S 632.954 USDLnwds 1988

Agriculture

Forest Service

Deerlodge National Forest

Butte, Montana

Deerlodge National Forest Noxious Weed Control Program

Draft Environmental Impact Statement Supplement – July, 1988

1221192-67921

Inni 6 1 1381. MAR 27 1991

DRAFT SUPPLEMENT

to the

Deerlodge National Forest Noxious Weed Control Program 1987 Environmental Impact Statement

Lead Agency

USDA Forest Service Region One P. O. box 7669 Missoula, MT 59807

Responsible Official

Frank E. Salomonsen Forest Supervisor Deerlodge National Forest P. O. Box 400 Butte, MT 59703

For Additional Information:

Dave Ruppert Deerlodge National Forest P. O. Box 400 Butte, MT 59703 (406) 496-3368

ABSTRACT:

This Draft Environmental Impact Statement Supplement describes the proposed USDA Forest Service program for the control of noxious weeds and poisonous plants within the Rock Creek drainage and on additional project areas located throughout the Deerlodge National Forest. This Supplement to the 1987 EIS proposes to extend weed control activities to an additional 59 projects containing 820 acress within Powell, Jefferson, Granite, Silver Bow, and Deer Lodge Counties. In addition, 41 existing projects have been expanded. Three Alternatives, including a "No Action" alternative, are presented. The environmental effects that can be reasonably foreseen are discussed. A Human Health Risk Analysis concerning the use of two pesticides (2-4-D and picloram) and their potential effects on human health is presented.

Comments regarding this document should be addressed to the Forest Supervisor, Deerlodge National Forest, P. O. Box 400, Butte, Montana 59703. Comments must be received by October 14, 1988.

Date of transmission to the Environmental Protection Agency and the public: August 3, 1988

DRAFT X

FINA	L	

TABLE OF CONTENTS

	PAGE
	(1987 EIS)
Summary	1 (S-1)
Chapter 1 - Introduction	
Purpose of and Need for Action	1 (I-1) 1 (I-2)
Chapter 2 - Description of Alternatives - Including the Proposed Actio	n
Alternatives Considered but Eliminated from Detailed Analysis. II- Alternatives Considered in Detail	l (I-1) 1 (II-1) 3 (II-3)
Chapter 3 - Description of the Affected Environment	
Physical Environment. III- Biological Environment. III- Cultural Resources. III- Recreation and Visual Resources. III- Wilderness and Special Areas. III- Social and Economic Environment. III-	(III-1) (III-2) (III-6) (III-7) (III-7) (III-7) (III-7)
Chapter 4 - Environmental Consequences	
Air Quality Impacts. IV- Soil Impacts. IV- Water Resource Impacts. IV- Vegetation Impacts. IV- Animal Impacts. IV- Cultural Impacts. IV- Visual Resource and Resource Impacts. IV- Wilderness Area Impacts. IV- Social and Economic Impacts. IV- Human Health Risk Impacts. IV-	(IV-1) (IV-1) (IV-2) (IV-3) (IV-5) (IV-10) (IV-10) (IV-11) (IV-11) (IV-14)
Chapter 5 - Consultation with Agencies, Organizations, and Individuals	
Agencies and Organizations That Received Copies of the Draft V-1	(V-1)
Chapter 6 - List of Preparers VI-1	(VI-1)
Glossary	(G-1)
References	(R-1)

		1050
Appendix	A	- Pesticide Use Proposals A-1
Appendix	в	- Social and Economic Environment B-1
Appendix	С	- Management Requirements C-1
Appendix	D	- Sensitivity of Selected Aquatic Organisms to Various D-1 Formulations of Two Herbicides
Appendix	Е	- Biological Assessment - Threatened and Endangered Species E-1
Appendix	F	- Human Health Risk Analysis - Deerlodge National Forest F-1
Appendix	G	- Model Development G-1
Appendix	H	- Model Output for Examined Alternatives
Appendix	I	- Sensitivity Analysis for Alternatives I-1
Appendix	J	- Noxious Weed and Poisonous Plant Management Guidelines J-1
Appendix	ĸ	- Aquatic Monitoring Plan - Rock Creek

Page

SUMMARY

Substitute the following for the Summary in the 1987 EIS.

STATEMENT OF PURPOSE AND NEED (CHAPTER 1)

The purpose of this document is to analyze alternative control methods for noxious weeds and poisonous plants within the Deerlodge National Forest. Noxious weeds, and to a lesser degree poisonous plants, are a major concern to land managers, agriculture interests, wildlife interests, and others who are involved in rangeland management in Southwest Montana.

Sixteen major issues were identified by the interdisciplinary team (ID team) as representative of the public issues and concerns received during the scoping process. Several individuals, organizations, and agencies participated in the public involvement phase of this planning process.

ISSUES

The following list of issues, determined through the scoping process, have been selected and are addressed in this Draft Supplement to the 1987 EIS.

- Several people residing in or near the Rock Creek drainage are allergic to herbicides.
- Herbicide treated areas may present a threat to Native Americans who frequently use wild plants for food.
- The Rock Creek drainage must be different from the rest of the Deerlodge National Forest or an experimental area since it is being analysed separately.
- Weed infested areas have higher soil erosion rates than uninfested areas.
- Herbicides affect plants grazed by wildlife as well as weeds, and wildlife eat some targeted weed species, i.e. toadflax.
- 6. Herbicide use may affect human health, both onsite and offsite.
- Herbicide use may affect surface water and ground water quality, the fisheries associated with these waters, and fish-eating wildlife. This concern is highest in Rock Creek, a Blue Ribbon Trout Stream.
- Lack of coordination and cooperation on weed control projects with the respective county governments, other public land management agencies, and private land owners could reduce potential control and increase costs.
- Continued spread of noxious weeds will reduce forage production on range land at a constantly increasing rate if weeds are not checked.

S-1

- Livestock ingestion of poisonous plants will continue to cause domestic livestock deaths unless control is achieved.
- Persistence of some herbicides and the cumulative effect of continued herbicide use may contribute to a future undesirable impact.
- Herbicide use may affect threatened and endangered plant and animal species.
- 13. Herbicide use may not be economically efficient.
- 14. Herbicide application may affect nontarget species.
- 15. There is no effective alternative to the use of herbicides.
- 16. The rate of weed spread requires that control be effective in the near future; if not control will be too late.

Four additional issues were considered and dropped.

Aerial herbicide application is cheaper than ground application and other non-herbicide control methods.

The use of the herbicide clopyralid for knapweed.

Wilderness Area Herbicide Application.

Newly Constructed Roads as Pathways for Increased Infestations.

DESCRIPTION AND ALTERNATIVE COMPARISON, INCLUDING PROPOSED ACTION (CHAPTER 2)

A detailed summary of the analysis for three alternatives is displayed in this document. Alternative 2, Integrated Weed Control Including Herbicide Use, is the preferred alternative.

Alternative 1: No Action

Target plants would not be treated. Current treatment programs would be halted. Preventive measures would continue under this alternative.

Alternative 2: Integrated Weed Control Including Herbicide Use

Biological agents, herbicide, and cultural treatment would be used to control target species. Preventive measures would continue under this alternative.

Alternative 3: Integrated Weed Control Without Herbicide

Biological agents and cultural treatment would be used to control target species. Preventive measures would continue under this alternative.

Table S-1 below lists the various treatments and the area proposed for treatment by alternative.

Table S-1 Area Proposed for Treatment by Alternative

	Alterna Acres	tive 1 Acres	Alterna Acres	Acres	Alterna Acres	Acres
Total Area Treated	-		4,191		3,673	
Herbicide		-		2,332		-
Biological Agents		-		1,830		1,830 ^{1/}
Cultural Treatment		-		29		2,497 ^{1/}
Untreated Area Total Area with Weeds	$\frac{4,191}{4,191}$		$\frac{0}{4,191}$		$\frac{518}{4,191}$	

1/ Some areas will be hand grubbed and treated with biological agents total of two treatments exceeds total treated and total weeds.

AFFECTED ENVIRONMENT (CHAPTER 3)

This chapter describes the environment that would be affected by implementation of the alternatives. The affected environment includes air quality; soils; water quality; vegetation; animals; fish; cultural resources; visual resources; recreation; economic conditions; social environment; and human health.

ENVIRONMENTAL CONSEQUENCES (CHAPTER 4)

Environmental consequences are the environmental changes that would be expected from implementing an alternative program. The varying amounts of activities and uses between alternatives result in differing levels of environmental consequences. The following are brief comparisons of effects by alternative.

<u>Air quality:</u> Existing air quality is excellent. No change is anticipated except for a short-term localized mild odor associated with use of some herbicides in Alternative 2.

<u>Soils</u>: Existing condition is good except for minor areas needing improvement. Soil productivity gains would be accomplished under Alternative 2 and 3. Loss of soil productivity under Alternative 1 due to weed spread.

<u>Water quality</u>: Existing condition is good with no detectable levels of herbicides in streams or groundwater. No changes will occur under Alternatives 1 and 3. Barely detectable amounts of herbicides may enter streams during storm events following treatment under Alternative 2. Overall impact to water quality is insignificant. <u>Vegetation:</u> Native and desirable plant communities would be displaced by noxious weeds significantly under Alternative 1. Alternative 3 would have a similar effect over a much smaller areas due to invasion by noxious weeds. Alternative 2 would reduce or eliminate the spread of noxious weeds into native plant communities. Minor localized impacts will affect nontarget species in areas treated with herbicide or hand grubbing.

<u>Animals</u>: Forage production will be reduced significantly for livestock and wildlife as noxious weeds continue to expand under Alternative 1. Losses in forage production would be reduced under Alternative 3 and could be greatly reduced or eliminated under Alternative 2. Livestock losses to poisonous plants will continue under Alternatives 1 and 3. Herbicide concentrations proposed are well below levels that could impact animals.

Fish: Habitat is in fair to excellent condition, and control methods are not expected to adversely impact fish habitats, including those in Rock Creek. However, there is a slight risk of impacts from herbicide application on five percent of the proposed projects under Alternative 2.

Cultural resources: No changes are anticipated under any alternative.

Visual resources: No changes are anticipated under any alternative.

<u>Recreation:</u> There are no anticipated effects under Alternatives 1 and 3. A slight impact from chemical odors and dead vegetation may occur in the vicinity of 17 developed recreation sites under Alternative 2.

Social environment: The local social environment is somewhat reliant on agriculture and wildlife related industry and opportunity. Any adverse impact on rangeland values will adversely affect opportunities in these fields. Rangeland values and the related social environment will be adversely impacted as noxious weeds spread and further reduce forage production under Alternative 1. Alternative 3 would reduce these impacts and Alternative 2 would essentially eliminate them. Alternative 2 introduces herbicide use, which is objectionable to some individuals but would maintain agency cooperation with counties and private landowners.

Economic conditions: Serious impacts on to local economies are expected over the next 20 years as agriculture-related resources respond to expanding noxious weed infestations under Alternative 1. The resulting loss to livestock and wildlife resources would be significant. Local labor would benefit from labor intensive manual treatment under Alternative 3. Improved vegetative condition should result from Alternatives 2 and 3, resulting in an improvement over current conditions.

The following is a ranking of alternatives from best to worst (best meaning least cost) based on the present value of the total cost over a 23 year period. Table S-2 Present Value of the Total Cost, Ranked by Alternative

	Alternative	Present Value Total Cost
2.	Integrated Weed Control Including Herbicide Use	\$ 891,737
1.	No Action	\$1,942,584
3.	Integrated Weed Control Without Herbicide	\$4,122,600

<u>Human health:</u> No adverse impacts to the general population are anticipated under any alternative, including use of the herbicides 2,4-D and picloram. Workers are limited to hand applying 2 lbs or less 2,4-D per day in order to maintain adequate safety margins. The Acceptable Daily Intake (ADI) is exceeded for workers' average dose of 2,4-D but only for 30 days or less per year. The ADI assumes daily exposure for a lifetime.

CHAPTER I

INTRODUCTION

During the preparation of the 1987 Deerlodge National Forest Noxious Weed Program EIS, the Rock Creek drainage was not included. Rock Creek was excluded to allow additional time for analysis, for development of a monitoring plan, and for public involvement for this important Blue Ribbon fishery.

This supplement deals with twenty one projects totalling 545 acres within the Rock Creek drainage and 38 projects totalling 275 acres in other areas of the Forest which are proposed as additions to the weed control projects listed in the 1987 EIS. In addition 41 projects have been enlarged to reflect new inventory information. All of these additions are very similar to projects that were evaluated in the 1987 EIS including their environmental setting.

The analytical procedures and documentation for this supplement are the same as those used in the original analysis. Therefore, the structure of the original document was used for the supplement to help readers identify changes that have been made. All chapters and subheadings in the original document are included here. Portions of the original EIS that are not changed by the supplement are so noted. Those with changes have a narrative that modifies or supplements the original document. Where appropriate, comparisons are made between the old and new document.

PURPOSE AND NEED FOR ACTION

No changes

ISSUES

During the scoping process 5 new issues were identified and are addressed in this supplement.

- Several people residing in or near the Rock Creek drainage are allergic to herbicides.
- Herbicide treated areas may present a threat to Native Americans who frequently use wild plants for food.
- The Rock Creek drainage must be different from the rest of the Deerlodge National Forest or an experimental area since it is being analysed separately.
- Weed infested areas have higher soil erosion rates than uninfested areas.
- 5. Herbicides affect plants grazed by wildlife as well as weeds, and wildlife eat some targeted weed species, i.e. toadflax.

The following issues were raised during the scoping process and were not added to the list because they either are listed in the original document as issues or were addressed as such in the narrative. These issues are addressed in this supplement to the extent necessary. The note in parentheses identifies where each issue is either listed or addressed in the 1987 EIS.

- Herbicides have the potential to get into streams and groundwater, and Rock Creek is a Blue Ribbon Trout Stream. (Issue 2, 1987 EIS)
- Our weed control efforts should be coordinated with county weed districts and other agencies. (Issue 3, 1987 EIS)
- The spread of weeds from Forest Service administered lands to adjacent land ownership is a concern. (Issue 3, 1987 EIS)
- An economic evaluation should help select the preferred alternative. (Issue 8, 1987 EIS)
- 5. Put a moratorium on road construction to help stop the spread of weeds. (Issue 12, 1987 EIS)
- Soils in the Rock Creek drainage are permeable and may allow herbicide to percolate into ground water. (Issue 2, pp. III-1, IV-1 and IV-2 in 1987 EIS. Soils in Rock Creek are similar to those described for the Forest in general)
- There is no effective alternative to the use of herbicides, especially for large weed infestations. (1987 EIS pp II-1,2,4,5 and p. IV-4)
- The rate of weed spread requires that control be effective in the near future; if not control will be too late. (1987 EIS p. IV-4 and Appendix G.H. and I)

The following issues raised during the scoping process are not treated in the 1987 EIS or this supplement because they are outside of the scope of these documents. However they are treated in the overall Noxious Weed and Poisonous Plant Management Guidelines which are included in Appendix J.

- 1 Education is needed to help prevent and control the spread of weeds. (Appendix J, III.A)
- 2 Commercial Forest users should be required to control weeds resulting from their activities. (Appendix J, III.B.1)
- 3 Prevention is a weed control method what land management practises can be incorporated into management activities to prevent weed spread. (Appendix J, III.B.1)
- A continuing, accurate inventory of weed infestations on the Forest is necessary. (Appendix J, III.C.1.c and e)

Two additional issues were considered. Both were dropped from further consideration in this supplement for the following reasons:

1. Aerial herbicide application is cheaper than ground application and other non-herbicide control methods.

Only ground methods are considered for herbicide application in this supplement. Aerial application of herbicide is generally cheaper, especially when large continuous areas are treated. However, the Forest strategy at present is to control the smaller, scattered infestations with herbicide while using available biologic controls to slow the spread of large infestations. Aerial application methods are not as efficient and, in some cases, not even feasible for treating these areas, especially where conifer and deciduous tree and shrub tree species encroach on the infested area. Aerial applications will be evaluated in the future for use on the large projects and areas where adjacent landowners are using these methods.

The herbicide clopyralid is a narrow spectrum herbicide that is effective on knapweed.

We are aware of this herbicide and expect to use it on appropriate weed infestations. However, at present, this chemical is not licensed for use on rangeland in Montana.

The noxious weeds and poisonous plants that are known to occur on the Deerlodge National Forest are listed below. The abbreviations are listed because they are used in the Pesticide Use Proposals in Appendix A.

Table I-1 Deerlodge National Forest Noxious Weeds

SCIENTIFIC NAME	ABBREVIATION
Cardaria draba	CADR
Carduus nutans	CANU
Centaurea maculosa	CEMA
Centaurea repens	CEBE
Cirsium arvense	CIAR
Cynoglossum officinale	CYOF
Delphinium occidentale	DEOC
Euphorbia esula	FUES
Liparia dalmatica	LTDA
Sindria darmatica	LIDA
Linaria vulgaris	LIVU
Senecio jacobaea	SEJA
	SCIENTIFIC NAME Cardaria draba Carduus nutans Centaurea maculosa Centaurea repens Cirsium arvense Cynoglossum officinale Delphinium occidentale Euphorbia esula Linaria vulgaris Senecio jacobaea

CHAPTER II

DESCRIPTION OF ALTERNATIVES - INCLUDING THE PROPOSED ACTION (Page 11-1)

The Alternatives described in the 1987 EIS were reevaluated and found to be adequate and responsive to the noxious weed situation in the Rock Creek drainage and on other new projects scattered throughout the Deerlodge National Forest. Statistical data will be referenced and updated to reflect the addition of new projects.

Alternatives Considered but Eliminated from Detailed Analysis

No Change.

Alternatives Considered in Detail

No Change.

Alternative 1: No Action

No Change.

Alternative 2: Integrated Weed Control including Herbicide Use (Page II-1)

Substitute the following beginning on page II-1.

This is a fully integrated control alternative, using chemical, biological, and cultural control (hand grubbing and mowing) methods. Preventive measures would be implemented under this alternative (see Appendix J). There are 4,191 acres of weeds to be treated. About 2,330 acres will be treated with herbicide; and approximately 1,830 acres will be treated with biological agents. Cultural treatment is scheduled for about 29 acres where environmental constraints or chemical restrictions limit the effectiveness of, or prevent the use of herbicides.

Burning and the use of tillage equipment were not considered because these methods have limited effectiveness and the shape and size of most infestations make these methods impractical. In addition, the topography and accessibility of many sites severly limits the use of tillage equipment.

The proposed projects range in size from 0.1 acres to 1,500 acres and total 4,191 acres. Of this total, 1,258 acres are road, railroad, and powerline right-of-way projects and 2,933 acres are rangeland projects.

Herbicide would be used on rights-of-way and on scattered patches of weeds on rangeland. Biological agents would be used on 1,830 acres of large continuous infestations (three projects 130, 200, and 1,500 acres) in order to slow the rate of spread. <u>Sclerotinia</u> fungus is proposed for use on Canadian thistle and knapweed. The seed head flies <u>Urophora affinis</u> and <u>Urophora quadrifasciata</u> are proposed for use on knapweed. The leafy spurge hawkmoth, <u>Hyles euphorbiae</u> is proposed for use on leafy spurge.

In addition, 232 acres of disturbance at 13 active or proposed mine sites have been identified as projects. No weeds have been identified on these areas at present. However, new weed infestations may occur and provisions for control of these weeds with the use of herbicides have been made. These projects are being evaluated now so weed control can begin if, and when, weeds begin to invade these areas of sold disturbance.

Alternative 2 also addresses new weed infestations identified during field work. Often these occur outside of identified project areas and are relatively small infestations that were not identified in our inventory. We evaluated "at-large projects" in this supplement to allow us to deal with these previously unknown sources of weed spread. Two types are to be evaluated: (1) small spot infestations less than 0.01 acre (area of a circle 24 feet in diameter), and (2) larger infestations up to 0.25 acre in size. Neither of these will be treated until they are evaluated by a licensed applicator.

The spot infestations will be evaluated based on conditions on site because very little herbicide will be used, less than 0.02 pounds tordon or 2,4-p per spot. The areas between 0.01 acres and 0.25 acres will be evaluated relative to the overall landscape and other weed control efforts in the vicinity, generally the same watershed. The maximum amount of herbicide used for the above projects will be 0.5 pounds of Tordon or 2,4-p each.

