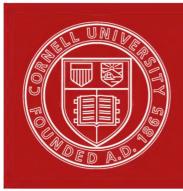

MINOR THESIS


THE CAUSE OF INJURY TO MAIZE BY WEEDS

Olement Ellis Oraig, B. S. 1908

JUL OI 955	
	 -

Cornell University Library

The original of this book is in the Cornell University Library.

There are no known copyright restrictions in the United States on the use of the text.

http://www.archive.org/details/cu31924052338088

To Dr. T. L. Lyon, the author wishes to express his appreciation for the kindness in directing the investigation herein treated.

And to Dr. J. A. Bizzell, who made the chemical analysis of the soil solution.

THE CAUSE OF INJURY TO MAIZE BY WEEDS.

A MINOR THESIS

Presented to the

DEPARTMENT OF EXPERIMENTAL AGRONOMY CORNELL UNIVERSITY

For the Degree of

MASTER OF SCIENCE IN AGRICULTURE

by

Clement Ellis Craig, B. S.

June, 1908.

5B 191 MZ C88

@ 96345

. ..

CONTENTS

INTRODUCTION	1
HISTORICAL	4 - 63
Effect of Weeds on Yield and Quality of Produce	4
Effect of Weeds on Soil Moisture	12
Composition of Weeds, Corn, Millet and Cowpeas	16
Effect of Weeds on Fertilizing constituents	
of the Soil	19
Effect of "Weeds" Growing in Corn on the Total	
Salts and NO3 Content of the Soil	27
Transpiration	30
The Relation of Transpiration to Plant Food	
Transferred to the Plant	34
Capillarity	36
Influence of Texture of Soil upon Moisture	
Content and its Relation to Yield of Corn	41
Diffusion of Soil Nutrients	44
Drought Limit	4 9
Interruption of Water by Plants	52
Effect of Weeds on Light, Warmpth, and Protect-	
ion from Air Currents	53
Effect of Weeds in Producing a Toxic Substance	55

CONTENTS

Effect of Weeds by Root Interference	56			
Effect of Scraping on Soil Moisture	57			
Effect of Scraping of Yield of Corn	59			
Effect of Mulching	62			
EXPERIMENTAL 65	- 129			
Purpose of Experiment	65			
General Plan of Experiment	65			
Detailed Outline of Experiment	66			
Map of Plats	68			
Description of Plats	69			
Fertilizers Applied	69			
Preparation of Land, Planting and Cultivation	70			
Moisture Determination	72			
Determination of Fertilizer Constituents in				
the Soil	73			
Weather Gonditions	74			
Growth	75			
Injuries Sustained	76			
Harvesting	76			
Effect of Stand on the Weight of the Stalks	77			
Yield of Corn Fodder by Rows	82			

CONTE	NTS.
-------	------

Determination of Dry Matter	90				
Yield of Corn, Milley, and Say Beans	93				
Average Moisture Content of the Soil for					
Different Periods	99				
Differences in Moisture Content of the Soil .					
for Different Periods, between the Ends					
of Plats and where Corn Grew; also the					
Variation in Yields.	103				
Average Fertilizer Content of the Soil for					
Different Periods	107				
Results secured from First Sowing of "Weeds",					
Plat 5:	109 - 1 11				
yield p. 109; moisture in soil p. 110;					
NO3 content of soil p. 110; comparison					
of the reduction of moisture and NO3 p. 111.					
Results secured from First Sowing of "Weeds",					
Plat 9:	112 - 114				
yield p. 112; moisture p. 113; NO3 con-					
tent of soil p. 113; comparison of the					
reduction of moisture and NO3 p. 114.					
Results secured from Second Sowing of "Weeds"	114				
Results secured from Third Sowing of "Weeds"	117				

CONTENTS.

D----

	Page
Results Secured from Mulching;	117 - 119
Comparison of moisture and NO3 con-	
tent of the soil	118
Results secured from Scraping	119 - 121
Comparison of the moisture and NO3	
content of the soil	119
Comparison of Mulched and Scraped Plats	121
Variations in Fertilizer Constituents	121
Yield of Nitrogen in Crops	124 - 127
Amount of NO3 Remaining in Soil	126
Capillarity of Different Plats	127
APPENDIX.	
Moisture and Fertilizer Content of the Soil,	
in Detail (Table A)	130 - 145
Further Soil Studies	146 - 169
Poor Space and Specific Gravity	146
Poor Space, Suggestions for Determining	152
Rate of Evaporation and Loss from Drainage:	153 - 169
from platinum dishes p. 153; from cyl-	
inders of soil p. 155; the "fairly uni-	
form level" in cylinders of soil p. 163;	
rapid fall at end of the "fairly uniform	
level, p. 165.	

and a star to star to

INTRODUCTION

That weeds cause injury to crops is a fact about which there is no difference of opinion. The exact cause of this injury, however, is not so well understood. TWO reasons are usually assigned, namely, the loss of moisture and plant food. Some experimenters emphasize the former, while others lay greater strees on the latter. Some seem to consider the two causes as equally injurious. That weeds lower the moisture content is the common experience of farmers and there is also very conclusive experimental data on this point. The belief that injury results from loss of plant food seems to be based chiefly on reasoning from general principles and from the chemical analysis of Another cause assigned, based on experimental weeds. data, is the lowering of the soil temperature. One asserts that the lowering of the temperature hinders the efficiency of the roots and lessens the decay of organic matter. Shading of the crops is another cause assigned. Again root interference is proposed ; and the possibility of a toxic effect has been suggested.

Thus it will be seen that there are many explanations either singly or in combination, offered for the well-known

phenomenon, that weeds injure crops. Two of these causes, however, in the opinions of experimentalists stand preeminent ; namely, injuries due to loss of soil moisture, and to loss of plant food. The chief attention was, there fore, directed to these causes.

The thesis is divided as follows :

1. Historical

2. Experimental

3. Appendix.

In the historical part, the literature is reviewed and discussed.

In the experimental part, an account of the experiment is given, together with discussions chiefly in the light of the historical treatment.

In the Appendix, a limited study of the soil under experiment is made.

HISTORICAL

Effect of Weeds on Yield and Quality of Produce. The Minnesota Station (Bul. 68, 588)" in 1898 planted corn in drills in two plats in a similar manner, the plats being run in duplicate. On one plat the corn was cultivated thoroughly, no weeds being allowed to grow, and a loose mulch of earth two or three inches deep was maintained throughout the early part of the summer. The other plat received but slight cultivation, the weeds being allowed to grow freely until July 21, when they were removed by hand and the soil cultivated." The weeds grown were mostly pigeon grass, and were mature when harvested. The results are shown in Table I.

Table I : Showing Effect of Weeds on Yield of Stover and Ear Corn, Rate per Acre.

CornWeedsEar CornStoverEar CornTotal
andWell cultivated4824#6703#12762#12762#Poorly cultivated3540#2592#3653#6989#10529#

A yield of 3540 pounds of weeds reduced the yield of corn fodder (stover and ear corn) 5773 pounds or 45 per cent; the reduction in the yield of ear corn was 2232 ppunds or 46 per cent. The percentage of ear corn was nearly the same in both cases. The rate of reduction in yield due to weeds was 1.69 pounds corn fodder for each

pound of weeds. These results refer to weights at harvesting. Had dry matter been determined doubtless there would have been found a greater per cent of dry substance in the pigeon grass than in the corn. But the yield of corm fodder on the plats is comparable, and shows a marked reduction. The New Hapshire Station (Bul. 71, 54) compared two plats of corn, both cultivated ; but in one witch grass was allowed to grow, while in the other the grass was cut with a hoe. The results follow in Table II.

Table II : - Showing Effect of Witch Grass on
Cultivated Corn - Results Rate per Acre.Kind CultureStoverShelled Cornlbs.bus.Hoed1184381.6Not Hoed918861.4

The grass caused a reduction in yield of both stover and shalled corn. The yield of stover in the plat not hoed was 77.6 per cent of that where hoed and the yield of shelled corn 75.2 per cent, thus showing a slightly greater reduction percentagely of shelled corn than of stover. The same Station (Bul. 71, 50) compared corn with no cultivation, weeds being permitted to grow, with corn cultivated. The results follow in Table III.

Table III : Showing Effect of Weeds on Yield of Cora Kind of Culture Stover Shelled Corn lbs. bus.

No Culture,	weeds gaining	ng 4420	17.1
Cultivation,	frequent	12016	80.6
Cultivation,	ordinary	11496	79.1

The weeds caused a great reduction in yield both of stover and shelled corn. The yield of stover where weeds grew was 38.4 per cent as much as where ordinary cultivation was given, and of shelled corn 21.6 per cent. Manifestly the quality of shelled corn was lowered.

The South Carolina Station (Bul. 61, 11) grew cown peas in corn for two years with the results shown in Table IV.

Table IV : Showing Effect of Cowpeas on Yield of Ear

Corn :

	1898 1899	Average
	bu. bu.	bu.
Corn, no cowpeas	58.0 66.8	62.4
Corn, cowpeas in drills between	rows 60.0 69.9	64.9
Corn, cowpeas broadcast "	* 64.0 73.2	68.6
The corn was planted in row	s four fest apa	art, one
stalk to the foot in each case.	Peas sown in	drills

showed an increase over no peas both years and peas broad-

cast showed a still greater increase. Whether the increase is due to peas being a leguminous crop or to some other cause is a question. The results seem to suggest the importance of distinguishing between "weeds" when studying their effect on either the soil or the crop.

At the Cornell Station during the summer of 1905, Cates conducted experiments to determine the effect of "weeds" on corn. The "Weeds" were rye, millet, and miscellaneous weeds. TableVis addpted from Cornell Bul. 247, 186, and shows the yield of both corn and "weeds". The table is arranged in *jenes* I, II, and III, and shows the effects of rye, millet, and miscellaneous weeds respectively. In each series, plate 1 and 4 are checks. In the column "Productive Capacity, Corn Fodder" is shown what presumably would have been the yield of corn fodder had no "weeds" been grown on the plats. These figures for plats 2 and 3 are calculated from the checks 1 and 4 where no "weeds" grew.

"Plate 1 and 4 were cultivated throughout the whole period of growth, viz., about once in ten days from June 14 to August 22. On June 14, plat 2 was cultivated when Series I was sown to rye, series II to millet, and series III allowed to grow to weeds without further cultivation. Plat 3 was cultivated June 14 and again June 27, when each

series was treated as plat 2."

T able V : Showing Yields per Plat of Corn and "Weeds"

Green Weight Series I Corn with Ryc				Field Cured				
Plat C	ductive apacity n fodder	Corn Fodder	Rve	Total I	ncrease (+) ecrease (-		Corn	% Ear Corn Fodde
	lbs.		lbs.	lbs.	lbs.	lbs.	lbs.	
l ch	216.9	216.9		216.9		59	46.3	44
2	224.3	105.2	7 5	180.2	-44.1	38	21.5	36
3	231.7	131.1	78	209.1	-22.6	38	35.0	48
4 ch	239.0	239.0		239.0		63	48.0	43
	Series I	T Com	a with	Willet	•			
					Increase (-	+)		
	apacity			D	ecrease (-)		
Co	rn fodde 1bs.		1	lbs	3			
	108+	T08+	TOR	103	. 1bs.			
l ch	122.5	122.5				38	33	46.5
2	125.1	49.1	100	149.1	+24.0	30	3	9
3	127.7	73.4	48	121.4	- 6.3	38	13	25÷Š
4 ch	130.2	130.2				40	38	49
	Series	III C	orn wi	th Weed	8			
No. Pro	ductive	Corn	Weeds	Total	Increase	(7)		
	apacity				Decrease (-)		
Cor	n Fodder							
	lbs.	lbs.	lbs.	lbs.	lbs.			
l ch	103.8	103.8		103.8		33	35	51.5
2	126.6	53.9	42	95.9	-30.7	26	11	30
3	149.4	104.1	45	149.1	3	42	3 2	43
4 ch	172.1	172.1		172.1		47	58	55

Series I, giving results with rye, shows a decided decrease in total green weight of produce, Series II with millet shows an increase, and Series III with weeds shows a decrease. Had dry matter been determined it is probable that, if the results had been averaged for the three series, the total produce where "weeds" were grown would have exceeded that of the checks. Allowing for the probable difference in dry matter between corn fodder and millet, the results in Series II show a very decided increase in total produce where millet was grown in the corn. The corn fodder as indicated by the green weight suffered a much greater injury in this series than in series I and III.

Of field-cured stover where "weeds" grew the injury is not nearly proportionate to that of total fodder. The yield of plat 3, Series II is practically equal to that of the checks. But the yield of ear corn is much reduced in every case. The per cent of ear corn to field-cured fodder is less in every case where "weeds" grew except in plat 3, Series I. This reduction is most marked both in weight and per cent of ear maize in Series II where millet grew. There is less injury in everycase to ear corn from the later sowing of "weeds" (Plat 3) than from the first sowing (Plat 2) : Manifestly, the lowering of the quality further emphasizes the injury.

While not directly applicable to corn, perhaps, some results from German and Scandinavian sources with miscellaneous crops will be helpful as indicating general principles. From an abstract in Fuhling's Landwirthschaftliche Zeztung, XLIV (1895), 355 is derived Table VI :

Table VI : Showing Effect of Weeds on Crops :

Kind I	Past	No We	eås	Wit	h Weeds	Injury
		grns. %	whole plant	grns.	% whole plant	per cent
	Grains	349	21.1	266	20.8	23.8
Peas	Straw	1301		1010	•	2 2.4
Field Bea	Grains	850	37.9	470	34.1	44.7
	n s Straw	1390		910		34.6
Potatoes A	Av. tubes	r 57,5		35.8		
	ll tubers	27775		12775		54.0
Kohlrabi	Roots	16680	70.4	1810	64.4	89.1
	Leaves	7000		1000		85.7
Garden Be	Roots	9000	79.4	338	50.7	96.3
	ets Leaves	2333		329		85.9

The number of potatoes where no weeds grew were 483 and with weeds were 357.

The injury in every case is marked being the most severe with the root crops. The percentage of injury was uniformally greater with the grain and roots than with the

straw and leaves.

From a Scandinavian source the results in Table VII are taken (E.S.R. 15, 683)

Table VII : Showing Effect of Weeds on Yield :

Results given in kilograms per Hretane.

Crop	Part 1	io Wee ds	With Crop kilo	Weeds Crop Weeds kilo		is Total Decrease(-) kilo
Hay		6180	2890	1740	4630	-1550
Barley	Grains	2246	833		4975	-1066
Dettal	Straw	3795	8407	1735		
Potatoes	Tubers	22101	11330		٠	

The decrease in yield of crops is marked in every case, a yield of 1740 pounds lowering the hay yield 3290 pounds. 1735 pounds of weeds lowered the yield of barley grain 1413 pounds, and of barley straw 1388, making a total of 2801. The percentage of injury to the grain was much greater than to that of straw. The decrease in total yield was also marked. This is especially interesting since it is usually supposed that both hay and barley have relatively large water requirements, as well as weeds.

The foregoing data, while giving unmistakable indications, would have been more valuable, especially for the purpose of a soil study, had dry matter been determined.

However, except where cowpeas were grown in the corn, the presence of "weeds" in every case lowered the yield of corn fodder ; and usually the percentage of ear corn to fodder was much reduced. The data showing the total yield if taken as reported, also usually show a decided decrease. But had dry matter been determined, the writer is of the opinion that the results would be very conflicting.

The effect of weeds on low-growing crops in Europe is more marked than on corn in this country. This may be due partially at least, to the greater shading. Where the yield of weeds are reported (p. //) in these European tests, the total yield is much reduced.

Effect of Veede on Moisture. Experimenters are agreed that one of the injurious effects of weeds on crops is the robbery of soil moisture. Warrenton states (Physical Properties of Soils, 125) that weeds are most injurious in a dry climate. It is further generally supposed that weeds require more moisture for the production of a given amount of dry matter than do most agricultural plants. Hays and Smith (Minn. 68, 588) in referring to pigeon grass (which was used in an experiment to determine their effect on corn) seems to voice the general belief as to all weeds by stating, that it is quite probable that these weeds use more water in producing a pound of dry matter than does corn.

The Minnesota Station (Minn. 68, 588) in the experiment just referred to (Also see p. 4) found that the moisture in the corn plat where no weeds grew varied from 36 to 20 per cent (data approximated from graphic table) while where weeds were growing in the corn the variation was from 49.5 to 7 % a difference between the minimum of 13 % against whereweeds grew. These variations occurred between June 29 and July 26 just after the weeds were pulled. On August 5 the moisture in the weed-free pist reached 17 %, which was the lowest of the season. Assuming that this was about 40 lowest to further station

the corn could extract the moisture from the soil, it appears that 10 % more moisture was available for the weeds than for the corn. The rapidity with which the weeds consumed the moisture is shown as follows :

Date	•	Rainfall	% Moisture (1)
July	7	1.44 in.	49.5
**	13		32.5
11	16		13.0
11	18	. 55	
n	Ŧð		14.5
Ħ	26	1	7.0
	(2)	Dem samt was shown	annonime had from a set i

(1) Per cent moisture approximated from graphic statement.

Since the weeds were pulled July 21 the lowest moisture content was probably reached on that date. These moisture determinations were made by the electrical method.

Fing (Ru. Soils, 26, 44) determined the moisture content on the surface foot of two soils which were in weedy fallow. The results were averages from thirteen fields in each case. The Seima silt losm contained 6.83 % and the Goldsboro compact sandy losm, 3.64 % moisture.

At the Cornell Station (Bul. 247, 186) experiments were conducted with rye and millet, and weeds in corn. The data gives the average per cent of moisture taken at intervals between June 27 and August 15. Table VIII is quoted :

Table VIII : Percentage of Moisture on Cultivated and Weed Plats :

Plat	Treatment		Series II Maize with millet	Series III Maize with weeds
1	Cultivated	24.7	27.7	26.8
2	"Weeds" after June 14	22.0	24.8	21.3
3	"Weeds" after June 27	23.6	24.9	22.3
4	Cultivated	26.3	28.3	24.6

These results show a decrease in every case where "weeds" grew in corn. Had the season been dry and the data given in detail doubtless a greater variation against "weeds" at isome periods would be shown.

Composition of Weeds, Corn. Millet, Soy Beans, and

Cowpeas.

Cameron (Eu. Soils, 28, 6) observes, that different crops and even the same crop under slightly varying conditions remove not only widely different amounts, but widely different proportions of mineral constituents from the soil."

Snyder (Soils and Fertilizers, 194) states that, the emount of fertility removed in weeds is usually greater than that in agricultural plants because the weeds have a greater power of obtaining food from the soil. Again, the same author (Minn. Bul. 101, 244) says that, "weeds have large amounts of water and proteids. There is more protein in dry matter of purselane, pig weed, lambs quarter, cheese weed, and catnip, then in either alfalfa or clover. The drain on land by these weeds is because of the nitrogen they contain."

The Florida, West Virginia, and Minnesota Stations have made numerous analyses of weeds. Table /X, showing data on the composition of weeds as well as analyses of some agricultural plants for comparison, is as follows :

Table /X : Showing Composition of Weeds, Corn Fødder,

	Millet, and So	y Beans -	Dry Matter.
Plant Number Analysis	· · · · · · · · · · · · · · · · · · ·	N. P205 % %	K20 Ash
Weeds 49	Average W. Va.19	1.62 .53	2.51
Poke Weed 1	Max.Comp. "	3.38 .65	8.00
Brooma Sedge 1	Lin. " "	.78 .21	.68
Tall Ragweed 1	55	1.36 .41	1.79
Weeds 15	Average Minn.101 244	2.81	10.51
Pig Weed	Max, N	4.25	
Field Shuttle	Min. N "	1.57	
Lamb's Quarter	Max. Ash		18.34
Goldenrod	Min "		6.89
Pigeon Grass		2.60	12.77
Purselane	Max. Comp.Fla. 11	4.05	26.02
Cotton ' Head Weed	Min. * *	.71	5.66
Corn Fodder 35	0.E.S.1 11	1.25	4.7
And a set of the set o	Threads # 11, eartly filled 38		8.6
Millet 1	In bloom ""	1.41	5.8
Millet 1	Minn.Rept. 1894,/34		10.17
	Dry fodder O.S.B. 11, 14	1.30	6.50 8.50
	" Hay Green fodder " Cut Aug. 30 "76	1.92	9.50 8.50

The table shows a wide variability in the composition of weeds. This strongly suggest the necessity of noting the characteristics of the particular weed with which any experiment is conducted to determine their effect on another crop. Further, it suggests possibilities in soil studies since by the proper selection of weeds to grow on the soil useful variations may be secured.

The nitrogen content of millet seems to be slightly higher than in corn fodder, and the ash content is decidedly higher. Poubtless the composition of millet varies as widely as does that of corn. Soy beans are decidedly higher in both nitrogen and ash than corn fodder and cowpeas.

Effect of Weeds on Fertilizing Constituents.

It has been noted above (p. /7) that many weeds possess a very high nitrogen and ash content. It would appear that they might cause injury by removing sither nitrogen or the mineral elements. On land where phosphoric acid or potash or nitrogen is highly beneficial to crops, it would seem reasonable that a weed with a high ash and nitrogen content would cause injury by removing the deficient element or elements whatever they might be. Put in the discussion under this head, nitrogen will receive the greatest share of attention, since nitrates cease to form after the soil moisture reaches a certain low limit, and since the nitrates in the soli show a greater variability than the other essential elements. Considerable attention will be paid to phosphoric acid, and but little will be given to potash. The potash requirement of soils is not so variable as either phosphoric acid or nitrates, and data is not so available.

