi-Haiphong, 1912.
Martelli, 1901. Fossili del Siluriano inferiore dello Schensi. Bolletin della Soc. Geol. Ital. 1901.*
Pfllizzari, 1913. Fossili Palæozoici antichi dello Scensi (Cina). Rivista Italiana di Paleontologia. Vol. XIX. 1913.*
Richthofen, F. von. 1883. 1911. China. Vols. IV \& V. Berlin.
Roemer, Ferdinand. 1876. Lethæa geognostica, oder Beschreibung und Ablildung der für die Gebirgs-Formationen bezeichnendsten Versteinerungen, I Theil, Lethæa palæozoica, plates.
Roemer, F. \& Frech; F. 1880-1897 ibid. Text.
Ruedemann, R. 1904. Structure of some primitive cephalopods. Annual Report New York State Palæontologist 1903. N.Y. State Museum Bulletin 80, pp. 2Э6-384. Pls. 6-13.
Ruedmann, R. 1906. Cephalopoda of the Beekmantown and Chazy Formations of the Champlain Basin. New York State Museum. Bulletin 90, pp. 393-605, 38 plates.
Steinmann, G., 1889. Ueber Schalen- und Kalksteinbildung. Bericht der Naturforschenden Gesellschaft zu Freiburg. Vol. 4.
Stempell, Walter, 1900. Ueder die Bildungsweise und das Wachstum der Muschelund Schneckenschalen. Biologisches Centralblatt, Band XX, pp. 595-606; 637644; 665-680; 698-703; and 731-741. (With extensive literature references.)
Taylor, T. Griffith. 1910. The Archseocyathine from the Cambrian of South Australia, with an account of the morphology and affinities of the whole class. Memoirs of the Royal Society of South Australia. Vol. II, pt. 2, pp. 1-188, 16 plates \& text figures. Adelaide.

[^25]Ulrich, E. O. \& Scofield. 1908. The Lower Silurian Gastropoda of Minnesota. Minnesota Geological Survey, Palæontology Part. II.
Verneuil, E. de. 1845. Palæontologie (of Russia) in Murchison, de Verneuil and Kayserling, Geology of Russia. Vol. II.
Weller, Stuart. 191?. A report on Ordovician Fossils collected in Eastern Asia in 1903-04. In Willis, Research in China, Vol. III, pp. 279-294. plates 25, 26.
Winchell, N. H. \& Schuchert Charles. 1893. The Lower Silurian Brachiopoda of Minnesota. Minnesota Geological Survey. Palæontology, Part III. No. 1.
Yabe, H. \& Hayasaka, I. 1920. Palæontology of Southern China. Geographical Research in China 1911-1916, Reports, pp. 1-221. Atlas of 28 plates. Tokyo Geographical Society.

List of Chinese Localities referred to，arranged Alphabetically under Provinces． （See Map Fig．20．）

Chihli 直 隸

（＇har Kou Chuang	趙各 莊
Ching Hsing	井陘
Huo Irı	獲 鹿
Ku Slan	鼓山
Liang Chia Shan	亮家山
Ma Chia Kou	篤家溝
Pei Lin Tze	北林甬
Shih T＇ou Chiang	石頭江
Tang Shan	房山
Yeh Li	冶里

Manchuria 東 三省
Hsiau 天̈rrr 小甫

Shantung 山東

C＇hang Ching	長 青
（＇hing Chow Fu	青州府
Ching Chuang	青 庄
IIn slan	胡 4
Lin Ch＇eng	暚城
Ion Yin	蒙䧝
Ning Yang	窝陽
Shen Tsun（reng（＇huang）	洗村
Tai An	泰 安
Tsai Kia Chuang	蔡家莊
Wên Nan	汶南

Honan 河南
Shê Hsien
涉 䅫
Hupeh 湖 北
IIsing Shan Hsien
與 山 縣
Hu Chi
戶 溪
No Lu Ping
Pan Tze Ya
播子玛

Boundaries of Provinces _- Railroads and Stations Great Wall

- Ordovician Localities OOther important Cities
so $\frac{\text { scale of Miles }}{\text { so }}$
Fig. 20. Map, of North-eastern China, showing the lowalitien where Ordovician fosils have heen found. (Fee the livt on the preceding page.)

EXPLANATION OF

PLATE I
(1) 101

PLATE I.

Fig. 1. Acchereryathus chilhicinse Grabau p. 1ㄹ1a. Mold of part of interior of caliculum with weatherel section near the upper edgeof the caliculum. Natural size.
1b. Photograph of partial section of caliculum 50 mm . below preceding; nearly natural size. The right and left sides are reversed with reference to fig. 1a. Lower Ordovician Peilintze limestone, Shih-Mun-Chai, Chihli. (Coll. F F. Mathieu, Cotype (i. S. Ch. Cat. No, 75).
 p. 12
Photograph of polished section of a compressed caliculum same horizon and locality. Natural size. (Cotype (oll. F F Mathicu, (i. S' Ch. (at. No. Tif).
Fig. 3. Archanoynthus chilliense Grabau p. 12
Ba. Photograph of thin section of a mearly cireular caliculum. Natural size.
3b. A small portion photographically enlarged $\times 10$; same horizon and locality. (Cotrpe Coll. F. F. Mathieu, (\%. S. Ch. Cat. No. 98) .
Fig. 4. Orthis culligitmmen var. withmbraniks von Buch (de Verneuil) p. 1. 4ia brachial-, 4t, pedicle-, te side-view of al small fragmentary specimen $\times 3$; Machia- kou limestone, Chao-Kou-Chuang, Chihli province. (Cr. S. Ch. Cat. No. (1)).
Fig. 5. Oithix cellighmmutar. rithrmlmites von Buch (de Terneuil) p. 1.
Ta pedicle-, iob brachial-,5e lateral-,5d frontal-views of a larger, somewhat diutorted and more nearly complete specimen. \times ㅇ. (In td the upper valve is the hrachial, which appears as the deeper of the two becaluse of the position in which the specimen is drami). Same horizon and locality. (it. S. Ch. ('at. No, 93).
Fig. 6. Strophumente cf. incurath (Shepard) p. 17
Part of pedicle valve, with outline restmen $\times 3$.
Upper Ordovician, Machiakou limestonc, Chao-Kon-Chuang. (i. S. Ch. (at. No. 109).
Fig. 7. C\%modruta symmintion (irabatr. 1. $1!$
Interior viow of a right valse, slowing the hinge lina, (with the teeth somewhat too clearly represented), the musular sears and anterior muscular ridge The ventral margin is imperfect. Enlarged twice Machiakou limestone, Tangshan, Chihli. (Holotype (f. B. Barbour Coll. (i. S. ('ll. Cat. No. it)
Fig. 8. Asti,hus behmi Lorenz p. 93
An imporfect peridiam, enlarged $\times \underline{2}$. showing broad ringed axis, and concave marginal rim. Marhiakou limestone, Chao-Kou-Chnang, Chihli. (G. S. Ch. Cat. No. 92).
Fig. !. Asphn., brrlmi Lorenz p. 1:3 Another presidium from the same horizon and locality as the preceding but exfoliated, showing narrow axis, $\times 2$. (G. S. Ch. ('it. No. 110).

Fig. 10. Chilhionerus mullani (irabau p. 48

A pertural view of the siphuncle shown in the right hand figure of Plate V. to show the main and lateral alveoli. The specimen is slightly crushed, and is weathered. Lower Ordovirian Prilintze limestone, Shih-Mun-Chai region, Chihli. ((i. S. ' 'h. ('it. No. 111).

PALEONTOLOGIA SINICA
Grabau: Ordovician Fossils of N. China
Pl.I

EXPLANATION OF

PLATE II

(I) 103

IHA'TE II.

Oiducician (itestroperlu and ('ephaluporla (11-1.'); Lonei Ordovician: Peilintie and Lianychiashun Limestones; Liper Optoriciun: Ihahiakon Limestone.
 1. 20Adult specimen, natural size, embedhed in tock (which is not fully represented).The surface is weatheren. Liangehianan limestonc (Lower Ordovician) Liang-
Fig. シ. Ophilitu plum (irabau. p. 20
 maly apparent, and due to weathering. Liangehiashan limestone (Lower Ordovic- ian) Liang-Chia-Shan, Chihli. Coml. Fr. IN Mhicu. (Cotype (i. S. Ch. Cat. No. (i3).
 1. 22
Ba Top view of amall perimen with lax final whorl, enlarged twice. :'b side view of the same, $\times 2$, I'eilintze linestone, Pei-Lin-Tze, Shih-Mun-Chai, Chihli. Coll. F. F. Mathieu. (Cinye (i. S. ('h. ('it. No. 86).
Fig. 1. Ipheleter sirmmoser (irabau 1). 22
Cimbilical riew of a fragment of the whorls of a young specimen $\times 2$. Peilintze limestone, Pei-Lin-Tze, Chihli. Coll. F. F. Mathieu. (Cotype (i. is. Ch. Cat. No. 8 万).
Fig. i. (1phikter s'r"cmosn (iraban 1. 22
Natural section of an adult specimen, natural size. Feilintze limestone. Pei-Lin-Tze, Chihli. Coll. F. F. Mathicu. ('otype (i.s. Ch. Cat, No. !s).
Fig. if. Ophilcten stmmmosen (iratrau 22
A much weathered section of an adult specimen. Natural size. Peilintze limestone, Pei-Lin-Tze, ('hihli, Cohl. F. F. Mathien. ('ntype (i. S. ('h. ('at. No. S9).
Fig. 7. Eecthioph pras linshomensis (imaban. p. 23
Ta summit view of the holotype natural size. 7b Umbilical vitw of the same, natural size. 7 c Cross-section of the shell to show form of whorls and degree of embracing. Machiakou limestone, Ku-Shan, Hwo-Luh-IIsien, Chihli. (Holotype G. S. Ch. ('at. No. 96).
Fig. S. Eicrylimplrms sinensis (Frech). p. 23
Sa-c. Summit, lateral and monbilical riews of a characteristic specimen from Nei-Ya-Shan, neal Ichang, Holeh, South China, (For comparison with E. kushuncusis.) Sil section uf the same to show form of whorls and excessive embra- cing. Middle? Ordovician. (i. Lingford Smith Coll. ((i. S. Ch. Cat. No. 97).
Fig. 9. Eremhmmphums tangrincuensis (irabau. 24
Worn under surface of the partly exposed holotype. Natural size. Machiakou limestonc, Tang-Shan, Chihli. (Holotype G. S. Ch. (at. No. 6).
Fig. 10. Salpingmtmmu trivili (iraban. p. 3.5 a top, b side, and canterior riows of the type and only known specimen which is crushed and partly lroken. Natural size. (Holotype. (i. S. Ch. Cat. No. siz).
Fig. 11. (hihlincerts nathumi (iraban... p. 18
An oblique section through the upper part of the endocone of the specimen fig. 13 on ph.IV. (For location see text lig. (ia-b, p. If). Peilintze limestone, Shih-Mun- Chai region, Chihli. F. F. Mathieu Coll. (Cotype G. S. Ch. Cat. No. 110).

Fig. 12. Chihlioceras "atherni Grabau. .p. 45
Another section through the same specimen parallel to the preceding and about 2 mm . farther dorsad. The section is shown on the umming cut surface of the rock and its position is therefore reversed as here viewed. (For lucation see text fig. 6, line c-d, also text Figs. 8,9 which show the two recimis in the same orientation). Peilintze limestone, Shih-Mun-Chai region, Chilali. F" F. Mathieu Coll. (Cotyme (i. S. Ch. Cat. No. 111). (See, also, Pls. I ' (t') .

Fig. 13. Chihliocerts rhingmongtmocuse (irabau.
13a. View of the type from the upper or dorsal side. Natural size. The specimen is reversed in position as compared with the wher figures, (o) show thw mentian alveolus, and the imer surfaces of the lateral alveoli. (Fin restored sections see text figures 14-16).
13 b . Side view of the same.
Peilintze limestone, Pei-Lin-Tze, Shih-Mun-Chai region, eastern Chilli. (Ifulotype, Coll. by F. F. Mathicu, (i. S. Ch. (at. No. 113).

explanation of

PLATE III

PI．ATE III．

Prowing b b K．（＇．I．in（劉光城）
Fig．1．Lophestipiat momixi（irabau p． 25
A nearly emmplete characteristir specimen，enlarged twice．Machiakou limestone， Tangshan，Chihli．（Cotye．（i．S．Ch．Cat．No．S2．collected hy Messrs．Morris， Barbour and Terrill）．
Fig．2．Iophnopira morrisi（imathu p． 25
La．Tiew of the spire from an mblique angle，to show the position of the peripheral hand，and the growth－lines upon the shoulder $\times 2$ ．
2b．A portion of the shoulder of the ultimate whorl enlarged six times to show the nature of the peripheral band and the growth lines．Machiakou limestone． Tangshan，C＇hihli．（Cotype，（i．S．Ch．Citt．No．厄1；Coll．（i．B．Barbour）．
Fig．？．Jompmapitu pultulliformis（iraban p． 26
Spire of a characteristic specimen $\times \ddot{3}$ ，viewed slightly from above，（with resulting foreshortening，，to show the peripheral band．Machiakou limestone，Tangshan． C＇otype．（i．A．＇lli．（＇it．No．I1；＇oll．（i．B．Barbour）．
 p．2f
Portion of a spire，lateral view $\times 2$ ．showing amount of embracing，form，and strong luwer carina．Machiaknu limestone，Tangshan．（Cotype，G．S．Ch．Cat． No． 41 ；Survey Collı．
Fig．\therefore ．Laphespirn loorhifurmis limbau p． 27
－n．，ih．opposite sincs of the holoty＂，showing tlo trochiform spire and strong peripheral carina．$\times 2$ ．Machiakon limestone，Tanswhn．（Holotype，（i．S．Ch． Cat．No．40）．
Fig．ti．Lophospirte uruth（iralau p． 27
An average specimon，with a small mass of matrix adhering and the basal portion imperfect $\times 2$ ．Nachiakou limestone，Chao－Kou－Chuong．（Cotype，Mr．S．Ch． Cat．No．47）．
 ก． 28
A typical chermen from the Marhiaknt limestome at Char－Kou－Chuang．Chihli．
 28
The Indotype，slowing the lax whorls entirely free at the aperture，the strong subsutural ridge and marked concavity of shoulder $\times 2$ ．Machiakou limestone， （＇hao－Kou－Chuang．（＇hihli．（Holotype，（i，S．Ch．C＇at．No．t！？）．
 ．p． 9
View of the type，attarched to rock，twice natural size．Machiakou limestone． Tangshan，Chihli．（Itolotyr．（：S．Ch．（＇at．No．：33）．
Fig．10．Laphompim whertian（itabrat p． 30
The type specimen，embedded in rock and partly worn so as to show the internal mold x ：Machiakna limestone．Tangisum，Chihli．（Ci．S．（＇h．Cat．No． 37 ）．
Fig．11．I＇m，mispiree dowilnii（irabau． 81
The typ suecimen，twice enlarged．The aperture is restored．Machiakon limeatone，（lian－Kou－Clmang，Chilili．（Holotype，（i．S．（＇h．（＇al．No．In）．

Fig. 12. Pagodispira dorothca Grabau. p. 32

The type specimen, twice enlarged. Machiakou limestone, Tangshan, Chihli. (Holotype, Coll. by Geo. B. Barbour, G. S. Ch. Cat. No. 50).
Fig. 13. Pagodispira dorothea var. lara Grabau... 32 The type specimen twice enlarged. Machiakou limestone, Chao-Kou-Chuang. (Holotype, G. S. Ch. Cat. No. 13).
Fig. 14. Liospira barbouri Grabau... 33
14 . Side view of a nearly perfect high-spired form $\times 2$.
14b. Umbilical view of same. $\times 2$. Machiakou limestone, Tangshan, Chihli. (Cotype, Coll. by (f . B. Barbour. (r . S. Ch. Cat. No. 42) .
Fig. 1., Licspira barbouri Grabau...
15a. Side view of an imperfert low-spired shell. $\times 2$.
15 b . Umbilical view of same $\times 2$.
15c. Enlargement of part of the final whorl to show lines of growth, peripheral band, and marginal noteh. $\times 4$. Machiakou limestone, Tangshan, Chihli. (Cotype, Survey Collection G. S. Ch. Cat. No. 43) .
Fig. 16. Iormotoma Ioquieri Grabau.. 34
16a. The type specimen, enlarged four times.
16b. Two of the whorls still farther enlarged. ($\times 8$). Liangchiashan limestone Shih-Mun-Chai region, eastern Chihli. (Holotype, Coll. F. F. Mathieu (i. S. Ch. Cat. No. 99) .

Fig. 17. Fusispira sp..
A natural section in the rock; natural size. Peilintzc limestone, Shih-Mun-Chai, eastern Chihli. Coll. F. F. Mathieu. (G. S. Ch. Cat. No. 90). (This section is weathered to such an extent, that the back of the whorls is shown beyond the umbilicus, giving the sheil a sinistral appearance).
Fig. 18. Fusispira sp... 36
A natural section in rock; natural size. Peilintze limestone, Shih-Mun-Chai,
eastern Chihli, Coll. F. F. Mathieu. (G.S. Ch. Cat. No. 89).

EXPLANATION OF

PLATE IV
(1) 111

PI．ATE IV．

 stones；Cpuer Oidorician：－Machiakiou Limestone．

Drautings by K．C．Liu（劉光城）

Fig．1．Proteroctmeroctras mathime（isabau．
1a．Lateral view of a weathered specimen showing part of the siphuncle，and several camera．Natural size．
1b．End view of the same sperimen showing aperture of endosiphocone．Natural size．
1c．Section of the same showing form and position of siphancle．Natural size． Peilintze limestone，Shih－Mun－Chai，near（hingwangtao，eastern Chihli．（Cotype， Coll．by F．F．Mathieu，（i．S．Ch．Cat．No．100）．
Fig．－I．I＇roterocam roceras mathioni（iralmu． \qquad
2 ．Tiew of a small purtion of the shell cmbedled in ruck，showing llattened siphuncle and camer＂＇，natural size．
2 l ）．Lnd view of the same，natural size；
2c．A portion of the shell and adjoining part of the siphuncle enlarged to show the relation of the siphuncular fumels to the outer shell on the rentral side．Peilintze limestone，Shih－Mun－Chai，near Chingwangtao，eastern Chihli．（Cotype，Coll．F． F．Mathieu，（r．S．Ch．（at．No．101）．

Fig．4．Camoroceras stypiforme Grabau． p． 39
4a．The siphuncle of a young or apical prortion of a shell，showing the rate of tapering and oblique annulations．Enlarged twice．
1b．Enlargement of the broken smaller end of the same specimen showing the Hat rentral side，the endosiphouleon，and an older endosheath with open lumens remaining；\times 1．Lianghialmamestone（Lower Ordovician），Liang－Chia－Shan， Shih－Mun－Chai，eustern Chilhi．（Cotıle，F．F．Mathieu，（i．S．Ch．Cat． Nu．10：）

ia．Ventral riew of an older portion of the siphuncle，showing the ventral saddle formed by the stpta．Natural siza．
5b．Limer，and ic．lower ends ur the fragment enlarged $\times \because$ to show the endosiphoco－ leon．Li：ngchiashan limertme，Shih－Vun－Chai，near Chingwangtao eastern Chihli． Lower Ordoricim．（Cotyle，Coll．F．F．Mathieu，（i．S．Ch．Cat．No．104）．
lig．li．C＇umbrareras stmifirne（iralaun． p． 39
6a．Lateral view of a silicified fragment of the siphuncle，of a more mature portion than that representel ly figs． 4 \＆showing portions of the selta adhering $x \because$.
6b．Upper and lic．lower ends of the fragment，showing the last endosheath，its continuation in the endosiphocoleon and indications of older sheaths $\times 2$ ．Liang－ Miashan limestone，Liang－（hia－Shan Shih－Mun－Chai，near Chingwangtao，eastern （lhihli．（Cotype，（oull．F．F＇．Mathicu，（i．S．Clı．（＇at．No．10i）．

Ta．View of the type precimen anexpert on the rock surface．Natural size．

7b. Lateral view of the same, the left hand side is attached to the rock. Natural size. Yehli limestone (Lower Ordovician), Yeh-Li, near Ma-Chia-kou, Chihli. (Holotype, Y. C. Sun Coll. G. S. Ch. Cat. No. 24).
Fig. 8. Suecoceras attenuatum. Grabau p. 41
Apical portion of the siphuncle, showing rate of tapering. Natural size. Yehli limestone, Yeh-Li, Chihli. (Cotype, Y. C. Sun Coll. G. S. Ch. Cat. No. 20).
Fig. 9. Suecoceras attenuatum Grabau p. 41
Silicified and partly broken specimen referred to this species, showing the last endosiphosheath, and its excentric position. Natural size. Yehli limestone, Yeh- Li, Chihli. (Cotype, Y. C. Sun Coll. ('. S. Ch. Cat. No. 22).
Fig. 10. Vayinoceras tsinancns, (irahau 41
10a. Ventral view of siphuncle, showing the strong saddle made by the septal necks. Natural size.
10b. Lateral view of the same, showing obliquity of septal necks. The left hand side is attached to the rock. Machiakou limestone, Tangshan, Chihli. (Holotype (i. S. Ch. Cat. No. 25).
Fig. 11. Piloceras platyocutrum Grabau. 4211a. Natural section of the siphuncle, showing the excentric endocone with flattenedventer; the endosiphuncle with its terminal projection (this is not as large as hereshown, some rock adhering which can not readily be separated), and the crystallinefilling. The specimen is either a young form or the endocone extends furtherapicad in this specimen than in others (see fig. 12). It is filled with rock matrixenclosing foreign material.
11b. Side view of the same showing faint constriction at commencement of annulations. Natural size. (The constriction is slightly over-emphasized owing to the position of the specimen).
11c. End view of the same, showing position and form of endocone. Natural size. Liangchiashan limestone, Shih-Mun-Chai region near Chingwangtao, eastern Chihli. (Cotype, F. F. Mathieu, Coll., G. S. Ch. Cat. No. 108).
Fig. 12. Piloceras platyventrum Grabau.
12a. Natural section of a siphuncle of a large and older specimen of subcircular crosssection. The section is transverse to the dorso-ventral diameter but somewhat oblique. The endocone with filling of rock-matrix, and the crystalline filling of the earlier part with indications of older sheaths are shown. Natural, size.
12b. Side-view of the same, showing subeylindrical outline, with the oblique amulations, which converge in a low broad saddle on the venter (right side). The lower part is fractured, showing complete filling with stereoplasm or organically deposited lime. Older sheaths are indicated in this fracture by dark lines. Natural size.
12c. End view (upper) of the fragment, showing the very slight flattening at this stage of the endocone on the ventral side, which is the center of the convex surface (top side of fig. 12c, right side of fiig 12b), as shown by the converging annulations. The thickness of the lime-filled portion of the siphuncle is slightly greater on the venter than on the sides. Liangchiashan limestone, of Liang-Chia-Shan Shih-Mun-Chai region, near Chingwangtao, eastern Chihli. (Cotype, F. F. Mathieu, Coll. G. S. Ch. Cat. No. 109).
Fig. 13. Chillioceras nathani Grabau p. 48
Ventral aspect of a typical specimen partly worn, but showing the endosiphuncle in the lower part. (Sections of this specimen are shown in figs. 11 \& 12 of pl. II, and a reconstruction in text-figures 2 to $6 \mathrm{pp} .45-46$) Peilintze limestone near Chingwangtao, Chihli. (Cotype, F. F. Mathieu, Coll., (r. S. Ch. Cat. No. 110). (See also Plate V. which shows the upper side of the same slab on the under side of which this specimen occurred).
.

EXPLANATION OF

PLATE

(土) 115

PLATE V．

Lorcr Ondocician Ceplalopods：－Peliutze Limestone．

> Drautiny: by K. (. Li"l (劉光城)

Chihliveeras muthani（irabau p． 48
A group of three individuals，natural size，all with their upper or dorsul surfaces exposed， and all more or less worn．The rock has also been subject to slight deformations；two fracture lines with slight faulting are shown，the fractures having been filled by calcite veins．The left hand specimen shows only a portion of the blade，but the central one shows a large part of it．The lateral alveoli in this specimen are not preserved，not extending back so far．They are however shown， though in a somewhat crushed condition，in the right hand specimen（see the front view of this on plate I．fig．10）．There is a difference in the rate of tapering of the two most perfect specimens， also in the annulations，and perhaps，though this can not be said with certainty，in the conforma－ tion of the endocone．More perfect material may demonstrate，that two distinct species are represented．

On the underside of this rock－mass occurred the specimen of this species figurcd on phate IV fig．13，and the sections of which are shown on plate II figs 11 iv 12．This specimen lay in the same position as those here shown so fur as the dorso－ventral surfaccs were concerned，and therefore， being on the under side of the slab，exposed the ventral side．Its longitudinal axis was however transrerse to those of the specimens here shown．In its detailed character it corresponds closely to the right－hand specimen of the group on this plate．As it is also the specimen which has furnishech， in its sections，the details of internal structare，from which the models（Text figs 2 to 5）are constructed，it must be considered the genotrpe，in cave the specimens here shown prove to represent distinct ruccies．The middle one in that case will be anew species．

The outer zone of the middle specimen is formed apparently by a succession of endosheaths which were closely crowded in the apical part of the siphuncle．The inner part，become porous from weathering，represents a solid mass of stereoplasm（organically deposited lime）apparently without further endosheaths until the final one is reached．

Peilintze limestone，Pei－Lin－Tze，Shih－Mun－C＇hai region near Chingwangtao，castern Chihli． （Cotype，Collected by F．F．Mathieu and presented to the collection of the（icological Survey of （＇hina，（＇at．No．111；．Sue further plates I，II \＆IV．

PALEONTOLOGIA SINICA

EXPLANATION OF

PLATE VI
(1) 117

$$
\begin{aligned}
& \text { PLate VI. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Mroneings by K. C. Li" (劉光城) }
\end{aligned}
$$

Fig．1	Fragment of the small end of a shell with rounded annulations．Natural size， Machiakou limestone，Pei－Tou－Tze（near Chao－Kou－Chuang），Chihli．（Cotype，G． S．Ch．Cat．No．2S）．
Fig． 2.	Living chamber（without septa）of an immature iudividual，with sharp annulations． Natural size，Machiakou limestone，Pei－Tou－Tze（Kaiping basin），Chihli．（Co－ type，Cr．S．Ch．（＇it．No．2！1）．

 shown a portion of what was probably the living chamber．The surface here shows very fine concentive strix（see fig．t）．The lower part，which appears to be part of the same sperimen does not preserve the stria．The prition of the two fragments． and the form of the smaller one suggest that the shell was curved．Natural size． Matkiakou limestme．Chao－Kou－Chuang，（hihli．（Cotype，（i．A．Ch．Cat． No．10．${ }^{-}$
Fig．4．（＇yecturriws？peitmeternse（irabau p． 63
Enlargement of part of surface of figure．3，（ $\times \therefore$ ．$)$ to show the fine concentric strici．
 p． 66
5a．Lungitulinal section of a large specimen，not showing siphuncle，but showing pseudosepta and stereoplasmic filling．Natural size．
it．Cross section of the same．Natural size．Machiakou limestone，Tangshan．Chihli． （Colype，（i，S．（＇h．（＇at．No，is）．
Fig．6．Sterenplasimmer rus psenlose flutum（irabau p． 66
fia．Longitudinal section，showing lepth of septa，pseudosepta，and filling of stere－ وhasm．Natural size．
（ib）．（russ－sedion of same．Natural size．Machiakon limestone，Ning－Yang，Shantung． （Cotype，（i．A．（＇ll．Cat．No．it）．
Fig． 7 S＇meoplamocerns psenduscptatmm（irabau p． 66
A natural section，weatheren，showing the septa，pseudosepta and excentric siphuncle．The strongly nummuloidal character is shown in the lower part and the non－Actinoceran type of filling in the upper．Natural size．Marhiakou limestone， Chao－Kou－Chuang，（hihli．（Cotype，Survey Expedition Coll．．（i．S．Ch．Cat． No．78）．
 68A natural section in the rock，slowing narrowly nummuloidal siphuncle，psedn－

EXPLANATION OF

PLATE YiI

(I$) 119$

PLATE VII．

Upper Ordovician Cephalopods：－Marhiakon Limestone．

Diazings by K．C，Liu（銐光城）
Fig．1．Actinoceras richthofeni Frech
An average adult individual weathered so as to show siphuncle．The specimenp． 75probably represents a little more than half the original length．Natural size．Machiakou limestone，Tangshan，Chihli．（T．C．Wang Coll．G．S．（ih．Cat．No．．5）．
Fig．2．Actinoceras riclethofeni Frech p． 75
Portion of a polished rock surface showing the apertural end of the siphuncle in section．The gradual thickening of the septal rosettes is shown．Also a portion of the camerate part of the shell is shown．Natural size．Machiakou limestone， Huo－Luh，Chihli．（C＇oll．Miss Clarke；（i．S．Ch．Cat．No．13）．
Fig．3．Actinnceras richthofoni Frech p． 75
A portion of a weathered section of the siphuncle，showing the rosettes around the septal necks and the nature of the endosiphuncle and its diverticula．Fnlarged three times．Machiakou limestone．Tangshan，Chihli．（T．C．Wang coll．，C．S． Ch．Cat．No．5）．（See also plate IX）．
Fig．4．Ictinoreras tani（irabau p． 80
4a．Longitudinal section showing open endosiphuncle．Natural size．
4b．Transverse section．Natural size．Machiakou limestone，Kushan，Huo－Luh－Hsien， Chihli．（Cotype，（i．S．Ch．Cat．NTo．69）．
Fig．5．Actinoceras telli＇rabau p． 80
The lower end of a typical specimen slowing blunt apical portion，rate of tapering and，in upper part，septa and siphuncle．Natural size．Machiakou limestone， Tingshan，Chihli．（Cotype，Coll，Messrs．Morris，Terrill \＆Barbour，G．S．Ch．Cat． No．26）．
Fig．6．Actinoceras tani Grabau． p． 80
Natural weathered section，showing siphuncle with part of endosiphuncle exposed， and the nature and amount of the stereoplasm in the camere．Machiakou lime． stone，Ma－Cliaia－Kou，Chihli．（Cotype．H．C．T＇an coll．G．S．Ch．Cat．No．1）．
Fig． 7 Actinnceras tan（irabau p． 807a．Apical portion of a characteristic shell，showing form，slight constriction andsutures．Also the large subconical initial chamber．Natural size
7b．Apical view of the same slowing the scar of the siphuncle with its swollen rim，situated subcentrally at this end；at the upper end of the fragment the siphuncle isstrongly excentric．Natural size．
Fr．A single nummulus of the siphuncle，with surrounding septal portion enlarged \times4，to show the mural pores on the periphery．Machiakou limestone，Tangshan．（Cotype，Coll．Messrs．Morris，Terrill and Barbour，（i．S．Ch．Cat．No．16）．（Seefurther，plate IX）．
Fig．8．Actinoceras namum（irabau p． 87
Natural section of the apical portion of a typical specimen，showing the small siphuncle with its endnsiphuncle，the septa，and rate of tapering．Natural size Machiakou limestone，Tangshan，Chihli．（Holotype，T．C．Wang Coll．（i，S．Ch． Cat．No．8）．（See also plate IX）．

EXPLANATION OF

PLATE ViII

PLATE VIII．
 Upper Ordnvician（＇ephatojoda：－－Machiakou Limestone．
 > Drauings by K. C. Li" (劉光城)

 Dretuings by K．C．Li＂（劉光城）

 Dretuings by K．C．Li＂（劉光城）}
Fig．1．Actinoceras coulingi（irabau p． 82A natural section upon the rock surface，somewhat weathered，and showing thesiphuncle，irregular septa，and filling of cameræ by stereoplasm．Natural size．Machiakou limestone，Hsi－Hsien，Honan．（Cotype，A．C．Taun coll．，G．S．Ch．Cat．No．4）．
Fig．2．Actinoceras coulingi Grabau p． 82
Polished section of a characteristic specimen，showing the siphuncle and nature and extent of filling of cameræ．Natural size．Machiakou limestone，Ma－Chia－Kou， Chihli．（Cotype，H．C．T＇an coll．G．S．Ch．Cat．No．27）．
Fig．3．Actinoceras suanpanoides Grabau p． 84

3a．Somewhat oblique polished section showing depth of camerre and their filling，and，
in the lower part，the siphuncle．The rate of tapering appears abnormally great
owing to the oblique direction of the section．Natural size．
$3 b$ ．Transverse section of upper end．Machiakou limestone，Tai－An，Shantung． （Cotype，G．S．Ch．Cat．No．－iB）．
Fig．4．Aclinnceras mmminnoides（irabau
4a．Polished section，showing the characteristic siphuncle，rate of tapering of shell，and filling of camers．

4b．Transverse section of same showing excentric position of siphuncle．Machiakou
limestone，Shantung．（Cotype，（r．S．Ch．Cat．No．54）．（See further plate IX）．p．st
Fig．5．Actinoceras sulmarginale Grabau
5a．Polished section through the siphuncle showing distant septa with cameræ largely filled by stereoplasm．Also part of the endosiphuncle．Natural size．p． 86
5b．Transverse section of a part laterally displaced by a small fault，showing size andsubmarginal position of siphuncle．Natural size．Machiakou limestone，Tangshan，Chihli．（Cotype，（i．S．Ch．（＇at．No．Sit）．（see also plate IX）．
Fig．6．Actinoceres curvatum Grabau p． 88
A weathered specimen on rock showing curved form，septa with partial filling of camere，and siphuncle．Natural size．Machiakou limestone，Lincheng，Shantung． （Holotyye，F．F．Mathieu coll．，G．S．Ch．Cat．No．77）
Fig．7．Cyrtartinoccias frechi（irabau p． 89
A weathered fragment near the apical end，showing siphuncle and septa，the camere scarcely obstructed by stereoplasm．The slight curvature scarcely appears in this view．Natural size．Machiaknu limestone，Tangshan．Chihli．（Cotype，T．（＇． Wang coll．G．S．Ch．Cat．No．2）
Fig．8．Cyrtactinoceras firchi Crabau． p． 89 A small fragment near the apical end，showing sutures．Enlarged $\times 2$ ．Machiakou limestone．Chao－Kou－Chuang，（＇hihli．（Cotype，G．S．（＇h．（＇it．No．88）．
Fig．9．Cyptretinoceras fiechi Grabau p． 899a．An apical portion somewhat weathered．Natural size．$0 b$ ．Section of same，showing excentric siphuncle．Natural size．Machiakou limestone，Shantung．（Cotype，（i．S．Ch．Cat．No．66）．

Fig. 10. Cyrtactinoceras frechi Grabau
A polished section showing part of the curved siphuncle. Natural size. Machiakou limestone, Ching-Chuang, Ning-Yang, Shantung. (Cotype, V. K. Ting coll. G. S. Ch. Cat. No. 72).
Fig. 11. Gonioceras shantungense Grabau. p. 92

11a. Polished section of the holotype and only known specimen. Natural size. The section shows the siphuncle, empty camer x and incomplete septa. In the lower right hand portion the lateral continuation of the septa is shown. Machiakou limestone, Seng-Chuang, Ning-Yang, Shantung. (Holotspe, V. K. Ting coll., G. S. Ch. Cat. No. 10).

11 b . The lower part of the same specimen enlarged twice to show more fully the geniculated portion of the septa.

EXPLANATION OF
 PLATE IX

(I) 125

PLATE IX．

> Crphalupods from the Early Cpper Ordovician:-Machiakon Limestone.

$$
\text { Iretering: by } K \text {. C. Liu (劉光城) }
$$

Fig．1．Ictinoceras summpanoide：Grabau． p． 841a．Lateral view of a characteristic specimen，showing rate of tapering and distance ofsepta．Natural size．
1b．End view of same．The right side is slightly crushed．Natural size．Nachiakoulimestone，Wên－Nian，Mon－Yin－Hsien Shantung，V．K．Ting coll．（Cotype，G．S．Ch．Cat．No．111）．
Fig．＇2．Actinoceras nunum Grabau 87
A natural section，showing the very slight amount of stereoplasm．Natural size． Machiakou limestone，Tangshan，Chihli．（Paratype，Survey Expedition coll．G．S． Ch．Cat．No．73）．
Ftg．：3．Actinoceras sulmaryinale Grabau．．． p． 86
A weathered fragment showing the large submarginal siphuncle，and the septa and nearly empty cameræ．A small part of the shell is preserved in the upper left hand area．Natural size．Machiakou limestone，Tangshan，Chihli．（Cotype，G．S．Ch． Cat．No．56）．
Fig．1．Actinoceres richethofrni Frech 75
A natural weathered section，showing the forward deflection of the lateral diver－ ticula of the endosiphuncle．Natural size．（See text figure 19 p．79）．Machiakou limestone，Lincheng，Shantung，（F．F．Mathieu coll．，（i．S．Ch．Cat．No．67）．
Fig．5．Actinoceres richthofeni Frech p． 7.5
Section of a part of a shell in which the filling of the camero has been unusually extensive．Natural size．Machiakou limestone，Huo－Luh－Hsien，Chihli．（G．S． Ch．Cat．No．64）．
Fig．1．Actinoceras richthofeni Frech p． 75
Section showing part of endosiphuncle，and the moderate amount of filling characteristic of the camera．Natural size．Machiakou limestone，（hihli（？）． （Coll．V．K．Ting，C．S．Ch．Cat．No．52）．
Fig．7．Actinomras richthwimi Frech 7.5Ti．Lateral view of a characteristic internal septate mold，showing rate of lateraltapering and Hexuous character of suture．Natural size．
7b．Side view of the same specimen showing the compressed form．On the worn partthe deep concavity of the septa is indicated．Natural size．
$7 c$ ．Niew of the polished upper end of the same specimen，showing the oval form of theshell and the corresponding oval form and centran position of the siphuncle．Natural size．
id．Median longitudinal section of the same specimen，showing the deep concavity ofthe septa，the character of the nummuli with the median endosiphuncle，and thelateral diverticula opening in pores on the outer surface of the nummuli．Natural size．
7e．Surface of the opposite half of the same specimen，separated from Td by about 1 mm ．Machiakou limestone，Wên－Nan，Mon－Yin－Hsien Shantung．V．K．Ting coll．（Geol．Survey Ch．Cat．No．107）．
Fig．8．Actinoccras richthofeni Frech p． 75End view of a fragment of an earlier part of the shell than that shown in fig． 7.

PALEONTOLOGIA SINICA
Grabau: Ordovician Fossils of N. China

with part of outline restored. This shell shows a more acute lateral angle (slightly emphasized by compression, and a more nearly circular and proportionately large siphuncle. Machiakou limestone, Wên-Nan, Mon-Yin-Hsien, Shantung. V. K. Ting coll. (G. S. Ch. Cat. No. 108).
Fig. 9. Stereoplasmoceras actinoceriforme Grabau p. 69

9a. Section through siphuncle, showiug the filling of crystalline limestoue, but without regular arrangement as in Actinoceras. Natural size.
9b. Lower end of the same specimen. Natural size. Machiakou limestone, Wên-Nan, Mon-Yin-Hsien, Shantung. (Cotype, V. K. Ting coll., G. S. Ch. Cät. No. 112).
Fig, 10. Stererplasmoceras actinoceriforme Grabau.
p. 69

10a. Longitudinal section of a specimen showing hollow nummuli of siphuncle below and filling with matrix in upper part. Also irregular pseudosepta and filling of stereoplasm. Natural size.
10b. Cross-section of the same. Natural size. Machiakou limestone, Kushan, Chihli. (Cotype, V. K. Ting coll. G. S. Ch. Cat. No. 60).
Fig. 11. Stereoplasmoceras pseudoseptatum Grabau p. 66

Longitudinal section of an early portion of a conch, showing character of septa, camere and siphuncle. Natural size. Machiakou limestone, Scuth of Wên-Nan, Mon-Yin-Hsien, Shantung. Y. K. Ting coll. (Cotype, G. S. Ch. Cat. No. 112).

It 	

風家

 I

（目）Asaphus bochmi Lorenz
（111）Plectambonites soriceus（Sowerby）
（i i）Maclurea logani Salter
（1）Actinoceras richthofeni Frech
中
國
北
中

中	國	
民	北	
${ }_{+}$		第
\checkmark	部	－
四	奥	明
	陶	

®Dalæontología Finíca

H:UBIITNDTEF:

玉eries $\mathbf{J B}$. Volume 1.
jfasdicle 2.

$13 x$

Co C. Tī
 (4)

For Sale at the Following offices:
Peking: Geol. Surv. Library, 9 Ping Ma Sze, West City; French Bookstore, Grand Hotel de Pehin, Peiping: Shanghai: Kelly \& Wush, Ltd., Iz Nanking Road; Max Noraler \& Co., G.M.B.H. $+5^{\text {B }}$ Kiangsu Ruad; London: Edward Culdston, 25 Mugeum St. (W. C. r); Tokyo: Maruzen Co.: Leipzig: Max Neg, Künigstrasse 3; New York: A. G. Seiler \& Co. fodithordam Ave.

PALEONTOLOGIA SINICA
 Editors:

V. K. Ting and Y. C. Sun

The Ordovician Cephalopoda of Central China

BY
C. C. YÜ

Geologist to the National Research Institute of Geology

With IX Plates and 7 Text figures

Published by the Geological Survey of China;
Section of Geology, National Academy of Peiping.
Peiping 1930 .

CONTENTS

Page
Introduction 5
Terminology 6
Stratigraphy 8
Comparison of the Ordovician beds in the different localities of Hupeh 8
Western Hupeh 8
Eastern Hupeh 10
South-eastern Hupeh IO
Northern Hupeh II
The geological horizon of the so-called Neichiashan and Ichang formations. 12
The relationship between the Ordovician cephalopoda from Hupeh, central China, and those from the corresponding horizon in the northern as well as southern China. I3
Manchuria 13
Chihli 14
Shantung 15
Honan 16
Kiangsu I6
Chekiang I7
Hupeh 17
Szechuan 18
Between Szechuan and kweichow 18
Yunnan 19
Description of species 23
Genus Cameroceras Conrad (emend. Hyatt) 23
Cameroceras cf. styliforme Grabau
Cameroceras tenuiseptum Hall var. ellipticum Yü (var. nov.) 24
Cameroceras hsiehi Yü (sp. nov.) 25
Cameroceras subtile Yü (sp. nov.) 26
Cameroceras sp. 27

CONTENTS (Continued)

Genus Endocerus Hall 28
Endoceras leei Yü (sp. nov.) 28
Endoceras grabani Yü (sp. nov.) 29
Genus Vaginoceras Hyatt 30
Vaginoceras (Endoceras) wahlenbergi Foord 30
Vaginoceras wahlenbergi Foord var. cylindrica Yï (var. nov.) 32
I'aginoceras endocylindricum Yü (sp. nov.) 33
Vaginoceras peiyangense Yü (sp. nov.) 35
Vaginoceras (Endoceras) belemnitíforme Holm 36
Vaginoceras shui Yü (sp. nov.) 37
Vaginoceras chientzekouense Yü (sp. nov.) 38
Vaginoceras neichianense Yü (sp. nov.) 39
Vaginoceras reedi Yü (sp. nov.). 40
V،ginnceras uniforme Yü (sp. nov.) 42
Vaginoceras multiplectoseptatum Yï (sp. nov.) 44
「'aginnceras giganteum Yü (sp. nor.). 45
I'aginoceras? sp. 45
Genus Orthoceras Breyn 46
Orthoceras chinense Foord 46
Orthoceras chinense Foord var. kuangchiasense Yä (var. nov.) 48
Orthoceras chinense Foord var. eccentrica Yü (var. nov.) 49
Orthoceras chinense Foord var. equiseptatum Yü (var. nov.) 50
Orthoceras regulare Schlotheim 52
Orthoceras cf. politum M'coy 52
Orthoceras squamatulum Barrande 53
Orthoceras thyrsus ? Barrandc $5 t$
Orthoceras remotum Yü (sp. nov.) 55
Orthoceras rudum Yü (sp. nov.) 55
Orthoceras suni Yü (sp. nov.) 56
Orthoceras elongatum Yü (sp. nov) 57

CONTENTS (Continued)

Orthoceras densum Yü (sp. nov.) 58
Orthoceras yangtzeense Yü (sp. nov.) 59
Orthoceras ? wongi Yï (sp. nov.) 60
Orthoceras sp. 60
Orthoceras sp 61
Genus Protocycloceras Hyatt 62
Protocycloceras deprati Reed 62
Genus Cycloceras M'coy 63
Cycloceras sp. 63
Genus Discoceras Barrande 64
Discoceras eurasiaticum Frech 64
Genus Lituites Brogniart 65
Lituites lii Yü (sp. nov.) 65
Genus Oncoceras Hall 66
Subgenus Meloceras Hyatt 66
Meloceras asiäticum Yabe 66
Bibliography 68
Explanation of plates 73

THE ORDOVICIAN CEPHALOPODA OF CENTRAL CHINA
 by
 C．C．Yü．

INTRODUCTION

When I carried on the field work in Hsien－ning－hsien（咸 寧 㫱），gathering many beautiful well－preserved Silurian fossils in May of the year 1928，Messrs C．Li and W．P．Shu had simultaneously made a collection of orthoceracone Nautilids in large numbers from the Ordovician beds at San－shan－yuan（三 山 原），He－chiao（黑 橋），and some other localities of Ch＇ung－yang－hsien（崇 陽 敤），distant about sixty li or a little more than twenty miles southwest of Hsien－ning－hsien．Moreover，the Ordovician cephalopods are also found in the regions to the south－west of Pu－chi－hsien（蒲 圻 稲）， and the south－east of Hsien－ning－hsien．The specimens in this collection are mostly of large size，some attaining nearly one meter in length．Nevertheless，their preservation is rarely perfect．In the majority of cases these cephalopods are obtained from the polished slabs of the dark－gray limestone，where the shell has been partly weathered away on one side，while the remaining portion is seldom separable from the rock on the other side；and therefore no trace of the surface markings has been recognized．Thus the determination of these fossils is based entirely on the internal characters．

During October of the same year，Mr．Shu and I went to northern Hupeh，and in our field work covered the area of I－chêng（宜 城），Chung－hsiang（鍾 祥），Ching－shan （京 山），Ching－men（㓫 門）and Nan－chang－hsien（南 漳）．In this trip we collected an abundance of delicate fossils from the different geological horizons ranging from Sinian to Jurassic，though the Devonian and the Triassic deposits have not furnished fossils so far．In this collection the Ordovician cephalopods appear to be one of the dominant types．They are very abundant and wide－spread over the region of northern Hupeh． As our journey required haste，the time was not sufficient to enable us to stay long enough at many of the localities to make more extended collections of fossils．

The specimens brought back to the Institute from the field during these trips amount to a large number．Unfortunately，the palæontological publications are not
yet complete enough in our Institute library which was just established last year，so the palæontological work is not possible at present at the Institute．Therefore on the first of March of the year 1929，Prof．Lee granted me leave to bring this material to the Geological Survey in Peiping for the purpose of identification and description．of these specimens under the direction of Prof．Grabau，the chief Palæontologist to the Surveys

After I had finished the work of describing the Ordovician cephalopods brought here from our Institute，Prof．Grabau asked me to continue to take up some other cephalopods collected by Prof．J．S．Lee and Mr．C．Y．Hsieh，and a similar collection presented to the Survey by the late J．Langford Smith．In 1924 Prof．Lee made an excursion to the Yangtze Gorges，collecting some cephalopods and many other fossil． from the Neichiashan formation．Mr．Hsieh also obtained very abundant Ordovician cephalopods，which were partly from the upper part of Tafang limestone at Yang－sing－ hsien（陽 新 彞），eastern Hupeh in 1923，and partly from the western Hupeh in the autumn of the year 1924．Though these collections consist of a large quantity of specimens，the number of species is not very great．Besides，the majority of them are conspecific，not only congeneric，with those collected by myself，but some specimens such as Cameroceras，Protocycloceras etc．have not been met with in the localities of northern Hupeh．

First of all I would express my special indebtedness to Prof．A．W．Grabau for his courtesy in giving me much valuable suggestions and criticisms．To Prof．J．S．Lee Director of the Institute，Dr．W．H．Wong，Director of the Geological Survey，Dr．V．K． Ting，Editor of the Palxontologia Sinica of China and Dr．Y．C．Sun President of the Palæontological Society of China I am also indebted for furnishing me every facility for carrying on the palrontological work in the Survey laboratory．Finally，I particularly tender my deep appreciation to Mr．K．H．Hsii and Mr．Y．S．Chi for their help in the photographic work．

TERMINOLOGY

All Nautiloids are provided with an external shell，which may be termed ceracone or conch．When the shell is straight，it is called orthoceracone；when curved，cyrtoceracone， If the conch is curved in a loose coiling manner it is called gyroceracone；and closely coiled having the impressed zone，called nautilicone．The embryonal shell is known as the protoconch；and the septate shell，the phragmacone．The interior of the shell consists of many transverse partitions or septa．The spaces confined between the septa are the chambers or camere．The chamber of habitation，body chamber or the living chamber is the last chamber occupied by the body of the animal．There is a small hollow tube or siphuncle，which passes through all the septa，occupying a different position in differ－ ent genera．The septa abruptly bend backward and continue to a certain extent around
the siphuncle. Their prolongations, called septal necks or septal funnels, are either short as in Orthochoanites, or very long as in the Holochoanites.

In Holochoanites as usually described there is another small axial tube existing in the center of the siphuncle, which is called endosiphotube or endosiphuncle by Hyatt or prosiphon by Zittel. The siphuncle is more or less solidly filled with thin calcareous cones or endosiphosheaths around the endosiphuncle. There is a conical cavity formed by the last endosiphosheath, which is termed endosiphocone or endocone by Hyatt. It extends forward into the open space of the siphuncle known as the endosiphocylinder (endoconal or siphuncular chamber of Hyatt). The endosipholining is the additional covering on the inside of the siphuncular wall which is composed of the septal funnels.

Recently Prof. Grabau has shown that the so-called siphuncle of the Holochoanites is homologous with the shell of the Orthochoanites, the endosipholining of the former corresponding to the wall of the latter, and the endosiphosheaths to the septa. He has proposed the following terms ${ }^{\text {r }}$ for use in the shells of Holochoanites, which are adopted in the present paper.
Ectoconch................... The outer shell of former authors (exclusive of
siphuncle).

EndoconchThe siphuncle of former authors.
Ectotheca........................The outer shell wall of authors.
Endotheca................... The inner shell wall or endosipholining of authors (often absent).
Ectosepta......................The septa of outer shell of authors.
Endosepta.....................The septa of inner shell or the endosiphosheaths of authors.

Tubus (pl. tubi).............. The prolongations of the ectosepta homologized by former authors with the septal funnels of the Orthochoanites.

Endosiphuncle
The siphuncle of the endoconch or endosiphuncle of authors.

Endocone......................Terminal conical living chamber of endoconch or endosiphocone of authors.

Endocylinder
The endosiphocylinder of authors.
I. These terms have been published in the Bulletin of the Geological Society of China, Vol. $\dot{8}$. No. 2, p. it8.

STRATIGRAPHY
 Comparison of The ordoviclan Beds in the Different
 LOC.1LITIES OF HUPEH.

Although the Ordovician beds at the different localities in Hupeh have been studided and the results published at various times by other geologists and by the author, nevertheless they will also be briefly summarized here for convenience in comparison. In the first place we shall take the Ordovician strata in western Hupeh into consideration, which region may be regarded as the type locality of Ordovician formations in Hupeh province or even in Central China.
I. Western Hupeh: ${ }^{1}$ At Nant'ou on the Yangtze River above I-chang, and on the Ta-ning-ho in Ki-sin-ling pass Willis and Blackwelder ${ }^{2}$ found that there is a very thick massive limestone overlying the Nan-t'ou tillite and attaining a thickness of more than $\mathrm{I}, 200$ meters in the Nant'ou section. They called it the Ki-sin-ling limestone and held that it represented the Cambro-Ordovician period. On the uppermost part of the Ki-sin-ling limestone, as described by them there are green calcareous shales alternating with nodular limestone about 60 meters thick, which directly underlie the Sint'an formation. In the spring of the year 1924, Prof. Lee carried on detailed stratigraphical work on the geology of the Yangtze Gorge ${ }^{3}$. He discovered that the socalled Ki-sin-ling limestone not only comprises the rocks of Cambrian and Ordovician periods, but also the entire Sinian system, the first period of the Palæozoic as proposed by Prof. Grabau4. Prof. Lee suggested another group name "Niukan Group" for the actual Cambro-Ordovician strata so well exposed in the Niukan Gorge instead of the so-called Ki-sin-ling formation. According to Prof. Lee's proposal the Niukan Group may also be, from the fossil fauna point of view, divided into the Shipai shale at the

[^26]lower part, and Ichang limestone as well as Neichiashan Series at the Upper, the former one denoting the Cambrian deposit and the latter two the Ordovician. The Ichang limestone attains a thickness of from 1250 m . to 1680 m . and yields fossils of Lower Ordovician age such as Callograptus cf salteri Hall, Proterocameroceras mathieui Grabau, Eccyliopterus. sp., Asaphus sp. Archrocyathus chiliensis Grabaú, Girvanella sinensis Yabe etc. The Ichang limestone is again disconformably overlaid by the Neichiashan Series, IIO m . thick, which consists of two parts. The lower part is an alternation of green, calcareous shales and brownish yellow or light gray limestone characterized by Triplecia (Yangtzeella) poloi (Martelli) Kolarova, and Clitambonites givaldii Martelli; and the upper one is a dense gray limestone crowded with abundant Orthoceras. This series has furnished besides Triplecia (Yangtzeella) poloi Martelli, and Clitambonites giraldii Martelli, the following: Orthis calligramma Dalm., Eccyliopterus sinensis Frech, Vaginoceras duplex Wahlenberg, Discoceras eurasiaticum Frech, Endoceras sp., Cycloceras sp., Cyrtoceras sp., Asaphus cf expansus Dalm., and many specimens of Orthoceras. A preliminary determination of the cephalopods in this collection was made by Prof. Grabau, but some are missing from the Geological Museum of Peking University except the specimens of Orthoceras chinense Foord, Discoceras eurasiaticum Frech and the so-called Cyrtoceras which now is known as Meloceras asiaticum Yabe. During the autumn of 1924 Messrs. C. Y. Hsieh and Y. T. Chao again carried on field work in the western part of Hupeh ${ }^{1}$ and collected one species of cephalopod from the Ichang limestone and a lot of them mainly from the upper part of the Neichiashan formation at the places near Lo-jo-ping and Chien-yang-ping. Prof. Grabau asked me to make a thorough study of these cephalopods of which he has made a preliminary examination. The material includes the following species:
a. From Ichang limestone

Cameroceras cf. styliforme Grabau
b. From Neichiashan formation (upper part)

Cameroceras tenuiseptum Hall var. ellipticum Yü
Cameroceras hsiehi Yü
Cameroceras subtile Yii
Cameroceras sp.
Vaginoceras neichianense Yü
Vaginoceras reedı Yü
Vaginoceras multiplectoseptatum Yü

[^27]Orthoceras chinense Foord
Orthoceras regulare Schlotheim
Orthoceras squamatulum Barrande
Orthoceras thyrsus? Barrande
Orthoceras yangtzeense Yü
Orthoceras? wongi Yü
Protocycloceras deprati Reed

2. Eastrrn Hupeh: The stratigraphical work of eastern Hupeh had been done by Mr. Seijiro Nodar , but his classification was found incorrect by Messrs. Hsieh and Liu who were sent by the Geological Survey of China to study the geology of Yang-sing and other districts ${ }^{2}$ in the autumn of 1923. They reported that the Ordovician limestone at these localities is very thick and gray in colour. Because it was first found at Ta-fang village in Yang-sing district, the Ordovician formation is called Tafang limestone. Its actual thickness is unknown, because the basal part is not exposed. Some Orthoceras and brachiopods are found in the limestone, and are very abundant together with some trilobites in a layer of purple calcareous shale about 20 m . thick on the top of the formation, which is regarded as the equivalent of the upper part of the Neichiashan Series. The cephalopods of the collection now preserved in the laboratory of the Survey are:

> Vaginoceras belemnitiforme Holm
> Vaginoceras endocylindricum Yü
> Vaginoceras uniforme Yü
3. South-eastrrn Hupeh: According to Mr. Li's Reports on the geology of Pu-chi, Hsien-ning etc., it is shown that the Ordovician exposed in that area is made up of limestone, which appears to be divided into two divisions. The lower division is a thick-bedded dark gray limestone, of which the exposed thickness amounts to about 500 m . The upper division consists of an alternation of reddish thin-bedded limestone and calcareous shale, which attain a thickness of r 40 m . overlying a layer of the yellowish gray thin-bedded limestone 30 m . thick at its base. Many cephalopods of large size were obtained, especially from the basal bed of the upper division. A comparison of this upper division with the Neichiashan formation of western Hupeh brings out the fact that though other fossils than the cephalopods in

[^28]that formation have not been found in this upper division, and though their lithological characters also differ to some degree, nevertheless some cephalopods from this division are of the type of those common in the upper part of Neichiashan formation on the one hand and others correspond to those obtained from the top of Tafang limestone on the other. It is quite possible to say that this upper division may be compared with the upper part of Neichiashan formation. The cephalopods secured from this division include the following species:

Endoceras leei Yii
Vaginoceras wahlenbergi Foord. var. cylindrica Yü
V aginoceras endocylindricum Yü
Vaginoceras peiyangense Yü
Vaginoceras shui Yü
V aginoceras neichianense Yü
Vaginoceras uniforme Yü
Vaginoceras giganteum Yu
Vaginoceras sp.
Orthoceras chinense Foord var. eccentrica Yii
Orthoceras chinense Food var. equiseptatum Yü
Orthoveras rudum Yui
Orthoceras suni Yü
Orthoceras elongatum Yü
Orthoceras sp.
Lituites lii Y u
4. Northern Huper: In northern Hupehr the Ordovician deposit is quite similar to that in the western part of Hupeh, comprising the so-called Ichang limestone in the lower part and the Neichiashan formation in the upper. The former attains a thickness of more than one thousand meters while the latter is rather thin in proportion, having only a total thickness of about eighty meters or a little more. The Neichiashan formation also consists of two parts. The lower part is yellowish green shale about twenty meters thick, and the upper is light greenish argillaceous limestone reaching a thickness of sixty meters or more. It is to be noted that this formation is distributed over a wide area in Hupeh province. As we travelled across these localities namely: Nan-chang, Chung-hsiang, I-cheng, Chingshan and the southern border of Hsiang-yang-hsien, the Neichiashan formation with its striking cephalopod fauna
r. C. C. Yü and W. P. Shu: Geology of Hsiang-yang, Nan-chang, I-cheng, Ching-men, Chung-hsiang and Ching-shan districts, North Hupeh. Memoir of the Institute of geology, No. VIII, National Research Institute of China.
was frequently met with here and there. Its upper part or the limestone bed is characterized by the different forms of Orthochoanites and Holochoanites, and its lower part or the shale bed yields the well-preserved specimens of Graptolites, Trilobites, Brachiopods and some others, but not the characteristic Yangtzeella poloi (Martelli) which, however, occurs very abundantly in western Hupeh. This formation has so far furnished the following fossils :
a. In the upper part of the Neichiashan formation.