Only 100 spots and 10 large projects will be permitted for each District annually or a maximum of 3.5 acres per District and 14 acres Forest wide. The herbicide rate used on the Forest varies from .5 to 2 pounds per acres so the maximum amount of herbicide applied to these projects will be between 1.75 pounds and 7 pounds per District or 7 pounds and 28 pounds Forest wide. Any of these projects will have significantly less impact than the inventoried projects already evaluated.

The maps at the end of the this Chapter identify proposed project locations and weed species to be treated. The first map has just the new and modified project locations treated in this supplement. The second map has all proposed projects from the 1987 EIS and this supplement.

59 new projects are proposed. 41 projects have water within 1,300 feet of some part of the project; of these 21 have water within 500 feet of some part of the project. 13 projects have a full or part time residence within 2,600 feet of some part of the project; of these 6 projects are within 1,300 feet of a residence. Additional project information is included in the project proposals in Appendix A.

The area treated annually under this Alternative will be a function of environmental and annual budget constraints. Project areas to be treated each year will be evaluated and prioritized through the use of the following criteria.

- 1. Productive soils, grasslands, open timber below 6,500 feet elevation.
- 2. Key forage producing areas for
 - a. Domestic livestock
 - b. Big game winter ranges.
- Target weed species by priority include knapweed, and leafy spurge which generally have a higher spread rate than thistle, toadflax, and larkspur.
- New or isolated infestation vs. large well established infestations.
- Coordination and cooperation with private control efforts, established Weed Districts, and other Government agencies.
- 6. Followup efforts on previously treated areas.
- 7. Infestations with high potential for a rapid rate of spread.

Alternative 3 - Integrated Weed Control Without Herbicide (Page II-3)

Substitute for the second sentence in the first paragraph on page II-3.

Knapweed would be culturally treated on approximately 2,500 acres and biological agents would be used on approximately 1,830 acres.

Alternative Comparisons (Page II-3)

Table II-1 on the following page has been modified to reflect changes which have occurred as the result of new data developed during preparation of this 1988 Supplement. The areas listed include projects from the 1987 EIS and the projects addressed in this supplement.

Table II-1

Total Area Treated	Alterna Acres 0	Acres	Altern Acres 4,191	ative 2 ^{1/} Acres	Altern Acres	ative 3 Acres
Herbicides Biological Agents Cultural Treatment		0 0	, , , =	2,332 1,830 29	5,075	0 2/ 1,830 2/ 2,407 2/
Untreated Area	4,191		0	-,	518	2,751
Total Area with Weeds	4,191		4,191		4,191	

1/

Acreage figures do not include the 232 acres of uninfested mine projects or the 14 acres of "at-large projects" discussed on the previous page. Therefore, a maximum of 246 additional acres would be treated with herbicide under this alternative if weeds invade the mine disturbed areas or if the maximum acreage of "at-large projects" is treated.

2/

Some areas will be treated with biological and cultural methods - total area of both treatments exceeds the total area treated and total area with weeds.

Table II-2

ALTERNATIVE IMPACT SUMMARY

	NO ACTION	HERBICIDE USE	HAND GRUBBING
RESOURCE	(ALTERNATIVE 1)	(ALTERNATIVE 2)	(ALTERNATIVE 3)
Air Quality	No Effect	Chemical droplets in the air for vary short period. Odor would persist for about 2 days in the immediate vici- nity of the project.	No Impacts
Soils	Continued loss of productivity as weads spread. Phy- totoxins from knap- weed affect more acram.	Productivity reductions halted and some productivety gains on treated acres. Overall net increase in productivity if anough area is treated annually (1.400 acres or more).	Additional losses in productivity but fewer acres than Alternative 1.
Wstar Quality	No Effect	Detectable lavels of herbicide will enter streams as runoff (generally less than 0.1 ppm) for short time periods. No effact on ground water.	No Effect
Vegatation	Noxious weads and poisonous plants would continue spreading at incr- assing rates. De- sirable vegetation would continue to decline.	Noxious Veeds and poisonous plants will gradually be brought under control and overall pro- ductivity increased if approxi- mately 1.400 acres of weeds are treated snnually. Weed apread reduced on approximately 1.830 acres biological control.	Noxious weeds and poisonous plants would continue spreading but at lower rates than Alt. 1. 2,500 acres of knepweed eventually controlled but hand grubbed areas ideal seedbed for new infestation. Weed spread reduced on approximately 1,830 acres biological control.
Animels	Reductions in Live- stock and big game range carrying capa- city over time. Poisonous plants will continue to affect livestock.	Adverse inpacts on animals from herbicide would be tem- porary and localized. Animal habitat will improve over the short and long term with over- all benefit for wildlife and livestick if more than 1,400 acres treated annually. Habi- tat losses reduced if less than 1,400 acres treated annually. Poisonous plants would be controlled.	Reductions in Wildlife and livestock habitat in areas with weeds other than knapweed and where biological control is used. Habitat would improve on knapweed areas that are hand grubbed. Poisonous plante continue to affect livestock.
Fish	No Effact	Safety margin of 1 or greater on 95% of projects. Five percent entail slightly higher riaks.	No Effect
		All projects in Rock Creek have a safety margin of 1 or graater.	

Table II-1 ALTERNATIVE IMPACT SUMMARY (continued)

RESOURCE	NO ACTION (ALTERNATIVE 1)	HERBICIDE USE (ALTERNATIVE 2)	HAND GRUBBING (Alternative 3)
Cultural	No Effect	Little to no probebility of damaga to cultural sites from hand grubbing 29 acres.	Very slight probability of damage if any to cultural sites from hand grubbing 2,500 acres.
Visuel	No Effect	No Effect	No Effect
Recraction	No Effect	Slight impact from chemical odorm and dead vegetetion in the vicinity of developed recreation sites.	No Effect
Economic Efficiency	Totel discounted costs \$1,942,584	Total discounted costs \$891,737	Total discountad costa \$4,122,600
Economic Conditions	Continued livestock deaths and loss of renge capacity. Forast weads provide source for weed spreed to adjecant lends.	No liveatock deaths and reduc- tion in loss of range capa- city. Reduced potential for weed spread on and off Forest.	Slight reduction in loss of range capacity and no reduction in livestock deaths. Slight reduction in potential for weed apread on and off Forest. More seasonal jobs because grubbing is labor intensive.
Discountad Income Losa	\$5,860,548	\$50,255	\$446,826
Social	Disrupts cooperative efforts with other egencies and land- owners. Perceivad threat to people in agriculture related business end jobs.	Permits coopersting with other agencies and land- owners. Perceived threat to those wary of herbicide use.	Cooperation with other agencies and landowners but effectiveness of biological control is questionable. People in Agriculture related busi- ness and jobs uneasy about effectiveness.
Humen Health	No Effmot	Application of 2.4D limited to 2 lbs. per day for each worker to maintain adequate safety margins. All exceeded for average 2.4D worker dose, but workers will be exposed to this dose for 30 days or less per year. ADI assumes	No Effect

WEED INFESTATIONS PROPOSED FOR TREATMENT New and Modified Projects

WEED INFESTATIONS PROPOSED FOR TREATMENT All Projects

CHAPTER III

DESCRIPTION OF THE AFFECTED ENVIRONMENT (Page III-1)

PHYSICAL ENVIRONMENT (Page III-1)

Page III-1 - Change paragraph four to read:

Air quality on the Deerlodge National Forest is basically very good with the exception of annual slash burning, occasional Forest and range wildfires and dust originating from native soil roads.

BIOLOGICAL ENVIRONMENT (Page III-2)

VEGETATION (Page III-2)

Substitute beginning at the top of page III-3.

Noxious weeds to be treated include knapweed, leafy spurge, toadflax, thistle, and white top. These plants are found on a wide range of sites but they are usually associated with soil disturbance. Tall larkspur, a poisonous plant targeted for treatment, is most often found in wetlands and riparian areas.

The Deerlodge National Forest has approximately 4,091 acres of noxious weeds and 100 acres of poisonous plants. Spotted knapweed is the most abundant and wide spread of the targeted weeds. The area each weed infests is summarized in the following table. Note, the summed values exceed 4,191 acres because some infested areas have 2, 3 or more weed species.

Table III-1 - Infested Weed Areas by Species

- 21-			E-1
~			w
	_	_	
u	6	6	••

Total Acres

Knapweed	2.533
Toadflax (Common & Dalmation)	232
Thistle (Canadian & Musk)	1,242
Leafy Spurge	1,115
White top	10
Tall Larkspur (poisonous plant)	100
Houndstongue & Tansy	9

To date no plant species found on the Forest have been listed as threatened or endangered by either the State of Montana or by the U. S. Fish and Wildlife Service. Six species have been listed as Sensitive by a task force of Forest Service, Natural Heritage, Consulting Botanists, and U.S. Fish and Wildlife Service personnel as they developed a list of sensitive plant species for Montana. These same six species have been designated as endangered in Montana by The Nature Conservancy. Those species are listed in Table III-2 on the next page. Table III-2 - Sensitive Plant Species

Saussurea weberi Botrychium paradoxum Saxifraga tempestiva Phlox kelseyi var. missoulensis Lesquerella carinata Claytonia lanceolata var. flava (Weber's sawwort) (peculiar moonwort) (storm saxifrage) (Missoula phlox) (keeled bladderpod) (yellow springbeauty)

Of the six species listed, only Missoula phlox and keeled bladderpod are known to occur within the area proposed to be treated. They have both been found in the West Fork Buttes area, an area with spotted knapweed treatment proposed. Yellow springbeauty was found in the Champion Pass vicinity on the east side of the Deer Lodge valley but has not been seen for several years and its status in that area is unknown . Any proposed treatment would be lower in elevation and should not impact the yellow springbeauty.

A search for these three species will be made again this year, their occurences documented, and weed treatment designed to protect them.

Livestock (Page III-3)

No change.

Wildlife (Page III-4)

No change.

Big Game (Page III-4)

Substitute the following narrative and table beginning with the second paragraph

The Forest contains a total of 109,937 acres of forage producing winter range for elk or 9 percent of our land base. There are currently 2,966 acres of elk winter range infested with noxious weeds or 2.7 percent of the winter range. The capacity of the 109,937 foreage producing acres is 3,951 elk per year. The current level of infestation has reduced the Forest capacity to support elk by 60 animals. Table III-3 displays the infested area on elk winter range by District and weed species.

Table III-3 - Acres of Winter Range Infested by noxious plant species.

District	Spotted Knapweed	Toadflax	Leafy Spurge	Thistle	Total
Deer Lodge Jefferson Philipsburg Butte	819 150 553 78	1 54 12 0	1002 9 0	245 1 40	2067 214 605
Totals	1600	67	1013	286	2966

Small Game Species (Page III-4)

No change.

Nongame Species (Page III-5)

Substitute the following for the last paragraph.

Roadside vegetation provides nesting areas and escape cover for many non-game animals and birds. Road gravels are utilized by many bird species to aid in digestion of their food. Weeds infest 1,104 acress along 510 miles of rights-of-way on railroads, BPA access roads, and Forest access roads. The average area infested per mile is 2.2 acres.

In total 55 miles of BPA power line cross National Forest lands. Of this total about 17 miles are infested with noxious weeds. The 145 acres of noxious weeds associated with the BPA power line include tower and work sites and some segments of line clearing.

Threatened and Endangered Species (Page III-5)

No change.

Fisheries (Page III-6)

No change.

CULTURAL RESOURCES (Page III-6)

No change.

RECREATION AND VISUAL RESOURCES (page III-7)

Substitute the following for the third paragraph.

Public recreation is concentrated at sites designed and constructed specifically to accomodate a wide variety of uses. The Deerlodge Forest presently has or soon will have 23 campgrounds, 11 picnic areas, 8 boat launches, 1 ski area, and 9 other sites developed for public use. In 1986 the Forest supported 270,000 Recreation Visitor Days (RVD's) at developed sites. The remaining 804,000 RVD's were public use at the ski area, recreation residence sites, permitted boating facilities, and dispersed activities such as wilderness hiking, hunting, fishing, camping, and picnicing.

WILDERNESS AND SPECIAL AREAS (Page III-7)

No change.

SOCIAL AND ECONOMIC ENVIRONMENT (Page III-7)

No change.

CHAPTER IV

ENVIRONMENTAL CONSEQUENCES (Page IV-1)

AIR QUALITY IMPACTS (Page IV-1)

No change.

SOIL IMPACTS (Page IV-1)

Drop the last sentence in the second paragraph under Soil Impacts.

Insert between the second and third paragraph:

A recent study by Montana State University (Lacey et. al, 1988) demonstrated that three times more soil erosion occurred on knapweed infested sites than adjacent uninfested rangeland. Under the No Action alternative, knapweed density could increase to the point where soil loss over a period of time would significantly reduce soil productivity. This impact would not be significant under Alternatives 2 and 3 because knapweed infestations would be reduced in size and density.

WATER RESOURCE IMPACTS (Page IV-2)

Surface Water (Page IV-2)

Add after the last paragraph.

This Supplement includes projects with herbicide application in the Rock Creek drainage. Rock Creek is a Blue Ribbon Trout Stream. The management constraints listed in Appendix C are adequate to prevent impacts on water quality in Rock Creek as well as other streams on the Deerlodge National Forest. However, additional precautions, including monitoring of herbicide applications, will be taken in Rock Creek to assure that impacts do not occur. These are discussed in the fisheries section on page IV-5 and are listed in Appendix C.

Ground Water (Page IV-2)

Substitute the following paragraph for the first paragraph at the top of page IV-3.

Measurements of 2-4-D concentrations in sandy soils indicate that the herbicide moved only 4-8 inches into the soil profile (Stewart and Gaul 1977). Picloram has not been found to move more than 1 foot into the soil profile when applied at rates of 1 pound per acre or less (USDA 1984). Picloram application rates of 1 pound per acre or less are proposed for 2,069 acres under Alternative 2. Picloram application rates of 1.5 and 2 pounds per acre are proposed for 64 acres and 136 acres respectively on projects that vary from 0.75 acres to 50 acres. Based upon research cited above, the scheduled application rates should present no threat to ground water.

VEGETATION IMPACTS (Page IV-3)

No Action (Alternative 1) (Page IV-3)

Substitute the following for paragraphs 1-5 on page IV-3.

Noxious weeds will continue to spread throughout the National Forest. It appears that knapweed has been spreading in Montana at an annual rate of 27 percent since 1920 (Montana State University, October 1983). At this rate, Deerlodge National Forest lands infested by spotted knapweed will increase from approximately 2,497 acres in the spring of 1988 to approximately 27,256 acres by the fall of 1997 (see Appendix H).

Spread of Leafy Spurge is estimated to be 12 percent per year (Lewistown District, Bureau of Land Management, 1985). At this rate, Deerlodge Forest lands infested by Leafy Spurge will increase from 1,115 acres in the spring of 1988 to 3,463 acres by the fall of 1997.

Larkspur spread rates are unknown, however, we can assume it will continue to increase at a rather slow rate.

Thistle and toadflax are estimated to spread at about 4 percent per year (Lewis and Clark National Forest, March, 1986). With this projected rate of spread the 469 acres of toadflax and thistle, free of knapweed, spurge and other more competitive weeds, will increase to 694 acres by 1997.

In summary, under this Alternative the National Forest lands presently infested by these noxious weeds is projected to increase from 4,081 acres in 1988 to 31,413 acres in 1997, more than seven and one half times the current level.

Herbicide Use (Alternative 2) (Page IV-4)

Insert between paragraphs 2 and 3 on page IV-4.

Native Americans and others collect wild food and medicinal plants on National Forests. As discussed above, broadleaved plants used for these purposes will be killed by the herbicide. However, only small areas of vegetative communities are to be sprayed and these communities normally occur at many other locations on the Forest where they will not be sprayed. In addition, many of the plants of interest are not found on sites where noxious weeds occur. Therefore, the impact of this Alternative on wild food and medicinal plants will be minimal. The human health impacts of sprayed wild food are discussed beginning on page IV-14 of the 1987 EIS and page IV-9 of this Supplement.

Substitute the following for paragraphs 4-6 on page IV-4.

The 100 acres of tall larkspur would be controlled under this Alternative.

Under this Alternative cultural control methods would be used only where there are restrictions on the use of chemicals, i.e., close to water. The
total area scheduled for treatment with herbicides is approximately 2,330 acres, including the new projects in the Rock Creek drainage and elsewhere on the Forest addressed by this Supplement.

Biological control will be utilized on 1,830 acres of noxious weeds to reduce the spread rate until more effective control methods can be applied. Present biological agents have only limited ability to control weed infestations.

Hand Grubbing (Alternative 3) (Page IV-4)

No change.

Untreated Areas (Alternatives 2 and 3) (Page IV-5)

Drop.

Threatened and Endangered Plants (Page IV-5)

Substitute the following for the paragraph called "Threatened and Endangered Plants" on page IV-5.

Sensitive Plant Species

No officially listed threatened or endangered plant species have been identified on the Forest. Missoula phlox (<u>Phlox kelseyi var.</u> <u>missoulensis</u>) and keelled bladderpod (<u>Lesquerella carinata</u>) have been identified in the West Fork Butte Vicinity. These plants are classified as sensitive species by the Northern Region. If any of these plants are found within the boundaries of a weed control project during the annual project field reviews, their location will be noted and they will be protected. Under the No Action Alternative, these plants could be displaced by noxious weeds.

ANIMAL IMPACTS (Page IV-5)

Livestock (Page IV-5)

Substitute the following for the first paragraph.

Chemicals are scheduled to be applied at rates low enough that effects upon livestock will be insignificant. Animals that do consume forage treated with piclormm and/or 2-4-D cannot be slaughtered for a period of 3 to 7 days respectively following ingestion of these chemicals. Most permitted livestock will be grazing on the National Forest during chemical use periods but the time span between scheduled spraying and livestock sales for slaughter is usually several weeks to 2 months which will provide adequate time for elimination of any chemicals ingested during forage consumption.

Wildlife (Page IV-5)

No Action (Alternative 1) (Page IV-5)

No change.

Herbicide Use (Alternative 2) (Page IV-6)

No change.

1. Total Area Proposed for Treatment (Page IV-6)

Substitute the following narrative and table.

The Deerlodge National Forest contains a land area of approximately 1,206,556 acres, the majority of which is suitable wildlife habitat. The total area proposed for chemical treatment is 2,332 acres, which is 0.19 percent of the total land area. Table IV-1 summarizes the proposed treatment areas in terms of big game habitat.

TABLE IV-1

Item	Acres	Percent
Total Projects Proposed	4,191	100
Winter Range	2,978	71

The area of infested project sites range in size from .10 to 1,500 acres with a mean of 20 acres. Of the 204 inventoried infestations, 180 are between .10 and 20 acres and 24 are between 20 and 1,500 acres.

2. Application Methods (Page IV-6)

No change.

3. Time of Spraying (Page IV-7)

No change.

4. Toxicity of the Proposed Chemicals (Page IV-7)

No change.

5. Comparison of Potential Winter Range Effects (Page IV-8)

Add the following to the first paragraph.

The potential loss of big game forage by weed infestations is far more significant than the relatively minor forage loss from herbicide applications. Sustitute the following beginning with Table IV-3 on page IV-8.

Table IV-3 Reduction In Capacity to Support Wintering Elk

Alternative	1988	1991 Number	1996 of Elk	2011
1	72	107	301	3951
2	55	33	5	0
3	61	50	60	348

Alternative 2 returns the winter range to full capacity by the year 2011.

Hand Grubbing (Alternative 3) (Page IV-8)

No change.

Threatened and Endangered Animals (Page IV-8)

No change.

Fisheries (Page IV-8)

Add to the last paragraph on page IV-8.

In the Rock Creek drainage 13 projects have water within 500 feet of some part of the project. A total of 113 pounds of tordon are proposed for application on these projects.

Substitute the following sentence for the first sentence of the first paragraph at the top of page IV-9.

These drainages support good salmonid populations.

Add to the end of Fisheries section on page IV-10.