Snyder (Soils and Fertilizers, 115) states, "Nitrification cannot take place in a soil deficient in moisture. As in all fermentation processes, so with nitrification, moisture is necessary for the chemical changes to take place. In a very dry time nitrification is arrested for the want of water."

Warrenton (Physical properties of Soils, \$5) refers to experiments by Schlossing Jr. (Compt. rend. CXXV, 824)

upon the effect of amount of water on the nitrification of Ammonium sulphate. The experiments were made on artificial mixtures of sand and clay in various proportions, including a small quantity of chalk. The same percentage of water was added to each mixture for the main line of the experiment. A further variation was secured by adding more water to the more clayeymixtures. The rate of nitrification, where the same amount of water was added, was more rapid in the sand than in the clay. "By increasing the percentage of water in the soils containing the most clay, the rate of nitrification was raised to that observed in the sandy solls. He (Schloesing Jr.) concludes that the different rate of nitrification is mainly due to the different thickness and therefore availability of the water film coating the particles of the various mixtures."

Where waeds or any other crop rapidly lower the moisture in the soil, it would seem that there would be less nitrate formed than where the moisture condition is good.

Ming (Bu. Soils 26, 52) gives the variability of water soluble NO₃ and HPO₄ in the surface four feet in eight states as follows :

NO₃ varies in the proportion of 1 to 8 NPO4 " " " " " 1 " 4

In each case 1 represents the smallest amount of the respective constituent found.

In another table (p.) is given the range found in eight soil types.

 NO3 varies in the proportion of 1 to 5.8

 HPO4
 " " " " " " 1 " 2.8

 K
 " " " " " " 1 " 2.4

Cameron and Beil (Bu. Soils 30, 67) state that "analyses of a number of extracts obtained from several types of soil of widely different origin and composition have yielded an average for potassium (K) of 27.3 parts, and for phosphoric acid (PO₄) 8.5 parts per million solution. The approximate uniformity of the individual results makes it appear improbable that a further accumulation of data would change these average figures materially."

In August and September (Bu. Soils 36, 49, 50,) thirtytwo determinations were made of the water soluble acid radicles in the soil under corn. There was a wide variation of soil types, studied in various states. The data is the sum of results for four feet and is accordingly given in parts per four millions (pp4m) dry soil. The range of NO₃, pp.4 m was 3.17 to 334.32 . 12 ran below 10 pp.4 m. . 37% of the determinations showed less than 2.5 p.p.m. NO₃ per foot. The range in HFO₄ was 2.44 to 39.56 p.p.4m.

These show a wide variability for both NO3 and HPO4.

The acid radioals were determined for in the soil under ootton for the 1st, 2nd, 3rd, and 4th feet, a Norfolk sandy soil (Bu. Soils 26, 39). The results follow in Table X. Table X : Amount water Soluble NO3 and HPO4 in Soils under Cotton in Norfolk Sandy Soil, Goldstruo, N.C.

	Sui	face P	toot	2nd	Foot	
Month	H2O	NO3	HP04	H2 0	NO3	H POy
April	10.13	28.70	18.20	16.42	30.01	11.30
May	9.06	50.00	10.56	13.01	9.03	4.28
June	6.95	37.58	9.86	11.39	4.18	7:33
July	3,41	2.99	10.21	7.29	1.74	8.82
August	5.26	2.54	.72	8.46	3.22	1.94
Sept.	3.74	1.30	2.88	8.93	.98	2.24
		₿ rd F	oot		4th Foot	
April	16,28	22.70	9.70	19.19	38.40	9.30
May	15.75	8.07	3.61	16.55	14.93	3.23
June	13.85	6.51	6.70	15.61	10.72	4.82
July	11.73	7.66	6.94	14.95	12.88	5.98
August	10.99	4.60	.77	14.16	12.30	.79
Sept.	12.61	4.88	1.55	14.81	14.76	2.39

These results show in a general way that the NO3 lowers with the moisture. The results in the surface foot in May and June, however, show an increase, although there is a slight decrease in moisture. But for this period there is a decided decrease in ${\tt NO}_{2}$ in the second and third feet. In July when the lower soil seems to be unable to permit any material amount of NO3 to be transferred to the surface the fall in this radicle was extreme. The moisture for this period was very low. In August the moisture in the surface had increased considerably, but there was no corresponding increase in NO3. In the fourth foot there was considerable reduction of NO3. in May, and a slight reduction in moisture. After this period the amount of NO2 was fairly constant with a slight decrease in moisture content. It is hardly probable that this was beneath the action of capillarity had there been sufficient moisture in the surface. The roots of the cotton plant doubtless penetrated somewhat into the third foot of soil, but did not reach the fourth foot. The data shows a valuable reserve in this soil beneath three feet, accumulated by leaching from the surface which under the proper conditions of capillarity would be of material advantage to the plant.

The HPO4 was considerably higher the first month than later at each depth, and lowest in August. It has been noted that the moisture content was increased during these

month and presumably the NO should have been also. Was there an increase in NO_{3 not} shown in the table which caused a greater consumption of HPO₄? And HPO₄ being the less diffusible, is it improbable that for a short period it was the limiting factor rether than NO₃? In general the HPO₄ decreases with the depth, but would not seem to be a limiting factor except possibly in August.

The results (Bu. Soils 26, 47) on the Poccosar soil show a decided fail in NO_3 in the surface four feet, notwithstanding an increase in moisture as shown in Table XI.

Table X/: Moisture and NO3 Content in Poccosan Soil

Where Corn was Growing.

Date	Moisture %	$pp 4^{3}m$	HPO4 pp.4m
May 30	1823	65.34	36.94
Aug. 27	2065	11.21	14.20

In a wooded tract of large trees on Goldsboro compact sandy loam, the NO₃ lowers very much more rapidly than the moisture in each of the surface four feet of soil (Bu. Soils 26, 45). The fourth foot, just referred to above, is drained as completely of its NO₃ as the surface foot. The difference to which the roots penetrate, perhaps at least is a factor in causing the variation. The HPO₄ is much

more abundant in the surface foot than below. While the minimum is not as low as in the Norfelk sandy soil, diffusion would seem to be less effective, which gives rise to the suspicion that HPO may have been equally as $\frac{4}{4}$ difficult for the plant to secure as was NO₃. As in the Norfelk sandy soil, the lowest proportion HPO₄ in each of the four feet occurs on one date, which in this case is May 23.

The above series of data indicates the general variability of NO₃ and of HPO₄. The HPO₄, while doubtless deficient in some cases, does not generally seem to show the variability which NO₃ does. It would be expected, therefore, that any plant growth which made large demands on these substances, would make rapid and large changes upon the soil content of these radicles.

The effect of weeds growing alone upon the acid radieles as compared with those where crops were cultivated is shown by King (Bu. Soils 26, 44). The results which follow are given for the surface four feet :

Soil from Selma Lilt Loane;	NO ₃ p.p. 4 m.	HP04 P+P+ 4 m.
Single field, best care	18.95	26.05
20 fields, less care, average	27.53	35.51
13 fields, weedy fallow, "	6.30	39.54
Goldsboro compact, sandy loam :		
Single field, best care	17.85	22.77
20 fields, less care, average	25.94	22.64
13 fields, weedy fallow, "	9.33	20.45
Wooded tract	17.54	23.23

49.00

While there may be a question about the results being strictly comparable, the poverty of NO₃ is very striking, and especially so if it remembered that these results are in parts per four million (pp 4 m.). The HPO₄ shows a dewided increase when weeds are growing in one case, and a very slight decrease in the other instance. It would seem clear that the NO₃ is entirely too low for proper plant growth.

The Cornell Station (247, 187) gives the total soluble salts and NO₃ recovered where rys grew in corn and NO₃ when millet was likewise grown. The following table shows the adapted results :

Table XII: Effect of "weeds" Growing in Corn on the Total Salts and NO2 Content of the Soil. Series I, Corn with Rye Series II Corn with Millet Total salts Total salts NO3 ppm ppm June 27 ppm Aug, 25 Aug. 25 No. Treatment NO3 ppm Plat Aug. 8 Cultivated, no "weeds" 600 329 160.0 23.0 2 (1) "Weeds" sown June 14 644 180 15.0 7.3 (JWWeeds" sown June 27 551 226 29.0 7.4 4 Cultivated. no "weeds" 519

329

165.0

71.5

1

(1) "Weeds" refer to rye and millet respectively. The total salts show a decrease on Aug. 25 as compared In plats 2 and 3 wherewesds grow the reducwith June 27. tion was much more marked than on the checks, and of these more marked where the weeds were sown earlier in the season. Whether the essential emements varied to correspond with the total salts is a matter of conjecture. But the variation of the NO2 due to "weeds" was very marked. The variation between the check plats is also great, due doubtless in a large measure to being taken at different dates. There was further a great difference in the NOg in the check plats, Aug. 8.

Hosford, under Professor Hunt's direction (Cornell 247, 190-192), approached the problem in a different manner. Sodium nitrate was applied to the end of a plat (462) Table XII, where millet was growing in corn. This part of the plat is designated as 462 N, after the fertilizer was applied. The growth on the whole plat was seriously checked as compared with the check plats where corn was growing alone and receiving cultivation. When the sodium nitrate was applied, the moisture in this plat, judging from the averages of soil moisture, was not low enough to cause the lack of growth, but the NO, in the soil was running very "Twice the amount of nitrate of soda necessary to 10v. supply 86 parts per million of dry soil to 2,000,000 of soil or to a depth of 8 inches was applied to 35 hills of the maize plat, known as 462 N.on July 6, 14, 21, and 27, or four applications in all. At the end of the first week or on July 14, both the maize and the millet were much greener than the reat of the plat (462) not so treated, but it could not be said with cortainty that the growth was greater although it seemed a shade longer ; on July 18, however, the hills were distinctly larger than the other hills of the millet plat, and as green as the plants on the cultivated plat."

The water soluble nitrogen is shown in table XIII.

	Table XIII: Va	riations in	Water-soluble Nitrogen.
Date	461 Cultivated plat pp m	462 Millet in maize pp m	462 N End of 462 which was fertilized. pp m
May 31	56.4	40.0	
June 11	80.0	80.0	
June 22	73.9	60.0	
July 2	96. 0	10.0	
July 8	68.5	11.5	21.8
July 19	52.7	7.5	48.0
July 30	12.3	3.8	. 160.0
Aug. 16	26.0	7.3	320.0
Aug. 21	10.5	9.6	218.2
Aug. 29	6.2	2.8	282.5

There can be little doubt that the increased size and vigor of the plants in plat 262 N was due to the increase of NO_3 in the soil.

Incidentally, it may be noted that the NO₃ in check plat 461 probably ran too low for good plant growth on Aug. 21 and 29.

TRANSPIRATION

The loss of water from the soil when plants completely cover the ground is chiefly through the plants. Generally, weeds lower the moisture more rapidly and to a lower limit than corn (see discussion above). Plants also vary in the amount of water required to produce a pound of dry matter. Warrenton (Physical Properties of Soils, 53) has collected data which follows in Table XIV :

Table XIV : Water Evaporated by Growing Plants for

One Part Dry Matter Produced :

Results obtained by

Lawes and (llber	t Hellrie	gel	King		Wollny	
Beans	214	Beans	262	Maize	272	Maize	233
Wheat	225	Peas	292	Barley	393	Millet	41 6
Peas	235	Barley	310	Potatoes	423	Peas	477
Red Clover	249	Red Clover	330	Red Clover	453	Sunflowers	490
Earley	262	Wheat	359	Peas	477	Buckwheat	64 6
		Buckwheat	371	Oats	557	Oats	66 5
		Lupine	373			Barley	774
		Rye	377			Mustard	843
		Oats	402			Rape	912

Wide variations occur in the amount of water required to produce a given weight of dry matter in different plants. In the two columns where corn occurs, less water is required than for any other plants given. Millet occurs only in Wollny's results, and requires 74.25 % more water than corn. Peas, on which data is given in the table, shows 235, 292, 477, and 477 parts, respectively for one part dry matter. The figures given by Lawes and Gilbert show a greater economy of water than the others. Is this economy due to the moist climate of England, to the manner of conducting the experiment, or to some other cause ? The results from the German investigators differ widely.

King (Eu. Soils, 26) conducted experiments on transpiration from the corn plant on four different soils. The soil was placed in barrels and a constant supply of water maintained one foot from the surface. Evaporation from the soil surface was included in the transpiration results. When the corn made a very poor growth, the proportion of water required was about three times as great as when the growth was good. Manifestly, where the evaporation is included in the results, the data is untrustworthy as showing the transpiration. Yet the data has practical value and supports King's general observation, that where the trans-

piration (including evaporation) is large, there is a larger propertion of dry matter produced than when the transpiration is small. The inclusion of evaporation from the surface with the transpiration by some experimenters, and its exclusion by others, together with different rates of growth would be sufficient without other varying factors to cause the difference observed by the investigators quoted.

King (Wis. 8 Rept, 126) calculated the amount of water required to produce a pound of dry matter under field conditions. Barley required 402, oats 501, and corn 301 pounds of water. Variations due to evaporation and capiliarity were included in the data. Hays (Minn. 68) calculated that wheat under field conditions required 261 pounds to produce a pound of dry matter.

Warrenton (Physical Properties of Soils, 52) observes that, the relation in question (between transpiration and dry matter produced) appears to be fairly definite so long as certain conditions remain constant, but to vary under a wide range of circumstances. Further (p. 53) : "Two circumstances seem especially to influence the relation of water supply to produce :

1. The amount of water supplied

2. Its righness or poverty in plant food.

These two circumstances are relatively connected. When the soil contains little water, the solution in the soil is comparatively concentrated in character. When much rain has fallen, the supply of water in the soil may be ample, but it contains very little plant food. "The presence of much soluble saline matter in the soil is probably a check to a rapid transpiration of water by plants."

THE RELATION OF TRANSPIRATION TO PLANT FOOD

TRANSFERRED TO THE PLANT.

There seems to be two means of transferring plant food to the plant, viz., diffusion, and the mechanical transfer in the stream of water. The older plant physiologists seem to lay a greater stress relatively on the formethan do later investigators. Storer, conforming to the views of the older investigators, cites the Wardian case, and plants growing in the greenhouse where the air is moist. as showing the importance of diffusion. He assumes that transpiration is not sufficient to cause the required transfer of plant food. May not the passage of water through the plant due to root pressure be greater than is assumed ? And may not the plant food in the artificial sours usually employed under such sircumstances be more abundant, thus, perhaps, requiring less water to produce a given amount of dry matter ? Referring to the mechanical transfer of plant food, Loew (Bu. Plant Industry 45, 11), states that, the surplus of mineral matter found in plants, nutrient as well as indifferent compounds, - depends to a great extent upon the intensity of the current of transpiration, which explains

why herbaceous plants show a higher percentage of ash for the dry matter than do the leaves of woody plants." Warrenton (Physical Properties of Soils, 51) states, "The greater the evaporation (transpiration), the greater the transferrence of plant food from the soil to the plant."

CAPILLARITY

The writer under Professor Fippin's direction determined the capillary rise of water in four air dry soils of different textures. Soil 1 was secured by separating a coarse, sandy soil with a half m.m. sieve, that which failed to pass through being retained. Soil 2 was secured from that which was eliminated in securing Soil 1, and which failed to pass through a tenth m.m. sieve. Soil 3 was a silt loam, and was not passed through a sieve. Soil 4 was a caked clay loam, which was broken down with a roller and. passed through a half m.m. sieve. Glass cylinders 40 c.m. internal diamster were prepared by firmly tying a dam of folded cheesecloth over one end. The soil was carefully placed in the tubes, avoiding the formation of air spaces. The cylinders were set in pans in which water was maintained at a depth of about two inches. The results on Table XV refer to rise above the water level.

Table XV : Capillary Rise in Soils of Different Texture: - in Inches.

		Çap.	LTTALA 1	UTSO NC	Dillere	nt Perio	15
Soil						27 das.	48 das.
1	7	8.5	11.0	12.3	13.3	14.7	16.2
2	8.5	10.7	13.2	14.8	15.7	17.2	19.0
3	8.5	7.1	38.8	55.5	65.0	72.0 0	r top
4		1.7	10.1	18.1	22.5	28.7	35.7

Panillany Dias of Different

The coarse soils 1 and 2 show a the most rapid rise in the beginning, but fall far behind toward the end of the experiment. Soil of medium texture permits the water to rise rapidly, diminishing toward the last, when it reached the top of the cylinder. Doubtless in time the rise would have been considerably higher had the column been longer. Soil 4 showed a slow rise, and judging from the results in capillary tests by the California Station, it is probable that it would never have reached above 48 inches. Had it been convenient to determine the rise in moistened soil, the capillary rise would have been greater and perhaps the comparative results would have been comewhat different. These differences, however, indicate the great variations in the capillary power of soils - differences which should be eliminated as far as possible in experimental work. When the soil is put under special stress, such as growing "weeds" in corn, the variations due to this cause might

reasonably be expected to very seriously modify results.

Warrenton (Physical Properties of Soils, 101), quotes experiments on capillarity made by King (Wisconsin Station) when the water was maintained at different depths beneath the surface. The results follow in Table XVI.

Table XVI : Rate of Capillarity, where Water was

Maintained at Different Depths from the Surface.

Pounds per Square-foot Surface.SoilDistance Water Level Beneath Surface1 ft.2 ft.3 ft.4 ft.Fine Sand2.37 lbs.2.07Clay Loam2.051.621.00.90

The evaporation or amount transferred to the surface by capillarity was sufficient where the water was four feet beneath the surface "for the most luxuriant growth."

These results, however, are not secured in the field since crops suffered with the water table within five feet of the surface. The roots would easily penetrate to within four feet of the water table. Warrenton assigns as a reason for this that in the laboratory the soils are usually screened so that the particles are of a fairly uniform size, while in the field there is a greater variation ; and that the water level in the field does not growy

moisture as readily as artificial supplies in the laboratory. The objection that the soils used in the laboratory are different from the field soils, however, does not apply to the Wisconsin results. The same author (p. 105) further states ; "The practical effect of capillary action in raising water to the surface of the soil to the level occupied by plant roots, has apparently been very much exagerated ; its influence on the distribution of water in the soil is nevertheless very large."

Some Florida trucking soils (Bu. Soils 13, 8, 9,) however, seem to possess a remarkable power of maintaining a sufficient, although very low, percentage of moisture. "The soil, is a coarse white or yellow sand underlaid by a coarse sandy subsoil. It Looks like a barren sea sand or a coarse sharp building sand, but that it is very productive is shown by the large and vigorous growth of pines, the luxuriant growth of grass, the great quantity of truck crops which can be produced during the season, and the enormous growth of beggar weeds which take possession of the land after the crop is removed." The surface is rolling, varying from 25 to 50 ft. Standing water is 15 to 20 feet beneath the surface. After a rain the surface inch or two is soon as dry as dust, but the moisture 3 to 6 inches beneath the surface never falls below 3 % and perhaps 4 %

to 5 % is optimum. At 6 % the soil is quite wet. No shoratge of soil moisture occurred during the period of observation, although there were periods of 15 to 20 days without rainfall. Mechanical analysis shows 94.87 % medium and fine sand in the surface soil, and 95.28 % in the subsoil, most of the remainder was coarse sand. There is thus an unusual uniformity in the size of the soil particles, a condition which Warrenton suggests is favorable to capillarity Yet this author thinks possibly the remarkable results in this soil may be due to condensation. The fact that it is situated in a peninsula, together with the depth of the water table. would give credence to this supposition. But Whitney, in support of the theory that the result is due to capillarity, cites soils in dry climates of Southern California and Texas, where it is not unusual for crops to thrive for a period of five or six months without either rainfall or irrigation.

This difference in capillary power suggests an explanation for Hosford's results (Cornell 247, 189) where the largest yields of corn fodder were secured where the soil moisture was the lowest. The results are given in Table XVII. which is quoted as it occurs in the bulletin.

Table XVII : Influence of Texture of Soil upon Moisture Content and its Relation to Yield of Maize. South Series North Series Water per cent Maize Fodder 1b. Water per cent Maize Fodder 17.8 762 14.7 903 16.0 731 13.8 904 15.1 778 11.9 859 14.6 972 10.6 1001

Hunt, in discussing the results (p. 189) observes ; "The differences in the percentage of moisture in these plats are due to the character and perhaps the topography of the soil, the lower percentages being on the sandier and higher ground. In general the lower the percentage of moisture, the larger the yield of maize. It is extremely unfortunate that the proportion of water soluble nitrogen was not determined by these plats." While the amount of soluble nitrogen is suggested as an explanation of the difference in yield, the relative coarseness of the soil of plats producing the best yields, would in the light of results obtained in the laboratory, and observed in the Florida soils, indicate a higher capillary power.

The size of soil particles which have the greatest capillary power appears to be larger than is usually supposed.

RELATION OF CAPILLARITY TO TRANSFER OF FERTILIZING CONSTITUENTS.

King at the Wisconsin Station (see p.3%), found that after evaporation experiments had run for some time, salts accumulated on the surface in sufficient amounts to hinder the loss of water. The same investigator, when discussing the high salt content in the upper four feet of some soils, observes ; "It is the writer's judgment that the relatively high salt content for the soils of Georgia and South Carolina are to a considerable extant due to a protracted drought, which had prevailed in the regions where the samples were taken, and which, through capillary rise and long and strong evaporation had concentrated the salts in the zone sampled."

