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PREFACE.

IN undertaking this work, my principal object has been to
supply the want, long and universally felt among Students
of Engineering and Architecture, of a concise Text-book
on Structures, requiring on the part of the reader a
knowledge of elementary mathematics only. In order to
obtain complete information on the subject it has been
necessary, hitherto, to consult a large number of books,
and these, moreover, have been generally too advanced for
the average student. The present work is an attempt to
remove, or at least to minimise, these disadvantages.

Throughout, my aim has been to treat the different
branches of the subject from a practical, as well as from a
theoretical, stand-point ; and with this object I have intro-
duced, and carefully worked out, a large number of Practical
Examples such as occur in the every-day experience of the
Engineer. Several of these Examples are solved both
analytically and graphically, one method being used as a
check upon the other.

The subject of Graphic Statics has only of recent years
been generally applied in this country to determine the
Stresses on Framed Structures; and in too many cases this
is done without a knowledge of the principles upon which
the science is founded. I have tried to explain it from first
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principles, and the student will find in this system a
valuable aid in determining the stresses on all irregularly-
framed structures. -

Although the work has been designed mainly for the
class of readers above referred to, it is further hoped that it
may prove a useful book of Reference to those engaged in
the profession generally. Several chapters are devoted to
the practical side of the subject—those relating to the
Strength of Joints, and to Punching, Drilling, Rivetting, and
other processes connected with the manufacture of Bridges,
Roofs, and Structural work generally, being the result of
many years’ experience in the bridge-yard ; and it is hoped
that the information given on this branch of the subject
may be of value to the practical bridge-builder.

S. A.
PrEsSTWICH, January, 1891.
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DESIGN OF STRUCTURES.

CHAPTER I

STRESSES AND BTRAINS.

1. Framed Structures.—A framed structure in wood, iron, or
steel is generally understood to be an assemblage of different
members composed of these materials, which are joined together
by straps, bolts, pins, or rivets, and arranged in such a manner
as best to contribute to the stability of the structure itself; and
of such form and dimensions as are best adapted to withstand
the various stresses and strains to which they may be subjected
from the application of external loads or forces.

This is a definition altogether from a utilitarian point of view.
Other considerations from an @esthetic standpoint have their
weight in determining the best form of a structure; it usually
being desirable to produce something which shall be pleasing to
the eye and in harmony with the surroundings.

2. The constituent parts of a structure have various names;
but so far as the kinds of stresses produced in them are con-
cerned, they may be grouped under the terms beams, struts,
and ties, or some combination of these.

Some of the more common forms of structures are girders,
bridges, roofs, piers, ships, and buildings of various descriptions.

When a structure is exposed to weights or loads, stresses are
produced in its different constituent members, and it is the
province of the engineer to determine the nature and intensity
of these stresses, and so to arrange and proportion the members
as best to withstand them, due regard being had to economy and
artistic effect.

3. External Loads on Structures.—By the load on a sil-,mctnre
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izis meant all the external forces acting upon it. These in-
clude :—

(1) The werght of the structure itself, which is a constant quan-
tity, and acts vertically.

(2) In bridges and similar structures they include the weight
of the roadway, which also is constant, and also the live or moving
loads coming upon them, such as railway trains, vehicular and
pedestrian traffic, &c., which vary in amount. All these forces
act vertically.

(3) Wind pressure, which affects all exposed structures. This
18 a variable force acting horizontally or nearly so, and in some
cases is the most important of all the external forces.

4. Stresses and Strains.—All members of a loaded structure,
except those inserted for ornament, are exposed to stresses and
strains. These two terms are often used indiscriminately as
meaning the same thing ; strictly speaking, however, this is not
so, and in this work each term will (as far as possible) be used
in its proper sense. (Generally speaking, they represent cause
and effect.

A stratn is a change of form. When an external force acts
upon a bar of any material, it produces in it a change of form,
no matter how minute. It may elongate it, or shorten it, or
bend it. This change of form is termed a ‘“strain.” Strains
may be temporary or permanent. If, after the force be removed,
the bar regain its original shape and dimensions, the strain on
.its fibres will only be temporary, and only last during the appli-
cation of the force. If, on the other hand, the bar do not
regain its original shape and dimensions after the removal of
the force, it is said to be permanently strained.

By a stress is meant the internal force or resistance set up in
the fibres of the bar in opposing the strain.

The stresses in materials are proportional to the strains, so
long as there is no permanent alteration in the form of the body
actea upon.

There are three kinds of stresses and strains :—

1) Compressive or positive stresses and strains.
Tensile or negative stresses and strains.
Shearing stresses and strains.

If a bar of any material be acted upon by two equal forces
applied at its extremities, and acting away from each other in
the direction of its length, it becomes extended, and the strains
produced in the fibres are said to be tenstle or negative strains.

The stresses or resistance to the straining action on the fibres
are, in like manner, termed tensile or negative stresses.
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If, on the other hand, the bar be acted upon by two equal
forces acting towards each other, it becomes shortened, and the
strains and stresses generated are termed compressive or positive
strains and stresses.

A tensile stress on a bar tends to cause its failure by lengthen-
ing and ultimately fearing apart its fibres; a compressive stress
induces failure by shortening and ultimately crushing its fibres ;
and a shearing stress produces failure by causing one part to
slide across the other, or by custing it across.

Besides these three kinds of stresses, there are others which
are frequently to be met with, the most common of which are
trangverse or bending stresses and forsional or lwisting stresses,
with their corresponding strains; but these and other forms, as
will subsequently be shown, may be resolved into one or more of
the three elementary forms named.

5. Measurement of Stresses and Strains.—In England and
where English standards are adopted, a stress is measured by
80 many pounds, cwts., or tons. A unf sfress is usually measured
by so many pounds, cwts., or tons per square inch of sectional
area of the body under stress. According to the French
standards of measurements, the unit of stress is reckoned as
so many kilogrammes per square centimetre. If the stress on
a bar of iron 2 inches square be 50 tons, the unit stress, or stress
per square inch, will be 125 tons. The corresponding unit stress
in French measure is 1,968 kilogrammes per square centimetre.

A strain is usually measured in inches or parts of an inch. A
unit strain is measured in parts of an inch per lineal foot of the
bar under strain, or it may be measured as so much per cent. of
the length of the bar. If a bar of steel 2 feet long, under a
certain tensile stress, be lengthened by half an inch, the strain
produced is equal to }-inch per foot, or 2:08 per cent. of the
length of the bar.

6. Tensile Stress.—Fig. 1 is an example of tensile stress. A
bar, a b, of section A square inches, is suspended at one
extremity, a ; and a weight of W tons is hung from the other
end, b. The bar under these conditions is said to be subjected
to a tensile stress of W tons throughout its entire length, or to

a unit stress of —vg tons.

7. Compressive Stress.—Fig. 2 is an example of compressive
stress. A pillar rests on the ground, and a weight of W tons rests
on the top. The pillar is under a compressive stress of W tons,
and if A = its sectional area in square inches, the fibres are
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subjected to a compressive stress of :—2[ tons per square inch

throughout its entire length.

8. Shearing Stress.—Figs. 3 and 4 are examples of shearing
stresses. Two links of iron or steel are joined together by a
pin of the same material, and are exposed to forces of W tons
acting in the directions of the arrows.

In both cases the pin is subjected to a shearing stress. In
fig. 3 the pin is exposed to a single shearing stress of W tons
at its section, ¢ b, and is said to be in single shear, and if
A = number of square inches in its sectional area, the shearing

stress per square inch on the pin = -V—Az tons.

Fig. 1. Fig. 2. Fig. 4.

In fig. 4 the pin is exposed to a double shearing stress at its
sections, a b, and ¢ d, and is said to be in double shear. The

shearing stress at each section is equal to —%—v tons, and if

A, = sectional area of the pin, the shearing stress per square

inch upon it = ;VK- From this it 18 apparent that the sectional
area of the pin in ilig. 4 need only be one half of that in fig. 3,
in order to be of equal strength.

9. Transverse Stress.—Fig. 5 is an example of fransverse or
bending stresses. The beam, A B, rests on two supports at
A and B, and is loaded at an intermediate point by a weight,
W ; the beam in this condition is said to be exposed to a bend-

ing or transverse stress; but, as will

@ be shown in a future chapter, the fibres

in the upper portion of the beam are

h ‘ subjected to a compressive stress, and
Fig. 5. those in the lower portion to a tensile

stress, while shearing stresses also
come into operation throughout the beam.

v o -~
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10. Torsional or twisting stresses do not often occur in the
members of structural work ; but they are to be met with in
the shafting of machinery of all descriptions.

It is usually assumed that the stress on a bar is uniformly
distributed over the whole cross-section of the bar. This is
generally true as regards tensile and compressive stresses so
long as the bar is of a compact form. It is only approximately
true, however, when applied to shearing stresses, and the form
of the pin or bar exposed to this stress has something to do with
this want of uniformity. It has been found from experiments
that the maximum intensity of shearing stress on a round pin
is somewhat greater than the mean intensity, and with a pin of a
gquare or rectangular section, the difference is greater still. For
all practical purposes, however, it may be assumed that the stress
is uniformly distributed over the section. This being so, if

J = unit stress, or number of lbs. or tons per square inch
of section of the bar.

a = number of square inches of sectional area of the bar.

F = total stress in 1lbs. or tons on the bar.

Then F =af . : . . ().

Example 1.—If the ultimate tensile strength of mild steel be
32 tons per square inch, what force will be necessary to tear
asunder a bar of this material 4 inches in diameter

Here f = 32 tons, a = 7 x (2)2 = 31416 x 4 = 12-566 sq. ins.
Substituting these values of f and a in equation (1), we get
F =32 x 12:56 = 402 tons,
which is the tensile force necessary to rupture the bar.

Ezample 2.—What force will crush a short column of cast
iron, 8 inches in external, and 6 inches internal diameter, the
ultimate compressive strength of the metal being 40 tons per
gquare inch {

S = 40.
a = sectional area of column = # {(4)2-(3)2} = 22 sq. inches.
Required force F = 22 x 40 = 880 tons.

L 4

Example 3.—If the bars shown in fig. 3 be pulled with a



6 STRESSES AND STRAINS.

force of 50 tons acting in opposite directions, what must be the
diameter of the pin so that the shearing stress on it may be
equal to 10 tons per square inch ?

Let d = required diameter.
We have then a = 7854 d% f = 10. F = 50.

From equation (1) we have, by transposing,

F 50
a =f,or 78564 a2 = 10 = b.

d? = 636, or d = 2'5 inches, the required diameter.

Exzample 4.—In the last example, if the pin be in double shear
- a8 shown in fig. 4, what must be its diameter in order to fulfil
the same conditions ?

Using the same notation we get

a =2 x ‘7854 d2,
2 x ‘7854 d% = 5, or d® = 3-18.
d = 1'79 inches.

Example 5.—If a rectangul‘ar tie-beam of oak, 6 inches by 4
inches, be subjected to a tensile stress of 50 tons, what will be
the stress per square inch exerted on its fibres

F =50. a=6 x 4 = 24 sq. inches.

F 50 :
=_—=g;= 2:08 tons per sq. inch.

Example 6.—A bar of wrought iron of any uniform section is
suspended from one end, and hangs vertically, what must be
its length so as to break by its own weight, the ultimate strength
of the iron being 20 tons per square inch, and the weight of a
cubic inch being 0-28 lbs.

Let I = length of the bar in feet.
a = it8 section in square inches.

Breaking weight of |
the barin pounds { 20 x 2240 x a.

Weigh;oﬁid?r in} =12x 8xaxl=2336al

L)
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These two expressions must be equal to each other, or

336 x & x I = 44,800 x a.
or l = 13,333 feet.

It will be seen from this that the section of the bar does not
affect the length under the conditions stated.

Example 7.—Two round steel bars, each of 2 inches diameter,
are joined together by means of a steel pin in the manner shown
in fig. 4. If the ultimate strength of the steel to resist tension
be 30 tons per square inch, and its ultimate shearing strength
be 24 tons per square inch, what must be the diameter of the pin
so as to be equal in strength to the bars {

Let d = required diameter.

Strength of pin to “"Si“} = 2 x 24 x “7854d® = 37T d® tons.
shearing

Tensile strength of bars = 30 x ‘7854 x (2)% = 94-248 tons.

These two expressions, according to the conditions of the
question, must be equal to each other, or '

37-7d2 = 94-248,
ord = 1-58 inches,

which is the required diameter of the pin.

11. Long Struts.—The rule embodied in the formula F = af,
does not hold when applied to compressive stresses, if the
diameter of the bar or column is small in proportion to its
length. Long bars when subjected to a compressive stress in
the direction of their length do not break entirely by crushing,
They have a tendency to become deflected laterally, and to break
partially by cross-fracture.

This happens in bars made of iron or steel when the length of
the bar is more than five times its diameter, or least thickness;
and in the case of wood when the proportion exceeds 10 to 1.

Members of this kind are termed ‘“long struts,” and their
strengths will be investigated in Chapter X1.



STRESSES AND STRAINS.

TABLE I.—WEIGHT o MATERIALS (Molesworth).

METALS, sg?.“v’{?; '&‘L ch:n%‘l,l.‘ vg:b : ::::

Ibs.* Ibe.
Copper, cast, . . 8607 | 0310 | 5373
Iron, cast, from, . 7'0 0-252 4370
»w » b, 7'6 0-273 4744
» 3y 8verage, . 723 026 4510
s Wrought, from, . 76 0273 4744
» »  to, 78 0-281 486-9
» »»  &verage, 7778 0-28 4856
Lead, cast, . . . 11:36 0-408 7085

Mercury, . . 13596 0491 84875
Steel, . . . . 80 0288 | 4990
Tin, cast, . . . 7291 | 0262 | 4551
Brass, cast, . 84 030 5244

Gun-metal, 10 copper, 1 tin, 8-464 0-:306 528-36

TIMBER.

Ash, from, . 069 0-025 430
sy 10, e s 0-76 0027 470
Beech, from, . . . 0-69 0-025 430
s 1o, 0-696 0025 43-0
Cork, . . . 0-240 0008 15°0
Deal, Christiania, . . 0-689 0-025 4390
Elm, English, from, 0553 0-02 340
2 » Yo, . 0579 0-021 360
», Canadian, . . 0725 0026 450




WEIGHT OF MATERIALS.

TABLE 1.—Wg1aRT o¥ MATERIALS (Continued).

TiuBER (Continued). ﬂﬁﬁ%‘? X%'ﬁ'}i‘.?&‘ Y:ﬂgf&?
Ibs. 1hs.
Fir, Spruce, . . 0512 0018 3290
Larch, from, . c e e 0543 0-019 340
» Yo, 0556 002 . 350
Oak, African, . . 0988 0-035 620
s» American, red, 0-850 0-030 530
” s  White, . 0-779 0028 490
»» English, from, . . 0777 0028 480
" » to, . 0-934 0-034 580
Pine, red, from, . . 0-57 0-021 3690
w9y Y0, . 0857 0024 4]1-0
y» White, from, . 0432 0-016 270
YSRFTR. . e 0-553 0-020 340

SToNES, &cC.

Basalt, Scotch, . 295 0106 184
Chalk, from, . . . 2-33 0-084 145
»w to, o 262 0-094 162
Granite, Aberdeen, . 2-62 0095 165
Limestone, Compact, o . 258 0093 161
’ Purbeck, . 2-6 0-093 162
’ Blue Lias, . . . 2467 0-089 154
Sandstone, Arbroath pavement, . 2477 0-089 155
- Yorkshire paving, . 2:51 0-09 157
Slate, Welsh, . 2-88 0-104 180
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TABLE I.—WEIGHT oF MATERIALS (Continued).

MISCELLANEOUS SUBSTANCES. m;. 3‘3&"&2&“ Y:’ub h?&‘t.‘
lbs. 1bs.
Asphalte, . . 25 009 156
Brick, common, from, . 16 0057 100
» ) to, . 20 0-072 125
| »» London stock, 1-84 0-068 1156
sy red, . 2-16 0-077 134
Cement, Portland, in powder, from, 31 0-05 86
" ” " to, 3-155 0054 94
Clay, . . . . . . 19 0068 119
Coal, anthracite, 1-53 0055 85
»» cannel, . . 1-272 0-046 79
| Coke, 0744 0026 46
Earth, from, . 1-52 0054 77
» to, .. 20 0072 125
Glass, flint, 3078 0-111 192
Mortar, from, 1-38 0°049 86
» Yo, 19 0068 119
Pitch, . . 115 0041 69
Sand, quartz, 275 0-099 171
sy Tiver, 1-88 067 117
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CHAPTER IL

ELASTICITY AXD FATIGUE OF MATERIALS.

12, Elasticity.—There are other properties of materials which
make them valuable for structures besides their tensile, com-
pressive, and shearing strengths. One of the principal of these
is elasticity.

Elasticity is the term applied to that property which materials
possess of returning to their original size and shape after they
have been strained ; and a material is said to be elastic if the
strain disappears after the stress has been removed.

When a gradually-increasing tensile stress is applied to a bar
of iron, steel, or other material, it becomes elongated or stretched,
and the amount of this elongation, or increment of length, within
certain limits, is proportional to the stress applied. The same
law holds good if the bar is subjected to a compressive stress.
In this latter case the bar is shortened, and the amount of
shortening, or decrement of length, is proportlona.l to the stress
within the limits named. This principle is known as Hooke's
law of uniform elastic reaction, or the law of elasticity, to which
the discoverer applied the Latin phrase ¢ Ut tensio sic v1s.”

The truth of this law has been proved by more than one
experimenter. The late Mr. Hodgkinson instituted an elaborate
series of experiments on cast and wrought iron, subjecting these
materials both to compressive and tensile stresses, and the
results he obtained practically prove the truth of the above law,
8o far as these materials are concerned.

13. Limits of Elasticity.—The limits of stress, between which
bodies are elastic, are termed their lsmzits of elasticity. The range
of these limits is very much greater in some materials than in
others. Lead, for example, has little or no elasticity. Ifit be
strained to any appreciable extent, it will be found that when
the stress which produces the strain is removed, the strain itself
does not suffer any appreciable diminution. Lead, therefore,
may be called a norn-elastic substance. On the other hand, glass
i8 very elastic. If it be strained just up to its breaking-point,
when the stress is removed, it regains its original dimensions.
Iron and steel occupy a position intermediate between lead and
glass as regards their elasticity. They are elastic, or nearly so,
up to about one-half of their ultimate strength. When a body
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under stress passes its elastic limit, the increments or decrements
of length increase at a much more rapid rate until finally rupture
takes place.

14. Elasticity a Measare of Strength.—The elasticity of a
material as used in a structure is a very important measure of its
quality, even more so than its ultimate compressive or tensile
strength.,

15. Modulus of Elasticity.—

Let L = length of a bar in inches;
P = stress applied to it in tons per square inch ;
! = increment or decrement of length in inches arising
from the stress P.

From Hooke's law, when P varies, ! will vary in the same pro-

portion, so that the expression P ’; L is a constant quantity for

all values of P within the elastic limits of the material. This
expression is termed the modulus of elasticity of the material,
and is usually represented by the symbol E. Consequently we

have
E=P7P. A 0}

In this equation, if we put L =/, we get E = P, so that the
modulus of elasticity may also be detined as that tensile force in
tons per square inch which, if applied to a bar, will double its
length, on the assumption that the material is perfectly elastic
up to this point. Of course, it is unnecessary to remark that no
structural material with which we are acquainted fulfils this
condition.

16. Methods of Determining the Modulus of Elasticity.—The
modulus of elasticity may be determined without much difficulty
for different materials in three different ways :—

(1) By exposing a bar of the material to a direct compressive
stress, and observing the decrement of length.

(2) By exposing the bar to a direct tensile stress, and observing
the increment of length.

(3) By exposing a beam of the material to a transverse stress,
and observing the deflection.

The modulus, as determined by these three methods, is some-
times different. It has been found for most materials that the
compressive modulus is different from the tensile modulus, and
‘that found by transverse stress different from both. For wrought
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iron and cast iron the tensile modulus is greater than the com-
pressive modulus, which shows that these materials yield more
to compression than extension.

The moduli, as found by the first and second methods, are
calculated by the aid of equation (1).

As an illustration, suppose we take a bar of wrought iron,
20 feet long and 1 square inch in section, and expose it to a
tensile stress of 1 ton, it will be found to be elongated by about
+5 part of an inch. We have here all the data necessary for
determining the tensile modulus of elasticity of the iron.