The cumulative effects of proposed herbicide projects in three Rock Creek tributaries reduce the safety margin to less than 1.0. The three tributaries are Stoney Creek, Middle Fork of Rock Creek, and Meadow Creek. To maintain the safety margin of 1.0 or greater, the maximum amount of picloram that can be used annually within 500 feet of these streams is 3.5, 30.5 and 4.0 pounds respectively. Therefore, the annual cumulative amount applied in these tributaries within 500 feet of water will be limited to these amounts unless a fisheries biologist determines otherwise.

Some additional measures will be taken in Rock Creek to assure that no impacts to fish occur:

 All projects in Rock Creek will be reviewed in detail by the Forest Fisheries Biologist to assure that they have a safety margin of 1.0 or greater.

- The licensed applicator will be present on the project area any time herbicide is applied in Rock Creek.
- Selected streams in the Rock Creek drainage will be monitored before and after herbicide application (see Aquatice Monitoring Plan - Rock Creek, Appendix K).

CULTURAL IMPACTS (Page IV-10)

No change.

VISUAL RESOURCES AND RECREATION IMPACTS (Page IV-10)

Substitute the following narrative and table for the narrative and table on page IV-10.

No Noxious weed control alternative will significantly affect the visual areas or dispersed recreation activities. Weed control projects are proposed along ROW's and on rangelands in the vicinity of the 17 developed recreation sites listed in Table IV-4.

Table IV-4 Recreation Sites in the Vicinity of Weed Control Projects

Basin Canyon	Philipsburg Bay
Copper Creek	Pigeon Creek
Delmoe Lake	Piney
East Fork	Racetrack
Elder Creek	Spillway
Elkhorn	Squaw Rock
Homestake	Stewart Lake
Ladysmith	Upper Warm Spring
Lower Warm Springs	

WILDERNESS AREA IMPACTS (Page IV-11)

No change.

SOCIAL AND ECONOMIC IMPACTS (Page IV-11)

Social Impacts (Page IV-11)

Substitute the following for the first paragraph.

Because of the public concerns associated with herbicide use, Alternative 2 could have social effects specifically related to this issue. The preferred Alternative 2 schedules application of herbicides to approximately 2.330 acres and may be perceived as harmful by those opposed to herbicides.

Economic Impact (Page IV-11)

No change.

Economic Efficiency (Page IV-12)

Substitute the following narrative and tables for those on pages IV-12 and IV-13 beginning with the second paragraph in this section.

Based upon the present value of the total cost, the following table presents a ranking from best to worst (best equals least cost) of the Alternatives evaluated in this analysis.

Table IV-5 Present Value of the Total Cost, Ranked by Alternative

	Alternative	Present Value Total Cost
2.	Herbicide and Cultural Treat. (all target weed species). 2246 Acres	\$ 891,737
•	No Action (no acres treated).	\$ 1,942,584
	Cultural Treat (knapweed only). 2497 Acres	\$ 4,122,600

A summary of the overall biological and economic effects of each alternative is presented in Table IV-6 on the next page. A description of the components of the model used to compute the biological and economic values is presented in Appendix G. Appendix H contains the output from the model for each alternative and Appendix I contains the results of sensitivity analysis performed on each alternative.

Table IV-6 Economic Summary

	Alternatives											
Items		1		2		3						
Description	No Ac	tion	Tordon 2,4-D Hand Gr	Tordon 97% 2,4-D 2% Hand Grub 1%			Handgrub (Knapweed Only)					
Acres Treated (Initial)		0	2	,246		2,497						
Treatment Cost (per Acre)	\$ 0.0	00	\$ 7:	3.73		\$419.10						
Selected Values:	1988	2011	1988	201	11	1080		2011				
Total Weed Acres	4,908	149,763	3,748		7	4,07	5	18,126				
Loss: AUM's (Cattle) Elk (No. of Elk supported)	457 72	34,842 3,951	341 55	341 1 55 0		37	1	1,547 348				
Cost: AUM Loss HVD Loss (Elk) Treatment	\$ 171 7,825 0	\$ 13,018 426,448 0	\$ 128 5,928 165,599	\$	0 15 594	\$ 13 6,53 1,046,49	8\$ 6 3	578 37,594 35,624				
Total Cost	\$ 7,996	\$ 439,465	\$171,654	\$ 7	609	\$1,053,16	8 \$	73,796				
Impact: Employment Loss Income Loss	0.79 \$21,977 \$	49.51 1,434,280	0.60 \$16,526	C \$	0.00 37	0.6 \$18,08	5 6 \$	3.37 90,099				
Discounted Cost: AUM & HVD Loss Treatment Cost Total Cost	\$ 1,94 \$ 1,94	2,584 0 2,584	\$ 1 87 \$ 89	8,994 2,743		\$ 185,720 3,936,880 \$ 4 122,600						
Discounted Income Loss	\$ 5,86	0,548	\$ 5	0,255		\$ 446.826						

HUMAN HEALTH RISK (Page IV-14)

Insert between paragraphs 4 and 5 on page IV-14.

Several people who experience allergic reactions to herbicides live near the Forest. These people and any others identified in the future will be notified concerning weed control activity that may affect them.

Add to the second paragraph.

However, any wild food sources that have to be sprayed with herbicide to control associated weeds will be signed for 2 weeks after spraying to further reduce risks.

Page IV-15, fourth sentence of the seventh paragraph.

Change ".... in Appendix H)" to " ...by E. Monnig, 1986)".

Page IV-16, substitute the following for the last paragraph.

The possible cumulative and synergistic impacts of Forest Service spraying, in addition to impacts from other spraying, are discussed in Section 2.8 of the Norhern Region Risk Analysis (Monnig, 1986). Given the widely scattered nature of these herbicide treatments (2,332 acres treated on a 1.2 million acre National Forest), such effects are not reasonably expected.

CHAPTER V

CONSULTATION WITH AGENCIES, ORGANIZATIONS, AND INDIVIDUALS (Page V-1)

Agencies and organizations that received copies of the Draft EIS Supplement

The folowing agencies and organizations received copies of the draft supplement to the 1987 Deerlodge National Forest Noxious Weed Control Program EIS. In addition, copies of the Draft Supplement have been sent to 129 private individuals.

AMERICAN WILDERNESS A DAN HEINZ	LLIANG	CE	JH D/	EFFERSON VALLEY SPORTS	SMEN .	ASSOC.
CUTTE T			P	.U. BUX 6	MET	50750
BOZEMAN	MT	59715	W	III BRALL	MI	59/59
ANACONDA SPORTSMEN'S	CLUB		K.	.E.E.P.		
ANACONDA	MT	50711	EN D	O POY 170		
AMOONDA		<i>JJIII</i>	PI	HILIPSBURG	MT	59858
BOX 7593			KI AN	EVIN COYLE, VICE PRESI MERICAN RIVERS, INC.	IDENT	
MISSOULA	MT	59807	80	01 PENNSYLVANIA AVE. S	SE	
			W	ASHINGTON	DC	20003
CONFED. SALISH & KOOT	ENAI 7	TRIBES	м	ONTANA AUDUBON COUNCIL		
OF THE FLATHEAD RES	ERVAT	ION	BC	OB BALLOU	-	
CHAIRMAN, MICHAEL PAB	LO		GL	UNOCK ROAD		
P.O. BOX 278			CH	HARLO	MT	59824
PABLO	MT	59 85 5				
			MO	ONTANA WILDLIFE FEDERA	ATION	
DEEDLODCE FORCE DEEE	NCE EI	IND	Kt D	O DOV 2526		
P O BOX 780	NOE FU		r. B(0. BUA 3320	MT	50715
BOULDER	MT	59632	DC	O DELIVERY	111	55115
5002522		JJ0 J2				
			N/ Cł	ATIONAL WILDLIFE FEDER HUCK GRIFFITH	RATIO	N
DEFENDERS OF WILDLIFE			12	2 GARDNER PARK DRIVE		
NORTHERN ROCKIES OFFI	CE		BO	OZEMAN	MT	59715
HANK FISCHER						
1534 MANSFIELD AVE		50004				
MISSOULA	мт	59801	D	ATIONAL WILDLIFE FEDER ON ALDRICH	RATIO	N
ELKHORN CITIZENS ORGAN	NIZATI	LON	41	10 WOODWORTH AVENUE		
212 DINE OF			MJ	ISSUULA	MT.	59801
JIZ PINE SI.	MT	59601				
I ILALILATES		55001	NA	ATL ASSN CONSERVATION	DIST	RICTS
			W	ILLIAM H. HORVATH	51011	
			51	TEVENS POINT	WΤ	54481
				TOATIO LOTHI	H T	101-101

PINTLAR AUDUBON SOCIETY CHAMPION TIMBER LANDS DON STOECKER ANDY LUKES GEORGETOWN LAKE P.O. BOX 8 MT 59711 ANACONDA MILLTOWN MT 59851 POWELL COUNTY SPORTSMEN CLUB JOSEPH KARWAL C/O JB'S SPORTING GOODS REGIONAL ISSUES MANAGER 101 MILWAUKEE AVE. DOW CHEMICAL MT 59722 925 "L" STREET, SUITE 1400 DEER LODGE SACRAMENTO CA 95874 ROCK CREEK ADVISORY COUNCIL F.H. STOLTZ LAND & LUMBER COMPANY 240 NORTH HIGGINS MICHAEL LYNGNOLM MT 59801 MISSOULA P.O. BOX 389 DILLON MT 59725 ROCK CREEK ADVISORY COUNCIL LOUISANA-PACIFIC CORPORATION C/O CAROL FISHER P.O. BOX 389 1534 MANSFIELD AVE. DEER LODGE MT 59722 MISSOULA MT 59801 ROCK CREEK PROTECTION ASSOCIATION MASON RANCHES, INC. STAR ROUTE AL ANDERSON STAR ROUTE #1 BOX 1312 HALL MT 59837 MT 59825 CLINTON SKYLINE SPORTSMEN ANACONDA LEADER TONY SCHOONEN, PRESIDENT 121 MAIN P.O. BOX 173 ANACONDA MT 59711 BUTTE MT 59701 TROUT UNLIMITED BOULDER MONITOR GEORGE GRANT CHAPTER VERNON SUTHERLIN BILL CAIN P.O. BOX 66 1 BITTERSWEET DRIVE BOULDER MT 59632 BUTTE MT 59701 TROUT UNLIMITED HEADWATERS JOURNAL WEST SLOPE CHAPTER J.M. OLINGER, PUBLISHER, EDITOR PAUL BACH P.O. BOX 284 823 HILDA AVENUE WEST GLACIER MT 59936 MT 59801 MISSOULA BAUER RANCH, INC. INDEPENDENT RECORD BOX 100 317 ALLEN PHILIPSBURG MT 59858 HELENA MT 59601

KTVM - TV 750 DEWEY BLVD. BUTTE	MT	59701	AGRICULTURE STABILIZAT: CONSERVATION OFFICE 91 FRONTAGE ROAD	ION A	ND
			DEER LODGE	MT	59722
KXLF TV 1003 SOUTH MONTANA BUTTE	MT	59701	ANIMAL & PLANT HEALTH : DIRECTOR'S OFFICE SERVICE PPQ (APHIS) AGRICULTURE, ROOM 648, HYATTSVILLE	FED.	BLDG.
THE MADISONIAN VIRGINIA CITY VIRGINIA CITY	MT	59755	BEAVERHEAD NATIONAL FOR 610 NORTH MONTANA STREE DILLON	REST ET MT	59725
THE MISSOULIAN BOX 1535 MISSOULA	MT	59801	BEAVERHEAD NATIONAL FOR MADISON RANGER DISTRICT ROUTE #2 BOX 5 ENNIS	REST MT	59729
MONTANA STANDARD DAN CARTER 25 WEST GRANITE BUTTE	MT	59701	BEAVERHEAD NATIONAL FOR SHERIDAN RANGER DISTRIC P.O. BOX 428 SHERIDAN	REST T MT	59749
PHILIPSBURG MAIL P. O. BOX 160 PHILIPSBURG	MT	59858	BEAVERHEAD NATIONAL FOR WISE RIVER RANGER DISTR P.O. BOX 86 WISE RIVER	EST ICT MT	59762
SILVER STATE POST 312 MISSOURI AVE.			BITTERROOT NATIONAL FOR FOREST SUPERVISOR	EST	
DEER LODGE	MT	59722	316 NORTH 3RD STREET HAMILTON	MT	59840
WHITEHALL LEDGER WHITEHALL	MT	59759	BITTERROOT NATIONAL FOR DARBY RANGER DISTRICT DARBY	est Mt	59829
AGRICULTURE STABILIZAT: CONSERVATION OFFICE 405 WEST LEGION WHITEHALL	ION A	ND 50750	BITTERROOT NATIONAL FOR STEVENSVILLE RANGER DIS STEVENSVILLE	EST TRICT MT	59870
THE LEADER FOR		,,,,,,			

V-3

BITTERROOT NATIONAL FOREST SULA RANGER DISTRICT SULA MT 59871

BONNEVILLE POWER ADMINISTRATION JOHN HOOSON P.O. BOX 3621 PORTLAND OR 97208

BUREAU OF LAND MANAGEMENT GARY K. LEPPART HEADWATERS MANAGER P.O. BOX 3388 BUTTE MT 59702

U.S. DEPARTMENT OF THE INTERIOR BUREAU OF LAND MANAGEMENT 3255 FORT MISSOULA ROAD MISSOULA MT 59801

BUREAU OF LAND MANAGEMENT DISTRICT MANAGER P.O. BOX 308 BUTTE MT 59701

CENTER FOR DISEASE CONTROL ENVIRONMENTAL HEALTH/INJURY SPECIAL PROGRAMS GROUP 1600 CLIFTON ROAD C-27 MS F-29 ATLANTA GA 30333

U.S. DEPARTMENT OF THE INTERIOR ENVIRONMENTAL PROJECT REVIEW DIRECTOR INTERIOR BUILDING, ROOM 4256 WASHINGTON DC 20240

DEPARTMENT OF THE INTERIOR ROBERT F. STEWART REGIONAL ENVIRONMENTAL OFFICER ROOM 488, BLDG., 67 FED. CENTER DENVER CO 80225

ENVIRONMENTAL PROTECTION AGENCY REGION VIII DALE VODEHNAL, CHIEF EAB. ONE DENVER PLACE, SUITE 1300 DENVER CO 80202

ENVIRONMENTAL PROTECTION AGENCY JOHN WARDELL, DIRECTOR FEDERAL BUILDING 301 SOUTH PARK, DRAWER 10096 HELENA MT 59626 ENVIRONMENTAL PROTECTION AGENCY EIS REVIEW COORDINATOR REGION VIII 999 18TH STREET, SUITE 500 DENVER CO 80202 U.S. ENVIRONMENTAL PRTN AGENCY DEAN CHAUSSEE 301 SOUTH PARK, DRAWER 10096 HELENA MT 59626 ENVIRONMENTAL PROTECTION AGENCY DIRECTOR OFFICE OF FEDERAL ACTIVITIES ROOM 2119 MALL 401 M ST. S.W. WASHINGTON DC 20460 HEADWATERS R.C. & D. ROOM 263 FEDERAL BLDG. 400 N. MAIN BUTTE MT 59701 HELENA NATIONAL FOREST FOREST SUPERVISOR FEDERAL BUILDING, DRAWER 10014, ROOM 334 HELENA MT 59626 HELENA NATIONAL FOREST HELENA BANGER DISTRICT FEDERAL BUILDING, DRAWER 10014. ROOM 334 HELENA MT 59626 HELENA NATIONAL FOREST TOWNSEND RANGER DISTRICT P.O. BOX 29 TOWNSEND 59644 MT DAVE HORNING U...S. FISH & WILDLIFE SERVICE 301 S. PARK

V-4

P. 0. BOX 10023

MT 59626

HELENA

CAPTAIN JAMES LIEBERG FACILITIES MANAGEMENT OFFICER P. O. BOX 4789 HELENA MT 59604

LOLO NATIONAL FOREST FOREST SUPERVISOR BUILDING 24 FORT MISSOULA MISSOULA MT 59801

LOLO NATIONAL FOREST MISSOULA RANGER DISTRICT BLDG. 24-A, FORT MISSOULA MISSOULA MT 59801

ASSISTANT SECRETARY OF POLICY EVALUATION AND RESEARCH OCCUPATIONAL SAFETY & HEALTH, RM. N-3673, U.S. DEPT. OF LABOR WASHINGTON DC 20210

BOB LEINARD SOIL CONSERVATION SERVICE P.O. BOX D WHITEHALL MT 59759

SOIL CONSERVATION SERVICE (SCS) ENVIRONMENTAL COORDINATOR OF ECOLOGICAL SCIENCES DIVISION U.S. DEPT. OF AGRIC., ROOM 6155 WASHINGTON DC 20250

SOIL CONSERVATION SERVICE RICH PETTERSON P.O. BOX U PHILIPSBURG MT 59858

SOIL CONSERVATION SERVICE STATE CONSERVATIONIST BOZEMAN MT 59715

U.S. FISH & WILDLIFE SERVICE 1501 14TH ST W #230 BILLINGS MT 59102 U.S. FISH & WILDLIFE SERVICE WAYNE BREWSTER P.O. BOX 10073 HELENA MT 59626

U.S. GEOGICAL SURVEY, WRD DISTRICT CHIEF 301 SO. PARK AVENUE, DRAWER 10076 HELENA MT 59626

SENATOR KERMIT DANIELS MONTANA STATE SENATE P.O. BOX 670 DEER LODGE MT 59722

DEPARTMENT OF HEALTH & ENVIRONMENTAL SCIENCES ROOM 200, COGSWELL BLDG. HELENA MT 59601

GOVERNOR AD HOC REVIEW COMMITTEE C/O RALPH DRIEAR GOVERNOR PLANNING TASK FORCE STATE OF MT GOVERNOR OFFICE HELENA MT 59620

INTERGOVERNMENTAL CLEARING HOUSE STATE CAPITOL, ROOM 219 HELENA MT 59620

NANCY KEENAN STATE REPRESENTATIVE 1421 W. 3RD STREET ANACONDA MT 59725

MONTANA BUREAU OF MINES & GEOLOGY DIRECTOR'S OFFICE MONTANA COLLEGE OF MINERAL SCIENC BUTTE MT 59701

MONTANA COOPERATIVE FISHERY UNIT MONTANA STATE UNIVERSTIY BOZEMAN MT 59715 MONTANA COOPERATIVE WILDLIFE RESEARCH UNIT UNIVERSITY OF MONTANA MISSOULA MT 59812

MT. DEPT. FISH, WILDLFE & PARKS DICK OSWALD 214 SOUTH ARGENTA DILLON MT 59725

MONTANA DEPARTMENT OF AGRICULTURE WEED COORDINATOR 303 ROBERTS HELENA MT 59601

MONTANA DEPARTMENT OF AGRICULTURE 303 ROBERTS HELENA MT 59601

MT DPRTMNT FISH, WILDLIFE & PARKS DIRECTOR ROOM 101 SAM W. MITCHELL BLDG, HELENA MT 59601

MONTANA FISH, WILDLIFE & PARKS WAYNE HADLEY 431 BOULDER ROAD DEER LODGE MT 59722

MONTANA DEPARTMENT FISH, WILDLIFE AND PARKS REGION 3 BOZEMAN MT 59725

MT DPT. FISH, WILDLIFE & PARKS REGIONAL SUPERVISOR 3201 SPURGIN ROAD MISSOULA MT 59801

MONTANA DEPARTMENT OF NATURAL RESOURCES AND CONSERVATION 32 SOUTH EWING HELENA MT 59601 MONTANA DIVISION OF FORESTRY ANACONDA UNIT CABLE ROAD ANACONDA MT 59711

MT ENVIRONMENTAL INFO. CENTER GEORGE OCHENSKI P.O. BOX 1184 HELENA MT 59624

MONTANA STATE UNIVERSITY COOPERATIVE EXTENSION SERVICE BOZEMAN MT 59715

STATE OF MONTANA GOVERNOR TED SCHWINDEN OFFICE OF THE GOVERNOR HELENA MT 59620

WILDLIFE RESEARCH BUREAU JOHN P. WEIGAND, BUREAU CHIEF P.O. BOX 5 MONTANA STATE UNIVERSITY CAMPUS BOZEMAN MT 59717

ANACONDA DEER LODGE COUNTY PLANNING BOARD P.O. BOX 1387 ANACONDA MT 59711

ANACONDA/DEER LODGE COURTHOUSE COUNTY COURTHOUSE DAVE STREUFERT, COUNTY AGENT DEER LODGE MT 59722

ANACONDA-DEER LODGE COUNTY CRTHS. GERALD WENDT, DISTRICT SUPERVISOR ANACONDA MT 59711

ANACONDA-DEER LODGE REC. DIRECTOR BILL HILL P.O. BOX 1392 ANACONDA MT 59711 BUTTE-SILVER BOW PLANNING BOARD COURTHOUSE LARRY WALROD BUTTE MT 59701