Warrenton (Physical Properties of Soils, 191) states that, "salts may be concentrated in a solid form or as a strong solution at the surface; this is especially the case after active nitrification, after drought, or especially and to the greatest extent after the application of a dressing of saline manure. Opposed to this tendency to accumulation at the surface we have the action of rain which tends to carry all soluble salts into the subsoil."

The alternate movement of the water upward and downward perhaps explains the sudden increase of soluble nitrogen noted at times late in the season. Where rain occurs after an accumulation on the surface of nitrates derived either from the soil or from an artificial application, the nitrates beneath the surface will increase. Probably if the soil sample includes the surface soil, such sudden fluctuations would not occur. There is, however, another possibility in a high rate of nitrification due to a good moisture and temperature condition. If the plants should cease to use soluble nitrogen some time previous to taking the soil sample, there would be an additional cause for an increase of this constituent.

DIFFUSION OF SOIL NUTRIENTS.

Warrenton gives the relative diffusion of salts as determined by Marignac, as shown in Table XVIII.

Table XVIII ; Relative Diffusion Coefficients of Salts. Relative Diffusibility Ralative Diffusibility

of Acids Potassium Salts			of Easis			
			Chlorides	Sulphates	Nitrates	
Chloride	114	Potassium	1.56	1.46	1.55	
Nitrate	100	Ammonia	1.25	•		
Sulphate	60	Soda	1.00	1.00	1.00	
Cerbonate	50	Calcium	.65		.66	
		Magnesium	. 55	.51	.64	

There seems to be a discrepancy in the results in the relative diffusibility of the chloride and nitrate of potassium being in one case 1.14 and 1.00 respectively, and in the other 1.56 and 1.55. The table, however, shows that salts containing the bases potassium and ammonia and the acids chlorine and nitrogen are relatively highly diffusible.

When the salls are diffusing together, the rate is slightly different from that where diffusing separately. "The rate of diffusion of the more diffusible salts is generally very nearly what it would be if diffused alone,

while the rate of diffusion of the less diffusible sait is distinctly diminished. The relative diffusibility is also sometimes affected by the strength of the solution employed.

While phosphoric acid is not shown in the table, it prohably has a low rate of diffusibility.

The abundance of the water greatly affects diffusion. In water cultures, proportions of plant food nutrients occur far below the amounts required, if they were only taken up by the plant in the proportions occurring in the solution. In sandy soils, therefore, the diffusion is better than in clayey soils on account of the greater thickness of the water film. The hindering effect of adhesion would also be relatively less in sandy soils. But it is found that in heavy soils, even, the nitrates are nearly completely taken up. King (The Soil, 117) states that at the time the crops are growing, the roots remove the nitrates, whene these roots are found, so thoroughly that the measured amounts at any one place is small, the plants tending to pick it up as rapidly as it may be formed. In the results of the same author (Bu. Soils 26), previously quoted, where weeds were growing on two types of soil the nitrates were almost completely removed. There is considerable water retained in field soils in all cases, hence,

by diffusion only, can the nearly complete removal of nitrates be accounted for. Usually the phosphoric acid does not fall relatively so low in soil as nitrates. This may be due to the slower diffusion, or to the continuous solubility either in the field or in the laboratory, or to all combined.

While the movement of soil nutrients for any considerable distance in a reasonable length of time is due to the mechanical transfer by the water of capillarity or percolation, the transfer to the rootlets after the root zone is reached is probably chiefly due to diffusion. Capillary water passing to the surface may by this means be largely or nearly wholly divested of the salts which the plants require. Under such circumstances the analysis of the surface soil for soluble plant food would give little indication of the nutrients used by the plant.

The amount of plant food nutrients in a soil sample may not even approximately represent the amount used by the plant. However, the amount of excess would probably in most cases be some indication. Where the amount was abundant, the plant would be well supplied, but the amount might run down to a certain fairly or equally low limit, and the plant be nearly or equally as well supplied.

The results of nitrogen determinations in drainage water (Bu. Soils 26 ; Rothamstead Memoirs, V. 91) from plats of wheat variously fortilized are interesting in this connection. This land responds abundantly to nitrogenous fortilizer. The NO₃ as nitric acid found in the drainage water and the yields are shown in Table XiX.

Table XIX : NO3 as Nitric Acid in Drainage Water,

and Yield of Wheat at The Rothanstead Station. The Amount NO₃ p.p.m. Arranged in Ascending Order.

NO3		Yield Wheat					٠	
p•p•u	1.	lbs.						
3.9		1726						
5.1		1988						
8.5		3348						
13.9		3 58 7						
14.0		5013						
15.1		4493						
15.3		3716						
16.1		5304						
17.4		4967						
18.4		6920						
19.2		4718						
	The	increase	in	yield	is	correliated	with	1

The increase in yield is correliated with the increase of NO3 in the drainage water till 15.1 p.p.m. NO3 is reached,

after which the results vary although the average is above that reached where there was 14.0 p.p.m. NO3. (This statement is not strictly correct since the results were obtained from drainage water which passed through the subsoil some distance before entering the drain. Poubliess the amount of NO₂ given is smaller than would have been secured had the determinations been made where the roots were feeding ; but the comparative results would probably have not been far different.) The difficulty in securing soluble nitrogen when the amount of NOg in this soil is below 14.0 p.r.m. is indicated. Nany factors would affect the limit below which plants would suffer for lack of soluble nitrogen, one of which would be the closeness of the roots of the plants. It is probably, the limit for corn would be higher than for wheat if the soil moisture, temperature, and other conditions were the same.

When any crop with a close root system is growing with corn, is not the corn at an increasing disadvantage as the limiting fertilizing constituent was lowered in the soil ?

DROUGHT LIMIT.

The drought limit, or the per cent of moisture in the soil, where plants cease to secure sufficient moisture for growth, varies widely with the soil and to a less degree with the plants.

The Eureau of Soils conducted evaporation experiments under uniform conditions upon different types of soil. The soils were artificially saturated and small amounts were used. The loss in weight was about uniform till the optimum moisture was reached, after which there was a progressive decrease in loss till the hygroscopic moisture was reached. There appeared to be no definite point at which the rate of evaporation changed till the soil became air dry. The drought limit, therefore, appears to be the relation between the needs of the plant and the progressively decreasing ability of the soil to supply moisture, rather than any definite point at which the soil fails to give up moisture.

Numerous determinations by King, Whiting, and others show the wide variation in the capacity of soils in the field to give up moisture to plants.

Haverich (Physical Properties of Soils 63, 64) determined the wilting point of plants in different soils. The plants were grown in very small boxes till fully developed, and then placed under conditions of very little evapora-

tion till they begin to wilt. The soil was then mixed and the water determined. The air-dry soil was also placed in a saturated atmosphere to determine the hygroscopic moisture. The results follow in the adapted table XX.

Table XX : Wilting Point of Plants and Hygroscopic

Moisture in Different Soils Employed.

	Moisture per	100 Dry Soil SWI	
Soil	When Plants wilted		t above s. Mcisture.
Coarse sandy soli	1.5	1.15	30.4
Sandy garden soil	4.6	3.00 .	53.3
Fine humus seal	6.2	3.98	55.8
Sandy loam	7.8	5.74	37.6
Peat	49.7	42.30	12.8

The wide variability of soils in their capacity to give up water to plants is shown, but the wilting point is much below that found by "hitney, King, and others under field conditions. The plant employed in the experiment: would affect the results. There is a suspicion that the noisture content shown in these results is too low, due to the small containing boxes used, and to mixing the soil before determining the moisture. The soil above where the roots were feeding possibly approached the hygroscopic would the wilting point is much nearer the hygros-

copic moisture than the results obtained by the California Station.

The drought limits for weeds is lower than for corn. (See discussion under Effect of Weeds on Moisture)

INTERRUPTION OF WATER BY PLANTS

Weber (Physical Properties of Soils, 119) estimated that in the forests of Switzerland, Prussia, and Bavaria trees interrupted the falling moisture as follows :

Larch 15 per cent Eirch 19 " " Spruce Fir 24 " " Scotch Pige 30 " "

When weeds cover the surface, and the rainfall is in small amounts, the loss from this source may at times be very material. Even when the rainfall is considerable the amount intercepted may overhalance the protection against evaporation.

Effect of Weeds on Light, Warmth: and Protection from Ait Currents.

In a German experiment (E. S. R. 16, 883; Fuhling's Landw. Ztg. 53) weeds growing in potatoes, beans, and maize lowered the temperature 2° to 4° C. through "shading and transpiration."

The results of an experiment at the Minnesota Station (Bul. 68, 585), where the temperature of the soil where no vegetation was growing was compared with that where wheat was growing though not strictly comparable with weeds growing in crops, would nevertheless be of some value for this purpose. Where the wheat was growing the temperature was about 5° lower than where the ground was bars.

Manifestly where weeds growing in corn exclude the light from the lower leaves, the efficiency of this part would be lessened. Since soil bacteria require absence of light, if it possible that nitrification will occur elseer to the surface than where weeds are not growing in corn, providing the moisture content remains the same ?

Suppose a few small weeds were growing in corn, but having a large shading capacity for the plant food and water consumed ; would the surface soll have a better moisture condition for nitrification ? In ordinary field conditions the scant moisture for much of the growing season hinders

mitrification on the immediate surface.

If a limited amount of small weeds under the same conditions should cause an increase in nitrates, will there be a sufficient increase to more than balance the amount of nitrates consumed by them? There would be probably less temporary loss of food constituents by accumulation on the surface.

It would seem, on the other hand, that the lessening of the temperature of the soil might be detrimental, but this seems to be uncertain. If detrimental in a northern latitude, will it necessarily be true further south ?

Shade by lowering the temperature lessens evaporation from the surface of the soil. Corn while lessening evaporation does not accomplish this result as well as when weeds are growing with it. Weeds likewise assist the corn in hindering the movement of the air over the surface, thereby lessening evaporation from the surface. Ming, (Wis. Rpt. 11, 309) found that less water was evaporated from a pan when placed to the leeward of an oak grove, hedge, and clover field. This was probably due both to the lessening of the velocity of the wind, and to the atmospher@racquiring gome moisture from the windbreaks.

Effect of Weeds in Producing a Toxic Substance.

According to an old theory recently revived, plants produce in soils a substance which is injurious to plant growth. The work by the Bursau of Soils seems to strongly indicate the correctness of the theory. It is claimed that plants vary greatly in the toxicity produced and that soils have different capacities in overcoming this unfavorable condition. If the theory be true, is it not reasonable that some weeds would cause toxicity for a cultivated plant?

Clark and collaborators (Cornell Bul. 247, 198) found that solls denominated "poor spots" on account of the poor crops produced, contained a high content of nitrates. This soll when transferred to the greenhouse and pulverized, produced better plant growth than that denominated "good soil". "Good soil" refers to the soll which produced good crops under field conditions. Was the poor production in the field dup to a toxic substance which was eliminated by sepation or some other agency when transferred to the greenhouse? Was there any relation between the conditions producing high nitrogen content and the injurious influence?

Effect of Weeds by Root Interference.

Paunnel (E.C.E. X, 1048; Ia. 39, 52) states that some weeds are injurious because the network of roots prevents the full development of the roots of the grain crop." Other observers have assumed such injurious effects, but so far as the writer is aware no conclusive experiments have been conducted.

.

Effect of Scraping on Soil Moisture.

Warrenton (Physical Properties of Soils, 108) states that during six winter months, (October to March) the evaporation from a water surface near London was 4.8 inches, and from a bare field at Rothamstead was 4.8 to 5.2 inches. During the six summer months the evaporation was 15.9 inches from the former and 11.1 to 11.5 inches from the latter.

At the Wisconsin Station (Rept. 8, 105) the difference in moisture was determined between roused and cultivated plats. The land was plowed in the spring and the plats alternated. The results follow in Table XXI.

Table XXI : Comparison in Moisture Content between Rolled and Cultivated Land ; First Foot.

Date	Rollød %	Cultivated %		
Ma y 29	15.4	17.2		
June 9	13.6	16.9		
June 17	12.0 °	16.0		
June 20	15.0	Ta°0		
July 17	11.8	14.1		

The second and third feet showed a difference in favor of the cultivated plats but was less worked than in the first foot.

Snyder (Solis and Fertilizers) determined the

difference in Soil moisture in corn where given shallow cultivation and where not cultivated. The results follow in Tuble XXII.

Table XXII : Noisture in Corn Field :

With shallow No cultivation

surface cultivation

 Soil, depth 3 to 9 in.
 14.2 %
 8.2 %

 """ 9 "15 "
 17.2 %
 12.38 %

The difference in favor of cultivation is marked.

Effect of Scraping on Yield of Corn.

The South Carolina Station (Bul. 44,3) compared corn cultivated with corn not cultivated. All plats were planted on the level. The results are shown in Table XXIII.

Table NATII : Comparison of Yield Ear Corn Cultivated

and Not Cultivated.

Treatmont	Sound Corn bu.	Total bu.
Cultivated, level and shallow	51.1	58.6
Out in ridges throughout	52.7	60.0
Not cultivated, weed and grass, cut with how	49.7	56.5

There is hut a slight decrease in yield where the plat was scraped. The percentage of sound corn is about the same.

The Illinois Station (Bul 13, 419) compared the effects of scraping with cultivation for three successive years. The land was black prairie loam twenty inches deep, underlaid with yellow clay. In 1887 (the year before the experiment began) crimson clover was grown on the land. The surface was scraped at the usual time for cultivation as follows : First year five times ; second year three times ; and the third year four times. The last scraping was given on July 24, July 16, and June 25 and 26 for the respective years. Care was taken to disturb the soil as little as possible when removing the weeds. The results

follow in Table XXIV.

Table XXIV : Effect of Scraping on Yield of Corn :

No. Pla		of cultivati	ion	1388		1890	Average bu.
1	Hoed, ore	linary		96	72.8	69.4	81.1
2	None, wee	eds scraped sur	from rface	90	72.1	69.1	78 .7
3	Shallow,	once after	tasseling	94.1	83.8	65.4	81.4
4	Deep, "	89	84	85.2	79.3	59.3	74.9
5	Shallow,	ordinary		93.8	94.6	66.8	81.7
ŝ	Deep,	19		84.9	74.2	60.8	73.3
7	Shallow,	frequent		94.6	80.9	71.1	82.2
8	Deep,	8 8		84.5	63.8	69.4	74.2

(For a continuation of these experiments, see Rul. 25 and 31)

The results are consistent for plat experiments. The scraped plat shows but a slightly less yield than the best plats. Doubtless some weeds grow in the intervals between scraping and after "laying by". Should we assume that some weeds grow and that a small amount of weeds are detrimental according to their quantity, it would be easy to conclude that this injury would be sufficient to cause the slight decrease in yield when compared even with the best yielding plats. If the soil moisture was lowered in

this plat to correspond with that on bare land and in corn above noted, it would seem that the yield is not correlated with the moistors in the soil where plats are scraped. It would further seem to indicate some compensating factor or factors.

It is usually supposed that cultivation favors nitrification. Snyder, (Soils and Fertilizers), 114) states that "cultivation, particularly of clay soils favors nitrification increasing the supply of oxygen in the soil." If this be true, were the Illinois and South Carolina soils sufficiently rich is nitrates under the supposedly unfavorable conditions for the nitrates not to be a limiting factor ?

Effect of Mulching.

The Geneva Station (7 Rept. 180) compared moisture a in duplicate plats not growing plants of follows : Weeds pulled, cultivated different depths, and mulched. The results follow in Table XXV.

Table XXV : Effect of Pulling Weeds, Cultivation and Mulching on Soil Moisture where no Plants Grew.

		touched ds pul.			4"	Muleh l in. short oat straw;
		5.	9	57	1	%
Average lay 5-Oct	3	16.19	17.10	17.41	13.00	19.37
Aug. 8		14.2	15.1	16.1	16.1	19.0

The mulched plats show an excess of moleture over the cultivated plats, which in turn show an excess over the untouched plats. The difference is more marked during the dry weather.

Ebermeyer (Physical Properties of Soils, 111) found that the evaporation from artificially saturated soil within the forest covered by litter was during the six summer months only 46 per cent as much as where no litter was employed. It is possible that under certain circumstances the mulch applied about crops by tending to prevent the soil moistore reaching such a low status may maintain a condition by which capiliarity may be more active. After the moisture reaches below a certain limit there may not only

be a lack of upward capillarity but loss may occur from percolation.

On the other hand a mulch intercepts molsture and should therefore not be too thick. This would apply with especial force if the rainfall is in small amounts.

-- EXPERIMENTAL --

PURPOSE OF EXPERIMENT

In the experiment herein treated it was not proposed to study all the possible causes of injury which weeds produce when growing in corn. The chief efforts were confined to the effects of weeds on the soil moisture and the fertilizer contents of the soil. Further variations were produced in the experiment by scraping and mulching the surface of the soil. As the experiment progressed other variations than those included in the plan developed. Although a consideration of some of these other factors may not be strictly in line with the purpose of the experiment, their inclusion is nevertheless believed to be warrented.

GENERAL PLAN OF THE EXPERIMENT

The plan of the experiment included the following comparisons:

Fertilization	VB	No fertilization
"Weeds"	ŧf	No "Weeds"
Small growth of "	Weeds""	Larger growth of "Weeds"
Cultivation	19	Mulch
Cultivation	Ħ	Scraping of surface

Nitrate of soda, acid phosphate, and sulphate of potash were applied to plats singly. For weeds millet was used in the main line of the experiment. Soy beans were used as a variation. One plat was mulched and one merely had the weeds cut at the surface of the ground, taking care to leaver; no mulch.

The moisture and fertilizer contents of the soil were determined weekly on the ends of the plats where no corn grew, and, at longer intervals, within the corn.

- No. --- EETAILED OUTLINE OF EXPERIMENT---Plat
 - (1) Corn, cultivated all season; check.
 - (2) Corn, plat scraped.
 - (3) Corn, plat mulched.
 - (4) Corn, cultivated all season; check.
 - (5) Corn; millet sown at first cultivation.
 - (6) Corn; Millet sown when corn was two feet high.
 - (7) Corn, cultivated all season; check.
 - (8) Corn; millet sown when corn four feet high.
 - (9) Corn; soy beans sown at first cultivation.
 - (10) Corn, cultivated all season; check.
 - (11) Corn; soy beans sown when corn was two feet high.
 - (12) Corn; soy beans sown when corn four feet high.
 - (13) Corn, cultivated all season; check
 - (14) Corn fertilized with Na NO3; cultivated all season, check.
 - (15) Corn, """; millet sown after corn two feet high.
 - (16) Corn, no fertilizer, cultivated all season; check.
 - (17) Corn, fertilized with NaNO3; millet sown when corn four feet high.
 - (18) Corn, fertilized with acid phosphate, cultivated all season.

66

- (19) Corn, cultivated all season; check.
- (20) Corn, fertilized with acid phosphate; millet sown when corn two feet high.
- (21) Corn, fertilized with acid phosphate; millet sown after corn four feet high.
- (22) Corn, cultivated all season; check.
- (23) Corn, fertilized with potassium sulphate, cultivated all season.
- (24) Corn, fertilized with potassium sulphate; millet sown after corn two feet high.
- (25) Corn, cultivated all season; check.
- (26) Corn, fertilized with potassium sulphate; check; millet sown after corn four feet high.

,

Scale-	יר	1-271	-10
14		1	
15		2	
- 16		3	
17		4	
18		5	
19		6	
20		7	
21		8	
22		9	
23		10	
24		11	
25		12	
26		13	

-- DESCRIPTION OF PLATS --

The land selected for the experiment had been in corn and two or three years previously. It was gently rolling, appeared to be fairly uniform. Slight variations, where occurring appeared to be gradual changes. The highest point was on the northeast part, from which it fell gently away to the southwest. There was a slight depression in the southeast portion. The northwest edge bordered grass land which fell away more abruptly. The extreme difference in elevation of the experimental ground was perhaps fifteen feet.

The plats extended from north to south in two series. The north series included plats 1 to 13, and the south series plats 14 to 26. The plats were 18' by 75'. 45' in the middle was occupied by corn, 15' an each end bare or occupied by millet or soy beans. A strip of 15' was left between the series extending the whole length of the experimental ground from east to west. The corn was planted in hills three feet apart, five kernals to the hill to the better secure a uniform stand of three stalks. Thus each plat contained six rows of 16 hills each. The spaces were left at both ends rather than at one end only, to the better secure composite samples which would be comparable to the soil in the corn.

Every third plat was reserved as a check.

-- FERTILIZERS APPLIED --

The fertilizers were applied to the whole plat as fol-

- 69

lows: * Nitrate of soda at the rate of 775 pounds per acre to plats 14, 15, & 17; acid phosphate at the rate of 775 pounds to plats 18, 20 and 21; and sulphate of potassium at the rate of 388 pounds to plats 23, 24, and 26. The essential ingredients applied were thus approximately of nitrogen and phosphoric acid (P_2O_5) 125 pounds, and of potash(K_2O) 174 pounds. Calculated in the terms in which the statement of fertilizer constituents are made (Table "A", Appendix)

The	nitrgen equals		554	pound s	NO3
P205	Phosphoric Aci d	ij	167	11	P04
K ₂ 0	Potash	=	145	11	К

* It was intended to apply 640 pounds each of nitrate of soda and acid phosphate, and 320 pounds of sulphate of potash, but because of a change in the length of the plats an error was made.