L=20 x 12 = 240inches. ! = ‘02 inches. P = 1 ton.

Substituting these values in equation (1) we get

1 x 240 _ 19000 tons.

E=—0

No two bars of the same material will give precisely the same
results. This is not to be wondered at, considering that the
least irregularity or flaw in the fibres, or even the manner in
which the stress is applied, will vary the result considerably.

The following is the method of finding the modulus of elasticity
by transverse stress. Take a rectangular beam of the material,
and lay it on two supports, and load it at the centre.

Let I = span of the beam in inches.
b = breadth of beam in inches.
dept’h ” 2
weight in lbs. applied at the centre.
central deflection of the beam in inches.

d
W
)
E = modulus of elasticity in lbs.

'We have the following expression for determining E—

Wi
E=rgm; - - - - (@

This rule assumes that the material in the top of the beam is
compressed by the same amount that it is extended at the
bottom, or that E is the same for compression as for tension.

17. Deflection of Beams.—From equation (2) the central de-
flection of rectangular bars or beams of different materials by a
central load may be determined, when the modulus of elasticity
is known.
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We get by transposing
W
‘“tE - - - @

TABLE II.—MobpuLus or ELASTICITY.

E = modulus of elasticity in tons ; one inch being the unit of area.
W = weight in tons each square inch will bear without producing a
perceptible permanent set.

E. W.

Cast iron, average, . . . . . . 6,250 68
Wrought-iron plates, with the fibre, . . 11,000

’ yy  &Cross ,, . . 12,000

. average, . . . . . 11,600 95

” bars, . . . . 13,000 106
Mild steel, . . . . . . . 13,200 160
Cast steel, tempered, . . . . 16,000 290
Ash, . . . . . . . . 732 17
Beech, . . . . . . . . 600 14
Elm, . . . . . .. . 500 13
Oak, . . . . . . . . | 650 to 800 18
Red pine, . . . . . .« e 800 20

Example 1.—A rectangular bar of wrought iron, 3 inches
wide by 4 inches deep, rests on two supports 6 feet apart.
What will be the deflection of the bar if a load of 14 tons be
hung from the centre, the modulus of elasticity of the iron being
12,000 tons

Here we have

b=3. d=4". 1=72". W =105tons. E = 12,000 tons.
Substituting in equation (3), we get the deflection —

. I8
15 x (72) ~ 006 inch.

b == 12,000 x 3 x (4)8
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Example 2.—1t was found by experiment that a beam of oak,
12 inches wide by 10 inches deep, placed on two supports 16 feet
8 inches apart, and loaded with 2 tons at the centre, deflected
‘045 inch. What is the modulus of elasticity of the oak ¢

W = 2. l = 200”. b = 12", d = 10”. 0= 0‘45."

Substitute in equation (2), and we find the required modulus—

E - 2 x (200)3
4 x 12 x (103 x 45

Knowing the value of E for different materials, it is an easy
matter to calculate the amount of elongation or contraction of
a bar of any length and section, when acted upon by any
longitudinal stress within the limits of elasticity, without going
to the trouble of actually testing it.

Let K = section of the bar in square inches, equation (1) then
becomes

= 740 tons.

_PxL

E—le .« . : (4).

From this we get
P, 5
=% < E . . : (5).

Example 3.—By how much will a tensile stress of 30 tons
lengthen a round bar of steel, 2 inches in diameter and 20 feet
long, the modulus of elasticity of steel being 13,000 tons?

From equation (5) we have

30 x 20 x 12 .
* = 31416 x 13,000 ~ 0176 inch.

Example 4.—If a scantling of beech 2 inches square and
10 feet long be strained 4 inch by a force of 10 tons, what is
the modulus of elasticity of the beech ?

PxL 10 x 10 x 12

E=g 7= "1x3

= 600 tons.

It will be seen from equation (5) that the greater the modulus
of elasticity, the less will be the extension or compression of the
material for a given stress, and vice versd. The modulus for
cast iron being considerably less than that of wrought iron or
steel, it follows that bars of this material will extend or contract

/s

75
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more than those of wrought iron or steel for the same stress.
This explains why a cast-iron girder of given span and depth
will deflect more under a load than a similar girder of wrought
iron or steel. For the same reason timber beams deflect more
than those of iron under similar conditions.

18. Set.—When a bar of iron is put into a testing-machine, and
exposed to a stress, it becomes elongated or shortened, according
to the nature of the stress as already explained. When the
stress is removed the bar returns to its original length if it be
not strained beyond its elastic limit. If the bar be further
strained by a stress beyond its elastic limit, then, when the
stress is rcmoved, the bar tends to regain its original length,
but does not quite do so. In this case the elasticity of the
material is said to be destroyed. The amount of the temporary
extension or contraction of the bar in the first case is sometimes
called its temporary set for the particular stress which produces
it. The amount of the permanent extension or contraction in
the second case is termed its permanent set, or simnply  get.”

Strictly speaking, any stress, however small, produces a per-
manent set, but its amount is so minute, until the limit of
elasticity is reached, that practically it may be ignored.

With wrought iron the limit of elasticity is usually reached
when the stress is from 10 to 12 tons per square inch. In good
qualities of mild steel it is not reached until the stress is from
18 to 20 tons. In other substances, such as glass, there is no
appreciable permanent set whatever, such substances being
elastic up to their breaking point.

No member of a structure should on any account be strained
beyond its limit of elasticity, for in such case not only will the
strength of such a member be permanently impaired, but, on
account of its permanent alteration in length, additional stresses
will be thrown on adjacent members, which they are not designed
to sustain.

It will be readily seen, from what has been said, that it is not
advisable to have members of the same framed structure made
of different materials when there is much difference between
their moduli of elasticity, as, for example, in the case of a
timber-beam trussed with iron or steel tension bars. Here,
owing to the difference of contraction and extension between the
wood and the iron, it is difficult or impossible to calculate with
any degree of exactness the amount of stress on the different
members.

19. Ultimate Strength—Working Load—Factor of S8afety.—The
witimate strength of a material, is the direct stress which pro-
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duces rupture. This is reckoned usually as so many tons per

uare inch of the section of the material. It is always under-
stood that the section taken is the original section of the bar,
and not that at the point of fracture after the bar has been
ruptured.

When a bar of iron or steel is strained to the point of fracture
by a tensile stress, the area of the section where fracture takes
place is considerably contracted, often to the extent of 20 per
cent. or even more of its original area. If a bar of 4 square
inches of sectional area break with a tensile stress of 84 tons,
and the area at the point of fracture be found to be 3 square
inches, then the stress per square inch of fractured area 18

% = 28 tons, while that of the original section is % = 21 tons.

The strength of the bar is measured by the latter quantity, and
not by the former, and it is said to be equal to 21 tons per
square inch.

The working stress on a member of a structure is the maximum
stress to which it is subjected in actual practice. The ratio of
the ultimate strength to the working stress is termed the
Jactor of safety of the material. In order to determine the
proper value of this factor, a number of considerations must be
taken into account. A great deal depends on the character of
the working load.

1st. The load may be a constant dead load—a dead load being
one which is steady and produces no vibration.

2nd. The load may be a live load, or rolling load, such as &
crowd of people, or a railway train or waggon passing over
a bridge.

3rd. There are cases of intermittent loads, or loads which
are repeatedly or suddenly laid on or taken off again, examples
of which occur in cranes.

The loads coming on all structures may be referred to one
or more of these three different kinds. Most structures with
which the engineer has to do are exposed to the first two. All
bridges, for example, have to support a dead load, consisting
of the weight of the bridge itself, as well as the ballast and
metalling ; they have also to support a live load, consisting of
the ordinary traffic passing over them. Roofs are also exposed
to these two kinds of loads, the first including the weight of
the framework of the roof along with its covering, and the
second consisting of wind pressure.

20. Value of the Factor of Safety.—The factor of safety varies,
or ought to vary, with the nature of the working load. For a

2
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structure like a crane, wholly exposed to varying and jerky
loads, it ought to be higher than in a structure like a bridge,
or a roof, where the working load is made up of a dead and a
live load; and still higher than in the case of girders which
support the walls and floors of a warehouse.

In fixing the factor of safety, another consideration must be
taken into account, and that is the nature of the material itself.
Some materials are more reliable than others; for example,
wrought iron and steel are more reliable than cast iron.

Some engineers prefer to take the elastic limit of the material,
instead of its ultimate strength, as the basis for fixing its factor
of safety, and perhaps this is the more intelligent method.
Experiments made by the late Sir Wm. Fairbairn, and more
recently by Wohler, confirm this view. This subject is more
fully treated in the chapter on Bridges.

21. Proof Strength.—Girders, bridges, and other structures
are often proved by testing them before they are used for the
purposes for which they are intended. The proof load may be
a multiple of the breaking load or of the working load. The

TABLE III. (Rankine).

Ult. Strength. | Ult. Strength. | Proof Strength.|
Proof Strength. Work.ix.;g Load. Worki:g Load.
Strongest steel, . . . 14 |
Ordinary steel and wrought
iron, steady load, 2 8 14
Ordinary steel and wrought ,
iron, moving load, . } 2 41t 2t0 3
Wroughtiponrivetted structures, 3 6 2
Cast iron,/ steady load, . . 2to3 3 to 4 about 14
’ moving load, . 3 6 to 8 2 to 2%
Timber ; average, . . . 3 10 3}
Stone and brick about 2 4t010: 1| .0 about 4
r ‘ ’ av.ab. 8 ) |

proof load of a bridge is taken to be equal to the greatest load
which can possibly come on it. In testing girders, whether of
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iron or steel, the proof load is usually somewhat more than
this. Oases have been known when it has been taken as
high as one-half the breaking load, but this should not be
allowed, as at this point the limit of elasticity of the material
may be reached or even exceeded, and a permanent set and
injury to the material may be produced. Some parts of a struc-
ture, such, for example, as the links of a suspension bridge,
may be exposed to a proof stress as high as once and a-half their
maximum working stress.

The foregoing table, drawn up by the late Prof. Rankine,
gives (1) the ratios between the ultimate strength and the proof
strength ; (2) the ultimate strength and the working load ; and
(3) the proof strength and the working load of different materials
exposed to different kinds of loads.

22. Resilience.—When a bar is strained either by a compres-
sive or tensile force, within the elastic limits, the quantity of
work done in extending or compressing it is equal to the amount
of compression or extension multiplied by the mean stress which
produces it. The term resilience” is used to specify the amount
of work thus done, when the stress just reaches the elastic limit.

Resilience may also be defined to be Aalf the product of the
siress into the strain, where the stress and the strain are those
produced when the elastic limit is reached.

Let W = stress in pounds applied to a bar so as to strain it
just up to its elastic limit.
! = elongation of the bar in feet due to the stress W.
R = resilience of the bar.

then R = 4 W [ foot-pounds Lo (6).

The energy thus exerted is stored up in the stretched bar, and
if the stress be gradually removed, the bar recovers its normal
length, and the energy is recovered.

The. work done in stretching a bar may be expressed in a
different form. Thus—

Let a = section of the bar in square inches;
P = stress applied in tons per square inch.

Then W = P a.
PL

From equation (1) we get I = R

Substituting these values of W and / in equation (6) we get
work done in extending the bar by the length ¢, equal to
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$Pa x —I—)E,
2
= I]; X 0213 = 1]); x % volume of bar, . (7)

since ¢ L = volume of the bar.

It follows from this, that the work required to produce a given
stress on the bar is directly proportional to the square of the
stress and to the volume or weight of the bar, and inversely
proportional to the modulus of elasticity of the material com-
posing the bar.

If F = stress per square inch on the bar when its limit of
elasticity is reached, we get P = F, and the resilience of the bar,
or the greatest amount of work that can be done on the bar
without injury to its elasticity, may be expressed by

F2 volume
R = £ 5 . . . (8).

2
The quantity %— is called the modulus of resilience.

Example 5.—A bar, 1 inch square, is found to extend 4 inch
with a stress of 9 tons. Determine the work done in producing
the extension in foot-pounds.

%x9x2240>5_«r’_-q-_
12

Work done = = 525 foot-pounds.

Ezxample 6.—A round bar of steel 10 feet long and 3 inches in
diameter, is exposed to a tensile stress of 100 tons. Determine
the number of foot-pounds developed in the bar, the modulus of
elasticity of steel being 13,000 tons.

The work done may be calculated from equation (6) by making
W = 100 tons = 224,000 lbs. and ! = extension in feet produced
by the weight of 100 tons.

‘We must first find / by means of equation (1).

a = sectional area of bar = ‘7854 x (3)% = 7°0686 sq. ins.

. . 100 :
P = stress in tons per sq. in. = =0686 = 14-15 tomns.
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From equation (1)
PL 1415 x 10
l= B 13,000 0-0109 feet.

. work done = } x 224,000 x 0-0109 = 1,220 foot-pounds.
The result may also be arrived at from equation (7).

2
Work done = % x % volume of bar

(14-15)3 70686 x 10
= '1‘37)’00 X 2,240 X 2

= 1,220 foot-pounds.

Ezample 7.—If, in the last example, a weight of 120 tons
strains the bar to the limit of its elasticity; find the modulus
of resilience.

With a stress of 120 tons on the bar, the stress per square inch

120

Modulus of resilience = I‘E = —(1—7 )? - x 2,240 =49-8 inch-1b.-units
E 13,000 7 ) -

23. Fatigue of Materials.—When a load is suddenly applied to-
a girder, it produces a momentary deflection much greater than
that which would be produced by the same load at rest. In the-
same way, if we take a bar of wrought iron, whose ultimate-
tensile strength is equal to 20 tons per square inch, and apply &
much less tensile load suddenly, and very often, so as to produce
elastic vibrations in the bar, it will be found that this load,
though much less than the statical breaking load of the bar, will,
after a certain number of applications, produce rupture. If a
load of 12 tons per square inch, or little over half the breaking
load of the bar, for example, be applied, it will not produce
rupture at the first application, nor even when it has been
applied a thousand times; but in the long run, if the number of
applications be sufficiently numerous, and suddenly imposed, the
bar will fail.

This deterioration produced in the fibres of a bar by repeated
applications of the load, is known as the fatigue of the material.

This tendency to fracture is increased if the bar be subjected
alternately to both compressive and tensile strains.
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It becomes, therefore, a very important question to determine
to what extent the strength of a structure as a whole, or of its
individual members is affected by vibratory action.

This subject, as stated, has been investigated by the late
Sir Wm. Fairbairn, and more recently and exhaustively by
Wohler. It is generally understood that when wrought iron,
even of the toughest and most fibrous quality, is exposed to long
and continuous vibration it becomes crystalline in its texture,
and its strength is much impaired, so that it will break not only
with a stress much less than its original breaking weight, but
also much less than the working stresses to which it was pre-
viously exposed. This is frequently observed in the chains of
cranes; they will fail while carrying a load which they have often
carried with safety previously.

24. Experiments on Cast- and Wrought-Iron Bars.—Sir Henry
James and Captain Galton subjected cast-iron bars to repeated
stresses, corresponding to statical loads of some proportion of the
breaking weight, by means of cams, which depressed the bars,
and then allowed them to resume their natural position. From
these experiments it was found that bars which received 10,000
depressions equal to that produced by one-third of the statical
breaking weight, received no apparent injury ; as when they were
afterwards broken by a statical weight they were found to be as
strong as similar bars which had not been treated in this way.
Three other bars were subjected to deflections equal to that
which would be produced by half the statical breaking weight,
and it was found they broke with 490, 617, and 900 depressions
respectively.

From these experiments, it seems reasonable to conclude that
it is not safe to expose cast-iron bars or girders to repeated
deflections equal to that produced by one-half their statical
breaking weight, but that they are quite safe when subjected to
repeated deflections, no matter how many, equal to that produced
by one-third of their breaking weight.

Wrought-iron bars were also experimented upon, and it was
found that no perceptible effect was produced on them by 10,000
successive deflections, each being equal to that produced by one-
half the statical breaking weight.

The same result, however, does not hold good when wrought-
iron rivetted girders are loaded. In order to determine the effect
produced on these latter by repeated loads, Sir W. Fairbairn
made a number of experiments on a wrought-iron rivetted single-
web plate-girder, 20 feet clear span and 16 inches deep. He
first exposed it to a series of loads equal to one-fourth of the
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calculated breaking weight of the girder, and applied in such a
manner as to resemble as nearly as possible the effect produced
on the main girders of a bridge by the passage of railway trains.
After the girder had undergone above half-a-million changes of
load, no visible alteration was observed in it. The load was then
increased from one-fourth to two-sevenths of the statical breaking-
weight, and was applied another half-a-million of times without
apparent injury. After this, the load was increased to two-fifths
of the breaking weight, the deflection produced being 0:35 inch
against 0'16 and 0-23 inches in the first and second -cases
respectively ; the girder, after sustaining 5,175 applications of
the load, broke by the rupture of the bottom flange.

25. Wohler's Experiments.—Wohler, with the assistance of
the German Government, has made very exhaustive experiments
on metals, in order to determine the effect of varying and oft-
repeated stresses on these materials. His results agree with
those of Sir W. Fairbairn where they travel over the same
ground, but Wohler's experiments are more varied and com-
plete, and he has thrown much additional light on the subject.
By means of ingeniously-constructed machines, he exposed bars
of wrought iron and steel to tensile stresses varying between
zero and a fixed quantity, and also to repeated bending and
twisting in opposite directions. The loads were applied and
removed a great number of times until the bar was broken, or
until it proved its ability to withstand the varying stresses an
infinite number of times.

With bars subjected to tensile stresses varying between zero
and a certain fixed quantity, the general conclusion to be arrived
at from his experiments is, that the greatest tensile stress a bar
will bear for an indefinite number of times is for iron and steel
about one-half its ultimate static breaking stress.

The number of repetitions required to produce rupture is
increased if the range through which the stress is varied is
reduced.

Wohler concluded that bars of wrought iron and steel—the
static ultimate strength of -the iron being 21, and that of the
steel 47 tons—would probably bear an infinite number of stress
changes between the limits (in round numbers) and the kinds
of stress given in Table IV.

It appears from this that a bar will be strongest when exposed
to varying stresses of the same kind, and weakest when exposed
to stress of different kinds—i.e., a pull and a push. The strengths
of the three bars in the Table are approximately in the pro-
portion of 1:2:3. If the members of a structure be exposed to
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stresses similar to those on the bars in the Table, which may
frequently occur owing to passing loads, there ought to be
different factors of safety applied to them, and these factors
ought to be in the proportion of 3:2:1.

TABLE 1IV.
Strzss Ix Toxs rEr SQuare Isca
‘Wrought iron. Steel.
From compression to tension, . + 7to - 7 + 13 to - 13
From tension to no stress, . 13 to 0 2t O
From tension to less tension, . 19 to 104 37 to 16

The average result of the experiments further proves that
with bars of wrought iron and steel, which are exposed alter-
nately to compressive and tensile stresses of equal amount, the
limiting stress which they will bear for an infinite number of
variations of the load, is about equal to one-third of the ultimate
static tensile stress.

The principal results alluded to may be summarised in the
following Table :—

Let W = ultimate or static strength of the bar.
W, = greatest load the bar will bear for an indefinite
.number of applications.

TABLE V.—BREAKING WEIGHT BY WOUHLER’S EXPERIMENTS.

1. Steady load without variation, . . . W =W,
2. Load varying between 0 and W, . . W) = v_g_

. \%'A
3. Load varying between + W, and - W;, . W, = 3"

A bar may be broken by a still smaller fraction of the static
breaking load, if it is alternately bent npwards and downwards.
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CHAPTER III.

PROPERTIES OF MATERIALS USED IN STRUCTURES.

26. The principal materials used in structural work, if we except
masonry and brick work, are :(—

(a.) Timber.

(6.) Cast Iron.

(c.) Wrought Iron.
(d.) Mild Steel.

A knowledge of some of the leading characteristics of these
materials will be useful to the student.

(a.) TIMBER.

27. Variation in the Strength of Timber.—The strength of
timber, even of the same kind and from the same tree, is very
variable, and is affected by a number of conditions, such as its
age, the part of the tree from which it is cut, the nature of the
goil in which it is grown, its seasoning, and other considerations.
All kinds are most durable when kept dry and exposed to
thorough ventilation.

The effect of moisture is to diminish its strength, and in some
kinds it causes decay.

When timber is exposed alternately to wetness and dryness,
it decays rapidly, more especially if it is in an enclosed situation
where there is no ventilation. Special precautions should be
taken to preserve it in such situations.