BUTTE / SILVER BOW COURTHOUSE CHIEF EXECUTIVE COURTHOUSE BUTTE MT 59701

CHAIRMAN DEER LODGE COUNTY COMMISSIONERS COUNTY COURTHOUSE ANACONDA MT 59711

DEER LODGE VALLEY CONSERVATION DT JACK PERKINS, CHAIRMAN 91 NORTH FRONTAGE ROAD DEER LODGE MT 59722

DISTRICT WEED SUPERVISOR LEO MOCK BUTTE-SILVER BOW COURTHOUSE BUTTE MT 59701

EAST DEER LODGE VALLEY WEED PROJ C/O DAN MCQUEARY 1016 MISSOURI AVENUE DEER LODGE MT 59722

EXTENSION SERVICES HAROLD JOHNS SILVER BOW COUNTY COURTHOUSE BUTTE MT 59701

GRANITE COUNTY COMMISSIONERS CHAIRMAN GRANITE COUNTY COURTHOUSE PHILIPSBURG MT 59858

JOHN BYRNES GRANITE COUNTY EXTENSION AGENT BOX 665 PHILIPSBURG MT 59858 JEFFERSON COUNTY WEED COORDINATOR PAT KOUNTZ RT. 1, BOX 1829 WHITEHALL MT 59759

JEFFERSON COUNTY WEED BOARD TOM CAREY BOULDER MT 59632

JEFFERSON COUNTY COMMISSIONERS CHAIRMAN COUNTY COURTHOUSE BOULDER MT 59632

JEFFERSON COUNTY WEED BOARD ROBERT L. ANDERSON BOX 45 BOULDER MT 59632

JEFFERSON COUNTY WEED BOARD STEVE MARKS, CHAIRMAN 304 LUMP GULCH CLANCY MT 59634

COUNTY EXTENSION AGENT MARK TURNER BOX B WHITEHALL MT 59759

MADISON COUNTY WEED COORDINATOR NEIL PETERSON P.O. BOX 241 SHERIDAN MT 59749

MADISON COUNTY COMMISSIONERS CHAIRMAN MADISON COUNTY COURTHOUSE VIRGINIA CITY MT 59755

MADISON COUNTY WEED BOARD JANET BEAN-DECHNAHL, CHAIRMAN P.O. BOX 764 ENNIS MT 59729 POWELL COUNTY COMMISSIONERS CHAIRMAN POWELL COUNTY COURTHOUSE DEER LODGE MT 59722

POWELL COUNTY COURTHOUSE ED BRUBAKER, DISTRICT SUPERVISOR 409 MISSOURI DEER LODGE MT 59722

RC&D WEED CHAIRMAN CHARLIE HAHNKAMP BOX 68 MELROSE MT 59743

SOUTH GARRETT WEED DISTRICT C/O BILL MURPHY 471 WARM SPRINGS CREEK ROAD GARRISON MT 59731

WEED BOARD MEMBER BILL CHRISTENSON 5140 SKALKAHO ROAD PHILIPSBURG MT 59858

WEED BOARD MEMBER GARY MENTZER BOX 221 HALL MT 59837

TOM McGOWAN WEED BOARD MEMBER BOX 17 HALL MT 59837

COLORADO STATE UNIVERSITY DOCUMENTS LIBRARIAN FRED SCHMIDT FORT COLLINS CO 80523

ENVIRONMENTAL LIBRARY JEAN PARODI, DIRECTOR UNIVERSITY OF MONTANA MISSOULA MT 59812 ENVIRONMENTAL LIBRARY UNIVERSITY OF MONTANA MISSOULA MT 59812

JOHN LACEY EXTENSION SERVICE DEPT. OF ANIMAL & RANGE SCIENCE MONTANA STATE UNIVERSITY BOZEMAN MT 59717

CHAPTER VI

LIST OF PREPARERS

Core Team

Substitute the following names for those in the 1987 EIS. Dave Ruppert (Soil Scientist) Howard Challinor (Supervisory Forester) Tom Griffith (Resource Coordinator) John Joy (Ecologist) Greg Munther (Fishery Biologist) Support Group No changes.

GLOSSARY (Page G-1)

Insert the following between the fourth and fifth definition on page G-2 of the 1987 EIS.

Cultural Treatment: Weed control by hand grubbing, mowing, cutting, burning, and flooding weed infestations.

Insert the following between the fifth and sixth definition on page G-2 of the 1987 EIS.

Developed Recreation Sites: Any area which has been improved for public use that includes any parking, sanitation facilities, tables, fire places, and developed water.

Insert the following between the first and second definition on page G-6 of the 1987 EIS.

P.U.P.: Abbreviation for Pesticide Use Proposal.

REFERENCES (Page R-1)

Insert between the fourth and fifth reference on page R-1.

Lacey, J.R., C.B.Marlow, and J.R.Lane. 1988.

Influence of Spotted Knapweed on Surface Runoff and Sediment Production. Final Project Report (Noxious Weed Trust Fund, MDA 87-11). Unpublished Report.

APPENDIX A

Pesticide Use Proposals for Projects Modified or Added in 1988

The format of the Pesticide Use Proposals has changed slightly. The District name is no longer in the heading at the top of each page. The major change in the body of the form is that the Chemical Name is the only item under Pesticide Solution Mix that was retained in the new format.

The Project Number incorporates the date the project was added or modified, the District number, and the project number. The year is the first two digits of the project number, i.e. 88 = 1968. The District number is the next digit, i.e. 2 = D-2 = J efferson District. The numbers 1 .2. 3, and 4 are the Deer Lodge, Jefferson, Philipsburg, and Butte District, respectively. The next 1 to 3 digits are the project number and they correspond to the project numbers listed in the 1967 Pesticide Use Proposals. The letters included in some project numbers of the project.

		DEERLI	DDGE NAT	IONAL FORE	ST PESTICIDE USE PRO	OPOSAL						
PROJECT				//	22/88							
NUMBER NAME LOCATION	TYPE	AREA AFI BY EACH Acres	FECTED WEED Miles	TAR- GET HEED	CHENICAL NAME	AI / ACRE _ 1bs _	TOTAL Al 165	OISTANCE Dist. W miles f	TO N Nidth Teet	EAREST Oepth feet	WATER Veloc ft/s	RESI- DENCE miles
88-1- 2 BARREL SPRINGS AREA Sec. 13 , T 5N, R 9W	RANGE	4.00 LESS TH	0.00 AN 1/10	EUES	TOROON 22K 500 FT OF SEEP. CHO	1.00 0.00 3 2 AC T	4.00 0.00 0 4 AC-	0.090	0.0	0.0	0.0	4.000
88- 1- 3A ENCLOSURE AREA	RANGE	1.00	0.00	EUES	TORDON 22K	1.00	1.00 .	0.090	3.0	0.6	5.0	4.000
Sec. 6 , T 5N, R 8H		DRY COT	TON:000	CREEK 18 9	TREAM NEAR PROJECT.	CHG.5 A	C TO 1 AC	•				
88-1- 38 ENCLOSURE AREA S⊕c.6 , T 5N, R BW	RANGE	1.00 DRY COTT	0.00 TONWOOD	CEMA CREEK IS S	TORDON 22K TREAM NEAR PROJECT	0.25 0.00 CHG.5 A	0.00 0.00 C TO 1 AC	0.090	3.0	0.6	5.0	4.000
88-1-7	RANGE	8.00	0.00	CENA	TOROON 22K	0.25	2.00	0.250	4.0	0.5	5.0	4.000
Sec. 30 , T 9N, R 12H		NEAREST	WATER I	S DOUGLAS	CREEK. GALL FLY PLA	0.00 ANTED AL	0.00 90. CHG 3	AC TO E	AC.			
88- 1- 10A MOUNT PRINCETON ROAD Sec. 5 , T BN, R 12W	ROW	5.00 NEAREST	4.00 WATER IS	CEMA S SOUTH FK	TORDON 22K ODUGLAS CR.	0.25	0.00	0.090	2.0	0.3	10.0	6.000
88-1-108 MOUNT PRINCETON ROAD Sec. 5, T BN, R 12W	RDH	5.00 NEAREST	4.00 WATER I	CIAR S SOUTH FK	TORDON 22K Douglas Cr. Chg Ra	1.00 0.00 ATE1 FR	5.00 0.00 .25 TO 1.	0.090	2.0	0.3	10.0	6.000
88-1-12 DUNKLEBERG RIDGE Sec.15.T.9N.R.12M	RANGE	15.00	0.00	CEMA	TORDON 22K	0.25	3.75	0.250	0.0	0.0	0.0	1.500
		REAKEST	WHIER 13	D A SEEF.	OLU MINING CABIN ON	SILE.	UKUP BEAD	S & CUME	INE A	an.		
88-1-13 JACKSON PARK Sec.14 . T 9N R 124	RANGE	7.00	0.00	CEMA	TORDON 22K	0.25	1.75	0.250	2.0	0.2	5.0	0,250
		101003	CLEMSE .	STIE. DROP	BEHDS & CONDINE HAB	· -						
88-1- 15A WILLOM-PIKES PK CR AREA Sec. 1 . T 8N. R 11W	ROW	20.00	15.00	CEHA	TOROON 22K	0.25	0.00	0.010	0.0	0.0	0.0	0.000
8G- 1- 158 WILLOW-PIKES PK CR AREA Sec. 1 , T 8N, R 114	ROW	20.00 NEAREST	15.00 WATER IS	CIAR S STREAM C	TORDON 22K ROSSINGS ON PIKES PE	1.00 0.00 AK CR A	20.00 0.00 ND WILLOW	0.010 CR	0.0	0.0	0.0	0.000
88- 1- 21A BALLARD HILL AREA Sec. 33 , T 9N, R 11W	ROW	5.00 STOCK WA	5.00 TER SPRI	CEHA NG. (AND I	TOROON 22K PIONEER GULCH CROSSI	0.25 0.00 NG?)	0.00	0.000	0.0	0.0	0.0	0.000

A

DEERLODGE NATIONAL FOREST PESTICIDE USE PROPOSAL 7/22/88

PROJECT		AREA AFF	ECTED.	TAR-								
NAME LOCATION	TYPE	BY EACH Acres	WEED Hiles	GET HEED	CHEMICAL NAME	AI / ACRE 1bs	TOTAL AI 155	DISTANCE Dist. U miles f	TD N Hidth	EAREST Depth feet	WATER Veloc ft/s	RESI- DENCE miles
88- 1- 218 BALLARD HILL AREA	ROW	5.00	5.00	CIAR	TOROON 22K	1.00	5.00	0.000	0.0	0.0	0.0	0.000
Sec. 33 , T 9N, R 11W		STOCK WA	TER SPRI	NG. (AND	PIONEER GULCH CROS	SING?)						
88-1-22	ROU	9.00	3.50	CEMA	TORDON 22K	0.25	2.25	0.090	1.5	j 0.3	3.0	0.090
Sec. 21 , T 5N, R 124		NEAREST	WATER IS	OLSEN G	ULCH(FOSTER?), ADDE	0.00 D 1 AC (.	0.00 5 MI) TD	OLO 1987	PRO.	JECT.		
88- 1- 238	RANGE	110.00	0.00	CENA		0.00	0.00	0.000	0.0	0.0	0.0	0.250
Sec. 23 , T 5N, R 12W		GALL FLY	RELEASE	SITE. H	IGH PRIDRITY FOR RO	0.00 DT MINER.	0.00					
88- 1- 23C LIME QUARRY AREA	RANGE	40.00	0.00	CEMA	JORDON 22K	0.25	10.00	0.000	•	-	-	0.250
Sec. 23 , T 5N, R 120		40 AC CH	G.TO CHE	M.TREAT.	FOR BUFFER NEXT TO	PRIVATE-1	00 YOS X	1 MI				
00- 1- 34A MIDDLE FK DDUGLAS CREEK	ROW	5.00	5.00	CEMA	TOROON 22K	0.25	0.00	0.090	3.0	0.5	1.0	5.000
Sec. 32 , T 9N, R 12W		1/2 ACRE	WITHIN	500 FT D	F DOUGLAS CREEK OR	SEEPS.	0.00					
88- 1- 348 MIDDLE FK ODUGLAS CREEK	ROW	5.00	5.00	CIAR	TORDON 22K	1.00	5.00	0.090	3.0	0.5	1.0	5.000
Sec. 32 , T 9N, R 124		1/2 ACRE	WITHIN	500 FT 0	F DOUGLAS CREEK OR S	SEEPS.						
00- 1- 41 DIRT YARD AT DISTRICT OF	BULL PEN	1.00	0.00	CEMA	TORDON 22K	0.25	0.25	0.000	0.0	0.0	0.0	0.020
Sec. 28 , T 8N, R 9W		NEXT TO	USDA OFF	ICES - N	D RESIDENCES. CHG FF	R 2,4-D T	O TORDON					
88- 1- 42	RDU	2.90	2.00	CEMA	TORDON 22K	0.25	0.50	0.250	3.0	0.5	2.0	0.750
Sec. 30 , T 7N, R 10H						0.00	0.00					
88-1-43	RANGE	2.00	0.00	CEHA	TOROON 22K	0.25	0.50	0.250	5.0	0.8	2.5	2.000
MIDDLE FK. SALE AREA Sec. 14 , T 7N, R BW						0.00	0.00					
88- 1- 44	ROW	17.00	8.50	CEMA	TORDON 22K	0.25	4.25	0.009				-
Sec. 12 , T 5N, R 13W		NEAR 2 C	AMPGROUNI	DS. NEAP	EST WATER IS WARM S	0.00 PRINGS C	0.00 REEK.					

			DEERL	DDGE NATI	DNAL FO	REST PESTICIDE USE	PROPOBAL						
	PRDJECT					7/22/88							
NUMBER NAME LOCATION	N	TYPE	AREA AF BY EACH Acres	FECTED WEED Miles	TAR- GET ₩EED	CHEMICAL NAME	AI / ACRE 168	TOTAL AI 165	DISTANC Dist. miles	E TO N Width feet	EAREST Depth feet	WATER Veloc ft/s	RESI- DENCE miles
99- 1- FREEPDR1	701	MINE	0.00	0.00	CEMA	TORDON 22K	0.50	5.00	0.250				1.500
Sec. 3	, T 7N, R 8W		NEAREST	WATER IS	BAGGS	CR. TRIB.	0.00	0.00					
00- 1- MMT MINE Sec. 11	702 - GOLD CREEK , T 9N, R 124	MINE	0.00 NEAREST	0.00 Water is	CEMA GOLD CI	TORDON 22K R.	0.50 0.00	50.00 0.00	0.009	-	-	~	7.000
88- 1- WILLDW C Sec. 1	703A R MINE , T 8N, R 11W	MINE	3.50	0.00	CEMA	TORDON 22K	0.25	0.00	0.100	1.0	0.1	1.0	0.000
89- 1- WILLDW C Sec. 1	703B R MINE , T 8N, R 11W	MINE	3.50	0.00	CIAR	TORDON 22K	1.00 0.00	3.50 0.00	0.100	1.0	0.1	1.0	0.000
88- 1- CABLE MI Sec. 10	704 NE , T 5N, R 13W	MINE	0.00	0.00	CEMA	TORDON 22K	0.50 0.00	1.00 0.00	0.009	-	~	~	1.250
99- 1- 3 PIKES PE Sec.	705 Ak Phdsphate Min , T ØN, R 11W	MINE	0.10	0.00	CEMA	TORDDN 22K	0.25 0.00	0.03 0.00	0.020	-	-	-	~
98~ 1- 6 BALLARD F Sec. 33	801A HILL (BPA) , T 9N, R 11W	ROW BPA RDAD	3.60	1.50	CEMA	TORDON 22K	0.50	0.00	0.500	3.0	0.5	1.0	2.000
88- 1- 6 BALLARD H Sec. 33	01C (ILL (BPA) , T 9N, R 11W	RDW BPA ROAD	3.60	1.50	CIAR	TDRDON 22K	1.00 0.00	3.60 0.00	0.500	3.0	0.5	1.0	2.000
88- 1- 8 BALLARD H Sec. 33	01D (ILL (BPA) , T 9N, R 11W	LINE	23.20	0.00	CEMA	TORDON 22K	0.50	0.00	0.500	3.0	0.5	1.0	2.000
88- 1- 8 BALLARD H Sec. 33	01F HLL (EPA) , T 9N, R 11W	LINE	23.20	0.00	CIAR	TORDON 22K	1.00 0.00	23.20	0.500	3.0	0.5	1.0	2.000
88- 1- 8 AVIDSDN/ Sec. 32	02A MASTER MINE(BPA , T 9N, R 11W	RDW BPA RDAD	11.60	4.80	CEMA	TORDON 22K	0.50	0.00	0.010	3.0	1.0	1.0	0.250

A-3

- 0

PROJECT		DEERL	DDGE NATIO									
NUMBER NAME LOCATION	TYPE	AREA AF BY EACH Acres	FECTED WEED Miles	TAR- GET WEED	CHEMICAL NAME	AI / ACRE 1bs	TDTAL Al 165	DISTANC Dist. miles	E TD NI Width feet	EAREST Depth feet	WATER Veloc ft/s	RESI- DENCE miles
88- 1- 802C DAVIDSON/MASTER MINE(BPA Sec. 32 , T 6N, R 11W	RDW BPA ROAD	11.60	4.80	CIAR	TORDON 22K	1.00 0.00	11.60 0.00	0.010	3.0	1.0	1.0	0.250
88- 1- 802D DAVIDSDN/MASTER MINE(BPA) Sec. 32 , T 6N, R 11W	LINE	20.00	0.00	CEMA	TORDON 22K	0.50	0.00	0.010	3.0	1.0	1.0	0.250
88-1-802F DAVIDSDN/MASTER MINE(BPA) Sec. 32 , T 6N, R 11W	LINE	20.00	0.00	CIAR	TDRDDN 22K	1.00 0.00	20.00 0.00	0.010	3.0	1.0	1.0	0.250
88- 1- 803 MSTR MINE-EUREKA RDG(BPA) Sec. 11 , T 8N, R 12W	ROW BPA ROAD	7.00	7.00 W/1 .25 MI	CEMA DF GDLD	TDRDDN 22K	0.25	1.75	0.250	0.0	0.0	0.0	7.000