> Endoceras grabaui Yü
> Vaginoceras (Endoceras) wahlenbergi Foord
> Vaginoceras chientzekouense Yü
> Orthoceras chinense Foord
> Orthoceras chinense Foord var. kuangchiaoense Yü
> Orthocecas chinense Food var. equiseptatum Yü
> Orthoceras cf. politum M'Coy
> Orthoceras remotum Yü
> Orthoceras densum Yü
> Orthoceras sp.
> Cycloceras sp.
b. In the lower part of the Neichiashan formation.

> Didymograptus murchisoni Beck
> Orthis calligramma Dalm.
> Dalmanella sp.
> Leperditia sp.
> Asaphus gigas var. hupehensis Sun
> Taihungshania shui Sun
> Illænus nanchangensis Sun
> Bathyurus minor Sun
> Bronteus sp.

The Geological Horizon of the So-Called Neichinshan And ICHANG FORMATIONs.

So far as we know, the upper part of the Ichang limestone belongs to the Lower Ordovician, for Prof. Lee and Mr. Hsieh had collected, in beds not far from the base of overlying Neichiashan formation, some fossils, which, according to Prof. Grabau's determination, are of Lower Ordovician age. But the age of the lower part of Ichang formation already discussed by Yabe, Hsieh and others is quite uncertain. Prof. Grabau,
however, believes it is more likely of Lower Ordovician rather than Cambrian age. Unfortunately, Mr. Shu and I also have not discovered, in our extensive journey in northern Hupeh, any characteristic fauna other than the so-called Archrocyathus from the basal part of Ichang formation, which could throw more light on this unsettled question.

The geological horizon of the Neichiashan formation has been considered by many previous authors to be Middle Ordovician or lowest Upper Ordovician. Mr. Shu and I obtained from the lower part of this formation just underlying the cephalopodbearing bed at Tai-hung-shan, 3 li west of Nan-chang district, many specimens of a wellpreserved characteristic graptolite, namely Didymograptus murchisoni Beck, which had not been found by any former traveller in Hupeh province and its neighbouring localities. From this characteristic graptolite we may readily conclude that the lower part of the Neichiashan formation actually corresponds to the Didymograptus murchisoni zone of the British Ordovician rocks, while the cephalopods contained in the upper part of the formation and described in the present paper show approximate equivalency to the Orthoceras limestone of Sweden and the Vaginoceras limestone of the Baltic province of Russia.

the Relationship Between The ordovician Cephalopods From Hupeh, Central China and Those from the Corresponding horizon in
 Northern as Well as Southern China.

Before comparing the cephalopod faunas of North and Central China, we must summarize the distribution of the Ordovician cephalopods collected at various times from the different localities in China.
i. In Manchuria.
a. From Hsiau-sörr, Fengtien, Richthofen collected the following form which was described by Frech ${ }^{1}$ and referred by him to the Upper Ordovician. Prof. Grabau, however, recognized that this bed is of the same horizon as the Machiakou limestone in Chihli.

Actinoceras richthofeni Frech

b. In the year r928 T. Kobayashi described many Ordovician cephalopods from Corea and South Manchuria. ${ }^{2}$ Those collected from the Tofango fossil bed at To-fan-go and Niu-shin-tai of Fengtien province are of the same horizon as the Machiakou limestone. The species are as follows:
I. F. Frech: In Richthofen's China, Vol. V, p. 8.
2. T. Kobayashi: Ordovician Fossils from Corea and South Manchuria. Japanese Journal of Geology and Geography, Vol V, No. 4.

Cycloceras (?) peitoutzense Grabau
Stereoplasmoceras pseudoseptatum Grabau
Stereoplasmoceras submarginale Kobayashi
Stereoplasmoceras subcentrale Kobayashi
Tofangoceras pauciannulatum Kobayashi
Tofangoceras irregulare Kobayashi
Actinoceras richthofeni Frech
Actinoceras tani Grabau
Actinoceras coulingi Grabau
Actinoceras manchurense Kobayashi
Actinoceras submarginale Grabau
Actinoceras nanum Grabau
Actinoceras harioi Kobayashi
Actinoceras suanpanoides Grabau
Actinoceras curvatum Grabau
Actinoceras murakamii Kobayashi
Cyrtactinoceras mitsuishii Kobayashi
Discoactinocras multiplexum Kobayashi
Cyrtoceras (Meloceras) aff. asiaticum Yabe
2. In Chirli.
a. Many cephalopods were obtained by different individuals from the Machiakou limestone and the Lower Ordovician beds at Kai-ping basin, Shih-mun-chai and some other places, and described by Prof. Grabau. ${ }^{1}$
(a). Machiakou limestone

Vaginoceras tsinanense Grabau
Cycloceras? peitoutzense Grabau
Stereoplasmoceras pseudoseptatum Grabau
Stereoplasmoceras machiakouense Grabau
Stereoplasmoceras actinoceriforme Grabau
Actinoceras richthofeni Frech.
Actinoceras tani Grabau
Actinoceras coulingi Grabau
Actinoceras submarginale Grabau
Actinaceras nanum Grabau
Cyrtactinoceras frechi Grabau
r. A. W. Grabau: Ordovician Fossils from North China. Palæontologia Sinica, Ser. B., Vol. I. fasc. I.

Vol. I. C.C.Yü--Ordovician Cephalopoda of Central China
(b). Lower Ordovician limestone

Proterocameroceras mathieui Grabau.
Cameroceras styliforme Grabau
Chihlioceras nathani Grabau
Chihlioceras chingwangtaoense Grabau
Piloceras platyventrum Grabau
Suecoceras yehliense Grabau
Suecoceras attenuatum Grabau.
b. Mr. T. K. Huang had gathered some cephalopods from Hsi-shan or Western Hills of Pekingr.
(a) Machiakou limestone

Stereoplasmoceras pseudoseptatum Grabau
Actinoceras coulingi Grabau
Actinoceras suanpanoides Grabau
(b) Peilintze limestone

Proterocameroceras minor Grabau
Proterocameroceras mathieui Grabau
Piloceras platyventrum Grabau
Chihlioceras nathani Grabau
Chihlioceras sp.

3. In Shantuna

Many cephalopods have been obtained. These were described by several authors.
a. Samuel Couling had collected from the locality near Ching Chow Fu, Kiaochow, two different forms of cephalopods which G. C. Crick ${ }^{2}$ described as those named below. Prof. Grabau, ${ }^{3}$ however, considered them the same as the forms in brackets from the Machiakou formation.

Actinoceras (Ormoceras) aff. tenuifilum Hall (=Actinoceras coulingi Grabau).

Gonioceras sp. (cf. Gonioceras shantungense Grabau).
r. T. K. Huang: On the Cambrian and the Ordovician Formations of Hsishan or Western Hills of Peking. Bulletin of the Geological Society of China, Vol. VI, No. 2.
2. G. C. Crick: Straight shelled Nautiloidea from North China. Geol. Mag. London., N. S., dec. IV, Vol. X, P. 48r.
3. A. W. Grabau: Loc. cit, pp, $83,84,9 \mathrm{I}-93$.
b. Frech${ }^{1}$ reported that there are in the British Museum some specimens of Upper Ordovician cephalopods from Shantung, but the exact locality is unknown. These fossils seem to be equivalent in horizon to those of Couling's collection.

Actinoceras sp.
Trochoceras sp.
c. Willis and Blackwelder collected some cephalopods from the Tsinan limestone of Middle Ordovician age at the following localities. Chau-mi-tien, seven and a half miles S.S.E. of Sin-tai-hsien, NE of Tsai-kia-chuang, two and seven-tenths miles SW of Yen-chuang and some other places near Tsi-nan. These cephalopods were only generically identified by Weller ${ }^{2}$.

Orthoceras sp. (several)
d. Prof. Grabau described the following forms ${ }^{8}$ and considered them from the same horizon as the Machiakou limestone.

> Stereoplasmoceras pseudoseptatum Grabau
> Stereoplasmi ceras machiakouense Grabau
> Actinoceras richthofeni Frech.
> Actinoceras tani Grabau
> Actinoceras coulingi Grabau
> Actinoceras suanpanoides Grabau
> Actinoceras curvatum Grabau
> Cyrtactinoceras frechi Grabau
> Gonioceras shantungense Grabau

4. In Honan

One species of Actinoceras has been obtained from the Machiakou limestone of Hsi-hsien ${ }^{4}$

Actinoceras coulingi Grabau
5. In Ktangev Province
a. One form of cephalopod from Richthofen's collection at Lun-shan had been identified by Frech ${ }^{5}$ with the following species apparently representing the
I. F. Frech: In Richthofen's China, Vol. V, p. I4.
2. S. Weller: A Report on Ordovician Fossils collected in Eastern Asia in 1903-4. In Research in China, Vol. III, pp. 279-280.
3. A. W. Grabau: Ordovician Fossils from North China. Palæontologia Sinica, Ser. B. Vol. 1., fasc. I.
4. A. W. Grabau: Loc. cit.
5. Frech: Richthofen's China, Vol. V. p. 2.
same geological horizon as those beds from the neighbourhood of I-chang which bear the fossils such as Orthoceras chinense Foord, Discoceras eurasiaticum Frech etc.

Endoceras duplex Wahlenberg.
b. Mr. K. Weimann Hsü also obtained some cephalopods from the Lunshan limestone in the year 1924. According to Prof. Grabau's determination they are the same as the Lower Ordovician forms characteristic of the Peilingtze formation and Yehli limestone as follows:

> Proterocameroceras mathieui Grabau
> Suecoceras attenuatum Grabau

6. In Cheriang.

Messrs. C. C. Liu and Y. T. Chao ${ }^{2}$ had found the following form existing in a bed of purple calcareous shale with limestone-lenses at the top layer of the Yenwashan formation of Middle Ordovician.

Orthoceras chinense Foord.
7. In Hupri Province

Many collections of fossils were made by geologists, of which the cephalopods are the only ones concerning us here.
a. Frech considered the following cephalopods from western Hupeh ${ }^{3}$ as referable to an Upper Ordovician fauna. However, they are now known to be of Middle Ordovician age.

Orthoceras chinense Foord
Cyrtoceras (Meloceras) cf. ellipticum Lossen
Lituites (Ancistroceras) angelini Boll.
Discoceras verbecki Frech.
Discoceras eurasiaticum Frech.
b. The following forms form Pan-tse-ya, Hu-hsi, Hsing-shan-hsien had been gathered by Noda in a brownish marly limestone, which is thought to be the sō-called Neichiashan formation.

[^29]Actinoceras (Ormoceras) sp. undt.
Orthoceras chinense Foord.
Cyrtoceras (Meloceras) asiaticum Yabe
Grabau1 identified a specimen of Actinoceras figured by Yabe² from No-luping, Hu-hsi, Hsing-shan-hsien as Actinoceras coulingi Grabau.
c. At No-lu-ping, Tung-hu-hsien, S. Usui ${ }^{3}$ found some cephalopods in the limestone, grey in colour and earthy in texture, which is directly overlain by the Silurian deposits. From the stratigraphical point of view the fossiliferous horizon of No-lu-ping seems without doubt to be the Neichiashan formation.

Lituites (Ancistroceras) angelini Boll. var.
Discoceras eurasiaticum Frech
Discoceras sp. undt.
Orthoceras sp. undt.
Orthoceras sp. undt.
d. Prof. Lee, Messrs. Hsieh, Liu, Chao, Li, Shu and I have collected from the upper part of Neichiashan formation and its corresponding beds at different localities in Hupeh province, numerous forms of cephalopods which have been listed above. Others have been supplied by the late Mr. J. Langford Smith.
8. In the provincle of Szi-chuan

Only one form of cephaloped was obtained from the uppermost Ki-sin-ling limestone of Middle Ordovician age at Sü-kia-pa along the Ta-ning-ho, and identified by S . Weller ${ }^{\text {'. }}$

Vaginoceras sp.
9. Between Yang-ko-la, Chi--chiang-hsien, Szf-chitan province, and Chet-tifen-ya, Kwei-chou province,
Yamada obtained two species of cephalopodss ${ }^{5}$.
Orthoceras chinense Foord
Orthoceras sp.
I. Grabau: Ordovician Fossils from North China, Palæontologia Sinica, Ser. B, Vol. I, Fasc. I. pp. 83,84 .
2. Yabe and Hayasaka: Palæontology of Southern China, pI. XIX, fig. 9.
3. Loc. cit. p. 37.
4. S. Weller: A Report on Ordovician Fossils collected in Eastern Asia in r903-4. In Research in China, Vol. III, p. 281.
5. In Yabe and Hayasaka's Palæontology of Southern China, p. 38.

1o. In western Yunsan
Middle Ordovician fossils have been obtained in three localities i.e. Pu-piao, Lameng and Shih-tien, of which the last named has furnished the largest number of species of cephalopods (ident. by Cowper-Reed ${ }^{\text {r }}$).
a. Pu-piao

Orthoceras sp.
b. La-meng

Orthoceras sp.
c. Shih-tien

Endoceras wahlenbergi Foord
Endoceras cf. cancellatum Eichw.
Endoceras aff. reinhardi Boll.
Orthoceras regulare Schl.
Orthoceras cf. kinnekullense Foord.
Orthoceras cf. scabrium Ang.
O. (Protocycloceras ?) deprati Reed.

Actinoceras cf. bigsbyi Brown
Jovellania sp.
Cameroceras? sp.
Cyrtoceras sp.
Spyroceras? sp.
Trocholites yunnanensis Reed
T. aff. macromphalus Schrod
Lituites sp.
Tarphyceras? sp.
According to Reed the fossiliferous beds at Shih-tien is probably equivalent to the "Vaginatenkalk" of the Baltic province, but may represent the "Echinosphæritenkalk" of Scandinavia and of the Baltic province of Russia.

So far as these cephalopods listed above are concerned, we can immediately recognize the following facts: (I) in the Middle Ordovician the Actinocers, which is very characteristic and abundant in North China, is very rare in Central as well as South
r. Reed: Ordovician and Silurian Fossils from Yun-nan. Palæontologia Indıca, N. S., vol. VI. No. 3, pp. 62-64.

China; (2) the cephalopods of Shih-tien ${ }^{1}$ such as Vaginoceras (Enidoceras) wahlenbergi Foord, Orthoceras regulare Schl., Protocycloceras deprati Reed, etc. are also found in the probably contemporaneous beds of the Neichiashan formation at Hupeh; (3) among these collections from Hupeh described in the present paper, only a few forms namely Cameroceras tenuiseptum Hall var. ellipticum Yü, Cameroceras hsiehi Yü, etc. may be compared with North American species, but the rest have characters in common only with European types, though they are not generally conspecific with them.

Prof. Grabau has suggested that the Sino-European Ordovician fauna was derived from the Indian Ocean ${ }^{2}$ which invaded the southern part of the East Cathaysian geosyncline in China on the one hand, and penetrated to western Europe by way of the Himalayan trough on the other. He based this primarily on the apparent migration of the graptolites in the Lower Ordovician period ${ }^{3}$. According to Grabau's interpretation we can understand why the Middle Ordovician cephalopods from Hupeh province which was probably covered by the southern waters, are closely related to those from South China as well as Europe, and are quite distinct from the North Chinese and North American types which belong to another source, i.e. the Boreal province.

One may argue that if the Indian Ocean was the home of the Sino-European Ordovician faunas, why should the characteristic Vaginoceras (End.) wahlenbergi Foord, which according to Foord's description ${ }^{4}$ was collected from the Orthoceras-Limestone (referred by him to the Arenig) at typical localities in Sweden, Norway, Russia etc., makes its first appearance in the Middle Ordovician beds of southern as well as central China where the distance from the Indian Ocean is much nearer than that in the western Europe. Now this question is easily answered if we have read over what is called "Comparison of American and European Lower Ordovician formations" by Prof. Grabau ${ }^{5}$ in which he corrected the old misconception of the unity of the "Orthoceras limestone". In Kinnekulle, Sweden the general Ordovician succession is as follows:
I. Mr. S. S. Yoh had obtained many fossils, which are quite comparably to Brown's collection from the Middle Ordovician beds of Shihtien, from the Shihtzupu shale at Shih-tzu-pu, ro li north of Tsung-yi district, Kuei-chow Province. But he did not find any cephalopod. (Bulletin of the Geol. Surv. of China, No. II, p. 33.).
2. Grabau: China in the Ordovician Period. Bulletin of the Geological Society of the National University, Peking, Vol. III, pp. 9-22.
3. Grabau: Origin, Distribution, and Mode of Preservation of the Graptolites. Memoir of the Institute of Geology, No. VII, pp. r-52. National Research Institute of China.
4. Foord: Catalogue of Fossil Cephalopoda, Pt. I., pp. 136-140.
5. See Bulletin of the Geological Society of America, Vol. 27, pp. 555-622.

Silurian
............Hiatus and disconformity
Ordovician
Brachiopod shale
..........Hiatus and disconformity
Trinucleus shale
Chasmops beds, dark shales with graptolites and numerous concretionary limestone masses and beds of impure limestone containing Chasmops sp., Echinosphrrites aurantinum Gyllenh.

Orthoceras limestone
(d) Upper gray or Chiron limestone
(c) Upper red limestone
(b) Lower gray or Asaphus limestoneHiatus and disconformity

Upper Llandeilan ...
(a) Lower red or Limbata limestone

Lower Didymograptus shale
Planilimbata limestone
Hiatus?
Lower Arenigian

Cambrian
Formerly the name of "Orthoceras limestone" was applied to a limestone series included within the graptolite-bearing shales of the Ordovician and since the Lower Didymograptus shale (Phyllograptus shale) is early Arenig, the Orthoceras limestone was also referred to the Arenig. Since there is a hiatus existing between the Lower gray or Asaphus limestone and the Lower red or Limbata limestone, the latter is now united (when the Lower Didymograptus shales are absent) with the Planilimbata limestone, the combined series being called "Megalaspis limestone". The name "Orthoceras limestone" is now restricted to the 3 limestones overlying the hiatus, namely the Lower gray limestone, the Upper red limestone and the Upper gray limestone, and these represent the later Llandeilan or late Middle Ordovician age. From the "List of the Fossil Faunas of Sweden" we find that the species Vaginoceras (End.) reahlenbergi Foord, Vaginoceras (End.) vaginatum Schloth, and some other forms were actually found in the Lower gray Orthoceratite Limestone, ' in other words they occur in the same horizon as in China. Foord's statement, of course is not correct.

[^30]
DESCRIPTION OF SPECIES

Class CEPHALOPODA

Order Nautiloidea Zittel
Suborder Holochoanites Hyatt
Family ENDOCERATIDAE Hyatt
Genus Cameroceras Conrad (emend. Hyatt)
Cameroceras cf. styliforme Grabau

Plate I., Figs. I-3

1922. Cameroceras styliforme Grabau: Ordovician Fossils from North China, p. 39, pl. IV, figs. 4-6.

There are a number of black, slender and cylindrical structures adhering to the weathered surfaces of dark gray limestone fragments, collected from western Hupeh by Mr. Hsieh. The exterior of the material has been so deeply eroded that one cannot distinguish in the field what types are represented. After separating it from the rock and slicing it into sections it becomes apparent that we are dealing with the endoconch of Cameroceras, or of Proterocameroceras. These structures are represented only by fragments. One of them (Plate I., Fig. 2) measures about 40 mm . in length. Its cross section is slightly oval, being Ir .5 mm . in transverse, and ro mm . in dorso-ventral diameter at the upper end. The ventral side is slightly flattened. The endoconch is provided with an endotheca, which has been partly preserved through protection from weathering by the country rock. The endotheca is rather thin, and its surface is clearly marked by the ectoseptal edges, which are oblique to the ventral side forming with it an angle of about 60°. Owing to the fact that the specimen is much eroded, the character of the ectoseptal annulations on the ventral side is entirely unknown, therefore the position of the endoconch is rather uncertain. The ectoseptal distances, as shown by these edges on the lateral side, are very uniform, reaching 2 mm . more or less. In the interior of the endoconch there are some endosepta. The spaces between them are wholly filled with the white crystalline deposit, but the endocone is empty, and assumes a semi-lunar section with a flat base, corresponding to the ventral side of the endoconch. In another
specimen (Plate I., Fig. 3) the apical angle of the endosepta shown in the longitudinal section is about 25°. Endosiphuncle not observed.

Remarks: The apical portion of the endoconch has not been preserved in the specimen now at hand, so its generic identification (either as Cameroceras or Proterocameroceras) is not quite certain. According to its shorter length and other respects it may be compared with Grabau's species ${ }^{1}$ collected from the Liangchiashan limestone of Liang-chia-shan near Ching-wang-tao, eastern Chihli.

Horizon and Locality: From the upper part of Ichang limestone at Lo-jo-ping of I-chang-hsien (Coll. C. Y.Hsieh)

Cameroceras tenuiseptum Hall var. ellipticum Y Ü (var. nov.)

$$
\text { Plate II., Figs. I and } 2 .
$$

1847. Orthoceras tenuiseptum, Hall. Palaeontology of New York, Vol. I, p. 35, pl. VII, fig. 6.
1848. Orthoceras tenuiseptum, Raymond. Am. Pal. Bul. Vol. I, No. If, p. Ig.
1849. Cameroceras tenuiseptum, Rucdemann: New York State Museum. Bul. 90, p. 408, pl. 3, figs. I,2; pl. 4, fig. I; pl. 5, figs. 5, 6; pl. 6, fig. 2.

This form is only represented by fragments of the internal mold. Neither the apical end nor the larger extremity is preserved. It had suffered so deeply from weathering that the outer layer of the mold has turned into a very soft yellowish substance. The ectoconch is robust and cylindrical in form. It is elliptical in cross section, the ratio between the two diameters being 4:3, It tapers gently at the rate of nearly $1: 13$.

The ectoseptal distances are very closely arranged, varying from $4-5 \mathrm{~mm}$., while the longer diameter of the ectoconch measures $43-50 \mathrm{~mm}$. Roughly speaking the ectosepta are distant about one tenth the longer diameter. The depth of the ectosepta is very high, equalling that of three cameræ. The ectosepal sutures are slightly undulating. The ectoseptal chambers are more or less free from the organic deposit except a few of them, in which the stereoplasmic deposit extends from the margin of the shell toward the interior and stops at some distance from the endoconch.

The endoconch is situated in close juxtaposition to the outer shell. Its cross section too is elliptical. The endosepta have not been observed. The empty endocy-

[^31]Vol. I.
linder is very large and its major diameter is practically equivalent to $\mathrm{I} / 2$ that of the ectoconch. In a favourable light the endotheca may be clearly seen along the inner side of the invaginated tubi.

Comparison: So far as we know, the form, which bears the closest resemblance to this specimen, is Cameroceras tenuiseptum Hall. The transverse sections of the ectoconch and the endoconch of Hall's species are circular, but those of the present form are both elliptical. Moreover, the ectosepta of the latter are comparatively more widely separated than are those of the former.

Hortoon and Locality: This variety was obtained by J. L. Smith and C. Y. Hsieh respectively from the upper part of Neichiashan formation at Nei-chia-shan near Sin-tan, Tze-kuei-hsien.

Cameroceras hsiehi Yü (sp. nov.)

> Plate I., Figs. 4a-b.

Shell straight, slender, gradually tapering at the rate of I in 10 . The cross section of the ectoconch is elliptical, having its two diameters at the ratio of ir:9. Neither extremity preserved. The septate fragment measures little less than 80 mm . in length.

The interspaces between the ectosepta are rather short, being about from $1 / 6$ to I/5 the longer diameter of the ectoconch. They are 3.5 mm . distant from each other in the lower preserved end and 6 mm . in the upper, while the corresponding longer diameters of the ectoconch are 22 mm . and 30 mm . respectively. The ectosepta are very deep, with a concavity equal to the depth of one and one half camerr. The tubi have a length of more than one camera.

The endoconch is large, about one third the longer diameter. Under the magnifier we can clearly see that along the inner sides of the tubi the endotheca characteristic of the genus Cameroceras is present. The endoconch is perfectly circular in outline. Its position is in contact with the ectoconch. Only the last endoseptum is exposed, and the space below it is wholly filled with calcite. The sides of the endocone seem to be undulating.

In the empty camerse there is a slight and irregular organic lime-filling deposited along the margins of some ectosepta. Test not preserved.

Compartson: This species agrees in some repects with Cameroceras brainerdi Whitfield ${ }^{\text {r }}$ from the Fort Cassin beds along the shore of Lake Champlain, but our shell has an endoconch of circular section and the rate of tapering is much more rapid. Another one nearer to this is Cameroceras tenuiseptum Hall ${ }^{2}$, but the present form differs from it in having an elliptical shell section, a smaller endoconch and the relatively more separated ectoseptal distances. From the preceding variety of that species the present shell differs in having the circular and smaller endoconch.

Horizon and Locality: Only one specimen was obtained from the upper Neichiashan formation near Sin-tan by Mr. Hsieh, in whose honour the specific name is given.

Cameroceras subtile Yü (sp. nov.)
Plate I., Figs. 5 a-b.
This species is known only from a fragmentary phragmacone, which is straight and cylindrical in external form. Both the cross sections of the ectoconch and the endoconch are elliptical. The two diameters of the ectoconch have the proportion of $3: 2$. This fragment reaches a length of a little less than 60 mm . The rate of growth may be computed as r:Io approximately.

The ectosepta are distant almost uniformly, being about 5 mm ., while the ectoconch measures 28 mm . in longer diameter at the lower preserved end and 3 rmm . at the upper. The ectoseptal sutures are flexuous with a strong concavity exceeding the depth of one camera. The latter are filled with yellowish red matrix. The ectosepta are lined by a thin layer of the organic stereoplasm about one half millimeter in thickness. The tubi are visible, extending a short distance beyond the preceding septum.

The endoconch is provided with an endotheca, which is clearly shown even to the naked eye. It attains a maximum width of about $I / 3$ that of the outer shell. It is subcentral in position but does not contain the endosepta in this fragment. The ectotheca has been completely weathered away and the surface of the internal mold only shows the undulating ectoseptal edges.

[^32]Vol. I. C.C. Yü-Ordovician Cephalopoda of Central China (iI) 27
Comparison: This species somewhat approaches to Cameroceras brainerdi Whitfield ${ }^{\text {r }}$ in some respects, but the former has the tapering more rapid and the endoconch not marginal as in the latter form. It may also be compared with Cameroceras hsiehi, but differs from it in having the subcentral and elliptical endoconch.

Horizon and Locality: This form was obtained from the same horizon as the preceding species near Sin-tan. (C. Y. Hsieh Coll.)

Cameroceras sp.
Plate II., Fig. 3.
This form is too fragmentary for specific determination. The septal portion preserved only contains four camere, and has a length of 45 mm . Owing to the fact that the specimen is much eroded, the cross section of the ectoconch and the rate of tapering can not be determined.

Ectosepta gently concave, having a depth of nearly $2 / 3$ that of the camera. The ectoseptal interspaces increase very slightly in distance, being nearly equal to $2 / 5$ the diameter of the outer shell. The septate chambers are wholly empty. The organic stereoplasmic deposit occurs only along the interior sides of some camerie.

The endoconch is marginal. Since it has also been greatly rubbed, neither the transverse section nor the size of the inner shell may be determined with any certainty. Nevertheless, from what remains we can tell that it is confined externally by the presence of an endotheca and filled internally with the calcite deposit. The tubi extend apically in an irregular manner and the endotheca also assumes the wavy appearance, following the direction of the tubi.

Undoubtedly the present specimen belongs to the genus Cameroceras in having the characteristic endotheca. But its other important properties are too little known, hence its specific determination is impossible

Horizon and Locality: Upper part of Neichiashan formation near Sin-tan.

[^33]Ectoconch straight, cylindrical. Form of cross section unknown. Endoconch elliptical, of considerable size and filled with conical endosepta. Ectosepta crowded. Tapering of ectoconch very gentle. Endotheca absent.

This specimen is represented only by a portion of the ectoconch exposed on the surface of a polished slab. Its actual length is unknown. The width at the lower end of the preserved fragmentary part is 30.5 mm . At a point about 8 r mm . from the lower end it has a breadth of 36.5 mm . This gives the rate of tapering about I mm. in a length of 13.5 mm .

The ectosepta are very numerous and strongly concave, with a concavity about one and a half times their distance apart at the center. The interspaces between them are nearly equal, averaging about 6.5 mm . apart. The ectosepta are provided with long tubi, which distinctly show that they extend from the ectoseptum where they originate to a distance of one camera toward the apex.

The endoconch is situated excentrically. Its size is remarkably large, having a maximum width of $2 / 3$ that of the ectoconch or more. The interior of the endoconch is occupied by endnsepta tapering off at the center into a narrow endosiphuncle. From the cross section at the lower preserved end we find that the endosiphuncle is oval in outline, measuring 0.7 mm . and 0.9 mm . in the shorter and the longer diameter respectively. At the same stage the corresponding longer diameter of the endoconch is $I_{4} \mathrm{~mm}$. The endoconch bounded by the last endoseptum has a subtriangular section with an apical angle of 20°.

Both the cameræ of the ectoconch and the endoconch are filled with the red lime matrix, in which the shell of this specimen is embedded. Many of the ectosepta, however, show a slight stereoplasmic thickening on their upper, and more rarely on their under side as well.

There is another specimen (Plate I., Fig. 7.) probably of the same species. The endoconch attains a length of nearly 160 mm . The space below the final endoseptum of the endoconch has been wholly converted into the crystalline deposit, but the terminal endocone is empty. The ectoconch is partly crushed, preserving however ectosepta around the upper part of the endoconch. At the lower extremity a very
small section of the endosiphuncle may be seen in the central part of the endoconch， being about 0.3 mm ．in diameter and filled up with the red lime matrix．In the same place the endoconch is sub－elliptical in section，measuring 9 mm ．in its major diameter， and 7 mm ．in minor．The apical angle of the final endoseptum is nearly the same as that in the preceding specimen．The cameræ of the ectoconch are entirely free from any deposit except the ectosepta，which are also slightly thickened as in the preceding specimen．

Comparison：This species bears a close resemblance to Endoceras（Cyclendoceras） annulatum Hall from the Trenton limestone at Watertown New York．But Hall＇s form has the ectosepta more approximate as compared with the diameter of its ectoconch．Moreover，the annulated ectotheca is not recognized with certainty in the present species，though there seems to be an indication of it in the undulating profile along the sides of the ectoconch in the polished longitudinal section．

Horizon and Loca lities：One specimen（Plate I．，Fig．6．）was collected from the red thin－bedded limestone of the upper division of Middle Ordovician age at San－shan－yuan（三山原）and the other（Plate I．，Fig．7．）from the same horizon at He－chiao（黑橋），Chung－yang－hsien．The specific name is given in honor of Professor J．S．Lee．（Coll．C．Li and W．P．Shu）

Endoceras grabaui Yü（sp．nov．）
Plate II．，Fig． 4.
General form cylindrico－conical，more or less elongate，slightly arcuate，gradually diminishing toward the apex，and elliptical in cross section；endoconch very broad， enclosed by the continuous tubi，not forming a straight tube but giving the sides of the endoconch the appearance of an irregular undulation．

The ectoseptal intervals are slightly variable in their distance apart from one another，ranging from 9 to II mm ．throughout the whole length of the fragment．The ectosepta are thin and very deeply concave，having a convexity of more than one septal distance．The ectoseptal tubi are continuous，but extend across the different ectoseptal spaces in different ways．Thus some of them are bent inwards；some nearly straight and slightly oblique toward the interior；and finally some tubi turn inwards at first and gradually backward as well as outwards．

1．J．Hall：Palæontology of New York，Vol．I，p．207，pl．XLIV，figs．I a，b．

The endoconch is elliptical in transverse section，occupying the central position of the ectoconch in the preserved part of the specimen．It is readily seen that the interior of the endoconch is occupied by an endoseptum in the upper part of the pre－ served fragment and another one at the lower．The apical angle formed by these conical endosepta are nearly the same，or about 10° ．The wall formed by the con－ tinuous tubi appears to have a zigzag outline in section and the width of the endoconch， as exposed in the longitudinal section，varies from 7 mm ．to 15 mm ．narrowing in one place and broadening in another．

Neither the larger nor the smaller extremity has been observed．The fragment measures more than one hundred and thirty millimeters in length．The longer diameter at the upper end of the shell is 45 mm ．，gradually contracting toward the smaller end which is 25 mm ．in diameter．This gives the rate of tapering I in 6.5 ．

Ectotheca thin，but its surface characters unknown．No trace of any deposit is found within the ectoconch or the endoconch．

Comparison：This species is somewhat allied to Endoceras magniven＇rum Hall ${ }^{5}$ from the higher part of the Trenton limestone of New York State in the characters of the close，strongly concave ectosepta and the undulating wall of siphonal tubi，but dif－ fers from the latter in the slightly curved ectoconch，much narrower endoconch，and more rapid tapering of the outer shell．The same characters are also used for distin－ guishing it from the preceding species．

Horizon and Locadity：From the argillaceous limestone bed of the Neichia－ shan formation at the small hill named Shih－lung－sze（石龍寺）about to li to the west of Wang－chia－chi（王家集），I－cheng－hsien．This species is named in honour of Professor A．W．Grabau，Chief Palæontologist to the Geological Survey．（Coll．W．P． Shu and C．C．Yü）

Genus Vaginoceras Hyatt
Vaginoceras（Endoceras）wahlenbergi Foord．
Plate III．，Figs．Ia－b．
1888．Endoceras W＇ahlanbergi，Foord：Catalogue of Fossil Cephalopoda，part I，p．i36，Text figs．II，13， 14.
1895．Endoceras Wahlenbergi，Holm：Geol．Foren．Förh．i Stockholm，Bd．r7，Heft 6.
1917．Endoceras Wahlenbergi，Reed：Palæontologia Indica，New Series，Vol．VI，Mem．No．3，p． 30 ， pl．V，fig．II．

I．J．Hall：Palæontology of New，York，Vo．l I，p．218，pl．LIII，figs．I a－e．

Shell large, somewhat slowly enlarging, with a large endoconch inside. It attains a size of 305 mm . preserving a part of the living chamber. Apical extremity unknown. Transverse section circular. Its rate of growth is computed about I in II.5. Character of surface not observed.

The ectosepta are gently concave, their convexity being about two thirds the depth of the camera of the ectoconch or a little more. The distance between the ectosepta varies in an irregular manner. It measures iI mm. at a point about 90 mm . from the apex, where the diameter of the ectoconch is 3 I mm ; and 16 mm ., where the diameter is 40 mm . When the ectoconch increases its diameter to 50 mm ., the ectoseptal distance is suddenly reduced to 13 mm . Nevertheless, the ectoseptal distances continue on the whole to increase upwards until close to the living chamber, where it retains the distance characteristic of the earlier stage (Five cameræ are contained in the space of 65 mm . including the last camera).

The endoconch is very large, marginal and circular in cross section. It is continucd upwards in a large endocylinder, which is empty and bas a diameter of i2 mm , where the ectoconch measures 33 mm . in diameter, this being about one third that of the ectoconch. The organic stereoplasmic lining is clearly seen along the margins of the ectosepta. The camere are partly filled up with the crystalline deposit, but the upper-most ones close to the living chamber are entirely empty. Near the apical portion of the preserved part of the shell the final conical endoseptum (endocone) is shown. It has an apical angle of 10°. The rest of the endoconch has been converted into crystalline calcite with much mixing of black material. The invaginated tubi bend inwards, and then slightly outwards. When they reach the geniculations of the preceding ectosepta, they turn again inwards and backward.

Comparison: Hyatt proposed the generic name Vaginoceras for the form which differs from Endoceras proper in having the longer invaginated tubi and more numerous endosepta ${ }^{\text {r }}$ From the text figure of Endoceras wahlenbergi Foord ${ }^{2}$ we find
I. G. T. Troedsson considered, after the suggestion made by Foerste, the number of endosepta as the only distinguishing character between the Endoceras and Vaginoceras. (See Troedsson: On the Middle and Upper Ordovician Faunas of northern Greenland, p. 24). Of course, the length of the tubi can not be correlated with the number of the endosepta as Hyatt assumed. But in this paper the length of the tubi is taken as the distinguishing feature rather than the number of the endosepta. The reasons are: (r) The number of endosepta is sometimes unreliable, for they may not be wholly preserved. (2) The spaces between the endosepta are often completely filled with the crystalline calcite and the endosepta are not distinctly enough shown to determine their number. (3) In many forms the endoconch as well as endosepta, limited to the apical portion of the ectoconch, are often not preserved; and the empty, long endocylinder only remains. So far the length of the tubi is always clearly exposed, no matter whether the specimen is well preserved or very framentary. Therefore, the length of the tubi is chosen here as the important factor for distinguishing these two genera.
2. loc. cit.
that the long tubi extend beyond the space of one camera．According to the statement of Hyatt the generic name of Foord＇s species should be changed into Vaginoceras．As to the specific identification，the characteristics of our specimen strongly resemble Foord＇s species，but the ectosepta become more crowded in the adult stage，which is not the case in Foord＇s form．Nevertheless，this feature may be considered as a minor point due to senility，and can not serve to characterize a distinct species．

Hobizon and Locadity：Collected from the upper part of Neichiashan formation at the northern side of Tai－hung－shan（太 紅 山）about one mile or more to the west of the city of Nan－chang－hsien．According to Foord＇s description Vaginoceras wahlenbergi belongs to Arenig in Sweden，Norway，Russia and other localities in Europe，but this is incorrect，the horizon being late Middle Ordovician＇．（W．P．Shu and C．C．Yü Coll．）

Vaginoceras wahlenbergi Foord var．cylindrica Yü（var．nov．） Plate IV．，Figs．I，2a－b．

Ectoconch robust，cylindrical．Endoconch large，situated nearly close to the margin of the outer shell．This variety is represented so far only by a fragment belonging to the upper part．The cross section of the endoconch is circular，but that of the ectoconch is quite obscure，though it is probably circular too．Rate of increase about I in 12.6 ．

Ectosepta moderately concave with their depth scarcely exceeding two thirds of the camera．The ectoseptal intervals become gradually and slightly longer in distance apart as the ectoconch advances in age，measuring 15 mm ．apart near the lower end and 17 mm ．near the upper，or about two fifth the diameter of the outer shell．

The endoconch is prolonged into a nearly cylindrical endocylinder．Its diame－ ter is a little less than one third as wide as that of the ectoconch．In the actual measurement the diameter of the ectoconch attains 40 mm ．at the lower end，whereas the corresponding diameter of the endoconch is $\mathbf{1 2 . 5}$ ．The invaginated tubi are dis－ tinctly visible．No endoseptum has been found，the endoconch proper not being preserved．Stereoplasmic deposit often occurs on the margins of the ectosepta，this being about I mm ．thick．

I．See stratigraphic part，pp．20， 2 I．

Another individual (Plate IV., Fig. 2) is also known from a fragment of more than one hundred and thirty millimeters in length. The camerre of the ectoconch increase their depth forward at a regular rate, ranging from 9 to 13 mm ., where the corresponding diameter of the ectoconch is from 27-35 mm. Endocylinder circular, marginal, large, being about $2 / 7$ the diameter of the ectoconch. Concavity of ectosepta about $2 / 3$ the camera. The outer shell tapers at the rate of I in 12.5. The organic stereoplasm deposit is seen on the under side of the ectosepta more commonly than on the upper.

Comparison: This form is closely related to Vaginoceras wahlenbergi Foord, from which it may be slightly distinguished by the more regular increase of the ectoseptal distance and the smaller size of the endoconch and endocylinder. According to the diagnosis given by Foord, Vaginoceras wahlenbergi has a much larger endoconch, measuring "nearly half the diameter in the young shell" and "about one third the diameter" in the adult. Nevertheless, the other important characters of our shell are very similar to those of Foord's species, it is, therefore, preferable to refer it to a variety of Vaginoceras wahlenbergi.

Horizon and Localities: One specimen (Plate IV., Fig. 2) was found just below the thin-bedded red limestone in the vicinity of Liu-chia-sze south of Cha-ti-pu, Hsien-ning-hsien, and another specimen (Plate IV., Fig. I.) was from the same formation near He-chiao, Chung-yang-hsien. (C. Li and W. P. Shu Coll.)

> Vaginoceras endocylindricum Yü (sp. nov.)
> Plate II., Figs. 5a-c; Plate III., Figs. 2a-d, 3a-b.

This specimen (Pl. III., Figs. 2a-d) is known by a large orthocone which attains a length of 280 mm . with a slender obtuse termination at the apical end. The section of the ectoconch is circular. Its diameter measures 42.5 mm . at the larger end, and 145 mm . at the smaller. It tapers at the rate of $\mathrm{r}: 9.8$. Owing to the imperfection of the upper end of the specimen the original size of the living chamber has not been fully determined. Nevertheless, the length of its remaining part is more than twice the diameter of its base.

The ectosepta are rather closely set. Their convexity attains nearly the depth of one camera. The ectosepta are 5 mm . apart near the apical end and increase regularly slightly forward. There are three camerre in the space of $20^{\circ} \mathrm{mm}$. in the mature part of the phragmacone, where the ectoconch has a diameter of about 23 mm . Near the living chamber, the ectoseptal interspace is 9 mm . at the diameter of 35 mm .

The endoconch is not very large and situated in close juxtaposition to the flat ventral side of the outer shell. It is circular in cross section, its diameter being 6 mm . where the diameter of the ectoconch is about 26 mm . The continuation of the tubi is beyond the next preceding ectoseptum. The endosepta are confined to the apical end with a very small endosiphuncle exposed in the middle part of the endoconch. The endocylinder and endocone are empty, but all the camere are completely occupied by the crystalline calcite of secondary origin interspersed with some black material.

Another piece (Pl. III., Fig. 3) probably of the same species represents a fragment of the posterior part. Cross section circular Ectosepta crowded. At the smaller fragmentary end the ectotheca and ectosepta are detached and only the endoconch projects out. Ectosepta moderately concave. Ectoseptal distance about 4.5 mm . at the diameter of 18 mm . As the longitudinal section is normal to the dorso-ventral diameter, the endoconch at first sight seems to occupy a central position in the ectoconch, but in reality it is probably marginal to the outer shell. The ectoconch has a diameter of 16 mm . at the lower end, where the corresponding diameter of the endoconch is 4.5 mm . The endoconch and endocylinder are not preserved in the upper portion of the specimen because of the direction of the section.

There is a third specimen (Pl. II., Fig. 5.) which was procured from the Tafang limestone at Yang-sing-hsien. The apical portion is not preserved. The ectoseptal distances are less than $\mathrm{I} / 3$ the diameter of the outer shell. The endoconch is circular, marginal and equal to $1 / 4$ the diameter of the ectoconch. This specimen is similar to the preceding ones in all respects except the rate of tapering, which appears to be more rapid, measuring I in 16 . The test is partly preserved. It conists of two layers. The interior layer is much thinner and covered by the very fine transverse strie. The outer one is quite obscure, though it is probably smooth.

Compartson: This species is characterized by its fairly closely set ectosepta, relatively smaller endoconch and long empty endocylinder with the endosepta limited to the apical portion. It agrees in some aspects with Vaginoceras wahlenbergi Foord, ${ }^{1}$ but is distinguished from the latter by its smaller endoconch and more approximate ectoseptal distance. From the description of Endoceras reinhardi? Boll ${ }^{3}$ including Orthoceras commune Angelin-Lindström and some others, we find that the present species may be compared with Boll's form, but differs in having the shorter interspaces between the ectosepta, which are nearly half the diameter of the outer shell in Boll's species. Moreover, our shell has shown the considerably long tubi indicating a Vaginoceras, but those in Boll's form have not been characterized in the description.
r. loc. cit.
2. Foord: Catalogue of Fossil Cephalopoda, Pt. I, p. I $\ddagger 5$.

Vol．I．C．C．Yü－Ordovician Cephalopoda of Central China
Horigon and Loca dirtrs：The first two specimens（Pl．III，，Figs． 2 and 3）were col－ lected by C．Li and W．P．Shu from the beds just below the red limestone near Ta－wu－ shu，north of the western end of Pei－yang－shan（白羊山），Chung－yang－hsien．The last one（Pl．II．，Fig．5）was collected by Mr．C．Y．Hsieh from the uppermost purple calcarcous shale of the Tafang limestone at Ta－fang village in the Yang－sing－district．

Vaginoceras peiyangense Yii（sp．nov．）
Plate V．，Figs．Ia－b，2a－b．
This orthocone is fairly slender，elongate，reaching a length of 425 mm ．The ectoconch terminates in an extremely acute point．It enlarges in diameter very slowly in the young part，but rapidly toward the apertural portion．The diameter of the ectoconch increases from 15 mm ．at the lower part to 30 mm ．at the upper，the distance being 289 mm ．This gives a rate of expansion of Imm ．in I 9 mm ．The remaining part of the living chamber is rather long，having a length of 60 mm ．and a diameter of about 30 mm ．at its base．Aperture not observed．The section of the outer shell is ovately elliptical with a moderately large endoconch close to the margin of the shell．

The ectosepta are very thin and gently concave．Their depth is about one half that of a camera．The ectoseptal interspaces or cameræ regularly increase in height toward the aperture，there being three camerie in the space of 20 mm ．at the apical portion and one camera or a little more in the same space at the stage next to the body chamber．

The endoconch is tubular，moderately large with an oval section．It measures 6 mm ．in major diameter and 4.5 mm ．in minor．In the same stage the transverse diameter of the ectoconch is 26 mm ．It lies rather close to the outer shell，if it is not absolutely in contact with the latter．It is comparatively flatter on the ventral side． At a point 150 mm ．from the apex，we find in section that the subtriangular endocone exists within the endoconch having an apical angle of nearly 17° ．The endoconch of the earlier stage is solidly filled with the calcite deposit，leaving the endosiphotube ＇open in the middle．Its diameter is more than o． mm ．and is plainly visible even to the naked eye．The endoconch is provided with the tubi，which continue apicad beyond the next preceding ectoseptum for a short distance further．

In another specimen（Pl．V．，Fig．2）the camerie of the ectoconch are relatively shallower．The ectosepta regularly and slowly increase their distance upwards，varying from 5 mm ．to 7 mm ．，where the corresponding width of the ectoconch is from $13-18 \mathrm{~mm}$ ．

The endoconch is of large size, ovately elliptical in section, and nearly marginal to the outer shell (being 0.7 mm . distant from the ventral side). It measures 8 mm . in the longer diameter and 6 mm . in the shorter at the upper end of the fragment, where the actual diameter of the ectoconch can not be determined, but the ectoseptal distance is about 7 mm . This fragment is 123 mm . in length. At the lower part of the specimen, the ectotheca as well as the ectosepta have been crushed, and the endoconch remains protruding with some invaginated tubi preserved on its sides. Rate of increase $1: 17$.

In both of the specimens the camere are lined with the organic stereoplasm in moderate thickness, but some are perfectly empty. Test unknown.

Comparison: In its general form, this species may be compared with Endoceras distans Hall'. But our shell has a much smaller endoconch and an ovately elliptical section of the ectoconch, which is quite different from that of Hall's species. It is also distinguished from Vaginoceras wahlenbergi and Vaginoceras endocylindricum by its more distant ectosepta, ovately elliptical section of endoconch and less rapid tapering of the ectoconch.

Horizon and Localitifs: One specimen (Pl. V., Fig. I) was obtained from the bed just above the massive blue limestone at the western end of Pei-yang-shan, and the other (Pl. V., Fig. 2) from the same horizon at He-chiao, Chung-yang-hsien. (Coll. C. Li and W. P. Shu.)

Vaginoceras (Endoceras) belemnitiforme Holm

$$
\text { Plate I., Fig. } 8
$$

1885. Endoceras belemuitiforme Holm: Palæontologische Abhandlungen, Bd. III, Heft I, p. 5, Taf. I, figs. $\mathrm{F}-5$.
Shell cylindrical, straight, embedded in the upper red Tafang limestone and without any trace of the test remaining. It tapers at the rate of about I in io. The apical portion has not been observed, and the larger extremity is also incomplete. The ectoconch is subcircular (probably by compression) in transverse section with an endoconch lying at its margin.

The ectosepta are widely separated from each other, the distance equalling nearly half the diameter of the outer shell. In actual measurement it reaches 12 mm . at the diameter of 24 mm . When the ectoconch enlarges to 26 mm . in diameter, it is reduced to 10 mm . After that it assumes the original length again. Though the distances between septa vary slightly, on the whole they are fairly constant

1. Hall: Palæontology of New York, Vol. I, p. 220, pl. LVIII, figs. I a,b.

Vol. I. C. C. Yii-Ordovician Cephalopoda of Central China
The interior of the cameræ are deprived of any deposit except the margins of the ectosepta, on which the stereoplasm is slightly and irregularly deposited. Ectosepta very thin, having a concavity a little less than one camera.

The endoconch is in contact with the outer shell. It is cylindrical in longitudinal section and circular in. transverse. It appears to remain about io mm . in diameter throughout the whole length of the fragment preserved, so that it occupies nearly $1 / 2$ the diameter of the ectoconch at the lower fragmentary end and $2 / 5$ at the upper. No endosepta are seen. The endotheca is absent and the inner shell is confined by the continuation of the imbricating tubi, which in this specimen seem not so long as those in the form figured by Holm.

Remarks. This species is characterized by its remote and almost equal ectoseptal distances, and cylindrical and large endoconch. Even though we know nothing about the apical end of our shell, no form comes nearest to the present specimen other than Vaginoceras belemniforme Holm from the upper red Orthoceras Limestone on the island of Oeland.

Hobizon and Localiry: From the red limestone bed of middle Ordovician age in the upper part of the Tafang limestone near Ta-fang village, Yang-sing-hsien. The specimen was collected by Mr. C. Y. Hsich.

Vaginoceras shui Yu' (sp. nov.)
Plate IV., Figs. 3a-b.
Ectoconch of unknown size, slender, subcylindrico-conical. Cross section circular. Endoconch moderately large, submarginal. Both the apical end and the basal extremity unknown.

Ectosepta remarkably gently concave, about one third as deep as the camerie. The ectoseptal distances slightly increase from 6 mm . at the lower preserved end to 8 mm . at the upper, while the corresponding width of the ectoconch are $I_{4} \mathrm{~mm}$. and $I_{9} \mathrm{~mm}$. respectively (The real diameter of the ectoconch would be greater than this, because the section is not in the median plane).

The endoconch is circular? and situated near the margin of the ectoconch. Its diameter is little less than one third that of the outer shell. It is completely surrounded by camere and distinctly marked by the tubi By the aid of a lens we can see the tubi are so long that they overlap backward beyond the preceding ectoseptum extending even to the third one. Inside the endoconch a concial funnel-shaped endoseptum is included with the deposit of crystalline lime below.

The diameter of the ectoconch measures 13 mm . at the smaller extremity of the fragment and 22 mm . at the larger. The distance between them is 108 mm . It tapers at the rate of about I in 12 .

Comparison: This species appears to be related to Vaginoceras belemnitiformis Holm ${ }^{1}$ in the extremely long tubi, but the former differs from the latter in having the comparatively narrower endoconch and shorter ectoseptal distance. Moreover, the ectosepta of our specimen become increasingly distant with the growth of the ectoconch, which is not the case in Holm's form. It is also distinguished from any of the foregoing species by its strikingly long tubi.

Horizon and Locatimy: In the bed above, but not far from, the thick-bedded blue limestone near Wang-chia-sze, Chung-yang-hsien. The specific name is given in honour of Mr. Shu, by whom this species was collected.

Vaginoceras chientzekouense Yü (sp. nov.)
Plate V., Fig. 3.
Ectoconch straight; cylindrical, rather slowly enlarging at the rate of I:I2. Transverse section elliptical? Endoconch not very large, lying in contact with the outer shell.

This fragment reaches a length of more than 74 mm . Ectosepta moderately concave, having a depth of more than one half of a camera. The ectoseptal interspaces increase regularly and very slowly in length as they approach the basal extremity, ranging from I 2 to 16 mm ., where the corresponding diameters of the ectoconch are 32 and 38 mm . respectively.

The endocylinder only is shown. It is elliptical in section. From the longitudinal section we may see that the interior of the endocylinder does not reveal anything but the black lime matrix. The tubi are not well preserved, but from a tew that remain it seems that the succeeding tubus is inserted into the next preceding one. The diameters of the endocylinder have a ratio of $8: 5$. Its longer diameter is nearly $1 / 4$ that of the ectoconch. None of the organic stereoplasm exists in the cameræ except the deposit of secondary origin.

[^34]Vol．I．C．C．Yü－Ordovician Cephalopoda of Central China
Comparison：At the first glance this species appears to show no difference from Vaginoceras wahlenbergi Foord var．cylindrica，but on careful examination its elliptical section and narrower size of the endocylinder as well as the absence of stereoplamic de－ posit on the ectosepta give it a distinctive appearance．

Horizon and Locality：From the argillaceous limestone of Neichiashan formation at Chien－tze－kou（剪子溝），Nan－chang－hsien．（Coll．W．P．Shu and C．C．Yü．）

Vaginoceras neichianense Yu （ $\mathrm{sp}, \mathrm{n} \cap \mathrm{v}$ ．）

Plate I．，Figs．9a－b；Plate II．，Figs．6a－b，7a－b．
General form subcylindrical，cross section elliptical，ectosepta crowded，endoconch large，subcentral and circular in section．

This is a fragmentary specimen preserving the septate portion．It is about 100 mm ．in length．No external character is perceptible except the regular，transverse ectoseptal edges exposed on the eroded surface of the cast．Rate of increase I in 8.5 approximately．The two diameters of the extoconch are roughly at the proportion of $4: 3$ ．

The ectosepta are closely set．The interspace between them slightly increases upward，being equivalent to $\mathrm{I} / 5$ the longer diameter of the ectoconch at the lower part of the fragment and $I / 6$ at the upper．The concavity of the ectosepta is a little more than the distance of one camera at its center．

The endoconch is rather large，its diameter being nearly equal to $2 / 5$ the longer diameter of the ectoconch．It is situated a short distance from the center of the conch． The continuous tubi extend apically to the point about one fourth the depth of the next preceding camera，or a little more．The ectosepta are gently bent backward before reaching the endoconch．The interior of the endoconch below the last endoseptum has been changed into a white crystalline deposit．The endocone shows a slightly elliptical outline in transverse section．Some camerre are filled with the calcite deposit，and some ectosepta are also thickened by the stereoplasm to a very small amount．

There are numerous specimens belonging to the same species，though they are slightly different from one another．One specimen（Pl．II．，Fig．6）collected from Chung－yang－hsien reaches a length of about 3I mm．It consists of four cameræ embedded in the red limestone．It tapers more rapidly，about $\mathrm{I}: 6$ ．The endoconch is relatively narrower，attaining a size of $1 / 3$ the longer diameter of the ectoconch． Ectosepta distant about ${ }^{1 / 4}$ the major diameter．

Another one (Pl. II., Fig. 7) expands its shell more slowly, the rate being r:Io. The empty endocylinder is only preserved, indicating this fragment nearer the apertural end. Seven camera are present. The ectosepta are slightly lined by the stereoplasm. The size of the endocylinder and the ectoseptal intervals are similar to those in the preceding specimen (Pl. I., Fig. 9).

Comparison: In some respects this species is quite close to the Endocercis proteiforme Hall ${ }^{1}$ from the Trenton formation of New York State, but our shell shows the invaginated tubi, which is not a character given in the description by Hall. According to Clarke's statment the tubi of Endoceras proteiforme are short. Foerste says: "Apparently they are only a single camera in length". But its diagrammatic sections figured by Hyatt ${ }^{2}$ and Troedsson ${ }^{3}$ indicate that the tubi are longer than the length of a camera. Even though the latter is the case in Hall's type, the present species may be distinguished from it in having the ectoconch elliptical and the endoconch subcentral and circular. In Endoceras proteiforme the ectoconch is circular and the endoconch is marginai and elliptical. It also differs from Vaginoceras vaginatum Schlotheim 5 in having the more widely separated ectoseptal interspaces, smaller and subcentral endoconch; and from Orthoceras (Endoceras) brongniart، Troost ${ }^{6}$ in having the ectoconch less elliptical, the endoconch comparatively larger, and the ectoseptal distance somewhat longer.

Horizon and Localitis: One specimen (Pl. II., Fig. 6) was collected by C. Li and W. P. Shu from the reddish limestone of the Middle Ordovician age at San-shanyuan, Chung-yang-hsien. The rest came from the upper part of the Neichiashan formation near Sin-tan, western Hupeh. (Collected by J. L. Smith and C. Y. Hsieh respectively)

Vaginoceras reedi Yü (sp. nov.)
Plate I., Figs io a-c, II a-b.
ror7. Cameroceras? sp. Reed: Ordovician and Silurian fossils from Yunnan p. 35, pl. VI, figs. I, la. 1920. Orthoceras? sp. Yabe and Hayasaka: Palæontology of Southern China, p. 49, pl, XVIII, figs. 3; pl. XXVII, figs. 2 a-e.

[^35]

Fig. I.

Fig. 2.

Fig. 3.