What is termed * dry rot” is very destructive to timber, con-
verting it into a dry powder; and, when it has once attacked a
building, it is difficult or impossible to arrest its progress.

Timbers which have grown most slowly, which are dark in
colour and heavy, are, as a rule, the strongest and most lasting.
Woods which have little resin or sap in their pores are also the
strongest.

The sap in timber, by its decomposition, accelerates decay:
consequently, it is best to fell timber at the season when its
sap is not circylating; this occurs in temperate countries in the
winter season and in tropical countries in the dry season.
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Trees at the age of maturity produce the best timber.

In the case of young trees, the strongest portion is the heart.
After a tree passes the age of maturity, the heart-wood begins to
deteriorate, and other portions of the trunk are stronger, with
the exception of what is termed the sap-wood, which lies next
the bark, and is the worst part of the tree.

28. Seasoning and Preserving Timber.—The strengths of most
timbers are nearly doubled by proper ¢seasoning” or drying.
Seasoning timber consists in expelling the moisture, and may be
done either by natural or artificial means. The former method
merely consists in stacking it in a dry sheltered place; the
seasoning being effected in from two to five years.

There are several methods of artificial scasoning. By the
desiccating process, the timber is placed in a chamber and
exposed to a current of hot air. Other methods consist in
impregnating the pores with creosote or metallic salts.

Timber may be protected against moisture, by painting it
from time to time with good oil paint; the timber, however,
should be dry before the paint is first applied. Pitch and tar are
also good preservatives.

TABLE VI.—STRENGTH OF TIMBER.

TENSILE STRENGTH PER SQUARE INCH.
Crushing
Strength per
With Across Square Inch.
the Grain. the Grain.
i 1bs. 1bs. 1bs.
! Ash, . . . . 17,000 9,300
Beech, . . . . {11,600 to 17,300 9,300
‘ Elm, . . . . 14,000 10,300
Fir (Red Pine), . . 12,000 540 to 840 6,800
Oak, English, . . 12,000 2,316 6,400
yy American, . . 10,000 6,000

29. Strength of Timber.—The tenacity of timber is much
greater when pulled in the direction of the grain than across the
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grain. In the former case, the tenacity varies with that of the
fibres themselves, while in the latter case, it depends on the
lateral adhesion of the fibres. Table VI gives the strength when
the timber is dry and in good condition. It will be noticed that
the tensile strength with the grain is much greater than the
crushing strength.

(6.) Casr Irox.

80. Uses of Cast Iron in Structures.—Cast iron is a material
which enters largely into most classes of structural work,
although of recent years its use has not been so general as
formerly. At present, wrought iron and steel are gradually
taking its place in those members of a structure which are
exposed to direct tension, or to bending stresses. One reason
of this is, that the tensile strength of cast iron is small compared
with that of wrought iron or steel; but another, and perhaps more
important, cause is that it is not a reliable metal. In the
process of casting cavities are often formed in the body of the
casting, owing to the generation of gases. Also, owing to the
shape of the casting, or the presence of iroun of different qualities,
unequal stresses are generated in the process of cooling, which
sometimes cause the fracture of the casting ; while in other cases
initial stresses are developed, causing minute cracks which
escape detection, but which afterwards may cause failure. Cast
iron, unlike wrought iron and other materials, gives no warning
of its approaching failure, which is also a very great objection.
Notwithstanding all these drawbacks, however, it will, probably,
always be useful and economical in those parts of a structure
which are exposed to direct compressive stresses unaccompanied
by vibration ; as in pillars for supporting warehouses, mills, &ec.
It is also well adapted for arched ribs, for girders, roofs, &c.;
although even here, except in the case of small spans, wrought
iron or steel will be found more economical. It is much used
by the general builder for gutters, lintels, window-frames, &c.,
for which purposes it is well suited. It also lends itself more
easily than wrought iron or steel for ornamental work, and is
much used for the parapets of bridges and such other positions
where appearance is of importance, but where it is not exposed
to much stress.

31. Varieties of Cast Iron.—There are various kinds of cast
iron which have their distinctive names, according to the district
in which they are made, or the kind of ore from which they are
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manufactured, and they differ a good deal from each other both
in colour and texture. Their strengths are very much influenced
by the presence of foreign materials, such as carbon, phosphorus,
sulphur, &c.

According to Hodgkinson, “ white cast iron is less liable to be
destroyed by rusting than the gray kind; and it is also less
soluble in acids ; therefore it may be usefully employed where
hardness is necessary, and where its brittleness is not a defect ;
but it should not be chosen for purposes where strength is
necessary. In a recent fracture it has a white and radiated
appearance, indicating a crystalline structure. It is very hard
and brittle.”

“ G'ray cast iron has a granulated fracture, of a gray colour,
with some metallic lustre ; it is much softer and tougher than
white cast iron.”

Between these extremes of colour there are many intermediate
varieties, the whiter kinds, as a rule, being the harder and more
brittle, while those approaching to gray are the softer and
tougher, and the better fitted for structural work.

The castings which give the best results, both as regards their
ultimate strength and their elasticity, are produced by mixing
in proper proportions a number of different kinds of the metal,
the best combinations being the result of practical experience.

The tenacity of cast iron varies a good deal ; inferior qualities
have only a strength of about 5 tons to the square inch, while in
some cases as high a result as 15 tons has been obtained. The
average tenacity is from 7 to 8 tons.

32. Relative Strengths of Small and Large Castings.—The
transverse strength of small castings is relatively greater than
that of large ones, and is augmented by rapid cooling.

What 1s termed the skin of a bar, or the outside chilled
surface, appears to add to its transverse strength.

This is borne out by the results of some experiments made by
Major Wade, and given in Table VII., where he compared the
transverse and tensile strengths of proof bars cut from the body
of a cast-iron gun with those cast at the same time in separate
vertical dry sand moulds.

These experiments show that in small castings the transverse
strength is increased by rapid cooling, but the tensile strength
is diminished. This diminution of tensile strength, however,
does not seem to be common, and only applies to high class
castings similar to those employed in these experiments. Major
Wade remarks that, ““As a general rule, the tenacity of the
commmon sorts of foundry iron is increased by rapid cooling.”
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TABLE VIL
COEFFICIEXT OF TrNsiLE STRENGTH
TRANSVERsE RUPTURE. PEr SQUARE IxcH. Sezaric Gravrry.
Bar cut Bar cast Bar cut Bar cast Bar cut Bar cast
from gun. separate. from gun. separate. from gun. separate.
1ba 1bs. Ibs. 1bs,
8,415 9,880 30,234 29,143 7°196 7°263
9,233 9,977 31,087 30,039 7278 7°248
8,575 10,176 26,367 24,583 7276 7331
8,741 10,011 29,229 27,922 7250 7°281 g
p=

The chilled surface or skin of a casting adds very much to its
power of resisting a crushing stress. Mr. Hodgkinson (in his
experiments on the crushing strength of cast-iron pillars) found
that the external part of the casting was always harder, and
consequently stronger to resist crushing, than that near to the
centre; and in the case of hollow pillars the hardness increased
with the thinness of the tube. He found that, “In solid pillars,
24 inches diameter of Low Moor iron No. 2, the crushing force
per square inch of the central part was 29-65 tons, and that of
the intermediate part near to the surface was 34:59 tons; whilst
the external ring, 4 inch thick, of a hollow cylinder, 4 inches
diameter, of which the outer crust had been removed, was
crushed with 39-06 tons per square inch ; and external rings of
the same iron, thinner than half-an-inch, required from 49-2 to
51-78 tons per square inch to crush them. These facts show the
great superiority of hollow pillars over solid ones of the same
weight and length.”

In the case of large castings the difference of hardness and
crushing strength between the iron at the centre and at the
surface, although it exists, is not nearly so great as in small
castings.

33. Engineers’ Requirements in Castings for Structural Work.—
In engimeers’ specifications, when referring to castings, it is
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usually laid down that they must be free from any defects and
be cast with sharp edges. In the case of pillars, it is becoming

usual to specify that they be cast vertically on their ends and
not on their sides; it is also usual to specify that at each melting

TABLE VIIL—TgNSILE AND TRANSVERSE STRENGTH OF CasT IRON.

lbs. Tons. ~ 1bs.
Caﬁtl'::t,lron (Scotlax.xd), ItIo. 2,. Col(?} 16,683 = 745 476
Ca]l;xl'g:lt Iron (S.cotlo.nd), No. 2., Hof} 13,505 = 6-03 463
(‘a}x?:xl'::t Iron (S.cotla.nd), No. 3, Cold} 14,200 = 635 446
Cal?l‘::t Iron (Scotland), No. :?, Hof. z 17,755 = 793 527
Degloax;ti[r?n (S.cotlax.ld), ?Io. 3., Ho? 21,907 = 978 537
Blg)el BII!:;: (Bu'mx.ngha.m), No. 1, 2 ' 17,466 = 7°80 463
BuggzyBII:::’l (Birmi.ngha.rn), }.To. l,} 13,434 = 6-00 436
CO(IJ% lg?éﬂls tIrt.)n (N. Wa.les), No. 2,} 18,855 = 842 413
CoﬁioéI‘ﬁigxs)t Iron (N. Wales), No. 2,} 16,676 = 745 416
Lo& lh(liioglras{ron (Yc:rkshlre), No. 3: ; 14,535 = 649 467
Mean, . . . . . . .| 16,602 = 7-37 464

one or more test-bars of certain dimensions are to be cast, which
are afterwards to be placed on supports a certain distance apart
and tested with dead weights in the centre. For example, rect-
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angular bars, 2 inches by 1 inch, placed on supports 3 feet apart
with the deep side vertical, should bear a central load of 30 cwts.
and deflect before fracture at least -29 inch. Amnother common
test is, that bars, 1 inch square, placed on supports 4 feet  inches
apart, shall bear a central load of 550 lbs. It is not usual to
specify the direct tensile or crushing stresses of the bar, though
1t is sometimes done.

Table VIII. gives the results of some experiments made by
Mr. Hodgkinson on cast-iron bars, 1 inch square, the tensile
strength was obtained by a direct pull, and the transverse
strength by placing each bar on two supports 4 feet 6 inches
apart, and loading it at the centre with gradually increasing
static loads.

In America, iron masters obtain castings of much greater
strength than we do in this country. These are used for the
manufacture of guns. This great strength is got by employing
a very superior ore to begin with, and then by frequent recasting
and keeping the metal under fusion from three to four hours.
By these latter means an increase of strength equal te 60 per
cent. may be obtained.

(c.) WrouGHT InoON.

34. Wrought Iron as used in Structures.—Of all the materials
which are at the present time employed in engineering structural
works, wrought iron is the most general. Whether or not this
will continue to be so, it is difficult to say. Appearances at
present seem to indicate that steel in some form or other will
gradually replace it, mainly for economical reasons.

The quality of wrought iron varies a good deal, and depends
primarily on the quality of the cast iron from which it is made,
and on the care taken in its manufacture. The amount of
carbon which it contains has a great deal to do with its quality.
In very soft irons the quantity of carbon is almost impercepti-
ble; when it reaches } per cent., the iron becomes harder and
stronger, and is known as “ soft steel.” The presence of carbon,
although it increases its strength, makes the welding much more
difficult.

35. Testing Wrought Iron.—When a bar of uniform section
is tested for tensile strength, the extension which occurs is
at first pretty general over the length of the bar. When
the bar, however, approaches the point of rupture, a large
local extension takes place near the place of fracture, attended
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by a corresponding contraction of the area of the bar at this
int.

PoAfter rupture, the contraction of area at the point of fracture

should be noted. This is a very important index of the quality

of the iron. The extension which the bar undergoes in a certain

length should also be observed. The quality of the iron is

ascertained from the following results :—

(1) The ultimate tensile strength per square inch.

(2) The contraction of area at the point of fracture, or the
extension in a certain length of the specimen.

36. Tensile Strength of Wrought Iron.—The ultimate strength
of a specimen of wrought iron depends to a certain extent on
the shape of the specimen. In order to get good results,.there
should be no sudden variations of section in the bar tested, and
care should be taken to have the pull exactly longitudinal with
the bar.

Table IX. gives the net results of 587 experiments made by
Mr. Kirkaldy.

TABLE IX.—TENSILE STRENGTH OF WROUGHT IRON.

BREAKIRG WEKIGHT PER SQuare IxcE or
ORIGINAL _AREA.
NUXBER OF EXPERINENTS.
Highest. Lowest. Mean.
Tons. ' Tons. Tons.
188 Rolled bars, . . . 307 19-9 257
72 Angles and straps, . . 285 16°9 244
167 Plates with the grain, . 279 167 298
160 ,, across the grain, . 271 145 206

It will be seen from the table that iron of very different
qualities was tested. On the whole, the quality is much superior
to that ordinarily used for structural work.

Table X. may be taken as representing the tensile strength
both with and across the grain, and also the contraction of area
at the point of fracture of iron as ordinarily used for construc-
tional work. )
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TABLE X.—STRENGTH OF WROUGHT IRON AS USED IN BRIDGE

WoORK, &c.
Tenslle Ten-xile C&n:rr::t:tzn C&n:xtlc;n
DXXOMINATIOX. strengtn strength | o000t of frac-| point of frac-
with the | acrossthe |iyrg with the| ture across
graln. grain, grain. the grain.
ans. Tons. Per cent. Per cent.
Plates, 20t0 22 (16 to 18| 7to 10| 3 to 4
Angles and Tees, . 21 to 23 oo 12 to 16
Flat bars, . . 21 to 24 " 18 to 22 veo
Round bars up tol}in.diam.,| 20 to 22 16 to 18
| Roundbarsabovelj ,, |19 to 21 13 to 16

Soft and ductile irons draw out a good deal under stress, and
though they may not give a high breaking stress per square
inch of the original section of the bar, yet, when measured with
respect to the fractured area, they show very good results.

A hard specimen, which possesses little ductility, does not give
a great elongation, and the fractured area will not be much less
than the original area of the bar. One advantage of using a soft
iron in a structure is, that it will stretch a good deal before
fracture takes place, and consequently will give ample warning
before it collapses.

As a rule, the smaller and thinner a plate or bar is after
leaving the rolls, the better results it will give in testing. This
seems natural enough when we consider that the particles of iron
are more likely to be thoroughly welded together, and that im-
purities are more likely to be eliminated. Angles and tees also give
better results than plates rolled from the same quality of iron,

37. Tensile Strength of Wrought Iron across the Fibre.—In
the process of rolling plates and bars the molecules of the iron
are elongated in the direction in which the plate or bar is rolled,
what is termed a “fibre” being formed, and the bar always
shows greater strength when tested in the direction of the fibre
than when tested across it, the proportion roughly varying as
21 to 18. The elongation of the specimen, and the contraction of
area at the point of rupture, are also greater when the specimen
is tested with the grain than when tested across it. It is usual

for engineers, when drawing up a rigid speciﬁcsa\.t,ion3 of the
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strength of plates, to take cognisance of this fact, and to
mention the ultimate strength and contraction of area for plates
when tested both ways.

38. Strength of W};lds.—There is a popular belief that the
strength of a welded joint is as great as that of the bar itself,
and no doubt this is so, when the iron is of a quality well adapted
for welding, and when the greatest care is taken by using a clean
fire, scarfed joints, &c. Experience, however, proves that the
strength of the weld is nearly always less than that of the
original bar, In some cases to the extent of 50 per cent. For
this reason, and also on account of the cost, welds should, if
possible, be avoided in structural work, and if they have to be
made, the bar should be swelled out, so that its sectional area be
greater at the welded joint than at other parts. By this means
the deterioration of strength suffered by the welding process is
partially or wholly neutralised.

39. Iron Wire,—When wrought iron is drawn out in the form
of wire, its tensile strength is very much increased ; the amount
of increase depending upon the diameter. For example, iron
wire, y;;th inch in diameter, when made from iron of a tensile
strength of 25 tons per square inch, will have an ultimate
strengh of about 35 tons, or even more. The wire used in
the cables of the Niagara bridge had a strength of about 44
tons per square inch, and cases have been known where it
has reached 56 toms. It is a strange thing that the specific
gravity of wire is rather less than that of the iron from which
it was produced, so that its additional strength is not due to the
closeness of the molecules, but must arise from some other cause
not clearly understood. When wire is annealed, it loses a large
portion of its strength, and becomes, in fact, only about the
same as the iron from which it was produced.

40. Compressive Strength of Wrought Iron.—It is very rarely
that structures fail from the actual crushing of the material. If
a compressive member fail, it is generally due to buckling or
bending sideways, owing to want of proper stiffening. From
cexperiments made on short cylinders, it has been ascertained
that ordinary wrought iron is crushed or bulged with from 16 to
20 tons per square inch.

41. Effects of Annealing.—Annealing wrought iron of small
sections diminishes its ultimate tensile strength but increases
its ductility. In the case of iron which has suffered fatigue,
' annealing i8 very beneficial. It is a good practice to anneal
crane chains from time to time; by this means their brittleness
is removed and their ductility restored. According to Morin,
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the annealing of large forgings is injurious, as it produces a
crystalline structure; and the same authority states that the
prolonged annealing of iron of small sections has a bad effect.

42. Shearing Strength of Wrought Iron.—The shearing strength
of wrought iron is practically equal to its tensile strength ;
this may be tested by punching holes in plates, or by cutting
them with an ordinary shearing machine. : -

. Table XI. gives the result of some experiments made by
Mr. Little in order to determine the force required to shear
wrought-iron bars with parallel shear blades.

TABLE XI,—EXPERIMENTS ON SHEARING WROUGHT-IRON BARS
WITH PARALLEL CUTTERS.

PressuRE OX CUTTERS.
Expuionnt | - Baro. | Torbur | S —
POriment ! inlInches. | in Inches. |Square Inches. Pm%‘:utg in szfzg'r?fgc o |
Tons. Area cat, Tons. |

1 30 05 1:50 334 00-3

2 30 05 1-50 346 23°1

3 30 10 300 692 231

4 30 10 300 68°1 227

5 3:02 10 302 597 19-8

¢ 302 10 302 621 206

7 50 204 10-20 2106 206

43. Expansion and Contraction due to Change of Temperature.—
All metals in the solid state expand with an increase, and
contract with a diminution of temperature, and the change of -
length which they undergo is proportional to the change of -
temperature, at least between the limits of 32° and 212° Fah.,,
or between 0° and 100° on the centigrade scale.

The coefficient of . linear expansion of a material is the fractional
part of its length by which it elongates or shortens owing to a
change of temperature of 1°.

Most tables give the coefficient for 1° on the centigrade scale.
It will be an easy matter, however, to reduce the results to the
Fahrenheit scale, bearing in mind that 1° Fah. : 1° cent. :: 5 : 9.
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Let !
4L

length of a bar at 0° C.
its length at ¢9.

PROPERTIES OF MATERIALS USED IN STRUCTURES.

a = the coeflicient of linear expansion for 1° C.

Then the elongation for 0 = « ¢l

and [, = I(1 + at) .

. ()

Ezample 1.—By how much will a wrought-iron girder, 200
feet in length, elongate when the temperature is raised 40

degrees Fah. ?

The amount of elongation is expressed by « t?/ where

= 40°,

e = 0-00000642.

{ = 200 feet.
Elongation = 00000642 x 40 x 200 = 05136 foot = 061632 inch.

TABLE XII.—CoOEF¥FICIENTS OF LINEAR EXPANSION,

Desacription of material. l(i}::g-c:%ta?:- l?:;ﬂ:cé:;i:t_ | At.uhorlty.
sion for 1°C. |sion for 1°Fah.
1 METALS,
| Brassrods, . . 100001052 Ray.
T Copper, . ‘00000944 Smeaton.
Iron (cast), ‘000011094 Ramsden.
’s ss (from bar 2 in,
square), ‘000011467 Adie.
v s (from bar § in.
square), 000011022 ”
»» (wrought), . 000012204 Laplace & Lavoisier.
; " ' : 100000642 Borda.
Steel (antempered), . 000010788 Laplace & Lavoisier.
» (tempered), . 000012396 v
s> (blistered), . . [ 000011500 Smeaton.
s (vod), .+ & . |-000011447 Ramsden.
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(d) SreEr

44. Different Kinds of Steel.—The term steel is a very elastic
one, and includes metals which differ very widely from each
other in strength and other properties. Of late years a mild
form of steel has been largely manufactured for boilers, ships,
bridges, &c., which differs very little from wrought iron; in
fact, it is very difficult to say where ¢ wrought iron” ends and
¢ gteel ” begins.