Po	LIECT				DEERL	DDGE NAT	IONAL FDR	EST PESTICIDE USE F	PROPOSAL						
NUMBER NAME LOCATION	JECT			TYPE	AREA AFI BY EACH Acres	FECTED WEED Miles	TAR GET HEED	CHEMICAL NAME	AI / ACRE 1bs	TDTAL AI 1bs	DISTANC Dist. miles	E TD N Width feet	EAREST Depth feet	WATER Veloc ft/s	RESI- DENCE miles
88-2- 1 KILLIAN GULO Sec. 31 ,	сн Г 6 N ,	R	3W	RANGE	1.50	0.00	LIDA	TORDON 22K	1.50 0.00	2.25	1.000	2.0	1.0	0.0	1.500
88-2- 2 TACDMA GULCH Sec. 34 , 1	6N,	R	3₩	RANGE	3.00	0.00	LIDA	TORDON 22K	1.50	4.50 0.00	0.250	0.9	0.5	0.0	0.500
88- 2- 3 ELKHORN Sec. 14 , 1	6N,	R	зw	RANGE	6.00 ELKHDRN	0.00 CREEK.	LIDA	2,4-D AMINE	2.00	12.00	0.100	0.1	0.0	0.0	0.100
88-2- 4 SAUL HAGGERT Sec. 1 , T	Y 6N,	R	66	RANGE	3.00 Basin Cr	0.00 Reek.	LIVU	2,4-D AMINE	2.00	6.00 0.00	0.200	0.0	0.0	0.0	2.000
88-2- 5 THUNDERBOLT Sec.21 , T	6N,	R	7W	RANGE	0.75 BOULDER	0.00 RIVER.	EUES	TORDON 2K BEADS	2.00	1.50 0.00	0.250	5.0	2.0	0.0	2.000
88- 2- 6A LOWLAND CREE Sec. 26 , T	K RD. 6N,	R	7W	ROW	12.00 LDWLAND	1.00 CREEK.	CEMA	2,4-D AMINE	2.00	0.00	0.170	0.0	0.0	0.0	2.500
88-2- 68 LDWLAND CREE Sec. 26 , T	< RD. 6N,	R	7₩	ROW	12.00 LDWLAND	1.00 CREEK.	LIVU	2,4-D AMINE	2.00	24.00 0.00	0.170	0.0	0.0	0.0	2.500
88-2- 6C BOULDER RIVER Sec. 30 , T	RD. 6N,	R	6W	ROW	12.00 BOULDER	1.00 RIVER.	CEMA	2,4-D AMINE	2.00	0.00	0.120	0.0	0.0	0.0	0.500
88-2- 6D BDULDER RIVER Sec. 30 , T	RD. 6N,	R	6W	ROW	12.00 BOULDER	1.00 RIVER.	LIVU	2,4-D AMINE	2.00	24.00	0.120	0.0	0.0	0.0	0.500
88- 2- 6E BOULDER RIVER Sec. 20 , T	RD. 6N,	R	6 W	ROW	3.00	0.50	CEMA	2,4-D AMINE	2.00	0.00	0.120	0.0	0.0	0.0	1.000
.88- 2- 6F BOULDER RIVER Sec. 20 , T	RD.	R	6 W	ROW	3.00	0.50	LIVU	2,4-D AMINE	2.00	6.00	0.120	0.0	0.0	0.0	1.000

A-5

0

DEERLODGE NATIONAL FOREST PESTICIDE USE PROPOSAL 7/22/88

NUMBER NAME LOCATION	TYPE	AREA AF BY EACH Acres	FECTED WEED Miles	TAR- GET WEED	CHEMICAL NAME	AI / ACRE _ 1bs	TDTAL AI	DISTAND	E TO N Width	EAREST Depth	WATER Veloc	RESI- DENCE
88- 2- 7A	RDW	12.00	1.00	CEMA	2,4-D AHINE	2.00	0.00	0.120	0.0		0.0	1.000
Sec. 4 , T 5N, R 6W						0.00	0.00					
88-2-78 BISON CREEK Sec. 4 . T 5N. P 44	ROW	12.00	1.00	L1VU	2,4-D AHINE	2.00	24.00	0.120	0.0	0.0	0.0	1.000
, oky k ow												
88- 2- 8A Galena gulch	RANGE	23.00	0.00	CIAR	TORDON 22K	0.50	0.00	0.250	0.0	0.0	0.0	2.000
Sec. 28 , T 6N, R 5W					2,4 0 MAINE	2.00	0.00					
88- 2- 88 GALENA GULCH	RANGE	23.00	0.00	LIDA	TORDON 22K 2,4-D AMINE	1.50	34.50 46.00	0.250	0.0	0.0	0.0	2.000
590. 20 , 1 6N, R 5W												
88- 2- 9A LTL BOULDER R N FK RDS	ROW	15.00	10.00	CIAR	2,4-D AMINE	2.00	0.00	0.125	0.0	0.0	0.0	2.500
Sec. 7 , T 5N, R 4W						0.00	0.00					
88- 2- 98 LTL BOULDER R N FK RDS Sec. 7 , T 5N. R 4W	ROW	15.00	10.00	LIVU	2,4-D AMINE	2.00	0.00	0.125	0.0	0.0	0.0	2.500
88- 2- 9C	ROW	15.00	10.00	LIDA	2,4-D AMINE	2.00	30.00	0.125	0.0	0.0	0.0	2.500
Sec. 7 , T 5N, R 4W	3					0.00	0.00					
88- 2- 10A UPPER LITTLE BOULDER	RANGE	6.00	0.00	CIAR	TORDON 2K BEADS	0.50	0.00	0.125	0.0	0.0	0.0	5.000
Sec. 1 , T 4N, R 6W		5 MILES	TO CABIN	, 10 MIL	ES TO RESIDENCE.	0.00	0.00					
BB- 2- 10B	RANGE	6.00	0.00	LIVU	TORDON 2K BEADS	1.50	9.00	0.125	0.0	0.0	0.0	5.000
Sec. 1 , T 4N, R 69		5 MILES	TO CABIN	, 10 HIL	ES TO RESIDENCE.	0.00	0.00					
88- 2- 11	RANGE	3.00	0.00	CEMA	2,4-D AMINE	2.00	6.00	0.125	0.0	0.0	0.0	2.000
Sec. 16 , T 5N, R 4W						0.00	0.00					
88- 2- 12	ROW	3.00	1.00	CEMA	TORDON 22K	0.50	1.50	0.167	0.0	0.0	0.0	0.250
Sec. 27 . T AN. P SU						0.00	0.00					

DEERLODGE NATIONAL FOREST PESTICIDE USE PROPOSAL 7/22/88

NUMBER NAME LOCATION				TYPE	AREA AF BY EACH Acres	FECTED WEED Miles	TAR~ GET HEED	CHEMICAL NAME	AI /	TOTAL	DISTANC Dist.	E TO N Width	EAREST Depth	WATER Veloc	RESI- DENCE
									16.6	165	niles	feet	feet	ft/\$	miles
88- 2- 13A BULL MTN ARE Sec. 6 , T	А ЗN,	R	3₩	RANGE	9.00	0.00	CIAR	TORDON 22K 2,4-D AMINE	1.00	0.00	0.120	0.0	ō.ō	0.0	6.000
88-2- 138 BULL MTN ARE Sec. 6 , T	А ЗN,	R	3₩	RANGE	9.00	0.00	LIDA	TORDON 22K 2,4-D AMINE	1.50 2.00	13.50 18.00	0.120	0.0	0.0	0.0	6.000
88- 2- 14 CALDWELL RAN Sec. 10 , T	сн-Мн ЗМ,	ITE R	7L C 5₩	ROW R	6.00	5.00	CEMA	TORDON 22K 2,4-D Amine	0.50 2.00	3.00 12.00	0.250	0.0	0.0	0.0	4.000
88- 2- 15A HOMESTAKE Sec. 13 T	2N	P	74	RANGE	4.00	0.00	CEMA	TORDON 22K	0.50	0.00	0.250	0.0	0.0	0.0	1.000
88- 2- 158 HOMESTAKE Sec. 18 , T	2N,	R	64	RANGE	4.00	0.00	LIVU	TORDON 22K	1.50 0.00	6.00 0.00	0.250	0.0	0.0	0.0	1.000
88-2- 16A MCGDVERN Sec. 12 , T	25,	R	4N	RANGE	3.00	0.00	CIAR	TORDON 22K	0.50	1.50 0.00	0.250	0.0	0.0	0.0	1.500
88- 2- 168 MCGOVERN Sec. 12 , T	29,	R	4N	RANGE	3.00	0.00	CYOF	TORDON 22K	0.50	0.00	0.250	0.0	0.0	0.0	1.500
88- 2- 17 TOLL CANYON Sec. 13 , T	1N,	R	7₩	ROW	9.00	5.00	CEMA	TORDON 22K 2,4-d Amine	0.50 2.00	4.50 18.00	0.250	0.0	0.0	0.0	0.500
88- 2- 18 BROOKS CANYO Sec. 32 , T	19,	R	4₩	RANGE	3.00	0.00	EUES	TORDON 2K BEADS	2.00 0.00	6.00 0.00	1.000	0.0	0.0	0.0	1.500
88- 2- 19A DRY CR RD Sec. 32 , T	6N,	R	2₩	ROW	4.00	0.50	CEMA	TORDON 22K	0.50	0.00	0.250	0.0	0.0	0.0	0.750
88- 2- 198 DRY CR RD Sec. 32 , T	6N,	R	2₩	ROW	4.00	0.50	LIVU	TORDON 22K	1.50	6.00 0.00	0.250	0.0	0.0	0.0	0.750

A-7

PRO JECT

0

DEERLODGE NATIONAL FOREST PESTICIDE USE PROPOSAL 7/22/88

NUMBER NAME LOCATION		TYPE	AREA AFF BY EACH Acres	ECTED . WEED Miles	TAR- GET HEED	CHEMICAL NAME	AI / ACRE 165	TOTAL Al Ibs	DISTANC Dist. miles	E TO N Width feet	EAREST Depth feet	WATER Veloc ft/s	RESI- DENCE miles
88- 2- 20 TRAINER GU Sec. 26 , T 1N, R	7w	RANGE	3.00	0.00	DEOC	TORDON 22K	1.00 0.00	3.00	0.250	0.0	0.0	0.0	2.000
88- 2- 21 NINETEEN MILE Sec. 17 , T 1N, R	6₩	RANGE	0.75	0.00	EVES	TORDON 2K BEADS	2.00	1.50	0.120	0.0	0.0	0.0	0.120
88- 2- 22A RADER CR. ROAD #240 Sec. 13 , T 2N, R	7₩	RANGE	4.00	0.00	LIVU	2,4-D AMINE 0	2.00	8.00	0.125	0.0	0.0	0.0	0.125
88- 2- 228 RADER CR. RDAD \$240 Sec. 13 , T 2N, R	7W	ROW	4.00 OLD 1987	1.50 PROJECT	CEMA 36	TORDON 22K 2,4-D AMINE	0.50 2.00	2.00 8.00	0.125	0.0	0.0	0.0	3.000
88- 2- 23 Galena PK - N. Fork Sec. 4 , T 5N, R	5₩	ROW	9.00	2.00	CEMA	TURDON 22K 2,4-D AMINE	0.50 2.00	4.50 18.00	0.500	0.0	0.0	0.0	0.250
88- 2- 24A SOUTH BOULDER RD Sec. 7 , T 25, R	зы	ROW	6.00	2.00	CEMA	TORDON 22K	0.50	0.00	0.250	0.0	0.0	0.0	0.250
88- 2- 248 SOUTH BOULDER RD Sec. 7 , T 25, R	зы	ROW	6.00	2.00	LIVU	TORDON 22K	1.50 0.00	9.00	0.250	0.0	0.0	0.0	0.250
88- 2- 24C SOUTH BOULDER RD Sec. 7 , T 25, R	зω	ROW	6.00	2.00	SEJA	TORDON 22K	0.50	0.00	0.125	0.0	0.0	0.0	0.250
88- 2- 24D SOUTH BOULDER RD Sec. 7 , T 25, R	зw	ROW	2.00	2.00	CIAR	TORDON 22K	0.50	0.00	0.250	0.0	0.0	0.0	0.250
88- 2- 25A EONE EASIM Sec. 10 , T 15, R	46	RANGE	3.00	0.00	EVES	TORDON 2K BEADS	2.00	6.00	0.250	0.0	0.0	0.0	2.500
88~ 2- 258 BONE BASIN Sec. 10 , T 15, R	4W	RANGE	3.00	0.00	CIAR	TORDON 2K BEADS	1.00	0.00	0.250	0.0	0.0	0.0	2.500

DEEKLODGE	NATIONAL	FOREST	PESTICIDE	USE	PROPOSAL
		7/22	/88		

NUMBER NAME LOCATION	ТҮРЕ	AREA AFF BY EACH Acres	ECTED. WEED Miles	TAR GET WEED	CHEMICAL NAME	AI / ACRE 1bs	TOTAL AI 16%	DISTAND Dist. miles	E TO N Width feet	EAREST Depth feet	WATER Veloc ft/s	RESI- DENCE miles
88-2-26A Pigeon CR Sec. 30 . T in. R AM	RANGE	4.00	0.00	CEMA .	2,4-D AMINE	2.00	0.00	0.120	0.0	0.0	0.0	1.000
88- 2- 268 PIGEON CR Sec. 30 , T 1N, R 6W	RANGE	4.00	0.00	CIAR	2,4-D AMINE	2.00	0.00	0.120	0.0	0.0	0.0	1.000
88- 2- 26C PIGEON CR Sec. 30 , T 1N, R 6W	RANGE	4.00	0.00	LIVU	2,4-D AMINE	2.00	8.00	0.120	0.0	0.0	0.0	1.000
88-2-27A Homestake-delmoe RD Sec.4 ,T 2N,R 6W	ROW	3.00	6.00	CEMA	TORDON 22K 2,4-D AMINE	0.50 2.00	0.00	0.250	0.0	0.0	0.0	0.000
88- 2- 278 HOMESTAKE-DELMOE RD Sec. 27 , T 3N, R 6W	ROW	3.00	6.00	LIDA	TORDON 22K 2,4-D Amine	0.50 2.00	1.50	0.250	0.0	0.0	0.0	0.000
88-2- 28 BOYLE GU Sec. 22 , T 6N, R 7W	ROW	1.50	0.00	CEHA	TORDON 22K	0.50 0.00	0.75 0.00	0.250	0.0	0.0	0.0	0.000
00- 2- 29A Coyote Flat Sec. 16 , T 2N, R 6W	RANGE	50.00	0.00	CEHA	TORDON 22K 2,4-D AMINE	0.50 2.00	25.00 100.00	0.250	0.0	0.0	0.0	2.500
88- 2- 298 COYOTE FLAT Sec. 16 , T 2N, R 6W	ROW	10.00	8.00	CEMA	TORDON 22K 2,4-D AMINE	0.50 2.00	5.00 20.00	0.250	0.0	0.0	0.0	2.500
88- 2- 30 Carmichael and brownback Sec. , T 18, R 3W	RANGE	15.00	0.00	DEOC	TORDON 2K BEADS	1.00 0.00	15.00 0.00	0.250	0.0	0.0	0.0	2.250
88- 2- 31 Delhoe-Halfhay Park Gec. 23 , t 3N, r 6W	RANGE	1.50	0.00	LIVU	TORDON 2K BEADS	1.50 0.00	2.25	0,250	0.0	0.0	0.0	5.000
88- 2- 33A DRSE PASTURE-HORK CENTER ⊕c. 29 , T 6N, R 4W	RANGE	6.00	0.00	CEMA	TORDON 22K	0.50	0.00	0.100	0.0	0.0	0.0	0.000
											6	

A-9

PROJECT

DEERLODGE NATIONAL FOREST PESTICIDE USE PROPOSAL 7/22/88

PROJECT			7/22/88														
NUMBE NAME LOCAT	BB- 2- 33B HORSE PASTURE-HORY CENTER	TYPE	ARE BY Acr	A AF EACH es	FECTED. WEED Miles	TAR~. GET HEED	CHEMICAL NAME.	AI / ACRE. 1bs	TOTAL AI 155	DISTANCE Dist. 1 miles f	TO N Width	EAREST Depth feet	WATER Veloc ft/s	RESI- DENCE ailes			
88- HORSE Sec.	2- 33 PASTU 29 ,	B RE-140 T 6N	RK	CENT 46	RANGE TER I	6	•00 [`]	0.00	LIDA	TORDON 22K	1.50 0.00	9.00 0.00	0.100	0.0	0.0	0.0	0.100
88- HADLE Sec.	2- 34 Үрка 31 ,	REA R T SN	D. , R	*88 3W	ROW	2	.00	. 5.00	CEMA	TORDON 22K	0.50	1.00 0.00	1.000	-	-		1.500
88- BEAR Sec.	2- 35 GU. RO 2 ,	A AD ♦8 F 35	4 , R	รผ	ROW	2.	. 00	1.50	CEMA	TORDON 22K	0.50	1.00	0.125		-	-	1.000
88- 3 BEAR Sec. 3	2- 358 GU. RO 2 ,	3 AD \$8 1 335	4 , R	52	ROW	2.	00	1.50	CIAR	TORDON 22K	0.50	0.00	0.125	~	-	~	1.000
88- 2 RYAN (Sec. 3	2- 37 3ULCH 31 , 1	5N	R	3₩	RANGE	1.	00	0.00	EUES	TORDON 22K	2.00	2.00	0.125	-	-		0.500
88- 2 POLE C Sec. 8	2- 38 CANYON 3 , T	15,	R	зы	ROW	2.	00	0.50	CEMA	TORDON 22K 2,4-D AMINE	0.50 2.00	1.00 4.00	0.125	-	-	-	2.000
88- 2 PERRY Sec. 2	- 39 POLE R 0 , T	OAD 4 1S,	510 R	4 3W	ROW	2.	00	1.50	CEMA	TORDON 22K 2,4-D AMINE	0.50 2.00	1.00 4.00	0.125	~	-	-	2.000
88- 2 RATIO Sec. 1	- 40 мтм. 2 , т	зΝ,	R	54	RANGE	5.	00	0.00	CEMA	TORDON 22K	0.50	2.50	1.000	-	-	ĩ	3.000
88- 2 DRY MTI Sec. 3	- 41 N., T	28,	R	54	RANGE	3.0	00	0.00	CENA	TORDON 22K	0.50 0.00	1.50	2.000	~	-		3.000
88- 2- ROCK CF Sec. 6	- 42 R. , T	25,	R	зы	RANGE	1.0	00	0.00	CEMA	TORDON 22K	0.50	0.50	0.020	~			0.250

PROJECT				7	7/22/88								
NUMBER		AREA AF	FECTED	TAR-									
NAME LOCATION	TYPE	BY EACH Acres	WEED Miles	GET HCED	CHEMIC	AL NAME	A1 / ACRE 1bs	AI 1bs	DISTANO Dist. miles	E TO P Width feet	NEAREST Depth feet	WATER Veloc ft/s	RESI- DENCE miles
88- 2- 43 HELLS CANYON	ROW	5.00	5.00	CEMA	TOROON	22K	0.50	2.50	0.020	, .		-	5.000
Sec. 1 , T 25, R 7W		SPOT TR	EATMENT				0100	0100					
99- 2- 44													
MILL CANYON	RANGE	30.00	0.00	EUES	TOROON	22K	2.00	60.00	0.020	· ·		~	2.000
Sec. 33 , T 15, R 4W													
88- 2- 701 ANTIMONY MINE	MINE ROW	0.00	0.00	CEMA	TOROON	22K	0.50	0.50	0.005	0.0	, ~	-	0.750
Sec. 18 , T 28, R 4W		NEAREST	WATER IS	ANTIMON	IT CREEK.		0.00	0.00					
88- 2- 702A	MINE	0.00	0.00	CEMA	TORDON	226	0.50	2.00	0.250				
A & P MINE Sec. 21 , T 2S, R 3W		NEAREST	WATER IS	SEEPS.	NEAREST	RESIDENCE	0.00 IS A CABIN	0.00 DN FDR	EST.				0.125
88- 2- 7028 A & P MINE	MINE ROW	0.00	0.00	CEMA	TORDON	22K	0.50	0.25	0.250		~ ~	~	0.125
Sec. 21 , 1 25, R 3W		NEAREST	WATER IS	SEEPS,	NEAREST	RESIDENCE	IS A CABIN	ON FOR	EST.				
88- 2- 703 GOLOFIELOS EXPLORATION Sec. 11 , T 6N. R 30	MINE ROH	0.00	0.00	CEMA	TOROON	22K	0.50	0.50	0.250		~	-	0.500
88-'2- 704 Falcon Heap Leach	MINE	0.00	0.00	CEMA	TOROON	22K	0.50	1.00	0.090	2.0	1.0	0.5	1.000
3ec. 15 , T 6N, R 3W		NEAREST	WATER IS	TURNLEY	CR.		0.00	0.00					
88- 2- 705A	MINE	0.00	0.00	CEMA	TORDON	22K	0.50	4-00	0 009		~		2 000
AATKINS MINE Sec. 25 , T 6N, R 6H							0.00	0.00	••••				2.000
88-2-7058 NATKINS MINE	MINE ROW	0.00	0.00	CEMA	TORDON	22K	0.50	0.50	0.009	-	-	-	0.050
, , , , , , , , , , , , , , , , , , ,													
88- 2- 801 PA LINE	ROW BPA ROAD	1.00	4.00	CIAR	2,4-0 A	MINE	2.00	2.00	0.000	0.0	0.0	0.0	0.000
ec. , T 6N, R 6W		THIS IS	OLO 1987	PROJECT	#32. CAN	NOT USE PI	CLORAM ON B	PA EAS	OF GAR	RISON.			