Fig. I. Vaginoceras reedi. External view of a fragment of the ectoconch with a part of the endoconch exposed. Natural size.
Fig. 2. Vaginoceras reedi. Longitudinal section of the same, showing the large, empty endoconch and the closely set ectosepta. Natural size.
Fig. 3. Vaginoceras reedi. End view of the same. Natural size.
Associated with Vaginoceras neichianense, there are many specimens which are represented either by the fragmental phragmacone or the endoconch only. But some of them are known from a part of the septate portion with a large endoconch projecting out of the middle part. The ectoconch is straight, cylindrical and slightly elliptical in cross section. Owing to the fact that the fragment of the ectoconch is very short and not well preserved, the rate of increase can not be determined, nevertheless it appears to be very gentle.

The ectosepta are very closely arranged. The ectoseptal interspace measures 3 or 4 mm . apart, where the ectoconch has a longer diameter of nearly 30 mm . The ectoseptal sutures are slightly undulating. Camerie entirely free from any deposit, and ectosepta strongly concave.

The endoconch is very large, having a diameter of $1 / 2$ that of the ectoconch or more. It is slightly distant from the center. Its cross section is circular. The long tubi are prolonged backwards beyond the next preceding ectoseptum. Neither the deposits nor the endosepta are found inside.

In another fragmental specimen (Pl. I., Fig. II) of 30 mm . in length the endoconch is larger, measuring I9 mm . in diameter, where the ectoconch has a longer diameter of 35 mm . At the same stage the ectosepta are 3 mm . apart.

Orthoceras sp.r described by Yabe and Hayasaka is apparently of the same species. They stated "The specimen is a fragment of a cylindrical shell, in state of internal cast, and 50 mm long; it is oblong in cross section, measuring 29 mm . and 24 mm . in larger and smaller diameter respectively. The surface of the stone nucleus is smooth,
I. loc. cit.
except for 6 sharply impressed annular lines which are $5-7 \mathrm{~mm}$. apart; the impressions are somewhat wavy, probably owing to the secondary deformation of the entire shell. The lines at first sight appear to be the suture lines of the septa, but in reality coincide with them only partially." "The septa are traversed at the center by a broad (12 mm . in diameter) empty tubular space, which is completely shut off from the interior of the camerie by means of the septal necks, these being very long and extending beyond the preceding septum. There is absolutely no organic deposit in the interior of the shell." Even though no such impressed annular lines are seen on the surface of our specimens as is the case in that of the Japanese authors, the large endoconch, long tubi, closely set ectosepta and some other properties show that Yabe and Hayasaka's form is really the same as the present species. Reed had described one specimen from the Ordovician bed of Shih-tien in Yunnan and called it Cameroceras. ${ }^{\text {. }}$ In reality it also belongs to the present species. The original diagnosis given by Reed is as follows.
"The shell appears to have been straight, slightly elliptical in cross section, cylindrical, very slowly tapering. A large undivided body chamber seems to be present, and on it traces of fine concentric lineation are visible, this body chamber measures about 33 mm . in length and has a diameter of about 26 mm . The septate portion of the shell measures just 20 mm . in length and contains II septa. The septa, therefore are closely approximate, being rather less than 2 mm . apart; they are thin, horizontal, but very slightly undulated. A transverse section made of the lower end shows that the shell is elliptical with diameters of 21 mm . and 25 mm ., and there is a very large siphuncle about 14 mm . in diameter, situated nearer the ventral than the dorsal margin."

Comparison: This species is quite similar to the previously described Vaginoceras naichianense, but after closely studying it we can see that the present form has the endoconch much larger and the ectosepta much closer. Moreover, the interior of this form is absolutely free from organic deposit, which is present in the other species. It also resembles Vaginoceras vaginatum Schlotheim, but may be distinguished from it by the position of the endoconch, which is marginal in Schlotheim's species.

Horizon and Locality: From the upper part of Neichiashan formation near Sin-tan. (Coll. J. L. Smith and C.Y. Hsieh respectively)

Vaginoceras uniforme Yu (sp. nov.)
 Plate II., Figs. 8a-b, 9; Plate V., Figs. 4a-b.

Outer shell straight, cylindrical, cross section elliptical with a moderately large endoconch submarginal to the ectoconch.

[^36]The ectoseptal distances are nearly uniform, varying from 5-6 mm., or about I/5 the longer diameter of the ectoconch. Ectosepta with a concavity nearly equal to the depth of one camera.

The endoconch is elliptical in section, being about 9.5 mm . and 8 mm . in its two diameters. At the same section the ectoconch measures 32 mm . in its major diameter. Tapering of endoconch very gentle. The continuous tubi are disposed in an imbricating arrangement. The endosepta are hardly visible in the stereoplasmic filling. The empty camere are lined with slight organic deposit, which occurs on the upper side of the ectosepta in the majority of cases.

The ectoconch gradually contracts from the longer diameter of 30 mm . at the upper extremity of the specimen to 23.5 mm . at the lower. The tapering may be roughly estimated to be at the rate of I in II mm.

Another fragment of this species (Pl. II., Fig. 9) was obtained from the same district. It is of smaller size. The ectosepta are also crowded, distant about $3-4 \mathrm{~mm}$. from one another. The longer diameter of the ectoconch measures 16 mm . at the lower part and 20 mm . at the upper. Concavity of ectosepta about I camera. The elliptical endoconch lies submarginal to the outer shell. The stereoplasmic deposit usually occurs above the margins of the ectosepta in very small quantity. Neither the earlier portion nor the apertural end have been observed.

The third one (Pl. V., Fig. 4) was collected from the upper part of the Tafang limestone at Yang-sing-hsien. Its transverse section is also elliptical in outline, the two diameters being at the ratio of $3: 2$. The ectosepta are uniformly distant from one another, attaining an interval of 6.5 mm . in average, or about $\mathrm{I} / 4$ that of the longer diameter. Endoconch marginal, elliptical, being about $1 / 3$ the diameter of the ectoconch. So far as we know, this specimen is slightly differentiated from the preceding ones in the position of the endoconch, which lies not across the minor diameter but at the quadrant between the longer and shorter diameters.

Comparison: In the position of the endoconch, section of the ectoconch, and the rate of tapering this species may be compared with Endoceras arctiventrum Halli from the higher part of the Trenton limestone near MidAleville N.Y., but the en loconch of Hall's form is much smaller in size. Our shell has the long invaginated tubi, which are unknown either in the figure or the description of that form given by Hall.

Horizon and Locaditiris: The last named specimen (Pl. V., Fig. 4) collected by C. Y. Hsieh was from the upper red bed of the Tafang limestone at Yang-sing, and the rest from the red limestone at San-shan-yuan, Chung-yang-hsien, (C. Li and W. P. Shu).

[^37]Vaginoceras multiplectoseptatum Yü (sp. nov.)

Plate V., Figs. 5 and 6.

This species is represented by many specimens of the internal molds, which are badly preserved. Some of them reveal nothing in the longitudinal sections, but others show important internal structures. Shell subcylindrical, straight, elliptical in transverse section, having two diameters at the ratio of nearly $7: 6$. Larger extremity not observed. The expansion of the ectoconch is very slow, being I in 15 mm .

The ectosepta are very crowded, and nearly equally separated from one another, attaining a distance of $I / 9$ the major diameter of the ectoconch at the lower preserved end and I/Io at the upper. They are provided with tubi which continue beyond the preceding septum. Concavity of ectosepta not more than the depth of two camerie.

The endoconch is subelliptical in section, lying at the extremity of the longer diameter and close to the outer conch. It measures $\mathrm{I}_{4} \mathrm{~mm}$. in the major diameter and II mm . in the minor, where the corresponding measurements of the diameters of the ectoconch are 33 mm . and 27 mm . respectively. In general the inner shell is about $2 / 5$ as large as the outer one.

Both endoconch and the camerx are absolutely free from the organic or even the inorganic deposit. The ectosepta are well preserved in some specimens, but partly crushed in others. The ectotheca has not been preserved.

Comparison: Our species bears much resemblance to Vaginoceras uniforme, but the latter has not the following characters which are characteristic of the former: I, ectosepta being more closely set, at a very short distance in their separation; 2 , phragmacone enlarging much more slowly; 3 , concavity of ectosepta being much deeper; 4 , endoconch lying at the end of the major diameter instead of the minor; 5 , organic deposit absolutely absent. It may be also distinguished from Vaginoceras reedi by the subelliptical, marginal and smaller endoconch. Even though the numerous ectosepta and some other aspects of this species are quite like those of Vaginoceras vaginatum Schlotheim ${ }^{2}$, our shell has the smaller and subelliptical endoconch as well as the slower tapering, which are readily differentiated from those of Schlotheim's form.

Horizon and Locadity: From the upper Neichiashan formation near Sintan. western Hupeh. The specimens were collected by J.L. Smith and C.Y. Hsieh respectively-

[^38]Vol. I
Vaginoceras giganteum Yii (sp. nov.)
Plate III, Figs. 4 a-b.
Ectoconch straight, robust, cylindrical, enlarging very slowly. Endoconch rather large. As both the ectoconch and endoconch are much eroded, their cross sections are not quite certain, though they are probably circular. The apical portion is missing and the length of the incomplete body-chamber also can not be fully determined. This fragment has a length of 360 mm . comprising fourteen camere. At the two extremities it measures 67.5 and 48.5 mm . in diameter. It expands at the rate of I in 18.5 .

Ectosepta thin, moderately concave, appearing much thickened on their upper marginal portion by the stereoplasmic deposit. They are distant from each other about one half the diameter of the ectoconch. Their concavity is about three fourths as deep as the camera. It is a noticeable fact that the ectoseptal distances are almost equal throughout the whole fragment. There are two camere within the space of 50 mm .

The endoconch lies ventro-centran. It is of large șize, a little less than one third the diameter of the ectoconch. It is slightly contracted between the ectosepta. At the lower part of the fragment the endoconch is distant II mm. from the ventral side of the outer shell and 25 mm .from the dorsal, where the diameters of the ectoconch and endoconch are 52 mm . and 16 mm . respectively. It is only preserved in the lower portion and the upper end of the specimen, and the rest is completely worn away. The uppermost part of the endoconch encloses another smaller orthoceracone io mm. long. All the cameræ and the lower part of the endoconch are wholly filled with calcite deposit. No endosepta are seen, but the presence of the imbricating tubi and the enormous endoconch shows that this specimen should be referred to the genus Vaginoceras.

Comparison: This species may be related to Vaginoceras wahlenbergi Foord, but differs from that in the slower rate of tapering, equal ectoseptal intervals, and position of the endoconch. The same features also serve to differentiate this form from V aginoceras wahlenbergi Foord var. cylindrica.

Horizon and Locality : Obtained from the fossiliferous bed underlying the red limestone near Ta-wu-shu, Chung-yang-hsien.

$$
\begin{aligned}
& \text { Vaginoceras? sp. } \\
& \text { Plate VIII., Fig. I. }
\end{aligned}
$$

This specimen consists wholly of the red lime matrix, in which the shell was embedded. It has a length of about 400 mm . On the surface of the stone nucleus the
sharp impressed annular lines are clearly shown, each one probably representing an ectoseptum. They are very crowded, and the distances between them vary to an extremely small degree, ranging from II. 5 to 12.5 mm . Generally sixteen camere are present in a length of 200 mm , while the ectoconch has a diameter of 66.5 mm . The ectoconch gradually diminishes its diameter toward the apical extremity at the rate of I in II.5. On examining its sections no other features may be recognized except the scar of the endoconch, which is more or less elliptical in shape and situated close to the outer shell. Test not preserved at all.

Since we know nothing about the tubi, the actual size of the endoconch and other features, specific and generic determination is impossible. On account of the large, marginal endoconch and the uniformly separated ectosepta, which are somewhat related to Vaginoceras uniforme, it is provisionally put in the genus Vagni ceras.

Horizon and Locadity: From the red bed north-east of Pei-hu-fu, Pu-chi-hsien.

Suborder Orthochoanites Hyatt
Family ORTHOCERATIDAE II'Cov
Genus Orthoceras Breyn
Orthoceras chinense Fonrd
Plate III., Figs. 5a-b; Plate IV., Figs. 4a-b;
Plate V., Figs. 7a-c; Plate VI., Figs. la-b, za-c.

1856. Orthoceras sp., S. P. Woodward: Quart. Journ. Geol. Soc. Vol. XII, p. 378, pl. VI, fig. i. 1888. Orthoceras chinense, Foord: Catalogue of Fossil Cephalopoda. British Museum. I. p. Ioo. I9II. Orthoceras chinense, Frech: Richthofen's China, Vol. V. p. 8, pl. Il, figs. 2 a-c. 1920. Orthoceras chinense, Yabe et Hayasaka: Palæontology of Southern China, p. 48, pl. XXVII, figs. 3 a-b.
Shell (Pl IV., Fig. 4) straight, subcylindrical. Section circular. The preserved fragment tapers at the rate of $1: 9$. Both the initial portion and the larger end are wanting.

The septal interval gradually increases orad from the smaller extremity. After a certain distance it slightly reduces and immediately increases again. On the whole the camere become deeper as the shell expands in diameter, being approximately equal to one half the maximum width of the shell or even a little less. At a point not far from the living chamber the septa become more crowded toward the aperture. The septal necks are very long, extending apically for a distance equal to about one half the interspace between the septa. Septa thin, direct, having a concavity of $\mathrm{I} / 2$ the depth of a camera or more.

Siphuncle central, narrow, measuring about I / ro the diameter of the shell. It is circular in transverse section. It is entirely empty in some specimens, but partly filled with the secondary crystalline deposit in others. The margins of the septa are either perfectly free from any deposit or lined with a layer of stereoplasm, which is sometimes very thick and sometimes rather thin as well as irregular. The camere are filled with crystalline calcite of secondary origin, but generally empty.

A very small part of the test has been preserved, showing the transverse lines of growth.

There is another specimen (Plate V., Fig. 7), which was collected from the same locality and probably belongs to the same species. It is represented by a fragment of the apertural portion, having a length of 70 mm . The living chamber is partly preserved with three adjacent camerie. The septal distance measures ${ }^{\circ} 5 \mathrm{~mm}$. at the lowest camera of the fragment, and io mm . at the uppermost or last one, where the corresponding measurements of the diameter of the shell are 32 mm . and 36 mm . respectively. The surface is ornamentated by well marked transverse, flexuous, imbricating strix, of which three are counted in a distance of 2 mm . The other internal characters of this individual are the same as those of the preceding one.

A third specimen (Pl. VI., Fig. I.) is robust in form. It measure about 210 mm . in length. The living chamber is partly preserved and the apical portion is missing. The septal distances continually and gradually increase from the lower part of the shell toward the aperture, being little more than $I / 2$ the diamęter. Up to the third camera from the living chamber, it stops to increase and gradually reduces upwards, where the depth of the cameræ is less than $1 / 2$ the diameter. The septal necks are slightly shorter than $\mathrm{I} / 2$ the septal intervals. Test not observed.

The body chamber in a fourth specemers (Pl. VI., Fig 2) is rather large. Because of the incomplete state of preservation its full length can not be made out, but the portion remaining reaches a length of 48 mm . or more than $I^{\frac{1}{2}}$ times the diameter of its base. The septal distances of the mature portion seem to be greater than those in the preceding specimens, measuring about $4 / 5$ the shell diameter. The septa also become crowded as they approach the outer chamber. The test is not preserved, but the surface character may be seen on the mold of the interior, which is marked by regular, flexuous transverse lines of growth. The actual surface had its strise arranged similarly, but they appear to have been much closer together. There is another small specimen (Pl. III, Fig.5.) which indicates the young stage of the same species.

Rfmarks. In the collection about ten specimens of this species are found, but there is a great variation in tapering between them. Some taper at the same rate as that of Foord's specimen, and others much more rapidly, varying from m:6 to $1: 8$.

Horizon and Localities: This species is very common in the argillaceous limestone bed of the Neichiashan formation at Nei-chia-shan near Sin-tan of Tze-kuei-hsien (J. S. Lee), Lo-jo-ping of I-chang-hsien (C. Y. Hsieh) and Tai-hung-shan of Nan-changhsien (Coll. W. P. Shu and C. C. Yü).

Orthoceras chinense var. kuangchiaoense Yü (var. nov.)
Plate VII., Figs. I a-c and 2.
Shell straight, slender, subcylindrical, regularly and gradually augmenting its diameter toward the chamber of habitation at the rate of $\mathrm{x}: 8.5$. The preserved part of the living chamber measures 40 mm . long, the diameter at its base being 25 mm . Owing to the fact that the larger extremity is poorly preserved, the aperture is unknown. Shell section circular in outline.

Only two complete cameræ are preserved, increasing from 14 mm . in depth at the lower camera to $I 7 \mathrm{~mm}$. at the upper or last one. At this stage the shell diameter ranges from 22 mm . to $2+\mathrm{mm}$. The septa are distant about $2 / 3$ the diameter from each other. Concarity of the septa about $\mathrm{I} / 2$ the depth of a camera or more.

Siphuncle central, circular in section, having a diameter of 2 mm ., where the shell is $2 x \mathrm{~mm}$. in diameter. The septal necks are prolonged apicad only about $\mathrm{I} / 3$ the interspace between the septa. The camere are lined with the stereoplasmic deposit about I mm . thick and filled with yellowish crystalline calcite inside.

The test is about one half millimeter thick. Its surface is covered by the broad, undulating lamellose growth lines without any longitudinal stris. By the aid of a lens the transverse ridge are seen to be arranged in imbricating form, steepening at the anterior side and sloping very gently in the other direction. They are distant about I mm.

Another individual (Pl. VII, Fig. 2.) my probably be of the same form. It is represented by a perfectly preserved internal mold. It has a remarkable length of about 800 mm . with an acute apical termination. Transverse section unknown. It contracts toward the posterior end at the rate of I in 7.5. The body chamber is of considerable size, measuring' 314 mm . in length and 93 mm . in width at its base. The depth of the camere increases from 18 mm . at the diameter of 30 mm ., to 35 mm . when the diameter is 58 mm . The septa have a concavity equal to about $1 / 2$ a camera height. The siphuncle is entirely eroded away, but near the smaller end there is some indication of the siphuncle showing its situation to be in the middle of the natural longitudinal section. This specimen appears to be compressed to a certain extent, presenting a
greater diameter of shell than the original maximum width．The camerre are filled with the fine yellow matrix of calcilutyte except the initial portion，which has turned into calcite．

Comparison：This form agrees in all respects with Orthoceras chinense Foord，but differs slightly in having shorter septal necks，longer septal distances and the gradual increase of camera depth towards the aperture，these features serving to separate it as a variety of Foord＇s species．It may be compared with Orthoceras evanescens Barrander， but is easily distinguished by its more rapid tapering，its surface ornamentation， its broader siphuncle and the regular increase of its septal distance．Orthoceras penetrans Barr．${ }^{2}$ and Orthoceras cavum Barr． 3 also come nearer to this form in general aspect，but our shell has longer septal necks and surface striation，which are very different from those of Barrande＇s species．It is also allied to Orthoceras giebeli Barr．4，but that shell has different surface ornamentation and longer septal necks．

Horizon and Localitifs：The specimen（Pl．VII．，fig．a．）is from the same formation as the preceding species in the region about I li to the east of Chiang－chia－chi （將家集），and about io li north east of Kuang－chiao－pu，King－shan－hsien．（W．P．Shu and C．C．Yü）．The last specimen（Pl．VII．，Fig．2）was obtained in the bed between the reddish limestone and the thick－bedded blue limestone at the place close to Wang－chia－ sze，Chung－yang－hsien．（C．Li and W．P．Shu）．

Orthoceras chinense var．eccentrica Yü（var．nov．）
Plate VIII．，Fig． 2.
Shell cylindrico－conical，regularly enlarging．Transverse section circular．Cham－ ber of habitation not perfectly preserved．This specimen is about 210 mm ．in length， measuring 40 mm ．in diameter at the larger extremity．The apex terminates in an acute point with an apical angle of 25° ，but this is probably not the true angle as the apical portion is displaced by faulting and the section not wholly median．The normal rate of tapering of the shell may be estimated at I in 7 ．Surface markings unknown．

[^39]Septa gently concave, so far as observed, with a concavity equal to one half of the camera. The septal distance increases irregularly as the shell expands in diameter, having a depth varying from 12 mm . to 22 mm ., where the corresponding diameters of the tube are 18 mm . and 35 mm . respectively.

The siphuncle is narrow, and equal to one tenth the diameter of the shell. It is eccentric, its border touching the central axis of the conch. It is enclosed by the septal necks, which, as determined from a few of them which are clearly shown in the longitudinal section, are comparatively short, about one third the depth of the camera. There is no trace of deposits in the siphuncle. All the camerie contain the white crystalline lime in addition to the stereoplasmic lining.

Comparrson: At first sight this specimen scarcely differs in aspect from Orthoceras sp. ${ }^{\text {I }}$ figured by Woodward, but after close examination our shell may be distinguished from Woodward's shell by the excentric siphuncle, the shorter septal necks and the more remote septa. It closely resembles Orthoceras chinense Foord var. kuangchiaoense except for the position of the siphuncle and some other minor features. There fore, I am inclined to regard this form as another variety of Foord's species.

Horizon and Locarity: This shell was collected from the bed just underlying the reddish limestone at a place not far from Wang-chia-sze, Chung-yang-hsien.

Orthoceras chinense var. equiseptatum Yü (var. nov.)

Plate VIII., Figs. 3-5; Plate LX., Figs. 1a-1).
Shell (Pl. VIII., Fig. 3) subcylindrical, robust, circular in cross section. Apical portion not observed. The diameters at the two extremities of this fragment are 34 mm . and 54 mm . respectively, the distance between them being 133 mm . The rate of increase is in the proportion of I to 6.5 . Test not exposed,

The preserved part of the living chamber is about 70 mm . in length and 56 mm . in diameter at its base. Seven complete adjacent camere have been recognized, varying slightly in their depth. Thus each of the lowest two camerie measures 20 mm . in length, while above these the septa are separated by a distance of 17 or 18 mm . Still higher up the camere assume again the same depth as the lowest one. In general they are of nearly the same depth, this being greater than $r / 2$ the diameter of the shell at the lower preserved end and less than $\mathrm{I} / 2$ at the upper. The last camera is shallower than any of

[^40]the preceding ones，which is a common case occurring in the conchs of cephalopods． Septa moderately concave，having a depth nearly equivalent to one fourth the maximum width of the shell．

Siphuncle narrow，lying in the central part with a circular cross section．Its size is about I / g the diameter of the shell at the lower end，and r / rr at the upper．The septal necks extend scarcely longer than $1 / 3$ the septal interspace．The cameræ are mainly filled with crystalline calcite，though some are also filled with the material in which the specimen is embedded．

One specimen of a different individual（Pl．VIII．，Fig．4．）represents a young shell of smaller size．The septate portion has a length of 68 mm ．excluding the living cham－ ber，which is very large or more than 3 times the diameter at its base or nearly about $\mathrm{I} / 2$ the total length of the fragment．Rate of tapering I in 7.5 ．The septa are equally separated，being 7 mm ．in distance，while the diameter of the conch measures 13 mm ．at the lower end and 19 mm ．at the upper．Siphuncle narrow，central，cylindrical，preserv－ ed only in the smaller extremity of the naturally sectioned specimen．It is about $\mathrm{x} / 9$ the diameter in size．

The third specimen（Pl．IX．，Fig．I）collected from Tung－chiao－cheng，attains a length of 132 mm ．and expands its shell at the rate of I in 7 ．It terminates in a blunt end at an apical angle of 15° ．Shell slightly curved，which may be regarded as accidental．Cross section subcircular（probably by compression）．Near the apical por－ tion the septal distances gradually increase from 5 mm ．to 10 mm ．，where the shell has the corresponding longer diameter of 9 and $I 9 \mathrm{~mm}$ ．Above this stage the septa are 12 mm ． distant from each other．Still higher up they have been crushed，but from what remains we know that they are also equidistant at an interval of about 12 mm ．throughout the upper portion，where the shell enlarges its diameter from $22-27 \mathrm{~mm}$ ．

Comparison：This form has some affinities with the Orthoceras epulans Bar－ rander，but the septa in the latter form are much closer together and the septal necks much shorter．It is similar to Orthoceras chinense Foord except for the shorter septal necks and the equal septal distances，the last feature also serving to distinguish it from the other varieties of Foord＇s species mentioned above．

Horizon and Locaistites：The specimens（Pl．VIII．，Figs．3－4）were found in the beds overlying the thick blue limestone and underlying the red bed near Pei－hua－pu， Pu－chi－hsien（C．Li and W．P．Shu）．The last one described（Pl．IX．，Fig．i）is abundant in the upper Neichiashan formation at Mei－hua－ling（梅花领）I2 li east of Tung－ chiao－cheng，King－shan－hsien．There is still another specimen（Pl．VIII．，Fig．5．）of the same species was colleced from Heh－chia－tzui－tze（候家朋子） 6 li north－west of Chang－chia－chi，Chung－hsiang－hsien，（Coll．W．P．Shu and C．C．Yü）．

[^41]Orthoceras regulare Schlotheim.
Plate IV., Figs. 5, 6 a-b.
1888. Orthoceras regulare, Foord: Catalogue of Fossil Cephalopoda, Part I, p. б. (With literature references).
1917. Orthoceras regulare, Reed: Palæontologia Indica, New Series, Vol. VI, Mem. No. 3, p. 32, pl. V, figs. 13, r3a.
There is a small shell which can be identified with this species. The larger portion has not been observed and the part remaining attains 45 mm . in length. It is straight and cylindrical in general form and subcircular (probably compressed) in cross section. Rate of increase about I in 15 . Septa strongly concave and separated from each other a distance of about $1 / 2$ the diameter of the shell. Depth of the septa exceeding $1 / 2$ that of the camera. Siphuncle central, circular, being about $1 / 9$ the shell diameter. It is distinctly girdled by the septal necks, which are extremely short. The white calcareous deposit is present in the cameræ, but not in the siphuncle. No test remains, but the surface of the mould seems to be transversely striated. In another specimen (Pl IV,, Fig. 6) the shell has a circular section, tapering at the rate of I in 18.

Comparison: In the septal distances and the position of the siphuncle, the present shell is somewhat close to Orthoceras chinense Foord, but our shell has the septal necks much shorter and the tapering much slower, features readily distinguished from those of Orthoceras chinense.

Horizon and Locality: Embedded in the upper limestone bed of the Neichiashan formation, near Sin-tan (C. Y. Hsieh Collector).

Orthoceras cf. politum M'Coy
Plate III., Fig. 6
1888. Orthoceras politum, Foord: Catalogue of Fossil Cephalopoda, Pt. I, p. 7. (With literature references).
Shell straight, slender, embedded in the yellowish argillaceous limestone. Only the apical portion is recognized, with six cameræ remaining. The cross section is circular. Because the longitudinal section is oblique to the axis of the shell, the siphuncle is only partly exposed at the upper end. It tapers at the rate of I in 10 . The distance between the septa slightly and gradually increases upwards, ranging from $2 / 5$ the diameter at the lower end to $\mathrm{I} / 2$ at the upper end of the fragment. Depth of septa about $\mathrm{I} / 4$ the shell diameter. Siphuncle circular, central, having a diameter about $1 / 7-1 / 6$ the diameter of the shell. Septal necks extending less than $I / 4$ the depth of the camera. The surface markings of the test are unknown.

Vol. I. C. C. Yü-Ordovician Cephalopoda of Central China (II) 59
Comparison: This fragment may be correlated with Orthoceras chinense Foord ${ }^{1}$ and Orthoceras regulare Schlotheim ${ }^{2}$, but differs from the former in having much shorter septal necks and from the latter in the more rapid tapering. So far as the visible characters of this fragment are concerned, it may be assigned to the present species. According to the description ${ }^{3}$ given by Foord the siphuncle of M'Coy species is "central in the young shell, but becoming eccentric with growth" and the surface is covered "with fine transverse striæ of growth". But the specimen in our possession only represents the young stage, and the position of the siphuncle in the upper part as well as the surface character are quite obscure. The specific identification of this specimen, therefore, is made with a certain amount of hesitation.

Horizon and Localiry: From the limestone bed of the Neichiashan formation at Ta-hung-shan, Nan-chang-hsien.

Orthoceras squamatulum Barrande.
Plate IV., Figs. 7a•b.
r968. Orthoceras squamatulum, Barrande: Systèm Silurien de la Bohême, Vol. II, Texte III, 1874 p. 455, pl. 302, pl. 310, pl. 370.
Shell straight, cylindrical, represented by a fragment of the posterior end, which is 40 mm . long. Transverse section circular. It expands in diameter very gently, the rate being about I in 30 . The diameters at the two extremities of the fragment are 13 and 14 mm ., while that of the siphuncle is 1.5 mm . wide throughout the whole portion of the specimen.

The septa are very shallow, about $1 / 3$ the depth of the camere. This fragmentary specimen contains four camere, which have a depth of $2 / 3$ the diameter of the shell. In actual measurement the septa are 9 mm . apart at a diameter of 13 mm .

Siphuncle slightly excentrir, narrow, being about $1 / 7$ the diameter of the conch. Cross-section circular. Septal necks clearly shown and extremely short. The cameræ consist of the same material as the surrounding rock. Test not preserved, but the surface of the mould indicates that slightly oblique striæ are present, four occupying a distance of I mm.

Comparison: Orthoceras michelini Barr. 4 somewhat corresponds to the present specimen, but Barrande's species has the septal distance much longer. Our shell is

[^42]also similar to Orthoceras regulare Schlotheim ${ }^{1}$ and Orthoceras politum M'Coy ${ }^{2}$, but differs from them in having a much slower rate of tapering and much longer septal intervals, It may be also distinguished from Orthoceras scabridum Angelin³ and Orthoceras sodale Barrande ${ }^{4}$ by the more gentle tapering and the siphuncle being not central in position.

Horizon and Locadity: Found in the upper Neichiashan formation near Sin-tan.

Orthoceras thyrsus? Barrande
Plate VII., Figs. 3a-b.
1870. Orthoceras thyrsus Barrande: Syst. Sil. de la Bohême, Vol. II, Texte III, I874, p. 555, pl. 405, figs. I5-18.
A fragment has been obtained with only three air chambers preserved. The transverse section of the shell is circular. The rate of expansion is very gentle, measuring about I in 20.

The septa are provided with septal necks, which extend backwards to a very short distance. The depth of the septa is apparently about $\mathrm{r} / 2$ that of the cameræ. The distance between the septa is approximately equivalent to $4 / 5$ the diameter of the conch.

The siphuncle occupies the position between the periphery and the center of the shell, being nearer to the latter than to the former. It is circular in section, having a size of about I / mo the diameter.

The test is partly preserved. Its surface seems to be covered by an ornamentation of oblique strix, which, however, are not very clearly shown.

Comparison: This specimen may be related to Orthoceras pleurotomum Barrande5, but differs from it in the possession of a circular shell, in a different character of surface markings, and in some other points. The only species which can be identified with the present specimen is Orthoceras thyrsus Barrande. But Barrande's species was collected from the Silurian rocks, while our shell makes its appearance in the upper Neichiashan formation of Middle Ordovician age. Therefore, if this species did not originate in pre-Silurian time, then this correlation may be wrong.

Horizon and Locality: Upper division of Neichiashan formation near Sin-tan.
I. Foord: Catalogue of Fossil Cephalopoda, Pt. I, p. 5 .
2. Foord: Catalogue of Fossil Cephalopoda, Pt. I, p. 7.
3. Angelin-Lindström: Fragmenta Silurica, p. 4, t. IV, figs. 6-9; t. VII, figs. 8-Io.
4. Barrande: Syst. Sil. de la Bohême, Vol. II, Texte III, I874, p. 453, pl. 4I7, figs. 9-2I.
5. Barrande: Syst. Sil, de la Bohême, Vol. II, Texte III, 1874, p. 412, pl. 224, pl. 296, pl. 366.

Orthoceras remotum Yü（sp．nov．）
Plate VII．，Figs． 4 a－b．
Shell slender，elongate，cylindrical．Transverse section elliptical．It tapers very slowly，about I in 19．The fragmentary specimen has a length of 225 mm ．embracing Io cameræ．The two extremities have not been observed．

Septa strongly concave and very distant from each other．Their concavity is nearly equivalent to two fifths of the interspace between the septa．The cameræ regularly increase in depth as the shell expands in diameter，measuring 18 mm ．in the smaller portion and 26 mm ．in the upper，while the shell is 21 mm ．and 29 mm ．in dorso－ ventral diameter respectively．The obliquity of the septal lines makes an angle of 70° with the median axis of the siphuncle and meets the side of the shell at 40° ．

The siphuncle is strongly excentric，being 9 mm ．distant from the nearer side of shell at the upper end and 6 mm ．at the lower．It is narrow and elliptical in cross sec－ tion．Its major and minor diameters are 3.5 and 2.5 mm ．，while the corresponding diameter of the shell are 30 mm ．and 23 mm ．respectively．The septal necks are not clearly exposed，but at the smaller end they may be perceived to have a very slight length．

Test smooth，being 0.5 mm ．in thickness．
Comparison：This species is characterized by the strong concavity of its septa and the great depth of its cameræ．It may be compared．with Orthoceras pleurotomum Barrande ${ }^{1}$ and Orthoceras thyrsus Barrande，${ }^{2}$ but is readily distinguished from the latter by the great septal distance，the elliptical section of shell and the absence of the sur－ face ornamentation；and from the former by the fact that the shell is covered by delicate oblique striations，while the septal intervals become crowded upwards．

Horizon and Locadity：It occurs in a polished slab collected from the upper bed of the Neichiashan formation at Chai－tze－shan（寨子山）about ro li south of Fang－chia－ chi（方家集），Hsiang－yang－hsien（襄陽睬）．

Orthoceras rudum Y ü（sp．nov．） Plate IV．，Figs．8a－c．
Shell straight，cylindrical，enlarging very slowly．Transverse section slightly elliptical．In this imperfect specimen only the basal portion of the body－chamber is preserved together with three adjacent ordinary cameræ．The entire length of the fragment is 70 mm ．The rate of increase may be computed as I in 20.

[^43]Septa strongly concave. They are widely separated, and slightly increase in distance apart toward the outer chamber. The concavity is about equal to one third of a camera which has a depth of 16 mm . in the last camera and 15 mm . in the next preceding one, while the dorso-ventral diameters of the tube at the corresponding stages are 20 mm . and 18 mm . respectively.

Siphuncle excentric, nearer to the center than to the side. It is encircled by the septal necks, which contract at the septa and gradually enlarge backwards, extending to a distance of about one third the septal interval. Transverse section ovately elliptical. It has a longer diameter of 3 mm . and a shorter of 2 mm . At the same place the shell measures 17.5 mm . and 17 mm . in the dorso-ventral and transverse diameters.

The test is well preserved, having a thickness of 0.5 mm . The surface is marked by coarse, transverse, elevated, flexuous lines of growth, 6 in the space of 5 mm . On close examination under the magnifier we find that either the elevated ridges or the depressed interspaces are wholly composed of the fine strie, slightly arching forward on the dorsal side.

Comparison: It is similar to the preceding species in all respects except in its striking surface ornamentation. This species may be compared with Orthoceras pleurotomum Barrande, ${ }^{1}$ but differs from that by its gradual increase of septal distance and by the character of the transverse undulating striæ. It may be distinguished from Orthoceras thyrsus Barrande ${ }^{2}$ by the fact that the latter has a circular section of the shell, and the oblique, straight striae on its surface.

Horizon and Locality: From the bed immediately underlying the red limestone at the region not very far from He-chiao, Chung-yang-hsien (C. Li and W. P. Shu Coll.)

Orthoceras suni Yii (sp. nov.)
Plate V., Figs. 8a-b, 9.
Shell straight, cylindrico-conical. Transverse section subelliptical. The only preserved part is the apical portion of 82 mm . in length, gradually expanding toward the apertural end. Mature phragmacone and body chamber not preserved. Apical angle 20°. Rate of incrase about one millimeter in a length of four millimeters.
I. Barrande: Syst. Sil. de la Bohême, Vol. II, Texte III, I874, p.4I2, pl. 224, pl. 296, pl. 366.
2. Barrande: Syst. Sil. de la Bohême, Vol. II, Texte III, 1874, p,555, pl. 405, figs. 15-18.

Septa thin, having a concavity exceeding one half the depth of a camera. The septa are 5 mm . distant from each other at the point where the longer diameter of the shell is 14 mm ., and gradually increase their interspaces to 9 mm . where the diameter of the shell is 23 mm .

Siphuncle central, being ovately elliptical in section. Its major diameter measures 2 mm . at the smaller and 3 mm . at the larger end of the preserved fragment. At the corresponding place the conch varies in its diameter from 16 to 26 mm . The sides of the siphuncle are distinctly marked by the septal necks, which are a little longer than one third the septal distance.

Near the smaller extremity the cameræ seem to have been separated horizontally into two nearly equal parts by a process directed toward the anterior angle on each side of the camera. This feature is apparently similar to that seen in the specimen of Orthoceras sp. Woodward.

Another fragment of smaller size was also obtained. It has a length of 40 mm . containing II cameræ with an apical angle of 20°. The apex is more pointed and the rate of tapering is more rapid, being $\mathrm{I}: 3$.

Comparion: This species closely resembles Orthoceras thomsoni Barrande ${ }^{\text {I }}$, but differs from it in the shorter septal distances, narrower. siphuncle, and sub-elliptical sections of both the siphuncle and the shell. This form also bears some degree of resemblance to Orthoceras sp. ${ }^{2}$ figured by Woodward, but the former has a more rapid rate of tapering and a subelliptical section of shell.

Horizon and Locadity: In beds just overlying the blue thick-bedded limestone at the western end of Pei-yang-shan, Chung-yang-hsien. The specific name is given in honor of Dr. Y. C. Sun of the Geological Survey.

Orthoceras elongatum Yü (sp. nov.)
Plate VII., Fig. 5.
This species is well shown in a natural polished longitudinal section. Shell elongate, slender, and conical, having a length of 275 mm . The initial portion is pointed with an apical angle of 8°. It expands slowly toward the larger end. At a stage 262 mm . distant from the apex, it has a diameter of 22.5 mm . Rate of increase I in 14 . Cross section of shell circular. Body chamber and surface character unknown.

[^44]Septa gently concave, increasing in their distance from $3 / 4$ to $4 / 5$ the diameter of the shell. At the stage where the shell is II mm . in diameter, the camera is 9 mm . in depth, while at the uppermost preserved end the septa are 19 mm . distant from each other, being little less than the shell diameter which is 2 Imm . at this place. Concavity of septa approximately equal to one third the depth of a camera.

The siphuncle is very slightly eccentric, cylindrical, and very narrow. Its diameter is about $\mathrm{I} / \mathrm{r}_{4}$ that of the shell. The septal necks do not show very clearly, but seem to be very short. The organic deposit is well developed along the margins of the septa.

Comparison: This form is characterized by its great septal distances. It comes very near in aspect to Orthoceras currens Barrande, ${ }^{\text {r }}$ but is differentiated from it by the much narrower siphuncle, slower rate of tapering and much shorter septal necks. The same characters in addition to the longer septal distance also distinguish this species from Orthoceras chinense Foord.

Horizon and Locality: This specimen was procured from the bed underlying the reddish limestone near Ta-wu-shu, Chung-yang-hsien.

Orthoceras densum Yu (sp. nov.)
Plate VI., Figs. 3a-b; Plate IX., Fig. 2.
Shell cylindrico-conical with transverse section subcircular. Tube regularly enlarging in diameter upwards. Apical angle about 8°. The larger extremity as well as the surface character not observed. Tapering at the rate of I in 9 .

The cameræ are extremely closely arranged in the apical portion, fourteen being counted in a distance of 20 mm . commencing from the apex. They are six in number in the next succeeding space of 20 mm . higher up. During the mature stage the cameræ greatly increase their depth, ranging from to to 17 mm ., while the corresponding diameter of the shell is from 14.5 to 20 mm . Near the upper end where the shell has a diameter of from 20 to 30 mm ., the septal distance scarcely increases, remaining about I6-17 mm. high.

Septa smooth, thin, having a convexity nearly equal to one half the depth of one camera, or a little more. Siphuncle narrow, central, circular in section, and apparently enclosed by the septal necks which extend not less than one third the septal distance. Its diameter is about I/7 that of the shell.
I. Barrande: Syst. Sil. de la Bohême, Vol. II, Texte III, 1874. p. 628, pl. 221, pl. 222, pl. 407, pl. 4 II .

Vol．I．C．C．Y \quad－Ordorician Cephalopoda of Central China
Another small specimen（P1．IX．，Fig．2）of the same species was found．Its body chamber has only a small part of the base preserved．It gradually decreases in diameter apicad，to an acute point with an apical angle of 10° ．Rate of increase I in 7．5．The septa at the smaller end are very numerous，being more than io camere within the length of 20 mm ．After the rapid increase of the septal distances in the middle part of the conch，the camerze apper to be retarded in the rate of increase in depth as compared with its diameter．Near the larger extremity where the diameter is 13 mm ．the septa are distant about 7 mm ．

Rumarks：This species is distinct from any of the preceding ones in its extremely crowded camerte at the apical portion and the irregular increase of the septal distance． I have not found any related form，with which this species may be identified．

Horizon and Localtities：One speciemen（Pl．VI．，Fig．3）was obtained from the upper part of the Neichiashan formation at Chien－tze－kou about 3 li to the west of Nan－ chang－hsien，and the other（Pl．IX．，Fig．2），from the same bed at Liu－chia－chung（劉家冲） about 15 li west of Kueng－chia－wang， I －cheng．

Orthoceras yangtzeense $\mathbf{Y u ̈}$（sp．nov．）
Plate III．，Figs．7，8a－b．
There are three specimens of internal moulds which are cylindrico－conical and slightly curved．The cross section is elliptical，its two diameters being at the ratio of 3：2．Its tapering is rather rapid，about I in 6 ．Larger extremity not preserved．

It is to be noted that the septal sutures are slightly undulating and form on the convex side the V－shaped lobes，which are very characteristic of this species．The septal distances are very uniform and are about three millimeters apart on the average， while the longer diameter of the shell is 8 mm ．at the lower end and I 4 mm ．at the upper end of this fragment，which is little less than 40 mm ．in length．

The position of the siphuncle is rather uncertain．But the upper end of one specimen（Pl．III．，Fig．8）shows that it is small，circular，submarginal to the shell wall opposite the side which bears the V－shaped lobes．

Comparison：In the closer septa and the V－shaped lobes the present species somewhat resembles Orthoceras sp．${ }^{\text {r }}$ figured in Angelin－Lindström＇s Fragmenta Silurica． Since no description of that form was given，we are not able to make any accurate comparisons．

I．Angelin－Lindström：Fragmenta Silurica，t．IV．fig． 16.

Horizon and Locality: The upper Neichiashan formation yields this form near Sintan, Tze-kuei-hsien (Collections: J. L. Smith and C. Y. Hsien respectively)

Orthoceras? wongi Yü (sp. nov.)

Plate V., Figs. Ioa, b.

The weathered surface of this specimen appears to be annulated outside. But after a careful study we find that all the transverse depressions are just in the positions of septal sutures. In another smaller shell probably belonging to the same species, the surface is rather smooth, though it also slightly exhibits a longitudinal undulation to some extent. It may be concluded that the annulation-like sculpture is probably the result of the weathering. Shell straight, cylindrical, having a length of about 40 mm . It has a sub-elliptical section. The expansion of the conch is slow, about I in to or more. Both the extremities are missing.

The septal sutures are slightly undulating. The septal distances are approximate and uniform, being about $1 / 8$ the shell diameter, which is also the concavity of the septa. In actual measurement the septa are 3 mm . apart throughout the whole fragment, which has a longer diameter of 20 mm . at the lower end and 24 mm . at the upper.

The siphuncle is subcentral, cylindrical, being 3.5 mm . in diameter. It is circular in section. It is a remarkable thing that the septal necks assume the character of those in Holochoanites, extending beyond the preceding septa for a little distance. The interior of the siphuncle is empty. A few camerae are partly filled with the crystalline calcite.

Remaris: The siphuncle of this form is not very large, suggesting the ordinary size of an Orthoceras, though having such long septal necks. I hesitate to consider this as another distinct genus. The generic name, now applied to our shell is only provisional.

Horizon and Locality: Same as the preceeding species, with which the present form is associated.

Orthoceras sp.

Plate IX., Fig. 3.
Shell small, slender, slightly curved, enlarging very slowly. The transverse section is nearly circular. The initial portion as well as the body-chamber unknown. Rate of increase $1: 27$.

The thin septa are rather oblique，sloping back more than 20° and dying away on the convex side．No trace of the siphuncle can be recognized though it seems to be marginal to the convex side．The distances between the septa vary from 8 to 10 mm ．， where the shell increases in diameter from 15 mm ．at the lower to 18 mm ．near the upper end．The cameræ are entirely occupied by the dark gray lime－mud．The total length of the imperfectly preserved specimen is 108 mm ．

The test is preserved in some places．It is rather thin，showing a thickness of o．I mm ．Its surface is apparently smooth．

Comparison：This specimen is remarkable because of the obliquity of its septa， a feature not seen in any of the preceding specimens described．It comes very close in general aspect to Orthoceras durinum Blake，${ }^{\text {I }}$ from the Lower Llandeilo Limestone of Durness，but in the latter form the rate of tapering is less rapid and the septal distances are shorter than they are in the present form．It may also be separated from Orthoceras baculoides Blake ${ }^{2}$ by its much－slower tapering and by the apparently eccentric position of its siphuncle，which is，central and large in Blake＇s species．

Horizon and Locality：At Pei－ting－tze（碑亭子） 15 li west of Hu－chia－chi，Chung－ hsiang－hsien，where the upper part of the Neichiashan formation is very prominently developed．

Orthoceras sp．

Plate IX．，Fig． 4.
Shell straight，cylindrico－conical and of moderate size．It rapidly tapers backwards to an acute point with an apical angle of 55° ．The shell section is elliptical？ Test not observed．The siphuncle has been completely rubbed away．

The septa are thin，direct and numerous．They are 3 mm ．distant from each other near the initial part．At the last camera 140 mm ．from the apex，the septal interval increases to 9 mm ．while the diameter of the shell is 21 mm ．The rates of increase are different at the different stages of the conch．Thus，it is rapid at the apical portion， being about I in 4 ．Above this place 40 mm ．from the apex，the shell tapers less rapidly at the rate of about I in 8.5 ．Near the larger end the tapering is reduced to I in II． Since the polished section is not a median one，neither the diameter nor the tapering of the specimen can be taken as accurate．

Remarks：This specimen is characterized by its numerous septa and its variable rate of increase in the different stages of the same individual．Since it is only in part preserved，its characters are insufficiently shown for specific determination．

[^45]Hortzon and Localty: From a polished slab on the pavement along the road from Cha-ti-pu to Chang-chia-chiao, Hsien-ning-hsien, where the country rock is grey thin-bedded limestone corresponding to the reddish limestone in Chung-yang.

Family cycloceratidae Hyatt

Genus Protocycloceras Hyatt Protocycloceras deprati Reed
Plate VI., Figs. 4a-b, and 5.
1917. Orthoceras (Protocycloceras?) deprati, Reed: Palæontologia Indica, New Ser. Vol. VI, Mem. No. 3, p. 33, pl. V, fig. 15. ..
1928. Protocycloceras (?) deprati, Kobayashi: Japanese Journal of Geology and Geography, Vol. V, No. 4, p. 184, pl. XIX, fig. 5.

Fig. 4

Fig. 5

Fig. 4. Protocycloceras deprati. Front view of an internal mould, showing the annualations. Natural size.

Fig. 5. Protocycloceras deprati. Side view of the same. Natural size.
Fig. 6. Protocycloceras deprati. End view of the same, showing the eccentric siphuncle. Natural size.

Fig. 7. Protocycloceras deprati. Portion of the test of another smaller individual. Fnlarged five times.
This species is represented by numerous specimens, which are all internal moulds but belong to the same species. In taking the longitudinal section the interior of the specimen is wholly empty without any trace of the internal structures. Nevertheless, the characteristic surface annulations and the position of the siphuncle are cleary shown on the exterior of the moulds.

Shell straight, annulated, with a slightly elliptical section. Owing to the moulds not being well preserved the rate of tapering can not be precisely determined, but in general the conch enlarges in diameter very slowly, about I in 20 or even less. Its surface is encircled by coarse, concentric annulations, which are oblique to the axis of the shell and nearly uniformly separated from each other. In some smaller specimens they are distant about 5 mm ., but in the larger ones the distance is 6 or 7 mm . from the summit of one ridge to that of the other. The oblique annulations are arched on the opposite side to form broad saddles, which ascend about equal to the space separating them. They occur as ridges with round edges. The interspaces between them are concave and round. In one specimen (Pl. VI., Fig. 5) the annulations and the interspaces between them are again covered with very regular, fine striæ, of which more than ten are contained in a length of Imm . No longitudinal strize are seen at all.

The siphuncle is subcentral and slightly subcircular. It is nearer to the center than to the side of the shell. Its diameter is 4 mm ., where the shell measures $2 I \mathrm{~mm}$. in minor diameter and 24 mm . in major. It occupies the position across the dorso-ventral diameter and opposite the side bearing the broad saddles.

Remarks: According to Reed's description' the rate of tapering is "at about I in 40 " and the annulations are "arched up strongly to form a broad high ventral saddle on the siphonal side." I think that Reed only obtained one piece of the broken shell, so the measurement of the tapering may be misleading. Regarding the siphuncle he stated: "The position of the siphuncle is rather obscure", while our specimens indicate the siphuncle lying at one side of the center just opposite the saddles. In any case our shell is undoubtedly the same as Reed's species.

Horizon and Locality: This species prevails in the upper part of the Neichiashan near Sin-tan, western Hupeh. Many specimens were collected by J. L. Smith and C. Y. Hsieh respectively.

Genus Cycloceras M'Coy
 Cycloceras sp.

Plate VI., Fig. 6
Shell straight, cylindrical, and annulated. Section unkown. Only a part of the conch is preserved, being 23 mm . in length. Even though no test remains, yet the surface markings may be examined on the surface of the internal mould. Siphuncle and septa also unknown.

The mold is covered by six transverse prominent annulations, which are separated by concave interspaces about 3.5 mm . wide. The annulations are slightly oblique and moderately sharp. Near the uppermost end of the fragment the depressed space is ornamented by numerous fine subimbricating striae, running parallel to the projecting annulations. Besides these, there are a few indistinct longitudinal ridges across the fine transverse strise.

Remarks: This specimen is very poorly preserved and the data available are not sufficient for specific identification, even though in external character it is somewhat allied to Cycloceras peitoutzense Grabaur to a certain degree.

Horizon and Localisy: From the Yellowish-green shale of the lower Neichiashan formation at Tai-hung-shan, Nan-chang-hsien.

Family TrOcholitidae Hyatt
 Genus Discoceras Barrande
 Discoceras eurasiaticum Frech.

Plate IX fig. 5, 6 a-b.
rgri. Discoceras eurasiaticum Frech: Richthofen's China, Vol. V, p. 5, pl. I, figs. ta-2b.
1920. Discoceras eurasiaticum, Yabe and Hayasaka; Palæontology of Southern China, p. 54, pl. XVIII, figs. 2a-b.
Shell (Pl. IX., Fig. 6) discoidal, consisting of about four volutions, which expand in height very slowly. The diameter of the shell measures 45 mm . from the apertural portion to the opposite periphery passing through the middle part of the umbilicus. The dorsal side of the volutions is slightly impressed by the preceding one. The cross section of the whorl is subquadrate in outline. Near the apertural end it is 15 mm . in breadth and 10 mm . in height. The siphuncle is very small and marginal to the internal side. The surface of the shell is covered by oblique transverse sharp coste, which bend backward from the internal side toward the external.

There is another well-preserved specimen (Pl. IX., Fig. 5) which is somewhat larger. A part of the test is broken, and the septa are distinctly exposed. The septal distance is greater at the ventral side than at the dorsal. The cameræ are very shallow and increase in depth very slightly. In the gerontic stage the septa are 3.5 mm . distant at the center, while the whorl is about 14 mm . high. The costre are very numerous, three occurring in a space corresponding to the depth of one camera.

Horizon and Locality: The specimens were found in the upper part of the Neichiashan formation at Nei-chia-shan near Sin-tan of Tze-kuei-hsieh, western Hupeh. (J. S. Lee Coll.)
I. Grabau: Palæontologia Sinica, Ser. B, Vol. I, fasc. I, p. 63, pl. VI, Figs. r-4.

Vol. I. C. C. Yü-Ordovician Cephalopoda of Central China

Family LITUITIDAE Noctling
Genus Lituites Brogniart
Lituites lii Yü (sp. nov.)
Plate IX., Fig. 7.

The shell is a gyroceracone in the young and becomes straight in the adult stage. Section subcircular. This form is represented by only one specimen which occurs in a natural longitudinal section and can not be separated from the enclosing rock. Therefore, nothing is known of the surface ornamentation of the shell. Apertural portion not preserved.

The coiled part of the conch includes about two volutions. The whorls are separable about I mm. or a little more near the apical part, and 2.5 mm . at the place where the second or last volution ends and the shell begins to straighten. The diameter of the coiled part measures about 35 mm . from the larger end of the last whorl to the opposite side across the volutions. In the central part of the first volution there is an open space with a diameter of about 7 mm . The straight part of the shell is slightly bent inwards and attains about 70 mm . in length, expanding slowly at the rate of I in 22.

Septa simple, thin, moderately concave. They are more curving forward on the internal or the dorsal side. The intervals between the septa gradually increase toward the aperture. They are about $\mathrm{r} / 2$ the diameter of the shell. At the second volution there are eleven septa in the distance of half a whorl or a length of about 44 mm . Near the larger preserved end they are 9 mm . apart, where the shell has a diameter of $\mathrm{I}_{5} \mathrm{~mm}$.

Siphuncle narrow, tubular, lying dorsal of the center. At the upper portion it is 2 mm . distant from the internal side and II mm . from the external. In the same stage the widths of the siphuncle and the conch are about 2 mm . and 15 mm . respectively. It is apparently empty, and the septa appear thickened on both upper and lower marginal portion with white organic deposit.

Rrmares: Owing to the fact that the specimen is not well preserved, the generic determination of this form is somewhat doubtful. Foerste said.r "It is well known at present, however, that the chief characteristic of true Lituites consists of the presence of deep ventral and dorsal sinuses, shallow lateral sinuses and intermediate crests." In our shell the apertural end has not been preserved, whether it is provided with such sinuses and crests or not is not known. Furthermore, the coiled part of this form is also different from that of the genotype Lituites lituus Montfort, which has the volutions entirely in contact. Foerste proposed in 1925 the new generic name

[^46]Bickmorites, taking Lituites bickmoreanus Whitfield as its genotype. According to the description ${ }^{\text {r }}$ given by Foerste Bickmorites is a gyroceracone in the early stages with strongly marked transverse rib-like annulations and some other important surface ornamentations, and its siphuncle lies slightly ventral of the center. Although our specimen closely resembles Bickmorites in some aspects, its siphuncle is located near the dorsal side and its inner side shows a fairly straight profile in the longitudinal section, indicating that there are no annulations at all. It is not desirable to make a new genus for our shell until we obtain other specimens of the same form which show the external characters.

From the specific point of view, the present form may be related to Lituites latus Angelin ${ }^{2}$, but the more slender, more slowly tapering, and less bent, straight portion sufficiently distinguishes our shell from Angelin's species.

Horizon and Locadity: This specimen came from the bed just below the reddish limestone at He-chiao, Chung-yang-hsien. The specific name is given in honor of Mr. C. Li, geologist to the Institute of Geology, National Research Institute of China (C. Li and W. P. Shu Coll.)

Suborder Cyrtochoanites Hyatt
 Family oncoceratidae Hyatt
 Genus Oncoceras Hall
 Subgenus Meloceras Hyatt
 Melocoras asiaticum Yabe

Plate IX., Figs. 8, ga-c.
19ri. Cyrtoceras (Meloceras) cf. ellipticum, Frech: Richthofen's China, Vol. V, p. 6, pl. II, figs. за-с.
1920. Cyrtoceras (Meloceras) asiaticum, Yabe: Palæontology of Southern China, p. 52, pl. XVIII, fig. 14; pl. XXVII, figs. 7a-b.
This species is represented by several fragments, which enlarge in diameter very gently. In one of the smaller specimens (Pl. IX., Fig. 9) it is uniformly arcuate and about 40 mm . long along its convex side. The cross section is ovately elliptical. The internal side seems to be thicker than the external. The siphuncle is situated nearly marginal to the external side. It is circular in section and very small in size, measuring I mm in diameter, where the corresponding measurements of the shell are 15 mm . in the dorso-ventral diameter and 12.5 mm . in the transverse.

[^47]The septa are very closely arranged. The septal distance is about 1.3 mm . at the initial portion and very slightly increases to I .8 mm . at the upper part of the fragment. The septa are more separated along the convex side than on the concave. The cameræ have been filled with white calcite, but the siphuncle is completely empty, except for the mud filling.

The test is rather thick, being about 0.5 mm . Its surface is covered with transverse striæ, which are very fine.

Horizon and Locality: Same as Discoceras eurasiaticum Frech, with which the present specimens are associated. (J. S. Lee Collector).

BIBLIOGRAPHY

Angelin, N. P. and Linström, G. 1880-, Fragmenta Silurica.
Barrande, J. 1867--I877-Système Silurien du centre de la Bohême, Vol. II.
Blake, J. F. 1882--British Fossil Cephalopoda, Pt. I.
Brown, J. Coggin r9i3-Contributions to the Geology of the province of Yunnan in western China. III. Notes on the stratigraphy of the Ordovician and Silurian beds of western Yunnan. Records of the Geological Survey of India, Vol. XLIII, pt. I, pp. 327-337.

Clarke, Jobn. M. I897-The Lower Silurian Cephalopoda of Minnesota. Geol. of Minn., Vol. III., Pt. II.

Crick, G. R. 1903-Notes on some specimens of straight-shelled Nautiloidea collected by the Rev. Samuel Couling, M. A. Ching-Chow-fu, Kiochow, North China, Geol. Mag., N. S., Dec. IV, Vol. X, pp. 48i-485, pl. XXII.

Dewitz, H. 1880-Ueber einige ostpreussische Silur-cephalopoden. Zeitschr. d. Deutsch Geol. Gesellsch. Bd. 32, pp. 37I-93, Tafel XVI-XVIII.