-- PREPARATION OF LAND ---- PLANTING AND CULTIVATION

The land had been plowed in the early spring seven to eight inches deep thoroughly turning under the corn stubble. On May 17th., after three days of moderate temperature, the land was in fair condition for working, although rather moist. It was prepared, fertilized, and planted according to the plan. The continued cold weather succeeding planting and a washing rain June 18th. made replanting necessary June 22nd. It was not necessary, however, to replant a large per cent of the corn

Crows took up some of the corn on plats 10, 11, 12 and 13, which made it necessary to again replant these plats. In June 18, Soy beans were sown on plat 9 at the rate of one and one half bushels per acre. The stand b not being good the plat was replanted with a hand planter at the same rate July 3rd.

June 18th. millet was sown at the rate of one bushel per acre on plat 5. A washing rain occurring before they were cultivated in, the sowingwas repeated June 22nd.

July 24th. soy beans were sown in plat 11, and millet on plats 6, 15, and 20.

August 6th. soy beans were sown on plat 12, and millet on 17, 21 and 26. In all cases soy beans were sown at the rate of one and one half bushels per acre and millet one bushel per acre. Where millet and soy beans were sown, the ends of the plats as well as the part in corn were occupied.

The plats were given shallow cultivation June 22nd, July 5th. and July 30th. As it was dry after this and the mulch seemed efficient it was not deemed advisable to again disturb the soil. The cultivation could only be given in one direction. The ridges between the hills in the row were cut down as needed and the plats where corn only grew were kept free from weeds. Plat 2 was frequently scraped on the surface only, taking care to leave no mulch, and plat three had about a two inch mulch of straw after becoming compacted. The plats on which "weeds" were grown were cultivated until the millet and soy beans were sown.

- 71 -

All samples for moisture and fertilizer determination were a composite of six borings taken to the depth of 7 inches till July 30th. After this date the sumface two inches was discarded. The soil augur wasueed in sampling, serving the purpose well except when the soil became extremely dry in the ¹weedy" plats 5 and 9, where it was difficult to get good samples. This difficulty, however, would seem not to affect the value of the results, since if there were any variation from the proper results it would be on the side of conservatiem There would be a tendency to secure a higher moisture and perhaps also of nitrogen content on these plats than the actual amount.

Regularity was observed in the locations at which borings were made. The samples in the corn were taken in the center of the square between the hills in the first, third, and fifth middles. The first borings were made in the second cross middle from each end, the second from the third, etc. At the ends the first boring was made three feet from the corn, the second four feet, etc. Care was taken not to walk on the part, where the future borings were to be made. Where slight ridges occurred the boring was made between the furrow and ridge.

The samples were taken to the laboratory where the moisture was determined and estimated on the basis of dry soil.

-- FERTILIZER ANALYSIS --

(All chemical analyses of the soil solution given in) (this thesis were made by J. A. Bizzell, Ph.D.)

The fertilizer constituent was determined from the samples used for moisture estimation. Nitrogen (NO_3) was determined for plats 1 to 17; phosphoric acid (PO_4) for plats 17 to 22; and potassium (K) for plats 22 to 26 inclusive. These were estimated in parts per million (p.p.m.) dry soil.

** Plat 22 being a check served for comparison for both PO4 and K20 content.

.

-- WEATHER CONDITIONS --

Rainfall from May 1st. to September 30th., 1907.

.

1

Date	<u>ə</u>	Inches	Date		Inches	Date		Inches
May	3rd.	.02	June	23	.05	Sept.	. 1	
11	4th.	.15	Ħ	24	.33	17	2	.12 -2
Ħ	6	.08	**	25	.15	11	3	
11	7	.39	n	26	.10	11	4	.14
tt	9	.46	17	29	.10	11	5	•39
Ħ	10	.20	11	30	.74 5.15	17	6	.02
tt	11	.11	T = a 3 = a	1-+		11	8	.11
17	15	01	n Juta	lst.		• 11	9	1.06
11	16	.3 3		2	.02	Ħ	10	.04
11	18	.02		7 11	.04	11	11	.22
Ħ	19	.10			•90 30	Ħ	18	.07
11	26	•53	11	12 19	.30 .01 /. <i>R.O</i>	Ħ	19	.01
Ħ	27	<u>.11</u> 2.83	12	50 19	.18	Ħ	20	.02
	_		11		.17	11	21	.06
Jun	e 2	.05		26		Ħ	23	.36
Ħ	4	.05	,,	31	<u>.01</u> 1.95	11	24	.03
Ħ	5	.35	Aug.	lst. 5	.91	Ħ	27	.02
11	6	.29	11		.21	n	28	.06
17	7	.02	ti	16	.01 .01	Ħ	29	.70
Ħ	13	.11	11	20	.02	89	30	.10
Ħ	18	2.44	11	21	.36			2.80
11	19	.15	11	23	.013 9			
Ħ.,	20	.22	11	27	<u>.12</u> 1.64			,

- TEMPERATURE MAY 1ST. TO SEPTEMBER 30th.

	Mean	Departure from	highest	lowest	
May	50.3 ⁰ F.	normal -6.7°F	85 [°] F	27 ° F	
June	62.9	-3.3	93	41	
July	69.7	-0.9	89	43	
August	66.6	-0.6	93	44	
September	63.2	+ ₽.6	86	42	

The rainfall from May 17th. when the corn was planted till September 20th. was 12.11 inches. The latter part of May and the first half of June were dry. Rain was abundant the latter half of June and fair through the first half of July. From July 18th. till in the first part of September, when numerous showers occurred, there was only one rain of consequence, that being August 1st. when .91 inches fell. The rainfall was good through September.

The temperature through May and June was considerably below normal; the remainder of the season was about normal.

--GROWTH--

The dryness during the early crop period pevented rotting of the planted corn while the low temperature seriously retarded germination and growth. Through July growth was fair. In August a severe drought occurred but fair growth was made through September.

After the second sowing of millet and soy beans was

-- INJURIES SUSTAINED --

Besides the unfavorable season curtailing growth and injuring the stand, a severe wind-storm broke off some plants and cattle injured the plats as follows: 12 and 13 were so severely injured as to throw them out of the experiment; 26 was nearly as badly injured; 15, 14 and 25 were injured less than 26; some others were slightly injured.

-- HARVESTING --

The injuries above noted made the harvesting a moch more tedious process than usual in order to secure dependable results. All hills in which there was an injured stalk, and all that were clearly replant, were discarded. Record was made by rows of the number of hills harvested with 3 stalks, 2 stalks, and one stalk respectively. The rows were weighed separately. The "weeds" in the corn and at the ends of the plats were harvested separately. In the corners two representative middles at each end of the plats were harvested. At the ends the edges were discarded and the surface harvested carefully measured.

The harvesting was done September 20th. to 24th. The

variation in time resulted from the tediousness of the task, the lack of a fully matured plan, and unfavorable weather.

-- EFFECT OF STAND ON THE WEIGHT OF THE STALKS --

Since there were about eight per cent of the hills which contained but two stalks, an attempt was made to determine whether estimating yield on the basis of the number of stalks was justified. Accordingly the stalks growing two on a hill where three or more such hills were in a row were carefully weighed. These were compared with the stalks in the same row growing three in a hill. The results follow in Table XXVI.

TABLE XXVI SHOWING COMPARATIVE WEIGHTS WHERE TWO AND

Two Stalks Three Stalks No. Hills Wt. per No. Plat No. Hills Wt. per No. Row stalk stalk. Lbs. Lbs. 1.03 3 1 1 3 1.33 1.07 1.21 8 4 3 1.07 5 1.05 5 4 2 1.58 1.53 10 4 3 5 1.73 1.72 8 3 6 7 2.21 8 1.53 1 6 8 9 1.49 1.58 4 3 10 1.62 1.25 4 3 5 1.04 1.33 6 3 3 11 1.25 1.37 2 3 1 14 1.35 1.22 10 4 5 1.28 1.44 12 4 4 17 1.14 1.21 13 3 6 11 1.13 1.54 3 1 18 .71 12 4 .94 4 .74 10 .82 5 5 .81 .96 13 3 6 .68 13 1.04 3 1 19 .71 13 .46 3 2 11 .79 1.16 4 5 11 .97 1.07 5 6 1.00 11 1.12 3 2 20

THREE STALKS GREW IN THE HILL

No. plat	No. Row	Two sta No. Hills		Three stalks No Hills Wt. per stalk		
	4	4	.83	12	.86	
	5	3	.96	10	1.07	
21	3	3	1.08	11	1.05	
22	1	5	.85	8	.90	
	2	7	.73	6	.87	
	4	. 3	.87	8	1.01	
	Б	5	.75	5 •	1.03	
	6	3	1.08	12	.99	
24	1	3	1.42	10	1.66	
	3	7	1.75	8	1.63	
	5	3	2.12	8	1.55	
25	3	3	1.42	6	1.44	
26	4	3	1.37	3	2.14	
	6	3	1.17	2	1.58	
איז	• •	የምምሳይመለት ያካልደማ መሆን የምንድ ይደብ ለማስት ማስትን ሥርዓት ሥርዓት ሥርዓት አንድ በ	በራሳት ግብሯምታ የተፈል ያልተጨምረዊም ያል ማርሻ በፋሪታል።	alternet there was a second and the	and water of the strategies as static data and	

Those plats showing a larger weight per stalk where only two stalks grew were 1, 8, 11, 17, 18, and 19; those showing about the same or varying comparative weights were 2, 3, 7, 10, 14, 20, 21, 24, and 25; those showing a smaller weight where two grew in the hill were 22 and 26. Plat #22 the north end of which was markedly the poorest part of the whole ground contained five rows with three or more hills with two stalks in a hill. In four of these rows the stalks were heavier where three grew in the hill and in the other row there was but little difference. 20 and 21 showed about the same weights for stalks growing under the different conditions, while 18 and 19 clearly showed an advantage, where only two stalks grow in the hill. The comparative uniformity of results in plat 22, together with the gradual change in comparative weights as the plat is approached from the west would seem to indicate a corre-But a glance at 26, where two rows were weighed lation. and where the growth was good shows a much more marked difference in weights in the other direction. Conclusions are, therefore, not warranted.

The weight per stalk where two grew in a hill averaged 3.64 per cent more than where three grew in a hill. There was considerable variation. A comparatively few hills had but one stalk. These showed a great variation in

-80-

weight. But since the average per stalk where two grew in a hill was not far different from where three grew, and since the number where two grew were not a large per cent of the whole, it seemed hardly worth the trouble to correct for this error. Suppose ten per cent of the hills had two stalks, weighing ten per cent more per stalk than where three grew, the error would be but one per cent. This would fall far below the range of experimental error. Under same conditions doubtless correction should be made where the number of hills with a smaller number of stalks are any considerable per cent of the whole. The writer is informed that at one station it is estimated that a hill with two stalks is calculated to yield 80%, and one with one stalk 42 per cent as much as where three occur.

-81-

TABL	E XXVI:	IYIELD OF	CORN FODDER BY *RATE PER 100	ROWS(STALKS	REEN WEIGHT	
No. Plat	No. Row	** No.Stalks Harvested	Wt. rate per 100 Stalks	Average Wt. rate per 100 stalks	Extreme variations from average	Extreme varia- tions.
1	1	15	115.0 lbs.	lbs.	%	%
	2	17	114.7			
	3	27	101.0		-10.6	
	4	30	110.0			
	5	27	113.0			
	6	35	124.3	113.0	-+10.0	20.6
2	1	32	114.1		•	
	2	30	138.3			
I	3	35	117.1			
	4	25	104.8		-10.4	
	5	33	117.4	116.9		
	6	36	109.7			28.7
3	1	38	144.8		-8.8	
	2	27	170.4		+7.3	
	3	2 \$	170 .4			
	4	29	147.4			
	5	38	157.2			
	6	35	162.9	158.8		16.1
				an a	٢. Jalay 1007-1. 2014/12/2142/19/21-10/2014/2014/2014/2014/2014/2014/2014/20	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

* The weights of each row are not here given but the rates shown are the rates per 100 stalks. The normal number of stalks is the same in each row. This method affords an easy method of comparison.

** Column shows number of stalks harvested, out of a possible 48. *** Per cent calculated on basis of average.

i golasiatatata	***.45.***	Mara and group the state of th	an a	the barreleast case regay spring stranger and the second		
I Biggy pains distant services	an a	TABLE	XXVII	CONTINUED	eren zur eine Allen Gellen Gellen Allen Allen Allen Allen eine Allen auf dem eine Allen eine Allen auf dem eine	Selling and a second
No. Plat	No. Row	No. Stalks harvested	Wt. Rate per 100 stalks	Average Wt. rate per 100 stalks	Extreme variations from av- erage.	Extrome varia tions.
4	1	29	Lbs. 148.3	ΓD8 •	70	70
an an an	2	23	158.7		+10.1	
	3	29	124.1		-13.9	
	4	32	154.7			
	5	38	145.4			
52	6	38	133.8	144.2		24.0
^ដ ី 5 ²	1	23 ³	76.1		•	
	2	24	55.2			
	3	18	38.9		-34.8	
	4	19	39.5			
	5	17	42.6			
	6	22	105 .7	59.7	+77.1	111.9
6	1	37	144.6			
	2	45	144.4			
	3	47	142.5		-4.4	
	4	39	157.7			
	5	48	146.9			
	6	33	158.3	149.1	+6.2	10.6
7	1	33	151 .8			
	2	31	151.6			and the second
	3	37	138.5	مېرىيى تەرىپىلەر بىرى بىرى بىرى بىرى بىرى بىرى بىرى بى	-11.9	a a a a a a a a a a a a a a a a a a a

2 North End.

3 Number of stalks out of a possible 24.

			TABLE XXVII	CONTINUED	after son flate over somering starter og somering for somering for at a somering somering somering somering so	And the second
		No. Stalks Harvested	Wt. Rate per 100 stalks	Average Wt. rate per 100 stalks	Extreme Variations from av- erage	
	1924-18125-1947	anna sana ang ang ang ang ang ang ang ang ang	Чыг 200	el antidid de fonce de la serie indication de la companya de la companya de la companya de la companya de la co Hech	ana an	
7	4	35	166.4			
	5	32	162.8			
	6	30	172.5	157.2	+9.7	21.6
8	1	36	175.7			
	2	40	163.7			
	3	45	176.7			
	4	34	156.6		•	
	5	37	199.3		+24.6	
	6	34	88.2	160.0	-44.9	69.5
*9	l	**23	80.4		+32.9	
	2	23	78.3			
	3	23	62.0			
	4	24	47.9			
	5	24	52.1			•
	6	19	42.1	60.5	-30.4	63.3
10	1	32	143.8			
	2	42	141.1	、		
	3	36	128.3		-11.9	
	4	33	150.8			
	5	18	151.4			
	6	26	158.7	145.7	+8.9	20.8

#0nly, middle four rows of the north part taken. ##Stalks harvested out of a possible 24.

- 84 -

201911-0021-1002-0202054257771			ABLE XXVIII	CONTINUED	aan a - maringga guna sana sara garaga guna guna sa	2 : 1-111 4-0 Tea 274-275255559755559755555975555555555555555
No. Plat	No. Row	No. Stalks Harvested	Wt. Rate per 100 Stalks	Average Wt. rate per 100 stalks	Extreme variations from av- erage	Extrem Varia- tions
11	1	29 29	<i>Hus</i> 128 .4	er, un andar e (a. an a' an	7º +14.3	70
	2	80	107.5			
	3	24	111.5			
	4	34	119.9			
	5	31	112.9			
	6	16	93.7	112.3	-16.6	30.9
14	1	12	131.2		٠	
	2	32	116.4		-9.3	
	3	31	125.0			
	4	33	132.6			
	5	34	132.2			
	6	42	133.3	128.4	+3.8	13.1
15	1	46	137.0			
	2	4 8	134 .4			
	3	46	141.3			
and the second	4	4 8	139.6		+2.5	
月に行いていた。	5	41	134.1			
	6	47	130.9	136.2	-3.9	6.4
16	1	43	129.1		+11.7	
Lange and the second	2	44	123.9			
	3	41	117.7			

			LE XXVII	(CONTINUED		
No. Plat	No. Row	No. Stalks harvested	Wt. Rate 100 stal	per ks	Average Wt. rate per 100 stalks	varia-	Extreme varia- tions
16	4	34	<i>Hor</i> 130.	1	Ybs	670	070
	5	41	100.				
	6	44	92.		115.6	-20.4	32.1
17	1	4 3	93.	0		-24.9	Ĵ
	2	46	148.	1		+19.6	
	3	4 6	129.	9			
	4	44	131.	2		•	
	5	47	125.	5			
	6	45	115.	0	123.8		44.5
18	1	39	119.	2		+33.3	
	2	48	91.	7			
	3	44	90.	9			
	4	44	75.	0		-16.1	
	5	40	76.	2			
	6	4 5	83.	3	89.4		39.4
19	1	4 5	72.	8			
	2	45	67.	8		-21.2	
	3	35	92.	9			
	4	40	97.	5			
	5	41	86.	0			
	6	4 3	99.	4	86.12	+15.4	36.6

and and a state of the state of	, , mader	TABI	LE XXVII COI	NTINUED	ر معرفة معرفة معرفة معرفة المعرفة الم	
No. Plat	No. Row	No. Stalks harvested	Wt. Rate per 100 stalks	Average Wt. rate per 100 stalks	Variations	Extreme varia- tions
000	-		Hr 90.8	Yes	0/0	016
20	1 2	4 6 39	101.9		,	
		39 43	101.9			
	3 4	42	85.7		-17.4	
	5	36	104.9			
	6	37	131.8	103.2	+27.1	44.5
21	1	33	114.4		+9.9 *	
~1	2	26	114.4			
	~ 3	39	105.8			
	4	39	94.2			
	5	4 0	103.7			
	6	41	92.1	104.1	-11.5	21.4
22	1	34	88.2			
	2	32	81.2			
	3	34	77.9		-13.1	
	4	30	98.3			
	5	25	92.0			
	6	42	100.0	89.6	+11.6	24.7
23	1	4 4	119.3			
	2	29	144.8		+9.4	
	3	24	141.7			

		TAF	BLE X	XVII	CONTINUED		And a second provide a s
No. Plat	No. Row	No stalks harvested	Wt. 100	rato per stalks	Average Wt. rate per 100 stalks	variations	Extrem varia- tions
23	4	26		137.5			
	Б	32		109.4		-17.3	
	6	36		141.0	132.3		26.7
24	1	36		161.8		-2.6	
	2	37		171.6		+3.3	
	3	38		167.3			
	4	33		162.1		•	
	5	30		166.6			
	6	33		167.4	166.1		5.9
25	1	23		176.1		+31.0	
	2	26		121.2			
	3	24		143.7			
	4	28		142.9			
	5	25		114.0			
	6	23		108.7	134.4	-19.2	50.2
26	l	15		135.0			
	2	28		126.8			
	3	19		145.0		+ 8.0	
	4	15		116.6		-13.1	
	5	14		144.6			
	6	12		137.5	134.2		21.1

After eliminating the first and sixth rows from the north ends of plats 5 and 9, the north ends only were taken, since the data from the south ends were not dependable due to injuries sustained. The variation was as follows: For plat 5, Minimum 11.6%, maximum 25%, and extreme variation 36.6%; for plat 9, minimum 20.3%, maximum 30%, and extreme variation 50.3%.

The table shows an extreme variation in green weight of stalks between the rows of the same plat from 5.9 per cent in plat 24, to 111.9 per cent in plat 5. Eliminating plats 5 and 9, the maximum extreme is 65.9%, occurring in plat 8, and the average variation is about 28 per cent. The number of stalks harvested in the row seems to have little influence in the variation.

Rows 1 and 6 of plat 5 being on the edges of the plats, where conditions for growth were better, should clearly not be counted in final yields. To secure comparable results rows 1 and 6 of plat 9 were also eliminated. Row 6, plat 8, being next to plat 9, is clearly not representative. Rows 5 and 6, plat 16, and row 1 plat 17 were markedly poor; but row 4 plat 16 and row 2 plat 17 were markedly good. The yields, indicate that the south series beginning with plat 14 improved in productiveness to about the middle of plat 15, from whence a gradual reduction is shown till the border between plats 16 and 17 is reached. A few rows beyond this show an increase, after which there

- 89

is a decided fall. No part, however, was eliminated in calculating tields except in plats 5 and 9, as above stated.

The variability noted throughout the table, and especially in this apparently uniform land from plats 14 to 20 inclusive, where we believe no one not seeing the goowing crop would suspect the lack of uniformity, indicates the extreme caution which should be exercised in conducting plat experiments.

--DETERMINATION OF DRY MATTER--

For the determination of dry matter representative samples were taken. Of the corn, two hills of three stalks *taken* each were from plats 2,3,5, and 10. Of millet and soy beans composite samples were taken; millet from plats 5 and 6, and soy beans from plats 9 and 11. The samples, while rather small for the purpose are believed to give fairly approximate results.