In its chemical composition steel is the same as wrought iron
with a little admixture of carbon. A very slight difference in
the amount of carbon produces a very great difference in the
strength of the metal ; thus, a steel which has a tensile strength
of 28 tons per square inch may, by slightly altering its chemical
composition, have its strength raised to 50 or 60 tons.

It is principally with mild steel that we are here concerned.

Formerly, the difficulties attending the manufacture of a
reliable metal were so great, that engineers set their faces
against its use. Many failures have occurred which could not.
be accounted for, and justified the suspicion with which this
metal was regarded. This uncertainty in the manufacture
and behaviour of steel has recently passed away, and a material
can now be produced which is quite as reliable as wrought
iron, and even more uniform in its strength; and there can
be little doubt that in the future it will to a large extent
take the place which wrought iron now holds as a material for
structures.

The advantages which it offers, when applied to bridge-work,
are very great and very obvious.

Its strength is from 40 to 50 per cent. in excess of that of
wrought iron, and it has a proportionate superiority in elasticity
and ductility, while the cost of its production is not very much
greater. The advantages which this superior strength gives are
great, especially in bridges of large span, as the dead load of the
structure will be very much diminished. Other advantages will
be subsequently referred to when treating on steel bridges.

45. Strength of Steel.—The tensils strength of steel varies
between very wide limits. That for mild steel, as used in
structural work, is from 27 to 32 tons per square inch ; while,
in very hard varieties, it may be as high as 60 tons.

The crushing strength for the soft varieties is about equal to
the tensile strength. In the harder varieties it is much greater,
and may reach as much as 150 tons.
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The shearing strength is approximately equal to three-fourths
of the tensile strength. It has been found that mild steel of
29 tons tensile strength has only a shearing strength of 241 tons.
On account of this weakness in the shearing strength, it is the
practice to use iron rivets for steel structures.

46. Elasticily of Steel.—From experiments made by the
“ Steel Committee,” it appears that the limit of elastic reaction
for the qualities of steel upon which they experimented was, on
the average, about 21 tons per square inch both for tension and
compression. For milder qualities, it is not so high. For
28-ton steel the limit of elasticity is reached at about 18 tons.

From the experiments above referred to, it was found that
with bars under compression, the mean decrement of length per

ton per square inch was j;gth of the original length of the
bars; and under tension, the mean increment of length was

seath of the original length. This is equivalent to a modulus of
compressive elasticity = 13,459 tons, and a modulus of tensile
elasticity = 13,089 tons, or a mean of 13,274 tons.

From experiments made by Sir W. Fairbairn, he found the
modulus of elasticity somewbat higher—namely, 13,839 tons.
The average modulus may be taken as 13,393 tons, or 30,000,000
Ibs., which is considerably in excess of that for wrought iron.

47. Admiralty Tests for Steel.—The Admiralty specification
for steel plates, angles, &c., is as follows :—

«]. Strips cut lengthwise of the plates to have an ultimate
tensile strength of not less than 26, and not exceeding 30 tons
per square inch of section, with an elongation of 20 per cent. in
a length of 8 inches.

¢« 2. Strips cut lengthwise or crosswise, 13 inch wide, heated
uniformly to a low cherry-red, and cooled in water of 82° Fah.,
must stand bending in a press to a curve of which the inner
radius is one and a half times the thickness of the plates tested.

¢“ 3. The strips are to be cut in a planing machine, and are to
have the sharp edges taken off.

‘““4, The ductility of every plate is to be ascertained by the
application of one or both of these tests to the shearing, or by
bending them cold by the hammer on the Contractor’s premises
and at his expense.

¢« 5, All plates to be free from lamination and injurious surface
defects.

“6. One plate to be taken for testing by tensile, extension,
and tempering tests from every invoice, provided the number of
plates does not exceed 50. If above that number, one for every
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addition of 50, or portion of 50. Plates may be received or
rejected without a trial of every thickness on the invoice.

- “7. The pieces of plate cut out for testings are to be of
rallel width from end to end; or for at least 8 inches of length.
 When the plates are ordered by thickness, their weight is to

be estimated at the rate of 40 lbs. per square foot for plates of
l-inch thick, and in proportion for plates of all other thicknesses ;
the weight so produced is not to be exceeded, but a latitude of
5 per cent. below this will be allowed for rollmg in plates of
balf an inch in thickness and upwards, and 10 per cent. in
thinner plates.

“ These weights may be ascertained by weighing as much as
10 tons at a time.

“ The steel for angles, tees, bars, &c., to stand a tensile strain
of 26 tons to the square inch, and not to exceed 30 tons to the
square inch.”

The other tests for angles, &c., to be the same as those
described for plates.

48. Lloyd's Tests for Steel.—Lloyd’s rules for steel used in
ship-building stipulate that steel plates and angle and bulb steel
shall have an ultimate tensile strength of not less than 27 tons,
and not exceeding 31 tons per square inch, with an elongation
before fracture equal to 20 per cent., measured on a length of
8 inches. They also specify that ¢ strips cut from the plate,
angle, or bulb steel to be heated to a low cherry-red, and cooled
in water of 82° Fah., must stand bending double round a curve,
of which the diameter is not more than three times the thickness
of the plates tested.” The Liverpvol Underwriters’ Registry
give a tensile range of strength from 28 to 32 tons per square
inch.

49. Rules of the French Admiralty.—The rules of the French
Admiralty for the strength of steel plates, &c., are somewhat
different from those already given. They do not prescribe any
maximum strength, and the minimum strength is fixed accordmg
to the thickness of the plates. For example, for plates £ inch in
thickness, the minimum strength is fixed at about 28 tons per
square inch, and for thinner plates it is fixed at about 28%
tons. In order to test the ductility they prescribe that, in
an 8-inch test-piece, the elongation must be 20 per cent. of
its original length, and provided this test is complied with
they do not fix any maximum strength.

50. Steel Castings.-——Great improvements have been made
during the last few years in the production of steel castings, and
they can also be made at prices very much lower than formerly.
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The chief objection to castings made in steel used to be their
want of ductility; now they can be made of soft steel of a tensile
strength of about 30 tons, and giving an elongation of 20 per
cent. in an 8-inch test-piece. ’

If the steel casting is to be used in a position where it will be
subjected to vibratory stresses, it is advisable to anneal it. Up
to the present, steel castings have not been much used by the
bridge-builder, but in the future it is probable that they will
become more common.

51. Effects of Annealing on Steel.—Annealing steel reduces its
strength but increases its ductility. It is very useful when
applied to castings. '

Table XIII., which gives the results of some experiments,
shows the effect of annealing on plates.

TABLE XIII.

UX-AXXEALED, AXNEALED.

Exp or StERL
Tenslle Ultimate set Tensile Ultimate set

strength per| in length of ltnenﬁhper in length of
8q. inch.

8q. inch. 8 inches. 8inches. )
] Tons. Per cent. Tous. 'er cent. |
Hard steel 4-in. plate, .| 3297 16 65 28-52 2412 |
Mid ,, ¢ ,, . 26-60 2432 2405 29-87

2856 2505 26-95 2690

?” 2 i »

52. Treatment of Steel by Hydraulic Pressure.—The late Sir
Joseph Whitworth introduced and patented a system, which
promises to become common, of subjecting steel ingots, when in
the fluid state, to great pressure. The pressure is produced by
hydraulic power, and may reach as much as 12 tons per square
inch on the metal. When the fluid metal is poured into the
mould, the pressure is applied, and may be continued from
1 to 4 hours. Its effect is to drive out all gases and other im-
purities which may be collected in the body of the metal, and to
render it more ductile and homogeneous in its texture. By
the old method of casting, a large portion of the ingot con-
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tained cavities which necessitated a good deal of cutting to
waste. The contraction produced in the length of the ingot
during the application of the pressure amounts to as much as
12% per cent. - '

Tables XIV. and XV.* give results of the tests of the pressed
and unpressed ingots.

TABLE XIV.—MzAN oF TEst-Pieces Cur LONGITUDINALLY.

Elastic limit in | Ultimate break-| Contraction in Elongtlon
tons ger square [ing stress in tons| area at point of
noh. per square inch. fracture 4 inches.
Per cent. Per cent.
Unpressed Ingot, 11-11 2918 4-41 876
Pressed Ingot, 1145 29-53 790 1251

TABLE X .—MEgAN oF TEsT-Pi1ECES CuT TRANSVERSELY,

Elastic limit in | Ultimate break-| Contraction iun Elongation
tons f:r square 'ing stress in tons| area at point of in .
ch. per square inch. fracture. 4 inches,
Per cent, Per cent. '
Unpressed Ingot, 1143 28-04 3:61 791
Pressed Ingot, 12-38 30-07 757 12:74 ;

CHAPTER 1V.
MECHANICAL LAWS RELATING TO STRESSES ON STRUCTURES.

DiagraMS OF FORCES.

53. Preliminary.—The whole subject of the investigation of the
stresses on beams and framed structures is a very important one,

* Greenwood.— Proc. Inat. of C.E., vol. xcviii., p. 83
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and of late years a number of eminent men have devoted a great
deal of time and skill to its elucidation.

Our knowledge of the subject now is very much more com-
plete than formerly, and, generally speaking, the subject is much
simplified, and the results arrived at in most cases are practically
exact.

It is true that on some questions (a8, for example, the stresses
on continuous girders, and the investigation into the strengths
and the distribution of stresses in solid beams), something yet
remains to be explained and simplified ; yet these cases are the
exceptions to the general rule stated, and the difficulties and
ambiguities which arise in the investigation of these special cases
need not prevent the student from thoroughly understanding the
subject in general.

It may here be stated that it is presumed the student possesses
an elementary knowledge of mathematics; with this knowledge
he will have little difficulty in understanding the solutions given
of the different problems which will be presented to him.

The two main mechanical principles upon which are based the
calculation of stresses in structures are :—

(1) The principle of moments ;
(2) The parallelogram or polygon of forces.

These two principles we shall briefly explain and illustrate.

54. Mechanical Forces.— A force is a quantity which is measured
by some unit of weight, such as pounds, cwts., or tons.

A straight line may be taken to represent a force—(1) when
its length measured to some scale, represents the magnitude of
the force in lbs., tons, &c.; and (2) when its direction corre-
sponds to the line of action or the direction of the force.

We may say that a force is completely determined when we
know—

(1) Its magnitude,
(2) Its point of application,
(3) Its direction.

Suppose a body, A B, whose weight is W (fig. 6), to rest on a
horizontal surface, A C; it presses on the surface with a force
equal to W ; the line of action of this force is vertical, and it
passes through the centre of gravity of the body. At the same
time the surface, A O, is said to exert an upward vertical
pressure against the body equal to W. This upward pressure is
termed the vertical reaction of the surface, or the supporting force.
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55. Forces of Compression and Tension.—If two equal forces,
P, P, act on a body, a b (fig. 7), in a direction fowards each other
and in the same line, the body is in a state of compression, and is
said to receive a thrust; the amount of this compressive force
being equal to P.

Members of a structure which are wholly in compression are
sometimes called siruts, columns, or pillars.

w
# L ! b P
B
Fig. 7.
al AW c o
<—.—a‘.__, ;—.—ﬁé ‘l,.
Fig. 6. Fig. 8.

If the two equal forces, P, P, act on ab away from each
other and in the same line (see fig. 8), the body is in a state of
tenston, and is said to receive a pull; the amount of the tensile
force being equal to P.

Members of a structure which are wholly in tension are
sometimes called tzes.

56. Principle of Moments.—Z7/%e moment of a force with respect
to a fixed point ts the product of tts tintensity into the per-
pendicular distance between the pownt and the direction of the
Joree.

The force may be expressed in pounds, tons, or any other unit
of weight. The perpendicular distance may be expressed in
inches, feet, or any other unit of measure.

If the force and distance be expressed in pounds and inches
respectively, the moment will be expressed in nch-pounds. If
they be expressed in tons and feet respectively, the moment will
be expressed in foot-tons, and so on.

In fig. 9, the body A a is supposed to be acted upon by a
force P, in the direction of the linea P. A
is a fixed point or pivot round which the
body may revolve. Draw A a perpendicular

to a P; then the moment of the force P @
P

with respect to the point A 1s equal to
P x Aa; and the tendency of the force is
to cause the body to revolve round A in a
direction opposite to that of the hands of a Fig. 9.
clock.
The principle of moments may be thus stated—
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If any number of forces acting in the same plane on a body,
keep it in equilibrium, or in a state of rest, then the sum of the
moments of the forces which tend to turn the body tn one direction
round a fixed point, must be equal to the sum of the moments of the
forces which tend to turn it in the opposite directton round the same
pond.

In order to explain this by the aid of a diagram, let A B

A A

Fig. 10,

(fig. 10) represent a horizontal rod or beam resting on a fixed
support or fulcrum, C, and let weights P, and P, be suspended
from its extremities. The weight P, has a tendency to turn the
rod round C in the direction of the hands of a clock, while the
weight P, has a tendency to turn it in the opposite direction.
If the bar be in equilibrium the moment of P, with respect to
C must be equal to that of P, with respect to the same point; or
expressing the relationship by symbols,

PIXA0=P2XBC ° [ . (1)

This is also called the principle of the lever.

Another condition of equilibrium comes into operation here,
namely, the upward reaction at C, or the supporting force is
equal to the sum of the downward forces.

If R = supporting force, we have (in symbols)

R=P1+P3 ° ) . (2)

This principle may be thus stated—

If a loaded beam be supported by one or more props, the sum of
the upward reactions of these props i equal to the total weight on
the beam.

It is not necessary that the external forces should be parallel,
or act in a vertical direction, in order that the principle of
moments should hold true. In fig. 11, the two forces, P, and P,,
are shown acting in directions which are inclined to each other;
let their directions be produced so as to meet at the point O.
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Let x, and z, represent the lengths of the perpendiculars from
the point C on these directions. If the beam be in a state of
rest, we have, as before,

P.z,=P,.2,

Join O C, the reaction at O acts along this line. To find its
amount, set off O« = P, and Ob = P,; draw ac-and be¢

Fig. 11.

parallel to O B and O A respectively; these lines will meet O C
at the same point, ¢; and the line O ¢ will represent the magni-
tude of the reaction at C.

57. Graphic Method of determining the Stresses on Framed
Structures.—The simplest, and in many cases the most accurate,
method for determining the stresses on framed structures is by
means of stress-diagrams, which must be accurately drawn to
scale. In such diagrams lines are made to represent forces,
both in magnitude and direction. By measuring these lines to
the proper scale, the stress on any member (no matter how com-
plicated the structure is) may be determined. It is assumed that
the different members of the structure are so connected together
by pins that the joints are as free to rotate as if they were
hinged ; when this is so, the stress-diagram is theoretically a
perfect representation of the stresses on the structure. In prac-
tice, however, this is not generally the case, as the connections
have a certain amount of rigidity, which, to a certain extent,
modifies the stresses. |

58. Equilibrium of Three Forces acting on a Point-Parallelo-
gram of Forces.—A point acted upon by forces is said to be in
equilibrium when it is in a state of rest. This occurs when the
forces balance each other.

A point acted upon by a single force cannot be in equilibrium,
as it will move in the direction in which the force acts, and will
continue to do so as long as the force is applied.
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If & point acted upon by two forces be in equilibrium, the two
following conditions must be fulfilled :—

1. The forces must be equal to each other in magnitude.

2. They must act in the same straight line, but in opposite
directions.

If three forces acting in the same plane on a point, as
represented by three straight lines, be in equilibrium, the
following condition must be fulfilled :—

If a parallelogram be drawn which has for its adjacent sides two
strarght lines representing in magnitude and direction any two of
the forces, then the third force must be equal in magnitude, and act
tn an opposite direction to the diagonal of the parallelogram, drawn
Jrom the junction of the bqfore mentioned adjacent sides.

In order to illustrate this, in fig. 12, let three forces, represented
by the three straight lmes, 0A,O B O G, act on the point O in
a direction away from it (as shown by the arrow-heads). Take
any point, O, (fig. 13), and draw O, A,, O, C,, equal and parallel to

B
P
(o) F—A vA,
\ / \\ /
\ / \ /
\ / \ /
\ / \ g
\s »’
C 4 Bg cl - B'
Fig. 12, Fig. 13

O A, O C respectively. Complete the parallelogram O, A, B, C
and draw the diagonal O, B,. Now, if the forces O A O B O (L/‘
(fig. 12) balance each other, OB must be equal and parallel to
O, B, (tig. 13). The diagonal O B, of the parallelogram A O C B,
is called the resultant of the two forces O A and OC; and it
produces the same effect on the point O as these two acting
together.

Example 1.—If two forces of 3 and 4 tons act on a point
in directions at right angles to each other and away from the
point, what is the magnitude and direction of their resultant
force 1

In fig. 14, draw a line O A = 3 tons, on any scale; draw O B
perpendmular to O A, and make'O B = 4 tons on the same scale ;
complete the parallelogram AOBCand join OC. OC will re-
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present the resultant of O A and O B; by scaling we find it
=5 tons. If OO be produced on the other side of O to C,,
making O C, = O C, then O 0, will balance O A and O B.

C

!
>
®

Fig. 14. Fig. 15.

59. Resolution of Forces.—We have seen how the resultant of
two forces, or what may be termed the composition of forces, may
be found. The converse of this, called the resolution of forces,
consists in resolving a single force into two others, acting in any
direction.

If, for example, we have a single force, O A (fig. 15), and we
wish to resolve it into two others making angles « and 8 with
its direction, draw lines O B and O C, making angles « and 3
respectively with O A ; through A, draw A B parallel to O C,
and A C parallel to O B; then O B and O O will represent the
required forces both in magnitude and direction.

60. Triangle of Forces.—What is known as the principle of
the triangle of forces is merely another way of stating that of
the parallelogram of forces.

The principle may be stated thus—

If three forces acting at the same point are in equilibrium, three
lines drawn parallel to them will form a triangle, the lengths of the
sudes of which are proportional to the forces. In fig. 12 we have
the three forces O A, O B, O C in equilibrium and acting at the
point O ; take a line O, A, (fig. 13), parallel to O A ; through its
extremities, O, and A,, draw O, B,, A, B, parallel respectively
to O B and O C, and meeting at the point B,. The sides of the
triangle A, O, B, are proportional to the forces O A, O B, and
O O,—namely, O, A;:0,B,: A;B,=0A:0B:0C; and if
O, A, is made equal to 0 A, then 61 B, and A, B, will be equal
t0 O B and O C respectively.
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It will be gathered from the foregoing, that if there are three
forces meeting at & point, which are
in equilibrium; if their directions
be known; and, further, if the
magnitude of one of them be
known, then the values of the
other two can be found. In order
to illustrate this, suppose the two
ends, @ and b (fig. 16), of a string,
a o b, to be fixed, and a weight, W,
to be hung from the point, o, it is
required to determine the tensions
on the portions oa and 0b of the string. We have here three
forces acting at the point, o, which are in equilibrium—namely,
the weight, W, which acts vertically downwards, and the tensions
on oa and 0 b. Of these three forces only one—viz.,, W—is
known. In order to find the other two we proceed as follows :—

On the vertical line through o measure off a distance,

o ¢, on any scale, equal to W. Through ¢, draw ¢ a,,

¢ b, parallel respectively to ob and oa and meeting
5 these lines produced in &; and a@,. Then the lines,
' oa, and 0b,, which are the sides of the parallelogram,
< 0 a, ¢ b,, will represent the tensions on o a and o b re-
Fig, 17 spectively ; and their amounts may be determined

""" by measuring their lengths on the scale.

It will be generally found more -convenient, especially in
complex structures, to have a separate diagram showing the
stresses on the different members of the structure, apart from
the figure representing it. Thus, in the case we have been
considering, take a vertical line, o, ¢, (fig. 17), to represent the
weight, W ; through its extremities o, and ¢, draw o, b, and ¢, b,
parallel respectively to o a and 0 b, and meeting at the point, }7 ;
these lines will represent the stresses on the strings oa and o lb
The diagram in fig. 17 is called the stress-diagram.

The above is the graphic method of finding the stresses on the
string.

Analytical Method.—The stresses may be found analytically
thus :—If oa, 0b make angles « and B respectively with a b,
we have the following equations :—

Stress on 0 ¢ = Wesin«, Wl sunlaxn)
Stress on 0 b = WBmM—8. Wesw—sinfas )

Suprose for example that W = 100 lbs.; and a = 8 = 45°,

then stress on 0 @ = stress on 0 b = 100 sin. 45° =—1—~(/)g =707 lbs.

o,
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Example 2.—In fig. 18, a weight of 5 tons is shown suspended
from the extremity, o, of an inclined prop, o b, the other extremity
of which rests against a wall. A horizontal tie, 0 a, is fastened
to o, and the other end fixed to the wall. If oa = 8 feet and
a b = 6 feet, determine the stresses on 0 b and o a.