Etheridge, R. 1878-Paleontology of the coasts of the Arctic Lands visited by the late British Expedition under Captain Sir George Nares. Quart. Journ. Geol. Soc., Vol. XXXIV.

Foerste, Aug. F. 192I-Notes on Arctic Ordovician and Silurian Cephalopods, chiefly from Boothia Felix, King William Land, Bache Peninsula, and Bear Island. Journal of the Scientific Laboratories of Denison University. Vol. XIX.

Foerste, 1924 (B)-Notes on American Palæozoic Cephalopods. Journal of the Scientific Laboratories of Denison University. Vol. XX.

Foerste, 1924 (C)-Upper Ordovician Faunas of Ontario and Quebec. Geol. Surv. Canada. Mem. I38. Ottawa.

Foerste, 1925 (A)—Notes on Cephalopod Genera; Chiefly coiled Silurian forms. Journal of the Scientific Laboratories of Dension University. Vol. XXI.
Foord, A. H. 1887-On "Orthoceras (Endoceras) duplex" Wahlenberg et auctt., with Descriptions of three new species of Endoceras from the Ordovician of Sweden and Russia contained in the British Museum. Ann. and Mag. Nat. Hist., Ser. 5, Vol. XX, pp. 393-402.

Vol. I. C.C. Yü--Ordovician Cephalopoda of Central China
Foord, I888-Catalogue of the fossil Cephalopda in British Museum. Pt. I, Nautiloidea. Foord, r89r-Ibid. Pt. II, Nautiloidea.
Frech, F. 1895-Ueber Palaeozoische Faunen aus Asien und Nord-afrika. Neues Jahrbuch für Minerologie Geologie und Palaeontologie 1895, Bd. II, pp. 48-5I.
Frech, 19ri-Das Silur. von China. Richthofen's China, Vol. V, pp. I-I7.
Grabau, A. W. and Shimer, H. W. Igro-North American Index Fossils. Invertebrates. Vol. II.
Grabau A. W. 1916-Comparsion of American and Eurpean Lower Ordovician Formation. Bull. Geol. Soc. am. Vol. 27 pp. 555-622.
Grabau, A. W. 1922-Ordovician Fossils from North China. Pal. Sin. Ser. B, Vol. I, Fasc. I.

Grabau, 1923-24-Stratigraphy of China. Pt. I. Palkeozoic and Older. Geological Survey of China.

Grabau, 1928-China in the Ordovician Period. Bulletin of the Geological Society of the National University, Peking. Vol. III, pp. 9-22.
Grabau, 1929-Terms for the Shell-elements in the Holochoanites. Bulletin of the Geological Society of China. Vol. VIII, No. 2, pp, II5-123.
Grabau, 1929-Origin, Distribution, and Mode of Preservation of the Graptolites. Memoir of the Institute of Geology, No. VII, pp. 1-52. National Research Institute of China.

Hall, J. 1847—Palæontology of New York. Vol. I. New York State Geological Survey. Holm, G. 1885-Ueber die Innere Organisation einiger silurischer Cephalopoden. Paläeont. Abhand. Bd. III, Heft I.
Holm, 1892-Om mynningen hos Lituites. Sveriges Geologiska Undersökning. Ser. C. $\mathrm{N}: \mathrm{O} 12 \mathrm{I}$.

Holm, I892-Om tvenne Gyroceras-formigt büjda Endoceras-arter. Sveriges Geologiska Undersökning. Ser. C. N:O 153.

Holm, 1895 - Om de endosifonala bildningarna hos familjen Endoceratidae. Sver. Geol. Und. Ser. C. N:O 153.

Holm, 1896 - Om apikaländan hos Endoceras, Sver. Geol. Und. Ser. C. N:O 163.
Holm, 1898-Palaeontologiska notiser. Sver. Geol. Und. Ser. C. N:O 176.
Hsieh, C. Y.1924-Stratigraphy of South-eastern Hupei. Bulletin of the Geological Society of China. Vol. III, No. 2, pp. 91-97.

Hsieh, C. Y. and Chao, Y. T. 1926--Geology of I-chang, Hsingshan, Tzekuei and Pa-tung districts, W. Hupeh. Bulletin of the Geological Survey of China. No. 7.
Hsieh, C. Y. and Liu, C. C. 1927-Geology and Mineral Resources of South-western Hupeh. Bulletin of the Geological Survey of China. No. 9.
Kingsmill, T. W. 1868-Geology of China. Quart. Journ. Geol. Soc. Vol. XXV, p. rig. Kobayashi, T. 1928 -Ordovician Fossils from Corea and South Manchuria. Japanese Journal of Geology and geography. Vol. V, No. 4, National Research Council of Japan.
Lee, J. S. 1924—Geology of the Gorge District of the Yangtze (From I-Chang to Tze-kuei) with special reference to the development of the Gorges. Bulletin of the Geological Society of China. Vol. III, No. 3-4, pp. 35I-39I.
Li, C. 1928-Geology of Pu-chi, Kia-yu, Hsien-ning, Chung-Yang, and Wu-chang Districts, Hupeh Province. Memoir of the Institute of Geology. No. III. National Research Institute of China.
Lindström, G. 1888.-List of the Fossil Faunas of Sweden. I. Cambrian and Lower Silurian. Palaeontological Department of the Swedish State Museum (Nat. Hist.).

Lossen, C. 1860.-Ueber einige Lituiten. Zeitschrift der Deutschen Geologischen Gesellschaft. Bd. I2, p. I5.

Nöetling, F. 1882-Ueber Lituites lituus. Zeitschr. d. Deutsch Geol. Gesellsch. Bd. 34, p. 156.

Phillips, J. r841-Figures and Descriptions of the Palaeozoic Fossils.
Reed, F. R. Cowper 1917-Ordovician and Silurian fossils from Yunnan. Palæont. Indica, New Ser. Vol. VI, Mem. No. 3.

Roemer, F. I86I—Die Fossile Fauna der Silurischen Diluvial-Geschiebe von Sadewitz.
" 1876-Lethaea geognostica. I Theil. Lethaea Palaeozoica. Atlas, Taf. 6.
" and Frech, F. 1880-97-Ibid. Text.
" 1884-85-Lethaea erratica. Dames and Kayser's Palaeontologische Abhandlungen. Bd. II, Heft V.

Ruedemann, R. 1904-Structure of some primitive cephalopods. Report of the New York State Palaeontologist 1903. N. Y. State Museum. Bull. 80, pp. 296-384, pls. 6-13.
" 1906-Cephalopoda of the Beekmantown and Chazy Formation of the Champlain Basin. New York State Museum. Bull. 90, pp. 393-605, 38 plates.

Salter, J.W. 1851--Silurian Fossils of Ayrshire. In Murchison's on the Silurian Rocks of the South of Scotland. Quart. Journ. Geol. Soc. Vol. VII, p. 173.
Salter 1858-Fossils of the Durness Limestone. In Murchison's On the succession of the Older Rocks in the Northermost Countries of Scotland., etc. Quart. Journ. Geol. Soc., Vol. XV, p. 374.
Sedgwick and M'Coy, 1855-British Palaozoic Rocks and Fossils.
Troedsson, G. T. 1926-On the Middle and Upper Ordovician Faunas of Northern Greenland, I. Cephalopods. Jubilaeumsekspeditionen Nord om Grónland, 192023, Nr. 3.
Weller, Stuart 1913-A report on Ordovician Fossils collected in Eastern Asia in 190304. In "Research in China". Vol. III, pp. 279-294.

Willis, B. and Blackwelder, E. 1912-Research in China. Vol. I, pt. I.
Woodward, S. P. 1856-On an Orthoceras from China. Quart. Journ. Geol. Soc. Vol. XII. Yabe, H and Hayasaka, I. 1920-Palaeontology of Southern China. Geographical Research in China, Vol. III.
Yü, C. C. and Shu, W.P. 1929-Geology of Siang-yang, Nan-chang, I-cheng, Chingmen, Chung-hsiang and Ching-shan Districts, North Hupeh. Memoir of the Institute of Geology, No. VIII. National Research Institute of China.
Zittel, Karl A. v. = Eastmann, Charles R. 19r3-Text Book of Palæontology, Vol. I.

EXPLANATION OF

 PLATE I
PLATE I.

Fig. I. Cameroceras cf. styliforme Grabau. Nat. size. p. 23View of a portion of the endoconch embedded in rock.Loc:-Lo-jo-ping, I-chang-hsien, W. Hupeh. (G. S. C. Cat, No. 2826)
Fig. 2. Cameroceras cf. styliforme Grabau. Nat. size p. 23
2a. External view of endoconch, showing the oblique ectoseptal edges onthe external surface of the endotheca.2b. Cross section of the same specimen, showing older endosépta, theaperture of the endocone and the form of the endoconch.Loc:-Lo-jo-ping, I-chang-hsien, W. Hupeh. (G. S. C. Cat. No. 2827)
Fig. 3. Cameroceras cf. styliforme Grabau. Nat. size p. 23
Longitudinal section of an endoconch, showing the endosepta.Loc:--Lo-jo-ping, I-chang-hsien, W. Hupeh. (G. S. C. Cat. No. 2828)
Fig. 4. Cameroceras hsiehi Yü. Nat. size. p. 25
4a. Longitudinal section, showing the endotheca, last endoseptum,endocone and ectosepta.
4b. Cross section of same, showing the circular endoconch which is injuxtaposition with the ectoconch.Loc:-Near Sin-tan, Tze-kuei-hsien, W. Hupeh. (G.S.C. Cat. No. 283I)
Fig. 5. Cameroceras subtile Yü. Nat. size p. 26
5a. Longitudinal section of a mature portion, showing the endotheca andthe nature of stereoplasmic deposit in the camere.
5b. Cross section, showing the excentric endoconch.Loc:-near Sin-tan, Tze-kuei-hsien, W. Hupeh. (G.S.C. Cat. No. 2832)
Fig. 6. Endoceras leei Yü. Nat. size. p. 28
A natural weathered section, showing the tubi, one camera inlength, and the acute apical angle formed by the endosepta.
Loc:-San-shan-yuan, Chung-yang-hsien, SE. Hupeh. (N. R. I. Cat.No. I)
Fig. 7. Endoceras leei Yü. Nat. size p. 287a. Natural polished section, showing the length of tubi and the lastendoseptum. The endoconch is wholly filled with calcite deposit.
C. (. Yii: Ordovician Cephatopmla of Contral China
(2)

INb

7b. Cross section at the apical end of endoconch of the same specimen, showing the excentric endosiphuncle and the form of endoconch.
Loc.:--He-chiao, Chung-yang-hsien, SE. Hupeh. (N.R.I. Cat. No. 2)
Fig. 8. Vaginoceras belemnitiforme Holm. Nat. size.......................... p. p. 3^{6}
Longitudinal section, showing the tapering of shell, the ectoseptal distances and the position and the size of the endoconch.
Loc:--Near Ta-fang village, Yang-sin-hsien, E. Hupeh. (G.S.C. Cat. No. 2835)
Fig. 9. Vaginoceras neichianense Yï. Nat. size.............................. p. 39
9a. Longitudinal section, showing the ectoseptal distances, the rate of tapering and the endoconch with the stereoplasmic filling.
9b. Cross section.
Loc:-Near Sin-tan, Tze-kuei-hsien, W. Hupeh. (G.S.C. Cat. No. 28.36)
Fig. 1o. Vaginoceras reedi Yü. Nat. size.
Ioa. Portion of a weathered individual, showing the ectoconch with a part of endoconch exposed.
rob. Longitudinal section of same, showing the closely set ectosepta and the entirely empty endoconch.
roc. End view of same, showing the form and position of endoconch.
Loc:-Near Sin-tan, Tze-kuei-hsien, W. Hupeh. (G.S.C. Cat. No. 2838)
Fig. Ir. Vaginoceras reedi Yü. Nat. size.
ira. Longitudinal section of a portion of the shell, showing the size of endoconch and the ectoseptal distances.
rib. Cross section.
Loc:-Near Sin-tan, Tze-kuei-hsien, W. Hupeh. (G.S.C. Cat. No. 2839)

EXPLANATION OF

PLATE II

PLATE II.

Fig. 1. Cameroceras tenuiseptum Hall var. ellipticum Yä. Nat. size.
Polished section, showing the endotheca, size of endoconch, and the closely set ectosepta.
Cat. No. 2829)p. 24
Fig. 2. Cameroceras tenuiseptum Hall var. ellipticum Yï. Nat. size. p. 24
View of a portion of specimen weathered so as to show the protruding endoconch.Loc:-Nei-chia-shan near Sin-tan, Tze-kuei-hsien, W. Hupeh. (G.S.C.Cat. No. 2830)
Fig. 3. Cameroceras sp. Nat. size. p. 27
Polished section of a fragment of the specimen. The endotheca is clearly shown.Loc:--Near Sin-tan, Tze-kuei-hsien, W. Hupeh. (G.S.C. Cat. No. 2833)
Fig. 4. Endoceras grabaui Yü. Nat. size p. 29
A natural weathered section, showing the length of tubi, the last endoseptum and endocone.
Loc:-Shih-lung-sze, Wang-chia-chi, I-chang-hsien, N. Hupeh. (N.R.I.Cat. No. 3)
Fig. 5. Vaginoceras endocylindricum Yü. Nat. size p. 335a. External view of a natural weathered specimen, showing the rate oftapering and the ectosepta.
5b. Longitudinal section, showing the long empty endocylinder. Thesection is taken nearly normal to the dorso-ventral diameter of theshell.

5c. Cross section of same, showing the form of ectoconch and the position. form and size of endoconch.

Loc:-Near Ta-fang village, Yang-sin-hsien, E. Hupeh. (G.S.C. Cat. No. 2834)
Fig. 6. Vaginoceras neichianense Yï. , Nat. sizè p. 39
6a. Longitudinal section of the large end of a shell with the last endoseptum and endocone.
C. C. Yü: Ordovician Cephalopoda of Central China

6 b . Cross section, showing the position and form of endoconch, and the shape of endocone.
Loc:--San-shan-yuan, Chung-yang-hsien, SE. Hupeh. (N. R. I. Cat. No. 13)
Fig. 7. Vaginoceras neichianense Yü. Nat. size. p. 39

7a. Polished section of the superior part of the specimen, showing the endocylinder and the ectosepta with a very small amount of stereoplasmic deposit.
7 b. Cross section, showing the form and position of endoconch.
Loc:-Near Sin-tan, Tze-kuei-hsien, W. Hupeh. (G.S.C. Cat. No. 2837)
Fig. 8. Vaginoceras uniforme Yü. Nat. size.. p. 42
8a. Longitudinal section of a mature portion of a shell showing the uniform ectoseptal distances and the rate of tapering.
8 b . Cross section, showing the form of the marginal endoconch.
${ }^{\bullet}$ Loc:-San-shan-yuan, Chung-yang-hsien, SE. Hupeh. (N. R. I. Cat. No. I4)
Fig 9. Vaginoceras uniforme Yü. Nat. size................................... p? $^{\text {Longitudinal section of a fragment of the specimen. showing the }}$
ectoseptal distances and the size of endoconch.
Loc:--San-shan-yuan, Chung-yang-hsien, SE. Hupeh. (N. R. I. Cat.
No. I5)

EXPLANATION OF

PLATE III

PLATE III.

Ia. A natural polished section, showing the rate of tapering and the ectoseptal distances of the borken lower portion of the specimen.
Ib. Longitudinal section, showing the endoconch, the endocylinder, and the ectosepta. The section is transverse to the dorso-ventral diameter of the shell.
Loc:-Tai-hung-shan, Nan-chang-hsien, N. Hupeh. (N.R.I.Cat No. 4)

2a. A natural section, showing the rate of tapering.
$2 b$. Cross section at the stage f of the same specimen, showing the forms of ectoconch and the submarginal endoconch.
2c. Longitudinal section of a fragmentary portion of the same shell, showing the long endocylinder, endocone and the last endoseptum.
2d. Cross section at the stage h of same, showing the submarginal endoconch with a very small endosiphuncle at its middle part.
Loc:--Ta-wu-shu, Chung-yang-hsien, SE. Hupeh. (N.R.I. Cat. No. 7)
Fig. 3. Vaginoceras endocylindricum Yü. Nat. size.
3a. View of a natural section weathered so as to show a part of the endoconch preserved at the apical part of the fragment.
3 b . Cross section at the lower end of the shell, showing the form of ectoconch and the position of the endoconch.
Loc:-Ta-wu-shu, Chung-yang-hsien, SE. Hupeh. (N.R.I. Cat. No. 8)

4a. Natural polished section, showing the rate of tapering, the depth of septa and the endoconch. The endoconch at the middle part of the specimen has been partly weathered away.
4b. Cross section with an excentric endoconch.
Loc:--Ta-wu-shu, Chung-yang-hsien, SE. Hupeh. (N.R.I. Cat. No. I6)
Fig. 5. Orthoceras chinense Foord. Nat. size..................................... p. 4^{6}
5a. Longitudinal section, showing the length of septal necks, the depth of cameræ and the rate of tapering.
5b. Cross section, showing the position of the rounded siphuncle.
T.oc:-Near Sin-tan, Tze-kuei-hsien, W. Hupeh. (G.S.C. Cat. No. 2843)
C. C. Yü: ()rdovician Cephalopoda of Central China

$4 a$

$4 b$

:13

Fig. 6. Orthoceras cf. politum M'Coy. Nat. size............................... p. 52
A natural weathered section with a part of siphuncle preserved at the upper end of the specimen.
Loc:-Ta-hung-shan, Nan-chang-hsien, N. Hupeh. (N.R.I. Cat. No. 32)
Fig. 7. Orthoceras yangtzeense Yü. Nat. size....................................... p. 59
External view of an internal mould of the shell, showing the V-shaped lobes formed by the septal sutures.
Loc:-Near Sin-tan, Tze-kuei-hsien, W. Hupeh. (G.S.C. Cat. No. 285I)
Fig. 8. Orthoceras yangtzeense Yü, Nat. size.................................. p. 59
8a. External view of an internal mould, showing the V-shaped lobes.
8b. End view of the same specimen, showing the size and form of the submarginal siphuncle at the opposite side of the V-shaped lobes.
Loc:-Near Sin-tan, Tze-kuei-hsien, W. Hupeh. (G.S.C. Cat. No. 2852)

EXPLANATION OF

PLATE IV

PLATE IV.

Fig. I. Vaginoceras wahlenbergi Foord var. cylindrica Yü. Nat. size p. 32
Longitudinal section, showing the endocylinder, the ectosepta and therate of tapering.Loc: -He-chiao, Chung-vang-hsien, SE. Hupeh. (N. R. I. Cat. No. 5)
Fig. 2. Vaginoceras rowhlenbergi Foord var. cylindrica Yü. Nat. size p. 322a. Natural polished section, showing the rate of tapering and the depthof ectosepta.
2b. Longitudinal section with a large endocylinder. The section does not pass through the middle part of the endocylinder in the upper part of the specimen.
Loc:-Liu-chia-sze, Hsien-ning-hsien, SE. Hupeh. (N.R.I. Cat. No. 6)
Fig. 3. Vaginoceras shui Yü. Nat. size
3a. A natural polished longitudinal section, showing the very long tubi, endosepta, depth of ectosepta and the rate of tapering.

ib. Cross section with a submarginal endoconch.

Loc:-Wang-chia-sze, Chung-yang-hsien, SE. Hupeh. (N. R. I. Cat.
No. II)p. 37
Fig. +. Orthoceras chinense Foord. Nat. size p. 4^{6}
4a. Longitudinal section, showing the tapering, the septal necks and thedepth of camerte.
4b. Cruss section, showing the form of shell and the size of the central,circular siphuncle.Loc:-Near Sin-tan, Tze-kuei-hsien, W. Hupeh. (G.S.C. Cat. No $28+4$)
Fig. 5. Orthoceras regulare Schlotheim. Nat. size. p. 5^{2}
Longitudinal section, showing the septal necks, septal distances andthe rate of tapering.Loc:--Near Sin-tan, Tze-kuei-hsien, W. Hupeh. (G.S.C. Cat. No. 2848)
Fig. 6. Orthoceras regulare Schlotheim. Nat. size p. 5?
fa. Longitudinal section, showing the tapering, the septa and septal necks.
6 b . Cross section, showing the form of shell and the position of siphuncle.Luc:--Near Sin-tan, Tze-kuei-hsien, W. Hupeh. (G.S.C. Cat. No. 2849)
Fig. 7. Orthoceras squamutulum Barrande. Nat. size... p. 53

2a

$2 b$

7b

73

5

8a

Sh

7a. Longitudinal section, showing the deep cameræ, the short septal necks and the gentle rate of tapering.
7b. Cross section.
Loc:-Near Sin-tan, Tze-kuei-hsien, W. Hupeh. (G.S.C. Cat. No. 2850)
Fig. 8. Orthoceras rudum Yü. Nat. size.. 55
8a. Longitudinal section, showing the septal necks and the septal distances.
8 b. External view of the same specimen, showing the lines of growth.
8c. Cross section.
Loc:-Near He-chiao, Chung-yang-hsien, SE. Hupeh. (N. R. I. Cat. No. 26)

EXPLANATION OF

PLATE V

PLATE V.
Fig. I. Vaginoceras peiyangense Yī. $\quad \times-\frac{1}{2}$ p. 35
Ia. Natural polished section, showing the rate of tapering and theectoseptal distances.
rb. Longitudinal section of the broken apical portion of the same specimen,showing the endoconch and the endocylinder. The section is slightlyoblique to the dorso-ventral diameter.
Loc:-Pei-yang-shan, Chung-yang-hsien, SE. Hupeh. (N. R. I. Cat. No. 9)
Fig. 2. Vaginoceras peiyangense Yï. Nat. size. p. 35
2a. Longitudinal section with a portion of endoconch and some tubi adhering to it at the lower part of the specimen.
2b. Cross section, showing the position and form of endoconch.Loc:-He-chiao, Chung-yang-hsien, SE. Hupeh. (N.R.I. Cat. No. io)
Fig. 3. Vaginoceras chientzekouense Yü. Nat. size. p. 38
Longitudinal section, showing the endocylinder and the ectosepta. The section is nearly normal to the dorso-ventral diameter of the shell.
Loc:-Chien-tze-kou, Nan-chang-hsien, N. Hupeh. (N.R.I. Cat. No. I2)
Fig. 4. Vaginoceras uniforme Yü. Nat. size p. 4^{2}4a. Longitudinal section, showing the uniformity of the ectoseptal dis-tances.
4b. Cross section with a submarginal endoconch.Loc:-Near Ta-fang village, Yang-sin-hsien, E. Hupeh. (G.S.C. Cat.No. 2840)
Fig. 5. Vaginoceras multiplectoseptatum Yï. Nat. size. p. 44
Longitudinal section, showing the numerous ectosepta and the marginal endoconch.
Loc.:-Near Sin-tan, Tze-kuei-hsien, W. Hupeh. (G.S.C. Cat. No. 284I)
Fig. 6. Vaginoceras multiplectoseptatum Yü. Nat. size. p. 44
External view of a weathered specimen, showing the multiple ectoseptal sutures and the rate of tapering. Loc:-Near Sin-tan. Tze-kuei-hsien, W. Hupeh. (G.S.C. Cat. No. 2842)
C. C. Yï: Ordovician Cephatoporla of Cometial Chima

Fig. 7. Orthoceras chinense Foord. Nat. size. p. 4^{6}
7 a . Longitudinal section of the large end of the shell, showing the septal necks, septal distances and rate of tapering.
7b. External view of same. The regular, flexuous, transverse striæ are plainly shown.
7c. Cross section, showing the form of the shell and the position of the siphuncle.
Loc:-Near Sin-tan, Tze-kuei-hsien, W. Hupeh. (G.S.C. Cat. No. 2845)
Fig. 8. Orthoceras suni Yü. Nat. size... p. 5^{6}
8a. Longitudinal section of the apical portion of the specimen, showing the rate of tapering and septal distances.
8b. Cross section, showing the sub-elliptical form of shell and the position of the siphuncle.
Loc.:-Pei-yang-shan, Chung-yang-hsien, SE. Hupeh. (N. R. I. Cat. No. 29)
Fig. 9. Orthoceras suni Yü. Nat. size.. 5^{6}
Natural section, showing the rate of tapering, septal necks and the depth of cameres.
Loc:-Pei-yang-shan, Chung-yang-hsien, SE. Hupeh. (N. R. I. Cat. No. ${ }^{30}$)
Fig. 10. Orthoceras? wongi Yui. Nat. size.. p. 60
roa. Longitudinal section, showing the continuous septal necks.
rob. Cross section, showing the forms of both the shell and the siphuncle.
Loc:-Near Sin-tan, Tze-kuei-hsien, W. Hupeh. (G.S.C. Cat. No. 2853)

EXPLANATION OF

PLATE VI
(II) 93

PLATE VI.

Fig. I. Orthoceras chinense Foord. Nat. size. p. 46ra. Longitudinal section showing the septal necks, septal distances andrate of tapering.
rb. Cross section, with a central rounded siphuncle.Loc:-Lo-jo-ping, I-chang-hsien. W. Hupeh. (G. S. C. Cat. No. 2846)
Fig. 2. Orthoceras chinense Foord. Nat. size. p. 4^{6}
2a. Longitudinal section, showing the rate of tapering and septal distances.
2b. External view of same, showing the fine transverse striæ.
2c. Cross section. The small dark ring is not a siphuncle. It is formedby cutting the septa just above the septal neck.Loc:-Tai-hung-shan, Nan-chang-hsien, N. Hupeh. (N.R.I. Cat. No. 17)
Fig. 3. Orthoceras densum Yü. Nat. size p. 5^{8}
3a. Longitudinal section, showing the very crowded septa at the apical portion of the shell.
3b. Cross section.Loc:-Chien-tze-kou, Nan-chang-hsien, N. Hupeh. (N.R.I. Cat. No. 27)
Fig. 4. Protocycloceras deprati Reed. Nat. size. p. 62ta. Front view of an internal mould, showing the annulations and the rateof tapering.
4b. Lateral view of same, showing the annulations arched on the backside.Loc:-Near Sin-tan, Tze-kuei-hsien, W. Hupeh. (G.S.C. Cat. No. 2854)
Fig. 5. Protocycloceras deprati Reed. Nat. size. p. 62
External view of a portion of the mould with fine strie on the annulations and the interspaces between them.
Loc:--Near Sin-tan, Tze-kuei-hsien, W. Hupeh. (G.S.C. Cat. No.2855)
Fig. 6. Cycloceras sp. Nat. size P 63
Portion of a mould, showing the oblique annulations and the longi- tudinal and transverse strise near the upper end of the fragment.
Loc:-Tai-hung-shan, Nan-chang-hsien, N. Hupeh. (N.R.I. Cat. No. 35)
C. C. Vii: Orrevician Cophatoporla of Contral China

$2 b$

2π

2 C

3 b

0

EXPLANATION OF

PLATE VII

PIJATE VII.

Fig. I. Orthoceraschinense Foord var. kuangchianense Yü. Nat. size........ p. \& $^{\rho}$
Ia. Polished section, showing the septal distances and the rate of tapering. The last camera below the living chamber is free from any deposit.
Ib. External view of the same, showing the growth-lines.
rc. Cross section.
Loc:-Near Chiang-chia-chi, Kuang-chiao-pu, King-shan-hsien, N. Hupeh. (N.R.I. Cat. No. 19)

Fig. 2. Orthoceras chinense Foord var. Kuangchiaoense Yii. $\because \frac{\mathrm{I}}{5} \ldots \ldots .$. \quad.
A natural weathered section, showing the rate of tapering and the septal distances.
Loc:-Near Wang-chia-sze, Chung-yang-hsien, SE. Hupeh. (N. R. I. (at. No. 20)
Fig. 3. Orthoceras thersus? Barrande. Nat. size. p. 54
3a. Longitudinal section of a superior portion, showing the rate of taper- ing, septal necks and the septal distances.

3b. Cross section.
Loc:-Near Sin-tan, Tze-kuci-hsien, W. Hupeh. (G.S.C. Cat. No. 2847)
Fig. . Orthoceras remotum Yï. Nat. size. p. $5+$4a. A natural polished section, showing the depth of camer:r, the concavi-ty of septa and the rate of tapering.

4 h. Cross section, showing the form of shell and the position of siphuncle. Loc:-Chai-tze-shan, Hsiang-yang-hsien, N. Hupeh. (N. R. I. Cat. No. 25)

C. C. Yü: Ordovician Cephalopoda of Central China

EXPLANATION OF

PLATE VIII

PLATE VIII.

 External view of an internal mould embedded in rock with sharp impressed annular lines on its surface.
Loc:--Pci-hu-pu, Pu-chi-hsien, SE. Hupeh. (N.R.I. Cat. No. 35)
Fig. 2. Orthoceras chinense Foord var. eccentrica Yü. Nat. size............. p. 49
Longitudinal section, showing the excentric siphuncle, the rate of tapering and the septal distances.
Loc:-Wang-chia-sze, Chung-yang hsien, SE. Hupeh. (N. R. I. Cat. No. I ${ }^{\text {Q }}$
Fig. 3. Orthoceras chinense Foord var. equiseptatum Yü. Nat. size........... p. 50
Natural polished section, showing the septal necks and the nearly equidistant septa toward the apertural end.
Loc:-Pei-hua-pu, Pu-chi-hsien, SE. Hupeh. (N.R.I. Cat No. 2r)
Fig. 4. Orthoceras chinense Foord var. equiseptatum Yü. Nat. size.......... p. 50
A natural section weathered so as to show a part of siphuncle and the septal distances.
Loc:--Pei-hua-pu, Pu-chi-hsien, SE. Hupeh. (N.R.I. Cat. No. 22)
Fig. 5. Orthoceras chinense Foord var. equiseptatum Yü. Nat. size.......... p. 50
Longitudinal section, showing the septal distances and the septal necks.
Loc:-Mei-hua-ling, Tung-chiao-cheng, King-shan-hsien, N. Hupeh. (N.R.I Cat. No. 23)
C. C. Y'ii: Ordovician Cephalopoda of Central China

EXPLANATION OF

 PLATE IX
PLATE IX.

Fig. I. Orthoceras chinense Foord var. equiseptatum Yü. Nat. size. p. 50
Ia. Longitudinal section, showing the septal distances and the septal necks.
Ib. Cross section, with a central circular siphuncle.
Loc:-.-Heh-chia-tzui-tze, Chang-chia-chi, Chung-chei-hsien, N. Hupeh. (N.R.I. Cat. No. 24)
Fig. 2. Orthoceras densum Yii. Nat. size. p. 5^{8}
A natural weathered section of a young stage of the shell, showing the numerous septa at the apical portion.
Loc:-Lin-chia-chung, Kung-chia-wang, I-cheng, N. Hupeh. (N.R.I. Cat. No. 28)
Fig. 3. Orthoceras sp. Nat. size p. 60
Lateral view of the specimen, showing the oblique septal sutures. Loc.:--Pei-ting-tze, Hu-chia-chi, Chung-hsiang-hsien, N. Hupeh. (N.R.I. Cat. No. 33)
Fig. 4. Orthoceras sp. Nat. size. p. $6 I$
I natural polished section. The siphuncle has been completely eroded away.
Loc:-Between Cha-ti-pu and Chang-chia-chiao, Hsien-ning-hsien, SE. Hupeh. (N.R.I. Cat. No. 34)
Fig. 5. Discoceras eltrasiaticum Frech. Nat. size. p. $6 t$
Side view of a characteristic shell, showing the costre on the surface of the shell and the septal sutures as exposed at the last half volution where the test has been broken away. Loc:-Nei-chia-shan near Sin-tan, Tze-kuei-hsien, W. Hupeh. (G.S.C. Cat. No. 2856)
Fig. 6. Discoceras eurasiaticum Frech. Nat. size. p. 646a. Side view of a small specimen, showing the volutions and the costreon the surface of the shell.

6b. Transverse section of same, showing the whorls subquadrate in section and the siphuncle marginal to the internal side. The section is taken across the middle part of the umbilicus.
Loc:-Nei-chia-shan near Sin-tan, Tze-kuei-hsien, W. Hupeh. (G.S.C. Cat. No. 2857)
C. C. Yü: Ordovician Cephaloporla of Central China

Pl. IX

6 b

4

90

Fig. 7. Lituites? lii Yü. Nat. size. p. 1.5Side view of natural section, showing the separable volutions, thestraight part of the shell and the position of siphuncle.Loc:-He-chiao, Chung-yang-hsien, SE. Hupeh. (N.R.I. Cat. No. 36)
Fig. 8. Meloceras asiaticum Yabe. Nat. size. p. 66Lateral view of a large end of the specimen, showing the curvature ofthe shell.Loc:-Nei-chia-shan, near Sin-tan, Tze-kuei-hsien, W. Hupeh. (G.S.C.Cat. No. 2858)
Fig 9. Meloceras asiaticum Yabe. Nat. size p. 66
9a. Longitudinal section of an apical portion of the specimen along thedorso-ventral diameter, showing the empty, marginal siphuncle andthe curvature of the shell.
9b. External view of same, showing the surface strise.
9c. Cross section, showing the form of the shell and the position of thesiphuncle.
Loc:-Nei-chia-shan near Sin-tan, Tze-kuei-hsien, W. Hupeh. (G.S.C. Cat. No. 2859)

3． 2.

1.
壁
角
有
0
0
0
0
0
0
0
0

的

 －－，根芹湲＝．

怎最
由

（1）

9.
8.
7.
d．
c．
반

萳

昐
間

四

 Discoceras eurasiaticum Frech
Discoceras sp．undt．

6.
5.

4.

3.

2.

b.
a.
Stereoplasmoceras pseudoseptatum Grabau
Stereoplasmoceras submarginale Kobayashi
Stereoplasmoceras subcentrale Kobayashi
Tofangoceras pauciannulatum Kobayashi
Tofangoceras irregulare Kobayashi
Actinoceras richthofeni Frech
Actinoceras tani Grabau
Actinoceras coulingi Grabau
Actinoceras manchurense Kobayashi
Actinoceras submarginale Grabau
Actinoceras nanum Grabau
Actinoceras harioi Kobayashi
Actinoceras suanpanoides Grabau
Actinoceras curvatum Grabau

$\stackrel{\rightharpoonup}{2}$

4.

2.

 Martelli，Orthis calligramma Dalm．，Eccyliopterus sinensis Frech，Vaginoceras duplex Wahlenberg， （10）（

 ー－
屬
OO

蕞莉

1110	

中
中 國

民
國
$+$
九年

七
月
中
華
民
國
十
九
年
七
月

咸

奥

陶紀頭

章

$$
\begin{aligned}
& \text { 足 } \\
& \text { 類 } \\
& \text { 化 } \\
& \text { 石 }
\end{aligned}
$$

國農
立鏡
北部 覆研直 留究㮫響地地 章

THE GEOLOGICAL SURVEY OF CHINA

IN COOPERATION WITH
THE NATIONAL RESEARCH INSTITUTE OF GEOLOGY OF THE ACADEMIA SINICA.
THE SECTION OF GEOLOGY OF THE NATIONAL ACADEMY OF PEIPING,
THE GEOLOGICAL DEPARTMENT OF THE NATIONAL UNIVERSITY OF PEKING,
THE GEOLOGICAL SURVEY OF KWANGTUNG AND KWANGSI, AND THE GEOLOGICAL SURVEY OF HUNAN.

IIPalæontologia $\mathfrak{m i n i c a}$

Board of Editors:

V. K. TING (CHAIRMAN), T. C. CHOW (SECRETARY), A. W. GRABAU, J. S. LEE, Y. C. SUN, C. C. YOUNG, T. H. YIN.

Saxita 0 , Dulume I,
Fawnicle 3.

By

M. S. CHANG M. A.

WITH $\|$ PLATES AND 3 TEXT-FIGURES.
Published by the Ceologital बurvey of China

PEIPING (PEKING) 1934

> For Sale at the Following Offices:

Peiping: Geol. Sury Library, 9 Ping Ma Sze. West City; French Bookstore, Grand Hotel de Pékin; Shanghai: Kelly \& Walsh, Letd., 12 Nanking Road; London: Edward Goldston, 25 Museum St. (W. C. 1); New York: A. G. Seiler \& Co., 1224 Amsterdam Ave; G. E. Stechert \& Co, 31-33 East 10th Street; Leipzig: Max Weg, Königstrasse 3: Buchhandlung Gustav Fock. Postschliessfach 100 Tokyo: Maruzen Company.

PALAEONTOLOGIA SINICA

Board of Editors:

V. K. TING (CHAIRMAN), T. C. CIIOW (SECRETARY),
A. W. GRABAU, J. S. LEE, Y. C. SUN, C. C. YOUNG, T. H. YIN.

Brachiopoda from the Orthis Bed of the Neichia Formation of Central China.

By M. S. Chave M. A.

With 2 Plates and

3 Text-Figures

Published by the Geological Survey
Peiping, 1934.

Printed by The Y" Lien Piex. 253, Hotamen St.. Peiping

CONTENTS

Page
Introduction 5
Stratigraphy of the Neichia Formation 5
Description of species 7
Genus Lingula Bruguière 7

1. Lingula sp. 7
Genus Orthis Dalman 7
2. Orthis calligramma Dalman, var. sinensis Chang (var. nov.) 7
3. Orthis calligramma Dalman, var. hupehensis Chang (var. nov.) 8
4. Orthis carausii Salter, var. nanchanghsiensis Chang (var. nov.) 9
5. Orthis carausii Salter, MS. 10
6. Orthis neichiaensis Chang (sp. nov.) 11
7. Orthis ellipsoides Chang (sp. nov.) 13
8. Orthis calligramma Dalman, var. intercalare Chang (var. nov.) 14
9. Orthis cf unguis Sowerby 1.3
10. Orthis cf. calligramma Dalman, var. subplicata Reed 15
Genus Plectorthis Hall and Clarke 16
11. Plectorthis sp. 1. 16
12. Plectorthis sp .2. 17
Genus Dalmanella Hall and Clarke 17
13. Dalmanella cf. elegantula Dalman 17
Genus Rafinesquina Hall and Clarke 18
14. Rafinesquina of. muthensis Reed 18
Conclusion 19
Bibliography 20
Explanation of Plates 21

-

BRACHIODODA FROM THE ORTHIS BED OF THE NEICHIA FORMATION OF CENTRAL CHINA＊

13y M．S．Chang

INTRODUCTION

The material described in this paper was collected by Mr．C．C．Yü，geo－ logist to the Institute of Geology，National Research Institute，at Taihungshan， Nanchang Hsien，Hupeh（湖北南演粰太紅出）in 1928．When the writer joined the Geological Survey last February it was kindly put into his hands for study at the suggestion of Professor Grabau．To Mr．Yü he，therefore，wishes to ex－ press his sincere thanks．Tc Professor Grabau under whose sympathetic and in－ spiring guidance the study was made，he is also greatly indebted．

Stratigraphy of the Neichia Formation．

In his illuminating study of the geology of the Yangtze Gorges Professor J．S．Lee first established the Neichiashan Series，now designated the Neichia Formation．It was subdivided into two parts，an upper，the Pagoda Limestone and a lower，the Triplecia Beds（Now Yangtzeella Beds）．The Pagoda Lime－ stone is a dense gray rock，cnly a few meters thick and characterized by the gigantic Orthoceras chinense Foord．The Triplecia（Yangtzeella）Beds，on the other hand，consist of an alternation of a dirty green，calcareous shale and slabby brown－ ish－yellow or light grey limestones of a rather earthy composition with a thin－ bedded grey limestone at the base．The slabby limestones are everrwhere crowd－ ed with Triplecia（Yangtzeella）poloi and Clitambonites giraldii．In the list of fossils Professor Lee gave the following species：

$$
\begin{array}{ll}
\text { Triplecia (Yangtzeella) poloi Martelli } & \text { (very abundant) } \\
\text { Clitambonites giraldii Martelli } & \text { (," , ,) } \\
\text { Orthis calligramma Dalman } & \text { (not rare) } \\
\text { Eccyliopteris sinensis Frech } & \text { (abundant) } \\
\text { Vaginoceras duplex Wahlenb. } & (,,,)
\end{array}
$$

Discoceras curasiaticum Frech	(Common)
Endoceras sp.	(abundant)
Cycloceras sp.	(very abundant)
Cytroceras sp.	(rare)
Asaphus cf. expansus Dalman	(rare)

In agreement with Frech, Grabau, Hayasaka, Weller and others, Professor Lee concluded that the Neichia Series undoubtedly represents Middle Ordovician or the lowest part of the Upper Ordovician, being approximately equivalent to the Vaginoceras limestone of the Baltic Provinces of Russia.

In Nanchang Hsien of northern Hupeh Mr. C. C. Yü found the Neichia formation resting conformably on the Ichang limestone. Here as in western Hupeh, the Neichia is composed of two parts, a lower yellowish-green shale and an upper yellowish-green limestone. The fossils from each were preliminarily determined by Mr. Yü as follows:
(a) Fossils found in the lower shale

Graptozoa: Didymograptus murchisoni Didymograptus sp. (several species)
Brachiopoda: Orthis sp. (several species)
Orthis calligramma Dalm.
Dalmanella sp.
Dinorthis sp.
Ostracoda: Leperditia sp.
Trilobita: Asaphus sp.
Asaphus hupehensis sun and Y'ü
Taihungshania shui sun and Yü
lllaenus nanchangensis Sun and Yü
Bronteus sp.
Bathyurus minor sun and Yü
(b) Fussils found in the upper limestone

Cephalopoda: Cycloceras sp.
Orthoceras sp. (several species)
Orthoceras chinense Foord
Vaginocer as chientzekouense Yü
The lower shale unquestionably represents the Triplecia Beds while the upper limestene is the Pagorla Limestone. Because of the presence of the Charactoristic graptolite Didymograptus murdhisoni Mr. I'ü correlated the former with

Vol. I. 1I.S.Chang:-Brachiopoda from the Orthis Bed
the Llandeilo of Great Britain and the latter with the Orthoceras limestone of Sweden and the Vaginoceras limestone of the Baltic Province of Russia.

From the above lists of fossils it seems evident that in the Gorge District, Yangtzeella poloi is the dominant fossil in the lower shale, but at Taihungshan, Nanchang Hsien its place is taken by Orthis and others. In spite of careful search Mr. Yü failed to discover a single specimen of Yangtzeella. The name "Triplecia or Yangtzeella Beds" is then not applicable in this case and the new term "Orthis Bed" is, therefore, introduced.

Most of the specimens in this lot are impressions of the interior or the exterior part of the shell. In crder to reproduce the true nature of the fossils the making of molds is necessary. Unless otherwise stated, the following descriptions are based on the characters of the molds, rather than on those of the specimens themselves.

DESCRIPTION OF SPECIES

Genus Lingula Bruguiere

1. Lingula sp.

Pl. I, Fig. Ia \& b.
This species is represented by a pedicle valve, the anterior portion of which has been broken off. It is oval or ovate in cutline, with the broadest part across or below the middle. The beak is not shown, though the posterior region suggests slight tapering. The valve is moderately and evenly convex. The surface is so weathered that it does not show any concentric lines of growth or markings of any other kind.

Remarks: The state of preservation of this species renders a precise determination impossible.

Horizon and Locality: From the Orthis bed of the Neichiashan Formation, Taihungshan, Nanchang Hsien, Hupeh. Coll. C. C. Yü (Ser. No. X 249; Cat. No. 3363).

Genus Orthis Dalman

2. Orthis calligramma Dalman, var. sinensis Chang (var. nov.)

Pl. I, Fig. 2a \& b.
cf. I869. Orthis calligramma Dalman. Davidson, British Fossil Brachiopoda, Pt. VII, No. III, p. 240 , pl. XXXV, figs. I-17, varieties, figs. 18-24, (with literature references).
This species is represented by one internal mold of the pedicle valve. It is subquadrate to subsemicircular, wider than high and broadest at the hinge line.

The perdicle valve is convex, more so in the heak region. The beak is broken but a rostral cone is shown resting on the inner surface of the hinge area of the pedicle valve. The cone is somewhat triangular in shape, little extended and separated from the hinge line by two triangular depressions one on each side. The surface is covered by about twenty-one simple, rounded and radiating plications with the wider interspaces occupied by four or five fine longitudinal striæ. Where the weathering has not been complete concentric growth lines can be also seen.

Measurements:
Greatest width $=17 \mathrm{~mm}$
Hinge line $=17 \mathrm{~mm}$
Height $=13 \mathrm{~mm}$
Proportion of height to width * $=1.31$
Davidson's O rthis calligramma gives the following measurements:
Fig. 8, I'l. XXXV, Greatest width $=34 \mathrm{~mm}$
Hinge line $\quad=29 \mathrm{~mm}$

Height $\quad=29 \mathrm{~mm}$
Proportion of height to width $=1.17$
Fig. la, Pl. XXXV, Greatest width $=21 \mathrm{~mm}$
Hinge line $\quad=15 \mathrm{~mm}$
Height $\quad=18 \mathrm{~mm}$
Proportion of height to width $\quad=1.17$
Remarks: This species preserves the essential characters of Orthis calligramma Dalman but differs in details as shown in the measurements given above. Its form suggests Orthis carcusii but the plications of our shell are less rounded and with the interspaces occupied l_{y} fine longitudinal striæ.

Horizon and Locality: Occurs with the preceding. Coll. C. C. Yü. (Ser. No. X203; Cat. No. 3364).

3. Orthis calligramma Dalman, var. hupehensis Chang (var. nov.)

Pl. I, Figs. $3 \mathrm{a}-\mathrm{d}$ and 4 a -d.
The holotype (Ser. No. X202, Pl I, Fig. 3a) is an cxternal impression of a pedicle valve. It is transversely subcircular and wider than high. The hinge line is a little shorter than the greatest width which lies about the middle part of the shell. The perdicle valve is convex, the central region, extending from the beak

[^48]to the anterior part, being more pronounced, thus suggesting the presence of a slight fold. The beak is small and shows little incurvature. The surface ornamentation consists of twenty-four simple and round plications, the middle six being more strongly developed. Near the beak the interspaces between the plications are very narrow or nearly absent, but they expand very quickly, till at the anterior part of the shell they measure one mm . cr a little more. They are also occupied by two or three fine longitudinal striæ.

Measurements:

Greatest width	$=13 \mathrm{~mm}$
Hinge line	$=12 \mathrm{~mm}$
Height	$=11 \mathrm{~mm}$

Proportion of height to width $=1.18$
Another specimen of the same species (Ser. No. X232, Pl. I, Fig. 4a) bas part of the right side of the shell broken away. It is smaller and a little mere convex, but in other respects agrees with the holotype.

Remarks: This species resembles Davidson's Orthis calligramma more than Orthis calligramma var. sinensis does. It differs only in its smaller size and more numerous plications.

Horizon and Locality: Occurs with the preceding. Coll. C. C. Yü. (Ser. Nos. X 202, X 232 ; Cat. Nos. 3365, 3366).

4. Orthis carausii Salter, var. nanchanghsiensis Chang (var. nov.)

Pl. I, Fig. 5a-d.
cf. 1869. Orthis carausii Salter, MS. Davidson, British Fossil Brachiopoda, Pt. VII, No. III, p. 229, pl. XXXIII, figs. I-7.
This species is represented by a broken exterior impression of the brachial valve. It is subsemicircular, considerably wider than high, and has the hinge line equal to the greatest width. The valve is almost flat, with a gentle sinus covering about seven plications along the middle. The surface is marked by about thirtytwo round plications which show branchings and bifurcations here and there. The plications in the central part are stronger than those on the sides, thus giving the shell a three-zoned appearance. The interspaces are wider and contain fine longitudinal as well as faint transverse lamellose striæ.

Measurements:
Greatest width $=18 \mathrm{~mm}$
Hinge line $=18 \mathrm{~mm}$
Height $\quad=11 \mathrm{~mm}$
Proportion of height to width $=1.64$

Davidson's (1rthis carausio as represented in fig. 1, Pl. XXXIII, gives the following results:

Greatest width $=18 \mathrm{~mm}$
Hinge line $=16 \mathrm{~mm}$
Height $\quad=11.5 \mathrm{~mm}$
Proportion of height to width $=1.57$
Remarks: This species resembles Orthis carausii in its form as shown in the above measurement; but it differs in the following respects: (1) greatest width at the hinge line instead of a little below; (2) more numerous and complicated plications; and (3) lengitudinal and transverse striæ in the interspaces of the plications. Had there been more specimens at hand, it might have been even better to create a new species.

Horizon and Locality: Occurs with the preceding. Coll. C. C. Yü. (Ser. No. N230; (a1. Nu. 3367).
5. Orthis carausii Salter, MS.

Pl. I, Fig. 6a-f

ISoy. Orthis carutsii Salter, MS. Davidson, British Fossil Brachiopoda, Pt. VII, No. III, p. 229, pl. XXXILI, figs. $1-7$
This is repesented ley the interior mold of the pedicle valve (A゙er. No. X204. Il. I, Figs. 6a, 61) and the impression of an exterior (Ser. No. X20.5. Pl. I, Figs. $6 c-6 f)$. The former is semicircular and wider than high. The hinge line is at the greatest width and a little prolcoged. so as to give the suggestion of the presence of ears at the cardinal extremities. which are acute. The valve is moderately convex in the central region, the sides being comiparatively depressed. The beak is unknown, hut a rostral cone is present, which is slightly incurved and bounded on the sides by two crescentic grooves. The surface is ormamented by about twenty-five simple, rather angular plications with wider interspaces between.

Measurement:

$$
\begin{aligned}
\text { Greatest width } & =9 \mathrm{~mm} \\
\text { Hinge line } & =9 \mathrm{\prime} \mathrm{\prime} \\
\text { Height } & =6 \mathrm{\prime}
\end{aligned}
$$

Propurtion of height to width $=1.51$

Davidson's fig. 3, Pl. XXXIII measures thus:

An exterior impression of another pedicle valve (Ser. No. X205) is less perfect than No. X204. Its greatest width is 6 mm . and the height, 4.5 mm , giving a proportion of height to width of 1.33 . Its cardinal extremities are less extended and its convexity is not so strong. Its plications are also not so numerous, but they show branchings in one or two places.

Remarks: Except for its smaller size and more numerous plications this species agrees well with Orthis carausii Salter, as figured by Davidson.

Horizon and Locality: Occurs with the preceding. Coll. C. C. Yü. (Ser. Nos. X 204, X 205 ; Cat. Nos. 3368, 3369).

6. Orthis neichiaensis Chang (sp. nov.)

Pl. I, Figs. 7a-d, 8a-d, ga-d, Ioa-b, \& IIa-d, and Text-figs. I-3.
The exterior impression of a typical brachial valve (Ser. No. X 218, Pl. 1, Fig. 7a) is subquadrate and wider than high. The hinge line is shorter than the greatest width which lies about the middle of the shell. The valve is moderately flat with a sinal depression along the central portion. The surface is ornamented by about thirty-three simple and rounded plications with slightly wider interspaces which are occupied by very fine longitudinal and transverse lamellose striæ. The sinus is bounded by two plications which bifurcate about two mm. below the beak. In its center are found four plications which are a little stronger than the others. The arrangement of the sinal plications is shown in Text-Figure 1.

Text-Fig. I. Arrangement of the sinal plication in specimen No. N 218.

Measurements:
Greatest width $=13 \mathrm{~mm}$
Hinge line $=10$,
Height $=9$,,
Proportion of height to width $=1.44$
A second exterior impression of a Brachial valve (Ser. No. X 216 Pl. I, Fig. $8 \mathrm{a})$ is of a smaller specimen as compared with No. X 218. Its measurements are as follows:

Greatest width $=8 \mathrm{~mm}$
Hinge line $=7$,
Height $=5$,,
Proportion of height to width $=1.60$
The sinal depression is very clear and the arrangement of the sinal plications is shown in Text-Figure 2.

Text-Fig. 2. Arrangement of the sinal plications in specimen No. X 216.
The sinal plication, have increased to six instead of four. Bifurcations and branchings of plications are in general more numerous than in the case of No. X 218.

A third exterior impression of the brachial valve (Ser. No. X 220, Pl. I, Fig. 9a) has the following measurements:

Greatest width $=13 \mathrm{~mm}$
Hinge line $=6 \mathrm{~mm}$!
Height $\quad=9 \mathrm{~mm}$
Proportion of height to width $=1.44$
Part of the hinge line is broken atray, so its extent is in doubt. No. X 220 differs from No. X 218 in (1) the lesser prominence of the sinus, (2) more bifurca-
tion and branching of the plications, thus increasing the number to nearly forty, and (3) seven plications in the sinus instead of four, with arrangement as shown in Text-Figure 3.

Text-Fig 3. Arrangement of the sinal plications in specimen No. $\mathcal{X} 220$.
An internal mold of the pedicle valve is shown by No. X 215, Pl. I, Fig. 10a. It is convex, with the beak region slightly incurved. The fold is not prominent. The surface ornamentation consists of more than forty plications which show more bifurcations and intercalations along the fold than in any other place.

An impression of the exterior of the pedicle valve (No. X 219 Pl. I, Fig. 11a) is a little larger and has a slight fold (representing the sinus). Its plications are much more numerous because of their prcfuse intercalations and bifurcations.

Remarks. This species is characterized by a distinct though ill-defined fold in the pedicle valve and a well-developed sinus in the brachial valve. It resembles Orthis calligramma only in having striæ in the interspaces of the plications. In the order described the plications increase in number and grow more complicated. Whether this represents a state of progressive evolution is difficult to say, because the specimens at hand are too few to offer a definite explanation.

Horizon and Locality: Occurs with the preceding. Coll. C. C. Yü. (Ser. Nos. X 215, X 216, X 218, X 219, X 220 ; Cat. Nos. 3373, 3371, 3370, 3374, 3372).

7. Orthis ellipsoides Chang (sp. nov.)

Pl. I, Fig. I2a-d.
Specimens Nos. X 209 (Pl. I, Figs. 12b, 12a) and X 201 (Pl. I, Figs. 12c, 12d) represent the interior mold and the exterior impression of the pedicle valve respectively, which, when put together, fit into each other exactly. The species is of subelliptical outline, much wider than high. The hinge line is not well preserved, the shoulders sloping gently from the beak to the cardinal extremities which apparently mark the greatest width. The interior mold shows the rostral cone separat-
ed from the plicated part by a U-shape groove. The surface is covered by about twenty angular and rather simple plications with wider interspaces and intercalations and branchings here and there.

Measurements:

$$
\begin{aligned}
& \text { Greatest width }=6 \mathrm{~mm} \\
&=4 \mathrm{Height} \\
& \text { Hrcportion of height to width }=1.50
\end{aligned}
$$

On the same slab is another specimen of the same species. The valve is a little more convex than No. X 201. The rostral cone shown in the interior mold is larger and is separated from the plications by two more or less parallel grooves which do not meet antericrly and thus become U-shaped as in the case of No. X 209. The grooves become less and less deep as they recede from the beak, till in the anterior part of the cone there remains only a trace of them.

Remarks: This species is very much like Orthis calliyramma Dalman, var? Reed (figs. 16-19, pl. V, the Ordovician and Silurian Brachiopoda of the Girvan District). It differs in not having fime longitudinal lines within the interspaces of the plications and faint transverse lamellose striæ. Owing to Reed's uncertainty with regard to his specimen a new specific name is here proposed. As noted by him this may be simply the young of orthis calligramma Dalman, but for the present we will leave it under a distinctive designation.

Horizon and Locality: Occurs with the preceding. Coll. C. C. Yü. (Ner. Nos. X 201, X 209; Cat. Nos. 3375, 3376).

8. Orthis calligramma Dalman. var. intercalare Chang (var. nov.)

Pl. II, Figs. Ia-b, 2a-b, $3 \mathrm{a}-\mathrm{b}, \& 4 \mathrm{a}-\mathrm{b}$.
This species is represented by a number of molds of both the pedicle and the brachial valves. It is wider than high and has a hinge line which is a little less than the greatest width and the frontal margin regularly curved. The pedicle valve is gently convex, the beak being slightly incurved. The rostral cone is pearshaped and marked off from the plicated portion be two crescentic grooves which become gradually less deej as they pass farther from the beak. On the surface of the cone are found seven longitudinal raised lines, the middle one being stronger than the rest and seemingly continuous with the modian plication. The brachial valve is flat. A triangular restral cone with a groove occupied by a tongueslaped prejection which dues not reach the top. extends beyond the hinge line. It
is surrounded on both sides by a deep depression into which short spines are pointing from the edge of the mold. In two other specimens a slight sinus is also shown. The surface is covered by about thirty rounded plications with wider interspaces and numerous intercalations, especially in the central part of the shell.

Measurements:
Greatest width $=13 \mathrm{~mm}$
Hinge line $\quad=12.5 \mathrm{~mm}$
Height $\quad=11 \mathrm{~mm}$
Proportion of height to width $=1.18$
Remarks: This species is made a new variety because it differs from Orthis calligramma in having intercalations in its plications. The plications of Orthis calligramma always remain simple.

Horizon and Locality: Occurs with the preceding. Coll. C. C. Yü. (Ser. Nos. X 224, X 225, X 227 ; Cat. Nos. 3377, 3378, 3379).

9. Orthis cf. unguis Sowerby

Pl. II, fig. 5a-d.
cf. 1869. Orthes unguis Sow. Davidson, British Fossil Brachiopoda, Pt. VII, No. III, p. 257, pl. XXXVII, figs. 16-22.
Two specimens representing the interior mold and the exterior impression of the pedicle valve are known. They are very imperfect and a discriminate determination is impossible. They are referred to Orthis cf. unguis Sow. because their plications are very angular, a fact not known in the case of Orthis calligramma.

The shell is rather smali, having a length of four mm . and a width of about six mm. It is almost flat and is ornamented by about fourteen simple and angular plications which when viewed from the front simulate the cross section of a roof.

Horizon and Locality: Occurs with the preceding. Coll. C. C. Yü. (Ser. Nos. X210, X211; Cat. Nos. 3381, 3382).

10. Orthis cf. calligramma Dalman, var. subplicata Reed.

Pl. II, Fig. 6a-d.
cf. 1917. Orthis calligramma Dalman, var. subplicata Reed. The Ordovician and Silurian Brachiopoda of the Girvan District, p. 828. pl. V, figs. IO-15.
Only interior molds of the pedicle valve of this species are known. The specimens are rather imperfect and an exact identification is, therefore, difficult.