No. Plat	Kind of Crop	Dry Matter
2	Corn	% *
2	001.11	21.42
3	57	21.58
5	n	24.69
5	Millet	33.71
6	" Soy beans	17.50
9	Weeds & Grass	25.59
10	Corn	19.99
11	Soy Beans	21.02

In Table XXIX, which follows, the weights in dry matter are given. For the plats where dry matter was determined, the per cents shown in the above table were used in correcting from green weight. For the remaining corn plats except plats 9 and 11, the average of plats 2, 3, and 10 were taken. Plat 9 was calculated the same as plat 5, and plat 11, the same as plat 10. The remaining millet was calculated the same as the millet in plat 6.

In the column, "Production capacity of corn" the weights for the check plats are the actual yields. The intermediate figures given refer to what the corresponding plat presumably would have yielded had it been treated as a check. It is assumed that the change in productive capacity of the

soil was gradual between the check plats. The calculation is made by taking one third of the difference between the consecutive check plats and adding or subtracting according to the trend of the variation. The productive capacity for plat 11 was calculated on the assumption that the same variation occurring between check plats 7 and 10 continued through plat 11; and plat 15 was similarly calculated from check plats 16 and 19. This method would appear less reliable than where a check plat is in each side of the plat for which the correction is made.

TABL	E XXIX:	YIELD_CORN,	MILLET AND SO	DY BEANS
No.	Plat	Per cent Stand corn harvested	Variation between rows	Production Capacity of corn
6 [a katiya da mafiki ta Militana mangkati waliki akakat	hadar / sw . •	1	Lbs.
	1	52.43	20.6	3522
And Calendar Vin State	2	66.32	28.7	3800
Angle Angle and Angle	3	68.06	16.1	4 0 79 .
feren e a	4	65.97	24.0	4357
4	\$5 _ *_	85.42	36.6	4497
,	6	86.46	10.6	4637
1	7	69.44	21.6	4776
	8	78.82	69.5	4581
4	*9	94.44	50.3	4386
-	10	65.97	20.8	4190
	11	56.94	30.9	3995
:	12			
,	13			
• •	14	65.28	13.1	
	15	96.18	6.4	3828
a a	16	86.81	32.1	3522
	17	94.10	44.5	3216
	18	90.63	39.4	2910
	19	86.46	36.6	2605
:	20	84.72	44.5	2671
:	21	76.74	21.4	2737
:	22	70.83	24.7	2803
	23	66.32	26.7	3233

-

TABLE XX	IX: YIELD	CORN, MILLET a	and SOY BEANS
No. Plat	Per cent Stand corn harvested	Variation between rows	Production capacity of corn
	a . u	70	Ybs,
24	72.22	5.9	3663
25	51.74	50.2	4093
26	36.11	21.1	

* The four middle rows of the north half only taken, as South end was damaged by cattle.

.

ł

* * * * *

	<u>Yie</u>]	Ld, <u>Rate per</u>	acre		
No. Plat	Corn	Millet In Corn		Soy Bea In Corn	ns Ende
1	Чыл 3522	ybs.	the	Xles	Lba
2	3643				
3	4952				
4	4357				
5	1609	3932	4 999		
6	4528	\$` 180	2026	٠	
7	4776				
8	4913	191	772		
9	2145			2090	370
10	4190				
11	3310		•	53 4	89
12					
13					
14	3922				
15	4155	222	2182		
16	3522				
17	3735	negligible	369		
18	2722				
[′] 19	2605				
20	3143	219	1610		

Yield, Rate per acre						
No. Plat	Corn	Mille In Corn	et Ends	Soy Beans In corn Ends		
all ten style to the	Hes	Lles.	Lla	 Yig nyngighillturðlabjauðálor h.(vir v 		
21	3163	Negligible	740			
22	2803					
23	3991	tt	310			
24	5069	201	2665			
25	4 093					
26	4075	Negligible	1156	•		

1	Analog and a set	TABLE XXIX:	YIELD	Test	CORN	, MILLE	T AND	SOY BEANS	5
	lat No.	Total exclud ing ends.	-	o Decr	ease r ease otal		Incres or Decees of cor	180 -	
86m	1	3522	■ Et 19 march 1990 providienen dit	cł	leck		che	eck	
11-104	2	3643					-157		
ŧ	3	4952					+ 8	373	
a na serie de la compañía de la	4	4357		cł	neck		che	eck	
	5	5321		+3	.044		-2	8888	
	6	4708		+	71		-	109	
	7	47 76		cl	neck		che	ecin	
	8	5104		+	523		.+:	332 •	
	9	4235		-	151			2241	
	10	4190		cl	neck		ch	eck	
	11	3844		-	151		- (685	
	12								
	13								
;	14	3922					+	28,6	
;	15	4377		+	549		+	327	
	16	3522		c	heck		ch	eck	
	17	3735					t	519	
	18	2722						188	
	19	2605		c	heck		ch	eck	
	20	3362			+ 691		+	47 2	
	21	3163					+	426	
	22	2803		C	heck		ch	eck	
	7					core men - contage internation	gangangang tea provide and and		

una en contrata de contrata	TABLE XXIX:		AND SOY BEANS
Pla f No.	Total exclud- ing ends	Increase + or Decrease - of total	Increase + or Decrease - of corn
hydrogenetics/2016-yill		Mon	Stor
23	3991		+758
2 4	5270	+1607	+1406
25	4093	check	check
26	40\$5	•	

No. Plat	July 9th., 16th 24th. & 30th. Ends	. Aug. 5th, 19th	
$\label{eq:product} \sum_{i=1}^{n} A_i \leq \frac{1}{2} A_i <\frac{1}{2} A_i <1$	Ends %	70	%
1	22.6	21.1	18.0
2	21.3	18.2	15.0
3	26.0	25.0	17.9
4	20.1	18.2	13.7
5	17.9	9.8	9.7
6	20.4	17.0	13.1
7	18.5	17.7	• 14.1
8	19.4	17.4	14.7
9	14.8	10.0	9,3
10	16.5	15.2	12.3
11	15.7	13.0	11.5
12	14.4	13.0	14.1
13	15.9	14.7	13.7
14	24.6	23.1	19.0
15	24.4	21.3	16.9
16	23.2	22.5	17.5
17	22.5	21.5	15.4
18	21.1	20.4	15.3
19	20.7	19.9	16.7

- 99 -

TABLE XXX PERIODS, PH	SHOWING AVERAGE MO ER CENT DRY SOIL (DE		
No. Plat	July 9th. 16th. 24th. & 39th.	Ends	h & Sept. 1 In Corn.
applois-deft-autophyse of the second se	And the manufacture and the second se	Course that	92. – Witt Ferneniser-Park of Africantintee-radiation-radiationstationers
21	20.9	19.6	14.5
22	19.6	17.9	14.6
23	21.0	19.5	14.6
24	20.3	16.0	12.9
25	19.3	17.5	13.2
26	19.1	16.3	12.7

n 🖗 allandar anterioristi o manifestation (harpestational) e a subsensation a subsensational de la subsensation (harpestational) e a s

ERIODS.	PER CENT DRY SOIL	E MOISTURE CONTENT L (DEDUCED FROM TA)	BLE "A" A	PPENDI
No. Plat	Difference	August And Ends	In Corn	Diff
1	3.1	19.8		4.
2	3.2	16.1	11.8	4.
3	7.1	24.2	13.8	10.4
4	4.5	16.9	10.3	6.0
5	0.1	5.9	5.7	0.1
6	3,9	15.1	9.7	5.
7	3.6	16.3	11.2 '	5.
8	2.7	16.6	12.0	4.
9	0.7	7.1	6.2	0.
10	2.9	14.6	10.5	4.
11	1.5	12.4	9.7	2.
12	1.1	12.5	13.4	-0.
13	1.0	14.3	13.2	1.
14	4.1	21.3	15.8	5.
15	4.4	18.0	13.3	4.
16	5.0	21.0	13.9	7.
17	6.1	19.6	12.1	7.
18	5.1	18.7	11.5	7.
19	3.2	18.3	13.7	4.
20	2.8	14.4	11.5	2.

TABLE XXX SHOWING AVERAGE MOISTURE CONTENT FOR DIFFERENT

a.rt. w.c.?"

- 101 -

TABLE XX PERIODS,	X SHOWING AVERAVE PER CENT DRY SOIL		FOR DIFFERE BLE "A" APPE	
No. Plat	Difference	August	19th and 26 In Corn %	Diff. %
21	5.1	18.3	11.0	7.3
22	3.3	16.5	11.6	4.9
23	4.9	18.3	11.2	7.1
24	3.1	12.5	9.0	3.5
25	4.3	16.3	10.5	5.8
. 26	3.6	15.6	9.5	6.1
5 and antificances, constitution sciency 6,2057 2,000 (antion 2004	zgenegtimezerszerenzer namer (ann, met, colaurozzen ejnekterszeket (colaurettar en ar namen auren) au erek	مى مەر بەر بەر بەر بەر بەر بەر بەر بەر بەر ب	1974520-1986-1986-1975	alathe same i we a s

......

.

.b.

an seal and an and an analyzing state ways successing states to the

No. Plat	August 5, 1 and Sept		August 19 and 26th.		Increase + or
	Calculated from checks	Found	Calculated from checks	Found	Decrease -
1	analasinaa sala aha sala sala sala sala sala sal	% 3.1		% 4.9	e de las anticipadas en el consecutivo de las a Internacional de las anticipadas en el consecutivo de las anticipadas en el consecutivo de las anticipadas en el
2	3.6	3.2	5.5	4.3	-1.2
3	4.1	7.1	.6.1	10.4	+4.3
4		4.5		6.6	
5	4.2	0.1	6.1	0.2	-5.9
6	3.9	3.9	5.6	5.4	2
7		3.6		5.1	
8	3.4	2.7	4.8	4.6	2
9	3.2	0.7	4.5	0.9	-3.6
10		2.9		4.1	
11	2.3	1.5	3.1	2.7	4
12	1.7	-1.1	2.1	-0.9	-3.0
13		1.0		1.1	
14		4.1		5.5	
15		4.4		4.7	
16		5.0		7.1	
17	4.4	6.1	8. 3	7.5	+1.2
18	3.8	5.1	5.5	7.2	+1.7
19		3.2		4.6	
20	3.2	2.8	4.7	2.9	-1.8

TABLE	XXXI SHOWING D	IFFERENCES	IN MOISTURE C	ONTENT	OF SOIL
FOR DI	IFFERENT PERIODS	, BETWEEN	THE ENDS, AND	WHEN CO	RN GREW
	A	LSO THE VAL	RIATIONS IN YI	ELDS	
No. Plat		pt. 16	August 19 and 26th Calculated from checks	•	Increase or Decrease
and a substantial second data and a		aalaa adheyaaqiigara.Leegadar 4045,004 aayaa,30-qiishiin aadaaaayaad		Pound	
21	· 3.2	5.1	4.8	7.3	-2.5
22		3.3		4.9	
23	3.6	4.9	5.2	7.1	+1.9
24	3.9	3.1	5.5	3.5	-2.0
25		4.3		5.8	•
26		3.6		6.1	
	مرود المرود الم	≠ 2 K - Shara an Onland W	್ರ್ಯುಪ್ಟ್ ಕ್ರಿಸ್ಟ್ ಸ್ಟ್ ಸ್ಟ್ ಸ್ಟ್ ಸ್ಟ್ ಸ್ಟ್ ಸ್ಟ್ ಸ್ಟ್		

* In this calculation it is assumed that changes occur gradually between the checks. To illustrate the method take plat #2. One third the difference between checks 1 and 4 added to m 1 gives 3.6, which is supposed to be the dif ference between the moisture between the ends and in corn had the beogreated as a check.

OR DIFFI	CRENT PERIODS, BETWEEN ALSO THE VAR	IATIONS IN YIE	LDS
No. Plat	Per Cent Stand	Dry M Increase +	
1	52.93	check	
2	66.32	-157	
3	68.06	+873	
4	65.97	check	
5	85,42	-2888	+1044
6	86.46	- 109	+ 71
7	69.44	check	
8	78.82	+ 332) 523
9	94.44	-2241	- 151
10	65.97	check	
11	56.94	- 685	-151
12			
13			
14	65.28		
15	96.18	+ 327	+ 549
16	86.81	check	
17	94.10	+519	
18	90.63	- 188	
19	86.46	check	
20	84.72	+472	+ 691

- 105 -

TABLE XXXI FOR DIFFER	SHOWING DIFFERENCES IN ENT PERIODS, BETWEEN THE ALSO THE VARIATIONS	E ENDS, AND W	NTENT OF SOIL HEN CORN GREW
No. Plat	Per Cent Stand	Dry M Increase + Corn	atter or decrease - Total
21	76.74	+426	
22	70.83	check	
23	66.32	+758	
24	72.22	+1406	+1607
. 25	51.74	check	
26	36.11		grinnessen d
	ು ಗೌಗ್ಗಳಗಳ ಗ್ರಾಹ್ಮಲ್ ಸಿಲ್ ಕ್ಲೇಟ್ಗಳು		e Pilinone for the Manual Andrew Section of the Sec

	ERIODSPARTS	S PER MILI TABLE	VE FERTILIZER LION OF DRY S "A" APPENNIX	OIL (DEDU	OR DIFFER- CED FROM
No. Plat	July 9, 16,24,30.	Au 5, 9,26 Ends	g. , & Sep. 16. In Corn		
- vázáztas h toluna Min A a	NO ₃	NO3	NO3	NO3	NO3
1	80.1	90.4	53.0	70.8	16.7
2	97.1	90.6	71.5	52.8	52.5
3	68.2	85.7	29.5	97.5	23.3
4	97.0	123.7	24.3	87.9	16.5
5	48.5	2.0	3.6	1.7	2.2
6	86.0	60.5	17.1	50.6	. 10.7
7	81.8	93.2	29.6	66.9	9.6
8	85.7	89.4	33.7	8.88	24.8
9	63.4	5.9	5,8	2.5	5.0
10	56.0	89.5	24.8	59.9	22.3
11	51.8	77.9	26.2	55.0	27.2
12	52.4	58.4	55.4	61.8	62.1
13	57.3	96.8	36.1	73.9	35.6
14	200.1	77.1	205.6	157.8	143.7
15	240.6	229.8	166.7	150.9	148.5
16	140.2	160.4	110.7	127.5	80.1
17	208.0	254.8	181.2	174.3	166.3
	P04	PO4	PO4	PO4	PO4
18	8.9	9.3	8.3	10.2	8.6
19	8.2	8.4	·8 . 5	9.3	8.5

No.	July 9	Aug.			Aug.
Plat	16, 24, 30 Ends	5, 9,26, Ends	& Sep. 16 In Corn	19 8 Ends	k 26 In Corr
ала с	анынынынынынынынынынынын орологиялык орологиялык РОд	PO ₄	алананын тараан тара Рода Балары Электрикан тараан та	Po_{4}	nya iz danimikani PQ malanakali siru
2 0	* 8.6	8.4	8.2	8.2	8.1
21	7.9	8.9	8.9	8.1	7.6
22	7.3	8.8	7.7	9.6	7.0
	K	K	K	K	K
22	9.1	6.8	5.7	5.1 .	.3.9
23	8.5	10.4	7.8	9.6	5.7
24	8.7	7.6	7.2	6.0	5.5
25	10.6	8.4	5.7	6.3	4.7
26	12.9	9.8	10.7	10.9	10.9

The second se

.....

eth? En Ceur Musich ethne au 73adurt (URRGR/RBadesch)

DISCUSSION OF RESULTS

First sowing of "Weeds" Plat 5 Yield

On Plat #5 millet was sown at the first cultivation June 18th.

			AND MILLI				MARK DEPARTY + F -5 A -
ралман Флекасуна и саналу	Cor	1. 11/286 6-2016-66-50-56-50-56-	t fana	Veeds"	_	Coi	rn &"Weeds"
	Green Wt.	Dry Wt.	<u>End.</u> Green Wt.	Dry Wt.	In Cor Green Wt.	Dry. Wt.	In Corn Green Dry 'Wt. Wt.
Withous and a - second and a second s	Yles	Hus	Xbz	462	unan windrawan	Kbr	Hos thes.
Normal Productive Capacity	21413	4 497	14 829	4999			
Yield	6515	1609	14829	4999	11011	3932	17526 5541
Encrease + or Decrease -							-3887+1044

Calculated on the basis of green weight the total yield of corn fodder and millet was 3887 pounds less than the productive capacity of the green corn fodder; but calculated on the basis of dry matter the yield was 1044 pounds greater. The percentage of dry matter in the corn was 21% while in the millet was 35.71%.

TABLE XXXIV	MOISTURE,	CALCULATED PLAT 5	ON	THE	BASIS	OF	DRY	SOIL,	
		a sa ang sa		-					
	Ends				In Co	rn			

Calculated from checks	July 9,16,24 30. % 19.6	Aug. 5,19,26 & Sep. 16 % 18.0	Aug. 19 & 26 % 16.7	Aug. 5,19, 26 &Sep (6 % 13.8	Aug. 19 & % 10.6
Actual	17.9	9.8	5.9	9.7	5.7

The decrease in the moisture content is marked. The millet grew rapidly during the early period of growth. When it is remembered that the moisture in the checks was too low much of the time for best results, the poverty of moisture in plat 5 is emphasized.

TABLE XXXV NITROGEN (NO3) PARTS PER MILLION (P.P.M.)DRY SOIL (AVERAGE FOR DATES GIVEN)PLAT 5

	End		In Corn		
	July 9, 16, 24, & 30	Aug. 5, 19,26 & Sept. 16	Aug. 19 & 26	Aug. 5,19 26 & Sep16	Aug.9 & 26
	p.p.m.	p.p.m.	p.p.m.	p.p.m.	p.p.m
Calculated from checks	92.0	113.5	80.9	26.1	14.2
Actual	48.5	2.0	1.7	3.6	2.2

There is shown a speedy reduction of nitrogen both on the ends and in the corn to a point which would seem to seriously limit if not prohibit plant growth.

XXXVI COMPARISON OF THE REDUCTION OF MOISTURE AND NO3, PLAT 5

5	In Corn				
	July 9,16 24 & 30 %	Aug. 5,19,26 A Sep. 16	Aug.19	/ Aug.5,19 26 &Se pH6 %	Aug. 19 &26
Moisture Normal cal- culated from checks	19.6	18.0	/° 16.7	% 13.8	% 10.6
Actual Amt.	17.9	9.8	5.9	9.7	5.7
Nitrogen Normal Amt.	p.p.m.	p.p.m.	p.p.m.	p.p.m.	p.p.m.
calculated from checks	92.0	113.5	80.9	26.1	14.2
Actual Amt.	48.5	2.0	1.7	3.6	2.2

The summarized comparison shows a much more speedy diminuition of the nitrogen than of the moisture. The nitrogen contents lowers with the moisture not only in this plat, but holds true on the part of all plats whene crops were grown. (See Table "A" Appendix) But the nitrogen lowers relatively much more rapidly when a large crop of "weeds" were grown. It is interesting to note that the nitrogen content of the corn grown on this plat was only

.84 per cent, dry matter.

PLAT #9 YIELD

On Plat #9 soy beans were sown at the first cultivation June 18th. and, later replanted July 5th. The stand was not sufficient to prevent the growth of weeds and grass. The soy beans, perhaps, constituted half of the weeds harvested. No nodules were found on the roots.

TABLE XXXVII THE RATE OF YIELD PER ACRE OF BOTH CORN FODDER AND "WEEDS"

	Coi	rn		18 7	Needs"		Corn	8	"Weeds"
			s ,		حاد −	чтт. <u>т</u> е,	-11 .		
			Er	nd.	In (Corn	Corn	&	"Weeds"
	Green Wt.	Dry Wt.	Green Wt.	Dry Wt.	Wt.	Dry Wt.	Green Wt.		Dry Wt.
Productive Capacity	¥4₂ * ₹20886			3700	the the second s	4les	thes		Les
Actual	8689	2145	14461	3700	8167	2090	16856		4235
Increase / or Decrease-							-4030		-151

Calculated on the basis of green weight the total yield of corn fodder and "weeds" was 4030 pounds less than the productive capacity of green corn fodder. On The basis of dry matter the yield was 151 pounds less. Or,to state it differently, the production of 2090 pounds of dry matter in "weeds" reduced this yield of dry matter

in corn fodder 2241 pounds. Here as in plat 5 the statement of results, green weight would have been entirely misleading.

TABLE XXXVIII MOISTURE CALCULATED ON THE BASIS OF DRY SOIL, PLAT 9

		Ends		u In Con	n
Jul	y 9,16,24	Aug. 5,19,26	Aug. 19	Aug. 5,19,	Aug.
	& 30	& Sep. 16	& 26	26, &Sep.16	19&26
Calculated from checks	%	%	%	%	%
	17.2	16.0	15.2	12.9	10.8
Actual	14.8	10.0	7.1	9.3	6.2

The reduction in the soil moisture as compared with the checks whene corn only grew was very marked even early in the season. It was evident during the greater part of the season that the moisture content was too low for normal growth.

TABLE XXXIX NITROGEN NO3 CALCULATED PARTS PER MILLION (P.P.M.) DRY SOIL (AVERAGE FOR DATES GIVEN), PLAT 9

		Ends		In Corn		
	July 9,16 24, & 30	Aug. 5,19,26 & Sep. 16	& 2 6	Aug. 5,19, 26 & Sep.16	Aug. 19 & 26	
	p.p.m.	p.p.m.	p.p.m.	p.p.m.	p.p.m.	
Calculated from checks	64.6	90.7	62.2	26.4	18.1	
Actual	63.4	5.9	2.5	5.8	5.0	

Here, as in plat 5 is shown a much more rapid diminuition of nitrates than occurs in the checks.