DEERLOOGE NATIONAL FOREST PESTICIDE LISE PROPOSAL

0

	PROJECT	7/22/88											
NUMBER NAME LOCATION		TYPE	AREA AFF	ECTED . WEED Miles	GET HEED	CHEMICAL N	AI / AME ACRE.	TOTAL	DISTAN Dist.	CE TO N Width	EAREST Depth	WATER Veloc	RESI- DENCE
										TWWC	teec	+ 67 8	

DEERLODGE NATIONAL FOREST PESTICIDE USE PROPOSAL

DEERLODGE NATIONAL FOREST PESTICIDE USE PROPOSAL 7/22/88

PROJECT				7	/22/88							
NUMBER NAME LOCATION	TYPE	AREA AFF By Each Acres	WEED Miles	GET HEED	CHEMICAL NAME	AI / ACRE 16%	TOTAL Al 16#	DISTANC Dist.	E TO N Width Feet	EAREST Depth feet	WATER Veloc ft∕s	RESI- DENCE miles
88-3-3A EAST FORK RDAD 0672 Sec. 27 , T 5N, R 14W	ROW	14.00	7.00	CEMA	TORDON 22K	0.50	7.00	0.001	3.0	1.0	1.0	2.000
88-3-38 EAST FORK ROAD \$672 Sec.27 , T 5N, R 14W	ROW	8.00	4.50	CANU	TORDON 22K	0.50	0.00	0.001	3.0	1.0	1.0	2.000
88- 3- 3C EAST FORK ROAD #672 Sec. 27 , T 5N, R 14W	RDW	5.00	4.50	CIAR	TOROON 22K	0.50	0.00	0.001	3.0	1.0	1.0	2.000
88-3- 4A EAST FORK DAM Sec.6 , T 4N, R 14W	RDW	18.00	4.00	CEMA	TOROON 22K	0.50 0.00	8.50 0.00	0.020	8.5	0.0	0.0	2.000
88-3- 48 EAST FORK DAM Sec.6 , T 4N, R 14W	ROW	10.00	3.00	CANU	TOROON 22K	0.50	0.00	0.020	0.0	0.0	0.0	2.000
98-3-4C EASTFORK DAM Sec.6,T4N,R14W	RDW	1.00	0.25	LIVU	TORDON 22K	2.00	2.00 0.00	0.020	0.0	0.0	0.0	2.000
88- 3- 5A MEADDW CR. RD. #5141 Sec. 1 , T 4N, R 14W	RDW	10.00	10.00	CEMA	TORDON 22K	0.50	5.00	0.020	6.0	2.0	3.0	3.000
88-3- 58 MEADOW CR. RO. 05141 Sec. 1 , T 4N, R 14W	ROW	25.00	8.00	CANU	TOR OON 22K	0.50 0.00	7.50 0.00	0.020	6.0	2.0	3.0	3.000
88-3- 6A DRY GU. AREA Sec. 6 , T 4N, R 14W	RANGE	18.00	0.00	CEMA	TOROON 22K	0.50	9.00	0.100	1.0	1.0	1.0	3.000
88-3- 68 DRY GU. AREA Sec. 6 , T 4N, R 14W	RANGE	5.00	0.00	CANU	TORDON 22K	0.50	0.00	0.100	1.0	1.0	1.0	3.000
88-3- 6C DRY GU. RD. ∳5006 S⊕c. 6 , T 4N, R 14W	ROW	5.00	2.50	CANU	TORDON 22K	0.50	2.50	0.100	1.0	1.0	1.0	3.000
88- 3- 7A MIODLE FORK ROAD Sec. 5 , T 4N, R 15W	ROW	40.00	8.00	CEMA	TOROON 22K	0.50	20.00	0.100	34.0	2.0	3.5	0.250

0

A-13
DEERLODGE NATIONAL FOREST PESTICIDE USE PROPOSAL 7/22/88

C

PRDJECT					/22/00							
NUMBER NAME LOCATION	TYPE	AREA AFI BY EACH Acres	FECTED WEED Miles	TAR GET WEED	CHEMICAL NAME	AI / ACRE . 15%	TOTAL AI 155	DISTANCE Dist. I miles f	E TO N Width Feet	EAREST Depth feet	WATER Veloc ft/s	RESI- DENCE
88- 3- 78 MIDDLE FDRK RDAD Sec. 5 , T 4N, R 15W	RANGE	21.00	0.00	CEMA	TDRODN 22K	0.50 0.00	10.50 0.00	0.100	34.0	2.0	3.5	0.250
88- 3- 8A KAISER LAKE ROAD #5121 Sec. 18 , T 4N, R 15W	RDW	14.00	7.00	CEMA	TORDON 22K	0.50	7.00	0.100	34.0	2.0	3.5	1.500
88- 3- 88 KAISER LAKE RDAD #5121 Sec. 18 , T 4N, R 15W	RDW	5.00	6.00	CANU	TORDDN 22K	0.50	0.00	0.100	34.0	2.0	3.5	1.500
88- 3- 9 CDPPER CREEK RDAD #30 Sec. 26 , T 4N, R 16W	ROW	18.00	9.00	CEMA	TORDON 22K	0.50	9.00 0.00	0.001	20.0	2.0	3.0	1.500
88- 3- 10 HODSE LAKE ROAD ∳5106 Sec. 25 , T 4N, R 16W	RDW	12.00	3.00	CEMA	TORDON 22K	0.50	6.00 0.00	0.020	14.0	1.0	2.0	0.100
88- 3- 11A MINERS GULCH RDAD \$5156 Sec. 30 , T 8N, R 15W	RD₩	18.00	9.00	CEMA	TORDON 22K	0.50	9.00 0.00	0.250	16.0	2.0	3.0	0.500
88- 3- 118 MINERS GULCH RDAD #5156 Sec. 30 , T 8N, R 15W	RDW	5.00	7.00	CANU	TDRDON 22K	0.50	0.00	0,250	16.0	2.0	3.0	0.500
88- 3- 11C MINERS GULCH RDAD #5156 Sec. 30 , T 8N, R 15W	RDW	5.00	7.00	CIAR	TORDON 22K	0.50	0.00	0.250	16.0	2.0	3.0	0.500
88- 3- 12A S. BOULDER RIDGE #8404 Sec. 32 , T 8N, R 13W	RDW	13.00 ADDED 3	2.00 ACRES FY	CEMA 1988.	TORODN 22K	0.50	6.50 0.00	0.500	2.0	1.0	1.0	3.000
88- 3- 15A Sawmill Gulch Sec. 24 , T 6N, R 14W	RANGE	20.00 ADDED 12	0.00 7 ACRES F	CEMA DR 1988.	TDRDDN 22K	0.50	10.00 0.00	0,200	3.0	0.5	1.0	1.000
88- 3- 16A BEAVER CREEK Sec. 34 , T 6N, R 16W	RDW	2.00	1.50	CEMA	TORDON 22K	0.50	1.00 0.00	0.001	5.0	1.0	1.0	0.700

PROJECT				7	/22/88	NOI DOME						
NUMBER NAME LOCATION	TYPE	AREA AF BY EACH Acres	FECTED WEED Miles	TAR GET HEED	CHEMICAL NAME	AI / ACRE 1bs	TOTAL AI 165	DISTAN Dist. miles	CE TO N Width feet	EAREST Depth feet	WATER Veloc ft/s	RESI- DENCE miles
88- 3- 168 BEAVER CREEK Sec. 34 , T 6N, R 16W	ROW	15.00	9.00	CANU	TOROON 22K	0.50 0.00	6.50 0.00	0.00	5.0	1.0	1.0	0.700
00- 3- 17 Emerine Gulch S⊕c. 23 , T 6N, R 16W	RANGE	103.00	0.00	CEMA	TORDON 22K	0.50	51.50 0.00	0.100	20.0	2.0	4.0	0.700
88- 3- 18A COAL GULCH Sec. 29 , T 6N, R 16W	ROW	10.00	4.00	CEMA	TORDON 22K	0.50	5.00 0.00	0.001	20.0	2.0	4.0	0.250
88- 3- 188 COAL GULCH Sec. 29 , T 6N, R 16W	ROW .	5.00	5.00	CANU	TORDON 22K	0.50	0.00	0.001	20.0	2.0	4.0	0.250
88- 3- 19A MONTGOMERY GULCH Sec. 35 , T 7N, R 16W	ROW	37.00	6.00	CEMA	TORDON 22K	0.50	18.50	0.200	3.0	0.5	1.0	0.200
88-3- 198 MONTGOMERY GULCH Sec. 35 , T 7N, R 16W	ROW	25.00	13.00	CANU	TORDON 22K	0.50	0.00	0.200	3.0	0.5	1.0	0.200
88- 3- 19C ROCK CREEK ROAD Sec. 21 , T 7N, R 16W	ROW	10.00	4.00	CENA	TOROON 22K	0.50 0.00	5.00	0.001	60.0	3.0	5.0	0.100
88- 3- 20A MOOSE GU. RO. ♦5012 S e c. 21 , T 7N, R 16W	ROW	10.00	5.00	CANU	TOROON 22K	0.50	5.00 0.00	0.100	60.0	3.0	5.0	0.100
88- 3- 208 MODSE GU. RD. 05012 Sec. 21 , T 7N, R 16W	ROW	10.00	5.00	CEMA	TOROON 22K	0.50 0.00	0.00	0.100	60.0	3.0	5.0	0.100
88-3- 21A STONEY CREEK ROAD Sec. 20 , T 7N, R 16W	ROW	25.00	5.00	CEMA	TOROON 22K	0.50	12.50	0.001	14.0	1.5	2.0	0,250
88-3-218 STONEY CREEK ROAD Sec.20 , T 7N, R 16W	ROW	9.00	5.00	CANU	TORDON 22K	0.50	0.00	0.001	14.0	1.5	2.0	0.250

A-15

DEERLODGE NATIONAL FOREST PESTICIDE USE PROPOSAL

PROJECT					/22/68							
NUMBER NAME LOCATION	TYPE	AREA AF BY EACH Acres	FECTED WEED Miles	TAR- GET HEED	CHEMICAL NAME	AI / ACRE. 16#	TOTAL AI 165	DISTANC Dist. miles	E TO N Width feet	EAREST Depth feet	WATER Veloc ft/s	RESI- DENCE miles
88- 3- 21C STONEY CREEK ROAD Sec. 21 . T 7N. R 16W	RANGE	15.00	0.00	CEMA	TORDON 22K	0.50	7.50	0.020	14.0	1.5	2.0	0.250
88- 3- 21D SQUAW ROCK CAMPGROUND	CAMPGROUND	1.00	0.00	CEMA		0.00	0.00	0.001	14.0	1.5	2.0	0.250
Sec. 21 , 1 /N, K 16W		NEAREST	WATER IS	STONEY	CR. HAND GRUB OF MO)W -						
88- 3- 22A Schively ridge road Sec. 19 , T 7N, R 164	ROW	10.00	3.50	CEMA	TORDON 22K	0.50	5.00 0.00	0.100	14.0	1.5	2.0	3.000
88- 3- 228 SCHIVELY RIDGE ROAD Sec. 19 , T 7N, R 16W	ROW	6.00	3.00	CANU	TORDON 22K	0.50 0.00	0.00	0.100	14.0	1.5	2.0	3.000
88- 3- 22C SCHIVELY RIDGE ROAD	RANGE	25.00	0.00	CEMA	TORDON 22K	0.50	12.50	0.500	0.0	0.0	0.0	1.500
Sec. 19 , T 7N, R 16W		NEAREST	WATER 19	A SPRIM	IG -							
88- 3- 24A STEWART LAKE	ROW	10.00	1.50	CEMA	TORDON 22K	0.50	5.00	0.100	0.0	0.0	0.0	0.100
Sec. 16 , T 7N, R 13W		NEAREST	WATER IS	STEWART	LAKE. ADDED 7 ACRE	S FY 198	3.					
88- 3- 3? ELK CR. ROAD Sec. ? , T 4N, R 14U	ROW	5.00	2.00	CANU	TORDON 22K.	0.50	2.50 0.00	0.100	2.0	0.5	0.5	3.000
88- 3- 40 Squaw Creek Sec. 20 , T 4N, R 150	ROW	10.00	2.00	CANU	TORDON 22K	0.50 0.00	5.00 0.00	0.001	3.0	0.5	0.5	0.250
88- 3- 41 RDSS FORK Sec. 25 , T 5N, R 16W	ROW	15.00	5.00	CANU	TORDON 22K	0.50 0.00	7.50 0.00	0.001	18.0	1.5	2.0	0.010
88- 3- 701 QUARTZ GU. PLACER Sec. 33 , T 7N, R 16W	MINE	0.00 NEAREST	0.00 WATER IS	CEMA QUARTZ	TORDON 22K Gulch	0.50 0.00	25.00	0.001	1.5	1.0	0.1	2.000
88- 3- 702	MINE ROW	0,00	0,00	CEMA	TORDON 22K	0,50	0.75	0.005	-	_	-	3.000
WILLIAMS GU. MINE (ROADS Sec. 23 . T 7N. R 174	0	NEAREST	HATER 19	SCHIVEL	Y GU. TRIB	0.00	0.00					

PROJECT				7	/22/88							
NUMBER NAME LOCATION	PR0JECT AREA AF TYPE BY EACH Arros BY EACH Arros BY EACH Arros BY EACH Arros BILE BILEE HINE HINE 0.00 , T AN, R 13W O.00 N AREA MINE 0.00 N AREA MINE 0.00	ECTED WEED Miles	TAR GET WEED	CHEMICAL NAME	AI / ACRE 1bs	TOTAL AI 165	DISTANC Dist. miles	E TO N Width feet	EAREST Depth feet	WATER Veloc ft/s	RESI- DENCE miles	
88- 3- 703 GOLDEN JUBILEE MINE Sec. 14 , T 6N, R 13W	MINE	0.00	0.00	CEMA	TORDON 22K	0.50 0.00	12.50 0.00	0.050	-	-	-	0.500
88- 3- 704 GOLDEN EAGLE MINE Sec. 27 , T 6N, R 13W	MINE	0.00	0.00	CEMA	TORDON 22K	0.50	1.00 0.00	0.100	0.0	~	-	0.250
88- 3- 705 GEORGETOUN AREA Sec. 9 , T 5N, R 13W	MINE	0.00	0.00	CEMA	TORDON 22K	0.50	1.00	0.100	-	-	-	0.250

DEERLODGE NATIONAL FOREST PESTICIDE USE PROPOSAL 7/22/88

DEERLDDGE NATIONAL FOREST PESTICIDE USE PROPDSAL 7/22/88

TROJECT												
NUMBER NAME LOCATION	TYPE	AREA AF BY EACH Acres	FECTED WEED Miles	TAR~ GET WEED	CHEMICAL NAME	AI / ACRE 1bs	TDTAL AI 165	DISTANC Dist. miles	E TO N Width feet	EAREST Depth feet	WATER Veloc ft/s	RESI- Dence miles
88-4-80 HIGH RYE Sec. 27, T 3N, R 10	RDW	1.35	1.50	CEMA	TDRDDN 22K 2,4-D AMINE	0.50	0.68	0.002	5.0	2.0	4.0	4.500
88- 4- 8D HIGH RYE Sæc. 27 , T 3N, R 10	RANGE	1.00	0.00	CEMA	TDRDDN 22K 2,4-D Amine	0.50	0.50 1.00	0.002	5.0	2.0	4.0	4.500
88- 4- 43 UPPER MDDSE CR.RDS. Sec. 6 , T 1S, R 7	RDW	0.10	0.25	CEMA	TDRDDN 22K 2,4-D AMINE	0.50 1.00	0.05 0.10	0.250	1.0	0.5	2.0	1.000
88- 4- 44 HIGHLAND ROAD ≸84 Sec. 36 , T 1N, R 8	RDW	0.30	1.00	CEMA	TDRDON 22K 2,4-D AMINE	0.50	0.15 0.30	0.250	3.0	1.0	2.0	1.000
88- 4- 45 BIG PARK Sec. 18 , T 1N, R 9	ROW W	0.10	0.10	CEMA	TDRDDN 22K 2,4-d Amine	0.50	0.05 0.10	0.250	1.0	0.5	2.0	5.000
88- 4- 46 HAIL COLUMBIA RD #9485 Sec. 14 , T 4N, R 8	RDW W	0.10	0.50	CEMA	TDRDON 22K 2,4-D Amine	0.50	0.05 0.10	0.019	2.0	1.0	3.0	0.250
88- 4- 47 North Burton Park Sec. 16 , T 1N, R Bi	ROW	0.20	0.20	CEMA	TDRDDN 22K 2,4-d Amine	0.50	0.10 0.20	0.250	1.0	0.5	2.0	4.500
88- 4- 48 FISH CR. RIDGE Sec. 5 , T 1S, R 70	RANGE	2.00	0.00	DEDC	TDRDON 22K 2,4-d Amine	0.50 1.50	1.00 3.00	1.000	1.0	0.5	2.0	12.000
88-4-49 Konda Sec.3 , T 4N, R 70	RDW	0.10	1.50	CEHA	TDRDDN 22K 2,4-D AMINE	0.50	0.05 0.10	0.500	3.0	1.0	4.0	0.250
88- 4- 50 SWEDE-MAIN-OLSON Sec. 28 , T 5N, R 7W	ROW	4.00 KV FUNDS	2.50 AVAILAB	CEMA	TDRDON 22K 2,4-D AMINE	0.50	2.00 4.00	0.250	0.5	0.5	2.0	0.500

PPD IFCT

PRD IFCT		DEERL	DBE NAT	IONAL FO	REST PESTICIDE USE 7/22/88	PROPOSAL						
NUMBER NAME LOCATION	TYPE	AREA AF	ECTED WEED Miles	TAR- GET HEED	CHEMICAL NAME	AI / ACRE 1bs	TOTAL AI 155	DISTANCE Dist. W miles f	TO NE lidth	AREST Depth feet	WATER Veloc ft/s	RESI- DENCE miles
98- 4- 51 Browns-Alaska Søc. 36 , T 5N, R 8W	RDW	2.00 KV FUNDS	2.50 AVAILAE	CEMA	TORDON 22K 2,4-D AMINE	0.50	1.00 2.00	0.250	0.5	0.5	2.0	2.500
88- 4- 701A LIME KILN AREA Sec. 28 , T 1N, R 7W	MINE	0.00	0.00	CENA	TORDON 22K 2,4-D AMINE	0.50	1.50 3.00	0.009	-		-	0.500
88- 4- 701R LIME KILN AREA Sec. 28 , T 1N, R 7W	MINE ROW	0.00	0.00	CEMA	TORDON 22K 2,4-D AMINE	0.50	2.00 4.00	0.009	-	-	-	0.500
88- 4- 702 GOLD HILL AREA Sec. 12 , T 15, R 8W	MINE	0.00	0.00	CEMA	TORDON 22K 2,4-D AMINE	0.50	2.50 5.00	0.250		-	-	1.000
88-4-703A BEAL MINE Sec.6, T 2N, R 10W	HINE	0.00	0.00	CEMA	TORDON 22K 2,4-D AMINE	0.50	5.00	0.090		-	-	1.000
88- 4- 7038 BEAL MINE ACCESS ROADS	MINE ROW	0.00	0.00	CEMA	TORDON 22K 2,4-D AMINE	0.50	0.25	0.090	~	-	-	0.010

A-19

APPENDIX B

SOCIAL AND ECONOMIC ENVIRONMENT

No changes.

0

APPENDIX C

MANAGEMENT REQUIREMENTS

Substitute for the Management Requirements in the 1987 EIS.