The shell is subquadrate and wider than high, the hinge line being slightly less than the greatest width and the front regularly rounded. The pedicle valve is strongly convex and a little swollen. The beak is high and a little incurved. The rostral cone is highly developed and divided into one median and two lateral lobes by two deep and well-marked parallel grooves. The surface is mostly smocth, only marked by plications on the anterior two or three mm . of the mold ${ }^{1}$. The number of plications is not known on account of the broken nature of the specimen, but that there are intercalations and bifurcations seems to be certain.

Measurements:
Greatest width $=15 \mathrm{~mm}$
Hinge line $\quad=14$,
Height $\quad=11$,
Length on curvature $=15 \mathrm{~mm}$
Proportion of height to width $=1.36$
shell index $=0.93$
Another specimen (No. X 206 PI. II, Figs. 6, 6a) shows some difference from the above. It is less convex and the hinge line seems to be equal to the greatest width. The plications are simple and have no intercalations. A high triangular cardinal area is also suggested.

Remarks: This species agrees well with the descriptions by Reed. It differs from Orthis calligramma in being more convex and having plications of a more complicated character.

Horizon and Locality: Occurs with the preceding. Coll. C. C. Yü. (Ser. Nos. X 208, X 206 ; Cat. Nos. 3383, 3384).

Genus Plectorthis Hall and Clarke

11. Plectorthis sp. I.

Pl. II, Fig. 7a-d.
cf. 1917. Orthis (Plectorthis) ardmillancnsis Reed. The Ordovician and Silurian Brachiopoda of the Girvan district, p. 83I, pl. V, figs. 33-39.
This species is represented by the exterior impression of the pedicle valve. It is transversely elcngated or Spirifer-like in form, the width being more than twice the height. The hinge line is equal th the greatest width and part of the hinge

[^49]area with a smooth surface is also shown. The shell is convex, the convexity being more pronounced in the posterior two-thi rds of the central region, while the anterior third is abruptly deflected downwards, with a rather strong geniculation. The sides of the delthyrium are supported by delicate subparallel dental plates which in the impression of the exterior, suggest a rectangular rostral cone with sides about one mm . in length. The surface is covered by about forty rounded plications, many of them showing intercalations. Concentric lamellose striæ are also present.

Remarks: The plications and shape of this species suggests Plectorthis ardmillanensis Reed, but its transverse elongation and the absence of longitudinal striæ within the interspaces of the plications at once separates them.

Horizon and Locality: Occurs with the preceding. Cc.ll. C. C. Yü. (Ser. No. X 212 ; Cat. No. 3385).

12. Plectorthis sp. 2

Pl. II, Fig. 8a-d.

cf. 1869. Orthis elegantula Dalman: Davidson, British Fossil Brachiopoda, Pt. VII, No. III, p. 2II, pl. XXVII, figs. I-9, (with literature references).
This species is also represented by an exterior impression of the pedicle valve. It is cardiform or has the shape of an inverted isosceles triangle. It is a little wider than high and has the greatest width at the hinge line. The beak region is filled by the broken rostral cone, margined by the delicate subparallel dental plates. The shell is convex, being most pronounced alc.ng the central region thus giving a steeply crescentiform section. The surface is ornamented by round and bifurcating plications, the number of which is indeterminable on account of the broken conditions of the shell. In the center of the anterior portion there are about five plicæ in two mm . The measurements are six mm. for height and seven mm . for width.

Remarks: The specimen is too poor for specific identification.
Horizon and Locality: Occurs with the preceding. Coll. C. C. Yü (Ser. No. X 214; Cat. N. 3386).

Genus Dalmanella Hall and Clarke

13. Dalmanella cf. elegantula (Dalman)

PI. II, Figs. ga-d \& roa-d.
cf. 1869. Orthis elegantula Dalman: Davidson, British Fossil Brachiopoda, Pt. VII, No. III, p. 2II, pl. XXVII, figs. $\mathrm{x}-9$, (with literature references).
cf. I892. Orthis, elegantula Dalman. Hall and Clarke, Palæontology of New York, Vol. VIII, Pt. I, pl. Vc. figs. 15-19.

This species is longitudinally ovate, much higher than wide. The hinge line is a little shorter than the greatest width which lies just below the median line of the shell. The pedicle valve is uniformly convex and rather strongly arched. The beak is moderately protuberant and a little incurved. The surface ornamentation consists of round plications which bifurcate into smaller and secondary plications at varying distances from the beak. Because of this feature the interspaces are very narrow. There are on the average eight plicæ in five mm . at the front.

Remarks: This specics agrees well with Davidson's description of Orthis elegantula. It differs from Orthis testudinaria Dalman in being higher than wide, while in the case of the latter the reverse is usually true.

Horizon and Locality: Occurs with the preceding. Coll. C. C. Yü. (Ser. Nos. X 213, X 236; Cat. Nos. 3387, 3388).

Ginus Rafinesquina Hall and Clarke

14. Rafinesquina cf. muthensis Reed

Pl. II, Figs. IIa-b. I2a-b. \& Iza-b.
cf. 19I2. Rafincsquina muthensis Reed. Ordovician and Silurian Fossils from the Central Himalayas. Palæontologia Indica, Series XV, Vol. VII, Mem. No. 2, p. 43, pl. VIII, figs. 13-15.

This species is represented by a number of specimens, most of them being imperfect. Our best preserved pedicle valve (x 245, PI. II, Fig. 12a) is semicircular in outline. The hinge line is slightly shorter than the greatest width which lies about the central part of the shell. The pedicle valve is moderately convex, more or less strongly arched in front. The beak is small and pointed; the hinge area smooth and narrow. The surface is covered by radiating and rather fine plications of unequal strength, which bifurcate and intercalate at various distances from the beak. In the space of three mm . at the front there are about six plications.

Measurements:

$$
\begin{aligned}
& \text { Greatest width }=19 \mathrm{~mm} \\
& \text { Hinge line } \\
& \text { Height } \\
& \text { Hength on curvature }=18 \mathrm{~mm} \\
& \text { Le } \\
& \text { Proportion of height to widh }=13 \mathrm{~mm} \\
& \text { Shell index } \\
& \text { S }
\end{aligned}
$$

Reed's fig. 15, Pl. VII, gives:

Greatest width	$=10 \mathrm{~mm}$
Hinge line	$=10 \mathrm{~mm}$
Height	$=7 \mathrm{~mm}$

Proportion of height to width $=1.43$
Remarks: Owing to the imperfect nature of the specimen the true status of this species is not definitely known. It is referred to Rafinesquina muthensis Reed, because their characters are apparently in close affinity. They have, however, this difference; the greatest width of Rafinesquina muthensis Reed is at the hinge line while that of our species lies about the middle part of the shell. There are two other specimens (X 244 and X 246 Pl. II, Figs. 11a and 13a) which come from the same slab but show a slightly different form. They are more or less conical instead of elliptical in shape. For the present they are classified together with X 245, but that they may prove to be different is not entirely impossible.

Horizon and Locality: Occurs with the preceding. Coll. C. C. Yü. (Ser. Nos. X244, X 245, X 246 ; Cat. Nos. 3389, 3390, 3391).

CONCLUSION.

The brachiopod fauna of the Yangtzeella Bods of the Gorge district is not yet fully known. Several years ago Miss Kolarova made a study but her results have not yet been published. Judging from the preliminary fossil lists of Professor Lee and Mr. Yü and comparing Miss Kolarova's material with the one described in this paper it at once becomes evident that Yangtzeella and C'litambonites are the dominant brachiopods in western Hupeh while Orthis takes their place in northern Hupeh as alreadly pointed out in the introduction. A difference of faunal facies like this can lead to but one conclusion; namely, the existence of a different horizon in the northern district. Whether or not the fact is such and what is the exact relation of the horizon to the Yangtzeella Beds in the Gorge District if it does exist, remain to be substantiated by further and more detailed stratigraphical work.

BIBLIOGRAPHY

Barrande, Joachim: Système Silurien du Centre de la Bohême, Vol. V, 1879.
Davidson, Thomas: The Silurian Brachiopoda, a Monograph of the British Fcssil Brachiopoda. Palæontographical Society, 1865-1883.
Hall, James: Palæontology of New York, Vol. VIII, Pt. I, 1892.
Hayasaka, I.: Palæozoic Brachiopoda from Japan, Korea and China, Pt. I, Middle and Southern China. The Science Reports of the Tôhoku Imperial University, Sendai, Japan, Second Series, Vol. VI, No. 1, 1922.
Kayser, E.: Mittel-und Obersilurische Versteinerungen aus dem Gebirgsland von Tshau-Tien (China). Richthofen, China, Vol. IV, 1883.
Lee, J.s.: Geology of the Gorge District of the Yangtze. Bull. Geol. Soc. China, Vol. III, No. 3-4, 1924.
Mansuy, H.: Etude géologique du yunnan oriental, IIe partie, Paléontclogie. Mém. Serv. Géol. de l'Indochine, 1912.
Reed, F. R. Cowper: The Lower Palæozoic fossils of the Northern Shan States, Burma. Palæontologia Indica, New Series, Vol. II, Mem. 3, 1906.
Recd, F. R. Cowper: Ordovician and Silurian fossils from the Central Himalaya. Palæontologia Indica, Series XV, Vol. VII, Mem. 2. 1912.
Reed, F. R. Cowper: Supplementary Memoir on New Ordovician and Silurian fossils from the Northern Shan States. Palæontologia Indica, New Series, Vol. VI, Mem. 1, 1915.
Reed, F. R. Cowper: Ordovician and silurian fossils from Yunnan. Palæontologia Indica, New Series, Vol. VI, Mem. 3, 1917.
Reed, F. R. Cowper: The Ordovician and Silurian Brachiopoda of the Girvan District. Transactions of the Royal Society of Edinburgh, Vol. LI, Pt. IV, No. 26, 1917.
Schuchert. Charles and Le Vene, Clara M.: Fossilium Catalogus, 1: Animalia, Pars. 42: Brachiopoda. 1929.
Weller, Stuart: A Report on Ordovician Fossils collected in Eastern Asia in 19034. Research in China, Tol. III, the Carnegie Institution of Washington, 1913.
Yabe, H. and Hayasaka, I.: Palæontolcgy of Southern China, Geographical Research in China 1911-1916. Tokyo Geographical Society, 1920.
Yü, C. C. and Shu, W. P.: Geology of Siangyang, Nanchang. Ichang, Chingmen, Chunghsiang and Chingshan districts, North Hupeh. Mem. the Institute of Geology, National Research Institute of China, No. VIII, 1929.

Iü, C.C.: The Ordovician Cephalopoda of C'entral China. I'almontologia Sinica, Scrics B, Vol. I, Fasc. 2, 1930.

EXPLANATION OF

PLATE I.

EXPLANATION OF PLATE I.

Fig. 1. Lingula sp. ... P. 7
1a Pedicle valve. Nat. size.
1b Same valve $\times 4$.
Loc:-Taihungshan, Nanchang Hsien, N. Hupeh.
(G. S. C. Cat. No. 3363).

Fig. 2. Orthis calligramma Dalman, var. sinensis Chang $\mathrm{P} \quad 7$
2a Internal mold of the pedicle valve. Nat. size.
$2 b$ same mold $\times 2$.
Loc:-Taihungshan, Nanchang Hsien, N. Hupeh.
(G. S. C. Cat. No. 3364).

Fig. 3 Orthis calligirtmme Dalman, var. hupehensis Chang P. 8
3a External impression of the pedicle valve of the holotype. Nat. size.
3 b Gutta percha mold of same valve.
$3 \mathrm{c}=3 \mathrm{a} \times 2$.
$3 \mathrm{~d}=3 \mathrm{~b} \times 2$.
Loc:-'Taihungshan, Nanchang Hsien, N. Hupeh.
(G. S. C. Cat. Nos. 3365a, 3365b).

Fig. 4. Orthis calligramma Dalman, var. hupehensis Chang P. 8
4a External impression of another pedicle valve. Nat. size.
4b Gutta percha mold of same valve.
$4 \mathrm{c}=4 \mathrm{a} \times 3$.
$4 \mathrm{~d}=4 \mathrm{l}) \times 3$.
Loc:-Taihungshan, Nanchang Hsien, N. Hupeh
(G. S. C. Cat. Nos. 3366a, 3366b).

Fig. 5. Orthis carausii Salter, var. nanchanghsiensis Chang P. 9
5 a Exterior impression of the brachial valve. Nat. size.
ab Gulta percba mold of same valve.
$j \mathrm{c}=5 \mathrm{a} \times 2$.
$5 \mathrm{~d}=5 \mathrm{~b} \times 2$.
Loc: Taihungshan, Nanchang Hsien, N. Hupeh.
(G.S.C.Cat. Nos. 3367a, 3367b).
M. S. Chang:-Neichiashan Brachiopoda

EXPLANATION OF PLATE I.-(Continued)

Fig. 6. Orthis carausii Salter. P. 10
$6 a$ Interior mold of the pedicle valve. $\times 2$.
6 b Same mold $\times 4$.
6c Exterior impression of another pedicle valve $\times 2$.
$6 d$ Gutta percha mold of same valve $\times 2$.
$6 \mathrm{e}=6 \mathrm{c} \times 4$.
$6 \mathrm{f}=6 \mathrm{~d} \times 4$.
Loc:-Taihungshan, Nanchang Hsien, N. Hupeh.(G. S. C. Cat. Nos. 3368, 3369a, 3369b).
Fig. 7. Orthis neichiaensis Chang P. 11
7a Exterior impression of the brachial valve, Nat. size.
7b Gutta percha mold of same valve.
$7 \mathrm{c}=7 \mathrm{a} \times 2$.
$7 \mathrm{~d}=7 \mathrm{~b} \times 2$.Loc:-Taihungshan, Nanchang Hsien, N. Hupeh.(G. S. C. Cat. Nos. 3370a, 3370b).
Fig. 8. Orthis neichiaensis Chang P. 11
8a Exterior impression of another brachial valve $\times 2$.
8b Gutta percha mold of same valve $\times 2$. 2.
$8 \mathrm{c}=8 \mathrm{a} \times 4$.
$8 \mathrm{~d}=8 \mathrm{~b} \times 4$.Loc:--Taihungshan, NanchangHsien, N. Hupeh.(G. S. C. Cat. Nos. 3371a, 3371b).
Fig. 9. Orthis neichiaensis Chang P' 11
9a Exterior impression of a third brachial valve. Nat. size.
$9 b$ Gutta percha mold of same valve.
$9 \mathrm{c}=9 \mathrm{a} \times 2$.
$9 \mathrm{~d}=9 \mathrm{~b} \times 2$.
Loc:--Taihungshan, NanchangHsien, N. Hupeh.
(G. S. C. Cat. Nos. 3372a, 3372b).

EXPLANATION OF PLATE 1.-(Continued)

Fig. 10. Orthis neichiaensis Chang P. 1110a Interior mold of the pedicle valve. Nat. size.10b Same valve $\times 3$.Loc:.-Taihongshan, Nanchang Hsien, N. Hupeh.(G. S. C. Cat. No. 3373).
Fig. 11. Orthis neichiaensis Chang P. 1111a Exterior impression of another pedicle valve. Nat. size.11b Gutta percha mold of same valve.
$11 \mathrm{c}=11 \mathrm{a} \times 2$.
$11 \mathrm{~d}=11 \mathrm{~b} \times 2$.Loc:--Taihungshan, Nauchang Hsien, N. Hupeh.
(G. S. C. Cat. Nos. 3374a, 3374b).
Fig. 12. Orthis ellipsoides Chang P. 13
12a Exterior impression of the Pedicle valve \times 2.
12b Interior mold of the pedicle valve $\times 2$
12c Interior mold $\times 4$.
12d Exterior impression \times 4.Loc:-Taihungshan, Nanchang Hsien, N. Hupeh.(G. S. C. Cat. Nos. 3375, 3376).

EXPLANATION OF PLATE II.

EXPLANATION OF PLATE II.

Fig. 1. Orthis calligramma Dalman, var. intercalare Chang P. 14$1 a$ Interior mold of the pedicle valve. Nat. size.1b Same mold $\times 3$.Loc:-Taihungshan, Nanchang Hsien, N. Hupeh.(G. S. C. Cat. No. 3377).
Fig. 2. Orthis calligramma Dalman, var. intercalare Chang P. 14
2a Interior mold of the brachial valve. Nat. size.
2 b Same mold $\times 3$Loc:-Taihungshan, Nanchang Hsien, N. Hupeh.(G. S. C. Cat. No. 3378).
Fig. 3. Orthis calligramma Dalman, var. intercaltere Chang P. 14
3 a Interior mold of another brachial valve $\times 2$.
3b Same mold $\times 4$.Loc:-Taihungshan, Nanchang Hsien, N. Hupeh.(G. S. C. Cat. No. 3380).
Fig. 4. Orthis calligramma Dalman, var. interculare Chang P. 14
$4 a$ Interior mold of a third brachial valve. Nat. size.
4.b Same mold $\times 3$.Loc:-Taihungshan. Nanchang Hsien, N. Hupeh.(G. S. C. Cat. No. 3379).
Fig. 5. Orthis cf. unguis Sowcrby P. 15
5 a Interior mold of the pedicle valve $\times 2$.
5b) Same mold $\times 4$.
$5 c$ Exterior impression of the pedicle valve $\times 2$.
$5 d$ Same impression $\times 4$.
Loc:-Taihungshan, Nanchang Hsien, N. Hupeh.
(G. S. C. Cat. Nos. 3381, 3382).

Ser. B, Vol. I, Fasc. 3.

explanation of plate II.-(Continued)

Fig. 6. Orthis cf. calligramma Dalman, var. subplicata Reed P. 15
6a Interior mold of the pedicle valve. Nat. size.
6 b Same mold $\times 2$.
6c Interior mold of another pedicle valve. Nat. size.
6d Same mold $\times 2$.
Loc:-Taihungshan, Nanchang Hsien, N. Hupeh.
(G. S. C. Cat. Nos. 3383, 3384).

Fig. 7. Plectorthis sp. 1 ... P. 16
7a Exterior impression of the pedicle valve. Nat. size.
7b Gutta Percha mold of same valve.
$7 \mathrm{c}=7 \mathrm{a} \times 2$.
$7 \mathrm{~d}=7 \mathrm{~b} \times 2$.
Loc:-Taihungshan, Nanchang Hsien, N. Hupeh.
(G. S. C. Cat. Nos. 3385a, 3385b).

Fig. 8. Plectorthis sp. 2 .. P. 17
8a Exterior impression of the pedicle valve $\times 2$.
8 b Gutta percha mold of same valve $\times 2$.
$8 c=8 a \times 4$.
$8 \mathrm{~d}=8 \mathrm{~b} \times 4$.
Loc:-Taihungshan, Nanchang Hsien, N. Hupeh.
(G. S. C. Cat. Nos. 3386a, 3386b).

Fig. 9. Dalna anella cf. elegantula Dalman .. P. 17
9a Exterior impression of the pedicle valve. Nat. sizu.
9 b Gutta percha mold of same valve.
$9 \mathrm{c}=9 \mathrm{a} \times 3$.
$9 \mathrm{~d}=9 \mathrm{~b} \times 3$.
Loc:-Taihungshan, Nanchang Hsien, N. Hupeh.
(G. S. C. Cat. Nos. 3387a, 3387b).

EXPLANATION OF PLATE 11.-(Continued)

Fig. 10. Dalmanella cf. elegantula Dalmarı P. 17
10a Exterior impression of another pedicle valve. Nat. size.10b Gutta percha mold of same valve.$10 \mathrm{c}=10 \mathrm{a} \times 3$.
$10 \mathrm{~d}=10 \mathrm{~b} \times 3$.Loc:-Taihungshan, Nanchang Hsien, N. Hupeh.(G. S. C. Cat. Nos. 3383a, 33831).
lig. 11. Rafinesquina cf. muthensis Reed P. 18
11a Pedicle valve. Nat. size.
11b Same valve $\times 2$.
Loc:-Taihungshan, Nanchang Hsien, N. Hupeh.
(G. S. C. Cat. No. 3389).
Fig. 12. Rafinesquina cf. muthensis Recl P. 18
12a Another pedicle valve. Nat. size.
12 b same valve $\times 2$.Loc:-Taihungshan, Nanchang Hsien, N. Hupeh.(G. S. C. Cat. Nc. 3390).
Fig. 13. Rafinesquina of. muthensis Reed I. 18
13a A third Pedicle valve. Nat. size.
13 b Same valve $\times 2$.Loc:-Taihungshan, Nanchang Hsien, N. Hupeh.(G. S. C. (at. No. 3391).

$$
\begin{aligned}
& \text { 8. Orthis calligramma Dalman, var. intercalare Chang (var. nov.) } \\
& \text { 9. Orthis cf. unguis Sowerby } \\
& \text { 10. Orthis cf. calligramma Dalman, var. subplicata Reed } \\
& \text { 11. plectorthis sp. } 1 . \\
& \text { 12. plectorthis sp. 2. } \\
& \text { 13. Dalmanella cf. elegantula Dalman } \\
& \text { 14. Rafinesquina cf. muthensis Reed }
\end{aligned}
$$

學拿國實
雨断花花業地窥賉采部
調國研的
查立究地
所中湖院
院
泊研

質
質
調
枰國矿查

作大 印
行

中
関
中
部
艾
家層
下
部
之

腕
足
類
化
石

第
三
期

號

張
鳴
韶
著

皿要國䆩
雨峺立普

地虽壁垺調
調國研査
竞立究號所
合京所所
焦大 印
行

GEOLOGHCAL SURVEY OF CHHNA
 V. K. THNG AND VF. Hi. WONG DIIRISCTMDES

『Talæontología Wíníca
 UBIMTOES:

V. EK. THNG AND W. HE WONG

Eeries JB. Volume 1
 Jascicle 4.

CONTPRIHBUTHONS

TO THE
CAMITRIAN FAUNAS OF NORTH CHINA
BY
Y. C. SUN

Dalxontologist to tbe Geologicat survey and Droteggor of palxontology

PRIKNG 19R4.

Palæontologia Sinica．

中國古生物誌
Published by the Geological Survey of China．

SERIES A．FOSSIL PLANTS OF CHINA．

Vol．I．
Fascicle 1．R．Florin：Zar Alttertiären Flora der südlichen Mandschurei，published Aug． 1922．
．．Price $\$ 3.00$ Mex．
Fascicle 2．T．G．Halle：Fossil plants from South－western China collected by Dr．K．V．Ting （in press）
Fascicle 3．R．Florin：Tertiare Pflanzenreste aus Nordchina（in preparation）．
Vol．II，
Palæozoic Plants of China．
Fascicle 1．T．G．Halle：Palæozoic plants from Shansi（in press）．

SERIES B．FOSSIL INVERTEBRATES OF CHINA．

Vol．I．
Fascicle 1．A．W．Grabau：Ordovician Fossils from North China．Published April，1922．．．
Fascicle 2．A．W．Grabau：Ordovician Fossils of North China，pt．2．（In preparation）．
Fascicle 3．A．W．Grabau：Ordoyician Fossils of South China（In preparation）．
Fuscicle 4．Y．C．Sun：Contribution to the Cambrian faunas of North China．．．．．．．．．．Price \＄4．00
Fascicle 5．A．W．Grabau and Y，C．Sun：Graptolites of China（in preparation）
Vol．II．
Palæozoic Corals of China，Part I．The Tetraseptata．
Fascicle 1．A．W．Grabau：Introduction；Petraiidæ，Streptelasmaidæ and Cyathaxonidæ Published Sept． 1922

Price $\$ 3.00 \mathrm{Mex}$ ．
Fascicle 2．A W．Grabau：Zaphrentidae and Cyathophyllidæ．（In preparation）．
Vol．III．
Palæozoic fauna of Yunnan 雲南古生界化石
Fascicle 1．Y．C．Sun：Cambrian fauna of Yunnan（In preparation．）
Fascicle 2．A．W．Grabau：Silurian Faunas of Yunnan（Ready for publication）
Fascicle 9．A．W．Grabru：Devonian Brachiopoda of Yunnan and neighbouring provinces （Nearing completion）
SERIES C．FOSSIL VERTEBRATES OF CHINA．
Vol．I．
Fascicle 1．Max Schlosser：Tertiary Vertebrates from Mongolia（119 pages and 6 plates）
Fu．．．Price $\$ 4.50$
Fascicle 2．Max Schlosser：Fossil Primates from China（13 pages \＆ 1 plate）．．．．．．．．．．Price $\$ 1.00$
Fascicle 3．P．Teilhard：Hipparion fauna of east Kansu etc．（In preparation）
Fascicle 4．T．J．Ringetröm：Nashörner der Hipparion－Fauna Nord－Chinas 156 pp .12 pls. Vol．II．
Fascicle 1．O．Zdansky：Jungtertiäre Carnivoren Chinas（in press）．
The other fascicles will contain memoirs on Giraffidæ by Boblin，Equidæ by Sefve etc．

Vol．III．
Fascicle 1．Stensiö：Fossil Fishes of Shantung（ready for publication）．
Fas：icle 2．A．W．Grabau：The Genus Lycoptera in North China and Mongolia（ready for publication．）

SERIES D．ANCIENT MAN IN CHINA．
Vol． 1.
Fascicle 1．J．G．Andersson：The Cave－deposit at Sha Kou T＇un in Fengtien．Price $\$ 3.50$ Mex． Fascicle 2．Arne：Painted Chinese Pottery from the Stone Age（in press）
Fascicle 8．Davidson Black：Human Skeletal Remains of Sha Kuo Tun，Fengtien，and Yang Shao，Honan（In press）．

PALÆONTOLOGIA SINICA

Editors:

V. K. Ting and W. H. Wong

Contributions

to the

Cambrian Faunas of North China

BY
Y. C. SUN

Palæontologist to the Geological Survey and Professor of Palæontology in the National Normal University, Peking.

Plates I - V, 1 text figure

Published by the Geological Survey of China
Peking 1924.

PUBLISHED DECEMBER 1, 1924.

Printed by rHF COMMERCIAL PRESS, PEKING.

CONTENTS:

Page
Introduction 5
Stratigraphic Summary. 7
Uhihli 7
Kaiping Basin 7
Lin-Cheng 10
Shantung 11
Kac-Li-Shan 11
Chau-Mi Tien 13
Ta-Wen-Kou 14
Fêngtien
Sha-Kuo-Tun 14
Description of species 15
Graptozoa 15
Aumelida 16
Brachiopoda 17
Trilobita 26
Biblingraphy 87
List of Chinese localitios referred to in the text, arranged alphabetically under the several provinces 89
Explanation of Plates 91

NOTE TO THE TRILOBITA

Throughout this paper the shorter dimension of the lobes of the glabella, the occipital ring and marginal rim, as well as of the axial rings and plewre of the thorax and pygidium is spoken of as their width. This srems desirable, since in comparing them with the separating furrows be speak of their shorter demensions as the width of the furrow. Thus the combined width of the glabellar lobes and furrows constitute the length of the glabella, while the combined width of the axial rings and furrows constitute the length of the axis of the thorax, etc. The length of the lobes consititutes the width of the glabella or thorax as the case may bo. It is thus the measurement along the longitudinal axis of the entire animal, which constitutes the width of the lobes or rings of either cephalon or body. An exception to this is desirable in the case of the anterior lole of the glabella the longitudinal measurement of which may be grader than the transverse. In such caser, to avoid misunderstandingthe measurement is further designated by the term antero-posterior or longitudinal this referring to the longitudinal axis of the animal as a whole. A few deviations from this rule have crept in, these being noted in the errata.

CONTRIBCTIONS
 To TIIE
 CAMBRIAN FAUNAS OF NOR＇TH CHINA
 1：1
 Y．（！sUN．

INTRODUCTLON．

Since the important and extensive studies of Walcott on the Camlrian Faunas of China，no work was done in the field until the systematic collection of Chinese fossils，in connection with the detailed exploration and mapping，was undertaken by the Geological Survey．In 1919 Mr．H．C．T＇an of the Survey made a collection of Cambrian fossils from the northern rim of the Kaiping Basin which proved of such interest on preliminary study by Prof．Grabau，that it was decided to make a more detailed examination of the Cambrian as well as other formations of this locality．Accordingly the Survey sent an expedition to the Kaiping lasin，in charge of Prof．（raban，and of this I was a member． On our return，the Cambrian material was placed in my hands for study and description．

In the same year，Dr．J．（r．Andersson studied the Sha－Kuo－Tun 沙鍋 屯 deposits in west Fengtien，and brought back a collection of Upper Cambrian fossils from this region，where the Upper Cambrian rests disconformably upon the Sinian rocks．

In the spring of 1923，the National University Expedition，in charge of the author，went to Ghantung to study the Cambrian stratigraphy of that province．I was accompanied by several college students（C．C．Yang，S．T．Chang，C．C．Tien， Y．T．Chao，K．M．Wang，P．Tsai）who assisted me in measuring sections and making collections of fossils．

In the upper part of the Chaumitien limestone of Chau－Di－Tien，we found a new horizon containing many species of Orthocercus and other cephalopods．Associated with these are Ptychaspis，Eoorthis and the new genus Changia of the family Dikelocephalinar． The cephalopods probably represent an invasion of an early Ordovician type of fauna
into the region where the Upper Cambrian fauna still persisted．These beds are probably to be regarded as still Carmbrian rather than the Lower Ordovician．Nevertheless，this zone should be separated from the Chaumitien limestone．

In the Tai－An 泰 安 district，we discovered four horizons in Kao－Li－Shan，高旦 山 2 li from the city．Several new genera and species were found in this formation．The fauna is closely related to the Ceratopyge heds of Sweden，but it is quite distinct from the Chaumitien fauna．All fossils were obtained from the high beds and belong to the upper－ most part of the Upper Cambrian，while the lower part is unfossiliferous，probably repre－ senting a part of the Chaumition limestone．

A large number of well preserved specimens of Drepmoru and Dameselln were obtained from Ta－Wen－Kou，大 汶 口， 50 li S．of Tai－An．

In the autumn of 1923，the author revisited the Kaiping Bawin with two classes of the Geological Institute of the National University；and we made an extensive collection of Middle and Lower Caubrian fossils．

Dr．F．F．Mathieu，geologist of the Kailan Mining Administration，kindly sent me the Cambrian material which he had collected at Lei－Chuing 雷 菲 and also jnined us in the field at Chao－Kou－Chuang 趙 各 莊．

More recently Messrs．Y．T．Chao and C．C．Tion，graduates in Palkeontolosy from the National University，and now members of the Survey staff，obtained a large number of well preserved specimens of Cambrian fossils from the Kushan beds in Lincheng 臨城 in southern Chihli，and they recognized also the Xanto shale and Changhia limestone in that region，but did not find any fossil in it．The horizon found by them is the Plachuchleria zone whjch is essentially of Kushan age，and lies discon－ formably below the Lower Ordovician．They also found a new genus of the order Proparia characterized by having long genal spines on the fixed cheeks．

The present contribution covers the material so far obtained from North China， but it does not exhaust the field．I second contribution will be issued after further extensive collections have been made．

Fight new Genera and subgenera，and forty one new species are described in this paper．

In conclusion，I wish to express my thanks to Mr．K．（．Liu for making the drawings；to Dean C．Ho for his kindness in arranging the university excursions．and to Drs．W．H．Wong and H．T．Chang for suggestions and criticisms．Finally I am under great obligations to Prof．Grabau who has put the material in my hands for study， and given many suggestions and directions．

STRATIGRAPHIC SUMMARY

The Cambrian is known at present from Chihli, Shantung, Shansi and Manchuria. The lithologic character of each formation varies according to the condition of the deposition. Generally the southern regions (Shantung etc.) are characterized by limestones in the Upper Cambrian (Chaumitien), while this formation is represented by shales interbedded with Wurmkalke in Chihli. Farther north-east (Manchuria), a part of the Changhia limestone is replaced by the red shale.

The subdivisions of the Cambrian as now recognized in North China are as follows:

SUPER-FORMATION
Lower Ordovician
Probably a disconformity in all cases; (ascertained in many).
calibrifan
Upper Cambrian
Fêngshan series
Chaumitien formation
Middle Cambrian
Kushan formation
Changhia formation
Lower Cambrian
Manto formation

CHIHLI PROVINCE

A. Karping Basin. The Cambrian strata are well developed in the Kaiping Basin and the subdivisions are as follows:

ORDOVICIAN
Yehli limestone
disconformity
Upper Cambrian
5 Fêngshan series 200-300 ft.
4 Changshan series $150-200 \mathrm{ft}$.
Middle Cambrian
3 Kushan formation (a part) $0-50 \mathrm{ft}$.
2 Changhia limestone $300-400 \mathrm{ft}$

Lower Cambrian
1 Manto shale 400－500 ft．
disconformity
SLNMAV
Black limestone
Manto formation－This is the oldest known Cambrian division of North China．It consists mostly of red，purple and green shales，sometimes interbedded with sandy limestones．It occurs in Chao－Kou－Chuang，趙各荘 Lei－Chuang 雷荘 and especially in Chêng－Shan，䉿 山 where the section was made．The following species are found in this formation：

Frachiopoda
1 Acrothele cheni Sun
－2 Lingulella manchuriensis？Walcott
3 Obolus sp．
Trilobita
4 Conokephalina gerardi Sun
5 Conokephalina kaipingensis Sun
6 Ptychoparia（Emmrichella）chêngshanensis Sun
7 Ptychoparia sp．
8 Ptychoparia yohi Sun
9 Ptychoparia fongi Sun
Changhia limestone－This consists of oolitic limestone and various shades of massive limestone．It is found in the northern slope of Chêng－shan and is usually called cliff limestone．It contains the following species：

Brachiopoda
1 Nissusia hayasakai Sun
Trilobita
2 Solenopleura nodosa Sun
3 A nomocare flava Walcott
4 Lisania rectangularis sun
5 Lisania？hsuchiachuangensis Sun
6 Damesella blackwelderi var．minor Sun
7 Dorypyge richthofeni Dames
8 Dolinometopus deois Walcott
9 Crepicephalus sp．
Kushan sfiale－A part of this formation may be present，but so far no fossils have been found．

Chanishan sfries-This series consists of red or purple shales with seven or eight intraformational (edgewise) limestone conglomerates (wurmkalke). The red shale is richly fossiliferous and is found in Jén-Chuang, 任 菲 2 li N. of Chao-Kuo-Chuang, and Chengshan. The lithological charater of this red or purple shale is not unlike that of the Manto shale, but it can lw distinguished by the series of wurmkalk beds interbedded with it. The detail section is given in the bulletin* of the Geological Society of China (Vol. If No. 1-2) . p. 91-45. It contains the following species.

Brachiopoda
1 Obolus mollisonensis? Walcott
2 Eoorthis sp.
Trilolita
3 Changshania conica Sun
4 Changshania? truncata Sun
5 Agnostus hoi siun
Obolus mollisonensis? Walcott is an American species from the Cpper Cambrian of North American. Eoorthis is one of the Upper Cambrian genera. The other genera and species are new. Lithologically the red fossiliferous shales are interbedded with intraformational conglomerates (Wurmkalke) which are characteristic of the Upper Cambrian. This series corresponds to the lower part of the Claumitien limestone of Shautung.

Fercishat serin-This series is composed of shales and thin-bedled limestone (calcilutite) ; and represents the uppermost part of the Cpper Cambrian. It is very well
 between the Fêngshan limestone and the overlying ()rdovician limestone was discovered. The Fêngshan limestune is also found in Lei-Chuang, Chihli. The most common species are as follows:

Brachiopoda
1 Obolus luanhsiensi: Grabau (Mss.)
\because Lingulella kayscri (xrabau (Mss.)
Trilobita
3 Ptychaspis subglobosa Grabau (Mrs.)
4 Ptychaspis suni Grabau (Mss.)
5 Mansuyia orientalis (Grabaur) Sun
6 Illænurus sp.
7 Anomocare sp.

[^50]This is a new fauna and entirely distinct，and may be called the Asiatic Ceratopyge fauna．The most common specis is Mansuyia orientalis（Grabau）Sun which is also abundantly found in the Kaolishan formation．I＇tychaspis and Illænurus are not uncommon．Thr formation is certainly of uppermost Cambrian age．

Ptychaspis subglobosa Grahau also occurs in the Kaolishan formation of Shantung， with which formation this Fengshan series is to be correlated．The limestone conglome－ rate in this formation is unlike the wurnkalk（intraformational conglomerate）which is characteristic of the Chaumitien limestone or the Changshan sorios．

B．Livinfats．In Lin－Cheng，臨城 $心$ ．Chihli，a complete section was studied by Y．＇T．Chao and C．C．Tien．A large number of well preserved specimens were obtained from the Kushan formation of that region，none being found in the older formations （Manto and（＇hanghia）

The subdivisions are as follows：
siper－formation：Lower Urdovician
（disconformity）
Middle Cambrian
Kushan formation $\quad \overline{0}-100 \mathrm{ft}$ ．
Changhia limestone 700－800 ft．
Lower Cambrian
Manto shale
$200-300 \mathrm{ft}$ ．

Subformation：Sinian

The Kushan formation furnishes the following species：
Brachiopoda
1．Obolus linchengensis Sun
＇Trilobita
2．Wongia triangulata Sun
3．Blackwelderia tieni Sun
4．Stephanocare richthofeni Monke
5．Black welderia sinensis var．linchengensis Sun
（i．＇Tienistion subconica Sun
Mtephanorare richthofeni Monke and Blakwelderia sinensis Walcott are present in this formation，and it is essentially the Kushan shale horizon of Shantung．One new species of Blackuelderia and one new species of Teinistion are also found in this forma－ tion．The most unique form is the new genus Itongia of the order proparia．This genus，IV＂ongite，is quite distinct from any known type of foreign countrics，and is certainly one of the most characteristic genera of the Middle Cambrian of China．

SHANTUNG PROVINCE

A. Kao Li Shan. This a low hill, 2 li west of Tai An, is composed of limestone conglomerate, limestone and shale. The lower part consists of unfossiliferous beds occationally with wurmkalk, and probably represents a part of the Chaumitien formation. The upper part is mostly of shale, limestone and limestone conglomerate which is unlike the wurmkalk (intraformational conglomerate) of the Chaumitien formation. The following section was made by the class of 1923 of the Geological Institute of the National University under the direction of the author.Feet Inches
25 conglomerate limestone (partly covered) F 4. 30 0
24 thin-bedded limestone 6
23 fine oolitic limestone 3 5
22 shale 2 6
21 conglomerate limestone F 3 2
20 Shale 2 6
19 conglomerate limestone 1 0
18 shale 3 7
17 Obolus limestone F 2. 1 0
16 oolitic limestone 2 6
15 thin-bedded limestone 9
14 conglomerate limestone 4
13 thin-bedded limestone 9
12 oolitic limestone 4
11 thin-bedded limestone 2
10 compact and dark gray limestone F 1 0
9 thin bedded limestone 0
8 ochery limestone 3
7 thin-hedded limestone is
6 ochery limestone 8
5 thin-bedded limestone 8
4 intraformational limestone 11 0
3 ochery limestone 4 4
2 thin-bedded ochery limestone 7 0
1 intraformational conglomerate 20 0

The following species are found in the University collection:
Graptozoa

1. Clonograptus? cambria Sun

Brachipoda
2. Obolus taimemsis Sun F_{2}
3. Syntrophia orthia Wal(entt F_{1}
4. Agnostus (y)lopygeformis $\operatorname{sun} \mathrm{F}_{1}$
\therefore Ptichaspis subglohona (rabau F_{3}
(i. I'tychaspis angulata var. chinensis sun F_{1}
7. (Quadraticephalus walcotti Sum F_{4}
8. Kaolishania pustulosa Sun F_{1}
9. Mansuyia orientalis (Grabau) Sun F_{1}
10. Taianocephalus grabaui sun F_{1}
11. Chuangia batia walcott F_{I}
12. Illemurus ceres Walcott F_{3}
13. Illanurus Pagoda Sun

Dr. Walcott has correlited this formation with the Chaumitien limestone of the Chang-hia region and referred it to the lower part of that formation, but with our present faunal evidence this formation is recognized as younger than the Chaumitien limestone and should be given a separate name.

Ptyrluspis subglohose (imban also occurs in the same character of limestone (limestone conglomerate) of the Fêngshan formation. Mansuyia orientalis (Grabau) Sun is also the most common species in that formation. The succession of the strata and the palæontology clearly indicates that this formation is the equivalent of Fêngshan limestone of Chihli, and certainly belongs to the upper part of the Upper Cambrian.

I!nostus cyclopmgeformis Sun is very closely related to the European form I . cyclopyye of Swerlen. This indicates that the L'pper Cambrian sea of China had a close connection with that of Europe. That is why many Chinese and European forms appear to be identical.

Ptycluspis angulata Mansuy is found ahoundantly in the Upper part of the Upper Cambrian of Tonking, it is also present in this formation. Hence this formation is equivalent to Ptychaspis angultata zone of Indo-("hina.

The discovery of the new genus mumitaticephalus of the family Dikelocephalinæ which comprises the characteristic form of the Upper Cambian of North America is of considerable interest and signilicance.

The presence of Clonograptus and the Cyrtoceras figured by Walcott is of signifi－ cance，because both are more typical of the Ordovician and must at least be regarded as transition types of the Cambro－Ordovician strata．The graptolite was found several years ago by Mr．K．W．Hsu during an excursion to the locality in charge of Dr．H．W． Wong．

I agree with Dr．Walcott in putting this formation in the Upper Cambrian，but I regret that I cannot follow him in including this formation in the Chaumitien limestone． I am disposed to separate this formation under a new name，the Kaolishan（Kaoli） formation，and to refer it to the uppermost part of the Upper Cambrian．
b．Chaumitien．炒米店 This is the type locality for the Chaumitien limestone which was named by Willis and Blackwelder．Near the top of that limestone，we found a new horizon characterized by a transition fauna．The name of Chaumitien limestone， I think，should be restricted to the lower part of that formation，while the upper beds characterized by the Ordovician types should be given a separate name．

The following species are found in the upper zone：

Brachiopoda

1．Billingsella sp．

Cephalopoda

2．Loxoceras cambria Sun＊
3．Orthoceras nanshanensis Sun＊
Trilobita
4．Changia chinensis Sun
5．Ptychaspis acamus var．punctata Sun
6．Ptychaspis tari Sun
Ptychaspis and Billingsella are the characteristic fossils of Upper Cambrian while Loxoceras and Orthoceras are apparently Ordovician forms．

Because the presence of Ptychaspis acamus Walcott I am constrained to put this horizon in very late Cambrian rather than basal Ordovician，and consider that the cepha－ lopod element is a new invasion．

It is evident that this formation，characterized by the mixed fauna，should not be included in the Chaumitien limestone which is now restricted to those lower beds charac－ terized by Wurmkalke（intraformational conglomerates）．This upper horizon，however， may be the equivalent of the Fêngshan series of Chihli．

[^51]c．Tawenkou．大汶口 This place， 50 li south of Tai－An，is well known for Stone－ swallows．This formation is very fossiliferous and of Kushan age．The lower part furni－ shes a large number of Drepanuras while the upper contains some Blackwelderias and Damesellas．

The following species were found in this formation：
1．Drepanura premesnili Bergeron
‥ Drepanura ketteleri Monke
3．Agnostus douvillii Bergeron
4．Liostracina krausii Monke
5．Shantungia spinifera Walcott
6．Agnostus kushanensis Walcott
7．Stephanocare richthofeni Monke
8．Damesella sp．
9．Blackwelderia sp．

FENGTIEN PROVINCE

Only the Upper Cambrian is known from Sha－kuo－T＇un，Chin－Hsi－Hsien，錦西湶 west Fengtien．The fossils were collected by．J．G．Andersson，mining adviser to the Chinese Government．The section is given in the Bulletin of the Geological Society of China（Vol．II No．1－2 p．101．）．

The following species are found in this limestone：
Trilobita
1．Ptychaspis walcotti Mansuy
2．Ptychaspis acamus Walcott
3．Ptychaspis chinhsihsiensis Sun
4．Ptychaspis（Anderssonia）fêngtienensis sun
5．Agnostus sp．
Brachiopoda
6．Eonrthis shakuotunensis Sun
This formation is characterized by two new species of Ptychaspis and certainly belongs to the Upper part of the Cambrian．The Lower and the Middle Cambrian are absent in this region and the Shakuotun limestone lies disconformably upon the pre－ （＇ambrian（sinian）rocks．

The subdivisions of the Cambrian of N ．China are ats follows：

SHANTUNG		Chin Hid	FENGTIEN
－taian region	changhia region	kAIPING BASIN	Chinhsimsien
U．$€$. Kaolishan limestone Chaumitien limestone？	Orthoceras Zone Chaumitien limestone	$\begin{aligned} & \text { 左 Féngshan limestone } \\ & \text { 每 Changshan series } \end{aligned}$	Shakuotun limestone
M．©．Kushan formation	Kushan formation	伿 Kushan shale	
	Changhia limestone	ㄷㅡㅢ Changhia limestone	
L．€．Manto shale	Manto shale	Manto shale	

From the lithological，and stratigraphic relations，and the Palæontology，it is clear that the early Middle Cambrian sea，must have been free from mechanical sediments to permit the formation of oolitic limestone and then become gradually shallow in the late Middle Cambrian and the Upper Cambrian time permitting the formation of shales and intraformational conglomerates．

The Lower Cambrian sea of China had no connection with the Atlantic or the Boreal province；but the Middle Cambrian was to some extent confluent with the Boreal and west American Provinces，and more particularly was this the case in Upper Cambri－ an time．

A number of American genera，and even species are found in this country， though，on the whole the faunas are quite distinct．

DESCRIPTION OF SPECIES
 Class GRAPTOZOA Grabau
 Genus Clonograptus Hall
 Clonograptus？Cambria Sun（sp．nov．）

Plate I．Fig． 1.
This species is only represented by one stipe slightly curved．
Stipe somewhat rigid and slender．Thecæ fifteen to sixteen in 10 mm ．，slender tubes inclined 30° or more．Apertural margins concave oblique，conspicuously mucro－ nate．Each theca averages 1.5 mm ．in length and 0.5 mm ．in width．Maximum width of stipe about 1 mm ．

In form this species resembles Clonograptus tenellus from the Dictyonema shale of Sweden and England；but it differs in that it has 15 or 16 thecæ in 10 mm ．while in C．tenellus only 10 thece are found in 10 mm ．As the generic determination is mainly
based on the number of stipes，and only one stipe of this species is known，the generic determination of this specimen is still somewhat doubtful．

This species occurs in a thin slab of gray limestone which was collected several years ago by Mr．K．W．Hsu（徐偉曼）of National South Eastern University．

Horizon and loc＇ality：Upper Cambrian；Kaolishan limestone of Tai－An， Shantung．

Class ANNELIDA
 Cenns Climactichnites Logan Climactichnitesmathieui Sun（sp．nov．）

Plate I．Fig． 2.

One specimen from Luanchou contains the trails of an annelid，which apparently belongs to Climactichnites．The trails of Climactichnites were also found in the Upper Cambrian of New York and Wisconsin，N．America．

Woodworth suggests that the animals which made these trails were mollusks ca－ paple of crawling up from the water at low tide，while Walcott thinks the trails were certainly made by annelids．

I agree with Dr．Walcott，because many annelids have been found in the Cam－ brian strata．

The Chinese form is represented hy an impression of the trails on the under side of the rock，which clearly shows the character in relief．

It is small，being only 3.5 mm ．in width having 8 grooves in 1 cm ，indicating that it was the trail of an annelid of ordinary size．

This species is quite distinct from any known foreign species．I take pleasure in naming it in honor of Dr．F．F．Mathieu，geologist of the Kailan Mining Administration．

Measurements：－
Average width of groove with very narrow ridges
separating it ．． 1 mm.
Average length of the groove．． 2 mm.
Horizon and locality：Lower Cambrian，Manto shale of Luanchou；collected by Dr．F．F．Mathieu．

Class BRACHIOPODA Iuméril
 Genus Obolus Eichwald
 Obolus（Westonia）leei Sun（sp．nov．）

Plate I．Fig．3a－3c．
Shell of medium size，depressed convex；general form broadly ovate，almost sub－ quadrate，with the pedicle valve obtusely acuminate．The frontal margin nearly straight， both sides are nearly parallel，regularly and gently rounded；posterior margins straight on both sides of the beak，meeting at the latter at an angle of about 125° ．Shell little longer than the wide．

Surface marked by coarse concentric lines of growth and the characteristic orna－ mentation．This appears to be formed of a very fine network of oblique depressed lines which divide it into minute diamond－shaped spots，a surface which resembles，under a strong lens，the texture of finely woven cloth．

This species is represented by only one valve of the shell；the measurements are as follows：

> Length.. 9.0 mm. Width .. 8.5 mm.

Horizon and Locality：－Cambrian：from purple shale of Luan－Chou．Collected by Dr．F．F．Mathieu，geologist to the Kailan Mining Administration of Tang－Shan．

This species is named after Prof．J．S．Lee 李四光 of the National University．
The surface－ornamentation of this species is not unlike that of Obolus（ Westonia） stoneanus（Whitfield）from the Upper Cambrian sandstone of Sauk county Wisconsin （U．S．A．）but it differs in the lroad form of the shell，and also in size．

This species is characterized by its subquadrate form and reticulated structure of the surface，which is a feature quite distinct from that of any known Chinese species．

Obolus mollisonensis？＇Walcott

Plate I．Figs．4a，4b．

1912 Obolus mollisonensis Walcott，Cambrian Geology and Pal．（Smithe．Miscell．coll．Vol．57）Vol．II No．7；p．531，pl．35，figs．10－12．

Shell small, of subovate outline; moderately convex, length and width subequal. Postorior border nearly straight meeting at the beak and forming an obtuse angle (110 0°). Anterior lateral borders rounded, frontal margin more gently rounded. Convexity most pronounced near the umbonal region, the shell becoming flattened towards the front.

Surface uneven, marked by fine irregular, concentric line of growth, and a few coarse concentric wrinkles.

This shell shows almost exactly the characters of the species described under Obolus mollisonensis by Walcott from the Lower Ordovician of Mount Mollison British Columbia, and although the interior characters are not known, I tentatively refer it to that species because of the agreement in form.

This shell also resembles Obolus (Bröggeria) salteri (Holl) of the Upper C'ambrian and Lower Ordovician of north western Europe, but the surface features of Obolus (Bröggeria) salteri are absent in our specimens; and the agreement is closer with the Mount Mollison specimen. Only two specimens of this species have been found in China, one of which is poorly preserved.

A comparison of the measurement of our best specimen (Fig. 4 a) and of W. American and European forms give as follows:

	Chinese specimen fig. 4a	Walcott type	0. (Bröggeria) salteri
Length	5.6 mm.	5.3 mm.	6.0 mm.
Width	6.0 mm.	5.6 mm.	6.8 mm.

Horizon and Lccality:-Early Upper Cambrian: from purple shale of Changshan formation of Chao-kou-chuang, Luan-Hsien, Chihli: collected by Survey Expedition.

Obolus linyuensis Sun (sp. nov.)

Plate I. Fig. 5.
Shell small, oval; moderately convex, length slightly greater than the greatest width. Posterior borders nearly straight meeting at the beak approximately in an angle of 80°. Antero-lateral borders rounded.

Surface marked by lines of growth which are regular, giving a sınooth and glistering appearance, but becoming more coarse in the anterior part.

This speoies is represented loy only one specimen and characterized by its small glistening shell with concentric lines of growth regularly arranged.

Measurements：－
Length $\ldots .4 .0 .4 m m$.
Width ．．． 3.8 mm．
This species resembles Obolus willisi Walcott from the Upper Cambrian and Mid－ dle Cambrian of Alabama，in form，but differs in the absence of the punctate character of the surface and also in the character of the umbo and in size．

Horizon and Locality：－Cambrian：from limestone inter－bedded in Manto shale of Hung－shan－T＇ou，紅山頭 Lin－Yu Hsien：collected by University excursion in 1923 under the direction of the author．

Obolus taianensis Sun（sp．nov．）

Plate I，Fig． 6 a， 6 b．
Shell small，ovate in form，pedicle valve obtusely rounded；valves moderately convex，the converity increasing gradually from the margins to the umbonal portion of the shell．

Surface marked by concentric lines：when the outer layer of the shell is exfolia－ ted，numerous radiating striæ will appear on the surface．The shell is formed of lamel－ lose layers，which make a strong thick shell．

Measurements：－

The shell figured by Walcott on Plate II fig．2，from Kaolishan and provisionally referred to O ．matinalis Hall may belong to this species，agreeing with it in general form and size，though the length of Walcott＇s specimen is slightly greater than the width．

This species is distinguished by its oval shape，moderate convexity of the shell and the lamellose character of the shell surface．It is represented by many individuals which occur abundantly in that zone．

Horizon and Locality：－Upper Cambrian：associated with Ptychaspis subglobosa Grabau in the upper heds of Kaolishan limestone（Coll．Y．C．Sun）．

Obolus luanhsiensis Grabau（mss．）（sp．nov．）
Plate I，Figs． 7 a－7c．

1919 Obolus? sp. indet. Walcott, Cambrian Brachiopoda p. 6?.
1922 Obolus iuanhsiense Grabau (mss.)
1923 Obolus luanhsiense Grabau, Sun. Bull. Geol. Soc. China, Vol. II, p. 9.i (listed).
"Shell moderately large of subtriangular outline and moderate to strong convexity; length slightly less than the greatest width which is in the anterior third of the shell. Posterior borders nearly straight meeting at the heak approximately in a right angle. Antero-lateral horders rounded, front straight or more rarely faintly sinuate. Convexity most pronounced in the umbonal region, the shell becoming flattened towards the front.
"Surface marked by lines of growth which are fine and regular in the young shell giving the surface a smooth appearance, but become coarser and more of the nature of faint concentric wrinkles in the adult portion, where the shell is also sometimes characterized by a few faint radiating wrinkles. Exceedingly fine radiating lines are shown under a high power lens on the young shell.
"Dimensions. Three individuals measure respectively: length $7.6 \mathrm{~mm} ., 5.6 \mathrm{~mm}$, 6.4 mm ., width $8 . \mathrm{mm} ., 5.1 \mathrm{~mm} ., 6.5 \mathrm{~mm}$.

Horizon and Locality:-Associated with Linqulella kayseri Grabau in the thinbedded limestone layers of the Fêngshan formation of Upper Cambrian age at Yeh-li, Luan-Hsien, Chihli; collected by H. C. T'an.
"This species is not unlike Lingula petalose Hicks from the Arenig of Whitesand Bay (Davidson: Silurian Brachiopoda, pl. XLIX, fig. 30, p. 337). That species is described as broadest in the middle, but some of the specimens figured by Davidson show the greatest width in the anterior thirl. In this respect, as well as in general shape and in size, they agree fairly well with our species." (Grabau).

Genus Lingulella Salter
Lingulella dimorpha Sun (sp. nov.)
Plate I, Fig. 8a-8b.
Shell of medium size, and subrectangular form; length and width approximately as six to five. Sides of shell nearly parallel, but gently curved, frontal margin rounded at the sides, straight in the center ; posterior margins straight on either side of the beak, meeting at the latter at an angle of about 150°.

Surface marked by two stages of growth lines. The young stage is characterized by its undulating growth-lines, while the adult stage is marked by ordinary growth-lines crossed by very fine radiating striæ. A triangular median depression is slightly marked, and outlined by two slightly elevated broad and low ridges which are only seen on the perfect specimen of the shell.

This spacies resembles Lingutella kayseri Grabau in form, but differs in the character of the growth-lines, in the more obtuse beak and also in size.

This species is characterized by two different stages of growth lines, subrectangular form, and the obtuse angle of the beak of the shell.

1
Measurements:-
Length
Width
\qquad
Luanchou
.12.110
.10 .50

2

Yehli
18.5
12.8

Hortzon and Localities:-Upper Cambrian: from thin-bedded clayey limestone of Luan-chou. Collected by Dr. F. F. Mathieu. Also in lower part of Fêngshan formation near Yeh-li. Coll. by Y. C. Sun.

Lingulella liui Sun (sp. nov.)

Plate I, Figs. 9a-9c.

Shell small, elongate egg-shaped with both posterior and anterior end oltusely rounded: depressed-convex, the frontal margin obtusely rounded; width gradually increases from the frontal margin to the middle of the shell. Beak obtuse with an angle of 110°; greatest width is in the middle of the shell.

The outer surface usually has a glistening appearance and is marked by regular fine but sharp concentric strixe and coarser lines of growth at frequent intervals. When the outer shell is exfoliated, it is distinctly marked by many elongated pustules, and the frontal margin by very fine radiating strie.

This species is represented by three specimens all apparently ventral valves. It presents quite distinct a form from any known Chinese species.

This species resembles Lingulella ferruginea Salter in general appearance, but differs in the character of the shell, in the more elongated form, and in the absence of the distinct radiating strie. Three specimen measure respectively; length 5.5 mm .4 .9 , 5.5, width 3.5, 3.3, 8.4.

Horizon and Locality：－from the Cambrian purple shaie of Luan－Chou： collected by Dr．F．F．Mathieu．The specific name is given in honor of Mr．C．P．Liu，劉基盤 dean of the Geological Department of the National Normal College of Peking．

Lingulella kayseri Grabau（mss．）（sp．nov．）

Plate I，Figs． $10 \mathrm{a}-10 \mathrm{c}$

1883 Lingulella sp．Kayser，in Richthofen．Vol．IV，p．35，pl．III，fig．\therefore ．
 XXXI，figs．6，6a－h．
1922 Lingulella kayseri Grabau（mss．）
1423 Lingulella kayseri Grabau，Sun．Bull．Geol．Soc．China，Vol．II．p．！s．（listed）
＂Shell of medium size and subrectangular form；length and width approximately as five to four．Nides of shell nearly parallel and only gently curved，frontal margin rounded at the sides，straight in the center；posterior margins straight on either side of the beak，meeting at the latter at an angle of about $125^{\prime \prime}$ ．
＂Surface marked by growth lines and at intervals by faint concentric wrinkles． Crossing these are radiating striæ which on the posterior lateral margins，where they are most strongly marked，have an obliquely outward and backward direction，giving a pronounced ornamentation to the surface．
＂Dimensions．The following dimensions show the sate of variation in the length and width of the shell in millimeters．

	1	\because	\because	Richthofen＇s，specimens	
Length	10.0	10.2	$11 .:$	17.0	13.0
Width	8.2	8.5	9.1	13.5	10.5

＂This species appears to be the same as the specimens noted and figured as Lingulella cfi．nathorsti Linnarson by Kayser，and which were obtained by von Richthofen in a greenish－gray thin－bedded or somewhat slaty limestone from Sai－ma－ki寨駄集 Liau－lung，Manchuria．There that species is associated with another shorter and rounder form（Obolus）which appears to be identical with the smaller form associated with our species．The associated trilohites in the Liau－Tung region comprise Conoce－ phalites frequens，Anomocare latelimbatum，Agnostus chinensis．The last two species are referred by Walcott to the Middle Cambrian whereas our specimens are associated with Upper Cambrian trilobites．It is not impossible that the specimens described by Kayser belong to distinct species．They are larger than our specimens and apparently without their ornamentation but agree closely with them in form and proportions．
"Horizon and Locality:-In the Upper Cambrian Fêngshan formation of Yeh-li: collected by Mr. H. C. T'an" (Grabau).