~

TABLE XXXXCOMPARISON OF THE REDUCTION OF MOISTURE AND
NITROGENNITROGENPLAT 9

		Ends	In Corn		
	July 9,16 24 & 30	Aug. 5,19,26 & Sep.16	Aug. 19 & 26	Aug. 5,19 26 & Sep16	Aug.19 &26
Moisture	%	%	70	m . 10	70
Calculated from checks	17.2	16.0	15.2	12.9	10.8
Actual	14.8	10.0	7.1	9.3	6.2
Nitrates NO ₃ Calculated from checks	64.6	90.7	62.2	26.4	18.1
Actual	63.4	5.9	2.5	5.8	5.0

Here as in Plat 5 a much more rapid reduction of nitrates occurs than of moisture.

SECOND SOWING OF "WEEDS"

A drought succeeded the sowing of the second crop of "weeds" July 24th., which seriously injured this part of the experiment. Millet was sown on plats 6,15, 20 and 24, and soy beans on Plat 11. The soy beans in the corn grew as tall or taller than at the ends of the plats.

TABLE XXXXI SHOWING RESULTS OF SECOND SOWING OF "WEEDS PRODUCTIVE CAPACITY CALCULATED FROM CHECKS. RESULTS IN DRY MATTER

No.	Productive		eld in C		Increa	set Decreaset
Plat	Capacity Corn	Corn	Millet	Soy Beans	Corn	Total
	lbs.	lbs.	lbs.	lbs.	lbs.	lbs.
6	4637	4528	180		-109	+71
15	3828	4155	222		+327	+549
20	2671	3143	219		+472	+691
24	3663	5069	201		+1416	+1607
11	3995	3310		534	-685	-151

TABLE XXXXIISHOWING RESULTS OF SECOND SOWING OF WEEDS.THEPRODUCTIVE CAPACITY CALCULATED FROM CHECKS, CORRECTED FOR EFFECT
OF FERTILIZER.RESULTS GIVEN IN DRY MATTER.

No. Plat	Productive Capacity Corn	Corn	Yield in corn I Millet Soy beans	ncrease Corn	(+ADecrease (- Total
	lbs.	lbs.	lbs. lbs.	lbs.	lbs.
6	4637	4528	180	-109	+71
15	3922	4155	222	+233	+455
20	2483	3143	219	+660	+879
24	4421	5069	201	+ 648	+849
11	3995	3310	534	-685	-151

In Table XXXXI the comparison is made with the productive aapacity calculated from the checks. The method, however, is not logically correct for plats 15, 20, and 24 since these were fertilized with sodium nitrate, acid phosphate and potassium sulphate respectively. Plats 14, 18, and 23, were fertilized to correspond with the above plats in the order named to dertermine the effect of fertilizers. An attempt was made to correct the calculated productive capacity from the checks by correcting for the effect of fertilizer. (TABLE XXXXII) The actual yield of 14 was taken for comparison with plat 15.

The number for comparison with plat 20 is secured by subtracting 188 pounds, which is the loss apparently due to the acid phosphate in plat 18, from the normal productive capacity (2671# - 188# = 2443#).

The number for comparison with plat 24 is secured by adding 758 pounds which is the gain apparently due to the potassium sulphate in Plat 23, to the normal productive capacity (3663# + 758# = 4421#)

The results from the two methods are about the same except by the latter method (Table $X \times X I$) the increase in plat 24 is less marked.

When millet was sown in plats 15, 20 and 24, there was an increase in corn fodder, Plat 6 showed a

decrease in corn but an increase in the total weight. Where soy beans were sown on plat 11, the total showed a decrease.

It should be remembered that while the yield of weeds was small, young plants have a relatively large proportion of roots, and a smaller proportion of that above ground can be harvested. If this is considered probably every plat showed an increase in total yield.

But was the increase due to any **bartifician** effect from the light growth of "weeds", to the calculated productive capacity being too small? It will be very difficult to determine the effect of a light growth of weeds in plat experiments since the weight of a light growth may easily come within the range of experimental error.

THIRD SOWING OF "WEEDS"

The third sowing of "weeds" made August 6th. failed to grow sufficiently for harvesting except plat 8. The millet gave a yield of 191 pounds dry weight (Table XXIX). Compared with the productive capacity the corn gave an increase of 332 pounds of corn alone, making a total increase of 523 pounds. This is in line with the results obtained from the second sowing of "weeds".

EFFECT OF MULCHING

Plat #3 was mulched both in the corn and in the

117 -

ends. Weeds were not permitted to grow. The increase in dry matter over the normal productive capacity calculated from the checks was 873 pounds.

TABLE XXXXIII COMPARINC THE MOISTURE AND NO3 CONTENT

	Ends			In Corn		
	July 9,16, 24 & 30	Aug. 5,19, 26. & Sep.16	Aug. 19 & 26	Aug. 5,19, 26, Sep.16	Aug.] & 26	
	%	9.	%	1 .	70	
Moisture Normal Calculated	20.9	19.2	17.9	15.1	11.8	
from checks				•		
Actual	26.0	25.0	24.2	17.9	13.8	
NO3 Normal	<u>p.p.m</u> .	<u>p.p.m</u> .	p.p.m.	<u>p.p.m</u> .	p.p.m	
Calculated from check	85.7	101.5	76.5	33.9	16.5	
Actual	68.2	85.7	97.5	29.5	23.3	

On the ends of the mulched plat the moisture ran considerably higher than on the checks. In the corn during the dry weather, the moisture content ran nearly as low as the calculated normal. There was thus considerably more water used by the plants, which was reflected in the larger yield. During the most trying period of the drought the corn on this plat seemed to suffer nearly as severely as on any of the plats. The nitrogen content was greatly lowered, as well as the moisture.

It was noted in the early season during a wet and rather cool period that the plants on this plat were growing more *wignously* than, the cultivated plats near it. Presumably the soil under the mulch was cooler and contained less air than where there was no covering.

EFFECT OF SCRAPING

Plat 2 was not cultivated after planting but the weeds were prevented from growing by cutting them off at the surface of the ground, taking care to leave no mulch. The yield of corn fodder, dry matter, was 157 pounds less than normal as calculated from checks.

TABLE XXXXIV SHOWING THE MOISTURE AND NO3 CONTENT OF PLAT 2

		Ends	In ^C orn			
	July 9,16,24 & 30	Aug. 5,19,26 & Sep. 16	Aug. 19 & 26	Aug.5,19 26 & Sepl6	Aug.19 & 26	
	%	7	%	%	%	
Moisture Normal Calculated from checks	21.8	20.1	18.8	16.6	13.4	
Actual	21.3	18.2	16.1	15.0	11.8	
NO ₃ Normal Calculated from checks	<u>p.p.m</u> . 91.4	<u>p.p.m</u> . 101.5	<u>p.p.m</u> . 76.5	<u>p.p.m</u> . 43.4	<u>p.p.m.</u> 16.6	
Actual	97.1	90.6	52.8	71.5	52.5	

The moisture was somewhat lower than the checks. The nitrogen on the ends was not materially different except during the drought (Column Aug. 19 & 26) when it materially lowered. The nitrogen where the corn grew was much higher than in the checks. Since this can not be accounted for by a sufficiently decreased yield, what is the explanation? It is usually supposed that cultivation favors nitrification. Was nitrification more rapid in this plat than in the checks, or were more nitrates brought up from an accumulated reserve below? The nitmogen content of the soil, Sept. 16, when considerable rain had fallen gives some indication that this latter view may at least partially account for the phenomenon.

(See Table A, Appendix)

In the early part of the season the growth on the scraped plat appeared to be considerably poorer than on the checks, yet the final yield was but 157 pounds,or 4.1% less than the calculated normal yield. It is probable that the calculated normal yield is slightly low, but even then there is not the diminuition in final yield that was indicated by the early growth. It would thus seem possible that on the scraped plat the moisture available was made more efficient by an abundance of available nitrogen in the soil.

-- COMPARISON OF MULCHED AND SCRAPED PLATS --

TABLE XXXXV SHOWING DEPARTURE FROM NORMAL AS CALCULATED FROM CHECKS, IN YIELD, AND MOISTURE, AND NITROGEN (NO3) content in SOIL

No. 7 Plat n	Ireat- nent	Moisture & Nitro- gen		n d s Aug. 5,19 26,Sep.16	Aug. 19 & 26	In Aug.5,19 26,Sep16	Corn Aug.19 & 26	Yield
			<i>7</i> .	%	%	%	9/-	#Ľbs
2 Sc	craped	Moisture	- 0.5	- 1.9	-2.7	-1.6	-1.6	-157
3 Mu	lched	29	+ 5.1	+ 5.8	+6.3	+2.8	+2.0	+873
2 Sc	craped	NO3	-0.3	<u>p.p.m</u> . -10.9	<u>P.p.m</u> . -23.7	<u>p.p.m</u> +28.9	+35.9	•
3 Mi	lched	89	-17.5	-15.8	+21.0	-4.4	+6.8	

There was a greater difference between the moisture of the ends and in the corn in the mulched than in the scraped plats. There are many varying factors, among which are evaporation and capillarity.

The NO₃ where corn was growing, is much more abundant in the scraped than in the mulched plat. Was this due to the moisture in the soil not being sufficient to permit sufficient growth to use the available nitrogen?

-- VARIATIONS IN FERTILIZER CONSTITUENTS --

(See Table XXXJI)

The nitrates varied greatly. In general they lowered with the moisture. This was very marked in plats 5 and 9 where the first sowing of "weeds" was made. In these

plats the soluble nitrogen lowered much more rapigdly than did the moisture. While the moisture soon ran so low in these plats as to limit plant growth it is a question whether the poverty in nitrogen was not equally, or even more, the limiting factor. Can the plant, by lowering its content of this constituent continue growth if moisture is available? That this can be done is indicated by the nitrogen of the corn fodder on plat 5 being only .84%, while this constituent in the corn fodder of three other plats determined was nearly double this amount. Had the moisture and nitrates of the soil been equally limiting factors we would expect the content of this constituent to be about the same as in the other

plats.

In the other plats of the north series during the drought (see column Aug. 19 & 26) a great variation was noted even in the checks (plats 1, 4, 7, 10, & 13). Plat 7 is notably low. Plat 1 has a moderate amount. This is the heaviest soil of this eeries. Diffusion being hindered in consequence, what is the limiting amount for growth of corn or for checking the accumulation of nitrogen by the plant? Plat 2 (scraped) is high in nitrates. Plat 16, which is a check in the second series wing The Mo; was delemined is the highest in nitrate content of any unfertilized plat.

Plats 14, 15, and 17 fertilized with a heavy application of sodium nitrate, failed, at least, to give

any material increase in the crop. Evidently the lack of nitrates in these plats can not account for the low yields. But the moisture ran low, which was doubtless one of the causes, or the cause, for the low yields. It appears, therefore, that the lack of nitrates in the soil was probably a limiting factor, at least, in the amount of nitrogen accumulated by the plants in some cases while in others no such effect occurred from this cause.

A very interesting feature of the table (XXXII) is the variation of NO_3 in the checks. Is it improbable that plat 7, for instance, is too low to supply the optimum amount of nitrates to the plant if the moisture and other conditions were favorable? What effect would this have on the composition of the plants? Sodium nitrate applied to timothy on the Mitchel Farm gave a decided increase in Yield (Cornell Bul. 241, 7)

The PO₄ content in the soil was about the same throughout the season, and is but slightly lower in the corn than at the ends. There was but little effect on the yields. This corresponds with the fact that acid phosphate gives but slightly increased yields on the Mitchel Farm. T

The Potassium (K) in the soil seems to show a slight tendency to lower on the ends with the moisture,

while in the corn there is, percentagely, considerable decrease. Where potassium sulphate was applied it seemed to be somewhat reflected in the yields. This corresponds with the increase in yield when applied to timothy, to which reference is made above.

-- YIELD OF NTTROGEN IN CROPS --

A chemical analysis was made of corn fodder from plats 2, 3, 5, and 10, of millet from plats 5 and 6, and of soy beans, weeds, and grass from plat 9, and soy beans from plat 11. Care was taken to select what appeared to be representative samples. Two hills of corn with three stalks each and small composite samples of millet and soy beans were taken. In each case the sample of millet and soy beans consisted of about equal parts taken from the ends and in the corn. It will be noted that the samples were rather small for the purpose. The calculated results for the above plats, together with other plats taken for comparison, are given in Table XXXXVI.

TABLE XXXXVI SHOWING NITROGEN REMOVED BY THE CROPS ON SOME PLATS. AND THE NITROGEN IN THE SOIL 2 - 7 INCHES SEPT. 16. YIELD AND NITROGEN CONTENT OF CROPS GIVEN IN DRY MATTER

No. Plat		Yield Rate per acre Lbs.	Nitrogen %
2	Corn fodder	3643	1.49
3	11 11	4952	1.39
4	17 ††	4357	*1.38
5 5 5	" " Millet Inter Millet	1609 3932 4 999	.84 1.16 1.16
6	Corn fodder	4528	*1.38
6	Millet	180	3.04
7	Corn fodder	4776	*1.38
8	11 1f	4913	*1.38
8	Millet	191	**3.04
9	Corn fodder	2145	*** .84
9	****Soy beans	2090	1.49
9	Soy beans	3700	1.49
10	Corn fodder	4190	1.37
11	99 99	3310	*1.38
11	Soy beans	534	3.43

*Average per cent nitrogen content of plats 3 and 10 taken. **The same per cent nitrogen employed as for millet in plat 6. ***" " " corn " " 5. ***" beans constituted about 50%, weeds and grass constituting the remainder.

TABLE XXXXVI SHOWING NITROGEN REMOVED BY THE CROPS ON SOME PLATS AND THE NITROGEN IN THE SOIL 2 - 7 INCHES SEPT. 16. YIELD AND NITROGEN CONTENT OF CROPS GIVEN IN DRY MATTER. (Continued)

. No. Plat	Nitrogen removed by crop. Rate per acre	To tal Nitrogen removed by crop rate per acre	
	Lbs.	Lbs.	Lbs.
2	54,28	54.28	41.6
3	68.84	68.84	10.8
4	60.13	60.13	4.2
5	13.52		٠
5	45.61	59.13	1.8
5	58.00	58.00	•6
6	62.49	62.49	
6	5.47	67.96	2.4
7	65.91	65.91	10.0
8	67.80		
8	5.80	73.60	5.0
9	17.16		
9	31.14	48.30	1.7
9	55.13	55.13	2.8
10	57.40	57.40	8.5
11	45.67		
11	18.32	64.01	4.9

The manner of securing the results are clearly open to objection, but they may show some indications. Plats 5 and 9, when compared with the whole, show a decrease in nitrogen in the crop, but when compared with plats 4 and 10 respectively, the decrease is but slight except where corn grew in Plat 9. The corn in this plat is calculated the same as in Plat 5, which is probably too low since the corn yield was 33% greater in Plat 5. Allowing for this probable error, there appears to be about the same yield of nitrogen in the ends as in the corn on these two plats.

The nitrogen in 2 to 7 inches of soil is lower in these plats than any of the others. Plat 2, which was scraped, shows the highest amount of nitrogen in the soil of any of the plats, but the total nitrogen in the crop was low.

-- CAPILLARITY --

For the study of the differences in the capillary power of the soil the results from plats 1 to 13 were used, since the greatest variations in texture occurred in these plats. The variations from the approximate normal for the different plats, and between the ends and in corn is shown in Table XXXXVII.

TABLE XXXXVIIPER CENT AVERAGE MOISTURE, NORTH SERIES, (PLATS1 TO 13)CALCULATED ON THE BASIS OF AVERAGE MOISTURE CONTENT
ENDS OF PLATS JULY 9TH. & 16TH.

No. Plat	July 9 & 16	Aug. 5, 19,	26, & Sep. 16.	Aug. 19	& 26.
ria.	Ends	Ends	In Corn	Ends I	n C orn
1	% 23 .95	% 88.2	∞ 75.4	% 82 . 9	% 62.3
2	22.55	81.0	66.6	71.50	52.7
3	26.3	95.2	68.0	92.1	52.5
4	21.4	85.2	64.1	79.3	48.2
5	20.8	47.3	46.5	28.3	27.4
6	21.3	80.0	61.8	71.0 .	45.6
7	20.05	8 8. 0	70.2	81.4	56.0
8	20.45	85.0	71.8	81.4	88.9
9	16.65	60.2	56.2	42.9	37.2
10	17.1	88.9	71.6	83.7	61.8
11	16.35	79.6	70.4	76.2	59.6
12	14.9	87.3	94.7	84.0	90.0
13	16.3	90.4	84.0	88.0	81.4

For the basis of calculation the average moisture content of the ends for July 9 and 16 when the moisture was presumably not far from the optimum was taken. This was some too low for plats 5 and 9, but the error due to this cause is not material.

The most interesting features of this table are the results from plat 12, where there was only a very light growth of soy beans in the corn. Not only was the percentage of the optimum moisture higher than on any of the other plats, but was higher in the corn than in the ends. These averages can not be due to any aberrent determinations for an examination of the detailed data (Table "A" Appendix) shows that for each determination the same differences are shown. Some of these determinations were made before any soy beans were above ground. This is the more interesting on account of this being the highest plat of the Had this been a heavier soil whole experimental area. there would be a possibility of a water coming to the surface where the gorn was growing from higher ground, but even under this circumstance the very slight difference between the elevation of this plat and the level of the land above would make such an explanation improbable. It appears, therefore, to bedue to strong capillary action. The protection against evaporation by the corn appears to conserve more moisture than is transpired by the plants.

Table A: Showing Moisture and Nitrogen, (NO3) En Soil. Plats, 1-13. Corn Planted May 17, 1907. ENDS, July 9 No. Moisture NO3 ppm.* NO3ppm. % dry soil, dry soil, moisture, Plat, Treatment, Cultivated all season, 3251 24.5 79.6 537 21.7 116.6 2 Scraped, 3 Mulched. 25.7 73.9 288 22.1 98.0 443 4 Cultivated all season, 412 20.6 84.8 5 Millet sown June 18, 21.2 79.0 373 Millet sown July 24, 6 99.1 ' 498 19.9 Cultivated all season, 7 483 Millet sown Aug. 6, 20.7 100.0 8-98.6 609 Soy Beans sown June 18. 16.2 9 54.4 313 17.4 Cultivated all season, 10 53.0 321 Soy Beans sown July 24. 16.5 11 367 Soy Beans sown Aug.6 14.9 54.8 12 Cultivated all season, 16.5 57.5 349 13

*ppm, is the abbreviation for parts per million.

•

Table A(Cont.): Showing Moisture and Nitrogen, (NO3) in Soil Plats, 1-13. Corn Planted May 17, 1907.

I

No. Plat,	H_{20} %	NDS, July NO3 ppm. d. soil,	NO3 ppm.	H ₂ 0 d,so	EMDS. July % NO3ppm. bil,d.soil,	NO3 99m .
1	23.4	84,5	361	21.3	78,0	366
2	23.4	91.0	389	21,6	97.0	4 4 9
3	26.9	39.0	145	26.7	84.0	315
4	20.7	88.4	427	19,8	110,0	555
5	21.0	72.0	347	17,8	29,9	168
6	21.4	78.0	365	19,9	113,7	571
\$	20,2	81.9	40 5	18,7	78,4	419
8	20,2	61,7	3 05	19,1	101,4	531
9	17,1	60 ,3	353	15.0	75.6	504
10	16.8	33 .6	200	16.2	84.0	519
11	16.2	26,4	163	15.5	73,8	4 7 6
12	14.9	34.2	230	14.0	75,6	540
13	16.1	30.0	186	15.7	81.6	520

Table A(cont.): Showing Moisture and Nitrogen, (NO3) in Soil

Plats, 1-13. Corn Planted May 17, 1907.

No. Plat	H20 %	DS, July NO ₃ ppm. d.soil,	NO3ppm.	H-0 %	5, Aug. 3 NO3 ppm. d.soil,	NO3 ppm. H ₂ 0.
1	21.2	78,4	370	21.1	90.0	427
2	18.7	84.0	449	18.3	84.0	458
3	24.7	76.0	308	25,8	61,7	240
4	17.9	91.8	513	18,1	111.0	612
5	12.1	6.6	55	12.8	2,2	17
6	19.3	73.4	380	19,8	135.0	701
7	15.3	67.8	443	18.0	96,0	535
8	17.6	79.8	45 3	17,3	135,0	780
9	11.1	19.2	173	11.6	8,8	76
10	15.5	52.2	337	15,6	73 _, 1	46 8
11	14.5	54.0	373	13,6	56 66	416
12	13.9	45.1	325	12,8	66.0	515
13	15.2	60.0	395	14.4	56.1	390

,

Table A(cont.): Showing Moisture and Nitrogen(NO3) in Soil.

Plats, 1-13. Corn Planted May 17, 1907.

No. Plat	H_0 %	orn,Aug. (NO3 ppm. d. soil,	NO3 ppm.	H_0.%	NDS. Aug NO ₃ ppm. d.soil,	NO, ppm.
1	19.6	51.9	362	20.6	90,0	436
2	16.7	37. 2	223	17.1	75,6	442
3	21.8	32,4	149	24.5	101.4	416
4	16.5	49.2	29 8	17.5	96.0	548
5	12.8	3.\$	26	8,2	6.5	79
6	17.3	58.2	337	16.6	81.6	491
7	16.6	63.0	3 80	17,1	84.0	490
8	17.9	67.2	375	17,2	111.0	646
9	11.6	6.6	57	8.4	4.0	47
10	13.4	23.6	176	14.9	62,1	418
11	14.1	33.0	234	16.5	75.0	454
12	14.7	28.6	194	12.5	72,1	577
13	13.6	18.1	133	14.1	78.6	557

ي

ŧ

Table A(cont.): Showing Moisture and Nitrogen (NO3) in Soil

Plats, 1=13. Corn planted May 17, 1907.