On the vertical line through o, set off 0 ¢ = 5 tons; through ¢
draw c d parallel to o @ and meeting 0 b in ¢ ; then

o d (by scale) = 83 tons = compressive stress on o b,
¢d (by scale) = 6-6 tons = tensile stress on o a.

Ezxample 3.—Fig. 19 represents a simple roof truss resting on
two walls, and consisting of two rafters, A C, C B, equally

Fig. 18. Fig. 19.

inclined to the horizontal at an angle of 30°, and a horizontal tie,
A B, connecting the feet of the rafters together. Determine the
stresses on the rafters and tie-beam, if a weight of 4 tons be
placed on the apex, C.

The supporting force on each wall = 2 tons.

On the vertical, through A, set off Aa = 2 tons; draw a a,
parallel to A B; then

A a, = compressive stress on rafters = 4-0 tons by scale ;
@ @, = tensile stress on tie = 3:46 tons by scale.

These results may be verified analytically thus :—

Aa,=Aaxse60°=2x 2=4rtons;

ag, = Aa x tan 60° = 2 x /3 = 3:46 tons, the same a3
found by the graphic method.
4
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Another method of graphically determining the stresses, is to
set off, on the vertical through C, C ¢ = 4 tons, draw c ¢, parallel
to B C, meeting A C in ¢;; draw ¢, ¢, parallel to A B, meeting
Ccin ¢y; then

compressive stress on rafters = C¢; = ce;, = 4 tons, as before ;
tensile stress on tie = ¢; ¢, = 346 tons, as before.

By adopting this latter plan, we are saved the trouble of find-
ing the supporting forces at the abutments.

6l1. Polygon of Forces. — If any number of known forces
lying in the same plane act on a point, it is always possible
to find their resultant. In fig. 20 let the forces P,, P, P,
P, and P, be represented, both in magnitude and direction,
by the straight lines O P,, OP,, OP;, O P, and O P, and
act on the point O. First ind O R,, the resultant of P, and
P, as explained for the parallelogram of forces. Next find

Fig. 20.

O R,, the resultant of O R, and Py ; O R, will, therefore, be the
resultant of the three forces P, P, P,. Next find O R,, the
resultant of O R, and the fourth force P,; and so on. If the
five forces shown, be in equilibrium, their resultant will be zero ;
in which case O Ry will be in the same line with P, and equal
to it in magnitude. Itis not necessary to construct the parallelo-

ms in finding the successive results ; the method of procedure

being as follows :—

Through P, draw P, R, equal and parallel to O P,;
through R, draw R, R, equal and parallel to O Py;
through R, draw R, R; equal and parallel to O P, ;

and so on.
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If the forces be in equilibrium, O P, R, R, Ry O will form a
closed polygon. This polygon may be
drawn separately, as shown in fig. 21, %
by making o, p;, = P,, and drawing
PL7H T Ty TeTy and 7rgo, parallel re-
spectively to Py, Py, P, and P,. If the
forces be in equilibrium, o, p, 7, 4750,
will form a closed polygon.

The principle of the polygon of forces, -
which is merely an amplification of the A !
principle of the parallelogram of forces, Fig. 21.
may be thus stated— ,

If any number of forces acting on a point be in equilibrium,
and lines be drawn successively in the directions of the jforces and
proportional to their magnitudes, these lines will form a closed
polygon.

If any number of forces acting on a point be in equilibrium,
and if all the forces be known both in magnitude and direction,
except two, it is always possible to determine the magnitude of
these when their directions are known. For it is only necessary
to determine the resultant of the known forces in the manner
already described. This resultant is also the resultant of the
two unknown forces; so that we then have the whole system
reduced to three forces in equilibrium, one of which is known,
and the other two can be determined in the manner already
described for the parallelogram of forces.

CHAPTER V.
EXTERNAL LOADS ON BEAMS; SUPPORTING FORCES.

62. Different Kinds of Beams.—The term beam, when used in
connection with constructional work, is the name given to any
member of the structure which is exposed to {ransverse stresses,
whether the material of which it is composed be timber, iron, or
steel. The term girder is usually restricted to beams made of
iron or steel, and of a flanged form—that is, consisting of a top
and bottom flange connected by a web. In this work the terms
“beams” and “girders” will be used indiscriminately as meaning
the same thing.

A simple beam or girder is one which is supported at its ex-
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. t;-lemities and loaded at a point, or points, intermediate between
them.

A semi-beam or semi-girder is a beam or girder fixred at one
extremity only, and free at the other. The term cantilever is
also applied to this form of beam.

A continuous beam or girder is one supported at three or more
points.

Figs. 22, 23, and 24 represent the three kinds of beams re-
ferred to. A B, fig. 22, is the simple beam, which rests on the
two supports, A and B, usually termed “abutments,” and loaded
at an intermediate point with a weight, W.

Fig. 23 represents a semi-beam or cantilever, which is fixed at
.one end, A, to a wall or other support, termed the abutment,
and loaded at the other end, B.

p Q
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Fig. 22 Fig. 23.
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Fig. 24 represents a continuous beam resting on three supports,
A, G, and B. As before, the supports, A and B, are called
‘“abutments,” while the intermediate support, O, is termed a
¢“pier.” The beams are all supposed to rest in a horizontal
position, and the horizontal distances between A and B (fig. 22),
and between A and O and O and B (fig. 24), are termed the
“spans’’ of the beams.

63. External Forces on Beams.—When a rigid beam, as in
fig. 22, is loaded at one or more points, these loads, or weights,
act downward in a vertical direction, and they develop forces at
A and B, which act upwards in a vertical direction. These
upward forces are termed the ¢ reactions ” at the points of support,
or the supporting forces. All these vertical forces are termed the

forces acting on the beam, in-contradistinction to the
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forces produced in the fibres of the beam itself, which are termed
tniernal forces, ahd which will be treated of in a future chapter.

The forces which act downwards may, for the sake of con-
venience, be considered positive, and those which act upwards
negative. .

Since all the forces are parallel and act in one plane, there are
two conditions which must be fulfilled in order that the beam
may be in a condition of equilibrium :—

(1) The sum of the upward forces must be equal to that of
the downward forces; or, in other words, the algebraic sum of
all the forces must be zero.

(2) The sum of the moments of the forces which tend to turn
the beam in one direction must be equal to that of those which
tend to turn it in the other direction ; or, the algebraic sum of
the moments of the forces with reference to any point must be
zero.

As regards loads on beams, there are usually recognised three
varieties :—

(1) Loads concentrated at one or more points, which are
known as concentrated loads.

(2) Loads uniformly distributed over the whole or certain
parts of the beam. These are known as wuniformly-distributed
loads and are measured by so many lbs., cwts., or tons, per lineal
foot of the beam or span.

(3) Loads made up of a combination of the two former, or
those which are partly distributed and partly concentrated.

64. Beam Resting on Two Supports and Loaded with a Single
Weight.—In fig. 22, let m and n be the segments into which the
weight, W, divides the span, and let P and Q represent the
reactions at the abutments or the supporting forces; then, by
the conditions of equilibrium already given, we have

P+Q=W . . . (1),

and taking moments about A ; since the force, W, tends to turn
the beam about this point in the direction of the hands of a
clock, and the force, Q, tends to turn it in the opposite direction,
we get

W xm=Q(m + n) . . (2).

We have here two equations, from which the values of the two
unknown quantities, P and Q, may be determined. Reducing,
we get
m

m+<4n

Q=W. (3).
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P=W

(4)-

This latter expression, giving the value of P, may also be got
directly by taking moments about B.

m+n

If W is in the centre of the beam, m == n = %, where ! = span.

Substituting these values in the last two equations; we get

W
.P=Q=—2—,

which shows that when a weight rests in the centre of the
beam, the reactions at the abutments are equal to each other,
each being equal to one-half the weight.

It will be noticed that in the abhove investigation the weight
of the beam itself is not taken into consideration, and unless
otherwise stated, in all future examples this will also be the
case,

Example 1.—A. beam, 20 feet span, supports a load of 30 tons
mtuated at & point 7 feet from the left bearing. Find the sup-
porting forces, or the reactions, at the bearings.

Adopting the same notation which we have just been using,
we get—

m =T, n = 13, W = 30.

From equations (3) and (4)—

Q = 30 x o = 105 tons |
13
P =30 x -26"‘ 19°5 toms.
If the weight is at the centre of the beam,
P=Q=¥=l5tons.

Ezample 2.—If the supporting forces at the left- and right-hand
supports of a beam, 30 feet span, on which is placed a single
load, be 27 and 13 tons respectlvely determine the load and its
position on the beam.

The load W == P+Q—27+13-40ton8.
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From equation (3) (by transposing) m = \?V x I,

orm = %g x 30 = 975 feet ; n = 30 — 975 = 20-25 feet.
The beam is, therefore, loaded with 40 tons, placed at a
distance of 9:75 feet from the left support.

65. Beam Resting on Two Supports and Loaded with Two or
more Weights.—Fig. 25 represents a beam loaded with weights,

P Q

W@@@'@f

X'y 7 e

Fig. 25.

A

W,, W,, W,, W, whose distances from the left support are
respectively z,, «,, x;, z,.
Applying the two conditions of equilibrium, we get—

P+Q=W,+ W, + W, + W, =W . (5).

where the symbol ='W signifies the sum of W;, W,, W, W,
Taking moments about A, we get—

Qxl =W,z + Wy, + Wy, + Wz, =3 Wgx;

or,Q—ilzlf N ()}

Similarly, by taking moments about B, we get—
Pxl=W(l-2)+Wy(l-2)+Wl-=z5)+ W,(-x,)=3W( - 2);

o, P=2V0=D

P may also be found directly from equation (5) when Q is
known, and vice versd.

66. Beam Resting on Two Supports and Loaded with a Distri-
buted Weight.—In the case of a load uniformly distributed over
the whole or part of the beam, it is only necessary to find the
centro of gravity of the load, and consider it as a concentrated
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load acting at this point, and then to find the supporting forces
(as explained in the first case).

If a beam of span, /, support a uniformly-distributed load of
w tons per foot over its whole length, the total load W = w/,
and each of the supporting forces = %—l.

If the load only covers part of the beam, as is shown in
fig. 26, the supporting forces may be found thus—

Fig. 26.

Let the left-hand portion of the beam for a distance, z, be
loaded with w per foot,

Total load W = w .

Distance of its centre of gravity from the left support = ?;

dad

Taking moments about A and B in succession, we get—

2
Q x l=wxx§, or Q=w7a2—, and
P x z=wx(z-§), P="’"’(§§“").

Example 3.—The span of a beam is 62 feet, and it supports
loads of 10, 15, and 20 tons, resting at points which divide the
gspan into four equal parts. Find the pressures on the two

supports.
W,=10. W,=15. W,;=20.
2,'=13. #3=26. x3=239 =052
From equations (6) and (7)

20+ 2
Q=IOXI3+155; 6+ 20 x 39=25tons.

10 x 39 4+ 15 x 26 4+ 20 x 13

g = 20 tons.

P
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P+ Q=25+ 20 = 45 tons, the total weight on the beam,
which is a check on the result.

Ezample 4.—Three wheels of a locomotive rest on a girder
60 feet span. The centre of the driving wheel is 6 feet 6 inches
from each of the others, and 20 feet from the left abutment, and
it transmits a load of 15 tons—that transmitted by each of the
others being 8 tons. Determine the pressure which the girder
exerts on the abutments.

W,= 8 W,=15 Wy= 8. =W =3l
2, =135, x,=20. ;=265 I =60.

Q = 8 x 135 + 156>;) 20 + 8 x 26°5 = 101 tons.

P =31 — 10} = 20} tons.

If the weight of the girder itself be 20 tons, the total weights
on the abutments, taking this into consideration, will be 20} tons
and 30 tons respectively.

Ezxample 5.—A railway train 200 feet long, and of a uniform
weight of 2 tons per lineal foot, comes gradually on to a bridge of
300 feet span from the left. Find the pressure of the girders on
the abutments (the weight of the bridge itself not being con-

sidere%
(1) When 150 feet of the train are on the bridge, the remainder
being on the left abutment.

(2) When the whole train is on the bridge, the left-hand end
being 60 feet from the left abutment.

In the first case, the weight of the train on the bridge
= 150 x 2 = 300 tons; the centre of gravity of the load is
75 feet from the left abutment.

P=22 220 295 tons. Q=300 - 225 = 75 tons.

In the second case, W = 200 x 2 = 400 tons.

z = distance of centre of gravity of train from left abut-
ment = 160 feet.

_ 400 x 140

P 300

= 186°6 tons. Q = 400 - 1866 = 2133 tons.
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If the bridge consist of two main girders, the pressures of the
ends of the girders on the abutments will be one-half of P and Q
as found, that is, supposing the rails to lie mid-way between the
girders.

67. Beams projecting over one Support.—Fig. 27 is an example
of a beam, A C, which projects over one of the supports, B, the
end, C, being free. If this end be loaded with a weight, W, its

b @ % ©

X, ; X ———— 8 °
t‘_-r‘-l'- ¥

Fig. 27.

g..-.

action is to cause the beam to turn round B as a fulcrum,
the end A being lifted off its bearing, unless it is anchored
down.

Let P = stress on the anchor bolts,
Q = reaction of the support B,
W = weight placed on the end C.
Let AB =1/, and BC = [,

Taking moments about B we get—

Px!l,=Wxl; orP—yg—l
1
Taking moments about A we get—
QxlL=W( +1);orQ= wh Zl W-l’_

ifl =10 + L.
If the beam be loaded with a second weight, W, placed at a
distance, z,, from A, we get, by the same process,

Wz, + W1
A :

Qx =Wz, + Wi;orQ=
Taking moments about B we get—

Wl(ll - a:1) + Pll = W X lg; or . P = ng — Wl (ZL_ 231).
i

If Wi, be greater than W, (, — z,), P will be positive, and act
in a downward direction, so that unless the beam be anchored at
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thls end it will be lifted off the bearing. If, on the other hand,

W, (/, - x,) be greater than W /,, P will be negatlve, and will act
in an upward direction. In other words, the beam will exert a
downward pressure on the abutment A, and will not require to
be anchored.

There will be little difficulty in finding the supporting forces
in beams of this description when loaded with any number of
weights, either concentrated or distributed, and placed in any
position.

Example 6.—A beam, A C, 20 feet long, is supported on two
bearings, A and B, in the manner shown in fig. 27, A B being
equal to 12 feet and BC = 8 feet. The portion B C is covered
with a uniform load of 50 lbs. per foot, and a concentrated load
of 100 lbs. acts at a point on the beam 6 feet to the left of B.
Determine the upward reaction at the bearing B, and also the
nature and amount of the reaction at A.

The load on BC = 8 x 50 = 400 lbs,, and its centre of gravity
1s 4 feet to the right of B.

Taking moments about A we get—

Q x 12 400x16+100x6 or Q = 5833 lbs.
Taking moments about B we have—

Px12=400 x 4—-100x 6; or P = 833 lbs.

It will be necessary, therefore, to anchor the end A, the
stress on the anchor bolt being 833 lbs.

Ezample 7.—In fig. 27, é =20 feet ; L, = 30 feet; the portion
A B of the beam is loa.de with a distributed wexght. of 4 ton
per foot. The end A is anchored to the abutment by means of
a single bolt 2 inches in diameter. What weight placed at the
extremity of the beam O will produce a tensile stress of 5 tons
per square inch on the sectional area of the bolt ?

Sectional area of bolt = 3-1416 square inches.
Total stress on bolt = 5 x 3:1416 = 1571 tons.
Let W = required load.

Taking moments about B, we get—
W x 30 = 1571 x 20 + 10 x 10; or W = 13'8 tons.

Example 8.—In fig. 27, A B = 10 feet. Two weights of 20
tons and 20 tons are suspended from the arm B C at distances
of 15 feet and 20 feet from B respectively. The end A of the
beam is anchored to the abutment by two bolts of equal diameter.
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Determine the diameters of these bolts, so that they may be

subjected to a stress of 4 tons per square inch.
If P = total stress on the bolts, by taking moments ahout B,

we have—
Px10=20 x 15 + 30 x 20; or P = 90 tons;

that is, 45 tons on each bolt.

The sectional area of each bolt = 545 = 11-25 square inches.

If z = diameter of bolts, 7854 22 = 11:25; or £ = 3'8 inches.
68. Beams projecting over both Supports.—Fig. 28 shows an

i el
At 1, E#_,x_;m-x—‘igh_‘r’

Fig. 28,

arrangement where the beam projects beyond its supports in the

form of two cantilevers.
As before, let P and Q represent the supporting forces :—

Let ! = length of beam between the supports;
[, and /, = lengths of projecting arms.

W, and W, are weights placed at the extremities A and D;
and W, is a weight resting on the central bay at a distance x

from B.
It is required to determine, for a beam under these conditions,

expressions for the values of the supporting forces P and Q.
Taking moments about B and C successively, we obtain—

QxI+ W, xl=Wyxa+ Wgx (I+1),
from which we obtain by reducing—
Q=W2m+W3(lz+l2)—Wlll. (8).
Also Pxl+ Wyxly= Wo,(l—-2) + Wy ({ +1); or
_ W, (-2 + VVIl ¢+ 1)-Wsl,

P

(9)-
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From these two equations we get P + Q =W, + W, + W,

which proves their accuracy.
Example 9.—A beam 50 feet long rests on two supports 20

feet apart ; the left- and right-hand ends projecting beyond the
supports 18 feet and 12 feet respectively. Loads of 10 and 15
tons rest on these ends, and a load of 20 tons rests on the
central bay at a distance of 7 feet from the left support. Deter-
mine the supporting forces.
Referring to fig. 28, we find -
W, =10 tons. W, =20. W, = 15.
I, =18 l=20. =12 =z=T.

Substituting these values in equations (8) and (9), we get
20 x 7+ 15 % 32 -10 x 18

Q= 30 = 22 tons.
P=20x 13+100);38-15XI2=23t0n8.

P+Q=224+23=45tons =W, + W, + W,
which gives a check on the result.

Example 10.—In the last example, if the beam be loaded with
a distributed weight of 3 tons per foot, determine the supporting
forces. .
W,=18x 3 =54tons. W, =20 x 3 = 60 tons.

W,=12x3=36. ,=9. 1=20. /;=6. z=10.
Substituting these values in equations (8) and (9), we obtain

60 x 10 + 36 x 26 — 54 x 9

Q = 20 = 52'5 tons.

60 x 10 + 54 x 29 — 36 x 6
20

P + Q = 150 tons = total load on beam.

69. Continuous Beams.—In fig. 24 we have an example of a
beam resting on three supports—one at each end and one inter-
mediate. Such a beam is said to be a continuous beam of two
spans. If the beam rest on four supports, it is a continuous

beam of three spans; and so on.
At first sight it would appear that in beams of this class the

P= = 975 tons.
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reactions at the various points of support would be the same as
if the beam were disconnected at the points of support into a
number of independent beams ; but this is not so, as will appear
more clearly when we come to discuss the bending moments on
continuous beams.

Consider fig. 24 to represent a beam continuous over two
equal spans, /, and uniformly loaded with w per unit of length.
The total weight on the beam will then be 2wl

If the beam be cut through at C, so as to formm two independent
beams, we should have—

The load on the central pier = wl

The load on each abutment = !;—l.

If the beam be continuous, the total load on the pier and the
two abutments remains the same as before, namely, 2wl ; but
its distribution is quite altered.

If the central pier be a little Aigher than the side abutments,
the total weight of the beam, 2 w/l, will rest upon it, and there
will be no pressure on the abutments. The beam would then
consist of a double cantilever resting on C, the two arms being
CA and CB.

If the central support be lower than the side supports, the
total weight of the beam would be carried by the side supports
alone, the pressure on each being equal to w!; while there
would be no pressure on the centre. Usually the three sup-
ports are considered to be in the same horizontal line, and the
actual pressures upon them will be somewhere between the two
extreme cases considered. These pressures cannot be deter-
mined by the principle of the lever, and recourse must be had
to a method which involves very tedious and intricate calcula-
tions. It is not proposed to go into this analysis here ; those
who wish to do so will find the subject fully treated in the
works of Humber, Stoney, and other writers.