- The Integrated Pest Management Working Group (IPMWG) will review all pesticide use proposals to insure that label requirements are being followed in compliance with State and Federal requirements.
- 2. The IPMWG will review pesticide use proposals to insure that there is little chance that the NOEL for sensitive fish and wildlife species will be exceeded. In certain cases, the potential for impact to fish may require a field review by one member or all members of the IPMWG.
- 3. Selected projects will be monitored by the Integrated Pesticide management Work Group to determine the effectiveness of weed control efforts and chemical formulations, and to assure that management requirements are strictly adhered to. Monitoring will consist of vegetation surveys to determine control effectiveness, and soil analysis to determine the fate of picloram on representative projects. Also see appendix J.
- 4. In order to maintain adequate margins of safety, workers will not be permitted to apply more than 2 pounds of 2,4-D active ingredient per day using backpack sprayers or hoses and nozzles from truck mounted tanks. Workers will also be advised of the possible effects of 2,4-D application and the necessity of careful techniques and protective clothing when working with any herbicides.
- Areas within a herbicide project that contain wild food sources will be signed for two weeks after spraying if the source of wild food is sprayed with herbicide.
- All herbicide projects in the vicinity of developed recreation sites and administrative sites will be posted with warning signs for two weeks after herbicides have been applied.
- 7. Each District will compile a list of area residents and Forest users that experience sensitization difficulties from herbicides, i.e. allergic reactions. These people and others identified in the future will be notified concerning weed control activities that may affect them.
- 8. All Ranger Districts involved in the noxious weed control program will prepare appropriate project safety plans and job hazard analysis as outlined in Forest Service Manual Direction and in conjunction with the Federal Health and Safety Code Handbook. The resulting requirements will be followed to ensure worker safety.
- 9. Prior to treatment, buffer strips will be established between live streams and areas treated with herbicide in order to prevent chemicals from washing into streams. A reas of special concern are road ditches, cuts, and shoulders near stream crossing. No herbicide will be applied to buffer strips. Hand grubbing or other nonchemical methods may be used in these areas.

- All projects in Rock Creek will be reviewed in detail by the Forest Fisheries Biologist to assure that they have a safety margin of 1.0 or greater.
- 11. The licensed applicator will be present on the project area any time herbicide is applied in rock Creek.
- Selected streams in the Rock Creek Drainage will be monitored before and after herbicide application (see Aquatic Monitoring Plan - Rock Creek, Appendix K).
- 13. The Deerlodge National Forest will coordinate with other State, Federal and County agencies as well as private land owners both for control and prevention of noxious weed infestations.
- 14. Follow label instructions and utilize application rates which are well below the NOEL levels for terestial and aquatic species.
- 15. Areas treated with herbicides this year will be considered when cumulative effects are evaluated for projects in future years. Representive soil profiles will be monitored to determine the cumulative effects of retreatment with picloram (Tordon).
- 16. Search for Missoula phlox and keeled bladderpod in the West Fork Buttes area and search for yellow springbeauty on the east side of the Deer Lodge Valley before any spraying in these areas. Any of these plants located will be protected from weed control activities.
- 17. Apply herbicides only with ground based equipment, emphasizing the treatment of individual plants.
- 18. Utilize herbicides which do not bioaccumulate.
- 19. If any sign is discovered or if any threatened or endangered species are sighted near the project area, all operations will stand-by until a full evaluation of the situation is made.
- 20. Do not exceed two pounds of active ingredient of herbicide per acre.
- 21. Dense roadside vegetation and other cover patches will be checked for nests and occupied dens before spraying. The Forest wildlife biologist will be contacted prior to proceeding with the project if nests or dens are found.
- Districts will coordinate spring spraying with travel management areas designed to protect spring big game range.
- 23. The Forest Archaeologist will identify projects likely to contain cultural sites and the need for field inventory before weeds are hand grubbed. The inventory, if necessary, will occur prior to any surface disturbance so that potential effects of the treatment to cultural sites can be assessed.
- 24. New biological, chemical, cultural, manual, or mechanical methods of weed control will be evaluated annually to determine potential for use on the Forest.

APPENDIX D

SENSITIVITY OF SELECTED AQUATIC ORGANISMS

TO VARIOUS FORMULATIONS OF TWO HERBICIDES

No change.

APPENDIX E

(AMMENDED) BIOLOGICAL ASSESSMENT

THREATENED AND ENDANGERED SPECIES

NOXIOUS WEED AND POISONOUS PLANT CONTROL

DEERLODGE NATIONAL FOREST

1988

Introduction

No Change.

Description of the Project

Substitute the following on pages E-1 and E-2.

The following is a summary of the project (it is based on the highest potential impact i.e. treatment of all 2,332 acres of proposed chemical applications in 1 year), for further detail please refer to the "Preferred Alternative" section in this EIS.

The preferred alternative allows for the treatment of a total of 4,191 acres; 2,332 acres by herbicide, 1,830 acres by biological control and 29 acres by cultural treatment (hand grubbing and mowing). This level could be accomplished entirely in one year or any or all parts of this level over a 3 three year period. From a chemical concentration and toxicity stand point, the treatment of all 2,332 acres in 1 year represents the "worst case". This is true because project areas are disjunct and cumulative treatments over a 3 year period will not occur in a localized area.

Two chemicals are proposed for use between 1987 and 1989; Tordon and 2.4-D.

The preferred alternative calls for emphasis on herbicide treatment of infestations of noxious weeds and poisonous plants, with manual grubbing, mowing or biological control on areas which are environmentally sensitive. The proposal will involve 0.3 percent of the Deerlodge National Forest. Application of the herbicide will be by ground based equipment only, emphasizing treatment of individual plants. Proposed application rates involve a maximum of 2 pounds of active ingredient per acre. Target plants for treatment include; spotted knapweed, toadflax, leafy spurge, Canada and musk thistle, and tall larkspur.

Current Status, Habitat Use and Behavior of the Bald Eagle and Peregrine Falcon in the Project Area

No Change.

Coordination Measures That Will Reduce/Eliminate Adverse Impacts on Threatened or Endangered Species

No Change.

Determination of Effect

No Change.

Literature Citations and Personal Contacts

No Change.

APPENDIX F

HUMAN HEALTH RISK ANALSIS FOR THE PROPOSED HERBICIDE SPRAY PROGRAM

TO CONTROL NOXIOUS WEEDS ON THE DEERLODGE NATIONAL FOREST

Page F-1 Modify the first paragraph to read:

This analysis provides a worst-case risk to human health as a result of herbicide spray programs to control noxious weeds on the Deerlodge National Forest. Alternative 2 proposes herbicide applications of 2-4-D and Tordon (picloram) on approximately 2,332 acres of rangeland and road rights-of-way spread over the 1.2 million acre Deerlodge National Forest. Some projects are located near occupied and potentially occupied sites such as residences, recreation sites, and administrative sites.

Change the 1987 projects that have been modified and add the new projects to Table 1 on pages F-1 to F-3 in the 1987 EIS.

TABLE 1	HERBICIDE APPLIED TO	RANGELAND,	LINE,	AND MINE	PROJECTS	-	MODIFIED
	1987 PROJECTS OR NEW	PROJECTS					

		Net		
		Treated	2,4-D	PICLORAM
		Area	Lbs. Active	Lbs. Active
District	Project	Acres	Ingredient	Ingredient
Deer Lodge	2	4.00		4.00
	3	1.00		1.00
	7	8.00		2.00
	12	15.00		3.75
	13	7.00		1.75
	23	40.00		10.00
	43 *	2.00		0.50
	701 *	10.00		5.00
	702 *	100.00		50.00
	703 *	3.50		3.50
	704 *	2.00		1.00
	705 *	0.10		0.03
Jefferson	1	1.50		2.25
	2	3.00		4.50
	3	6.00	12.00	
	4	3.00	6.00	
	5	0.75		1.50
	8	23.00	46.00	34.50
	10	6.00		9.00
	11	3.00	6.00	,
	13	9.00	18.00	13.50

* - New project.

TABLE 1. HERBICIDE APPLIED TO RANGELAND, LINE, AND MINE PROJECTS (CONTINUED)

		Net		
		Treated	2,4-D	PICLORAM
		Area	Lbs. Active	Lbs. Active
District	Project	Acres	Ingredient	Ingredient
	-		0	8-0020000
Jefferson	15	4.00		6.00
(Continued)	16	3.00		1 50
	18	3.00		6.00
	20	3.00		3.00
	21	0.75		1.50
	22A	4 00	8 00	1.50
	25	2.00	0.00	6.00
	26	5.00	0.00	6.00
	20	4.00	0.00	
	294	50.00	100.00	25.00
	30	15.00		15.00
	31	1.50		2.25
	33	6.00		9.00
	37 *	1.00		2.00
	40 *	5.00		2.50
	41 *	3.00		1.50
	42 *	1.00		0.50
	44 *	30.00		60.00
	702A *	4.00		2.00
	704 *	2.00		1.00
	705A *	8.00		4.00
Philipsburg	6 **	18.00		9.00
	7B **	21.00		10 50
	15A	20.00		10.00
	17 **	103.00		E1 E0
	210	15 00		7 50
	220	25 00		12.50
	701 **	50.00		12.50
	703 *	25.00		25.00
	70/1 *	29.00		12.50
	705 *	2.00		1.00
Dutte	105	2.00		1.00
Ducte	00	1.00	1.00	0.50
	40 *	2.00	3.00	1.00
	/UIA *	3.00	3.00	1.50
	702	5.00	5.00	2.50
	703A *	10.00	10.00	5.00

* New Project ** New Project in Rock Creek

Change modified 1987 projects and add new projects to Table 2 pages F-3 to F-5 $\,$ in the 1987 EIS.

TABLE 2. HERBICIDE APPLIED TO RIGHT-OF-WAY PROJECTS - MODIFIED 1987 PROJECTS OR NEW PROJECTS.

		Net		
		Treated	2, 4-D	PICLORAM
		Area	Lbs. Active	Lbs. Active
District	Project	Acres	Ingredient	Ingredient
Deer Lodge	10	5.00		5.00
	15	20.00		20.00
	21	5.00		5.00
	22	9.00		2.25
	34	5.00		5.00
	41	1.00		0.25
	42 *	2.00		0.50
	44 *	17.00		4.25
	803 *	7.00		1.75
Jefferson	6A	12.00	24.00	
	6D	12.00	24.00	
	6F	3.00	6.00	
	7	12.00	24.00	
	9	15.00	30.00	
	12	3.00		1.50
	14	6.00	12.00	3.00
	17	9.00	18.00	4.50
	19	4.00		6.00
	22B	4.00	8.00	2.00
	23	9.00	18.00	4.50
	24	6.00		9.00
	27	3.00	6.00	1.50
	28	1.50		0.75
	29B	10.00	20.00	5.00
	34 *	2.00		1.00
	35 *	2.00		1.00
	38 *	2.00	4.00	1.00
	39 *	2.00	4.00	1.00
	43 *	5.00		2.50
	701 *	1.00		0.50
	702B *	0.50		0.25
	703 *	1.00		0.50
	705B *	1.00		0.50
Philipsburg	3 **	14.00		7.00
	4 **	18.00		10.50
	5 **	25.00		12.50
	6C **	5.00		2.50

* New Project ** New Project in Rock Creek

TABLE 2. HERBICIDE APPLIED TO RIGHT-OF-WAY PROJECTS (CONTINUED)

		Net		
		Treated	2, 4-D	PICLORAM
		Area	Lbs. Active	Lbs. Active
District	Project	Acres	Ingredient	Ingredient
Philipsburg	7A **	40.00		20.00
(Continued)	8 **	14.00		7.00
	9 **	18.00		9.00
	10 **	12.00		6.00
	11 **	18.00		9.00
	12A	13.00		6.50
	16 **	15.00		7.50
	18 **	10.00		5.00
	19A&B **	37.00		18,50
	19C *	10.00		5,00
	20 **	10.00		5.00
	21 **	25.00		12.50
	22 **	10.00		5.00
	24A	10.00		5.00
	39 **	5.00		2.50
	40 **	10.00		5.00
	41 **	15.00		7.50
	702 **	1.50		0.75
Butte	3C	1.35	1.35	0.68
	43 *	0.10	0.10	0.05
	44 *	0.30	0.30	0.15
	45 *	0.10	0.10	0.05
	40 *	0.10	0.10	0.05
	4/ -	0.20	0.20	0.10
	49 *	0.10	0.10	0.05
	5U "	4.00	4.00	2.00
	701P *	2.00	2.00	1.00
	701B *	4.00	4.00	2.00
	103B *	0.50	0.50	0.25

Worst-Case Open Range Project (Page F-5)

Exposure Analysis

Insert between the first and second paragraph on page F-6

Jefferson District (D-2) project 29A is a modified 1987 range project that calls for application of 100 pounds of picloram, the same amount as the worst-case project analyzed in the 1987 ELS. This project will not be analyzed further since it is similar to the worst-case project analyzed in the 1987 document and involves significantly less exposure to workers and the public than the model project. Health Implications of Doses: Threshold Effects (Page F-8)

No change.

Cancer and Mutations (Page F-9)

No change.

Impacts on Workers from Open Range Spraying (Page F-14)

No change.

Worst-case Rights-of-Way Project (Page F-17)

Insert between the second and third paragraph on page F-17.

Jefferson District projects 6A, 6D, 7, and 9 have proposed applications of 24, 24, 24, and 30 pounds of 2,4-D respectively. Each of these exceeds the worst-case Forest projects analyzed in the 1987 EIS. However, each is significantly less than the model ROW project which calls for application of 40 pounds of 2,4-D. The nearest residence is over 2,600 feet away from any potential spray area on one project and are are more than 1 mile from the other projects. The exposures to workers and the public will be significantly less than the exposure analyzed for the model project in the backround document (Monnig, E.C., 1986).

Potentially Occupied Sites (Page F-19)

Change the first sentence to read:

Application of small quantities of 2,4-D or picloram is proposed on 11 rights-of-way projects and 6 range projects near 17 developed recreation sites.

APPENDIX G

MODEL DEVELOPMENT

No change.

APPENDIX H

MODEL OUTPUT FOR EXAMINED ALTERNATIVES

Substitute on title page

This appendix contains the output from the noxious weed model for the examined alternatives. All projects are included: the new and modified projects for 1988 plus the 1987 projects that were not changed. The information from this appendix is summarized in Chapter 4, Table IV-6. Appendix G contains the description of the components that went into the model.

					ND A	CTION						
	Initial	Acres	Treated Per	Year =	۰.		Treatmen	nt Cost Pe	r Acre = 1	.00		
		Acres	of Infesta	tion, by	/ Species,	after 1	reatment	in Indica	ted Year			
Species	Current	1988	1989	1990	1991	1992	1993	1994	1995	1996	1997	2011
Knapweed	2497	3171	4027	5115	6494	8250	10477	1 7 704	14000	21444	27254	140000
Leafy Spurge	1115	1249	1399	1566	1754	1945	2201	2445	2761	7092	7443	7841
Toadflax	135	140	146	152	158	164	171	178	185	192	200	259
Thistle	334	347	361	376	391	406	423	440	457	475	494	654
TOTAL	4081	4908	5933	7209	8799	10785	13271	16388	20301	25221	31413	149763
				Acres	Treated, I	by Treat	ment Typ	•				
Item	Current	1788	1989	1990	1991	1992	1993	1994	1995	1996	1997	2011
Tordon	-	0	0	0	0							
2,4-D	-	ŏ	ŏ	ŏ	ŏ	ě	0	0	0	0	0	
Hand Grub	-	0	0	0	0	o	ő	ŏ	ő	ŏ	o	ő
TOTAL	-	0	0	0	0	0	٥	0	0	0	0	0
			Pounds	of Activ	e Ingredia	ent Appl	ied, by H	lerbicide				
Item	Current	1788	1989	1990	1991	1992	1993	1994	1995	1996	1997	2011
Tordon 2,4-D	Ξ	0 0	0	°	00	00	0	0	8	°	0	0
	For	age Los	s (Cattle &	Winter	E1k) and b	linter E	1k (Capat	ility to :	Support) L	055		
Item	Current	1988	1989	1990	1991	1992	1993	1994	1995	1976	1997	2011
Cattle AUMs	375	457	560	689	850	1052	1304	1425	2026	2532	7149	74842
Elk Months	300	362	439	535	653	801	985	1216	1504	1865	2320	19753
• of Elk	60	72	88	107	131	160	197	243	301	373	464	3951
Net	Forage (Cat	tle & W	inter Elk) ;	and Net	Winter Elk	(Capeb	ility to	Support),	from Fore	st Plan L	evels.	
Item	Current	1988	1989	1990	1991	1992	1993	1994	1995	1996	1997	2011
Cattle AUMs	63421	63338	63235	63106	62945	62743	42499	42170	41740	(1247	(0/2/	2005.2
Elk Months	19453	19391	19314	19218	19100	18952	18749	18537	18249	17888	17437	28403
\$ of E14	3890	3878	3862	3843	7910	7790	7757	7707	7/40	1/300	17433	0

					Ю	ACTION						
	Initial	Acres	Treated Pe	er Year =	٥.		Treatment	Cost Pe	r Acre = \$.00		
Net Fora	ge (Cattle &	Winter	Elk) and	Net Winter	Elk (C	apability	to Suppor	t), as a	Percent o	f Forest	Plan Lev	els
Item	Current	1988	1989	1990	1991	1992	1993	1994	1995	1996	1997	2011
Cattle AUMs	99	99	99	99	99	98	98	97	97	96	95	45
Elk Months # of Elk	98	98	98 98	97	97	96	95	94	92	91	88	0
		Net V	alue Loss	(Cattle AL	M and M	inter Elk	(HVD)) ar	nd Treatm	ent Cost			
Item	Current	1988	1989	1990	1991	1992	1993	1994	1995	1996	1997	2011
AUM Loss	140	171	209	258	318	393	488	607	757	946	1184	13018
Elk Loss	6480	7825	9488	11548	14108	17296	21272	26244	32468	40274	50076	426448
fotal Loss	6620	7996	9697	11806	14426	17689	21761	26851	33225	41220	51260	439466
Intmint Cost	0	0	0	0	0	0	0	0	0	0	0	0
Total Cost	6620	7996	9697	11806	14426	17689	21761	26851	33225	41220	51260	439466
Discounted	Total Loss:	1942	584	Discounte	d Treat	ment Cost	1	0	Discounte	d Total	Cost: 1	942584
		Employm	ent Loss I	Due to AUM	and Win	ter Elk (Capability	/ to Supp	ort) Loss			
Item	Current	1988	1989	1990	1991	1992	1993	1994	1995	1996	1997	2011
AUM Employ	.24	.30	. 36	. 45	.55	. 68	.85	1.06	1.32	1.65	2.06	22-65
Elk Employ	.41	. 49	. 60	.73	.89	1.09	1.34	1.65	2.05	2.54	3.15	26.86
Total	.65	. /9	.96	1.18	1.44	1.//	2.19	2.71	3.30	4.10	3.21	47.51
		Incom	e Loss Du	e to AUH ar	d Winte	r Elk (Ca	pability t	o Suppor	t) Loss			
Item	Current	1988	1989	1990	1991	1992	1993	1994	1995	1996	1997	2011
AUM Income	8928	10900	13359	16430	20274	25091	31139	38740	48305	60353	75545	830627
lk Income	9173	11077	13430	16347	19970	24482	30112	37149	45960	5/009	146430	1434280
IOTAI	18101	214//	20189	32/11	40244	473/4	01231	/ 3867	,4205		2.2.00	
Duscounte	d AUM Income	. 316	1328	Discount	ed Elk	Incomet	2679220	Di	scounted 1	otal Inc	ome: 56	60548