.

No. Plat	H20 %	.S NO ₃ ppm.J d.soil,	Aug.19 NOg ppm. H ₂ 0.		NO ₃ ppm.	NO ₃ ppm. H ₂ 0.
1	20.0	72.0	359	15.3	18.6	122.5
2	16.1	51.6	320	11.3	24.7	219
3	24.1	97.5	404	14.6	6.6	45
4	17,2	84.0	439	10,4	16.5	159
5	6.2	1.5	24	5.5	2.0	36
6	16.0	60.0	37 5	11,0	11,5	105
7	16.5	54.0	328	11.9	8.8	• 74
8	16.8	84.0	500	13.2	24.7	187
9	7.0	3.0	43	5.3	5,5	104
10	14.7	50.5	344	10.6	13.7	129
11	12.1	55.0	455	9.2	22.0	239
12	12.7	55.0	4 33	14.2	66.7	469
13	14.7	78.6	535	12.9	29.7	230

Table A(cont.): Showing Moisture and Nitrogen (NO3) in Soil Plats, 1-13. Corn Planted May 17, 1907.

Nô.	IEN H ₂ 0% N	DSLU. 03 ppm.N	Aug.	26		IN CORN NO3 ppm.	
Plat,	,d.soil,	d.soil,	H ₂ 0.		d.soil,	d,soil,	H20.
<u>a</u>	19.6	69.6	355		14.5	14.8	102
12.1	16.1	54.0	336		12.4	80,3	670
3	24.4	97.5	400		13.0	40.1	309
4	16.7	91.8	548		10.2	16.5	162
5	5.6	2.0	36		5.9	2.5	42
6	14.2	41.2	290		8.4	10.0	119
7	16.2	7 9 . 8	492		10,6	10.5	99
8	16.5	93.6	567		10.9	25.0	230
9	7.3	2.0	27		7,1	4.5	62
10	14.5	69.3	477		10,5	31.0	295
11	12.8	55.0	430		10 ,3	32.5	315
12	12.3	68.7	559		12,6	57.5	455
13	14.0	69. 3	49 5		13.6	41.6	3505

	Plats,1=13. CornPlanted May 17,1907. ENDS. Sept.2 ENDS. Sept.16							
		NO3 ppm. d.soil,		H ₂ 0 % d.soil,				
1	18,9	69,6	369	23,8	130,0	541		
2	, 16.7	45.0	270	22.3	172.9	775		
3	23.9	117.0	491	25,6	86,2	3 36		
4	17.0	96,0	565	20,8	208.0	1000		
5	6.0	1,0	17	15.2	2.2	24		
6	13.5	25,3	187	18.8	6.0	32		
7	16.6	73.8	444	20,1	143.0	• 712		
8	16. 3	66.0	405	19.0	45.0	237		
9	7.1	2.0	28	14.2	10.0	70		
10	14.9	87.6	588	16.1	165.0	1024		
11	11.8	52.2	442	13.6	145.0	533		
12	14. 3	90.0	630	14.1	44.0	312		
13	14.7	90.0	613	15.7	183.1	1168		

Table A(cont.): Showing Moisture and Nitrogen (NO3) in Soil.

Table A(cont): Showing Moisture and Nitrogen (NO $_3$) in Soil-

Plats, 1-13. Corn Planted May 17, 1907.

IN CORN Sept.16 No. H_{20} % NO ₃ ppm. NO ₃ ppm. Plat, d. soil, d. soil, H_{20} .							
1	22.6	126.7	560				
2	19.5	150.0	768				
8	22.3	359.0	175				
4	17.7	15.0	85				
5 0	14.5	6.6	4 5				
6	15.9	8.8	55				
7	17.2	36.0	209				
8	16.7	18,0	108				
9	13.4	6.1	4 6				
10	14.5	30.8	212				
11	12.5	17.5	140				
12	15.0	68.7	457				
13	14.8	55.0	372				

.

Table A: Showing Moisture and Fertilizer in the Soil.

Plats 14-26. Corn Planted May 17, 1907.

ENDS.July 9

No	•						ENDS.JULY 9			
		rtilizer	r Treat	ment			H ₂ 0 % d.soil	Fer.ppm. d.soil	* NOpppm Hgo	
14	775#	Nit.Soc	la Cult.a	ll sea	ason,		27.2	238.8	878	
15	775#	92 1 7	Millet	sown	July	24	25.3	267.1	1056	
16		None	Cult.	all so	eason,	,	24.0	91.0	379	
17	775#	Nit.Soc	ia Millet	sown	Aug 6	3	23.5	240.5	1023	
18	775#	Acid Pr	nos. C ultiv	ated a	all se	easor	n, 22. 2	P04 9.7	Statut April Sana anger	
ğ 9		None,	17		11	11	21.7	7.8	6770 688 149	
20	775#	Acid Pr	nos. Millet	sown	July	24	20,5	7.1	مستم حكمة وكالاتر	
21	775#	11 11	**	15	Aug 6	3	22,6	7.1	paga dada gan.	
22		None	Cult.a	ll sea	ason,		21.3	6. 5		
22		17	ŧr	17	ŧŧ		21.3	K 10.4		
23	388#	Sul.Pot	G	11	11		22,9	9.1		
24	17	11 11	Millet	sown	July	24	22.6	10.2		
25		None,	Cult.a	l l s ea	ason,		20.6	11.2	over field date	
26	388 #	Sul.Pot	. Millet	Sown	Aug.6	5	20.3	19.5	, mai ano	

* Fer.ppm, abbreviates Fertilizer parts per million.

Table A(cont): Showing Moisture and Fertilizer in the Soil.

Plats 14-26. Corn Planted May 17-1907.

No. Plat	EN1 H20 % , d. soil	D ž J uly 10 Fer.ppm. d.soil	5 NO ppm H ₂ O.	EI H_O % d:so11	NDS July 25. Fer.ppm. NO ₃ DDm d.soil .H ₂ 0.
		162.5	655		221.0 925
15	24.5	195.0	796	24.6	241.0 1004
16	23.2	130.0	560	23.7	162.5 686
17	23.3	195.0	837	22.1	227.5 1294
10 18	22.1	P04 11.0		21.1	P04 7.1
19]	. 21.5	9.7		21.1	8.3
20	21.0	13.0		19.7	8.5
21	21.6	8.4		21.4	7.8
22	19.5	7.8		19.3	7.1
22	19.5	К 7.1		19.3	K 14. 7
23	21.4	5.2		20.7	11.0
24	20.6	8.4		20.0	8.4
25	20.0	14.9		18.9	7.8
26	20.0	9.7		18.7	9.7

•

- 140 -

Table A(cont.): Showing Moisture and Fertilizer in the Soil. Plats 14-26. Corn Planted May 17,1907.

No.	ENI H ₂ 0 %	DS July 30 Fer.ppm	NO ₃ ppm.	ENDS Aug 5. H ₂ 0 % Fer.ppm. NO ₃ ppm.
Plat	d.soil	d.soil	H ₂ 0.	d.soil d.soil H ₂ 0.
14	22.5	178.0	780	23.5 235.5 1000
15	23,1	253.5	1097	23.7 227.5 960
16	21.8	177.4	814	22.2 146.2 66 6
17	21.0	169. 0	805	21.3 295.7 1388
18	18.9	P0 ⁷ 7 4 8		P04 19.6 7.2
19. 5	1855	7.2		19.5 6.0
20	18.8	6.0		19.2 6.6
21	18.2	8.4		19.3 8.4
22	18.3	7.8		18.0 7.2
22	18.3	K 4.5		18.0 K 7.8
23	19.1	9.0		19.2 10.8
24	19.2	7.8		18.6 12.0
25	17.6	8.4		17.3 10.2
26	17.3	12.6		16.7 19.2

١

Table A(cont.): Showing Moisture and Fertilizer in the Soil.

Plats 14-26. Comm Planted May 17, 1907.

No. Plat	H ₂ 0 %	Corn Aug.5 Fer.ppm. d.soil	NO3ppm. H20.	H ₂ 0 % d.soil	ENDS Aug. Fer.ppm. d.soil	NO3 ppm.
14	21.8	210.1	9 6 5	22.6	208.0	920
15	20.3	240.0	1182	20.8	159.0	764
16	20.1	120.0	596	21.3	151.8	710
17	18.1	282.0	1560	21.0	180.0	858
18	18.2	P04 7.8		19.3	P04 6.0	
19	18.4	7.2		18.9	7,2	
20	17.4	9.0		16.4	7.8	• ,
21	17.0	9.6		19.6	6,6	
22	15.8	7.2		17.2	7.2	
22	15 .8	K 9.6		17.2	K´ 4.8	
23	16.9	12.0		19.4	6.6	
24	16.4	13.2		15.6	7.2	
25	14.7	8.2		16.9	5.4	
26	14.6	13.4		17.0	9.6	

Table A(cont.): Showing Moisture and Fertlizer in the Soil

.

Plats 14-26 Corn Planted May 47,1907

No. Plat	ENDS Au H ₂ 0 % H d.soil	ig.19 Fer.ppm. D.soil	NO ₃ ppm. H ₂ 0.	Ir H ₂ 0 % I d.soil	Corn Aug Fer.ppm. d.soil	5.19 NO. ppm. H ³ O. 2
14	21.5	156.0	725	16.3	150.0	920 43
15	18.8	126.0	675	14.0	132.0	934
16	21.3	120.0	564	14.1	66.7	472
17	19.8	165.0	834	12.2	129.2	1060
10 18	18 .8	P04		11.2	P0' 8•2	
19	18.8	9.8		13.6	7.1	٠
20	14.8	7,7		11,5	7.7	
	19.1	7.2		11.3	7.7	
22 ⁶	16.6	8000 (and 1000)		11.8	6.0	
22	16.6	K 4.2		11,8	K´ 3,8	
23	18.6	9.6		11.1	6.0	
24	14.0	6.0		9.3	4.5	
25	16.2	6.0		10.3	4.4	
26	15.6	11.0		9.5	6.5	

Table A(cont.): Showing Moisture and Fertilizer in the Soil. Plate 14-26 Corn Planted May 17,1907.

No. J Plats	Ends H.O % H d.soil	Aug 26 Fer.ppm d.soil	NO ppm. #30.	H.0 %	nCorn Aug Fer.ppm. d.soil	NC_ppm.
14	21.1	159.6	756	15.3	137.5	895
151	17.3	175.8	1014	12.7	165.0	1300
16	21.1	135.0	640	13.7	97.5	685
17	19.5	183.6	942	12.0	207.5	1692
18	18.6	P04 10.2		11.8	P04 9.0	
19	18.1	9.0		13.9	9,9	٠
20	14.0	8.8		11.6	۶.5	
21	17.6	9.0		16.9	7.5	
22	16.5	9.6		11.4	8.0	
22	16.5	К 6.0		11.4	K 4.0	
23	18.1	9.6		11. 3	5,8	
24	11.1	6.1		8.7	6.5	
25	16.4	6.6		10.7	E.0	
26	15.6	10.8		9.6	15.3	

1

Plats 14-26 Corn Planted May 17, 1907.

No. Plat	H.O %	Sept.2 Fer.ppm. d.sóil	NO3ppm. H ₂ 0,	H-0 %	DF Sept.16 Fer.ppm. d.soil	NC _z ppm.
14	21.1	182.0	870	28.4	357.5	1350
15	16.5	126.0	76 8	25.E	790 .0	1530
16	20.9	143.0	684	25.5	240.5	940
17	20.2	151.4	750	25.5	375.0	1470
18	18.8	P04 9.0		24.7	P04 10.4	
19	18.3	9.6		23 .6	9.1	•
20	12.8	7.0		21.7	10.4	
21	18.2	10.2		82 .6	11.0	
22	16.9	9.6		20.4	9.7	
2 2	10.9	K 8.4		20.4	K 9 .1	
23	17.7	10.2		22.1	11.7	
24	8.8	6.5		20.5	6.5	
25	16.4	9.0		20.1	11.0	
26	15.3	11.4		19.6	7.2	

Cable A(cont.): Showing Moisture and Fertilizer in the Soil.

ŗ.

•

Plats 14-26 Corn Planted Hay 17, 1907

No. Plat	In Con H ₂ 0 % d.soil	rn Sept.16 Fer.ppm. d.soil	N03ppm. H20.
14	22.6	325.0	1440
15	20.5	130.0	634
16	22.2	16225	733
17	19.2	210.0	1090
18	19.9	P0 8.4	
19	20.8	9.7	
20	18.0	7.8	
21	18.9	10.8	
22	10.3	9.6	
22	19.3	K 5.4	
23	19.0	7.8	
24	17.4	4.8	
25	17.0	5.4	
26	15.8	7.7	

-- FURTHER STUDIES OF THE SOIL --

Some further studies were made of the soil in different plats. Pore space, specific gravity, and rate of evaporation were determined. It was thought possible that a correllation might be shown between variations in some of these properties and the variations in yield, and that some changes might have occurred as a result of variations in treatment. There were also opportunities for some other observations.

-- PORE SPACE AND SPECIFIC GRAVITY --

Soil to the depth of 7 inches was taken in cylinders 7 inches deep by 6 inches in diameter. The capacity of the cylinders was carefully measured with water. Two series were obtained, the first November 20th. just after a thaw and the second November 24st.

Unless otherwise stated the first series was taken at the north end of each plat just beyond where the corn grew, and the second near the middle of the plat. 22a refers to the north end of Plat 22, which was clearly the poorest spot of the field, and 22 refers to the middle of the plat where the soil was gradually changing to the decidedly better part of the plat on the south end. No freeze or precipitation occurred between the taking of the samples. Both series were weighed and the moisture was determined from the samples taken on the side of holes from which the cylinders of soil were taken.

- 146 -

The series taken November 21st. was also immersed in water for three hours, letting the water rise from beneath, removed and immediately weighed in a scale pan. The pore space for the series taken November 20th.(Table "B" Column 8) and November 21st. (Table "C" Column 8) was calculated according to the following formula.

(1) Capacity Cylinder (c.c.) $\frac{Wt. dry soil(gm)}{Sp. Gr.} = Per Cent$ Capacity Cylinder (c.c.)

The pore space for the series taken November 21st. (Table "C" Column V) was also calculated by the following formula:

(2) Moisture in soil + Water of Satwhen taken(gm) + uration (gm) Capacity of Cylinder (c.c.) = Per cent Pore Space

The specific gravity was determined with a pyknometer from the samples used for moisture determination in both series. The results from each series correspond closely so the average of the two is used in the tables which follow:

TABLE "B" SHOWING MOISTURE, PORE SPACE AND SPECIFIC GRAVITY, SAMPLE TAKEN NOV. 20TH.

Ī	II	III	IV	V	VI	VII	VIII
No. Plat	Capac- ity Cylin- der	* Mois- ture in soil	Wt.Dry soil	sp. gr.	Volume Soil	Pore Space. C.	00 %
1	<u>c.c</u> . 3220	<u>%</u> 23.50	gms 4457	2.64	<u>c.c</u> . 1688	<u>c.c</u> . 1532	47.5
4	3255	20.56	4319	2.63	1642	1613	49.6
7	3220	17.16	4398	2.64	1666	15 54	48.3
10	3225	13.76	4187	2.67	1568	1657	51.4
16	3240	26.85	4137	2.62	1579	1661 •	51.3
19	3240	25.02	4131	2.63	1571	1669	51.5
22	3220	23.02	4 4 25	2.65	1670	1560	48.3
25	3235	22.46	4343	2.62	1658	1577	48.7
2	3225	21.39	4399	2.63	1673	15.52	48.1
3	3240	24.25	4564	2.63	1 7 35	1505	46.5
3	3230	24.18	4240	2.63	1612	1618	50.1
5	3195	20.34	4516	2.63	1717	1478	46.2
9	3245	13.97	4678	2.64	1772	147 3	45.4
23	3245	23.91	4017	2.62	1533	1712	52.8

* The moisture here as in all other cases is calculated on the basis of dry soil unless otherwise stated.

- 149 -

- - -

TABLE "C" SHOWING MOISTURE, PORE SPACE AND SPECIFIC GRAVITY, SAMPLES TAKEN NOVEMBER 21ST.

+++ + *

I No. Plat	II Capac- ity Cylin- der	III Mois- ture in soil	IV Wt. Dry Soil	V Sp. Gr.	VI Volume Soil.	VII C.C.	VIII IX X Pore Space *1 **2 % C.C. %
1	<u>C.C</u> . 3220	27.46	<u>gms.</u> 4061	2.64	<u>C.C</u> . 1535	<u>C.C.</u> 1685	<u>%</u> <u>C.C.</u> <u>%</u> 52.33 1595 49.53
4	3255	23.89	4058	2.63	1543	1712	52.60 1660 51.00
7	3220	22.11	4000	2.64	1515	1705	52.95 1668 51.80
10	3225	15.20	4489	2.67	1681	1544	47.88 1520 47.13
16	3240	28.07	3962	2.62	1512	1728	53.33 1702 52.53
19	3240	27.22	3945	2.63	1500	1740	53.70 1659 51.23
22	3230	23.75	4240	2.65	1600	1630	50.46 1529 47.34
25	3235	23.04	4133	2.62	1577	1658	51.25 1569 48.50
2	3225	26.87	4110	2.63	1563	1662	51.53 1644 50.98
3	3240	25.29	4296	2.63	1633	1607	49.60 1595 49.17
25	3195	24.96	4056	2.63	1542	1653	51.73 1612 50.45
9	3245	16.36	43 89	2.64	1662	1583	48.78 1577 48.60
22a	3230	23.18	4225	2.65	1594	163 6	50.65 1527 47.28
23	3245	24.13	4005	2.62	1529	1716	52.88 1681 57.80

*Calculated according to formula 1, page 147 **Calculated according to formula 2, page 147.

. .

TABLE "D"

COMPARISON OF PORE SPACE

No. Plat	Novembe Location of sample	r 20 Pore Space %	Location of Sample	mber 21 Pore S By formula #1	pace By formula #2 %
I	II	III	IV	V	IV
1	No.end of plat	47.5	Middle of plat	52.33	49.53
4	11	49.6	**	52,60	51.00
7	11	48.3	88	52,95	51.80
10	22	51.4	11	47.88	47.13
16	11	51.3	\$?	53.33	52.53
19	11	51.5	Ħ	53.70	51.23
22	17	48.3	**	50.46	47.34
25	Ħ	48.7	89	51.25	48.50
2	11	48.1	11	51.53	50.98
3	19	46.5	88	49.60	49.17
5	11	46.2	77	51.73	50.45
9	11	45.4	11	48.78	48.60
23	Middle of plat	52.8	1†	52,88	51.80
3 '	Near mid- dle of plat	50.1			
22a			North end of plat	50.65	47.28

The tables show inconsistencies indicating that the samples should be composite. Some of the differences might have been eliminated by determining the moisture content from the soil in the cylinders rather than from that from the side of the holes from which the samples were taken.

The Specific Gravity (Tables "B" and "C" shows an irregular tendency to slightly increase from plats 1 to 13. Plats 10 and 22, which represented almost the extremes in production capacity and presumably of texture, had a slightly higher specific gravity than any of the other plats. There seems to be no correlation either direct or the reverse between the specific gravity and the productive capacity.

The pore space column X Table "C" is uniformly smaller than that in column VIII. While column X was calculated by the more direct method (formula 2, page \$147) it seems that some of the water was lost by transferring the sample to the scale pan.

Comparing the samples taken November 29th. and 21st. (Table "D", III and V) both calculated by the indirect but more dependable method, it will be noted that those taken November 20th. at the end of the plats immediately after a thaw had less pore space than those taken the next day from the middles of the plats. Since ne

crops grew on the ends of the check plats, it would seem that the phenomenanmight possibly be due to the influence of the crop. But plats 5 and 9 show the same differences, and the ends of these plats produced practically the same crop as their middles.

The moisture content November 21st.(Table "C",III) was contrary to appearances higher than on November 20th. (Table "B", III). No precipitation or freeze occurred between the taking of the samples. On November 20th. the surface was sticky. The soil cylinders were sunk one fourth to one half inch beneach the surface, thus eliminating this portion, but the soil beneach this was also notably more sticky than the day following, when it worked fairly well. It would seem that the freeze localized the moisture, and after the thaw it was redistributed. There would seem to be a correllation between this and the increase in pore space noted above.

On the whole, the plats which were not cultivated (Plats 2, 3, 5, and 7) show less pore space than the others. Had the samples been taken earlier in the season, perhaps the difference would have been more marked. Plat #2 has a higher per cent pore space than any of the other uncultivated plats. The mulch had been removed from Plat #3 previous to taking the samples. Further correllations do not seem to exist.