In actual practice it is not advisable to adhere too closely to
merely theoretical rules in the case of continuous beams. A
slight elevation or depression of one or more of the points of
support will alter to a large extent the amount of the supporting
forces ; and, consequently (as will be seen in a future chapterg,
the bending moments and stresses on the beam will also be altered.

It must be borne in mind that practically all girders are more
or less flexible ; if this were not 8o, continuous girders could not
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be employed at all, and it would be impossible to investigate
their strength.

70. Continuous Beam of Uniform Section and of Two Equal
Spans, each Loaded Uniformly throughout its entire Length.—In
fig. 29,

Let A C = CB =1 = length of each span ;
w = load per unit of length on A C;
w, = load per unit of length on C B;

P, R, Q = reactions at the three points of support, A, C,
and B respectively.

Fig. 29.

We have the following two, amongst other conditions of
equilibrium :—
By taking moments about C we get—

P.l-—wlx-é—:Ql—wllx% . (10).

Also, P+R+Q=(w+w)l . . (11).

It may be shown from these, and other relationships, that

p="%"% ; . . . Q2.

16 -
Q= Tw-w , - (13)
T A .
5
R = g(w +w)!l . . . (14).

If the intensity of load on both spans be the same, we have
w = w, ; and the supporting forces become

P=Q=Swl . . . (1)

R=-wl . . . (16

-] Ot
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Ezxample 11.—A continuous girder of two equal spans, 50 feet
each, is loaded with a uniform weight of 2 tons per foot on the
left-hand span, and 3 tons per foot on the other span—What
are the pressures on the three points of support ?

We have—

w =2, w, = 3, ! = 50.

Substituting these values in equations (12), (13), and (14), we

have—

7x 2-3
P=—

Q=" "1?;" 2 . 50 = 59375 tons.

x 50 = 34:375 tons.

R =2 (2 +3) x 50 = 156:25 tons.

If this girder be divided over the central support, so as to
produce two independent girders, the supporting forces would

be
P = 50, Q =175, R = 125.

It will be seen, therefore, that the effect of giving continuity
to the girder, is to increase very much the pressure on the
centre-support and to diminish it on the side-supports. In
consequence of this, it is not advisable, in actual work, to use
continuous girders where the foundations for the piers are
unreliable. There are two reasons for this—I1st, because the
pressure on the pier is increased; 2nd, if the foundations
subside the whole character and amount of the stresses in the
main girders are altered.

Example 12.—A. railway bridge, carrying a double line of
rails, crosses a ravine 400 feet in clear width between the
abutments. The platform is carried by two main girders, which
are supported at their centres by an intermediate pier; the
girders being continuous over the pier. If the dead weight of
the superstructure be equal to 2 tons per foot, and the weight
of a train of carriages be equal to 1} tons per foot; determine
the pressures on the pier and abutments when the bridge is
fully loaded with two trains.

Dead load on each span = 200 x 2 = 400 tons;
Live load on each span = 2 x 200 x 1} = 500 tons;
Total load on each span = 900 tons.
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" We have, therefore, from equations (15) and (16)—

Total pressure on pier = g x 900 = 1,125 tons.

Total pressure on each abutment = g- x 900 = 337-5 tons.

71. Continuous Beam of Uniform Section and of more than
Two Equal Spans, each Loaded Uniformly throughout its entire
Length.—By means of the theorem of three moments, which is
due to Clapeyron, the pressures on the piers and abutments of
continuous beams of any number of spans, whatever may be
their dimensions, and however loaded, may be calculated. The
investigation is too abstruse and tedious to be introduced here.
The following table, however, gives the result of these calcula-
tions up to 5 spans ; the spans being all equal to each other, and
the distributed-load being uniform throughout.

! = length of each span.
w = load per unit of length.

TABLE XVI.
LoaDps Oox TRE
Noussr or
Spaxs.

Abutment. | 1st Pier 2nd Pler. 3rd Pler. 4th Pier. | Abutment.

1 1

3 5 3

4 11 11 4
3 ']‘B wl ia wl -1—(-) wl ese ves ia wl

11 32 26 32 11

— = —wl | = wl —
4 2 wl % wl 25 w 28 w 23 wl

4

5 :—l;—:wl gwl :—Zwl z—Zwl —Ewl -;—:wl
Infinite, . | 39 wl [1'13 w! | 98 wl wl w! 39 w!
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From this table it will be seen that the larger the number of
spans, the more equable are the loads on the piers. For all
spans over five the load on each of the piers, with the exception
of the first and last, is practically equal to w!; while that on
the first and the last is very little more.

Example 13.—A continuous beam of four equal spans, 20 feet
each, is loaded uniformly with 5 cwt. per foot. What are the
loads on the five supports?

w="0cwt. {=20feet. wl=>5 x 20 = 100 cwt. = b tons,

Load on lst and 5th supports = 11 x & = 196 tons.

28
32

Load on 2nd and 4th n =gg X b =571 ,,
26

Load on 3rd 0 =‘—)—8x5=4°64 ’

It must be remembered that the results given in Table XV1I.
are based on the assumption that the beams are of uniform
section throughout.

In the case of beams of uniform strength, that is, beams in
which the strength at the different parts is made proportional to
the stress coming on these parts, the results are different. For
example, for a beam of uniform strength, continuous over two
equal spans, /, uniformly loaded with w per foot,

The pressure on each abutment = %w l, and

The pressure on the central pier = %w L.

CHAPTER VL

BENDING MOMENTS FOR FIXED LOADS.

72. Definition.—When a beam resting on two supports is loaded,
it becomes deflected downwards in & vertical direction; the
amount of deflection being different at different parts of the
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beam. A bending moment is developed at each section, and
the amount of this moment is proportional to the deflection
and also to the longitudinal stress existing at each section. In
order to determine these stresses it will first be necessary to
determine the bending moments. '

When a beam 18 acted upon by external loads, the bending
moment at a given section t8 equal to the sum of the moments,
taken relatively to that section of all the external forces acting on
the portion of the beam on either side of it.

It does not matter which segment is considered, the result
being the same in both cases.

73. Bending Moments in a Beam produced by a Single Load.—
The beam, A B (fig. 30), is loaded with a weight, W, at a dis-
tance, m, from the left abutment ; the span of the beam being I
it 1s required to determine the bending moment of the beam at
the section, a b, situated at a distance, x, from the left abutment.

P Q
A
A @ @ B
x:;!.,”_’:::::i.}‘%t::_’:f:::i
]

Fig. 30.

Let P and Q represent the reactions at the abutments.

The external forces acting on the segment to the left of ab
are represented by the single force, P; those acting on the
segment to the right of a b are represented by W and Q.

First consider the left segment.

Let M,, = bending moment at @ b; then from our definition

Il-m

M,,=Px,andas P = W——-

4
wegetM,, = Wz E—Z_'_" . . . (1)-

Next consider the segment to the right of a b.
In this case we get M ,, = Q (! — 2) - W (m — 2).

P

Putting for Q its value —-3-', we get

which is the same as that previously found.
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" For the given position of W, M,, will be a maximum when
2 is & maximum ; that is, when x = m.

The greatest bending moment, therefore, in a beam loaded
with a single weight occurs at the point of application of the
weight, ~

When W is expressed in tons, and the other dimensions in
feet, M will be expressed in foot-tons. If W be expressed in
pounds, and =z, /, and m in feet, M will be expressed in foot-
pounds, and so on.

. Example 1.—A beam 20-feet span, supported at its extremities,

is loaded with a weight of 5 tons, situated at a point 7 feet from
the left abutment. Determine the bending moment at a point
12 feet from the left abutment, at the centre of the beam, and
at the point of application of the load.

P = é—);-ol—:—” =325tons. Q=5 - 3256 = 1'75 tons.

Let M,, M,, M, be the required bending moments.
M, =Q x (20 - 12) = 175 x 8 = 14 foot-tons.
M, = Q x 10 = 175 foot-tons.
Mi=Px 7=227 |,

74. Beam Loaded with a Number of Weights.—Let W,,

W,
W, W, W, W, be a number of loads resting on the beam, A ﬁ,
as shown in fig. 31

Let 2 = distance from the abutment, A, of the section, whose
bending moment it is required to determine, and let 2, =, - - -
s represent the distances of the several weights from this section.
It is & matter of indifference which segment is considered; the

moment of one segment is positive, and that of the other
negative. -
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Considering left segment, we get
M=Pz-(W,z, + Wy, + Wy,
Considering right segment, we get
M=Q(l-2) —(W,z, + Wz, + Wgx,).

If the values of P and Q be substituted in these expressions,
it will be found that they are precisely the same.

If M,, M,, - - - M; represent the bending moments at the
points of a.ppheatlon ot W,, W, - - - W, we get the following
expressions for these moments : —

M, =P(z - x)

M; =Pz - x) - W, (2 — ).

My =Pz - ag) - W, () — 5) = Wy (2 — ).
M,=Q(y - =) - We(zg — z) - Wy(z5 — )
M, =Q(y - %) — We(zg — 25)-

M, = Q(y - ).

Fzample 2.—A beam 50 feet span is loaded with wexghts of
5, 6, 7, and 8 tons, situated at points distant from the left abut-
ment of 10, 25, 30, and 40 feet respectively. What are the
bending moments at these points ?

5x 40+ 6 x 25 +7 x 20 4+ 8 x 10
50

Q=26 —-114 = 14:6 tons.
M, = 11-4 x 10 = 114 foot-tons.
Mg =114 x 25 - 5 x 15 = 210 foot-tons.
M, =146 x 20 — 8 x 10 = 212 ’
Mg = 146 x 10 = 146 foot-tons.

P = = 114 tons,

75. Diagram of Bending Moments,—The bending moments at
the different sections of a beam may be found by means of a
diagram. The graphic solution is often simpler and more ex-
peditious than that obtained by algebraic methods. We propose
to apply both methods in obtaining the bending moments of
beams and cantilevers loaded in different ways, one being used
as a check on the other. It is important to bear in mind that
in order to get correct results by the graphic method, it will
be necessary to draw the diagrams correctly and to a large scale,
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When this is done, the results as obtained by measurement may
be relied upon to the same extent as those obtained by algebraic
methods.

76. Case I.—Beam supported at each end and loaded with a
Single Weight.—Let A B (fig. 32) represent a beam of span, /,
loaded with a weight, W, at the point, C, distant  from A. We

Fig. 32.

have already seen that the bending moment at C is represented
algebraically by the equation M, = W a:l -2_95 .

Draw a vertical line through C, and on it set off on any scale
of foot-tons, C O = W z 5—‘;—“’. Join A O and O B. The triangle

A O B is called the diagram of bending moments of the beam,
the different ordinates of the triangle representing the bending
moments at these points.

To find the bending moment at any point, m, it is only neces-
sary to raise an ordinate at this point, intersecting the line O B
at m,. The ordinate m m;, so drawn, will give the bending
moment at m. In the same way the bending moments at any
other point of the beam may be found.

It will be seen that the maximum moment is that represented
by the line O C, and this occurs at the point of application of
the load. If the load be placed in the centre of the beam the
diagram of moments will be represented by an isosceles triangle.

Example 3.—A. beam 32 feet span is loaded with a weight of
5 tons, placed 12 feet from the left support. Draw the diagram

of moments.

From equation (1) the moment at C is

5x 12 x 20
- 32

Set off, therefore, O C (fig. 32) on any scale of foot-tons = 37-5.

M, = 375 foot-tons.
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Join AO,0B; AOB will then represent the required
diagram.

In order to find the bending moment at the centre of the beam,
and a point 26 from left support, set off A ¢ = 16 and A m = 25,
and draw the verticals c¢;,, m m;. Measuring these lines on the
scale for foot-tons, we find ¢ ¢, = 30 foot-tons, and m m, = 13-125
foot-tons.

These results may be checked by the algebraic method thus :—
M,=QxcB,and M, =Q x mB;

b x 19
32

M, = 1-875 x 16 = 30 foot-tons,

M, = 1875 x 7 = 13-125 foot-tons,

which confirm the previous results.

It will be seen from this that, for any beam supported at its
extremities and loaded with a single weight, the bending
moments at the points of support are zero, and that they gradu-
ally increase as we proceed from these points to the point of
application of the load, where they become a maximum. Also,
that if the beam supports a single rolling load which travels
across it, the greatest bending moment occurs at its centre and

and as Q=

= 1-87b tons,

is expressed by M,,,,= W x -l—, where ! =span; and the maximum
bending moment at any other point distant, z, from the abutment
s M, - W.ol=2)

77. Case II —Beam supported at both Ends and loaded with
two or more Weights.—The method of finding by analysis

W| wl wl

the bending moments of a bea.m thus loaded has been already
explained. To construct a diagram of bending moments let A B
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(fig. 33) represent a beam loaded with weights, W,, W,, W,, rest-
ing on the points @, b, c. Construct the diagram for each weight
in succession, on the supposition that it is the only load resting
on the beam. . Each of these diagrams will be represented by a
triangle. Referring to the figure, A a; B will be the diagram for
W,, Ab; B for Wy, and A ¢; B for W,. At the point a, a a; will
represent the moment for sVVI, aa, that for W,, and aa, that
for W,. The total moment at a will be the sum of these. If
we set off, therefore, on the ordinate, the length aa, = aay
+ @ ay + a a,, this line will represent the total bending moment
at a for the three weights. In the same way make b6, = b b,
+ bb, + bb,; bb; will then represent the total bending moment
at b ; similarly cc, will give the total moment at ¢, where c¢, is
the sum of ceg ccy and cc,. Join A a, b, c, B; this polygon
will give the curve of bending moments of the beam when the
three weights rest upon it simultaneously. The length of the
ordinate from any point of the beam to the polygonal figure will
give the moment at that point.

Another and more direct way of drawing the diagram curve
is that shown in fig. 33a, which represents a beam, A B, of span
l, loaded with weights W,, W,, W,, W, resting at the points

61 (1
xl
N,
Q
l b lc |x |d B
Vi. w' W‘
Fig. 33a.

a, b, ¢, and.d. The bending moments at these points, when all
the weights rest on the beam, are first found analytically, as
already explained. Draw the ordinates aa,, b5, cec, dd,,
making these lines on a scale of foot-tons equal to the moments
at a,d,¢c,d. Join A ay, b, ¢, d;, B. This polygon will be the
diagram for the beam.

To find the moment at any point, z, draw the ordinate z z,,
intersecting the polygonal curve at x;. The line =z, will give
the moment required.

We shall illustrate this further by taking a practical example.
Consider the case of a beam 50 feet span and loaded, as in
example 2.
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We have here—
W,=5tons, W,=6, W=7, W, =28
P = 114 tons. Q = 14°6 tons.
M, = 114 foot-tons. M, = 210 foot-tons,
M, = 212 foot-tons. M, = 146 foot-tons.

Set off to scale (fig. 33a) aa, = 114, 5 b, = 210, cc, = 212,
d d, =146 ; then, as before, Aabdcd B represents the dla.gram
of moments.

Since P is greater than W, or, to write it more concisely,
P>W,, the line @, b, must incline upwards towards the right,
and oonsequently the bending moment gradually increases be-
tween the points a and b, also since P > (W, + W,), §,¢,
must also incline upwards from b, to ¢,, though only by a very
small amount. Since P <(W, + “}2 + W,), ¢, d;, must slope down-
wards towards the right, or the bending moment decreases be-
tween the pointscand d. Lastly, since P <(W, + Wy + W, + W),
d; B must also slope downwards toward the right. The maxi-
mum moment occurs at that point of the polygon where one of
the sides slopes upwards and the adjacent side slopes downwards.
If one of the sides of the polygon be horizontal, the maximum
moments occur on that portion of the beam opposite this side.
It will be seen from this that if we commence at the left abut-
ment and pass towards the right, the sides of the polygon will
slope upwards towards the right when the reaction of the left
abutment is greater than the sum of the weight passed, and vice
versd. If the reaction of the abutment be equal to the sum of
the weights passed, then the side of the polygon for that interval
will be horizontal.

To find the moment at any intermediate point on the beam,
say at /, where A ! = 18 feet; draw the vertical //;, intersecting
the side of the polygon at ll The line ¢, will represent the
required moment, and by measurement we get M, = 1652 foot-
tons. This result may be checked algebraically, as follows :—

M,=Px Al-W, xal=114 x 18 —5 x 8 = 1652 foot-tons.

78. Position of Maximum Bending Moment.—The point of a
beam loaded with wexghts W,, W,, W, &c., where the bend-
ing moment is a maximum, may be found by calculation
thus :—Having found P, subtract the quantities W,, W,
W,, &c., from it in succession, until the remainder becomes
zero, or a negative quantity. When the remainder, by adopt-
ing this process, becomes zero, there will be more than one
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point of maximum bending moment, and they will occur at all
sections of the beam between the position of the weight last
deducted and the weight next in order. 'When the remainder
becomes negative for the first time, there will only be one
maximum bending moment, and it will occur at the weight last
deducted. In the example we have just been considering,
P-W, =114 - 5 = 64, a positive quantity; P - W, - W,
= 11'4 - 5 — 6 = 04, also a positive quantity ; P - W, - W,
~W;=114-5-6 -7= - 66, a negative quantity. The
maximum bending moment occurs, therefore, at the point of
application of W, which agrees with that obtained by means of
the diagram.

79. Purely Graphic Solution.—The diagrams of bending mo-
ments which have just been given do not afford a complete
graphical solution of the problem, inasmuch as the moments at
the points of application of the weights have first to be deter-
mined by algebraic or arithmetical calculation. It is possible,
however, to dispense with these calculations and to determine
the curve of moments by a purely graphical method only, in the
following manner:—

A B (tig. 34) represents the beam. Set off to scale the points
of application of the weights at a, b, ¢, and d. In the example

£ a Al s
e A R
Fig. 34.

under consideration, A a=10,ab=15,b¢=5,cd =10, d B=10.
On the vertical line x, x; (fig. 35), set off x, x,, x, ,, 2, 2, %, x5,
on a scale of tons, equal respectively to W,, W,, %Vsa W, In
the present case @, %3 = 5, 323 = 6, gz, = 7, ®, 2, = 8.

— -
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Take any point O and join it to the points 2, z,, ;, 2,, and ;.
Through the points A, a, b, ¢, d, and B, in fig. 34, draw verticals.
Through A,, any point on the vertical through A, draw A;a,
parallel to O x;, meeting the vertical through a at a, In the

Fig. 35.

same way draw a,b,, b, c,, ¢, d,, and d, B, parallel respectively
to Oz, O =, O z,, and O x;, meeting the ordinates through b, c,
d, and B, at the points d,, ¢,, d,, and B, : join A; B,, Through
O draw OR parallel to A, B,, meeting z, z, at the point R.
z; R will then represent the reaction at the left abutment, or

z, R = P = 114 tons.
Similarly R x; represents the reaction at the right abutment, or
Razy = Q = 146 tons.

This is a very important solution, and shows how the supporting
forces, in the case of a beam loaded with one or more weights,
may be determined graphically.

The polygon A, «, b, ¢, d, B, represents a diagram of bending
moments, but as the position of the point O(in fig. 35) is not known,
the values of these moments cannot be determined by this diagram.
In order to determine these values it will be necessary to con-
struct another diagram in the following manner :—Through R
draw the horizontal line R O, : on tbis line take a distance, O, R,
equal to some integral number on the scale of the horizontal
dimensions of the beam. For example, make this polar distance
O, R = 10, which is one-fifth the span of the beam: join O, z,,
0, z,, 0, z,, O, z,, and O, z,, and construct the polygon A «, b,
¢, d; B (tig. 34) by drawing lines parallel to these. his
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polygon will represent the bending moment diagram of the
beam. If correctly drawn, the last line, d; B, will come exactly
to the point B. The bending moment at any point of the beam
18 proportional to the ordinate at that point, and its amount is
determined by measuring the ordinate on the scale for vertical
loads adopted in fig. 35, and multiplying the result so found by
the polar distance O, R. For example, the ordinate a @, = 11-4,
and multiplying this by O, R = 10, we get—

M, =114 x 10 = 114 foot-tons.
Proceeding in the same way for the other points we have—
M, = 210 foot-tons, M, = 212 foot-tons, M, = 146 foot-tons,

which agree with the results previously found by calculation.
The bending moments may be found directly by measuring the
ordinates on a new scale for moments. This new scale being
constructed by subdividing each division on the scale for tons
into 10 equal parts, as the polar distance is equal to 10 on the
scale for dimensions. If the polar distance be 5 or 6, the
divisions on the scale for tons must be subdivided into  and 6
parts respectively.