HERBICIDE/HANDGRUB

Initial Acres Treated Per Year = 2246. Treatment Cost Per Acre = \$ 73.73

		Acres o	of Infest	ation, by	Species,	after Tr	eatment i	n Indicat	ed Year			
Species	Current	1988	1989	1990	1991	1992	1993	1994	1995	1996	1997	2011
Knapweed	2497	2253	1876	1265	343	75	0	0	0	0	0	0
Leafy Spurge	1115	1042	861	693	554	444	355	284	227	182	146	7
Toadflax	135	123	110	96	82	19	5	0	0	0	0	0
Thistle	334	330	325	320	315	71	16	4	0	0	0	0
TOTAL	4081	3748	3172	2374	1295	608	375	288	227	182	146	7
				Acres	Treated,	by Treatm	ent Type					
11.00	C	1000							4005	100/	1007	2011
1 Cem	corrent	1988	1989	1990	1991	1992	1993	1994	1975	1970	1977	2011
Tordon	-	2179	2179	2179	2179	1275	598	446	368	312	268	100
2,4~D	-	45	45	45	45	26	12	9	8	6	6	2
Hand Grub	-	22	22	22	22	13	6	5	4	3	3	1
TOTAL	-	2246	2246	2246	2246	1314	616	460	379	322	276	103
			Pounds	of Activ	ve Inoredi	ent Appli	ed. by He	rbicide				
					-							
Item	Current	1988	1989	1990	1991	1992	1993	1994	1995	1996	1997	2011
Tordon	-	1089	1089	1089	1089	637	299	223	184	156	134	50
2,4-D	-	90	90	90	90	53	25	18	15	13	11	4
	Fo	rage Loss	(Cattle	& Winter	Elk) and	Winter El	k (Capabi	ility to S	Support) (.oss		
Item	Current	1988	1989	1990	1991	1992	1993	1994	1995	1996	1997	2011
Cattle AUMs	375	341	284	204	94	49	32	25	20	16	13	1
Elk Months	300	275	228	167	86	52	36	29	23	19	15	1
♦ of Elk	60	55	46	33	17	10	7	6	5	4	3	0
Net	Forage (Ca	ttle & Win	ter Elk)	and Net	Winter El	k (Capabi	lity to S	Support),	from Fore	est Plan L	evels	
Item	Current	1988	1989	1990	1991	1992	1993	1994	1995	1996	1997	2011
Cattle AUHs	63421	63454	63511	63591	63701	63746	63763	63770	63775	63779	63782	63794
Elk Months	19453	19478	19525	19586	19667	19701	19717	19724	19730	19734	19738	19752
• of Elk	3890	3895	3904	3917	3933	3940	3943	3944	3945	3946	3947	3950

HERBICIDE/HANDGRUB

	Initi	al Acres	Treated P	er Year =	2246.		Treatment	Cost Pe	r Acre = #	73.73	3	
Net Fora	ge (Cattle	& Winter	Elk) and	Net Wint	er Elk (Ci	apability	to Suppor	t), as a	Percent o	f Forest	t Plan Le	vels
Item	Current	1988	1989	1990	1991	1992	1993	1994	1995	1996	1997	2011
Cattle AUns	99	99	100	100	100	100	100	100				
Elk Months	98	99	99	99	100	100	100	100	100	100	100	100
# of Elk	98	99	99	99	100	100	100	100	100	100	100	100
		Net Va	lue Loss	(Cattle	AUM and Wi	inter Elk	(HVD)) ar	d Treatm	ent Cost			
Item	Current	1988	1989	1990	1991	1992	1993	1994	1995	1996	1997	2011
Elk Loss	6480	128	106	76	35	18	12	9	8	6	5	0
	8480	3728	4731	3597	1848	1113	785	624	499	400	320	15
Total Loss	6620	6055	5037	3673	1993	1172	707	177	507			
Trimnt Cost	0	165599	165599	165599	165599	96882	45418	33916	27944	23741	20350	7594
Total Cost	6620	171654	170636	169272	167482	98014	46215	34550	28451	24147	20675	7610
Discounted	Total Los	5 189	94	Discoun	ted Treatm	ent Cost:	87274	3	Discounte	d Total	Cost:	891737
		Employme	nt Loss D	ue to AU	H and Wint	er Elk (C	apability	to Suppo	ort) Loss			
Item	Current	1988	1989	1990	1991	1992	1993	1994	1995	1996	1997	2011
AUM Employ	.24	. 22	1.9	17	04							
Elk Employ	. 41	.37	.31	.23	.12	.03	.02	.02	.01	-01	-01	.00
Total	.65	. 60	.50	.36	.18	.10	.07	.06	.04	.04	.03	.00
		Income	Loss Due	to AUM	and Winter	Elk (Cap	ability t	o Support) Loss			
ltem	Current	1988	1989	1990	1991	1992	1993	1994	1995	1996	1997	2011
AUM Income	8928	8135	6781	4849	2250	1179	744	104	407	70/		
Elk Income	9173	8391	6980	5092	2616	1576	1112	004	483	386	310	15
Total	18101	16526	13761	9961	4866	2755	1878	1487	1190	952	763	37
Discounter	AUM Incom	e: 23	899	Discour	ted Elk I	ncomes	26356	Dis	counted To	tal inco	one:	50255

```
HANDBRUE
```

Initial Acres Treated Per Year = 2497. Treatment Cost Per Acre = \$ 419.10

the set the set of a space set it second to the second to	a contraction of the contraction	
---	--	--

Species	Current	1988	1989	1990	1991	1992	1993	1994	1995	1996	1997	2011
Knapweed	2497	2339	1689	1130	753	502	335	224	1.49	100	67	0
I mafu Source	1118	1240	1700					04/5			7.4.7	
Toadflay	175	140	1 4 4	1000	1/54	1965	2201	2960	2/61	3092	3463	10724
Thinkle		140	140	152	156	104	1/1	1/8	165	145	200	340
mistre	334	34/	361	376	391	406	423	440	457	475	494	856
TOTAL	4081	4075	3594	3224	3056	3038	3129	3306	3552	3859	4224	18126
				Acres	Treated, t	y Treats	ent Typ	6				
Item	Current	1988	1989	1990	1991	1992	1993	1994	1995	1996	1997	2011
Tordon	-	0	0	0	0	0	0	0	0	0	0	0
2,4-D		0	0	0	0	0	ō	õ	0	0	ō	0
Hand Grub	-	2497	2497	1695	1130	753	502	335	223	149	99	85
TOTAL	-	2497	2497	1695	1130	753	502	335	223	149	99	85
			Pounds	of Acti	ve Ingredie	ent Appli	ed, by I	Herbicide				
Item	Current	1988	1989	1990	1991	1992	1993	1994	1995	1996	1997	2011
Tordon	-	0	0	0	0	0	0	2	0	0	0	0
2,4-D	-	õ	õ	ŏ	ŏ	ŏ	ŏ	õ	ŏ	ŏ	ŏ	ŏ
	F	orage Loss	(Cattle	& Winter	Elk) and W	linter El	k (Capat	bility to	Support) L	.055		
Item	Current	1988	1989	1990	1991	1992	1993	1994	1995	1996	1997	2011
Cattle AUMs	375	371	317	274	253	246	250	263	282	308	338	1547
Elk Months	300	303	272	249	241	245	257	277	302	332	368	1741
• of Elk	60	61	54	50	48	49	51	55	60	66	74	348
Net	Forage (Ca	attle & Wi	nter Elk)	and Net	Winter Elk	(Capabi	lity to	Support),	from Fore	est Plan L	evels.	
Item	Current	1988	1989	1990	1991	1992	1993	1994	1995	1996	1997	2011
Cattle AUMs	63421	63424	63478	63521	63542	63549	63545	63532	63513	63487	63457	62248
Elk Months	19453	19450	19481	19504	19512	19508	19494	19474	19451	19421	19795	18012
# of Elk	3890	3889	3896	3900	3902	3901	3899	3895	3890	3884	3876	3602

					24771		if eacheri	C COSC PE	- HCPW - 1	-17.10	, 	
Net Fora	ge (Cattle	& Winter	Elk) and	Net Winte	r Elk (C	apability	to Suppor	rt), as a	Percent o	f Forest	Plan Lev	els
Item	Current	1988	1989	1990	1991	1992	1993	1994	1995	1996	1997	2011
attle AUHs	99	99	100	100	100	100	100	100	100	100	99	96
of Elk	98	98	99	99	99	99	99	99	98	98	98	91
		Net V	alue Loss	(Cattle A	UM and W	inter Elk	(HVD)) an	nd Treatm	ent Cost			
Item	Current	1988	1989	1990	1991	1992	1993	1994	1995	1996	1997	2011
UM Loss	140	138	118	102	94	92	93	98	105	115	126	576
1k Loss	6480	6536	5864	5374	5211	5292	5559	5974	6518	7178	7951	37594
otal Loss	6620	6674	5982	5477	5305	5384	5652	6073	6623	7292	8077	38172
rtmrit Cost	0	1046493	1046493	710375	473583	315582	210388	140399	93459	62446	41491	35624
otal Cost	6620	1053168	1052476	715851	478888	320966	216041	146471	100082	69738	49568	73795
Discounted	Total Los	s: 185	720	Discount	ed Treat	ment Costi	393688	30	Discounte	d Total	Cost: 4	22600
		Employm	ent Loss	Due to AUM	and Win	ter Elk (C	apability	, to Supp	ort) Loss			
Item	Current	1988	1989	1990	1991	1992	1993	1994	1995	1996	1997	2011
UM Employ	.24	.24	.21	.18	.16	.16	.16	.17	.18	.20	.22	1.01
1k Employ	- 41	- 41	. 37	.34	.33	.33	.35	.38	- 41	. 45	.50	2.37
lotal	.65	. 65	.58	-52	.49	.49	.51	.55	.59	.05	.72	3.3/
		Incom	e Loss Du	e to AUM a	nd Winter	r Elk (Cap	ability 1	to Suppor	t) Loss			
Item	Current	Incom 1988	e Loss Du 1989	e to AUM a 1990	nd Winter 1991	r Elk (Cap 1992	ability 1 1993	1994	t) Loss 1995	1996	1997	2011
Item UM Income	Current 8928	1788 8834	e Loss Du 1989 7554	e to AUM a 1990 6539	nd Winter 1991 6020	r Elk (Cap 1992 5861	1993 5965	1994 6267	t) Loss 1995 6730	1996 7331	1997 8058	2011 36884

HANDGRUB

Item	Current	1988	1989	1990	1991	1992	1993	1994	1995	1996	1997	2
Cattle AUMs Elk Months	99 98	99 98	100	100	100	100	100	100	100 98	100 98	99 98	
* of Elk	98	98	99	99	99	99	99	99	98	98	98	

H--6

APPENDIX I

SENSITIVITY ANALYSIS

Page I-1 No Change.

Biological Analysis

Substitute the following on pages I-2 to I-5 of the 1987 EIS.

The results from the model for the scenarios indicate that an initial treatment level below approximately 1,400 acres per year will not bring the weeds under control. In addition, the philosophy of Alternative 3 will only allow Knapweed to be controlled. All scenarios of Alternative 3 with an initial treatment of over 1,400 acres per year result in 18,126 acres of Leafy Spurge, Toadflax and Thistle in year 2010.

All scenarios for Alternative 2 with an initial treatment of over 1,400 acres per year bring Knapweed, Toadflax and Thistle under control before the year 2011. Since Leafy Spurge is more difficult to eradicate, it is not brought under control by 2011 in any scenario; however, the greatest population in year 2011 is only 13 acres (Scenario 4).

A summary of selected biological effects for each scenario is presented in Table I-1 on the next page.

Economic Analysis

As discussed in Chapter IV, the alternative courses of action for most analyses are ranked on the basis of the present net value (discounted benefits less discounted costs), benefit/cost ratio (discounted benefits divided by discounted costs), annual equivalent value (annualized value of the present net value), etc. For this analysis, none of these indicators of economic efficiency apply. The reason for this is that there are no benefits produced by treating the infested acres, the only values produced are a reduction in the losses. For this analysis, the scenarios were ranked based on the present value of the total cost (total net value loss plus treatment cost).

Based on the present value of the total cost, the following is a ranking from best to worst (best meaning least cost) of the scenarios presented in this analysis:

Scenario	Present Value Total Cost	Change From Least Cost
 Herbicide/Hand Grub - 4,000 Acres Herbicide/Hand Grub - 3,500 Acres Herbicide/Hand Grub - 3,000 Acres Herbicide/Hand Grub - 2,500 Acres Herbicide/Hand Grub - 2,000 Acres Herbicide/Hand Grub - 2,000 Acres No Action - 0 Acres Herbicide/Hand Grub - 1,000 Acres Herbicide/Hand Grub - 1,000 Acres Herbicide/Hand Grub - 2,000 Acres Hand Grub (Knapweed Only) - 2,500 Acres Hand Grub (Knapweed Only) - 500 Acres Hand Grub (Knapweed Only) - 1,500 Acres Hand Grub (Knapweed Only) - 1,500 Acres Hand Grub (Knapweed Only) - 1,000 Acres 	\$ 829,238 832,218 841,722 865,827 935,749 1,333,286 1,942,584 2,105,128 2,137,064 Acres 4,121,344 Acres 4,501,750 res 4,746,164 Acres 6,445,372 Acres 6,445,372	\$ 0 2,980 12,484 36,589 106,511 504,048 1,113,346 1,276,890 1,307,826 3,672,512 3,916,926 5,586,134

I-1

A summary of selected economic efficiency and impact effects is presented in Table I-2 on the next page.

Table I-1

Summary of Selected Biological Effects, by Scenario

Items

Scenario	Area Treated Annually Acres	Total Weed Acres 1988	Total Weed Acres 2011	Cattle AUM Loss 1988	Cattle AUM Loss 2011	Elk Capacity Loss 1988	Elk Capacity Loss 2011
1	0	4,908	149,763	457	34,842	72	3,951
2	500	4,650	149,763	431	34,749	69	3,951
3	1,000	4,391	149,763	406	26,182	65	3,946
4	1,500	4,133	13	380	1	61	0
5	2,000	3,875	8	354	1	57	0
6	2,500	3,617	7	328	1	53	0
7	3,000	3,358	6	302	1	49	о
8	3,500	3,100	6	276	1	45	0
9	4,000	2,842	6	251	1	41	0
10	500	4,741	149,763	440	34,433	70	3,951
11	1,000	4,574	149,763	423	22,768	68	3,065
12	1,500	4,408	18,126	405	1,547	65	348
13	2,000	4,241	18,126	388	1,547	63	348
14	2,500	4,074	18,126	370	1,547	61	348

Table I-2

Summary of Selected Economic Efficiency and Impact Effects, by Scenario (All dollar figures are expressed in 1985 dollars, discounted to present at 4%)

Scenario	Initial Acres	Total Loss	Treatment Cost	Total Cost	Income Loss
1	0	\$1,942,584	\$ 0	\$1,942,584	\$5,860,548
2	500	\$1,544,044	\$ 562,083	\$2,106,128	\$4,569,178
3	1,000	1,012,898	1,124,166	2,137,064	2,892,508
4	1,500	57,747	1,275,538	1,333,286	161,905
5	2,000	23,132	912,618	935,749	62,047
6	2,500	16,553	849,273	865,827	43,257
7	3,000	13,862	827,860	841,722	35,575
8	3,500	12,264	819,954	832,218	31,064
9	4,000	11,392	817,846	829,238	28,749
10	500	\$1,551,164	\$3,195,000	\$4,746,164	\$4,570,162
11	1,000	950,444	6,389,994	7,340,438	2,715,520
12	1,500	206,666	6,208,706	6,415,372	508,483
13	2,000	189,188	4,312,562	4,501,750	457,033
14	2,500	185,707	3,935,638	4.121.344	446 786

Items

Table I-3

Biologic and Economic effects, by Scenario

Table I-3 has changed from that included in the 1987 EIS, however it is not included in this supplement. Tables I-1 and I-2 contain summaries of the data in Table I-3. A copy of Table I-3 is available from the Forest Supervisors Office, Deerlodge National Forest if desired.

APPENDIX J

NOXIOUS WEED AND POISONOUS PLANT MANAGEMENT GUIDELINES

Deerlodge National Forest February 1988

Substitute for Appendix J in the 1987 EIS.

I. INTRODUCTION

Education, prevention and control are the three major components of the NOXIOUS WEED AND POISONOUS PLANT MANAGEMENT GUIDELINES of the Deerlodge National Forest. All have equal status. The guidelines are statements describing actions that will be accomplished. Action plans based on the guidelines are being developed. These plans will define and schedule the specific activities and methods for accomplishment.

The Integrated Pest Management Working Group (IPMWG) has overall responsibility for the development of these guidelines and the associated action plans, subject to the approval of the Forest Supervisor and District Rangers. The working group also has the responsibility for coordinating action plan implementation at the Forest level and advising the Forest Supervisor concerning specific actions requiring his approval. Other responsibilities will be specified in the action plans.

II. OBJECTIVES

- * To train employees to recognize noxious weeds.
- To inform the public and our employees about the economic and resource losses caused by noxlous weeds and about measures which can be taken to prevent the spread of noxlous weeds.
- To prevent new infestations.
- * To reduce current levels of infestation and control new infestations.
- * To emphasize biological and mechanical methods for the control of noxious weeds.
- To develop a cost effective control strategy.
- To develop funding sources for an effective noxious weed control program.
- To cooperate with other agencies and individuals in the control of noxious weeds.

III. PROGRAM COMPONENTS

- A. Education and Awareness
 - 1. In Service
 - Train employees involved in the control program according to state and federal standards. There will be at least one certified pesticide applicator on each district.
 - b. Train Employees so that they may readily recognize noxious weeds and poisonous plants present on the Deerlodge National Forest.
 - Encourage Employees to report infestations that they become aware of.
 - d. Encourage employees to cooperate in spot control of noxious weeds.
 - 2. Out Service
 - Utilize public service outlets to inform Forest users of the noxious weed problem.
 - Participate in public meetings dealing with noxious weed control.
- B. Prevention Program
 - 1. In Service
 - a. Rehabilitate disturbed and deteriorated (low seral stage) sites to prevent new noxious weed infestations. Roads, landings, skid trails, and mine disturbed areas are examples of these sites.
 - Require weed free hay, straw, or pellet type feed for uses on the Forest at appropriate locations approved after NEPA analysis.
 - c. On all Forest projects evaluate the noxious weed and poisonous plant status of the project area and assess how the project will affect spread. Use appropriate contract clauses to require preventive and control measures on projects which have a reasonable chance for new infestations or accelerated spread.
- 2. Out Service
 - a. Participate in state, county and local prevention efforts.
 - b. Provide leadership in prevention efforts where our expertise exceeds that of other units or groups.

C. Control Program

- 1. In Service
 - Integrated pest management principles (FSM 2140) will be followed.
 - b. The overall strategy for noxious weed and poisonous plant control will be to control small and/or new infestations. Large infestations will be confined through use of biological, fire or other feasible control methods until adequate resources are available to control them.
 - c. District personnel will begin data collection to provide more accurate noxious weed and poisonous plant inventory data. Specifically, project areas will be mapped on 1:24000 scale topographic maps; and ecodata, habitat type, soil, and other needed environmental parameters will be included in the inventory
 - d. The Districts will annually submit their proposed weed control program for review by the IPMWG.
 - The IPMWG will develop a computer assisted inventory and project tracking program and analysis system to:
 - Record all previous chemical applications.
 - 2) Document current conditions.
 - Monitor results.
 - Identify priorities among inventoried projects.
 - Recommend allocation of funds based on priorities and successes.
 - 6) Analyze annual progress.
 - For the 10 year program and the upcoming year's budget, annually request sufficient funds needed to reduce infestation levels on the Forest.

- g. Monitoring
 - Establish transects to document formulation effectiveness and environmental impacts.
 - Through analysis of monitoring results refine herbicide application rates and formulations.
- h. NEPA Process
 - Consider the potential spread of noxious weeds and appropriate mitigation measures in all NEPA documents.
 - Revise and/or update as necessary the Forest EIS on the treatment of poisonous plants and noxious weeds.
- Out Service Coordinate with local agencies and individuals. Coordination will be used to prioritize projects for the annual control program.

APPENDIX K

AQUATIC MONITORING PLAN - ROCK CREEK

To address concerns relating to possible adverse effects of herbicide application, selected projects in Rock Creek will include collection of aquatic invertebrates in at least one stream where the risk of contamination is highest. We expect that all streams will have a low risk of contamination, since we will insure a safety margin of more than 1.0 in all project areas in the Rock Creek drainage.

The monitoring design will consist of one of the the following:

1) Monitor one stream above and below the project area. In this case, samples would be collected as close to the herbicide application date as feasible, but not more than one month before application. A second collection of invertebrates would be collected after the first major rainstorm or not more than one month following herbicide application. Each collection would consist of three samples at each sample point on each date.

2) In the event that above and below sampling is not feasible, then the second choice for project design will be to choose a similiar stream to serve as a control stream. Sampling would take place on the same date in each stream to be compared with samples taken after the project. Timing would be the same as in Alternative 1.

It is felt that invertebrates are excellent indicators of herbicide contamination because 1) they are subject to herbicide-caused mortality continuously through the sample period, and 2) they have lower tolerance to Tordon than do resident fish of a size feasible to sample. It is imperative to sample within a month after spraying, because insect drift will recolonize an area totally within about 2 months, therefore masking any adverse effect of the contamination source.