-- SUGGESTIONS FOR DETERMINING PORE SPACE --

In the light of the experience gained in securing

- 153 -

the pore space here tabulated a few suggestions are made. It appears that getting total weight and determining woisture and specific gravity, and from this data calculating the pore space, is more dependable than the direct method by adding water. Only one cylinder is needed thus obviating errors due to lack of exact measurements. Lince the variability is small it is essential that errors be eliminated as far as possible. Composite cylinders of soil should be weighed in the field and the sample for moisture and specific gravity determination taken from the whole of the samples after thoroughly mixing. If striking variation occurs probably this should be eliminated, as any compacting factor, such as the step of a horse, for instance, would cause a sample not to be comparable; If this elimination is not resorted to a larger number of samples should be taken from the plats when much variation occurs.

-- RATE OF EVALPORATION AND LOSS FROM DRAINAGE --

Rate of evanoration from platinum dishes

Soil from samples taken for moisture determination Nov. 20th. (Table "B") was used. Platinum dishes were filled, packed by jarring uniformly, and struck. The samples were placed in a room 9 few feet from the radiator. The results follow in table "E":

TABLE "E" LOSS OF WATER BY EVAPORATION FROM PLATINUM DISHES Rate loss per day for No. Wt. Dry Moisture 3 days 3 - 7 7 - 10 10 - 13 13-17 $^{\rm H}_{\rm a^2t}$ Soil Plat days days days days end 17 da. % gms. gms. gms. gms. gms. gms. gms. gms. Ι II III IV V VI VII VIII IX Х 1 211,99 6.58 4.40 2.23 .89 2.85 49.82 23,50 .06 4 213.29 43.86 20.56 6.47 3.96 1.78 .42 -.01 2.01 7 192.92 33.11 17.16 5.65 2.70 1.20 .11 -.01 1.47 10 208.20 28.58 13.73 5.30 2.28 .66 .05 -.01 1.43 .86 .02 2.21 200.16 53.73 26.85 6.12 5.72 2.53 16 .24 19 172.32 43.11 25.02 5.74 4.47 1.81 .00 1.89 6.93 4.22 1.89 .35 -.01 1.93 46.30 23.02 22 201.13 4.21 1.97 3.6 -.02 1.90 191.96 43.12 22.46 5.82 25 1.97 .54 .01 2.11 7.03 3.49 21.39 2 204.61 44.76 4.16 2.12 .69 .00 2.16 3 196.23 47.59 24.25 6.78 4.35 1.90 .40 .00 1.91 23.91 6.23 44.91 187.42 23 3.96 2.07 .19 .00 2.07 6.43 186.18 45.01 24.18 3 3.43 1.84 .24 -.01 1.65 6.26 40.38 20.34 5 198.48

-.93

-.93

3.14

5.62

13.97

28.04

200.64

9

.13

-.08

1.35

The rate of evaporation diminished fairly uniformly till the hygroscopic moisture was reached. The "drought limit" for corn appears to have been reached before the first weighing was made at the end of/three days. The data would have been more valuable had the weighings been made at closer intervals.

RATE OF DRAINAGE AND EVAPORATION FROM CYLINDERS OF -- SOIL --

The cylinders of soil taken November 21st. (Table "C") for the determination of pore space were used. Immediately beneath the soil was cheese cloth, the whole being supported by galvanized wire netting one sixth inch mesh. The cylinders with accessories were supported on sticks in pans, allowing a frew access of air beneath. Covers of glazed paper and boards were used, thus practically eliminating the loss of moisture to the bottom of the cylinders.

They were placed in the room used for evaporation from platinum dishes under what appeared to be uniform conditions. The results follow in Tables F, G, & H:

- 155 -

No. Plat	No. Cylin- dør	Capac- ity Cylinder	Wt. Cyli der	n- M. wire	Total Weight Soil as taken from field	Moist- ure in field	Total Wt. saturated cylinder
		Anaria.	gms,	9 mx	gma .	70	Gms.
I	II	III	IV	1 	V	VI	IIV
l	l	3220	414.5	56	5647	27.46	6127
4	4	3255	412	11	5495	23.89	6186
7	7	3220	415	41	5355	22.11	6 1 39
10	10	3225	410	4	5637	15.20	6475
16	16	3240	392	"	5522	28.07	6112
19	19	3240	411	11	5485	27.22	6071
*22	25	3230	411.5	"	5715	23.75	6 23 7
25	25	3235	421.5	11	5563	23.04	6180
2	2	3225	\$ 11	"	5682	26.87	6221
3	3	3240	415.5	4	5855	25.29	63 6 1
5	5	3195	415.5	•	5540	24.96	6140
9	9	3245	419.5		″ 5583	16.36	6442
22a	22	3230	412		v 5672	23.18	6220
23	23	3245	415.5		,, 5 44 0	24.13	6155

TABLE F ORIGINAL DATA ON DRAINAGE AND EVAPORATION FROM CYLINDERS OF SOIL

* 22a was taken from the north end of the plat where the poorest soil of the field ocurred, while 22 was taken from near the middle of each plat as was done with all the other samples.

TABLE "F"CONTINUED ORIGINAL DATA ON DRAINAGE AND EVAPORATION FROM CYLINDERS OF SOIL.

No. Plat	l Hour	2 Hours	Weight 24 Hrs.	after 3 Days	6 3/4 days	9 3/4 days	13 days	17 days
	Gms.	Gms.	Gms.	Gms.	Gms.	Gms.	Gms .	Gms.
I	VIII	IX	X	XI	XII	XIII	VIX	XV .
1	5905	5895	5828	5722	5615	55 47	5487	5411
4	5898	5892	5823	5716	553 9	5 46 6	5403	5325
7	5856	5840	5782	5691	5510	5399	5322	5234
10	6296	6284	6209	6101	5907	579 1	5704	5612
16	5890	58 70	5800	5684	5515	5440	5362	52 75
19	5862	5851	5784	5675	5508	5430	5352	5289
22	6007	5992	5933	5820	5 6 9 7	5 6 25	5550	5470
25	5995	5984	5903	5 790	5604	552 7	5450	5372
2	5974	5 964	588 4	5773	5654	558 6	5424	5445
3	6137	6127	6050	5940	5820	5755	569 7	5 626
5	5906	5895	5817	5704	5549	5481	5411	5338
9	6254	6247	6172	6065	5868	5 7 38	5640	5547
22a	· 6013	6003	5931	5804	5 648	55 77	5496	5401
23	5885	5864	5803	5704	5524	5425	5352	5280

e - - e construirs straidsteactic an co

TABLE "F"	CONTINUI	ED ORIG		FOR DRAINA S OF SOIL nt After	GE AND EV.	APORATION	N
No. Plat	22 Da.	27 Days	34 Days	41 Days	48 Days	57 Da.	67 Da.
	Gms.	Gms.	Gms.	Gms.	Gms.	Gms.	Gms .
I	XVI	XVII	XVIII	XIX	XX	IXX	XXII
1	5313	52 14	5092	4987	4930	4847	4785
4	5219	5129	5027	4942	4888	4811	4757
7	5131	5050	4944	4867	4822	4745	4696
10	5507	5421	5318	5253	5210	5142	5 09 5
16	5173	5066	4937	4855	4796	4714	4655
19	5145	50 4 4	4923	4834	4773	4691	46 33
22	5362	52 64	5140	5 045	4990	4913	4864
25	5274	5182	5069	4994	4945	4 86 6	4812
2	5347	52 54	5136	5043	4987	4905	4849
3	5538	5455	5328	5230	5 \$ 67	5077	5015
5	5233	5148	5042	4963	4910	4831	4773
9	5 4 33	5335	5232	5165	5117	5052	5005
22a	5294	5198	5080	4994	4928		4818
23	5187	5095	4987	48 94	4836	4758	1702

TABLE "G" SHOWING RATE OF LOSS OF MOISTURE FROM CYLINDERS OF SOIL

Rate loss moisture per day in grams

		• •	• • •			ann para a ann a bhaile na the starra, sa		44 81 1/2 1784 - 1890 - 1971 - 1980 - 19 1974 - 19 1974 - 19 	- የተማረ ሰላርም ያደር ም - የነጃቻን ሥራን የአትቲያቸው የ
No. Plat	Q Ist.Hr.		2 - 24 Hrs.		1 - 3 Day	3-6 3/4 'Days		93/4 ia to 13	13 to 17
	II	III	tent venie weer er	v	vi	VII	VIII	IX	x
1	222	10	67	299	53	28.5	22.6	18.5	19
4	288	6	69	363	53.5	47.2	24.3	19.4	19.5
7	283	16	58	357	45.5	48.3	37	23.7	22.0
10	179	12	75	266	54	51.7	38.6	26.8	23
16	222	20	70	312	58	45.1	25	24	21.7
19	209	11	67	287	54.5	44.5	26	24	23.2
22	230	15	59	304	5 6 .5	32.8	24	23.1	20
25	185	11	81	277	56.5	49.6	25.6	23.7	19.5
2	247	10	80	337	55.5	31.7	22.6	19.1	19.7
3	22×4	10	77	311	55	32	21.6	17.9	17.7
5	234	11	78	323	56.5	41.3	22.6	21.5	18.2
9	188	7	75	270	53.5	52.5	43.3	30.2	23.2
22a	207	10	72	289	63.5	41.6	23.6	24.9	23.7
23	270	21	61	352	49.5	48	33	22.5	28 .0
				M OVER	n - All Charles				

TABLE G CONTINUED SHOWING RATE OF LOSS OF MOISTURE FROM CYLINDERS OF SOIL

Rate loss moisture per day in grams Moisture								
						·····	ret	ained
No. Plat	17 - 22 Days	22 - 27 27 Days	- 34 days	34-41 Days	41-48 Days	48 -57 Days	57-67 Days	1
I	XI	XII	XIII	XIV	XV	XVI	XVII	XVIII XIX
1	19.6	19.8	17.4	15	8.1	9.2	6.2	252 6.25
4	21.2	18.	14.6	12.1	7.7	8.6	5.4	231 5.69
7	20.6	16.2	15.1	11	6.4	8.6	4.9	225 5.62
10	21	17.2	14.7	9.3	6.1	7.6	4.7	140 3.12
16	20.4	21.4	18.4	11.7	8.4	9.1	5.9	245 6.18
19	22.8	20.2	17.3	12.7	8.j	9.1	5.8	221 5.60
22	21.6	19.6	17.7	13.6	7.9	8.6	4.9	157 3.70
25	19.6	18.4	16.1	10.7	7.0	8.8	5.4	202 4.89
2	19.6	18.6	16.8	13.3	8.0	9.1	5.6	272 6.62
3	17.6	16.6	18.1	14	9.0	10 .	6.2	248 5.77
5	21	17	15.1	11.3	7.6	8.8	5.8	2 46 6.07
9	22.8	19.6	1477	9.6	6.9	7.2	4.7	141 3.21
22 a	21.4	19.2	16.8	12.3	9.4			125 2.96
28	18.6	18.4	15.4	13.3	8.3	8.7	5.6	229 5.72

TABL.	<u>к</u> .н.	MISCE.	LLANEOUS	5 DATA ON 1	rest with	CYLIN	DERS OF S	OIL
	Wt.dry Soil		urated s il t f	Vater in soil as taken from field	lðst in 34 days		r in soil of 34 d ay	
	ama •		dry soil	L %	Gms.	Gms	. % total water	% dry soil
I	II	III	IV	V	VI	VII	VIII	IX
l	4061	1596	39.30	27.46	1035	561	3 5.15	13.81
4	4058	1660	4091	23.89	1159	501	30.18	12.35
7	4000	1668	41.70	22.11	1195	47 3	28.36	11.82
10	44 89	1520	33.86	15.20	1157	363	23.88	8.09
16	3962	1702	42.96	28.07	1175	52 7	30.96	1330 :
19	3945	1659	42.05	27.22	1148	51 1	30.80	12.95
22	4240	1530	3608	23.75	1097	433	28.30	10.21
25	4133	1570	37.99	23.04	1111	4 59	29.24	11.11
2	4110	1644	40.00	26.87	1085	559	34.00	13.60
3	4296	159 4	37.14	25.29	1033	561	35.19	13.06
5	4056	1613	39.77	24.96	1098	5 7 5	31.93	1z.70
9	4 389	1578	35.95	16.36	1210	368	23.32	8.39
22	4225	1527	36.14	23.18	1140	38 7	25.34	9.16
23	4005	16 82	42.00	24.13	1168	514	30.56	lz.83

TABLE "H" MISCELLANEOUS DATA ON TEST WITH CYLINDERS OF SOIL

- 161

The loss from these cylinders was aided by gravity which assistance was continued throughout the experiment, th though in a diminishing degree as the experiment progressed. When the first few weighings were made it was noted that the cheese cloth extending beyond the under edge of the cylinders was moist under the samples from plats 2,3,7 & 10, and that this condition continued largest in the case of the latter. This assistance to evaporation rendered by the cloth would serve to increase the variation between the finer and courser soils.

After the loss from sensible percolation had ceased, the further loss rapidly declined till what seemed to be a fairly uniform level was usually reached. This fairly uniform level gradually became less pronounced as the soil became courser till in plat 10 it was somewhat indefinite.

Table "G" shows the loss of water for the first hour to be very variable, plats 10, 25, and 9 being the lowest. By referring to Table "C", Column VII, it will be noted that where the pore space was determined by taking the sum of of the water retained from saturation and the water in the samples as taken from the field (Formula 1), these plate give the lowest determination (of pore space) of any other plats except the two samples from plat 22. Too much importance should not be attached to the variation in these latter samples since the various data show that they often vary from what would be expected.

The correllation between the relatively small

loss the first hour and the low per cent pore space indicates that too much water was lost before the saturated samples were placed on the scale pan. This supports the conclusion stated above that this direct method of determining pore space is not dependable.

TABLE "I"; COMPARING MOISTURE CONTENT IN CYLINDERS WHEN THE FAIRLY UNFFORM LEVEL WAS REACHED WITH MOISTURE IN THE ENDS OF PLATS IN THE FIELD JULY 9TH, 1907.

No. Plat	Moisture when level reached	Moisture of end plats	Calculated from checks
	7 0	%	%
l	25.0	24.5	
4	23.2	22.1	
7	21.3	19.9	
10	16.7	17.4	
16	24.0	24.0	
19	23.8	21.7	
22	19.9	21.3	
25	20.3	20.6	
2	24.5	24.4	24.4
3	23.0		23.8
5	23.5		22.6
9	17.7		18.2
22 a	22.6		
23	23.8	22.9	

The amount of moisture which is shown in the table was determined at the end of 6 3/4 days for plat 22a, 9 3/4 days for plats 1, 4, 2, 3, 5, and 23, and at the end of 13 days for plats 7, 10, 16, 19, 22, 25, and 9. By inspection of the table it will appear that the selection of the points for which the calculations were made was slightly arbitrary. It would seem probable that the level was reached in some cases between the dates at which the data was taken. But the closeness of agreement the per cent moisture as calculated from this data with the moisture in the field July 9th. when the moisture was supposedly about the optimum indicates, that this is a fairly dependable method at least in this soil, notwithstanding its variations, for the determination of the optimum moisture content. After the loss continued on the "fairly uniform level" for some time the rate of loss began to decrease slowly at first, then rapidly. The moisture in the soil just before the most marked fall occurred is calculated and shown in Table "J".

TABLE "J" 'AMOUNT OF MOISTURE IN THE SOIL WHEN THE FIRST RAPID FALL OCCURRED AFTER PASSING THE FAIRLY UNIFORM LEVEL, AND THE MOISTURE CONTENT IN THE CORRESPONDING FIELD SOIL GROWING CORN

· 1...

No. Plat	Moisture		
	When fall occurred	In Soil in growing corn Aug. 26 %	calculated from checks %
1	11.2	14.5	
4	10.2	10.2	
7	9.9	10.6	۲
10	8.9	10.5	
16	13.30	13.7	
19	13.0	13.9	
22	8.0	11.4	
25	11.1	10.7	1
2	11.3		13.1
3	10.8		11.6
5	10.7		10.1
9	8.4		9.2
22a	9.2		
23	10.5		

The moisture is calculated at the end of 41 days (Table G, XIV) for plats 1, 4, 7, 22, 2, 3, 5, & 23; at the end of 34 days (XIII) for plats 10, 16, 19, 25, 9,

and 22a. These points as in the case of those for optimum moisture content were all selected before the calculations were made. On the whole the results are usually below those found in the corn at a time when most of the plats were suffering for lack of moisture. Plat 10, however, was perhaps not suffering as much as the others, if indeed it was suffering at all, since capillarity appears to have been stronger in the soils of the coarser plats. The differences between the two columns are greatest in plats 1 and 22. The method appears to be fairly dependable for the determination of the relative drought limit in these soils, but the results were not as conclusive as those for the optimum moisture. However, the greater variation in the results for the "dought limit" may have been due as much to variations from the drought limit in the corn as in the results from the cylinders of soil.

The differences in the rate of eapillarity together with other factors would make it impossible to secure results in the field which were more than approximations.

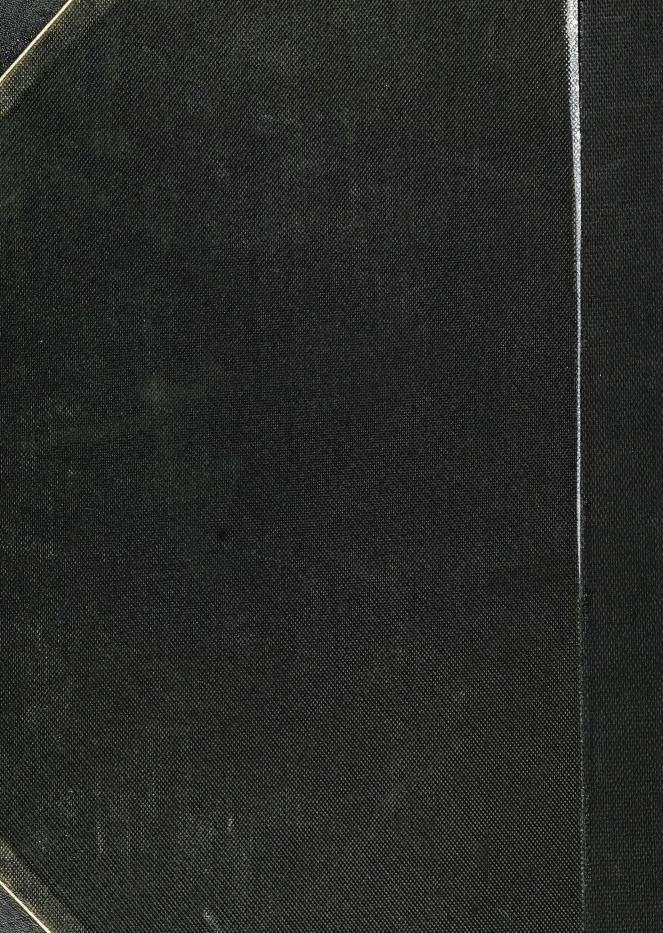
While these two results are below the drought limit for corn they are above that for some other plants. It should be remembered that this drought limit is considerably below the point where plants can make a vigorous growth. Perhaps if capillary water is excluded, the water available

for the vigorous growth of corn would be that from slightly above optimum to the end of the "fairly uniform level".

The results gotten at the end of 34 days for all the plats (Table "H" IX) show a surprising consistency, with the exception of plat 22, which is somewhat low. From this it would appear that by calculating the moisture retained at the same time for all the plats about, or just previous to the most abrupt fall in most of the plats the results will not only give the relative so called drought limit for corn, but will be approximately the amount which will be available for corn. Plat 22, however, is the exception; yet this is not marked. Whether these results can be obtained with different soil types, or whether a variation in the conditions of the evaporation test would affect results can only be determined by further experiment.

The results gotten at the e nd of 67 days (Table H, XI) show differences in the same direction as at the end of 34 days, but the differences are percentagely greater. The samples from plat 22 (22 & 22a) ran about the same as that from plat 10. It will be remembered that the samples from plat 22 were taken from the poorest part of the whole series under experiment. Sample 22a was taken from the north end of the plat which was representative of the poor spot and 22 from the centre of the plat (as in the case with the other samples experimented with) which was in the edge of this spot.

- 167 -


The yields show this plat not to be the lowest in production, but this is due to the south end being considerably better than the north end.

In conducting tests by this method, where data is secured at short intervals, uniform conditions should be maintained, especially as regards temperature. This is especially important as the drought limit is approached for the **mat**bility of the water film is increased as the temperature rises thus assisting drainage. The increase in Column XVI over XV (Table "G") is probably due to this cause.

But where it is desired to get only approximate results, as may be desired when selecting land for plat experiments, it would seem unnecessary to take such painstaking care. The optimum moisture could be gotten from the soil taken from the field at the proper time, and taking samples in cylinders for drainage and evaporation according to the method above described. Make weighings of two or more samples till the last fallbegins to occur, then weigh all the cylinders and calculate results. It would perhaps be unnecessary to saturate the soil in the cylinders.

The determination of the moisture capacity of the soil detached from the field would seem to be of value as a reconnoisance method for the selection of land

for field plats. This would perhaps usually give a fair indication of the uniformity of the land. But in the opinion of the writer a record of the growth of the same crop by plats for the year preseeding the commencement of the experiment would be far more dependable. It should be remembered that the moisture capacity is only one of the factors which affect the amount of water which the plants receive. Capillarity is a most important factor and varies markedly in different soils. On the other hand the productive capacity determined by growing a previous crop is subject to error from experimental variation. difference in seasons and change in productive capacity. even relatively, from season to season. Under some conditions this latter variation may be very marked. Where it is not possible to secure the yields a previous season, the determination of the moisture capacity would seem to be of value.