80. Graphic Determination of the Centre of Gravity of the
Loads on & Beam.—The centre of gravity of the loads on the
beam may be found graphically thus:—Produce the two sides,
A a,, Bd,, of the polygon in fig. 34 until they meet at E ; draw
the vertical E E,; E, will be the centre of gravity of the wexghts
W, W, W, ancli

Ezxample 4—A beam 60 feet span is loaded with 7, 12, 10,
and 3 tons placed in order, proceeding from left to rlgbt and
dividing the span into five equal parts. Determine the point on
the beam where the bending moment is & maximum.

7 x 48 +12 x 36 + 10 x 24 + 3 x 12
60

Q=32 - 174 = 146 tons.

Deduct the first load from P ; we get 174 — 7 = 104, a positive
quantity. From this amount deduct the second load, we get
104 - 12 = — 16, a negative quantity. The point of the
beam, therefore, where the maximum moment occurs, is at the
weight of 12 tons, or 24 feet from the left abutment.

The moments at the points of application of the different
loads are thus found analytically :—

P= = 17-4 tons.
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M, =174 x 12 = 2088 ft.-tons.

M,=174x 24 — 7 x 12 = 3336 ft.-tons.

Mo,=174x 36 -~ 7 x 24 - 12 x 12 = 314*4 ft.-tons.

M, =174 x 48 -7 x 36 — 12 x 24 — 10 x 12=175"2 ft.-tons.

The student should check these results by the graphic method.

The bending moment at a point midway between two loads
is the mean of the moments at the points of application of the
loads. For example, the moment at the point midway between
the loads of 12 and 10 tons in the last example

3336+ 3144
= 9

-t

= 324 foot-tons.

Example 5.—A beam 40 feet span supports four loads of 9, 1,
2, and 3 tons, situated at distances of 10, 18, 32, and 36 feet
respectively from the left abutment. Find the maximum bending
moment and where it occurs.

S5x30+1 x2+2x8+3 x4
40

Q=ll—5=6. 'P—W1=5—5=0.

The maximum bending moments will therefore occur at the
points of application of 5 and 1 tons, and at all points between
them, and its amount is

M;w; =5 x 10 = 50 foot-tons.

P = = § tons.

The bending moments at the other weights are
M,=6 x 8 -3 x 4 = 36 foot-tons.
M, = 6. x 4 = 24 foot-tons.
81. Case III.—Beam Supported at both Ends, and Loaded with

a Uniformly Distributed Weight.—The beam shown in fig. 36 is
thus loaded—

Let ! = span of beam ; w = load per unit of length ;
W = total load on the beam = w!.

The supporting force at each abutment = —t;—l.
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To find the bending moment at any section, a a, at a distance,
x, from the left abutment, we have the segment, A a, held in
equilibrium by

(1) The upward reaction of the abutment acting at A, and

equal to b ;

(2) By the load on the segment which equals wx, and which
acts vertically downwards, and may be supposed to be concen-
trated at its centre of gravity ; and

(3) By the bending moment at aa.

e have, therefore,

!
M,=Zxa-waz=-"(-2) . . (2
74 w!
i b 4
N DN AV
N « o SRR Y N
24
RS R 2P
Fig. 36.

Equation (2) gives an expression for Hetermining the bending
at any point of a beam loaded with a uniformly distributed
weight. This expression is a maximum when & = / — z, that is

when & = é

The maximum bending moment will, therefore, be at the
centre of the beam, and is expressed by the formula,
wl"

M= =« « .« . (3

whenx = 0,andz={ M, =M, = 0.

The expression M, = w2_x (! - ) is the equation to a para-

bola. The diagram of bending moments for a beam supporting
a distributed load will, therefore, be represented by a parabolic
curve whose axis is vertical and passes through the centre of
the beam.

To construct this parabola draw an ordinate through the

i e,
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k4

centre, on a scale of foot-tons = %l. This line will represent the

axis of the parabola, and its highest point will be the vertex.
Two other points on the curve will be those points on the beam
over the edges of the abutments.

Ezxample 6.—A. girder of 60 feet span has a load of % ton per
foot distributed over it. Determine the bending moment at the
centre of the girder, and also at points 12 feet and 24 feet from
the centre.

In equation (2) we have w = g; ! = 60; z = 30,18, and 6 for

the three cases. Let M, M,, M, be the three bending moments
respectively. '

wi® 3 (60)2 _
1= g =% g = 337-5 foot-tons.
M, —g X l2§ x 42 = 2835 foot-tons.
3 6
M; = % 3 b4 = 1215 "

82. Beam Supported at both Ends, and Loaded with a Uniformly
Distributed Weight over a certain portion of its Length next to
one Support.—A B (fig. 37) is a beam of span /feet supporting
a load of w per foot, distributed over the length, @, next the

P Q"

7

7
WA L IR P - m e - wewm -
e
wa '

Fig. 37.

abutment, A. In order to determine the supporting forces,
P and Q, this load may be supposed to be concentrated at its

centre of gravity, which will be at a distance, g, from the left

abutment

20-a wa?
P=wa -y, Q=57
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 To determine the bending moment at any point at a distance, 2,
from the left abutment, we get, when z =a or when z > q,

M.=Px—wa( _c_2r:>___.wa2‘)(ll-x) o . (4)

and when z < a we get

M,=Pa:—w'a:

wz (a(2]l-a) }

2 T %

().

If the load do not extend beyond the centre of the span, the
maximum bending moment will be at the extremity of the load,

(IR,

. or when £=a. If the load extends beyond the centre of the

beam the greatest bending moment may be found thus—If C is
the centre of the beam and % that of the load, set off £n, so

that Zn = £ C x ;_z ; n will be the point of the greatest bending

moment.

Diagram.—To construct the diagram of bending moments for
this beam. Take the line A% B, (fig. 38) =1. Make A.C = Q;

draw the ordinate CD =2 ‘S%-- a) got from equation (4) by

putting z=a. Join A, D, B, D.
Draw a parabola on A, C, representing the bending moments

Fig. 38.

on A, C, on the supposition that it is an independent beam of
span, a, supported at A, and C, and uniformly loaded with a
weight, wa. Next take a number of points, ¢, d, ¢, f, on C A,
and through them draw ordinates, making each ordinate equal
to the sum of the ordinates of the triangle A; D C and the
‘parabola—for example, ¢ c; =c ¢, + ¢ ¢, and 80 on for the others.
These ordinates will represent the bending moments at these
points, and A, f; ¢; dg ¢g D B, will represent the curve of bend-
ing moments for the beam.

Example T.—A beam, 54 feet span, is loaded uniformly for a
distance of 36 feet, measured from the left abutment, with 15 cwt.
per lineal foot. Find the position of the maximum bending
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moment, and its amount ; find also the bending moment at the
centre of the beam, and draw a diagram of the curve of

moments.
Referring to fig. 37, we have =54, a=36, w=15, £ C=9.
If n be the point of maximum bending moment

36
kn=9 x m-=6, or A n=24.

The maximum moment, therefore, occurs at a point 24 feet
from the left abutment—

108 — 36
Q=540 - 360 =180 cwts.
From the equation

M,=Pw—z—0—2£2; by putting =24,

we get
' 15 (24)®
2

which is the maximum bending moment on the beam. If M=
moment at the centre,

M, =360 x 24 - = 4,320 foot-cwts,

15 (27)2
)

L The bending moment at the right-hand extremity of the load,
or at a point 36 feet from the left abutment, is given by equa-
tion (4).

M.=360x 27 - =4,252'5 foot-cwts.

wa®(l —a) 15 x (36)% x 18

o)
e~ a----- |
1D B
K[ 7o
SIS Y 2 S SN |
“wa
Fig. 39.

83. Beam Supported at both Ends and Loaded Uniformly over a
Portion of its Length not extending to either Abutment.—Let A B

6
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fig. 39) represent a beam of span /, and loaded over the portion
D with a weight of w per unit of length.
TetOD=a, AC =0b.
Total load on the beam = wa.

z-b-g b+ o
7 . Q=wa. T

The bending moment at any section between A and C is
given by the equation—

P=wa.

l

where = distance of the section from the left support.
For any point between D and B

M, =Q-2)="- z)(b +;‘) . )

M,=Pz=23(1-8-3) . . ()

For any point between C and D

— B2 — b)2
Mg==Px—w(x2 ) =w?£<l—b-g)—w(x2 ) . (8)

From one of these three equations we can determine the
bending moment at any section of the beam.
The maximum bending moment occurs at the point n, where

kn=3xEO . . . . (9)

where O is the centre of the beam, and % that of the load.
Diagram of Bending Moments.—Let A, B, fig. 40, represent

Fig. 40.

the beam ; the load extending over the portion C, D, which is
equal to a; K, is the centre of C, D,.
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The moment at K, on the supposition that the whole load wa is
wam(l - m)
l )
Draw the vertical, K, H, to represent this moment. Join A; H,
B, H. From the extremities of the load C,, D,, draw the ver-
ticals C, C,, D, D;. Join O, D,. Next consider the portion of the
beam C; D, as an independent beam supported at C, and D,, and
loaded uniformly with the weight wa. Construct the curve of
bending moments for this beam : this curve will be represented
2
by the parabola C; K, D;, whose central ordinate K, K, = =
By laying off ordinates from C, D,, equal to the ordinates of
the parabola O, K, D,, we get for the complete curve of bending
moments the curve bz F D,, and the two straight lines A, C,,
B, (;) ; the latter being tangents to the curve at the points C,
and D,.
Ezxample 8.—A beam 72 feet span is loaded uniformly with
1 ton per lineal foot over the portion commencing at 12 feet from
the left support, and ending at the middle of the beam, or for a
distance of 24 feet. Find the bending moments at each end of
the load, and also the position and magnitude of the maximum
bending moment.

concentrated at this point, will be = where A, K, =m.

Total load on beam = wa = 24 tons.
a=24,b=12,1 = T72.

wa a 24
e - - — = nd - 2 = o
=22 (1-3 3) =73 x (72 - 12 = 12) = 16 tons

Q =24 - 16 = 8 tons.
The moment at the point C, fig. 39, is from equation (6),
M, =16 x 12 = 192 foot-tons.

The moment at D is from equation (7),
M, = 8 x 36 = 288 foot-tons.
To find the point, #, where the greatest moment occurs, we
get from equation (9),

kn =2 4 12 = 4 feet, since kO = 12 feet.

72

The maximum bending moment, therefore, occurs at & point
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8 feet to the left of the centre of the beam, or 28 feet from the
left support.

To find its amount—
In equation (8), P = 16, 2 = 28, w = 1, b = 12. Substituting
these values, we get
(28 - 12)
5]

)
= 320 ft.-tons.

84. Beam Supported at both Ends, and Loaded Uniformly on
jts Two Segments with Loads of different Intensity.—From the
descriptions given in the last two cases, the student will have
little difficulty in solving this problem. Itis evident that if one
load only be considered to act on the beam at the same time, and
the bending moments at any section calculated separately for
each load, then the sum of these moments will give the total
moment when both loads rest simultaneously on the beam.

85. Bending Moments on Semi-Beams.—In the case of a beam
supported at both ends and loaded, the particles in the top of
the beam are in a state of compression and are shortened, while
those in the bottom are in tension and are lengthened ; so that
the centre of curvature of the beam is above. the beam. In the
cantilever the reverse takes place. This distinction is recog-
nised by treating the bending moments in the first case as
positive; while in the cantilever they are negative. In con-
tinuous beams, as will be seen later on, the bending moments
are partly positive and partly negative.

Girders of the cantilever form are used for a variety of pur-
poses, as in cranes and swing bridges; and of late are coming
much into use in combination with ordinary girders for bridges
of large span, as in the Forth Bridge and similar structures.

86. Cantilever loaded with a Single Weight at the Free End.—
In fig. 41 let A B represent a cantilever of length [, fixed in a

w horizontal position. At the end B is

Z K gl placed a weight W.
|

M,, = max. bending mom. = 16 x 28 —

Let M, = bending moment at the

--1-x-~§5----x-----4 section K K, at a distance x from the
; i end B; then, from the definition already
A, iK, EB' given for the bending moment, we get—
-M,=Wz . (10)
' the negative sign being used as the
As ' i It is evident
Fig. 41. moment 18 negative. 18 e

that M, increases as x increases, and
will become a maximum when z = /. The maximum bending
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moment occurs, therefore, at the fixed end of the beam, and is
expressed by M, = W/. The moment will be a minimum
when x = o, that is, at the point of application of the weight.

Diagram of Bending Moments.—To construct the diagram of
moments, take the horizontal line A; B, = A B, draw the vertical
line AjA, = — M, Join A;B,. The line A, A, is drawn
downwards as the bending moment is negative. The triangle,
A, B, A, is the diagram of moments for the cantilever. The
moment at any section of the beam K K is represented by the
ordinate K, K,.

Example 9.—A. semi-beam 15 feet long has a load of 12 cwts.
resting on its free end. Determine the maximum bending
moment ; and also that at the centre of the beam.

The maximum bending moment occurs at the fixed end of the
beam, and its amount is—

- M =12 x 15 = 180 foot-cwts.
That at the centre of the beam is—
- M., =12 x 75 = 90 foot-cwts,,

or one-half the amount of the former.
87. Cantilever loaded with more than one concentrated Weight.
—Let A B, fig. 42, be the cantilever, fixed at the end A, and

Fig. 42.

loaded with weights W,, W,, W,, W, applied at points of the
beam situated at distances z,, 2y, x5, «,, from the fixed end. The
maximum bending moment occurs at A, and is equal to the sum
of the moments of each weight taken separately, and its value is—

~M, =W, 2, + Wy, + Wy, + W, =2 Wz (11).
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To find the moment at any section K K at a distance x from
A. It is evident that all weights situated to the left of this
section do not influence its bending moment; it is only those
situated to the right. The total moment at K K is the sum
of the moments of all the weights to the right of it taken
separately, or—

- M, = W, (z, - 2) + Wylay - 2) + Wyleg - ) (12)

Diagram.—To construct the diagram of moments for this
cantilever, draw the horizontal line A, B, = A B, and directly
underneath it; on the vertical line through A,, set off on a scale
of moments A,y = Wz, v, 9, = Wox, 9,y = Wy, and
Y Ys = W,

Join B, y,; then A, B,y will be the triangle of bending
moments for W,. Draw a vertical line through W,, meeting
B, y, at the point B,, and draw B,y,. Join B,, the point of in-
tersection of the vertical through &73 and B, y,, with y3; and
connect B,, the point of intersection of this line and the vertical
through W, with y,. The polygonal line B, B, B; B, y,, will
represent the diagram of moments for the beam as loaded ; and
the length of the ordinate between any point of A, B,, and this
line will represent the bending moment at the section of the beam
vertically over this point. The bending moment, for example, at
the section K K is given by the line K, K,. In the figure, the
triangles A, B, ¥, ¥1 By . ¥, By v, and y, B, y,, represent the
diagrams for the weights W, 2W2, W, and W, taken separately.

The above diagram may of course be got, and perhaps more

W, W, W,
'4 'a v. Yl

IK
IK C 8

I Dy K,
g e

D
Fig. 43.

directly, by drawing the verticals A, y,, b, B, b, B,, b, B,, equal
respectively to the moments at A and at the points of application
of W, W, and W,, and joining B, B, B; B, 7,.
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The diagram of moments, as found by the methods just ex-
plained, does not give a complete graphical solution of the
problem, as it involves the calculation of the moments at several
sectigns of the beam ; the purely graphical solution may be thus
found :—

Graphical Solution.—In fig. 43 take the horizontal line A, B, to
represent the length of the beam, on a scale, which may be called
the scale for horizontals. The positions of the loads are shown
by W,, Wy, Wy, W,. Draw a vertical line, =, «;, fig. 44, and on
it measure off the distances =z, x,, z, @,

&, x,, T, %; to represent the weights 2W1,
W W, W, on a scale which may be
called the scale for verticals. Measure off
on the horizontal line through z, the polar
distance z, O, equal to a convenient in-
tegral number, say 10, on the scale for

horizontals. Join Oz, Oz, Oz, O, ' Fig. 44,
Through B, (fig. 43) draw B, C parallel to

O z,, meeting the vertical through W, in C. In the same
manner draw CD, DE, and EF, parallel respectively to O a,
Oz, and Oz, The polygonal line B,CD EF will give the
diagram of moments; and the ordinates measured on a scale one-
tenth of that for verticals, will give the bending moments at the
different sections of the beam.

Example 10.—A. cantilever, 20 feet long, supports four loads
" of 5, 6, 7, and 8 tons situated at distances from the fixed end of
20, 16, 10, and 5 feet respectively. Find the bending moments
at the fixed end, at each weight, and at a section 12 feet from
the fixed end.

W, =5, W,=6, W,=7, W,=8;
& =2(),a:.2 =16, Zg =10, 2, =5, x=12.

o

oo N

The bending moments are—

— My =6x20+6x16+7x10+8x5=306 foot-tons.

— M,,=0.

— M,;="5 (20 - 16) = 20 foot-tons.

— M,,=5(20-10)+6 (16 — 10) =86 foot-tons.

— M, =5(20-5)+6 (16 - 5)+ 7 (10 — 5) =176 foot-tons.
— M,,=5(20-12) + 6 (16 — 12) = 64 foot-tons.
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88. Cantilever Loaded Uniformly over its Entire Length.—
Let A B (fig. 45) represent a cantilever covered with a uniformly

I R e
o

i

Fig. 45.

distributed load of w per unit of length. The total load=wl,
and it may be assumed as concentrated at its centre.

I _ wB_ WI
—MA=‘sz§= 9 = 9 . . . (14),

where W =w .

The bending moment at a section, K K, situated at a distance,
a, from B, is
x  w

~M=waxg="g- . . . (15).

From equation (15) it is seen that the moment increases as
increases, and becomes a maximum when z=/.

This equation also shows that the locus of the bending
moments, represented graphically, is a parabolic curve. To

construct this curve set off A, A2=%——, and draw the parabola,

B, K, A,; the vertex of the parabola being at B,, and its axis
vertical. By drawing a vertical through K K, the ordinate
K, K, will represent graphically the moment at K K.

Example 11.—A cantilever, 20 feet long, is loaded with a
uniform weight of 16 cwt. per lineal foot. Determine the bend-
ing moments at 5 feet from the free end, at the middle of the
beam, and at the fixed end.

From equation (15) we find that the moment at a distance of
b feet from the end is
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Nt

— M;=5x 16 x - =200 foot-cwts.

ko

At the middle of the cantilever

— M,,=10x16x —12—0 = 800 foot-cwts.

At the fixed end

. 20

— M,=20x 16 x 5
89. Cantilever with Uniform Load, and also with a Concen-

trated Load at its Free End.—When a cantilever is loaded with

a distributed weight of w per foot, and, in addition, a concentrated
load, W, at its end, B, we get

= 3,200 foot-cwts.

-Mo=%-l—2+wz Y ¢ ()}
2
-M=""4Wae . L L (1),

Diagram.—The curve of moments of this cantilever is a curve,
the ordinates of which are equal to the sum of the ordinates of
the diagrams for each load taken separately.

Example 12.—A cantilever, 30 feet span, is covered with a
uniform load of 2 tons per foot, and, in addition, has a con-
centrated load of 5 tons suspended from its free end ; find the
maximum bending moment, and also that at the centre.

M, =25x30x15+5x 30 = 1,050 foot-tons,

15

M.,. =2x15«x -5 * 5 x 15 = 300 foot-tons.

Ezxample 13.—In the last example, what will be the bending
moments if an additional concentrated load of 10 tons be placed
at the centre of the cantilever?

M, =1,050 + 10 x 15 = 1,200 foot-tons.

The bending moment at the centre is not affected by this load.

90. Cantilever Loaded Uniformly over part of its Length.—Let
the cantilever, A B (fig. 46), be uniformly loaded with w per
foot over the length a at its free end.



90 BENDING MOMENTS FOR FIXED LOADS.
- M‘=wa(l-g> C.qas).
M, = wa( - g) 1))
when z > a, the distance  being reckoned from the free end.
- M, = 5”2”5-2 Ce (20).

when z<a or 2 = a.

Fig. 46.

Diagram.—A, B, = AB,C,B,=CB =a.

Set off the vertical A; A, = wa (l - g)
Join A, to the central point of C, B,.
2

Draw the semi-parabola B, D,C,; C, C; being = 221.