Dr. Walcott referred the specimen figured by Kayser to Lingulella davisii (McCoy), from which however our species is quite different. McCoy's species is characterized by relatively greater width, by a more nearly rectangular umbonal region, and by the lack of the characteristic ornamentation found in our species, though this may also be absent in the specimens figured by Kayser.

Genus Acrothele Linnarson
 Acrothele cheni Sun (sp, nov.)

Plate I, Figs. 11a-11b.
All the specimens representing this species are flattened by compression on the argillaccous shale, and are also more or less distorted.

General form subcircular except for the straight posterior margin. Pedicle valve flat due to compression with the apex 2.5 mm . from the posterior margin. A triangular false area extends from the apex to the margin; it is defined by a slight depression and a low ridge at the outer edges; surface marked by numerous more or less regular lines of growth, but not marked by radiating lines.

Nothing is known of the interior characters.
This species is characterized ly its subcircular form, numerous concentric growth strix and the position of the apex.

A shell 10.5 mm . in width has a length of 9.5 mm . while another measures 9 mm . in length and 9.3 in width.

Horizon and Locality:-Middle Camhrian: from Changshan shale of Chao-kuo-chuang, Luan-Hsien, Chihli. Collected ly S. Chen 堜 旭 of class 1925 of the Geological Institute of the National University.

Genus Nissusia Walcott
Nissusia hayasakai Sun (sp. nov.)
Plate I, Fig. 12.
Shell semioval with the hinge line a little shorter than the greatest width of the shell; surface of shell marked by radiating ribs and also ly a few concentric lines.

Pedicle valve convex，rilos become more pronounced in the frontal part of the shell．Ribs increase by bifurcation and with nodes on their crests；they are broad，the interspaces being narrower than the ribs．A median sinus moderately distinct extends from the umbo to the frontal margin of the shell．

The plications of the shell and the form suggest Huenella；but the nodes on the crests of the riks serve to distinguish it．All species of Huenella except etheridgii are from the Upper Cambrian．

Nothing is known of the interior of the shell．
This species is characterized by its transverse form，broad radiating ribs with nodes on their crests and the less pronounced median sinus．

Measurements：－
Length．． 6 mm.
Width \qquad
Horizon and Locility：－Middle Cambrian：from Changhia limestone of Chêng－ shan， 2 li from Luan－Hsien，Chihli（Coll．K．S．Hsu 徐光熙）．

This species is named after the Japanese Palæontologist I）r．I．Hayasaka．It is represented by several crushed valves．It is associated with Damesella blackuelderi var minor，Dorypyge richthofeni etc．

Genus EOORTHIS Walcott

Eoorthis shakuotunensis Sun（sp．nov．）

Plate I，Figs．13a－13b．
This species is represented by a number of the pedicle valves and one interior of the pedicle valve．

Chell moderately convex，subquadrate in outline with angular cardinal extremi－ ties．Hinge line usually forming the greatest width of the shell．Posterior margin on both sides of beak straight，forming an angle of 160 degrees．Median fold faint on the ventral valve．

Surface marked by a few rounded radiating ribs，which where farthest apart measure 3 in $\stackrel{2}{ } \mathrm{~mm}$ ；there are 4 or 5 fine stric between each pair of larger ones．The ribs increase in number by interpolation and may appear at any distance from the beak， usually hecoming coarser near the frontal margin．

The associated interior of a pedicle valve (Fig. 13 b .) shows the cardinal area, muscular impression and the fracturing and the deflection of the striations along the margin of the interior of the valve.

This species is characterized by a long hinge line, a subquadrate form, and the rounded ribs with 4 or 5 fine ones between.

Measurements:-

	I'edicle valve	Interior of the pedicle valve
Length	13.5 mm.	$1: 3.0 \mathrm{~mm}$.
Width	$1-4.5 \mathrm{~mm}$.	14.5 mm.

Horizon and Locality:- Upper Cambrian: from the Shaokuot'un limestone of Chin-Hsi-Hsien, Fêngtien ; collected by Dr. J. F. Andersson.

Eoorthis sp. indt.

Of this species only a broken specimen was found in the purple shale of the Chang-shan group. It is marked by transverse form, distinct round ribs with broad interspaces, four ribs occupying a space of 2.5 mm . near the frontal margin.

Horizon and Locality : - Early Upper Cambrian from purple shale of Changshan group of the Kaiping Basin. Associated with this are Changshania conica, and Changshania? truncata: Collected by Dr. F. F. Mathieu and Y. (. Sun.

Genus Syntrophia Hall and Clarke

Syntrophia orthia Walcott

Plate 1, Figs. 14a-14b.
1913 Syntrophia orthia Walcott, Research in China. Vol. III. p. 85, pl. 5, figs. 1, la, 1b.
Dr. Walcott described and figured the external shell of both valves of this species. His full description is as follows:-
"General form irregularly oval with the ventral view obtusely angular toward the apex; rouncled, hiconvex, with a deep mesial sinus on the ventral and a strong median fold on the anterior half of the dorsal valves.
"Surface smooth, with the exception of a few concentric striæ and lines of growth.
"The ventral valve has a strong median sinus that occupies about one-third of the width of the valve at the anterior margin and projects forward to fit into the fold in the front of the margin of the dorsal valves; the sides of the median sinus are elevated and, with the downward curving lateral slopes, form a strong rounded ridge on each side of the sinus; none of the specimens in the collection show the area, but from the profile of the valve it must have leen of moderate height, with a rather short apex curving over it.
"Dorsal valve with a minute apex from which a narrow, slightly developed rnedian fold extends out to about the center of the shell, where it becomes elevated and projects forward to the front margin; the remaining portions of the surface are uniformly convex, sloping away from the median fold to the margin of the valves" (Walcott 1923).

In our collection, an internal mold of the ventral valve was discovered. I add to the original description the following:

Othoid form, moderately convex, with a strong median sinus which occupies about one third the width of the valve at the anterior margin; the sides of the median sinus are elevated, and with the downward sloping lateral slopes form a strong, rounded ridge on each side of the sinus.

Spondylium free not supported by median septum and marked by subparallel ridges, merging into the median sinus. Hinge line long forming alout the greatest width of the shell; postero-cardinal angles angular.

Surface anteriorly marked by a few indistinct strong lines of growth and especially characterized by radiating strix on both lateral slopes.

Measurements: Ventral valve Interior of ventral valve
Length........................ $4.0 \mathrm{~mm}$. 6.5 mm.

Horizon ind Locality:-From the Kaolishan limestone of Tai-Au-Fu. (Coll. Y. C. Sun).
class TRILOBITA Walcott
Genus Agnostus, Brongniart

Agnostus cyclopygeformis Sun (sp. nov.)

Plate II, Figs. 1a-h,

Cephalic shield moderately convex, width and length subequal, semicircular in outline and slightly contracted at the postero-lateral angles; rim narrow with uniform
width ; dorsal furrow shallow and distinct; frontal groove shallow and distinct connecting the frontal rim and the glabella.

Glabella cylindrical, about one-third the width of the cephalon, contracted at the middle by slight incurving of the sides. It is divided by two slightly impressed backwards curving furrow into three lobes. The second lobe is distinctly marked hy an elongated tubercle; frontal groove shallow and distinct; two small triangular lobes at the posterolateral margin of the glabella.

Thorax unknown.
Caudal shield moderately convex, little wider than long, with uniformly elevated rim. Axial lobe short, about one third the total length, pentagonal in outline bounded laterally by two strong oblique furrows and posteriorly by two slightly impressed curving furrows which meet at an obtuse reêntrant angle. A large, distinct and elongated tubercle is situated at the middle of the margin of the axial lobe. Limh moderately convex, marked by a median groove from the median tubercle of the axis near to the posterior margin. On cither side of the median tubercle and the caudal groove is a row of nine foramina in the form of an elongated elliptical ring. This feature is heautifully shown.

This species is yery closely related to Agnostus cyclopyge Tullberg of Europe. The cephalic groove of the head, short pentagonal shaped axial lohe suggest A. cyclopyge; but it differs in the absence of the distinct lateral spines and the presence of the elliptical ring of foramina of the pygidium.

This is the first species of Agnostus found in the Upper Cambrian of China, and it is significant that it is very closely related to A. cyclopyge Tullberg, an index fossil of the Upper Cambrian of Europe.

Measurements:	No. 501	No. 502	No. 503	No. 504
Cephalon				
Length	4.0	4.4	4.8	2.5
Width	3.1	3.1	3.51	0.75
Length of the glabella	1.0	1.0	1.0	0.5
Length of the first lobe	0.8	0.8	0.9	0.5
Length of the second lobe	1.3	1.3	1.6	0.75
Length of the third lobe	2.0	2.5	2.5	1.5

Pygidium		No. 507	No. 508	No. 509	No. 510
Length	5.0	3.1	3.0	3.0	
	Width	5.2	3.4	3.2	3.2
	Length of the axial lobe	1.5	1.0	1.2	1.4
	Frontal width of the axial lohe	2.3	1.6	1.5	1.5
	Posterior width of the axial lolee	1.75	1.2	1.1	1.1

Locality and Horizon:-Upper Cambrian: lowar part of the Kaoli limestone of '「ai-An-Fu, Shantung. (Y. C. Sun Coll.)

Agnostus hoi Sun (sp. nov.)

Plate II, Figg. 2 a-d.
192:3 Agnostus hoi Sun, Upper Cambrian of Kaiping Basin, Bulietin of the Geological Society of China. Vol. II, No. 1•2, p. 9 . (listed)
Head shield round, gently convex forming about two-thirds of a circle; slightly contracted at base. Glabella conical gently convex, with tivo small transverse triangular lobes forming the postero-lateral portion of the glabella on each side.

A shallow glabellar furrow curves backwards and separates the small anterior lobe and a large posterior lobe; and immediately in front of this furrow, is situated a small but distinct median tubercle. Dorsal furrow deep and distinct converging toward the front.

Limb of the cephalon moderately convex, sloping down regularly on all sides to the margin and marked by a slightly impressed frontal groove in the front of the glabella. Border of head shield narrow, rounded, and separated by the strong marginal groove.

Thorax unknown.
Pygidium semicircular usually wider than long, moderately convex.
Axis broad and long, about two thirds the width of the pygidium, laterally circumscribed on each side by one strong deep furrow. It is divided by one nearly transverse furrow into two lohes; the anterior lobe is distinctly marked by the median elongated tubercle, especially pronounced near the posterior margin of the lobe; one pair of hroad transverse furrows opposite the median tubercle outlines four tubercle-like portions one on each corner of the lobe.

The posterior or second lobe, moderately convex in the anterior portion and sloping down near to the broad groove; and also marked by one pair of oblique crescentic short, broad and slightly impressed furrows.

Limb very narrow, separated from the axis by a very strong deep furrow, broad in the middle part just opposite the transverse furrow which separates the anterior lobe from the posterior lobe.

Pygidium bordered by a very broad groove and very narrow rim with a pair of very short, backwardly projecting spines on the postero-lateral margins.

Measurements:-

No. 513
Cephaton
Length
Width
Length of glabella
Width of glabella at base Pygidium

	No. 515	No. 516
Length	2.5 mm.	2.0 mm.
Width	2.9 mm.	2.6 mm.
Length of axial lobe	2.0 mm.	1.7 mm.
Width of axial lobe	1.5 mm.	1.4 mm.

The general appearance of the cephalon, and the large axis of the pygidium suggest A. chinensis Dames, but it differs from this in the more conical glabella and the detailed character of the axis of the pygidium. Our species, however, is very closely related to that species as figured by Walcott, (Research in China, Vol. III, pl. 7, fig. 5 a) but is nevertheless distinct.

I take pleasure in naming this new species in honor of prof. C. Ho, 何 杰 dean of the Geological Department of the National University.

Horizon and Locality:-Early Upper or late Middle Cambrian; abundantly found in the purple shale of the Changshan formation. Collected by Prof. A. W. Grabau and Dr. F. F. Mathieu.

Genus Dorypyge Dames

Dorypyge richthofeni Dames
Plate II, Figs. 3a, d.
1883 Dorypyge richthofeni Dames, China, Richthofen, Vol. IV. p. 24, plate 1, fig. 1-6.

1913 Dorypyge richthofeni Dames, Walcott, Research in China, Vol. III, p. 108-169 pl. 8 fig. 31 a-f.
Doctor Dames gives a detailed description of this species. This species is most common, being found everywhere in the Changhia limestone of North China.

Doctor Walcott points out the following differences between Olenoides and Dorypyge:
(a) The glabella of Olenoides expands toward the front, while that of Dorypyge contracts in front of the pits in the dorsal furrow.
(b) The pleural lobes of the pygidium of Olenoides have broad, shallow furrows with sharp, narrow ridges separating them, while those of Dorypyge have narrow furrows with broad, rounded ridges between them. The type of Olenoides, O. nevadensis, has a finely granulated surface, and the type of Dorypyge a coarsely granulated surface.

This species is characterized by a high arched glahella, narrow uptuned frontal border, presence of a large distinct occipital node, pustulose character of the surface; and a pygidium with spinose margin and with two large strong outward and backward pointing spines of the postero-lateral margin.

Measurements:-
Cranidium

	No. 517	No. 519
Length of cranidium	10.0 mm.	13.0 mm.
Anterior width of cranidium	-	12.0 mm.
Posterior width of cranidium	15.2 mm.	20.0 mm.
Length of glabella	7.5 mm.	10.0 mm.
Width of occipital' ring	2.0 mm.	2.2 mm.

Pygidium

Length
Anterior width (exclusive of spines)
Posterior width (exclusive of spines) 8.0 mm .
Length of axial lobe $\quad 6.5 \mathrm{~mm}$.

No. 520
10.0 mm .
15.5 mm .
10.5 mm .
8.5 mm .

Horizon and Locality:-Middle Cambrian: from Changhia limestone of Chêng-shan, 8 li from Chao-Kou-Chuang. Collceted by University excursion in 1923. under the direction of the author.

Genus Teinistion Monke

Teinistion subconica Sun (sp. nov.)

Plate II, Figs. 4.

cfr. 1903 Teinistion lansi Monke. Jahrb. Königl. Preuss. Geol. Landesanstalt und BergakademieVol. XXIII, Pl. 1, p. 117, pl. 4, figs. 1-17; plate 9, fig. 3.
ofr. 1913 Teinistion lansi Monke Walcott, Research in China, Vol. 3, p. 110, pl. 9, fig, 3.
This species is only represented by a fragmentary cranidium and an associated pygidium. Cranidium moderately convex; glabella strongly elevated, contracted in the upper part, with the sides curving inward, very broad at the base nearly twice the width of the frontal portion, frontal portion regularly rounded; it is not marked by glabellar furrows, but pustuled by scattered granules; occipital furrow very shallow slightly impressed.

Fixed cheeks very broad behind nearly the basal width of the glabella, nearly flat, scarcely rising from the dorsal furrow; palpebral ridge well marked, extending inward and forward from the palpebral lobe to the front of the glabella. Palpebral lobe not well shown in our specimen; frontal border narrow, slightly contracting backward in the front of the glabella. Facial suture cutting the anterior border at a point in front of the anterior base of the palpebral lobe, thence forming a signoid curve to the eye lobe; arching about the palpebral lobe they extend outward and nearly parallel to the posterior margin, then abruptly backward cutting the posterior rim. Dorsal furrows deep and distinct; occipital ring wide separated from the glabella by a very slightly indicated forward-arching occipital furrow; the center of occipital ring broader than the sides.

Associated pygidium referred to this species transversely semicircular, marginal border spinose with the anterior pair of spines very strong and long, gently curved backwards.

This species resembles Teinistion lansi Monke in form, but the subconical gla. bella, the narrow frontal border, the proportionally broader flxed cheeks and the pustulose character of the surface serve to distinguish it from Monke's species.

Measurements:-(Cat. 521)
Length of cranidium 2.8 mm .
Length of glabella and occipital ring......................... 2.5 mm .
Width of the glabella at the base............................... 2.0 mm .
Horizon and Locality:-Middle Cambrian: from Kushan formation of Lincheng, Chihli. Collected by Y. T. Chao and C. C. Tien.

Genus Stephanocare Monke

Stephanocare richthofeni Monke

Plate II, Figs. 5a-c.
1903 Stephanocare richthofeni Monke, Jahrb. Königl. Preuss. Geol. Landesanstalt. und Bergakademie, Vol. XXIII, pt. 1, p. 136, plate 7, fig. 1-17, plate 8 fig. 1-11. (Species described and discussed as a new species and the genotype).
1905 Damesella chione Walcott, Proc. U.S. Nat. Mus., Vol. XXIX, p. 40. (species described and referred to Damesella).
1913 Stephanocare richthofeni Monke Walcott, Research in China, Vol. 3, p. 114, Pl. 7, fig. 17, 17a-f.
Drs. Monke and Walcott described this species very fully. From the Lincheng material only one large cranidium, one hypostoma and a small pygidium probably of this species are known.

Cephalon transversely semicircular, moderately convex. Glabella convex, trun-cato-conical, slightly rounded in the front, the length is slightly greater than the width at the base; a posterior pair of glabellar furrows strong and deep extending obliquely inward and backward; a second pair of glabellar furrows very slighly impressed and short; the space between the second pair of furrows and the posterior furrows is a little wider than that between the first pair and the second pair. A third pair is faintly indicated. Occipital furrow narrow, transverse, clearly defined; occipital ring not well shown owing to the strongly weathered character of the specimen; dorsal furrow narrow and distinct.

Fixed cheeks less than one half the width of the glabella at the base, and moder. ately convex; they round up from the dorsal furrow to the palpebral lobe; back of the line of which they slope gently to the furrow of the postero-lateral limb, and to the front furrow within the frontal margin. Palpebral lobe not shown. Postero-lateral limb narrow and extending over a considerable distance to a rather blunt, rounded end; frontal rim in the form of a straight strongly scalloped ridge, with broadly rounded concave scallops pointing forward and separated by spine-like ridges which project at right angle to the frontal margin and are usually seven in number on the cranidium; frontal margin separated from the glabella and fixed cheeks by a narrow furrow which is scalloped forward in conformity with the scallops of the frontal rim. In front of the palpebral lobe the facial suture extends forward and slightly outward to the frontal margin. Posterolateral furrows broad and distinct. Posterior rim scarcely scalloped.

An associated hypostoma referred to this species is very marked. Central portion subovate and convex; bordered by a narrow ridge on the side and the posterior por-
tion, frontal rim flat and marked by short spines. The posterior third seems to be defined by broad shallow slightly arched backward converging transverse depressions.

Associated pygidium transversely semicircular, with a spinose margin and strongly convex axis narrowing backwards at a moderate rate, and devided by shallow but sharp traneverse furrow into four rings and a broader terminal lobe. Only part of the first anterior ring is shown, and the other rings are not well defined.

Limb almost flat except for abruptly decending marginal portion, the furrows crossing the axis prolonged on the limb deviding it into a corresponding number of segments, each of which terminated in the marginal spine, those of the last pair being shorter than the preceeding ones.

Surface of cranidium, hypostoma and pygidium marked by numerous depressed pustules.

Associated with this species are Blackwelderia tieni, Blackwelderia cilix var. linchengensis, Wungia triangulata, and Teinistion subconica etc.

Measurements:-
Cranidium (cat. 522 a)
Length of glabella .. 6.3 mm .
Frontal width of glabella... . 3.5 mm .
Basal wid h of glabella... 0 mm.
Width of frontal border .. 1.3 mm .
Distance betweentwo spines of the frontal margins......... 1.0 mm .
Hypostoma (associated) (cat. 529 b)
Length 3.7 mm.
Width 3.0 mm .
Iygidium (associated) (cat. 52, c)
Length 3.3 mm .
Anterior width .. 0 mm.

Genus Blackwelderia Walcott

Blackwelderia sinensis var linchengensis Sun (var. nov.)
Plate II, Figs. 6a-d.
cfr. 1913 Blackevelderia sinensis Walcott, Research in China Vol. 3, p. 121-123, pl. 9 figs. 5, 5a-g.
This species is represented by several cranidia, separated free cheeks, one segment of the thorax and an associated pygidium.

Cephaton transersely semicircular, moderately convex, strongly elevated near the palpebral lobes, frontal margin straight.

Glabella large, truncato-conical in outline, moderately convex, marked by three pairs of glabellar furrows; the posterior pair of furrows very broad extending obliquely inward; the second pair short and slightly impressed; the anterior pair usually not shown on the specimens. Occipital furrow transverse slightly arching forward near the center, broad in the center and slightly impressed at both sides. Dorsal furrow clearly defined extending from the frontal rim to the postero-lateral furrows.

Fixed cheeks nearly twn-thirds the width of the glabella opposite the palpehral lohe. They rise from the dorsal furrow to the palpehal lobes and slope with a gentle curvature downward both to the frontal limb, and somewhat more abruptly to the posterior margin. Palpebral lobe strongly elevated, its length nearly equal to the frontal width of the glalulia; postero-lateral linbs wider than the width of the glabella at its base; occipital ring transwese with uniform width throughout. The frontal border turnup into a narrow elevated rim without line of demarkation from the frontal limb.

Facial suture derends to the anterior part of the palpebral lobe directly barkward but slightly inward; then, curving around the latter, passes obliquely outward, and lackward, cutting the border of the cephalon a little lark of the postern. lateral angle.

Associated free cheek about the same width of fixed cheeks opposite the palpe bral lobe with a strong lackward extonding spine: the boly of the cheek rises with a gentle covexity to the has of the eye-lobe.

The associated thoracic segment has a convex axis about the width of the flat surfaces of the pleural holve on either side, the outer half of the pleural lobe is abruptly bent downwards forming an angle of about 120 degrees with the inner portion; surface of pleuree marked hy a broad and leep pleural groove which is wider on the flat part than on the depressed part.

Associated pygidium semicircular in outline, with a spinose margin; axial lolve strongly convex, sulconical, with a narrow and round posterior end; it is diviled her transverse furrows into four rings and a wider terminal portion, which has a faint fifth depression, indicating a fifth ring; the posterior portion of the axis slopes rather rapidly down to the margin; dorsal furrows distinct. Pleural loles very gently convex for the inner half, the witer portion doscending down abruptly. Surface marked by threw rela tively deep and hrod furmws on either side, and one short allaw furrow slightly
impressed in the posterior part; the segments defined by the furrows are broader than the furrows, strongly convex at the center and flattened at the margin.

The border is practically a continuation of the slope of the segments and furrows of the pleural lobes; it is marked opposite the segments by short, backward-pointing flat, broad spines not clearly defined, due to the strong weathering of the specimens, and diagonally opposite the lateral angle of the axis by two long, strong, backward-extending and little outward diverging thick and round spines.

All the cranidia, and the associated free cheek are strongly marked by pustules throughout.

The associated pygidium referred to this species was also strongly pustulose, but because of the weathered character of the surface, the pustules are only found in a few places. The cranidium of this variety is rather similar to that of B. sinensis in form, but it differs from the latter in its conical glabella, in the narrower fixed cheeks, in the strongly pustulose character of the whole surface, in the narrow elevated frontal rim and in the character of the pygidium.

The main difference is that in the postero-lateral angle of the glabella the dorsal furrows separate the fixed cheeks from the glabella whereas that of Blackuelderia sinensis is replaced by a low ridge which connects the fixed cheeks and the glabella in the form of a small triangular lobe.

The associated pygidium of this species resembles more closely that of B. cilix; but it differs entirely from the latter in the strongly pustulose character of the surface, number of axial rings, in the narrow rounded terminal ring and in having the long spines close together at the margin and diverging outward instead of being parallel.

This variety is characterized by its proportionally narrow fixed cheeks, strongly pustulose character of the surface, well defined dorsal furrows, and the postero-lateral angle of the glabolla.

Measurements:-

Cranidium
Length of cranidium
Width of cranidium at the palpebral lobe
Width of fixed cheeks at palpebral lobe
Length of Glabella
Width of glabella at the base No. 523 a-b No. 524 No. 525

9.0 mm.	8.3 mm.	8.0 mm.
12.5 mm.	10.0 mm.	10.5 mm.
3.5 mm.	3.0 mm.	3.2 mm.
6.8 mm.	6.0 mm.	6.0 mm.
6.0 mm.	5.2 mm.	5.2 mm.

Width of occipital ring	1.5 mm.	1.0 mm.	1.0 mm.
Width of frontal rim	1.0 mm.	0.8 mm.	0.8 mm.
Pygidium (associated)			
Length	6.2 mm.		
Width	11.0 mm.		
Horizon and Locality :-Late Middle Cambrian: from thin-bedded limestone in			
n shale of Lin-Cheng, collected by Y. T. Chao and C. C. Tien.			

Width
11.0 mm .

Blackwelderia tieni Sun (sp. nov.)
Plate II, Figs. 7 a-c.
cfr. 1905 Olenoides (?) cilix Walcott, Proc. U. S. Nat. Mus., Vol. XXIX, p. :7, (described and dischscell as a new species).
efr. 1906 Blackzelderia cili.v (Walcott), idem, Vol. XXX p. 573, (description of species extended and more throughly discussed).
cfr. 1913 Blackevelderia cilh.r (Walcott), idem. Research in China, Yul. III p. 119.
This is the most common species of the Lincheng material. It is represented 1 y many cranidia, separated free cheeks and the associated pygidıa.

Cephalon transversely semicircular and rather strongly convex. Glabella trun-cato-conical in outline and marked by three pairs of furrows. Posterior furrow is strongly marked and broad, extending obliquely inward and hackward. The second furrow is slightly indicated by short faint lateral impressions and the anterior furrow is sometimes shown only by very faint indications. Frontal limb broad and concare; frontal rim very narrow and sharply elevated; occipital furrow strongly marked broadly curving forward at the conter; occipital ring broader than the furrow and convex, slightly arching forward at the center; dorsal furrows distinct.

Fixed cheeks narrow, their width being somewhat more than two thirds the width of glabella opposite the palpebral lobe, rising regularly from the dorsal furrow to the palpebral lobe; facial suture cuts the frontal horder about at a right angle, extending straight back to the palpebral lobe; palpebral lole small and elevated.

Associated free cheek subtriangular in outline and divided into an interior convex body and the border, a sharp long genal spine very marked; inside of which the margin of the cheeks forms a broad second spine with the facial suture.

Pygidium semicircular in outline modenately convex and with pinose margin; axial lohe conical with pointed terminal portion nearly reaching to the margin
of the pygidium. Posterior margin with two backward pointing spines, next outer pair only slightly longer.

Surface pustulose under a strong lens.
This species differs from B. cilix Walcott in the comparatively narrow frontal limb, in the absence of distinct first and second glabellar furrows, in the pustulose character of the surface, in the absence of the longitudinal ridge and in the conical terminal portion and the comparatively uniform spinose character of the pygidium.

Moreover, the facial suture cuts the front of fixed cheeks nearly at right angles, being approximately parallel to the corresponding portion of the other suture, whereas the facial suture of B. cilix cuts the fixerl cheeks obliquely toward the anterior palpehral lobe.

This species is named after Mr. C. C. Tien in recognization of the fine collections made by him.

Measurements:-
Cranidium
Length of cranidium
Width of cranidium at the palpebral lobe
Lengtle of glabella
Length of frontal limb and rim
Width of occipital ring
Pygidium (Associated)
Length
Anterior width of pygidium No. 526
10.0 mm .
10.0 mm .
6.5 mm .
1.6 mm .
1.6 mm .
10.5 mm .
18.0 mm .

Horizon and Locality:-Late Middle Cambrian: from thin-bedded limestone of Kushan horizon of Lin-Cheng, Chihli (Y. T. Chao and C. C. Tien Coll .).

Blackwelderia gigas Sun (sp. nov.)

Plate II, Figs. 8.
One pygidium was obtained by the University Excursion from the Kushan formation of Ku-Shan, Shantung. This is the largest pygidium of Blackwelderia so far found in China, and deserves to be designated by a separate name.

Semicircular in outline, moderately convex, and with a spinose margin; axis moderately convex, conical, tapering to its posterior end; it is divided by four clearly
marked broad and arched transverse rounded furrows into four transverse rings and a long terminal portion which has a slight fifth depression, indicating a fifth ring; the posterior portion of the axis slopes gradually down to the margin.

Owing to strong weathering and abrasion of this specimen, the presence or absence of two long, strong. lnackward-extending spines can not be determined.

Dorsal furrow shallow and distinct. Pleural lobes flat for a short distance from the axis, and then curve gently downward to the border; they are separated by four shallow furrows which divided the limb into five corresponding segments. The spines of the border are practically continuations of the pleural lobes.

The most interesting fact is that this pygidium occurs in a bed of conglomeratic limestone from the uppermost part of the Kushan formation. Certainly it represents the latest type of the Middle Cambrian.

Measurements:-
Length of pygidium
Anterior width or greatest width
Horizon and Locality:-Middle Cambrian: from conglomeratic limestone of Kushan formation of Kushan; 筒 山 collected by C. C. Tien and Y. T. Chao who were in my party during the University Excursion.

Genus Damesella Walcott

Hate II, Figs. 9 a-c.
cfr. 1905 Damesella blackwzlderi Walcott Proc. U. S. Nat. Mus., Vol. XXIX, p. 35.
cfr. 1913 Damesclla blackivelderi Walcott, Research in China, Yol. IY,"p. 12\%-12s, plate 10, fig. 1.
This variety is represented by several cranidia.
The type species is fully describerl by Dr. Walcott as below.
"Glabella large truncato-conical in outline, and marked by three pairs of short furrows, the posterior pair of furrows forms a rounded pit near the margin, and continues obliquely outward as a shallow furrow to the central third of the glabella, separating a short, rounded lobe on each side, the middle pair of furrows is short and very slightly impressed; the anterior pair of furrows is indicated ly a short, smooth narrow space at the anterior fourth of the glabella; occipital furrow of medium wilth, rounded at the bottom, and rather deep; it curves backward slightly at the sides and then arches gently forward
at the middle；occipital ring of medium width，curving slightly backward at the ends and forward at the center，rounded on top；dorsal furrow strongly inarked all about the gla－ bella and passing posteriorly into a narrow but well－defined furrow within the posterior margin of the postero－lateral liml；the front of the glabella almost overhangs a strong furrow within the frontal border，that separates the frontal border from the fixed cheeks； frontal border or rim strong，rounded，and arching slightly upward in front of the glabella．
＂Fixed cheeks a little more than one half the width of the glabella；they slope gently back to the furrow on the postero－lateral limb and rather rapidly downward，in front of the palpebral lobe，to the furrow within the frontal border；a clearly defined， low，rounded palpebral ridge extends opposite the anterior fourth of the glabella to the palpehral lobe，into the rim of which it merges；postero－lateral limb about one and one－third times as long as the width of the glabella at its base，and back of the palpebral lobe about one third the length of the cephalon elevated at the outer rim，and rather narrow．The facial sutures cut through the rounded frontal margin of the cephalon obliquely and then extend around backward，passing almost directly to the anterior margin of the pal－ pebral lobe；curving around the rather small me lobe，they pass obliquely outward and backward，cutting the border of the head a little back of the postero－lateral angle＇＇．

This varioty differs from the trpo species figured by Dr．Walcott in the shorter glabella，narrow fixed cheeks，less distinct palpebral ridge，the more convex glabella， comparatively broader frontal border，and also in the small size．This variety is partic－ ularly characterized by its small form with broad truncato－conical glabella．

Measurements：－	var．minor		B．blackwelderi
	No．5ies	No， 529	No． 530
Length of cranidiam	6.5 mm ．	4.5 mm ．	20.0 mm ．
Width of cranidium at palpebral lobe	8.5 mm ．	5.5 mm ．	－
Length of glabella	4.5 mm ．	3.2 mm ．	14.0 mm ．
Anterior width of the glabella	3.0 mm．	2.2 mm ．	9.1 mm ．
Width of glabella at its base	4.5 mm ．	3.0 mm．	－
Width of frontal rim	1.0 mm ．	0.8 mm ．	3.0 mm ．
Width of oceipital ring	1.0 mm ．	0.811 m ．	－－
Width of fixed cheeks on each side at the palpelral lobe	2.5 mm ．	1.5 mm ．	－

Horizon and Locality：－Middle Cambrian：from massive Changhia limestone of Chao－Kou－Chuang，Luan－Hsien，Chihli．Collected by University Excursion under my direction（K．H．Hsü 徐光器 Coll．）。

Genus PTyCHOPAR1A Corda
 Ptychoparia fongi Sun (sp nov.)

Plate II, Figs. $10 \mathrm{a}, \mathrm{b}$.
This species is represented by several dorsal shiclds aur the cranidia associated with them.

Cranidium moderately convex; length and width are subequal. Glabella moderately convex, becoming narrower toward the front, the front part regularly rounded; it is marked by three pairs of distinct glabellar furrows; the anterior pain (first pair) short, broad and transveree, extending a very short distance from the dorsolateral furrows; the second pair alront the same length and nearly prallel to the first pair, but comparatively broad; the third pair (posterior pair) broad and ohlique extending lackwards and inwards.

The occipital furow very deep and very pronounced, transwre and connecting the postero-lateral furmes at both sides. Th" occipital ring moderately convex, very broad at the center, beomming narrower toward both sides.

Fixed cheek hoad about two-thirds the width of the glabella opposite the palpe. bral lobe; palpebral ridge distinct extending the anterior part of the palpebral loke nearly to the antero-lateral angle of the glabella; dorso-lateral furrows rounded and distinct.

Frontal limb flat or slightly convex and separated from the frontal rim lay a shallow transverse furrow ; frontal rim elevated and upturned from the marginal furrow to the margin; its frontal edge very slightly round; its width about the same as the frontal limb.

The facial sutur cuts the frontal rim and then turn directly howkward and slightly inward toward the palpebral lobe, and curves around this lohe, and finally extends backward and outward to cut the free cheek from the postero-lateral limh which is distinctly marked by a pronouncerl postero-lateral gronve.

The thorax of a small associated individual has thirteen or fourtern sements with a narrow axial lobe and wide pleural lohes. The pleural furrow starts on the inner front side of the pleural lobe of each segment and, widening nearly to the width of the segment, begins to narrow at the point of geniculation and terminates near the posterior margin at the somewhat abrupt falcate termination of the pleure.

Pygidium small with a broad axis and pleural lobes indistinctly segmented.
The form of the glabella and the character of the glabellar furrows suggest P. granosa Walcott from the Manto shale of Shantung, but the comparatively narrow frontal limb, the more conical glabella, and the character of the surface serve to distinguish it.

This differs also from P ．yohi in the shorter and less conical glabella，presence of three distinct glabellar furrows and also in the upturned frontal iim．

This species is characterized by the subconical glabella distinctly marked by three pairs of furrows，comparatively narrow frontal limb and the wide fixed cheeks．It is named after Mr．K．L．Fong 馮景闌，dean of the Geological Department of Chun－ Chow University 中州大學，Honan．

Measurements ：－	10 a	10 b
Length of cranidium	8.5 mm.	6.5 mm.
Frontal width of cranidium	8.0 mm.	6.2 mm.
Posterior width of cranidium	1.3 mm.	1.0 mm.
Length of glabella	5.0 mm.	3.8 mm.
Anterior width of glabella	3.2 mm.	2.5 mm.
Posterior width of glabella	4.5 mm.	3.5 mm.
Width of frontal rim	1.5 mm.	1.2 mm.
Width of frontal limb	1.0 mm.	0.9 mm.
Width of occipital ring	1.4 mm.	1.1 mm.

Horizon anl Locality：－Lower Cambrian：from Manto shale of Chêngshan， 8 li east of Chao－Kou－Chuang，Chihli．（Coll．F．F．Mathieu and Y．C．Sun）．

Ptychoparia leichuangensis Sun（sp．nov．）
Plate II，Figs． $11 \mathrm{a}, \mathrm{b}$ ．
This species is represented by two small fragmentary cranidia．
Head－shield semicircular，usually much wider than long．Glabella short and broad，subconical，rounded in front，decreasing in width anteriorly，its length about one half the length of the head－shield：convex and marked with three pairs of short horizon－ tal distinct glabellar furrows，occipital furrow transverse and distinct；occipital ring broad in the center，becoming narrow at both sides；dorsal furrows deep and well marked．

Fixed cheeks gently convex about two thirds the width of the glabella opposite the palpebral lobe；palpebral ridge distinct and horizontal，extending from the anterior furrow to the palpebral lobe．Frontal limb moderately convex，about one－third the length of the glabella，and separated from the frontal rim by a distinct marginal furrow． Frontal rim narrow and elevated abrout two－thirds the length of the frontal limb．

The facial suture，after cutting the frontal border，diverges slightly outward down
to the palpebral lobe，curves around this lobe and finally cuts the fixed cheeks in an outward direction．Postero－lateral limb large and marked by a broad postero－lateral furrow．

This species is characterized by its small form，short very broad subconical gla－ bella，convex frontal limb，and the comparatively narrow fixed cheeks．

Measurements：－ 11 a 11 b
Length of cranidium
Greatest width of cranidium
Horizon and Locality：－Late Lower Cambrian：from Manto shale of Lei－ Chuang，雷 荘 Luan－Chou；collected by Dr．F．F．Mathieu．

Ptychoparia yohi Sun（sp．nov．）

Plate II，Fig． 12.

This species is represented only by one crushed cranidium slightly broader than long．

Glabella moderately convex，subconical in outline，the front part regularly round；posterior width broad．It is marked by three pairs of very slightly impressed glabellar furrows．Occipital furrow transverse，shallow and very slightly impressed． Occipital ring very broad at the center and becoming narrower at both sides．

Fixed cheek about the same width of the glabella opposite the palpebral lobe； palpebral ridge distinct from the anterior part of the palpebral lobe near to the antero－ lateral portion of the glabella．The facial suture cuts the frontal border to the anterior part of the palpebral lobe in a convex curve，bends around the latter and finally cuts the free cheeks from the postero－lateral limb，also with a convex curve．

Frontal limb flat，slightly broader than the frontal rim；frontal rin elevated and with regularly arched outline．

Surface apparently smooth．
The general form of the cranidium resembles that of P ．fongi Sun，but the diffe－ rences between them are mentioned after the description of that species．

This species is characterized by the smooth conical glabella with a broad base， comparatively broader fixed cheeks，and less distinctly defined occipital and glabellar furrows．This species is named after Mr．S．S．Yoh 樂森䚄 who accompanied me in that region during the University Excursion，

Measurements:-

$$
\text { Length of eranidium } 8.5
$$

Width of cranidium opposite the palpebral lobe $\quad 10.0$
Length of glabella 5.0
Anterior width of glabella 2.7
Posterior width of glabella $\quad 5.0$
Width of fixed cheek at the palpebral lobe 2.8
Width of occipital ring 2.0
Width of frontal limb and frontal rim combined 2.4
Horizon and Locality:-Lower Cambrian: from light micaceous purple shale of Chêng-Shan, 8 li from Chao-Kou-Chuang, Luan-Hsien, Chihli (Coll. Y. C. Sun).

Ptychoparia (Emmerichella) chengshanensis Sun (sp. nov.)

Plate JII, Figs. 1 a, b.

This species is represented by several cranidia and associated pygidia probably of this species.

Cranidium usually broader than long, and apparently smooth.
Glabellar moderately convex. short and broad, slightly narraw toward the front; the anterior part regularly rounded. Occipital furrows shallow but distinct, merging into the postero-lateral furrow at both sides.

Occipital ring transverse and comparatively narrow, only slightly broader in the central portion.

Fixed cheek broad, about the same width as the glabella opposite the palpebral lobe; slightly convex near the palpebral lobe and becoming flat toward both the front and the postero-lateral furrow. Palpebral ridge very slightly indicated. The facial sutures first cut the frontal border directly backward to the anterior part of the palpebral lobe; curve around this and then cut the free cheek from the postero-lateral limb with a convex arc. Palpebral lobe of medium size.

Frontal limb flat and somewhat broader than the frontal rim from which it is separated by a shallow marginal furrow. Frontal rim slightly elevated, broader at the center, becoming narrower toward each side; the frontal margin gently rounded.

The associated pygidium is rather transverse; axial lobe very broad, cylindrical, divided by three indistinct furrows into four transverse rings and one terminal portion; pleural lobe also divided by four distinct furrows into five segments.

Surface apparently smooth.
This species is distinguished by its smooth character of the cranidium, short and broad glabella, narrow occipital ring, comparatively narrow frontal limb, and by its transverse form. It differs from P. fongi Sun in the absence of distinct glabellar furrows, in the shorter and broader glabella, and the more transyerse form. It also differs from Ptychoparia yohi Sun in the more transverse form, the shorter and broader glabella and the absence of the glabellar furrows.

Measurements:-

Cephalon

Length of cranidium	5.5	2.7
Frontal width of cranidium	5.5	2.7
Posterior width of cranidium	9.2	4.0
Length of glabella	3.2	1.6
Greatest width of glabella	3.2	1.7
Width of fixed cheek	2.0	1.0
Width of frontal rim	1.0	0.5
Width of frontal limb	0.5	0.35
Width of occipital ring	1.0	0.50

Horizon and Locality:- Lower Cambrian: from micaceous purple shale of Chêng-Shan, si lifom Chao-Kou-Chuang, Chihli. (Y. C. Sun Coll.)

Genus Changshania Sun

12: Changshania conica Sun and Chanshania truncata Sun, Bulletin of the Geological Society of (hina Vol. II, No. 1-2.
('ephalon semicircular in outline, exclusive of genal spine, gently convex. Frontal rim rather narrow about the same width as the postero-lateral limb. Glabella slender, truncato-conical or conical and smooth; occipital furrow straight and distinct; occipital ring nearly transverse and of uniformly width; dorsal furrows shallow and distinct.

Fixed cheeks narrow, the facial suture cuts the frontal border slightly inward and backward straight to the anterior part of the palpebral lobe curves around the latter; and then extends obliquely outward directly to the postero-lateral margin. Palpebral lobe long about two-third the length of the glabella, outlined by the intra-curving furrow.

Frontal limb broad flat or gently concave, its margin slightly rounded. Postero-lateral limb very short and marked by the transverse postero-lateral furrow extending transversely to both extremities.

Free cheeks broad with uniformly narrow border extending into a slender curving genal spine; cheek body flat and broad. An associated hypostoma elongate ovate with a distinct posterior curving furrow.

Only the pleure of the thorax are known, these being flat and of uniform width, and separated from each other by parallel furrows.

Pygidium transverse, with uniform narrow border. Axial lobe conical marked by four transverse furrows into four transverse rings and one terminal section which is situated near to the posterior border of the pygidium. Pleural lobe also segmented. Antero-lateral angle extending into a round extension.

The truncato-conical glabella, broad frontal limb and the transverse form of the pygidium may suggest Ptychoparia (Emmerichella), but the conical glabella, the ratio of the anterior width to the posterior width of the cranidium, comparatively narrow fixed cheeks and the antero-lateral extension of the pygidium serve to distinguish it.

Genotype-Changshania conica Sun.

Changshania conica Sun (sp. nov.)
Plate III, Figs. $2 \mathrm{a}-\mathrm{k}$.
1923 Changshania ronica Sun. Bulletin of the Geological Society of China Vol. II, No. 1-2 (listed).
The generic description of Changshania is based on this species.
This species is represented by several cranidia, separated free cheeks, an hypostoma, pleuræ of the thorax and by a number of pygidia.

This species is characterized by its subconical smooth glabella, narrow anterior width of the cranidium, long palpebral lobe, comparatively narrow fixed cheeks and the pygidium with round antero-lateral extensions.

Horizon and Locality:--Early Upper Cambrian: from Changshan shale of Chao-Kou-Chuang.

Measurements:-

Cranidium	A	B	C	D
Length	9.0 mm.	7.5 mm.	6.5 mm.	6.5 mm.
Anterior width	7.5 mm.	5.6 mm.	5.0 mm.	5.0 mm.
Posterior width	17.8 mm.	-	12.5 mm.	-

	2 a	2 b	$\because \mathrm{c}$	2 d
Lengtl of glabella	5.5 mm .	4.5 mm .	4.0 mm .	4.0 mm .
Basal width of glabella	4.5 mm .	3.5 mm .	3.0 mm .	3.0 mm .
Width of frontal rim	$1.0 \mathrm{mın}$.	0.8 mm .	0.75 mm .	0.75 mm .
Width of frontal limb	1.9 mm .	1.5 mm .	1.0 mm .	1.1 mm .
Width of occipital ring	1.0 mm .	0.9 mm .	0.8 mm .	0.9 mm .
Hypostoma	2 e			
Length	6.5 mm .			
Width	4.0 mm .			
Pygidium	2 f	2 g	2 h	2 i
Length	5.0 mm .	4.2 mm .	5.0 mm .	4.5 mm .
Width at the union with thorax	12.8 mm .	10.0 mm .	12.5 mm .	-
Anterior width of the axis	3.5 rım.	2.6 mm .	3.2 mm .	3.5 mm .

Changshania? truncata Sun (sp. nov.)

Plate III, Figs. 3.
1923 Changshania truncata Sun. Bulletin of The Geological Society of China Vol. II, No. 1-2 (listed).
This species is represented by several cranidia, free cheeks and pygidia probably of this species.

Cephalon semicircular in outline, with genal angles (of free cheeks) prolonged into slender spines bending inward to the body. Glabella truncato-conical, apparently smooth; occipital furrow slightly curved and distinct; occipital ring of uniform width throughout.

Fixed cheeks very narrow, about one half the width of the glabella at the palpebral lobe. The facial suture cuts the frontal border slightly obliquely to the anterior part of the palpebral lobe, curves around the latter and then extends outward to the posterolateral margin. Palpebral lobe long and marked by infracurving furrow; postero-lateral limb narrow and marked by a distinct postero-lateral furrow.

Free cheeks and pygidia apparently of the same type as in Changshoniu comica Sun.
This species is characterized by its broad truncato-conical glabella, narrow fixed cheeks and slightly curved occipital furrow and the transverse pygidium with conical axis and antero-lateral rounded extensions.

This species differs from Changshania conica Sun in the broad truncato-conical glabella, comparatively narrow fixed cheeks, and narrow postero-lateral limb. Its form lies between Emmerichella and Changshania and I provisionally place it under Changshaniu,
because it has narrow fixed cheeks, large palpebral lobes, and the antero-lateral extension of the pygidium. The specific name is given in reference to its truncated glabella.

Horizon and Locality:-Associated with the preceeding.
Measurements:-
Cranidium

Length	8.0 mm.
Width at the palpebral lobe	8.2 mm.
Length of glabella	5.5 mm.
Anterior width of glabella	3.0 mm.
Posterior width of glabella	5.0 mm.
Width of frontal border	2.0 mm.
Length of palpebral lobe	2.8 mm.
Width of occipital ring	1.0 mm.
Width of fixed cheek at the palpebral lobe	2.0 mm.

Conokephalina kaipingensis Sun (sp. nov.)

Mate III, Fig. 4 a-b.

This species is represented by several fragmentary central portions of the cephala. Cephalon semicircular, moderately convex. Glabella subrectangular, becoming narrower anteriorly, front margin slightly rounded; antero-lateral angles also rounded. It is marked by three pairs of the glabellar furrows; the posterior pair distinct, obliquely extending backward and inward from the dorsal furrow; the second pair very short and horizontal opposite to the anterior edge of the palpebral lobe, the anterior pair slightly impressed rarely shown in the specimens. Occipital furrow distinct, bending slightly backward; occipital ring broad in the center, becoming narrow at hoth sides and also apparently marked by a node at its center.

Fixed cheeks very narrow, less than one half the width of the glabella at the palpebral lobe. The facial suture decends with a convex curve to the anterior edge of the palpebral lobe, curves around the latter and finally extends outward to outline the short postero-lateral limb. Palpebral lobe elongate, separated from the fixed cheek by a curving furrow, and situated opposite the posterior furrows; dorsal furrows rounded and distinctly marked; palpebral ridge indistinct extending obliquely from the anterior part of the palpebral lobe near to the frontal margin of the glabella. Frontal limb narrow and
separated from the frontal rim by a shallow forward curving furrow，frontal rim about the width of the frontal limb，slightly elevated and with regularly rounded margin．

Only one segment of the thorax is known．Axial and pleural segncents are both strongly marked by distinct grooves．

Surface marked by strong pustules．
In form this species is similar to C．vesta Walcott of Fang－Lan－chön，Shansi，but differs from the latter in the narrow occipital ring，distinct glabellar furrow，indistinct palpebral ridge and the pustulose character of the surface．

The pustulose character of the surface and the narrow fixed cheeks suggests Cono－ kephalina belus Walcott from Tai－An，Shantung，but it differs from the latter in the narrow occipital ring and in having the palpebral lobe placed further back and opposite the posterior pair of glabellar furrows．

This species is characterized by the subrectangular glabella，distinct glabellar furrows，pustulose character of the surface and the palpebral loke placed back of the center of the glabella．

Measurements：－
4 a
Length of cranidium
8.5 mm ．

Width of cranidium at the palpebral lobe
9.5 mm ．

Length of glabella
5.5 mm ．

Width of glabella
5.0 mm ．

Width of frontal limb 1.0 mm ．
Width of frontal rim $\quad 1.0 \mathrm{~mm}$ ．
Width of occipital ring 1.3 mm ．
Horizon and Locality：－Late Lower Cambrian：from Manto shale of Chao－ Kou－Chuang，Luan－Hsien，Shantung．Collected by H．T．Yu（余新都）．

Conokephalina gerardi Sun（sp．nov．）

Plate III，Figg． 5 a－c．

This species is represented by several fragmentary cranidia and associated pygidia probably referable to it．

Cranidium gently convex，subquadrilateral in outline，exclusive of free cheeks． Glabella subquadrilateral，slightly narrower in front，frontal part rounded，marked by a distinct longitudinal ridge；occipital furrow narrow shallow，slightly curved backward； occipital ring broad in the center，becoming narrow at both sides．

Fixed cheeks little wider than one half the width of the glabella opposite the glabella and nearly flat from the dorsal furrow to the palpebral lobe．Palpebral lobe large about one half the length of the cephalon and situated a little back of the central portion of the glabella；palpebral ridge strong and prominent merging into the anterior edge of the palpebral lobe from the dorsal furrow．Frontal limb flat，of medium width，and separated from the frontal rim by a shallow distinct furrow．Frontal rim about one half the width of the frontal limb and of uniform width throughout，slightly elevated．

The associated pygidium，probably of this species，is small with convex broad axial and segmented pleural lobes．

In form this species resembles Conokephalina vesta Walcott from the Middle Cam－ brian of Shansi，but the broad frontal limb，the absence of the distinct glabellar furrows and the more rounded frontal margin of the glabella serve to distinguish it．

This species is named in honor of Mr．Jacques Gerard engineer and geologist of the Chao－Kou－Chuang Mines．

This species is characterized by the acutely rounded frontal margin of the gla－ bella，the smooth surface of the glabella，presence of the longitudinal median ridge，large and long palpebral lobe and the small pygidium with broad convex axial lobe and segmented pleural lobe．

Measurements：－	6 a	6 b	6 c
Length of cranidium	8.0	5.4	8.0
Width of cranidium at the palpebral lobe	8.0	6.2	-
Length of glabella	5.5	3.5	5.5
Width of glabella at base	5.0	3.0	4.5
Width of frontal limb and rim	1.5	1.1	1.7
Width of occipital ring	1.1	0.8	1.1

Horizon and Locality：－Manto－formation of Chêng－Shan，Chao－Kou－Chuang． Collected by University Excursion in 1923 （H．T．Yu 余新都 Coll．）．

Genus Crepicephalus Owen． Crepicephalus sp．indt．

 Plate III，Fig． 6.This is only represented by one pygidium．
Quadrilateral in outline，exclusive of lateral spines．Axial lobe very convex， cylindrical，with three transverse rings and one terminal ring which is again divided into one transverse ring and one terminal portion，far apart from the posterior margin．The
sides nearly parallel, contracting slightly at the middle, by incurving of the sides. Pleural lobe gently convex, also segmented by furrows. The postero-lateral and posterior margins flat and broad; lateral spines broad.

Width 5 mm . Length 4.4 mm .
Horizon and Locality:-Middle Cambrian: from Changhia limestone of Chêngshan, 8 li from Choa-Kou-Chuang, Chihli. Collected by University Excursion.

Genus Mansuyia Sun (gen. nov.)

This genus differs from Crepicephalus in having very narrow fixed cheeks, in the absence of the palpebral ridge, in having very deep distinct dorsal furrows and in the short oblong form of the glabella.

The general form of the cranidium suggest Anomocare and Anomocarella, but the pygidium of this genus serves to distinguish it.

The associated pygidia of this genus are of the type of Ceratopyge, but the present genus differs greatly from that one in the cranidium.

Genotype: Mansuyia orientalis (Grabau) Sun.
This genus is characterized by its short oblong glabella, narrow fixed cheeks, and absence of the palpebral ridge. The pygidium has two inward-curving slender lateral spines which spring out from the second segment of the pleural lobe of the pygidium.

Mansuyia orientalis (Grabau) Sun
Plate III, Figs. 7 a-j.
1922 Ceratopyge orientalis Grabau (Mss.).
1923 Ceratopyge orientalis Sun. Upper Cambrian of Kaiping Basin. Bulletin of the Geological Society of China Vol. II, No. 1-2, p. 98. (listed).

This species is represented by many cranidia and the associated pygidia.
Glabella moderately convex, oblong in form, the front part slightly rounded; marked by three pairs of shallow broad short pits slightly impressed; occipital furrow rounded, and distinct; occipital ring uniform in width throughout, dorsal furrows and frontal furrow in the front of the glabella deep and clearly defined; frontal limb narrow slightly convex and elevated, separated from frontal rim by a shallow broad groove: frontal limb narrow in the middle, becoming wider toward each ends, and sloping
down anteriorly to the broad shallow groove in the front of the glabella; frontal rim moderately convex, broad in the middle, becoming narrower towards each sides.

Fixed cheeks very narrow; eye lobe of medium size, centrally placed.
The associated pygidium is of about the size of that of Ceratopyge forficula. It is broader than long with a well-defined convex median axis gently tapering backwards to within a short distance of the posterior margin of the pygidium where it is bluntly rounded. Median axis or axial lobe subconical and long with a very gentle rate of tapering, divided by seven transverse shallow distinct furrows into seven rings and one terminal portion which is again divided by shallow transverse furrows into two portions. The pleural lobes, in like manner, are also divided by five shallow slightly impressed furrows into six segments, the second being the broadest. Antero-lateral margins of limb rounded.

Lateral or side spines of pygidium slender long curved inward in the free part. The spine springs out from the broadest second segment of the pleural lobe which extends forward at an angle of about 45° with the median line, to about the position between the second and third ring of the axis.

In the majority of specimens from Chihli, this continuation of the spine and the segmentation of the axis and the pleuræ are not readily noted because of the worn or crushed character of the specimen.

Surface apparently smooth or slightly pustulated.
This species is characterized by its deep dorsal furrows and frontal furrow which separates the frontal limb and the glabella, short oblong glabella, narrow fixed cheeks, medium eye lobe and the strong lateral spines of the pygidium which spring out from the second segment. It is associated with Kaolistania pustulosa, etc.

Horizon and Locality:-Upper Cambrian: from Kaolishan limestone of TaiAn, Shantung (Y. C. Sun Coll.), also found in Fêngshan limestone of Luan-Hsien, Chihli by Mr. H. C. T'an of the Survey. More than thirty specimens examined.

Measurements:-

Cranidium	7 a	7 b	7 c	7 d	7 e
Length of cranidium	15.0 mm.	11.0 m	0 mm .	0.2 mm .	.2 mm .
Width of cranidium at the palpebral lobe	13.5 mm .	10.5 m	8.1 mm .	10.0 mm.	
Length of glabella	9.5 mm .	6.7 mm	5.5 mm .	6.0 mm.	8.0 mm.
Width of glabella opposite the palpebral lobe	8.0 mm.	5.7 m	5.0 mm .	5.5 mm .	7.0 mm .
Width of frontal limb	2.3 mm .	1.8 m	. 5 mm .	1.8 mm .	2.5 mm .

Width of frontal rim	1.8 mm .	1.3 mm .	1.0 mm .	1.0 mm.	1.5 mm .
Width of occipital ring	2.0 mm .	1.7 mm .	4 mm .	1.5 mm .	2.0 mm .
Pygidium	7 f	7 g	7 h	7 i	7 j
Length	9.0 mım.	9.0 mm.	10.5 mm .	0.0 mm .	8.5 mmn.
Width	14.5 mm .	14.2 mm .	15.5 mm .	2.5 mm .	13.0 mm.
Length of axial lobe	8.5 mm .	$\checkmark .2 \mathrm{~mm}$.	0.0 mm .	9.0 mm.	8.0 mm .
Average width of the transverse rings	1.1 mm .	1.1 mma	$1 . \therefore$ mm.	-	-
Length of side spines (m sured on curvature)	16.0 mm	$1 \because .0 \mathrm{~mm}$.	7.5 mm .	8.0 mı.	5.0 mm .

Genus Kaolishania Sun (gen. nov.)
General form subquadrangular, moderately convex; axial and pleural lobes strongly defined.

Cephalon wider than long, subsemicircular in outline; glabella truncato-conical, moderately convex and marked by three pairs of the lateral furrows, the posterior pair deep and broad, obliquely extending backward, the second pair deep and short, and slightly extending obliquely backward, and the anterior pair marked by a very slight trace; occipital furrows strong and distinct, occipital ring broad in the center, becoming narrow toward each side. A median longitudinal ridge extends from the front border of the glabella to the occipital furrow. The straight frontal part of the glabella and the fixed cheeks are separated from the frontal border by a strong and deep groove; frontal border narrow, slightly rounded in the front and turning up from the deep strong frontal groove to the frontal margin.

Fixed cheeks slightly convex and rising from the dorsal furrow, about one half the width of the glabella; palpebral ridge extending backward and outward from the dorsal furrow to the anterior part of the palpebral lobe; palpebral lobe of medium size.

Free cheeks moderately convex, elongate, broad at the anterior end where they join the fixed cheeks and the frontal border, and narrow at the posterior, ending in a slender rounded lateral spine; the cheek-body broad anil moderately convex, separated from the slightly elevated narrow border by a distinct curving furrow.

The facial suture cuts the outer postero-lateral side of the genal angle, and passes almost directly inward to the base of the eye lobe, arching around the latter, it passes with a slight convex curve directly forward to the front margin.

Only one part of the fragmentary segment is known ; the axial segment is moderately convex and marked by a strong groove; the pleural segment more or less flat and also marked by a broad distinct groove which gradually tapers to a point before the pleural segment reaches its end.

Pygidium large subquadrangular in outline; the axial lobe narrow and slender, divided by six distinct transverse furrows into five rings and one terminal section which is usually again divided by a shallow furrow into one ring and the terminal portion, and nearly reaches to the border; the pleural lobes broad, divided by five distinct furrows into six segments. The first two furrows descend with curving outline; while the other three extend obliquely backward to the border, usually short and slightly curved. The largest segment is the second segment from which the lateral spine springs out. The posterior border is narrow, separated from the pleural lobe by the posterior marginal groove, slightly convex and regularly rounded, and also slightly contracted at the posterior margin of the pygidium. Lateral spines about the same length as the pygidium, pointing directly backward but slightly outward.

Surface strongly marked by high pustules.
Genotype: Krolishania pustulosa Sun.
This very remarkable trilobite resembles the genus Blackwelderiu in the form of the glabella, but the strong side spines of the pygidium serve to distinguish it.

Kaolishania pustulosa Sun (sp. nov.)

Plate III, Figs. \& a-h.
The description given of the genus Kaolishania includes what is known of the species.

This species is characterized by its truncato-conical glabella, narrow and concave frontal border, the distinct palpebral ridge, the short broad side-spine of the pygidium, the strongly pustulose character of the surface and the subquadrangular form of the pygidium.

This is the most common species in the collection from Tai-An. It is associated with Mansuyia orientalis (Grabau) Sun, Chuangia batia Walcott etc.

Measurements:-
$\begin{array}{ccr}\text { Cranidium } & 8 \mathrm{a} & 8 \mathrm{~b} \\ \text { Length of cranidium } & 11.0 \mathrm{~mm} . & 12.5 \mathrm{~mm} . \\ \text { Length of glabella } & 8.0 \mathrm{~mm} . & 9.5 \mathrm{~mm} .\end{array}$

	8 a	8 b		
Width of cranidium at palpebral lobe 13.0	-			
Frontal width of glabella	4.5	5.0		
Basal width of glabella	7.5	8.5		
Width of frontal border	1.0	1.5		
Width of occipital ring	2.0	2.0		
Pygidium	8 e	8 f	8 g	8 h
Length	10.5	8.0	7.5	8.5
Width	17.0	14.0	12.5	14.0
Length of axial lobe	8.5	7.3	7.0	7.5
Anterior width of axial lobe	5.5	4.0	4.0	4.4

Horizon and Locality：－Upper Cambrian：from massive gray limestone of Kaolishan from which the generic name is derived（Y．C．Sun Coll．）．

Genus Lisania Walcott
Lisania？hsuchiachuangensis Sun（sp．nov．）
Plate IV，Fig． $1 \mathrm{a}-\mathrm{b}$ ．
Cranidium subquadrilateral in outline，exclusive of the free cheeks．Glabella strongly convex subrectangular；antero－lateral angle rounded ；apparently smooth；occipi－ tal furrow shallow but distinct；occipital ring narrow at both sides，becoming broader toward the center marked by a distinct central occipital node．Dorsal furrow narrow and clearly defined．

Fixed cheeks narrow，little more than one third the width of the glabella，sloping anteriorly to the frontal border and backward to the postero－lateral limbs；palpebral lobe about one－third the length of the cephalon；palpebral ridge distinct；frontal border slightly convex rounded in front very broad at the middle and separated from the gla－ bella and the fixed cheeks by a narrow deep and distinct furrow．Postero－lateral limbs narrow about one half the width of the glabella and pronounced．

This species may be compared with L ．agonius Walcott from the lower shale member of the Kiu－lung group of Yen－Chuang 顏 鿊，Shantung，but differs from the latter in the more rectangular form，comparatively narrow occipital ring and in its shorter palpebral lobe．

Horizon and Locality：－Middle Cambrian：from the Changhia limestone of Chêng－Shan，near Hsu－Chia－Chuang 徐家洼，Luan－Hsien，Chihli．（Coll．K．S．Hsu 徐光熙）．

Measurements：－	1 a	1 b
Length of cranidium	6.5 mm.	4.0 mm.
Width of cranidium	6.0 mm.	4.0 mm.
Length of glabella	4.8 mm.	3.0 mm.
Width of frontal border	0.9 mm.	0.5 mm.
Width of occipital ring	1.0 mm.	0.5 mm.

Lisania rectangularis Sun（sp．nov．）
Plate IV，Fig． 2 a，b．
This species is represented by two broken central portions of the cephalon．Gla． bella moderately convex，subrectangular in outline；frontal margin rounded，apparently smooth；occipital furrow transverse and distinct；occipital ring broad at the center be－ coming narrow toward the sides．

Fixed cheeks narrow，less than one half the width of the glabella，the facial suture cut the frontal border slightly outward，backward to the anterior edge of the palpe－ bral lobe；and thence curves around this lobe near to the occipital furrow；palpebral lobe large about one half the length of the cephalon，slightly convex．

Frontal border slightly convex with curving rounded margin，broad at the mid－ dle，becoming gradually narrow at the sides．

This species resemble Lisania of bura（Walcott）from the Middle Cambrian of Changhia，Shantung，but differs in the subrectangular glabella，the large palpebral lobe and the course of the facial suture．

This species is characterized by its subrectangular glabella，narrow fixed cheeks， large palpebial love and the comparatively broader frontal border．

Horizon and Locality：－Middle Cambrian：from Changhia limestone of Chêng－ Shan near Chao－Kou－Chuang，Chihli．Collected by Mr．K．S．Hsu 徐光熙，of Class 1925 of the Geological Institute of National University．

Measurements：－ $2 \mathrm{a} \quad 2 \mathrm{~b}$
Length of cranidium
3.5 mm ．$\quad 3.3 \mathrm{~mm}$ ．

Length of glabella
2.5 mm ． 2.0 mm ．

Width of glabella at palpebral lobe
1.7 mm ．$\quad 1.5 \mathrm{~mm}$ ．

Width of frontal limb
0.7 mm ．$\quad 0.6 \mathrm{~mm}$ ．

Width of occipital ring
0.5 mm ．$\quad 0.6 \mathrm{~mm}$ ．

Width of fixed cheek at the palpebral lobe 1.0 mm ． 1.0 mm ．

Genus Solenopleura Angelin

Solenopleura nodosa Sun (sp. nov.)

Plate IV ${ }^{\text {r }}$ Figs. 3 a, b.

General form of cranidium transversely subrhomboidal, convex Glabella as long as the width at its hase, the sides converging from the base towards the rounded front, so as to narrow the glabella about one fourth; anterior portion of the glabella very convex; three pairs of glabellar furrows, the posterior furrow distinct extending obliquely inward and backward and making an angle 45° with the dorsal furrow; the second and anterior pairs short and shallow in the form of pits; occipital furrow broad and well defined by the downward curvature of the posterior margin of the glabella and the rising of the surface of the vccipital ring; occipital ring broad at the center, becoming gradually wider towards the sides, with a distinct median node at the posterior margin, dorsal furrow deep and well defined.

Fixed cheeks very convex at the center and sloping down toward the front groove and the postero-lateral groove, about one half the width of the glabella; palpebral lobe small and situated about in the middle of the glabella. Palpebral ridge moderately distinct, extending from the anterior part of the palpebral lobe, toward the dorsal furrow in front of the second furrow of the glabella. Postero-lateral limbs unknown; frontal limb very narrow and convex in front of the glabella and separated from the frontal rim by the broad and shallow frontal groove; frontal rim convex, rounded, about the width of the frontal limh and frontal groove combined, and of uniform width, with a straight frontal margin.

Surface marked by large pustules uniformly sattered.
This species is represented by two specimens of the cranidia.
This species is characterized by the presence of the small oceipital node, palpebral ridge and also by the straight frontal margin of the frontal rim, and by the large uniformly scattered pustules.

Horizon and Locality: - Middle Cambrian; from the massive cliff-making limestone of Chao-Kou-Chuang, Luan-Hsien, collected by National University Excursion under my direction in September $19 \geq 3$.

$$
\begin{aligned}
& \text { Measurements:- } \\
& \text { Length of cranidium } \\
& \text { Length of glabella } \\
& \text { Width of glabella at base } \\
& \text { Width of occipital ring at the center } \\
& \text { Width of fixed cheeks at the palpebral lobe }
\end{aligned}
$$

3 a	3 b
12.5 mm.	6.6 mm.
7.5 mm.	$: 3.5 \mathrm{~mm}$.
7.2 mm.	3.5 mm.
$\boxed{2.0 \mathrm{~mm} .}$	1.1 mm.
4.0 mm.	$\because .0 \mathrm{~mm}$.

Width of frontal limb	1.4 mm.	0.8 mm.
Width of frontal rim	1.4 mm.	0.9 mm.

In form this species resembles Solenopleura berœ Walcott from Yen-Chuang, Shantung; but it differs in the presence of the distinct occipital ring and also of the palpebral ridge.

The presence of the palpebral ridge and the distinct occipital node suggest Solenopleura holometopa Angelin, but the position of the palpebral lobe and the proportionally shorter glabella serve to distinguish it. In this species the length of the glabella and its width at the base are subequal, while in the Swedish species the glabella is usually longer. than wide.

Moreover, the palpebral ridge of our species extends from the anterior part of the palpebral lobe to the dorsal furrow, just a little in front of the second furrow of the glabella, while in S. holometopa it is distinctly marked and extends to the dorsal furrow one sixth the length of the glabella from the frontal margin of the glabella.

Genus Chuangia Walcott

1911 Chuangia Walcott, Smithsonian Miss. Coll., Vol. 57, No. 4, pp. 83-84.
1913 Chuangia Walcott, Research in China, Vol. 3, pp. 170-172.
Original description: "This genus is proposed for a group of Upper Cambrian trilobites in which the cephalon has a truncato-conical or sub-quadrangular glabella; a narrow, concave frontal limb and so far as known, a smooth test.
"The associated pygidium is large, with a strong axis, broad pleural lobes, and few indications of segments". (Walcott 1913 pp. 170-172).

Doctor Walcott compared the genus with Anomocare and Ptychoparia on account of the likeness of the general form of the cranidium. He also states under the description of the genus, that the characteristic frontal limb of Cluangia serves to distinguish it from the other two genera; and the genus Chuangia is characterized by the concave frontal limb which meets with the rim to form an angle and the rim does not rise above the dupwar sloping surface of the frontal limb.

In the Tai-An material collected hy the college excursion, the outer shell of this genus was discovered and the shell or test is strongly marked by fine pustules; when the outer shell is exfoliated, the cranidium appears smooth.

Cenotype--Chuangia batia Walcott.

Chuangia batia Walcott

Plate IV, Figs. 4 a-e.
1905 Ptychoparia? batia walcott, Proc. U. S. Nat. Mus., Vol. XXIX, p. 75.
1911 Chuangia batia walcott, Smithsonian Misc. Coll., Vol. 57, No. 4, p. 84, pl. 15, figs. 3, 3 a. (Referred and figured as genotype of new genus Chuangia).
1913 Chuangia batia walcott, Research in China, Vo!. III pp. 170-171, plate 17, figs. 20, 20 a-d.
Cephalon, exclusive of the free cheek, subrhomboidal, moderately convex. Glabella truncato-conical; marked by three pairs of glabellar furrows very faintly shown; the posterior pair shallow, broad and slightly impressed extending from the dorsal furrow backward and inward; only faint traces of the broad second and anterior pairs of glabellar furrows are shown; occipital furrow nearly straight, rounded and very shallow; occipital ring strong, very slightly convex and slightly wider at the center than at the ends and marked by a minute node at the center near the occipital furrow; median longitudinal ridge distinct from the frontal margin of the glabella to the occipital furrow, dorsal furrow distinct but not strongly marked.

Fixed cheeks slightly convex, about one half the width of the glabella at the palpebral lobe, and curved downward in front to the frontal rim and backward in the furrow within the posterior margin; palpebral ridges distinct from the anterior part of the palpebral lobe to the dorsal furrow opposite the first pair or anterior glabellar furrows. Palpebral lobe small, and situated a little back of a transverse line drawn through the center of the cephalon; anterior lateral angle of the cranidium regularly rounded.

The facial suture converges on both sides from the anterior margin down to the anterior part of the eye, curves around the lobe and finally decends obliquely outward to the posterior corner.

The frontal margin of the cranidium forms a regular low are, and is strongly bent up forming a high rim. Postero-lateral limb large, and marked ky a strong and broad furrow within the elevated posterior margin. The front of the glabella and of the fixed cheeks curves down into a shallow furrow, from which the frontal rim rises before curving over to form a thick frontal margin.

An associated hypostoma, 9 mm . wide and 11 mm . long, is probably of this species. Shell strongly marked by fine pustules.

Measuiements:-	4 a	4 b	4 c	4 d
Length of cranidium	10.7 mm.	8.5 mm.	8.7 mm.	13.5 mm.
Anterior width of cranidium	9.7 mm.	8.0 mm.	8.0 mm.	12.5 mm.
Posterior width of cranidium	15.0 mm.	-	12.6 mm.	-
Length of glabella	6.8 mm.	5.5 mm.	6.0 mm.	9.0 mm.
Basal width of glabella	5.8 mm.	4.5 mm.	4.5 mm.	7.0 mm.

Width of occipital ring	1.3 mm.	1.0 mm.	1.0 mm.	1.5 mm.
Width of frontal border	2.7 mm.	2.3 mm.	2.3 mm.	3.0 mm.

Horizon and Locality:-Upper Cambrian: from the lowest horizon of the Kaolishan limestone. Associated with this are Mansuyia orientalis (Grabau) Sun, Kaolishania pustulosa Sun, Syntrophia orthia Walcott etc. (Coll. Y. C. Sun).

This species is represented by many cranidia and associated pygidia; and is really one of the most common forms of Kao-Li-Shan.

The Kaolishan specimens differ from the type species in the presence of the median longitudinal ridge, in its distinct palpebral ridge and broader frontal border, longer glabella and comparatively narrow fixed cheeks. The course of the facial suture is also different from that in Walcott's specimens, converging slightly on both sides from the frontal margin to the eye, while in our material the facial suture converges rapidly on both sides from the frontal margin to the palpebral lobe.

This form is characterized by its concave frontal border, truncato-conical glabella, absence of the distinct glabellar furrows, distinct longitudinal median ridge, and palpebral ridge; and the finely pustulose character of the outer shell.

Genus Changla Sun (Gen. nov.)

1923 Changia Sun, Bulletin of the Geological Society of China, Vol. II, No. 1-2 (listed).
General form elongate oval, moderately convex. Glabella of cylindrical form contracted in the middle by incurving of the sides opposite the palpebral lobe; marked by three pairs of short, slightly impressed furrows; occipital furrow distinct; occipital ring uniform in width throughout. Dorsal furrow deep broad and round; frontal furrow broad and deep.

Fixed cheeks very narrow; palpebral lobe of medium size and elevated; the facial suture cuts the frontal border with convex arc to the anterior part of the palpebra lobe, curves around the lobe and finally extends outward to the margin of the posterolateral limb. Frontal border slightly convex, very broad, sloping down from the frontal groove in the front of the glabella to the rim of the border; antero-lateral angles rounded. The postero-lateral limb narrow, marked by a broad, shallow groove extending from the dorsal furrow to the extremities of the limb.

Free cheeks large ending into a strong genal spine which has about the same length as the cheek, body border narrow and depressed; cheek-body slightly convex, forming a triangular depressed area inside the posterior margin.

Thorax unknown.
Pygidium large with a strong central axis that terminates within a broad flattened border. Central axis divided by broad, deep and round furrows into six or more
transverse rings；pleural lobes also marked by broad furrows opposite the transverse rings of the central axis，but much flattened．

Surface apparently smooth under the lens．
The incurving sides of the glabella，the broad and flat frontal border and narrow fixed cheeks suggest the genus Saukia，but our genus differs from the latter in its longer glabella，three pairs of short slightly impressed glabellar furrows，and also in the position and the comparatively small size of the palpebral lobe．

This genus is the most common one in the upper zone of the Upper Cambrian of Chau－Mi－Tien and belongs to the family Dikelocephalinx．

This genus is characterized by its broad，slightly convex frontal border，subrectan－ gular glabella with both sides contracting in the middle，narrow fixed cheeks，large free cheeks，comparatively small palpebral lobe which is centrally placed，and the large pygidium with flattened border．

The generic name is given in honor of Dr．H．T．Chang 章鴻釗，former president of the Geological Society of China．

Genotype：－Changia chinensis Sun．

Changia chinensis Sun（sp．nov．）

Ilate IV，Figs． 5 a－g．
General form large elongate and oval，moderately convex，cephalon transversely semicircular with genal angles extended into a strong spine．Glabella moderately convex， elongate，subcylindrical，contracting opposite the palpetral lobes hy incurving of the sides of the glabella；marked by three pairs of short glabellar furrows，the posterior pair broad and short extending obliquely backward；the second pair of furrows parallel to the posterior one but short and also slightly impressed，the anterior pair very short and very slightly impressed；occipital furrow broad and shallow arching forward in the middle， occipital ring moderately convex broad in the middle and arching forward．

Frontal limb very broad，slightly convex，separated from the glabella by a strong distinct groove in the front of the glabella，the frontal margin slightly curved and the antero－lateral angles rounded．Dorsal furrows deep and distinct．

Fixed cheeks very narrow，slightly convex；the facial suture cuts the frontal border slightly outward and than inward toward the anterior part of the palpebral lobe， curves around the latter and finally extends outward and hackward，outlining the postero－ lateral limb．Palpebral lobe of medium size and rlevated．Postero－lateral limb narrow，
triangular in outline; marked by a broad postero-lateral furrow extending outward but slightly backward to both extremities.

Free cheeks very large, subtriangular in outline, exclusive of genal spine, with a narrow depressed flat border; cheek-body slightly convex and broad, ending in a long genal spine.

Pygidium transverse, large and with a strong central axis that terminates within a broad flattened border. It is marked ly clearly defined transverse rings that extend out in the pleural lobes to the border.

Surface smooth.
This species is characterized by the elongate cylindrical glatella, broad frontal border and also small palpebral lobe centrally placed. It is represented by several cranidia, free cheeks and pygidia.

Horizon and Locality:-Upper Cambrian: Upper zone of the Upper Cambrian of Chau-Mi-Tien region, Shantung. Collected by university expedition.

Measurements:-

Cephalon

Cranidium (a-c)	5 a	5 b	5 c
Length of cranidium	25.0	10.0	10.0
Front width of cranidium	18.0	7.0	7.5
Length of glahella	15.5	6.5	6.0
Width of glabella opposite the palpebral			
lobe	8.0	4.0	4.0
Width of frontal border	6.5	2.3	2.6
Width of occipital ring	3.5	2.0	2.0
Free cheeks (d-f)	5 d	5 e	5 f
Length of cheek	37.0	35.0	12.5
Width of cheek	15.0	15.0	6.2
Length of genal spine (preserved)	10.0	32.0	6.5
Pygidium (g)	5 g		
Length	30.0		
Width	50.0		

Genus Quadraticephalus Sun (gen, nov.)

General form elongate oval; moderately convex. Cephalon transversely semiovate with genal angles extended backward in a strong spine.

Cranidium subrectangular in outline, exclusive of postero-lateral limb. Glabella moderately convex, sub-cylindrical with both sides parallel, slightly rounded in the front. It is marked by three pairs of glabellar furrows; the posterior pair shallow, distinct, extending obliquely inward and backward and connecting in the middle; the second pair short and shallow, being parallel to the posterior pair; the first or anterior pair very short about one fifth thr width of the glabella; a merlian longitudinal ridge very pronounced, extending from the frontal furrow to the occipital furrow. Occipital furrow broad and rounded, slightly narrow in the center; dorsal furrow broad deep and rounded; frontal groove or furrow rounded and distinct; occipital ring transverse and of nearly uniform width.

Fixed cheeks very narrow, about one fourth the width of the glabella at the palpobral lobe; palpebral lobe very small and situated opposite the second furrow of the glabella and a little in front of the center of the glabella. The facial suture curve slightly outward from the frontal margin, thence curves inward to the anterior angle of the palpebral lobe and around it, and finally extends obliquely outward to outline the free cheeks from the postero-lateral limbs.

Frontal border slightly convex or flat with antero-lateral angle rounderl, very broad, of uniform width throughout, about one fourth the length of the cranidium, the middle part of the border very slightly impressed.

An associated free cheek probably of this species, is large and broad with flat broad border and ending in a strong genal spine.

Surface strongly punctate.
This genus is entirely distinct from any other known in the Upper Cambrian of China and evidently belongs to the family Dikelocephalinx. Quadraticephalus differs from Saukia in the longer subrectangular glabella with subparallel sides and straight frontal margin, small eye lobe and the punctate character of the surface.

Quadraticephalus differs from Dikelocephalus in the position of the palpebral lobe situated in the front of the middle of the glabella, longer glabella and also in the glabellar furrows. Other differences may be found in future when more complete specimens are obtained.

This genus is similar to the genus Chuangia in form, but the presence of the median longitudinal ridge, subrectangular glabella with subparallel sides and punctate character of the surface serves to distinquish it from that genus which is found in the Chau-Mi-Tien region of Shantung. The subrectangular glabella, pronounced median longitudinal ridge, small eye lobe opposite the second pair of furrows, narrow fixed cheeks and the punctate character of its surface are characteristics of this genus.

Genotype:-Quadraticephalus walcotti Sun.

Quadraticephalus walcotti Sun (sp. nov.)
Plate IV, Figs. 6 u-d.
This species is represented by several cranidia and separated free cheeks associated with it.

The generic description of Quadraticephalus is based on this species, and therefore nothing need be added here.

The species is characterized by the broad, slightly convex frontal border of the cephalon, small eyelobe placed opposite the second pair of the glabellar furrow, subrectangular glabella with a pronounced median longitudinal ridge, the presence of a depression dividing the frontal limb on the median line of the glabella and the free cheeks with their very broad strong genal spines.

The specific name is given in honor of Dr. C. D. Walcott in recognition of the great work done by him on the Cambrian Faunas of China.

Horlzon and Locality-Upper Cambrian: from Kaolishan limestone of Tai-An, just below the foot of the Pagoda, i.e. the highest bed in that region (Coll. Y. C. Sun).

Measurements:-	6 a	6 b	6 c
Length of cranidium	15.5 mm.	14.8 mm.	10.0 mm.
Frontal width of cranidium	11.0 mm.	11.0 mm.	-
Length of glabella	9.6 mm.	9.8 mm.	6.5 mm.
Width of glabella opposite the pal.			
pebral lobe	6.2 mm.	6.5 mm.	4.0 mm.
Width of frontal border	4.0 mm.	3.4 mm.	2.0 mm.
Width of occipital ring	2.2 mm.	2.0 mm.	1.3 mm.

Quadraticephalus? convexus Sun. (sp. nov.)
Plate IV, Fig. 7.
This species is represented by a broken central portion of the cephalon. Glabella quadrate in form very convex; it is distinctly marked by a longitudinal ridge extending from the furrow in the front of the glabella to the occipital furrow. It is also marked by two pairs of the glabellar furrows. The first or anterior pair faintly impressed and twisted;
the posterior pair shallow and slightly impressed extending from the dorsal furrow to the median ridge where they unite.

Occipital furrow shallow and broad, merging into the dorsal furrows on both sides.

Fixed cheek very narrow, about one fourth the width of the glabella. Frontal border convex and marked by the broarl groove which separates the frontal border from the glabella.

Surface finely punctate.
I place this species under (luadraticephalus because of the quadratiform outline of the glabella, the presence of a distinct longitudinal median ridge, the narrow fixed cheek and the fine punctate character of the surface, although the frontal border is quite different. This species differs from ! w whotit in the narrow frontal border, short and broad convex glabella and the glabellar furrows. When a perfect specimen is discovered, other differences may be found.

Measurement:-- 7
Length of cranidium
14.5 mm .

Length of glabella
10.0 mm .

Width of fixed cheeks opposite the palpeloral lohe $\quad 2.0 \mathrm{~mm}$.
Width of frontal horder
2.6 mm .

Horizon and Locality:-Upper Cambrian: from conglomerate limestone of of Kao-Li-Shan (Coll. Y. C. Sun).

Genus PTYCHASPIS Hall

Ptychaspis chinhsiensis Sun (sp. nov.)
Flate IV, Figs. 8 a-f.
1!123 Ptychaspis chinhsihsiensis Sun, Upper Cambrian Fossils from Fêngtien. Bulletin of the Geological Society of China Vol. II, No. 1-〕p. 101 (listed).

This species is represented by several cranidia, separated fixed cheeks, and associated hypostoma and pygidia.

Dorsal shield elliptical in outline, moderately convex, with a large genal spine on each side.

Glabella moderately convex, the greatest convexity in the anterior lobe; it is divided by a broad distinct backwards arching transverse furrow into one long anterior lobe and one narrow transverse lobe. Anterior lobe very long, marked by two pairs of
furrows, the posterior pair very short and broad and the anterior pair slightly impressed, rarely distinct; the second lobe rather transverse, narrow at the center, becoming wider at the sides; occipital furrow distinct and broad arching forward at the center; occipital ring moderately convex, broad at the center and narrow at both sides.

Fixed cheeks very narrow, about one half the width of the glabella at the palpebral lobe; convex near the palpebral lobe, becoming more gentle both in the front and at the back of the palpebral lobe. Palpebral lobe distinctly elevated and separated from the fixed cheeks by an outward bending palpebral furrow, which extends from the posterior furrow of the anterior lobe to the front of the occipital furrow; dorsal furrows rounded and distinct in confluence with the postero-lateral furrow; postero-lateral limb narrow, the outer ends bending slightly backward; postero-lateral furrows distinctly marked, very broad near the dnrsal furrow, becoming narrower toward the end.

The facial sutures first cut the front horder, then extend inward and backward to the anterior part of the palpebral lobe, curve around this lobe and finally extend backward and outward to cut the posterior border of the cephalon.

Frontal border gently convex, broad at the middle and becoming gradually narrow on both sides, separated from the glabella and the fixed cheeks by a slallow furrow.

Free cheeks exclusive of the genal spine, subtriangular in outline; the border is well defined and extends to the facial suture; the body of the cheek moderately convex; genal spine about the same length as the cheek, pointing backward and slightly outward; the body as well as glabella separated from the border by a distinct groove; the border of uniform width, marked by several irregular striations.

The associated hypostoma is subrectangular in outline, with obtusely rounded posterior border; the central portion or body strongly convex, marked by a pair of the posterior furrows which extends obliquely inward and backward and are nearly parallel to the margin of the central body. Posterior rim very narrow and elevated, separated from the central portion by a broad posterior groove.

Fragmentary segments of the thorax are known with the axis gently arched and marked by a distinct groove; pleure about the same width as the axis, flat and marked by grooves narrowing toward the sides before reaching the end.

Pygidium subsemicircular in outline and transverse; the central axial lobe very convex and conical near to the posterior margin of the pygidium, divided by five distinct furrows into five transverse rings and one long terminal ring; the pleural lobes broad marked by nine or more furrows into ten or more segments which extend up to the flat planulate margin of the pygidium.

Cranidia，free cheeks，hypostoma and pygidia appear granulated under a strong lens．

This species is characterized by its finely granulated character，rather short second lobe，broad flat frontal border，absence of pustules and the conical axial lobe of the pygidium．

The form of the glabella and its size suggest P ．acamus Valcott，but it differs from the latter in the comparatively narrow second lobe，in the absence of a marked pustulose and punctate character and in the broad frontal border．When the entire specimen of P ．acamus is found，other differences will be found．

The largest specimen（c） 17 mm ．in width has a length of 16 mm ．
Measurements：－

Cephalon	8 a	8 b
Length of cranidium	－	11.0 mm ．
Width of cranidium of palpebral lob		11.5 mm ．
Length of glabeila	5.5 mm ．	7.5 mm ．
Width of glabella at palpebral lobe	4.0 mm ．	5.5 mm ．
Width of anterior lobe	4.5 mm ．	6.0 mm ．
Width of second lobe	1.0 mm ．	1.3 mm ．
Width of occipital ring	1.1 mm ．	2.0 mm ．
Hypostona	\＆d	
L，ingth	6.5 mm ．	
Width	6.0 mm ．	
Free cheeks	se	

Width of cheek body at palpebral lobe 3.5 mm ．
Width of border of free cheeks $\quad 2.0 \mathrm{~mm}$ ．

Pygidium
Length
Width
Length of axis
Anterior width of axial lobe
\＆f
5.0 mm ．
4.5 mm ．
2.0 mm ．

Horizon and Locality：－Upper Cambrian：from thin bedded argillaceous limestone of Sha－Kuo－Tun，Chin－Hsi－Hsien（䠋西䊝）from which this species is named． Collected by Dr．J．G．Andersson．

Ptychaspis angulata Mansuy var. chinensis Sun

Plate V, Figs. 1 a, b.
1915 Ptychaspis angulata Mansuy. Faunes Cambriennes du Haut-'Tonkin, p. 25 pl. III, fig. 2 a-v. Mém. Serv. Géol. de l'Indochine. Vol. IV, fasc. II.
1916 Ptychaspis angulata Mansuy. Faunes Cambriennes de L'Extrême-Orient Mériditional, pl. V, fig. 12 a-e. Pl. VI, fig. 1 a-d.

Mansuy described this species very fully, the translation of his description being as follows:
"The glabella is subrectangular, a little larger at the base than at the anterior extremity. The anterior lobe is roundly arched; the dorsal furrows, deep and narrow, are faintly sinuous. The first lateral furrows, well marked, very oblique behind, spread over two-thirds of the width of the glabella; they seem really to represent a second pair, the first pair of lateral furrows being frequently erased in species of this genus. The following furrows (transverse furrows) very deep, parallel to the preceding lateral ones, are continuous. Occipital furrow sinuous. The lower edge of the head, the occipital furrow, the lateral furrows and the anterior edge of the glabella are about equidistant in both varieties. In the middle of the occipital ring, a striking tubercle is noticeable in most samples; this tubercle, often broken at the top, gave rise to a spine more or less developed.
"Fixed cheeks very narrow, with a variable convexity, usually fairly well marked. Ocular lobes about semicircular, sinuous anteriorly, are contiguous to the glabella and join it in a very short ocular line. Frontal limb narrow, almost flat with a large arched tubercle in the middle; its width equal to that of the marginal rim, which is larger in the middle than laterally, and is separated from the limb by a large but not deep furrow. The anterior edge of the head is not curved but forms a very open obtuse angle. The sutures, very oblique in their posterior portion up to the ocular lobes, are sinuous; after having passed these occular lobes they become rectilinear and parallel to the axis of 'the glabella before reaching the anterior margin. The free cheeks though dissociated, are easily differentiable one from the other according to width. The surface is regularly convex, with the maximum convexity at the center. The marginal rim, large and elevated, with curved section, enlarges more and more until it reaches the genal angle. The posterior rim of the cheeks is much narrower. The genal spine, long, strong, acicular, with circular section, is nevertheless at its base much smaller than the peripheric rim. The lower edge of the free cheeks forms a concave are with large radius near the genal angle.
"The dissociated thoracic segments show that the rachis was salient, with curved section. The pleuræ are large and are traversed by a well-marked, slightly oblique furrow; the pleural ends are inflected backwards. Some of the pygidia are arched, others
semicircular. It is probable that the longest belonged to the long variety and the shorter ones to the short variety. In all other characteristics they do not differ in any way. The axis is salient, truncato-conical, it is formed by seven segments; the terminals are obsolete. The lateral lobes have six furrowed segments, separated from the edge by an oblique and flattened limb."

Mansuy compared this species with P. campe Walcutt from the Upper Cambrian of Chau-Mi-Tien of Shantung; and he also mentioned that this species differs from Walcott's species in the angular anterior edge of the frontal rim and also in the small eye lobe.

Two varieties were described by him. The width of the glabella equals 8 -t hundredths of the length in one variety, while in the other variety the width does not represent more than 60 hundredths of the length. He also mentioned that the short glabella is higher and more incurved longitudinally than the long glabella.

In the Kaolishan material four cranidia are represented.
This new variety differs from the type species in the anterior lobe enlarging forward in the presence of very broad rounded frontal groove separating the frontal rim from the glabella, and in the distinctly punctate character of the surface.

This variety is rather similar to Ptychaspis acamus var. punctata both in the form of the glabella and the surface character, but it differs from the latter greatly in the angular edge of the frontal rim which has a very obtuse angle.

Measarements:-	1 a	1 b
Length of cranidium	9.4 mm.	-
Length of glabella	6.4 mm.	6.5 mm.
Frontal width of glahella	4.0 mm.	5.0 mm.
Width of anterior lobe	4.6 mm.	5.0 mm.
Wiath of second lobe	1.5 mm.	1.4 mm.
Width of frontal rim and groove combined	1.5 mm.	1.6 mm.
Anterior angle of frontal rim	$135^{\prime \prime}$	135°

Horizon and Locality:-Late Upper Cambrian: from the uppermost part of the Kaoli formation in the conglomerate limestone of Tai-An, Shantung. (Y. C. Sun Coll.)

Ptychaspis walcotti Mansuy
Plate V, Figs. 2 a.
1915 Ptychaspis Walcotti Mansuy. Faunes Cambriennes du Haut-Tonkin, p. 22, pi. 11, fig. 1 ba, b, pl. IlI, fig. 1 a-z. Mém. du Serv. Géol. de L'Indochine. Vol. IY', fasc. II.

1916 Ptychaspis Walcotti: Faunes Cambriennes de L’Extrême-Orient Méridional, pp. 33-34, pl. V. fig. $10 \mathrm{a}-\mathrm{j}$, fig. $11 \mathrm{a}-\mathrm{b}$.

Dr. Mansuy Described this species very fully and the translation of the description is as follows:-
"The two species attributed to the genus Ptychaspis Hall found in the Cambrian of Upper Tonking, are very imperfectly known, being represented only by fragments of heads, by a few free cheeks and thoracic segments, and by pygidia which seem to be closely related to the forms of the same genus described by Mr. Walcott from the Cambrian of Shantung and of Shansi.
"The species herein described is represented by two varieties, well differentiated in their proportions, one with a longer glabella the other with a shorter glabella; the glabella of the first is somewhat contracted. These differences in the length and width of the glabella, separating these two forms, seem furthermore to represent only individual variations, for, as we will see later, very characteristic details of organization of specific order are common to both. Ptychaspis angulata nov. sp., described further on, found in another locality than Pt. walcotti nov. sp., is also represented by two varieties differentiated in the same degree and possessing common specific characteristics as strong as those observed in both varieties of the preceding species. In both Pt. walcotti and Pt. angulata the two varieties differ in certain parts but are similar in their fixed common characteristics. If we add that no intermediate variety has been observed, with one partial exception, in spite of the large number of specimen gathered, we are forced to the deduction (with due reservations) that the two varieties of our species are perhaps but the expression of sexual differences.
"We will describe in the first place the long variety of Pt.walcotti (nov. sp.). The glabella of the long variety of this species is subrectangular, the anterior side and the posterior side measuring in a large individual 11 mm . and 15 mm . The convexity is fairly well marked without reaching the high relief shown by certain species of the same genus. The longitudinal incurvation becomes progressively accentuated from the middle of the length and ends anteriorly in a rather abrupt curve. Dorsal furrows large and very deep, their depth being increased by the increased height of the fixed cheeks. The occipital furrow, equally well marked, deeper laterally and inflected backwards in the same parts, is slightly sinuous in the middle. Anterior lobe rectangular, the anterior edge of the glabella being almost straight, very gently convex. It is much wider than long and limited backwards by transverse marginal furrows, not very noticeable. The second lateral furrows, are still very oblique backwards, deeply furrowed, are separated one from the other by an interval equal to their length. The third lateral furrows are
still more marked than the preceding ones and with the same obliqueness at their ends, are continuous. The second and third lateral furrows as well as the occipital furrow, are separated by almost equal intervals. The occipital ring, in the same relief as the glabella, is large, with curved are section, its width is greater in the middle than at thre ends; on its posterior margin is inserted a strong occipital spine of which only the base, having the appearance of a large tubercle, is visible. The fixed checks, incomplete in all our specimens, are narrow and show a convexity almost as marked as that of the glabella; The rim which bounds them posteriorly is smaller than the occipital ring. Ocular lobes small, raised in the vertical plane and almost parallel to the dorsal furrows of the glabella. The width and the convexity of the frontal limb are almost equal to the width and convoxity of the fixed cheeks: Its surface blends laterally and hackwards in the surface of the fixed chenks, in such a way that the glabella is surrounded hy a perfect rectangular frame, which gives to the cranidium of our species a very individual appearance. The whole surface is covered hy little tubercles, either subcircular or elliptical, drawn close together and sometimes mingling and scattered without symmetry.
"The free cheeks, the thoracic fragments and the separated pygidia which accompany the heads described above, are simply mentioned here, with all reservations as to their belonging to one or the other of the tro varieties of Pt. walcotti. The free cheeks are large, one of the specimens is a little smaller than the others and this peculiarity allows us to suppose that it belongs to the long and narrow variety rather than to the short variety of Pt. walcotti, the glabella of this one being much larger than that of thr long varictr. The genal angles are not raised, they are situated in the prolongation of the posterior edge of thr head. The genal spine is not very long but wide and robust, very diverging. It makes way without any deviation to the marginal rim. The thoracic fragments observed on the same fragments of shale, are much mutilated, with furrowed pleuree and rounded arched axis. No other characteristic is noticeable.
"All the pygidia are of the same typ" and identical, ne with the other. They are particularly remarkable because of their very transverse form and the strong inflection of the upper edge. The entire marginal region of these pygidia are thrown hackwards and form a very obtuse angle sometimes even, in cortain specimens, showing a rectilinear trace (perhaps as the result of a slight deformation). The rachis, with semicircular section, truncato-conical, is composel of five larg" segments, rounded and separated by deep furrows. The posterior segment, larger than the preceding ones, joins the posterior edge ly an abrupt inflexion. On the lateral lobes can only be distinguished the proximal end of two upper segments, the following ones being entirely erased; the
whole surface of these lobes is covered by fine sinuous lines, drawn close together, resembling cracks, interrupted or joining, whose general direction is parallel to the edge.
"The glabella of the second variety of Pt. walcotti, of almost equal length and breadth, shows a subtrapezoidal contour; its longitudinal inflection becomes abruptly accentuated towards the anterior third of its length. The length and obliqueness of the anterior lateral furrows, the anterior concavity of the third lateral furrows, continuous, reproduce all the traits of the corresponding parts oi the long variety. The marginal anterior rim is equally very wide, arched and contiguous to the glabella. This glabella of the short form, seem to represent the glabella of the long form but shortened, as if contracted with a stronger incurvation.
"Similarities and differences. The 14 species of Upper Cambrian trilobites from Shantung and from Shansi, attributed to the genus Ptychaspis Hall, by Mr, Walcott, are all as poorly represented as are ours, by very mutilated heads, sometimes reduced to internal moulds of dorsal teguments from the glabella and from the fixed cheeks, by a few incomplete free cheeks and by three pygidia. From such insufficient material we may only venture on some limited comparisons, all conclusion being forbidden, particularly as we foresee that a revision of these forms based on the study of less fragmentary specimens, will modify in a large measure the interpretation which has heretofore been given, either by the reduction of the number of species already described, or by the reference of some of them to other genera.
"Among the Chinese species, Pt. walcotti (nov. sp.) represents closer affinities with Ptychaspis acamus Walc. from the Upper Cambrian limestone of the Chau-Mi-Tien, in Shantung. The glabell. of Pt. acamus joins intermediate proportions to those of the two varieties of Pt. walcotti; its anterior edge is more convex. The occipital ring is smaller; finally in the Tonking species, the convexity of the long varinty, in its anterior half, is much fainter, while it is more marked in the short variety. The granulations which cover the surface of our species, are bigger and closer and through the superficial structure of the integuments, Pt. walcotti draws closer to Pt. cadmus Walc. a species from the same locality as Pt. acamus; besides, Pt. acamus, Pt. cadmus and Pt. campe Walc. from Shantung, resemble each other closely. The differences in the proportions of the glabella, in the height and in the relative development of the frontal lobe and the lateral lobes, in these species, are faint, they vary in fact, very little from Pt. walcotti, and the comparison of the figures given by Mr. Walcott with those representing Pt. walcotti in the same work, will give a more exact notion of the similarity of these three Chinese species between them, and with the Tonking species, than the best description.
"Ptychaspis walcotti differs in both varieties from Pt. angulata characteristic of a little older horizon from the Cambrian of the region of Yen-minh, by the more clearly rectangular contour of the glabella and by its fainter convexity. The marginal anterior rim, in Pt. walcotti is large and continuous to the glabella, while a narrow limb separates it in Pt. angulata. These notable differences are also noticeable between the pygidia found with the fragments of heads of these two species. The pygidia associated with the cranidia of Pt. angulata are bounded by a smooth limb all over their circumferencial contour. The segments of pleural lobes are very apparent; it has been noted that on the pygidia found with Pt. walcotti, they are almost entirely erased."

One cranidium from Sha-Kuo-Tun probably belongs to the long variety of the Tonking species. It has a broad occipital ring, a straight anterior edge of the anterior lobe, moderately convex rectangular anterior lobe and large elliptical tubercles.

In these respects, as well as in size, our specimen agrees fairly well with Mansuy's species. This is the first example of this species found in China, although it occurs abundantly in the Upper Cambrian of Tonking. This suggests that the Shakuotun limestone of Fêngtien is equivalent to the zone of Ptychaspis walcotti, the uppermost zone of the Upper Cambrian of Tonking.

Measurements:-

Length of cranidium	9.5 mm.
Length of glabella	6.5 mm.
Antero-posterior width of anterior lobe	5.2 mm.
Width of second lobe	1.5 mm.
Width of occipital ring	2.0 mm.
Width of frontal rim	1.2 mm.

Horizon and Locality:- Upper Cambrian: from Shakuotun limestone, Sha-Kuo-Tun, Chin-Hsi-Hsien, Fêng-Tien. Collected by Dr. J. G. Andersson.

Ptychaspis subglobosa Grabau (Mss) (sp. nov.)
Plate V, Figs. 3 a-d
1923 Ptychaspis subglobosa (Grabau), Sun. Bulletin of the Geological Society of China Vol. II No. 1-2 (listed)
"This species is represented by four glabellas with parts of fixed cheeks attached (one of the specimen is shown from the under side and two are very imperfect).

Associated with these is a large number of free cheeks and genal spines which apparently belong to this species.
"Glabella large, almost paralel-sides except for the slightly wider subglobose anterior lobe, which is strongly convex and but slightly wider transversely, its anteroposterior dimension somewhat less than half the length of the entire glabella. Anterior glabellar furrow complete slightly less pronounced in the center and very gently arcuate; second furrow more strongly deflected backwards and faint in the center; occipital furrow similar to the anterior furrow but broader at the sides and somewhat fainter in the center; the convexity of the posterior segments somewhat less than that of the anterior lobe. Occipital segment slightly broader than second and third segments which are of equal width.
'Fixed cheeks flat or very gently convex; their width somewhat more than half the width of the glabella, broadly grooved posteriorly by the lateral extension of the occipital furrow.
'The associated free cheeks are large and extended into a long gently curved genal spine. The outer contour is gently and regularly convex, and the inner side contracts rapidly to the very gently tapering genal spine, which has a subcircular or broadly ovoid section with the narrow end on the inside. It is marked by subequally spaced, rather distint and more or less continuous longitudinal strix. The length of the genal spine is considerable, being much greater than that of the glabella; its terminal end tapers rather more rapidly.
"Surface apparently smooth, though in one specimen there is a suggestion of faint discontinuous and concentrically placed wrinkles on the anterior lobe of the glabella.
"The specimens occur in a limestone conglomerate (intraformational) with large worn limestone pebbles. The slender genal spines are by far the most numerous, and they are mostly fragmentary, the anterior expansion of the free cheek being shown only in a few specimens. They are very like the genal spines of some species of Paradoxides, but more curved, and they are longer and more slender than those of any other species of Ptychaspis from the Cambrian of China. They are alse much longer proportionately, more cylindrical and less rapidly tapering than are those of P. minicaensis Owen, the type species of the genus, from the St. Croix beds of Wisconsin.
"This species approaches Ptychaspis calyce Walcott, from the Upper Cambrian Ch'aumitien limestone of Shantung, in the form of the glabella but the anterior lobe is longer more nearly subglobose while the second furrow is more deflected backwards
medially and less continuous than in that species. The Fêngshan specimens are also uniformly larger. The free cheeks of our species are very distinct.
"Measurements: The length of the most perfect glabella is 25.5 mm ., width of anterior lobe (longitudinal) 12.5 mm ., width of central part of glabella 13.5 mm . The diarneter of the median portion of the genal spines varies from 3.5 to 4 mm .
"Hori:on and Locality: The specimens occur in a limestone conglomerate of Upper Cambrian collected by Dr. J. G. Andersson at Luan-Hsien, Chihli province." (Grabau Mss.)

Five more cranidia of this species were obtained from the Koa'r limestone. Two large ones occur in the same limestone conglomerate and are essentially of the same type as those of the Fêngshan limestone. Three other small specimens were found in the crystalline limestone full of Obolus, 2 or 3 meters below. The Shantung specimens are well preserved especially in the fixed cheeks, eye lobes and the surface while the Chihli specimens are nearly worn away and difficult for description.

Fixed cheeks flat, moderately convex near the palpebral lobe and sloping down the postero-lateral portion; triangular in outline, exclusive of the palpebral lobe, very broad in the posterior part about the width of the glabella and becoming narrow gradually toward the front; marked posteriorly by a broad and distinct groove, which extends outward from the furrow a little below the occipital furrow to the postero-lateral extremities and broadens slightly outward. It is also marked by distiuct raised undulating ridges which are the characteristic feature of this species.

Palpebral lobe small, elongate, situated just opposite the first glabellar furrow and separated from the fixed cheeks by an incurved furrow and elevated. The occipital ring usually broader than the third lobe, slightly narrow in the center, becoming broad at both sides. It is distinctly marked by a median node.

The facial sutures cut the antero-lateral portion with a regular convexity to the anterior part of the palpebral lobe; and curving around this lobe, extend outward and backward to the postero-lateral extremities, forming angles of 45° with the posterior margin.

Surface strongly marked by elevated ridge, and wrinkles and also punctate.
The concentric wrinkles of the anterior lobe, and the general form of the cranidium suggest P. ceto Walcott from the Upper Cambrian Chaumitien limestone of Chau-\Ii-Tien, shantung, but our species differs in the longer subglobose form of the anterior lobe of the glabella, the punctate surface with distinct wrinkles and ridges, and also in the greater deflection of the transverse furrow of the glabella,

Measurements:-

Length of cranidium		25.5 mm .	19.0 mm .		6.0 mm .
Width of cranidium at the	palpebral lobe		17.0 mm .	12.2 mm.	7.0 mm .
Length of glabella		21.8 mm .	16.0 mm .	9.0 mm .	5.0
Antero-posterior dimensio	of anterior lolve	12.5 mm .	10.3 mm .	5.0 mm .	3.0 mm .
Width of glabella		14.2 mm .	10.5 mm .	6.2 mm .	3.5 mm .
Width of the second lobe	(antero-posterior)	4.8 mm .	3.5 mm .	2.0 mm .	1.3 mm .
Width of the third lobe		4.0 mm .	3.2 mm .	1.5 mm .	1.0 mm .
Width of occipital ring	,' "		3.0 mm.		1.0 mm.
Length of palpebral lobe				3.0 mm.	2.0 mm

Horizon and Localiry:-Late Upper Cambrian: from the conglomerate limestone and crystalline limestone of Kaolishan formation of Tai-An, Shantung. (Y. C. Sun Coll.) : also the upper Cambrian of Luan-Hsien, Chihli (J. G. Andersson Coll.).

Ptychaspis suni Grabau (mss.) (sp. nov.)

 Plate V, Figs. 4a, b.1923 Ptychaspis suni (Grabau) Sun, Bulletin of the Geological Society of China, Vol. II, No. 1-2 p. 98.
"Only the cephalon exclusive of the free cheeks is known but one free cheek, probably of this species is associated with this. Glabella with parallel sides, moderately convex, the greatest convexity apparently in the anterior lobe, though this is worn. Anterior and second lobe separated by a very faint furrow which is transverse; the width (longitudinal) of the two lobes combined being equal to the width of the glabella which in the specimens described is 5.75 mm . The second furrow is more pronounced, and more concave forward, the third or occipital furrow is strong and transverse. Length of entire glabella, 9 mm ; width of occipital ring 1.7 mm .
"Fixed cheeks half the width of the glabella, subsemicircular in outline, with a pronounced narrow palpebral lobe defined by a well-marked furrow.
"Entire surface of cranidium strongly pustulose except where worn.
"The associated free cheek has about the width of this fixed cheek at the center of the occular lobe. Behind this it curves outward at first obliquely then abruptly ending in a narrow gently tapering genal spine of subcircular section and forming nearly half the length of the cheek. Anterior portion terminating in an angle of about 45°. Outer edge of free cheek gently but regularly curving from anterior end to the tip of the genal spine.
"This species resembles Ptychaspis campe Walcott from the Upper Cambrian Ch'aumitien limestone of Shantung in the form of the glabella, fixed cheeks and palpebral lobes, and in the pustulose character of the carapace. The occipital furrow of our species is however very much deeper than in that species, being moreover continuous, while it is interupted in the center in the Shantung species. Our species is more over nearly twice as large as P. campe.
"Horizon and Locality: In the thin-bedded argillaceous limestone of Fêngshan formation of Yeh-Li, Luan-Hsien, Chihli, Collected by H. C. T'an. The species is named after Mr. Y. C. Sun, of the National Geological Survey.',

Ptychaspis acamus var. punctata Sun (var. nov.) Plate V, Figs. 5a-d.

1905 Ptychaspis acamus Walcott, Proc. U. S. Nat. Mus., Vol. XXIX, p. 69.
1913 Ptychaspis acamus Walcott, Research in China Vol. III, p. 179, pl. 16, Fig. 18, 18 a.
1923 Ptychaspis acamus Walcott, Sun; Bulletin of the Geological Society of China. Vol. II, No. 1-2 p. 101 (listed).

This variety is represented by six cranidia, and associated free cheeks. Glabella strongly convex on the frontal lobe, but moderately convex at the back; Subrectangular in outline with two sides parallel to each other; frontal margin of the glabella very straight and separated from the uniformly narrow border by a straight pronounced groove. Anterior lobe quadrate in form, marked by two pairs of short slightly impressed glabellar furrows; the posterior pair little longer than the posterior ones, extending backward and inward for very short distance; second lobe very narrow antero-posteriorly about as wide as the occipital ring and separated from the large longer anterior lobe by a broad strong backward arching furrow.

Fixed cheeks very narrow about the same width as the frontal border. Dorsal furrow deep and distinct.

Frontal border narrow elevated and straight, of uniformly width throughout.
Occipital ring narrow of uniform width throughout.
Surface strongly marked by very large pustules and also finely punctated.
As only the glabella of the type species is known, the detail comparison is not possible.

This variety differs from type species in the distinctly punctate character of the surface, straighter frontal edge of the glabella, in the narrower anterior lobe and in the free cheeks.

The general form of the cranidium and the pustulose and distinctly punctate character of the surface suggest Pt. angulata, but it differs greatly in the straightened margin of the frontal border instead of the angular one.

This variety was obtained from the highest cambrian beds of Chau-Mi-Tien five meters above the Orthoceras horizon. It is associated with Changia chinensis.

Measurements:-

	a	b		c
L.angth of glabella	8.8 mm.	8.0 mm.	7.5 mm.	12.0 mm.
Width of glabella	6.0 mm.	6.0 mm.	6.0 mm.	8.5 mm.
Width of anterior lobe	7.0 mm.	6.0 mm.	7.0 mm.	9.5 mm.
Width of second lobe	1.5 mm.	1.57 mm.	1.5 mm.	2.0 mm.
Width of occipital ring	2.0 mm.	$\ldots .$.	$\ldots .$.	$\ldots .$.
Width of frontal border	$\ldots \ldots$.	1.5 mm.	1.5 mm.	$\ldots .$.

Horizon and Locality: Uppermost Cambrian: from the upper limestone at Chau-Mi-Tien, Shantung. I tentatively put it in the Fêngshan horizon, separating these beds from the Chaumitien limestone. Collenterl by University Excursion of 1323. (Y. T. Chao, K. M. Wang, C. C. Yang and C. C. Tien Coll.)

Anderssonia Sun, subgenus of Ptychaspis (Subgenus nov.)

Cranidium gently convex, the width at the palpebral lobe and the length subequal. Glabella moderately convex, short, usually broad opposite the palpebral lobe by outcurving at the sides of the glabella, the front narrowly rounded. A very distinct backward-curving posterior furrow separates the anterior lobe and the narrow transverse lobe; the anterior lobe laterally extended at the basa becoming less so toward the front, marked by one pair of very short and distinct furrows extending obliquely inward and backward; the second lobe slightly narrow in the middle, becoming wide at the sides, separated from the occipital ring by a transverse occipital furrow; occipital ring little wider than the second lobe and of uniform width; dorsal furrows rounded, distinct and subparallel.

Fixed cheeks very narrow, about one half the width of the glabella, slightly convex; the facial suture first cuts the posterior border and then bends inward to the base of the palpebral lobe, curving around it and finally extending outward and forward, and then inward again to cut the frontal border; frontal limb narrow slightly convex separated from the narrow elevated frontal rim by a very narrow distinct transverse furrow, frontal rim very narrow, extended transversely with a uniform width throughout. Palpebral lobe large and long extending from the very faint anterior furrow of the anterior lobe nearly to the occipital furrow, and separated from the fixed cheeks by an incurving furrow.

Associated free cheeks large with slender genal spine.
An associated segment of the thorax, prolably of this subgenus is known. Axial lobe and pleural lobe subequal in length; axial lohe convex; pleural lobes of nearly uniform width throughout except the pleural end.

An associated pygidium transverse, with the narrow conical axis and flattened rnargins.

This new subgenus is included in the subfamily Dikelocephalina and is characterized by its slight, convex frontal limb, large and elongate palpebral lobes, narrow fixed cheeks and the narrow elevated frontal rim.

The barrow frontal limb, elongate palpebral lobe and the form of the glabella suggest the genus Conokephalinu, but the strong lateral furrows, absence of the palpebral ridge aur the kroad form serve to distinquish it.

It differs also from Ptychcospisi in the presence of the frontal limb and in the form of the glabella which is broad in the middle.

This new subgenus is named in honor of Dr. .J. ('. Andersson, who collected these specimens.

PTYChASPIS (ANDERSSONIA) FENGTIENENSIS Sun (subgen. and sp. nov.) Plate V, Fig. 7a-c

This species is represented by three fragmentary cranidia, and separated free cheeks, segment of thorax and pygidia associated with it.

The subgeneric description of Andersonia is based on this species and the specific name is derived from Fingtien where it was found.

Horizon and Locality: This species is associated with Pty. chinhsiensis, Pty. walcotti and Eoorthis shakuotunensis etc. in the Shakuotun limestone of Fêngtien.

Measurements:-		
Cephalon	7 a	7 b
Length of cranidium	6.5 mm.	4.5 mm.
Width of cranidium	6.5 mm.	5.5 mm.
Length of glabella	4.3 mm.	2.9 mm.
Width of glabella opposite the palpebral lobe	3.5 mm.	2.5 mm.
Width of anterior lobe (antero-posterior)	3.5 mm.	2.0 mm.
Width of second lobe	1.0 mm.	0.7 mm.
Width of occipital ring	1.1 mm.	0.9 mm.
Width of frontal limb	5.5 mm.	0.5 mm.
Width of frontal rim	0.6 mm.	0.5 mm.
Length of palpebral lobe	2.5 mm.	1.8 mm.
Pygidium (associated)	7 c	
Length	4.0 mm.	

Ptychaspis (Anderssonia) tani Sur (sp. nov.)

Plate V, Fig. 6.
This species is represented by one broken portion of the cephalon.
Glabella moderately convex; divided by two backward arching transverse furrows into one large transverse lobe and two narrow transverse lobes; the combined width of the two narrow transverse lobes being nearly as great as that of the anterior lobe. Occipital furrow distinct.

Fixed cheeks narrow, about one half the width of the glabella at the palpebral lobe; palpebral lobe very large, extending from near the anterior part of the glabella to the occipital furrow, and separated from the fixed cheeks by an infra-curving furrow. Frontal rim elevated and of uniform width, separated from the glabella by a broad concave limb.

Surface strongly marked by pustules and irregularly curving ridges but not punctate.

This species resembles both Pt．calyce Walcott and Pt．ceto Walcott in the transverse form of the anterior lobe，but differs greatly from both in having a very large palpebral lobe，narrow fixed cheeks and also in the presence of the frontal limb．

The large palpebral lobe and the pustulose character of this species suggest Pt． campe from Chaumitien limestone of Chau－Mi－Tien，but the distinct，continuous arching transverse furrow and the concave frontal limb serve to distinguish it．

This species is characterized by the transverse form of the anterior lobe，large palpebral lobe，concave frontal limb and pustulose and ridged character of the surfaces． It is named after Mr．H：C．T＇an，（譚錫疇）geologist of the Survey，in recognition of the geological work done by him in Shantung．

Measurements：－

Length of glabella	3.9 mm.
Width of Anterior lobe（longitudinal）	2.3 mm.
Width of second lobe	1.0 mm.
Width of third lobe	1.0 mm.
Width of frontal limb and rim combined	1.0 mm.

Horizon and Locality：－Upper Cambrian：from the Upper Cambrian limestone of Chau－Mi－Tien．Collected by University Excursion．

Genus Anomocare Angelin
 Anomocare flava Waleott

Plate V，Figs．8a－d．
19,6 Anomocare Aava Walcott，Proc．U．S．Nat．Mus．，Vol．XXX，p． 583.
1913 Anomocare flava Walcott，Research in China．Vol．III，pp．190－191，pl．18；figs．8；8a－c．
This species was found by Willis and Blackwelder in the Kichou formation of Shansi and very fully described by Walcott．In the collection from the Kaiping Basin it is represented by more than 50 individuals and certainly is one of the most common species in the Changhia formation of North China．It is associated with Dorypyge richthofeni，Solenopleura norlosu，and two species of Lisenina．

It is characterized by its quadrilateral cranidium，short and moderately convex glabella with slight indications of glabellar furrows，shallow occipital furrow，low and broad palpebral ridge，slightly convex，broad frontal rim，presence of the occipital node； and by a pygidium with a broad．planulate nargin and with a narrow convex axis， slightly segmented．

Measurements：－

Cranidium	8 a	8 b
Length of cranidium	6.0 mm.	5.5 mm.
Width of cranidium at palpebral lobe	6.2 mm.	5.6 mm.
Length of glabella	3.5 mm.	3.4 mm.
Width of occipital ring	1.0 mm.	1.0 mm.
Width of frontal liml）	0.4 mm.	0.4 mm.
Wirlth of frontal rim	1.0 mm.	1.0 mm.
Pygidium	8 c	8 m
Length	5.0 mm.	6.0 mm.
Width	8.0 mm.	9.5 mm.

Horizon and Locality：－Middle Cambrian：from the cliff limestone of Chêngshan， 8 li from Chao－Kuu－Chuang，Chihli．Collected by University Excursion （K．S．Hsu 徐光熙 Coll．）。

Genus Dolichometopus Angelin Dolichometopus deois Walcott

Plate V，Fig． 9.

1905 Dolichometopus deois Walcott，Proc．u．s．Nat．Mus．Vol．XXIX，p． 94.
1906 Bathyuricus asiaticus Lorenz，Zeitschr．deutsch geol．Gesellsch．，Vol．LVIII，pt． 2 p．73，PJ．V， fig．1－5．（species characterized and illustrated）

1000 Amphoton steinmanni Lorenz，idem．，Vol．，LVIII，pl．2，p．75，plate IV，figs．15－17．（Species characterized and illustrated）．

1913 Dolichometopus deois Walcott，Research in China，Vol．III，pl．21，figs．13， 13 a－d．，Plate 22， figures $1,1 \mathrm{a}-\mathrm{h}, 2,2 \mathrm{a}-\mathrm{b}$ ．

Dr．Walcott gives a full description of this species．
This species is characterized by its prominent glabella diverging anteriorly with three pairs of rather short，very faintly impressed furrows；the presence of a small backward pointing occipital spine；narrow fixed cheeks；long palpebral lobe；and short and slightly convex frontal limb．

Dr．Walcott compared this species with D ．srecicus Angelin and mentioned that this species differs from the latter in the greater convexity of the glabella，more convex frontal limb，and other minor details of the glabella and the fixed cheeks．

This species is repreconten by only one cranidium in the Luan－Chou（瀿州） material．Our specimens agrees closely with the type of the species figured by Walcott both in form and size．

Horizon and Locality：－Middle Cambrian：from Changhia limestone of Kwan－Hsi－Ying（關西營），Luan－Chou．Collected by Dr．J．G．Andersson．

Measurements：－

Length of cranidium	11.0 mm.
Width of cranidium at palpebral lole	9.8 mm.
Length of glabella	8.5 mm.
Basal width of glabella	-.0 mm.

Genus Illenurus Hall Illaenurus pagoda Sun（sp．nov．）

Plate V，Figs Tina－c．

Of this species only three pygidia are known．
Pygidium subtriangular in outline．uşually broader than long，moderately conrex．

Shell perfectly smooth without segmentation of the axis except at the frontal part where it is more strongly rounded．One specimen with a part broken away shows very slight axial segmentation in the cast of the interior．This may be one of Walcott＇s pecies．On account of the strong forward－projection，I refer it for the present，to a snew species－Illæmurus pagoda．

Three specimens measure respectively：length $7.5 \mathrm{~mm} ., 7.5 \mathrm{~mm} ., 8.0 \mathrm{~mm}$ ； width 10 mm ．， $10 \mathrm{~mm} ., 12.0 \mathrm{~mm}$ ．

Horizor and Locality：－Upper Cambrian：from the conglomerate limestone of Kao－Li－Shan，Tai－An，Shantung（Y．C．Sun Coll．）．

Several pygidia of this type have been obtained from the Fêngshan limestone of Chibli by Mr．H．C．T＇an．They may belong to this species but on account of their weat－ hered character precise identification is not possible．This species differs from the similar pygidia described loy Walcott mainly in the absence of distinct demarkations of the axis．

Genus Talanocephalus Sun (gen. nov.)

Cephalon semielliptical in outline, very transverse. The greatest convexity lies in the central posterior portion, sloping down both to the frontal margin, and to the antero-lateral angles.

Glabella truncato-conical, with broad base, the front about two-thirds of the basal width of the glabella; slightly contracted just opposite the palpebral lobes by a slight incurving of the sides. It is marked by two pairs of very broad shallow and short glabellar furrows in the form of shallow basin-like depressions, extending obliquely backward; A median longitudinal ridge extends from the frontal margin nearly to the occipital furrow. The occipital furrow is represented by one pair of broad lens-shaped depressions separated from each other by a broad space about equal in length to the depression.

Fixed cheeks narrow in the front and becoming very broad in the posterior parts. Dorsal furrows shallow and distinct; palpebral area at fixed cheek opposite the palpehral lohes moderately convex. Palpehral lobe small and situated nearly at the antero-lateral margin of the cephalon.

The facial suture cuts the frontal border and extends along the palpebral lobe and then backward and outward to the extremities of the postero-lateral limbs.

Postero-lateral limb triangular in outline and marked by a distinct shallow groove confluent with the dorsal furrow, and becoming gradually broader up to the pnsterolateral margin.

Surface marked by pustules visible under a lens, outer test not known.
This genus is distinct from any known in China and characterized by its semielliptical cephalon, truncato-conical glabella, marked by two pairs of broad shallow depressions and the shallow occipital furrow separated by a broad central space, and the large triangular postero-lateral limb.

Probably it represents one form of the order Proparia with extended posterolateral limbs.

This genus is represented by only one specimen, and associated with Kaolishania pustulosa, Mansuyia orientalis, etc.

Genotype: Taimoseflalus giaburi Sun.
The specimen representing this gems was obtained from Kao-Li-shan of the Tri-An region from which the generir name in given.

Taianocephalus grabaui Sun (gen. and sp. nov.)

Plate V, Fig. 11.
The generic description is based on this species.
This species is characterized by a large triangular postero-lateral limh, absence of the distinct frontal limb, the elevated palpebral area near the antero-lateral angle, and the truncato-conical glatella marked by a pair of glabellar clepressions and the occipital furrow in the form of very broad, shallow pits.

Thorax and pygidium unknown.
Measurements:-
$\begin{array}{lr}\text { Length of cranidium } & 12.0 \mathrm{~mm} . \\ \text { Width of cranidium at the palpebral lobe } & 12.0 \mathrm{~mm} . \\ \text { Length of glabella } & 9.0 \mathrm{~mm} . \\ \text { Anterior width of glabella } & 5.2 \mathrm{~mm} . \\ \text { Posterior width of glabella } & 8.8 \mathrm{~mm} . \\ \text { Width of postero-lateral liml, } & 11.0 \mathrm{~mm} .\end{array}$
This species is named in honor of Prof. A. W. Grabau, Chief Palæontologist of the Survey.

Horizon and Locality:- Upper Cambrian: Kaolishan limestone of Tai-An region (Collected by Y. C. Sun).

Genus WONGIA Sun (gen. nov.)
Cranidium subtriangular, exclusive of genal spine; glabella truncato-conical, moderately convex, not marked by glabellar furrows; occipital furrow very shallow and broad slightly arching backward. Occipital ring moderately convex, its transverse dimension about one half the length of the glabella and of about the same width throughout.

Fixed checks very broad, the greatest width of the fixed cheeks opposite the palpebral lobe is nearly equal to the frontal width of the glabella; they rise up moderately from the dorsal furrow to the palpebral lobe; dorsal furrow deep and distinct.

Frontal border with the same convexity as the fixed cheeks, with a regularly rounded frontal margin and separated from the glabella by a distinct frontal groove.

The course of the facial suture is rather remarkable, it curves first from the middle part of the frontal border with a regularly rounded are to the anterior part of the palpebral lobe, and curving around this extends outward and backward so as to cut the free cheeks from the genal spine of the cranidium.

The postero-lateral limb becomes abruptly depressed, forming a subtriangular area. Genal spine pronounced, long and slender extending outward at about an angle of 45° with the longitudinal axis and forming a part of the fixed cheeks.

Thorax, free cheeks and pygidia are not known.
Cranidium faintly marked by pustules under a strong lens.
Because this form has the genal spines or genal angles on the fixed cheeks, it belongs to the order Proparia.

The members of this order are very common from the Ordovician onwards but are rarely found in the Cambrian strata.

Dr. C. D. Walcott mentioned that two Chinese Cambrian genera-Damesella and Stephanocare-have the characters of the order Proparia. But in the typical form of this order, the genal spines and the genal angles coincide and form one part of the fixed cheeks. Probably Damesella and Stephanocare may belong to a suborder of the Proparia; but the genus Wongia is quite distinct and certainly belongs to the typical form of the order Proparia.

I take extreme pleasure in naming this new genus Wongia in honor of Prof. W. H. Wong, President of the Geological Society of China and Director of the national Geological Survey.

Genotype-Wongia triangulata Sun.

Wongia triangulata Sun (gen. sp. nov.)
 Plate V, Figs. 12a-b.

This species is represented by four individuals in one fossil band; only cranidia are known.

The description of the genus is lasal on this species and therefore nothing needs be added except the measurements of the type specimen.

Length of cranidium	2.8 mm.
Width of cranidium at the palpebral lobe	3.0 mm.
Length of glabella	1.5 mm.
Width of glabella at the base	1.4 mm.
Width of frontal border	0.8 mm.
Width of fixed cheeks at palpebral lobe	0.95 mm.

This species is characterized by its triangular cranidium, the long curved lateral spines and the course of the facial suture.

Horizon and Locality:- Late Middle Cambrian: from the thin platey limestone in Kushan shale of Lincheng, Chihli.

Collected by Y. T'. Chao and C.C. Tien.

BIBLIOM: $\mathrm{R} . \mathrm{PH} \mathrm{P}^{\prime}$

1. Bergeron, J. 1899:--Etude de quelques trilobites de Chine. Bulletin de la Société Géologique de France, 3d sér., Vol. 27, No. 5, Paris.
2. Dames, Wilitelm. 1883:-Cambrische Trilobiten von Liau-Tung. China, by Ferdinand von Richthofen, Vol. t.
3. Gottsche, C. 1886:-Geologische Skizze von Korea. Sitzungsberichte d. k. Preuss. Akad. d. Wiss. Berlin. Vol. XXXVI, pp. 9-11.
4. Kayser, E. 1883:-Cambrische Brachiopoden yon Liau-Tung. China, by Ferdinand von Richthofen, Vol. 4.
5. Lorenz, Th. 1904:-Ascosomaceæ, Eine Neue Familie der Siphoneen aus dem Cambrium von Schantung. Centralbl. f. Min. Geol. u. Pal.
fi. Lorenz, Th. 1905:-Beiträge zur geologie und Palæontologie von Ostasien unter besonderer Berücksichtigung der Provinz Schantung in China. /eitschrift der deutschen geologischen Gesellschaft, Bd. 57.
6. Lorfaz, Th. 1906:-Beiträge zur Geologie und Palæontologie ron Ostasien unter besonderer Berücksichtigung der Provinz Schantung in China; II; Palæontologischer Teil. Keitschrift der deutchen geologischen Gesellschaft, Bd. 58.
7. Nansuy, H. 1915:-Faunes Cambriennes du Haut-Tonkin. Mém. du Serv. Géol. de l'Indo-Chine, Vol. IV, fasc. 2.
8. Maxsuy, H. 1916:-Faunes Cambriennes de l'Extrême-Orient Méridional. Mém. du Serv. Géologique de l'Indochine, Vol. V, fasc. 1.
9. Mobfrg, J. C. and Segesberg, C. O. 1906:-Bidray Till Kännedomen om Cerato-pyge-Regionen. Meddelande Från Lunds Geologiska Fältlklubb. Serv. B. N: 02.
10. Monke, H. 1903:-Obercambrische Trilobiten von Yen-Tzy-Yai. Jahrbuch der Königlich-Preussischen Geologischen Landesandstalt und Bergakademie zu Berlin, Bd. 23, Hft 1, 1902. Beiträge zur Geologie von Schantung.
11. Rellich K. A. 1901:-The Cambrian Fauna of the Eastern Salt-Range. Memoirs of the Geological Survey of India, Palæontologia Indica, New Ser., Vol, 1, No. 1.
12. Rerd, F. R. C. 1906:-The Lower Palæozoic fossils of the Northern Shan States, Burma. Memoirs of the Geological Survey of India, Palæontologia Indica, New. Ser., Vol. 2.
13. Reed, F. R. C. 1910:-The Cambrian Fossils of Spiti. Memoirs of the Geological Survey of India, Palæontologia Indica, ser. 15, Vol. 7.

15．Schmint，Fr．1886：－Urber einige neue ostsibirische Trilobiten und verwandte Thierformen．Mélanges Physiques et Chimiques tirés du Bulletin de l＇Académie Impériale des Sciences de St．Pétershourg，Vol．12．§
16．Sun，Y．C．（孫雲鑄）192：：－Upper Cambrian of Kaiping Basin，Bull．Geol．Soc． China，Vol．II．
17．Sun，Y．C．（孫雲鑄）1993：－Upper Cambrian Fossils from Fêngtien．Ibid．
1s．Toll，E．vox．1899：－Beiträge zur Kenntniss des Sibirischen Cambriums．Mémoires de l＇Académie impériale dessciences de Sit．Pétersinurg，Sth ser．，Vol．8．No．10．§
19．IValcott，C．D．1905：－Cambrian Famas of China，Proc．U．S．Nat．Mus．Vol． XXIX．

2！．Walcott C．D．1906：－Cambrian Faunas of China，paper No．2，proc．U＇．S．Nat． Mus．Vol．NXX．

21．Walcott，C．D．1908：－Cambrian Brachiopoda：Smithsonian Miscellaneous Collections．Vol．I，No． 3.
22．Walcotr，O．D．1911：－－Cambrian Faunas of China．Smithsonian Miscellaneous Collections Vol．57，No． 4.

23．Wadcott，C．D．1912：－Cambro－Ordovician Boundary in British Columbia with Description of Fossils．Smithsonian Miscellaneous Collections．Vol．57．No． 7.
24．Walcott，C．D．1912：－New York Potsdam－Hoyt Fauna．Smithsonian Miscel－ laneous Collections．Vol．57，No．9．
20．Walcott，C．D．1912：－Cambrian Brachiopoda．U．S．Geological Survey． Monograph LI Part I \＆II．
20．Walcott，C．D．1914：－Dikelocephalus and other genera of the Dikelocephaline． Smithsonian Miscrllancous Collections．Yol．57，No． 13.
27．Walcott，C．D．1916：－（＇ambrian Trilobites．Smithsonian Niscellaneous Collec－ tions．Vol．（it，No．\therefore ．
2Я．Westergard，A．H．1909：－Studier öfer Dictyograptusskiffern Och Dess． Gränslager．Meddelande Fran Lunds Geologiska Fialtklubb．Ser．A．N：$\gamma 4$.
29．Woodward，H．1905：－Trilobites from Shantung．The Geological Magazine，New Series，Decade V．Vol．II．No．V．
30．Yabe，H．I．and Hayasaka，I．1920：－－Palæontology of South China．Tokyo Geographical Society．
81．毒地乙治 19240：一－大遇圆幅地質說明書

List of Localities referred to, arranged Alphabetically under Provinces.

[^52]

EXPLINATION ()F

PLATE I
(iv) 91

PLATEI．

Cambrian Brachiopoda etc．from Morth China．Drawings b！／K．C．Liu（劉光誠）
Fig．1．Clonograptus？cambria Sun p． 151 one stripe $\times 3$Upper Cambrian，Kaolishan limestone，Kao－Li－Shan，Tai－An，Shantung（Coll．K．W．Hsu．Holotype，（r．S．Ch．Cat．No．629）．
Fig．2．Climatichmites moulieui Sun p． 162 an impression of the trails on the under side of the rock，show－ing the character in relief．Lower Cambrian，Manto shale．Lman－Chou，（＇hihli（Coll．F．F．Mathieu．Holotype，（r．S．Ch．Cat．No．630）．
Fig．3．Obolu．（Westonia）leei Sun． 173a exterior of the ventral valve $\times 3$3 b counter－part of the same $\times 3$3c portion of the surface character S times enlarged．Cambrian，from purple shale of Luan－Chou，Chihli（Coll．F．F．Mathieu．Holotype，Cr．S．Ch．Cat．No．631）．
Fig．4．Obolus mollisonensis Walcott（？） p． 17ta crushed valve $\times 4$ th crushed valve of another individual $\times 4$Early Upper Cambrian，Changshan Shale，Jen－Chuang，Luan－Hsien，Chihli（Coll．A．W．Grabau，F．F．Mathieu，（r．S．Ch．Cat．No． 632 a，b）．
Fig．5．Obolus limyuensis Sun p． 185 exterior of ventral valve $\times 6$Lower Cambrian，Manto shale，Hung－Shan－T＇ou，Lin－Yu－Hsien，Chihli（Coll．University Expedition．Holotype，（r．S．Ch．Cat．No．633）．
Fig．6．Ibolus taionensis Sun p． 19
6a one portion of limestone with sueral individuals of this species， natural size（Paratypes and Holotype）．
6 b one valve enlarged $\times 5$ ．（Holotype）．
Upper Cambrian，Kaolishan limestone，Kao－Li－Shan，Tai－in， Shantung（Coll．Y．U．Sun．Cotype，（x．S．Ch．Cat．No．684）．
Fig．7．Obolus luanhsiensis Craban． p． 19Ta exterior of a ventral valve \times ？7b exterior of another valve $\times 3$7c exterior of the crushed ventral valve $\times 3$Upper Cambrian，Fengshan limestone，Yeh－Li，Luan－Hsien，Chihli（Coll．H．C．Tan．Cotypes，G．S．Ch．Cat．Nos．635，636，637）．

PALEONTOLOGIA SINICA

Fig. 8. Lingulella dimorphu Sun p. 20
8a exterior of the shell from Luan-Chou $\times 3$ (Holotype).8 b exterior of the shell from Yeh-Li $\times 3$ (Paratype).8c portion of the shell of Fig. 8a enlarged $\times 8$, showing its undulatinggrowth lines.Upper Cambrian, from Fêngshan limestone (Coll. F. F. Mathicuand Y. C. Sun. G. S. Ch. Cat. Nos. 638, 639.).
Fig. 9. Lingulella Tiui Sun p. 219 a exterior of a ventral? valve $\times 6 ; \quad 9 \mathrm{~b}$ exterior of a dorsal? valve $\times 0$$9 c$ exterior of another ventral? valve $\times 6$Cambrian from purple shale of Luan-Chou, Chihli (Coll. F. FMathieu. Cotypes, G. S. Ch. Cat. Nos. 640, 641, 642.).
Fig. 10. Lingulella kayseri Grabau p. 2210a exterior of a characteristic shell $\times 3$10b exterior of a slightly larger shell $\times 3$10c exterior of an imperfect shell $\times 3$Upper Cambrian, Fêngshan limestone, Yeh-Li, Chihli (Coll. H. C.T'an. Cotypes, G. S. Ch. Cat. Nos. 643, 644, 645.).
Fig. 11. Acrothele cheni Sun p. 23
11a external mold of a crushed valve $\times 2$
11 b an imperfect crushed valve $\times 2$ (the figure is drawn somerwhat too narrow).
Late Lower Cambrian, from Manto Shale, Chêng-Shan, Luan-Hsien, Chihli (Coll. S. Chen. Cotypes (I. S. Ch. Cat. Nos. 646, f47.).
Fig. 12. Nissusia hayasakai Sun.p. 23
12 exterior of the brachial valve $\times 3$
Middle Cambrian, from Changhia limestone, Chêng-Shan, LuanHsien, Chihli (Coll. K. S. Hsu. Holotype, (r. S. Ch. Cat. No. 〔.ť))
Fig. 13. Eoorthis shakuotunensis Sun p. 24
13a exterior of a pedicle valve $\times 2 \frac{2}{2}$
13 b interior of another pedicle valve $\times 2$
Upper Cambrian, from Shakuotun limestone, Chin-Hsi-Hsien, Fêngtien (Coll. J. G. Andersson. Cotypes, G. S. Ch. Cat. Nos. (i49, (650.).
Fig. 14. Syntrophict orthiw Walcott p. 25
14a exterior of the pedicle valve $\times 5$
14 b interior of the pedicle valve $\times 3$
Upper Cambrian, Kaolishan limestone, Kao-Li-Shan, Tai-An, ShanTung (Coll. Y. C. Sun. Plesiotypes G. S. Ch. Cat. Nos. 651, 652.).

EXPLANATION OF

PLATE II

(iv) 95
Platte il．
＇ambrian Trilobites from North China．Drawings by K．C．Liu（劉光誠）
Fig．1．Agnostus cyclopygeformis Sun． p． 26
1a cephalon $\times 4$1 c, ，$\times 4$1e pygidium $\times 3$$1 \mathrm{~g},, \quad \times 5 \quad 1 \mathrm{~h},, \quad \times 5$Upper Cambrian，Kaolishan formation，Kan－Ti－Shan，Tai－In，Shan－二人）
Fig．－．Agnostus hoi Sun p． 282a－b rephala $\times 8$2c－d pygidia $\times 6$ ，Upper Cambrian，Changshan formation，Jèn－Chuang，Luan－Hsien，Chihli（Coll．A．W．Grabau，F．F．Mathieu andY．C．Sun．Cotypes，G．S．Ch．Cat．Nos．513，514，515，516．）．
Fig．3．Drerymyle richthofeni Dames p． 29
3a cranidium of granulated surface $\times 2$
3 b cranidium of granulated surface $\times 1 \frac{1}{2}$
3c pygidium with very cylindrical axis $\times 2$
3 d pygidium with very cylindrical axis $\times 3$Middle Cambrian，Changhia limestone，Chêng－Shan，Chao－Kou－Chuang，Chihli（Coll．K．S．Hsu 徐光熙 G．S．Ch．Cat．Nos．517，518，519，520．）．
Fig．4．Teinistion subconica S＇un p． 31
4 fragmentary cranidium $\times 7$
Middle Cambrian，Kushan formation，Lin－Cheng，Chihli（Coll．Y．T． Chao \＆C．C．Tien．Holotype，（G．S．Ch．Cat．No．521．）．
Fig．5．Stephanocare richthofeni Monke． p． 32
5 cranidium $\times 3$
$5 b$ associated hypostoma $\times 5$
5 c small pygidium \times ．
Niddle Cambrian，Kushan formation，Lin－Cheng，Chihli（Coll．Y．T．
Chao \＆C．C．Tien，G．S．Ch．Cat．No．522．）．

PALIEONTOLOGIA SINICA

Fig. ©. Blaclwelderia sinensis var. linchengensis Sun p. 33
6a fragmentary cranidium $\times 2$
6 b associated pygidium probably of this species $\times 3$
6 c cranidium $\times 2$ 6 d cranidium $\times 2$Middle Cambrian, Kushan formation, Lin-Cheng, Chihli (Coll. Y.
T. Chao \& C. C. Tien. Cotypes, G. S. Ch. Cat, Nos. 523 a-b 524, 525).
Fig. 7. Blackwelderia tieni Sun p. 36
Ta fragmentary cranidium $\times 2$
7b associated free cheek $\times 2$
7 c associated pygidium $\times 2$
Middle Cambrian, Kushan formation, Lin-Cheng, Chihli (Holotype
G. S. Ch. Cat. No. 526.).
Fig. 8. Blackwelderia gigas Sun p. 378 a large pygidium, natural size.Late Middle Cambrian, Kushan formation, Ku-Shan, Shantung.
(Coll. C. C. Tien \& Y. T. Chao. Holotype, G. S. Ch. Cat. No. 527.).
Fig. 9. Damesella blackwelderi var. minor Sun p. 38
9 a cranidium $\times 4$ 9 b cranidium $\times 6$Middle Cambrian, Changhia limestone, Chêng-Shan, Chihli (Coll.K. S. Hsu. Cotypes G. S. Ch. Cat. Nos. 528, 529.).9c (D. blackwelderi) Natural size, for comparison, Kushan form-ation of Shantung. Cat. No. 530.)
Fig. 10. Ptychoparia fongi Sun p. 40
10 a cranidium $\times 3$ 10 b cranidium $\times 3$
Late Lower Cambrian, Manto formation, Chêng-Shan, Chihli(Coll. Y. C. Sun \& S. S. Yoh. Cotypes, G. S. Ch. Cat. Nos. 531, 532.) .
Fig. 11. Ptychoparia leichuangensis Sun p. 41
11a cranidium $\times 10$ 11b cranidium $\times 8$
Late Lower Cambrian, Manto Shale, Lei-Chuang, Luan-Chou (Coll.
F. F. Mathieu. Cotypes, G. S. Ch. Cat. No. 533, 534.).
Fig. 12. Ptychoparia yohi Sun p. 42
12 cranidium $\times 3$Late Lower Cambrian, Manto Shale, Chêng-Shan, Chao-Kou-Chuang, Chihli (Coll. Y. U. Sun. Holotype, G. S. Ch. Cat, No. 535.) .

EXI'LANATION (OF

PLATE HI

(iv) 99

PLATE III．
Cambrian Trilobites form North China．Dianings by K．C．Liu（劉光誠）
Fig．1．I＇tychoporiu（Emmerichella）chengshanensis Sun
1 a cranidium $\times 4 \quad 1$ b cranidium $\times 8$
Late Lower Cambrian，Manto shale，Chêng－Shan，Chao－Kou－Chuang， Chihli（Coll．Y．C．Sun．Cotypes G．S．Ch．Cat．Nos．536，537．）．

Fig．2．Changshania c＂mita Sun

$2 a$ cranidium $\times 2$
\because ceranidium \times ；
2 e hypostoma $\times 3$
2 g pygidium $\times 4$
2 i pygidium $\times 3$
$\because \mathrm{k}$ free cheek $\times 2$
Early Upper C＇ambrian，Ohangshan Shale，Jên－Chuang，Chan－Kou－
Chuang，Chihli（Coll．A．W＇．Grabau．F．F．Mathieu \＆Y．C．Sun．＇otypos， G．S．Ch．Cat．Nos． $538,539,540,541,542,543,544,545,546,54,54 \%$.$) ．$

Fig．3．Changshania！trumeth sum p． 46

3 cranidium $\times 3$
Warly Ypper Cambrian，Changshan shale，Jên－Chuang，Chao－Kou－ Chuang，Chihli（Coll．A．W．Grabau．Holotype，（r．s．Ch．Cat．No．54！．）．
Fig．4．Sonokephalium lwipin！ensis Sun．
4 crani，lium $\times 3$
4h ond fragmentary segment of thorax $\times:$
Late Lower Cambrian，Minto shale，Cheng－shan，Chao－Kou－ Chuang，Chihli（Coll．H．T．Yu．Holotypes，G．A．Ch．Cat．Nos．iso，isi．）．
Fig．5．Conokeplatinu ！／erardi Sun p． 48
Ta fragmentary cranidium $\times 3$（Paratype）
5h，cranidium $\times 2$（Holotype）
is fragmentary cranidium $x: 2$（Paratype）
Late lower cambrian，Manto shale，Chêng－אhan，Chao－Kuo－Chung，

Fig．6．Ciepricellıhи：sp．． 49
© pygidium $\times 4$.
Middle Cambrian，Changhia limestome，Cheng－Shan，Chao－Kou－ Chuang，Chihli（Coll．K．S．H：u，G．N．Ch．Cat No．555．）．

PALFONTOLOGIA SINICA
Sun－Cambrian Faunas of North China
Pl．III．

中國北部寒武紀動物化石 孫 雲 鐴

Fig. 7. Junsuyia orientulis (Grabau) Sun. .p. 50

7a cranidium $\times 2 \quad$ Th cranidium $\times 2$
7 c cranidium $\times 2 \quad$ Td cranidium $\times 2$
7 f pygidium $\times 2$ Tg pygidium $\times 2$
7 h pygidium $\times 2$
Late Upper Cambrian, Kaolishan formation, Kao-Li-Shan, Tai-An, Shantung (Coll. Y. O. Sun. Cotypes (r. S. ('h. Cat. Nos. 556, 557, 558, 559, 560, 561, .ifo.).

7 i weathered pygidium $\times \underset{\sim}{2}$
7j weathered pygidium $\times 2$
Late Upper Cambrian, Fêngshan limestone, Yeh-li. Ma-Chia-Kou, Chihli (Coll. H. C. T'an. 'Types of Cerctopy!fr orientatis Crabau. G. S. Ch. (at. Nos. 563, 564.).

Fig. 8. Kaolishania pustulosa Sun
p. 53

8a cranidium $\times 2 \quad 8 \mathrm{~b}$ fragmentary cranidium $\times 2$
Sc free cheek $\times 2$ 8d free cheek $\times 2$
Se pygidium $\times 2$ \&f pygidium $\times 2$
Sg pygidium $\times 2$ sh pygidium $\times 2$
Upper Cambrian, Kaolishan limestone, Kao-Li-shan, Tai-an, ShanTung (Coll. Y. C. Sun \& Class 1923, N. U. P. Cotypes, G. S. Ch. Cat. Nos. $565,566,567,568,569,570,571,57 \geq$.$) .$

EXPLANATION OF

PLATE N

plate ivCambricu Triluhites from North Chinu．Hating：l！！K．（．Lizu（劉光誠）
Fig．1．Listmin？Insuchiuthtumgonsix Sum p． 54
1a cranidium \times ：？ 1b cranidium $\times 5$Middle Cambrian，Changhia limestone，Chêng－Shan，Chao－Kou－（＇huang，Chihli（Coll．K．S．Hsu．Cotypes G．S．（＇h．Cat．Nos．5：：3，574．）．
Fig．2．Lisania rectumularix．Sun p． 55
2a cranidium $\times 6$ 2 b cranidium $\times 1 ;$Middle Cambriau，Changliir limestone，Chêng－Sh：m，Chao－Kuo－Chuang，Chihli（Coll．K．S．Hsu．Cotypes G．S．（h．Cat．Nos．．75，576）．
Fig．3．Solenopleura nodosu Sun p． 563 a cranidium $\times 2$（Holotype） 3 b cranidium $\times ?$（Paratype）Middle Cambrian，Changhia limestone，Chao－Kou－Chuang，Luan－Hsien，Chihli（Coll．C．C．Yu 俞建竟，（t．S．Ch．Cat．Nos．5－7．578．）．
Fig．4．Chmmgin lutith Walcutt p． 54ta cranidiun $\times 2$ 4t，cranidium $\times: ;$ te cranidium $\times 3$$4 d$ cranidium $\times 3$ 4e hypostoma $\times 2$Upper Cambrian，Kaolishan formation，Kao－Li－Shan，Tai－An，Shantung（Coll．Y．C．Sun and claws 1923 of N．U．I＇．Cat．Nos．．ir9， 580.581，252，583．）．
Fig．．j．Chamyia chinensis Sun p． 60
in cranidium，natural si\％in cranidium $\times \ddot{2}$ ix cranidium $\times 2$in free cheeks，natural siz，the free cheeks，natural sizeif free cheeks $\times 2$ Sy fragmentary pygidium，natural size．Upper Cambrian，from upper limestone of Chau－Mi－Tien，Shantung587． $24,589,590$.$) ．$
 p． 63
6a cranidium $\times \underset{\text {－（6b cranidium } \times \underset{~}{2}}{ }$
6c cranidiun $\times \underline{2}$ f，d associated cheek，natural size．
Uppermost Cambrian，Kadishan formation，Kao－Li－Shan，Tai－An， Shantung（Coll．Y．C．＇山un．Cotypes，G．S．Ch．Cat．Noss．591，592，593， 554．）．

中國北部寒武紀動物化石 孫 雲 鑄

Fig. 7. Quadraticephalus.' comertes sun. .p. 63

7 fragmentary cranidium $\times \underline{2}$
Uppermost C'ambrian, Kaolishan formation, Kao-Li-Shan, Tai-An, Shantung (Coll. Y. C. Sun. Holotype, G. S. Ch. Cat. No. .̄95.).

Fig. 8. Ptychaspis chinhsiensis Sum p. 64

8a broken cranidium $\times 3 \quad$ Sb broken cranidium $\times 2$
Sc broken cranidium $\times 1^{\frac{1}{2}} \quad$ 8d associated hypostoma $\times 3$
Se associated free cheek $\times 3 \quad$ Sf associated pygidium $\times 3$
Upper Cambrian, Shakuotun limestone, Sha-Kuo-Tun, Chin-HsiHsien, Fêngtien (Coll. J. G. Andersson. Cotypes G. ․ Ch. Cat. Nos. 596, $597,598,599,600,601$.$) .$

EXPLANATION OF

PLATE V

(iv) 107
PLATE V．
Cambirin Trilobites from North（Mina．Dramings b！K．C．Liu（劉光誠）
Fig．1．Ptychaspis angulata var．chinensi：Sun p． 67
1a cranidium $\times 3 \quad 1$ h cranidium $\times 3$Uppermost Cambrian，Kaolishan formation，Kao－Li－Shan，Tai－An，Shantung（Coll．Y．C．Sun．Cotypes，G．S．Ch．Cat．Nos，602，603．）．
Fig．2．I＇tuchuspix wulcotti Mansuy p． 188
\because weathered cranidium $\times \because$Upper Cambrian，Shakuotun limetone，Sha－Kuo－Tun Chin－Hsi－Hsien，Fêngtien（G．S．Ch．（＇at．No．604．Collected ly I）r．J．（r．Andersson）．
Fig．3．It！phrspis subglobosa（irabau． p． 72
3a weathered cranirlium，natural size（Holotype）．Upper C＇ambrian from Fêngshan limestone，Yeh－Li，Chihli（Coll．
H．C．T＇an，G．s．Ch．Cat．No．r，is．）．St cranidium $\times 1 \frac{1}{2} \quad$ Sc cranidium $\times 3 \quad$ Sel cranidium $\times 3$Upper Cambrian，Kaolishan formation，Kao－Li－shan，Tai－An，Chihli（Coll．Y．C．Sun，Plesiotypes G．S．C＇lı．Cat．Nos．（6）G，6（f，G0s．）．
Fig．4．Ptyrluspis sumi Grabau p． 75
ta crushed cranidium $\times 2 \quad$ IT，asociaterl free cheek $\times 3$Uper Cambrian，Fêngshan formation，Fêng－Shan，Yeh－Ii，Chihli（Coll．H．C．T＂an，Holotype（r．S．Ch．Cat．Nus．Gon．）．
Fig．－．I＇tychuspis acamens var．I＂moututu sun p． 76Ja crushed cranidium $\times 2 \quad$ ib crushed cranidium $\times \because$ie crushed cranidiam $\times 2 \quad$ Fd crushed cranidium $\times 2$Upper Cambrian，from the Upper limestone of Chau－Mi－Tien，Shan－tung（Coll．National University Excursion．Cotypes，（i．A．C＇h．C＇ilt．Nos．$610,611,612,(618,614).$.
Fig．6．I＇tychaspis（Anderssonia）tani Sun． p． 79
f．cranidium $\times 5$Upper Cambrian，from the highest zone of Chau－Mi－Tien．（Collectedby National University Excursion．Holotype，G．S．Ch．Cat．No．615．）．
Fig．7．Ptychaspis（Anderssonia）fingtienensis Sun p． 78
Ta cranidium $\times 4$ Tb cranidium $\times 3$ ic as，ociated pygidium $\times G$

PALEONTOLOGIA SINICA

中國北部寒武紀動物化石
孫 雲 鏜

Upper Cambrian，Shakuotun limestone，Sha－Kuo－Tun，Chin－Hsi－ Hsien，Fêngtien（Coll．J．G．Andersson．Cotypes，G．S．Ch．Cat．Nos．616， 617，618．）．
Fig．8．Anomocare flava Walcutt．
Sa cranidium $\times 4 \quad 8 b$ cranidium $\times 4$
8c pygidium $\times 4 \quad$ 8d pygidium $\times 4$
Middle Cambrian，Changhia limestone，Chêng－Shan，Chan－Kuo－ Chuang，Chihli（Coll．K．S．Hsu．G．S．Ch．Cat．Nos．619，620，621，622．）． ．p． 80

Fig．9．Dolichometopus deois Walcott．．p． 81
9．cranidium $\times 2$
Middle Cambrian，Changhia limestone，Kwang－Hsi－Ying 關西營 Luan－Chou，Chihli（Coll．J．Cr．Andersson，（t．S．Ch．Cat．No．623．）．

Fig．10．Illienurus pagoda Sun．．p． 82
10a pygidium $\times 3$ 10b pygidium $\times 3$ 10c pygidium $\times 3$
Upper Cambrian，Kaolishan formation，Kan－Li－Shan，Tai－An， Shantung（Coll．Y．C．Sun．Cotypes C．S．Ch．Cat．Nos．624，525，626．）．

Fig．11．Tuianocephalus grabui Sun p． 84

11 cranidium $\times 1 \frac{1}{2}$
Upper Cambrian，Kaolishan limestone，Kao－Li－Shan，Tai－An，Shan－ tung（Coll．Y．C．Sun．Holotype，（r．S．Ch．Cat．No．（i27．）．

Fig．1こ．Wongia triangulata Sun． p． 85

12a cranidium $\times 7$（Holotype，G．S．Ch．Cat．No．628a）．
12 b associated cranidium $\times 8$（Paratype，G．S．Ch．Cat．No．628b）． Late middle Cambrian，Kushan formation，Lin－Cheng，Chihli （Coll．Y．T．Chao and C．C．Tien．）．

ERrATA.

Page 8 line 34 for Dolinometopus read Dolichometopus
Page 12 line 4 for Brachipoda read Brachiopoda
Page 12 line 7 add side heading Trilobita
Page 13 line 24 add (Anderssonia) after Ptychaspis
Page 14 line 24 for chinhsihsiensis read chinhsiensis
Page 16 line 21 for 8 read 5
Page 23 line 23 for middle read Lower
Page 23 line 23 for Changshan read Manto
Page 27 line 5 for furrow read furrows
Page 27 line 20-31 for length read width
Page 33 line 8 for deviling read dividing
Page 37 line 19 for length read width
Page 44 line 32 for two-third read two-thirds
Page 48 line 25 for Shantung read Chihli
Page 49 line 19 for 6 a , 6 b , (ic, read $5 \mathrm{a}, 5 \mathrm{~b}$, 5 c .
Page 50 line 19 add (sp.nov.) after sun
Page 56 line 11 for wider read narrower
Page 57 line 28 for dupwar read downward
Page 59 line 24 for palpebra read palpebral
Page 68 line 32 for 2^{2} read 2
Page $7 \pm$ line 9 for Krail read Kroli
Page 82 line 20 for pecies read species
Page 82 line 21 for snew read new
Page $8 t$ line 9 for one read two
Page 92 line 8 add natural nize after relief

3．Orthnceras nanshanensis Sun

$$
\begin{aligned}
& \text { 1. Drepanura premesnili Bergeron } \\
& \text { 2. Drepanura ketteleri Monke } \\
& \text { 3. Agnostus douvilli Bergerou } \\
& \text { 4. Liostracina krausii Monke } \\
& \text { 5. Shantungia spinifera Walcott } \\
& \text { 6. Agnostus kushanensis Walcott }
\end{aligned}
$$

中
國
古
生
物
溒

12

$\pitchfork 1$

$\pitchfork 1$	
	－ds әлroomouz $\%$
	－ds smantantil 9
	以橶い！
	（黄娄）neqexy sisuatsquent snfoqo II
	滥行鹤
	－ds styzaoory $\%$

11）搠长 2．Solenopleura nodosa Sun（锊） 3．Anomocare flava Walcott 4．Lisania rectangularis Sun（填嘲） 5．Lisania？hsuchiachuangensis Sun（䆏） 6．Damesella blackwelderi var．minor Sun（殹） 7．Dorypyge richthofeni Dames 8．Dolichometopus deois Walcott 9．Crepicephalus sp． 浱叫政

楼四蝶

 $77000^{3} \mathrm{M}$ suətro sith Ptychaspis sumi Grabau Ptychaspis subglobosa Grabau Anomocare punctatus Sun Ceratopyge orientalis Grabau

$=$ Mansuyia orientalis (Grabau) Sun
$\stackrel{\rightharpoonup}{2}$
uns s!suəumqonyৃeपุs sịquoor -
 1141

 Orthis sp.
Acrothele sp.
Obolella gracilis Lorenz

$$
\begin{aligned}
& \text { uns s!suə!squ! } \\
& \text { 地- }{ }^{2}
\end{aligned}
$$

$=$ Anomocarella baucis Walcott

$=$ Agnostus latelimbatus (Lorenz) Walcott
$=$ Acrothele matthewi eryx Walcott
Saruba SISUวuTyo snłsouigy:=
ン
A. parvifrons Linnarsson
Anomocare commune Lorenz
Anomocare ovatum Lorenz Olenoides (Doryprge) richthofeni (Danes) Lorenz
Agnostus fallax var. Laiwuensis Lorenz

$=$ Dorypyge richthofeni Dames, Wal.
$=$ Agnostus chinensis Dames
$=$ A. cf. parvifrons Limarson

Hin

泰月荈流泰民間是

Founder and Patron of
 Palæontologia Sinica中國古生物詰提倡及贊助人

FOUNDER
提倡人
Ivar Kreuger Sweden
克魯格 瑞典
PATRON
赞助人
Sinyuan Daw King Chekiang
金 蒸沁園浙江呉興前清中書科中書
中 $\begin{array}{r}\text { 中 } \\ \text { 華 } \\ \text { 民 } \\ \text { 國 } \\ \text {＋} \\ \hline \text { 年 } \\ \text {＋} \\ \hline \text { 月 } \\ \hline\end{array}$

古生北

第物誌
四 ft
古
生
物
第誌
四
册
種
第
躆

[^0]: *) Crick loc. cit p. 483.
 **) Beitritire zur Geologie und Palieontologie von Ostasien, pt II pp $\$ 1-90 \mathrm{pl} \mathrm{V}$.
 ") For stratigraphic studies the Yangtz-kiang forms the approximate dividing line between North and South China.

[^1]: *). It gives me great pleasure to acknowledge the uuform courtesy and helpfulnfss of the officers of the various mines notably M. Alesandre Doquier Chief of Staff Tangshan, M. Maurice Derriduee Chief engineer of the Chaokouchuang mines and Mr. Ch. P. Huang, Chief engineer of the Machiakou mines. To Messrs. Matthieu, Gerard and C. H. Huang we are also greatly indebted for efficient aid and guidance in our field-work, and to the first for placing at my disposal collections previously and since then made by him, especially in Shantung, and from the Iower Ordorician beds of the Chingwangtao region of east Chihli, this lower fauna having been discovered by him. To Mr. W. S. Nathan president of the Kailan Mining Administration special acknowledgments and thanks are gladly tendered for his courtesy in giving us unlimited oppoztunity to study the mines and properties in the Kaiping basin under his control, and for putting at our disposal housing accomodations, transportation and mechanical assistance.

[^2]: *) This includes two varicties. Two others have been tentatively referred to known species.
 **) This will be described by the author in the Bulletin of the Geological Survey.

[^3]: *). The presence in this limestone in Ehantung of Dalmanclla ef testulinaria and Plectambonites sericeus as recorded by Crick, Lorenz and Frech also suggests early Trenton, while Maclurea logani recorded by Iorenz again suggests the Black River, being known from that horizon in Canada as well as from Europe.
 ${ }^{* *}$). The stratigraphy of this region will be more fully discussed by Dr. Matthieu in a forthcoming Bulletin of the Survey.

[^4]: *) In last part only.

[^5]: * It is desirable to define the various terms here used somewhat more precisely, since there is some variation in their use. Spipe is used in the usual sense for the spirally cuiled portion of the shell above the last or bodyrulurl. The angle formed by the convergent sides of the spire is the "inic'll cugle, the body-whorl bejng excluded where this enlarges more rapidly, or is separated from the earlier whorls. W'horl is used in a general sense for the elements of the spire and for the last or body-whorl. Tolution is used more precisely for a complete coil, indicated by the lines of growth in juxtaposition on the tro adjoining whorls. When the number of whorls is given it refers to the number of coils in the shell counted upwards from the body-whorl. In speaking of the first, second, third culution, or when the statement is made, that such and such a change occurs at the end of $31 / 2$ volutions, or 4 volutions etc. the measurement is always from the apical point or mondonch of the shell, the first volution being completed by the line of growth opposite (next below) the apical point. The whorls are separated by the wulures. A sutural shelf is a flattening of the succeeding "horl below the suture. The sulsmumblipion or corimulies at the upper edge of the next lower whorl, next below the suture. A sullethl cumel is a depression at the suture, a sunken sutural shelf. Spiralis are fine revolving ridges, a mint is a thickened revolving ridge, which may be a single thick spiral or composed of several spirals. It generally forms an cumulution in the shell whorl. The strong angulation of the whorl next below the suture, is called the shoulder 'engle, and is measured in degrees. It is often emphasized by the prijhtrinl curinn, and forms commonly the most salient feature of the whorl. The space between the shoulder angle aud the suture is the shomider and it is usually flat or gently concave or faintly convex. It may slope upwards as in L"川hmpirt, at right angles to the axis of coiling as in ophileta and Mrelluece or downward, and inwards, when the spire is chpressel, as in Eccylimpterts. The part below the shoulder angle is the borly of the whon and jt may contain one or more lourt curime each forming as a rule an angulation. They are numbered from the shoulder angle downwards (forvards). liths or cortir are transverse rounded elevation marking temporary expansions of the whorl followed by an equal contraction. If the expansion is suddenly abandoned, so as to leave an open forward-pointing or flaring portion of lip exposed, this is called a cmil. It may be spinose, and it may be confined to a single spine at the shoulder angle.

 The degree to which the next whorl covers the preceding is called the amount of rmbracing of the whorls. When the amount is small, so that most of the preceding whorl shows, the spire is said to be lowse-coilorl, if much is covered, it is rlost-roildod. If the whorls become separated from the earlier ones they are said to be lunly cuild. Lax coiling begins with the formation of a sutural canal or channel. In trochiform shells the embracing extends to the shoulder angle. In a fer forms with sunken spire, it may extend above the shoulder angle.

[^6]: ceres), below the final thick-walled sheath of the adult living-chanber. At least one of these in the prescal specimen, is thick. walled and of well defined character.

[^7]: * See the foot-note on p. 33

[^8]: * Several yecies occur in the Ordopician rocks of south China. These will be described in a futur number of this publication.

[^9]: * In the locality from which these specimens were obtained, they are restricted to the lower division, while Piloceras occurs in the higher division, with one doubtful representation in the lower.

[^10]: * The shell is oriented with the apex to the olserver, the aperture or anterior end pointing away, and the ventral side, (i.e. flattened side of endocone), downwards. The risht and left sides then correspond to the observer's right and left hand. In the figures on Plate II the position is reversed, so as to show the structure more clearly; therefore the referrnces must also be reversed from those bere given.

[^11]: * R. Ruedemann - Cephahopoda of the Beckmantown and Chazy formations of the Champlain Region. New
 Annual Report State Palantolugist N. I. 1903, N. Y. State Museum Bull. $£ 0$ p. esfo. I regret that I have not had a ailable, until after this payer was in type, this most searching study of the structure of the primitive "ephalnpeda by this eminent paleontologist, and that my reference coult, therefore, not he as extenvive as was desirable.

[^12]: * Ruedemann, loc. cit. 1906 p. 415 , fig. 4.

[^13]: * Bull. Geul. Soc. America Vol. XXX, pp. 148, 149, 1919.

[^14]: * See Grabau, A. IT., Bull. Geol. soc. Amer. Vol. 27, pp. 568-570, 1916.

[^15]: * Grabau loc. cit. The genus occurs on Bear Island and King William I.and, in the arctic region.

[^16]: Whether thre are filled with secondary inpmits or empty. These nummenti may be compared to the individnal checker-

[^17]: * It is a noteworthy fact, that the originaliy rmpty portions of the ramern are amost always filled with the rock matrix (generally in our specimens a calcilntyte) in which the shell as a whole is embedded. It dues not seem likoly that the lime-mud, fine though it was, could filter through the "endosiphuncle" and the radiating tubules into these camore (n mod-filled tubules have been observed), and we therefore must conclude that it entered through fractures in the ruter shell, fumb ind doubt liy crushing after burial. In some cases the shell is seen to have been worn away before final burial, and in such specimens of course all empty paces were filled hy the lime-mud, and in some cates went other ioreign sulstances. such ass fragments of other fossils, are enclosed.

[^18]:
 ** Pal. Southern China 19:0, 1. 54, footnote.

[^19]: * This can not be positively seen in the specimen in question, but as it has all the other characters of this species, which from other specimens is known to have an excentric siphuncle, the above inference may be safely made.

[^20]: ${ }^{*}$ Nee the figure of the American ejecies reproduced in Grabau and Shimer; North American Index Fussils Tol. II p. 116; fig. 1351

[^21]: * Geol. Mag. Dec. IV. Vol. X. pp. 483-484 pl. XXII, 1903.
 ** loc. cit. p. 483.

[^22]: * I may add that my reticence in accepting as conclasive the argument for the occurrence of this genus in the Chinese rocks, was to a large extent influenced by my hope of finding just such satisfactory evidence of the former intimate connection of northern Clina and eastern North America, as this orcurrence affords, for as the study of the Chinese material 1 rogresed, this connection became more and more evident. Sill I was loth to accept any but the mort conclusive evidence, and the discovery of an undoubted specimen of cionincras, coming as it did tuwards the close of these studies, affords therefore mparalleled satisfaction. I nay further note, that a specimen of columnaria, which I am unable to distinguish from the common (f: hetli of the American Black River beds has come into my hands. This specimen, found in the coilection of Yenching college (Pcking) is raid to have come from the hills of eastern wechuan, north of the Yangtse, and west of the southernmost locality (in Inupeh) in which detimocras has been found. As long lowever as the shadow of a possibility remains, that in the vicissitudes which a student collection suffers, an American specimen might have been substituted for the original specimen from central China, I am unwilling to include it in this memoir. A further note regarding it will, hnwever, be published in the Bulletin of the Surveg.

[^23]: * N. Y. State Museum Bulletin No. 90 p. 494 plate 36 figs. 3 and 4.

[^24]: * 189s. Mém. de l'acad. imp. des sciences St. Pétersbourg. Classe phys -math. (i) vol, VI.
 ** A Mongura, ${ }^{\text {d }}$ of the British Trilobites, 186t-1883 p. 146-14!.
 *** Lorenz: loc., cil.

[^25]: * Not seen.

[^26]: 1. Messrs. Hsieh and Liu had taken a geological trip to south-western Hupeh in April of 1925 (Bulletin of the Geological Survey of China, No. (9), and Mr. H. M. Meng to north-western Hupeh in the automn of 192.' (Memoir of Institute of Geology, No. 8. National Research Institute of China). According to their reports the Ordovician beds at these localities are quite similar to those of western Hupeh and numerous Orthoceras were also seen in the Neichiashan formation. Now we know that the so-called "Pagoda stone" at Hupeh province includes the orthoceracone Nautilids which are not only Orthoceras chinense Food, but also many other forms of different species or even of different genera as well. It is unfortunate that they did not bring any specimen back. So we can not discuss them here.
 2. Willis and Blackwelder: Research in China, Vol. I, pt. I, pp. 269-272.
 3. J. S. Lee: Geology of the Yangtze Gorge. Bulletin of the Geological Society of China, Vol. III, No. 3-4.
 4. A. W. Grabau: The Sinian System. Bulletin of the Geological Society of China, Vol. I, p. 44 .
[^27]: r. C. Y. Hsieh and Y. T. Chao: Geology of I-chang, Hsing-shan, Tze-kuei and Pa-tung districts, W. Hupeh. Bulletin of the Geological Survey of China. No, 7.

[^28]: I. Geographical research in South China, Vol. II, pp. 24I-28I.
 2. C. Y. Hsieh: Stratigraphy of south-eastern Hupeh. Bulletin of the Geological Society of China, Vol. III, No. 2.
 3. C. Li: Geology of Pu-chi, Kia-yu, Hsien-ning, Chung-yang and Wu-chang districts, Hupeh Province. Memoir of the Institute of Geology, No. III, National Research Institute of China.

[^29]: I. See "Science". Science Society of China, Vol. X, No. 4, p. 452. The forms in Mr. Hsü's collection are entirely distinct from those found by Richthofen. The relationship between these beds, which yield the different forms fossils at these two collections, is quite unknown. In this respect further researches in that locality would be necessary for settling this question.
 2. C. C. Liu and Y. T. Chao: Geology of south-western Chekiang. Bulletin of the Geological Survey of China, No. 9.
 3. Frech: In Richthofen's China, Vol. V. pp. 4-Io.
 4. In Yabe and Hayasaka's Palæontology of Southern China, p. 36.

[^30]: I. G. Lindström: List of the Fossil Faunas of Sweden, I., pp. 9-Io.

[^31]: r. loc. cit.

[^32]: I. Ruedemann: Cephalopoda of the Beekmantown and Chazy formation of the Champlain Basin, p. 405, pl. I, figs. 5, 6, pl. II, fig. i.
 2. loc. cit.

[^33]: I. Ruedemann: Cephalopoda of the Beekmantown and Chazy Formations of the Champlain Basin. p. 405, pl. I, figs. 5,6; pl. 2, fig. r.

[^34]: I. G. Holm: Palæontologische Abhandlungen, Bd. III, Heft I, p. 5, Taf. I, figs. I-5.

[^35]: I. J. Hall: Palæontology of New York, Vol. I, p. 208, pl. XLVIII, pl. XLIX, pl. L, pl. JIII, figs. 2, pl. LVII.
 2. Zittel-Eastman: Text Book of Palæontology, p. 595, fig. 1105.
 3. G. T. Troedsson: On the Middle and Upper Ordovician Faunas of Northern Greenland, I. Cephalopods. p. 27, pl. 8, fig. t.
 .4. G. T. Troedsson: On the Middle and Upper Ordovician Faunas of Northern Greenland. I. Cephalopods. p. 27, pl. 7, figs. 1, 2.
 5. Foord: Catalogues of Fossil Cephalopoda, Part I, p. I40.
 6. Blake: British Fossil Cephalopoda. Part I, p. 162, pl XVII, figs. I, la.

[^36]: I, loc. cit.

[^37]: I. Hall: Palæontology of New York, Vol. I, p. 217, pl. 5 r, figs. 2 a , b.

[^38]: I. Foord: Catalugue of Fossil Cephalpoda, Part I, p. I40.

[^39]: I．Barrande：Système Silurien de la Bohême，Vol．II，Text III，p．190，pl．258，pl．265；pl． 326，pl．36r．

 2．J．Barrande：Système Silurian de la Bohême，Vol．II，Text III，p．537，pl．403，pl． 406.
 3．J．Barrande：Système Silurian de la Bohême，Vol．II，Text III，p．488，pl．223，pl．363， pl．378，pl． 384.

 4．J．Barrande：Système Silurian de la Bohême，Vol．II，Text III，p．404，pl 304.

[^40]: I. S. P. Woodward: ?uart. Journ. Geol. Soc., Vol. XII, p. 378, pl. VI, fig. r.

[^41]: r．J．Barrande：Syst．Sil．de la Bohême，vol．II．，Texte III，p．432，pl．373，pl． 399.

[^42]: r. Foord: Catalogue of Fossil Cephaiopoda, Pt. I, p. Ioo.
 2. Foord: Catalogue of Fossil Cephalopoda, Pt. I, p. 5.
 3. Foord: Catalogue of Fossil Cephalopoda, Pt. I, p. 7.
 4. Barrande: Syst. Sil. de la Bohême, Vol. II, Texte III, 1874, p. 642, pl. 221, pl. 38r, pl. 442, pl. 447 .

[^43]: I．Barrande：Syst．Sil．de la Bohême，Vol．II，Texte III 1874，p．412，pl．224，pl． 296. pl． 366.

 2．Barrande：Syst．Sil．de la Bohême，Vol．II，Texte III，1874，p．555，pl．405，figs．15－18．

[^44]: I. Barrande: Syst. Sil. de la Bohême, Vol, II, Texte III, I874, p. 684, pl. 214, figs. 4.5.
 2. Woodward: Quart. Journ. Geol. Soc., Vol. XII, p.378, pl. VI, fig. I.

[^45]: I．Blake：British Fossil Cephalopoda，Pt．I，p．83，pl．III，figs．3，3a．
 2．Blake：British Fossil Cephalopoda，Pt．I，p．82，pl．III，fig． 2.

[^46]: r. Foerste: Notes on Cephalopod Genera; chiefly coiled Silurian forms, p. i8.

[^47]: I. Foerste: loc. cit. p. 47.
 2. Angelin-Lindström: Fragmenta Silurica, p. 9, Tab. XI, figs. I-4.

[^48]: * The height is taken as I.

[^49]: I. Reed figures a similar mold (pl. V. fig. I3), but his other figures show that the exterior is well plicated.

[^50]: * The Upper Cambrian of Kaiping Basin by the author.

[^51]: ＊These will be described in a reparate paper by the Author．

[^52]: * Localities which have furnished material described in this memoir.