The diagram curve is A, C, D, B,; which is made up of the

straight line A, C, and the parabolic curve C, D, B,, the
straight line being a tangent to the curve at the point C,.

Example 14.—A semi-beam, 24 feet long, has a load of 1} tons
per foot distributed over one-half the beam reckoning from the
free end. Determine the bending moments at the fixed end,

and at 8 feet, 12 feet, and 18 feet from the fixed end.
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- M, =5 x12x (24 - 12?) = 324 foot-tons,

-M; = g 12 x (16 - —12—2) = 180 foot-tons,
2

-M,= 5 X (12 _ 108 foot-tons,

27 2
2
- M, = g X (—62)— = 27 foot-tons.

91. Beam of Uniform Section securely Fixed at the Ends and
Loaded at the Centre.—When a beam, A B (fig. 47), is firmly
fixed at its ends, by being built into walls or otherwise, and
loaded at its centre, it will assume a shape similar to that
shown by the line A, B,, the two end portions being curved

w
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Fig. 47.

upwards and the central portion downwards; the two points,
J; /i where the curvature alters, are called the points of contrary

re, the two curves having common tangents at these
points.

At the points of contrary flexure with beams of uniform
section, theoretically, there is no bending moment. The beam
A B may, therefore, be considered as being made up of three
different beams—viz., the central beam, £/, and the two canti-
levers, A fand B f. :
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It may be proved by mathematical investigation that with
a beam thus fixed and loaded with a central weight, the dis-
tances, A f and B/, of the points of contrary flexure from the

near abutments are, each of them equal to —l—, where ! = span of

the beam, the central portion, f f, being = 3.
First consider the central portion, ff, which may be taken

as an independent beam of span —;— resting on two supports at

Jand £, and loaded at the centre with a weight, W.
The bending moment at the centre is

M=t e
8
At a point situated at a distance, z, from the abutment

M,=Y2Z(x-£> L. (23),

when = > 41

Next consider the end portions A f, Bf. These are equi-
valent to cantilevers fixed at the ends, A and B, and loaded at

the free ends, f f, with weights Y;_r The maximum bending

2
moments of these cantilevers occur at the fixed ends, and are
—MA=—M3=‘¥ e . (29

The bending moments, therefore, at the centre and at the two
ends are equal to each other but of opposite sign—one being
positive and the others negative.

Diagram.—To construct the diagram of moments, take the line

A,B,=A B. Make A, f, and B, f; each equal to —l— From C,,

4
the centre of the beam, draw the vertical C, C, upwards = Yg—l
C, C, is drawn upwards, as the moment at C is positive. Next
draw A, A; and B; By downwards, making each = Y’;—l . These

ordinates are drawn downwards, because the moments at A
and B are negative. Join A;C,and B;C,; these lines will inter-
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sect A, B, at the points f., fy; /; C:./2 will be the triangle of
bending moments for the central portion, ff, of the beam, and
A.f; A;, B,f; By will be the triangles of bending moments
for the end portions A fand Bf

It will be seen that, taking the beam, A B, as a whole, there
are three sections where the bending moments are equal—
namely, at A, C, and B; and further, the moments at these
sections are greater than at any other. Also, there are two
sections, namely, at the points of contrary flexure, f and f,
where the bending moments are zero.

It will also be observed that a beam of uniform section with its
ends firmly fixed is {iice as strong to resist transverse stress as
a beam of the same length and section whose ends are free,

inasmuch as the maximum bending moment (—Yg—l) in the first

case is only one-half that <E4£) in the second case.

Exzample 15.—A beam, 20 feet span, has its ends firmly fixed
by being imbedded in the abutments. It has a central load of
10 tons resting on it. What are the bending moments at the
ends and centre of the beam; also at points distant 3 feet and
7 feet from one of the abutments ?

Wi 10x20
8 - 8

-M,=-M;= = 2b foot-tons.

+ M= Eg—{ = 25 foot-tons.

- M, = 5 x2=10 foot-tons.

+M, = g ( -Zl)=5 (7 — 5) =10 foot-tons,

92. Beam of Uniform Section Fixed at the Ends and Loaded
Uniformly.—A B (fig. 48) represents a beam of span, /, with its
ends, A and B, firmly embedded in the abutments, and loaded
uniformly over its entire length with w per foot. A beam thus
loaded becomes bent in & manner similar to that in the last case,
but the points of contrary flexure, f, f, do not occupy the same
positions. It may be demonstrated by mathematical analysis
that in beams thus fixed and loaded, the points of contrary
flexure occupy positions such that

A.f= Bf='211l, orff='5781.
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This beam may, therefore, be resolved into three independent
ones—viz., a central beam, ff, of span = ‘578 [, resting on
two supports at £, f, and loaded uniformly with w per foot; and

B I
/'/,'xf‘”/%{w/y:f e //,//;// ///'//////él/,/ e 5 Z
7

rir

Z 3 ;
Ao BNt rm emm mm e 378 ) = = ame m e mpre =211 —
. [ ]

muu«mm

v
-m e e e e W S o -

Fig. 48.

two cantilevers, A f, B/, whose lengths =-211/, and which are
loaded uniformly with w per foot, and also with a concentrated
load at their extremities =289 w/.

To express the bending moments algebraically we have

_wx (D18  wh

M, )
. 2
- M, = M, = XD ag9ur 110 = 28 (26).
we w2
M=220-0) - . ).

From equations (25) and (26) it will be seen that the bending
moment at the centre is one-third that of the same beam free
at the ends. Also, that the moment at the bearings is double
that at the centre of the beam. From this it follows that the
strength of a beam embedded at the ends and loaded uniformly
is theoretically once and a half that of the same beam, the ends
of which merely rest on the abutments.

Diagram.—Draw A, B, = A B,and makeA, fi=B,/ij=Af=Bf.
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Draw the vertical C,C, = z‘c;i’, and draw the parabolic curve,

J1Csf;; the ordinates of this curve will give the moments at the
different points of the central portion, ff, of the beam. Next

I2
12°
and construct the curves A, f,, B, f;. The ordinates. of these
curves will represent the bending moments of the ends, A fand
B /, of the beam. The shaded portion of the fig. will represent
the diagram of moments for the whole beam.

Ezample 16.—A. beam 34 feet long, of uniform section, is loaded
uniformly with a weight of 5 cwts. per lineal foot. If the beam
be firmly fixed at the ends, determine the points of contrary
flexure ; also, the bending moments at the ends and centre, and
at 4 feet from the centre.

The distances of the points of contrary flexure from the abut-
ments =211 x 34 = 7-17 feet.

Bending moment at centre,

draw the verticals, A; A,, B, B,, downwards, and equal to ——

= o =2\ 9
Mc = 51 54 2408 foot-cwts.
Bending moment at ends,
-M,=-M;= u;‘l)’ = 4816 foot-cwts.

At a point 4 feet from the centre, x = 13.

From equation (27),

M, =220 0 b (f’zﬂ = 2009 foot-cwts.

93. Beam Supported at One End and at an Intermediate Point
between its Two Ends, and Loaded at the other End.—In fig. 49
let the beam A C be anchored down to the abutment at A, and
rest on the pier B, and be loaded with a weight W at C.

This is precisely the same case as that of a beam resting on
two abutments, and loaded with a single weight at an intermediate
point, except that the bending moments in all parts of the beam

are negative. |
let AB=},BC =L AC=1L

P-W2 q-wl
lx ll
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The beam may also be regarded as two cantilevers, A B and
B 0, loaded at their free ends with P and W; the ends at B being .
fixed.

0

A
-

SRR . S

—M,=Px=Wx-l’. : . (28).

The bending moment at a distance «; from C is—
- Mxl = W 1‘1.

The maximum bending moment occurs at B, and is—
~ My =Pl =W,

Diagram.—To construct the diagram of bending moments.
Draw B, B, vertically downwards equal to W/, on a scale of
moments : join B, A,, B, C,, then A, B, C, will be the triangle of
moments ; the ordinate 4, %; will represent the moment at %%,
and m; m, that at m m. It will be noticed in this case that all
the moments are negative.

If the beam be loaded in addition, with a single concentrated
weight on the span A B, as shown in fig. 50, the amount and
nature of the bending moments become altered. Let this
weight = W,, placed at a distance m from A.

By taking moments about A we get—

Wi +L)+ W,m

Q= A
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Join A, D,, B, D,, and B, C,. The shaded figure will indicate
the diagram of bending moments, and the length of the ordinates
above or below the line A, €, will represent the moments at the
corresponding sections of the beam.

If the moment at D be negative, the ordinate at D, must be
drawn downwards as D, D,, in fig. 61; the bending moments
throughout the beam will then be negative, and will be repre-
sented by the ordinates of the shaded diagram in fig. 51.

Example 17.—In fig. 50 AB = 12, BO = 6. A weight of
tons rests at C, and a weight of 12 tons at D. A D being equal
to 8 feet, determine the bending moments at D and B, and at a
point midway between A and B.

Referring to the equations previously given, we get—

5 x 18 + 12 x 8
Q= 12
_ 12 x 4 —H x 6

P 19 - = 15 tons.

As P is positive it acts in an upward direction.

—My; =95 x 6 = 30 foot-tons.
M, =16 x 8 = 12 foot-tons.

The bending moment at the centre of A B, or at a distance of
6 feet from A, is—

Mg=P x 6 =15 x 6 = 9 foot-tons.

Example 18.—A beam of the same dimensions as in example
17, is loaded over A B with a distributed load of 2 tons per foot.
A weight of 10 tons rests on the extremity C. Determine the
bending moments at B, at the centre of A B, and at a section D,
4 feet from A. '

Here we have w = 2, W = 10,/, = 12, /; = 6, 2 = 4.
10 x 18 + 24 x 6

= 15D tons.

Q= 13 = 97 tons.
P 24 x 61—210 x 6 — 7 tons.
- M; =10 x 6 = 60 foot-tons.
9 (42
My=P=z - z_{;f: T x -1-(211—)- =12 fcot-tons.

- 2
Mccn. =7 x 06— %26)‘ = 6 foot-tons,
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To find the position of the point of contrary flexure; we
obtain from equation

| M, = Px-—wzx?,
by making M. = 0
'Pm-wzxg-—(), or
w x 2P 2%xT7T .
| =5 g=- = g =1

The point is consequently 7 feet from A.

94. Beam Supported at Two Points intermediate between the
Ends—A D (fig. 52) represents a beam supported at B and C,
where AB=1,BC=10{,CD =
. First conmder the ca.se when such a beam is loaded at its
| extremities with two welghts, W, and W,.
The values of the supportmg forces at B and O are—

P = Wity + lll) 2ls , by taking moments about C.
2
Q= Wally + &) = W, l‘, by taking moments about B.

Fig. 52.
"The bending moments at B and C are—
- Mg=W,.L,or=W,(l,+ §)—- Q7 . . (29).
— M=W,. bor=W,(,+)-P4 .. . (30)
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‘'The bending moment at any section of the beam situated
at a distance from B = z, is

“M,=W,(, +2) -~ Pa = W,(lh + § — 2) — Q(ls —) (31).

Example 19.—A beam, AD (fig. 52), 30 feet long, is sup-
ported at two points, B and C, so that AB =5 feet, BC = 15
feet, CD = 10 feet. Weights of 5 tons and 4 tons rest on the
extremities A and B. Draw the diagram of moments, and find

the value of the bending moment at a point midway between
B and C.

Using the notation previously adopted, we have
L="5104=150=10, W, =5, Wy, =4, = =T.
Substituting these values in the previous equations, we get

b x 20-4 x 10
P = 15 = 4 tons.

4 x25-5x5
15
From equations (29), (30), and (31), we find
— M; =5 x § = 25 foot-tons.
— M; = 4 x 10 = 40 foot-tons.
-M_, =5 x 125 — 4 x 75 = 32:5 foot-tons.

Q= = b tons.

85.—Next consider the case of a beam similar to the last, but
loaded with an additional weight, W, at a point between B and
C, and at a distance, m, from the former. In fig. 52,

W(l,—m)+Wl(l,+l,)—W,l,.

P= 1
Wm + W, (l-)"' L) - W, 1
Q= 2 y
-My=Whor=W,(,+L)+ Wm-Ql, . . (32).

- M;=Whor=W,(\, + )+ W({,—m)-P, . (33)
T Mp=Pm - Wy (h+m)or=Q(h-m)—W,(L+l;—m) (34)

The value of the bending moment at any section of the project-
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ing arms, A B or C D, is given by the equation
-M,=W,a,or - M, =W,z

where x = distance of the section from the end of the beam.
The general expression for the bending moment of any section
of the beam between B and O, at a distance, x,, from B, is

*M, =Pz - W, (6 +2)
or=Q(ly—=z) -W(m - ) -W,({l;+ I~ ) (35),
when the section lies to the left of W ; and
+ M,Itl =Px, - W(x, - m) - W,(, + ay)
or=Qls—=z) - Wy (4 + 15— x) . . (36),
when the section lies to the right of W,

It will be seen that M, may be positive or negative, according

to the relative values of the different weights and dimensions,

It also appears that the values of the bending moments at
B and C are not affected by the addition of W.

Example 20.—In the last example obtain a solution of the
problem when an additional weight of 10 tons rests on the
centre of B C.

1, =5,15=15,1,=10, W,=5, Wy=4, W=10, m=T7.

Substituting these values in equations (32), (33), (34), and
the two previous ones, we obtain

_10x75+5%x20-4x10

P 15 =9 tons,
y 25 — 5
Q=10x75+41>; 5-5H x — 10 tons.

—~ M; =5 x 5 =25 foot-tons.
- M;=4 x 10 =40 foot-tons.
M;=9x75-5x125=>5 foot-tons.

In fig. 52, which is drawn to scale, make the vertical B, B
=Mz=25 and C,C,=M;=40. Also draw F, F, upwards =5.
Join A, B,, B, F,, F,C, C; D,. The shaded figure will repre.
sent the complete diagram of moments.

It will be seen that the moments are negative for all parts of
the beam except E E,.
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-

)

W The points E and E,, where B, F,, C, Fyintersect A, D,, are the

points of contrary flexure where the bending moments are zero.
To find the position of these points analytically. If x; =dis-

tance of E from B,, then, since M, .=0, we get from equation (35)

M, =Pz -W, (4L+a)=0;
or, z (P-W,) = W, 1!,

. _ Wlll 5)(5_ . ;
ey = -P.--W.l=9.—5._6 25 feet.

The point E is, therefore, distant from B, =62 feet, which
agrees with the distance as found by scale. Again, putting
=B, E,, we get from equation (36)

M, = Pay,- W (z,—m)- W, (4 +2)=0.
z (P-W—-W,) = W,},-Wm:

. — Wl l‘ —Wm_bx 5-10-x 7'5 3
. .w,—-m— 9—10—5 = 83 feet.

The point of contrary flexure E, is consequently 8-3 feet
from B,.

Example 21.—In example 19 determine the bending moments

of the beam if the central portion, B C, is uniformly loaded in
addition with 1} tons per foot.

ll=5’ l’= 15’ ls= 10’ Wl=5’ W’=4, w=1%-

Taking moments about C and B in succession, we get

2
520 + 5. 508 — 4510
P= 15‘ =1525 tons.
2
4 x 25 +g—<—1§)—-—5 x D
Q= 15 =162 tons.

The bending moments, B and C, are not affected by the
additional load on BC. We have, therefore, as before,

— My = 25 foot-tons,
— M = 40 foot-tons.
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At the.centre of.tha.spa.ﬁ, BC, 2="7-5 feet ;

52
+M,_ =1625x75-5x125 —§ X (7—5)

3 5 = 9:69 foot-tons.

From this it is seen that the moment at the centre is positive.
In order to find those points on the beam which have no
bending moment, we must put M,=0; we then obtain—

Pe-W, (4 +2) ._-“’T“z =0

x« being the distance of the points of contrary flexure from
B. '
Substituting the values of P, /,, &c., in this equation, we get:

1525 2-5x50-5zx—-322=0;
or, dx2-412+100=0.
Solving this.quadratic equation, we find—
=105 and z=318.

There will be no bending moments, therefore, on those sections
of the beam whose horizontal distances from B are 10:5 feet.and
3-18 feet. |

BeNDING: MOMENTE 0N CoNTINUOUS . BEAMS,.

96. Definition.—When a uniformly loaded beam is supported
at its ends it becomes deflected in the manner shown in fig. 53,
the upper edge of the beam being concave and the lower edge
convex, and the bending moments throughout.its length will be
positive. If, while in this position, a central prop be placed
underneath, it will assume a form similar to that shown in
fig. 54. The portions A D and E B will be curved downwards,
while the portion D E over the central. pier will be ourved
upwards ; the upper edge in the latter case being convex and
the lower edge concave. At the two sections of the beam D
and E, where the convex curve meets the concave, there will
be no curvature. These are called the sections of contrary
Jlexure, or the points of contrary flexure, or, simply, the points of

m
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The beam shown in fig. 54 may, therefore, be considered to
be made up of three sepa-
rate and independent
beams—viz.,, AD, DE,
and E B.

A D and EB are sup-
ported at theirextremities,
and D E is supported in
the middle in the form of
a double cantilever. The
bending moments through-
ont AD and EB are
positive ; while those in
D E are negative. At the
points of contrary flexure,
D and E,there are no bend-
ing moments ; there being
only shearing actions at
these sections.

With a stationary load, the positions of D and E remain
stationary, and when the load is uniformly distributed, the
distances of D and E, from the central support, are the same
when the two spans are equal. With a passing load, the points
of inflexion change with each position of the load. This com-
plicates the question a good deal. If the left-hand span be
loaded more than the right, it has the effect of moving the
points of inflexion towards the right. If this preponderance of
loading be great, the right-hand portion may be lifted altogether
off the abutment, as shown in fig. 55. In this case, instead of
there being three independent beams, there will only be two—
namely, AD and D B. In the first the bending moments will
be positive, and in the second negative.

Referring to fig. 54, if the beam be uniformly loaded, the
reactions at the abutments, A and B, will be equal to one-half
the loads on A D and E B respectively, and the reaction at the
central support, C, will be equal to the load on D E plus one-half
the loads on AD and EB. The amount of these reactions for
beams of equal section has been given in Chapter V.

97. Determination of the Position of the Points of Inflexion of
Continuous Beams of two equal Spans and of Uniform Section.—
When the reactions at the different points of support of a con-
tinuous beam are known, it is a simple matter to determine the
points of contrary flexure.

Figs. 53, 54, 55.
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Let AC=CB =,
w = distributed load per unit of length in A C,
w, = ’ CB,
P, R, Q — reactions at the pomts of support, A, C, B,
respectively,
2 and @, = horizontal distances of the points of inflexion,
D and E, from A und B respectively ;

Then, since P = half the load on A D, we have—

2
P = z%'?, or x =§ . ‘ (37).
In the same manner it may be shown that
2Q
w L ] [ ] [ ] 38 ®
= (58)

Substituting the values of P and Q, as given in equations (12)
and (13), Chapter V., we find—

Tw — w
w F— _S-w—l ° l . ° (39).
7w, —w
xl — Slwl [ l e [ ] (40)0
3
Ifw=w,,thenx=a:,=;l. . (41).

We have this general rule, therefore, that in continuous beams
of uniform section of two equal spans and uniformly loaded, the
distance of each point of inflexion from the near abutment is equal
to three-fourths of the span ; or the distance from the central pier is

! to one-fourth of the span

98. Bending Moments in a Continuous Beam of two equal
Spans, and of Uniform Section.——When the positions of the
points of inflexion are known, there is little difficulty in finding
the curve of bending moments. .

In fig. 54 let w and w, be the weights per unit of length on
A Cand CB.

There are three maximum bending moments on the beam,
occurring at the centres of A D and E B, and at C.

Let Mgz = bending moment at the centre of A D,
My = bending moment at the centre of E B,
M, = bending moment at C.
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A D and E B are uniformly loaded with w = and w, 2, respectively.
The: arm D C of the cantilever is loaded with 3%“—’ at its ex-
tremity, and w (! — z) distributed over it.

The arm C E is loaded with w‘;‘ at its extremity, and

w, (I’ — z;) distributed over it.
We have, therefors, as the. values of the maximum moments

w 22

+ My = —g— . . . e e . . (42).

+Mx=1°—‘g—‘3 Y )

- M =¥ -+ w(l > =F "’l(g' 7). (44).
Also- M, = 2 l(l‘)— a:,)

-d

By substituting the values of « and 2, given in equations (39)
and (40), we get the bending moments in terms of w, w,, and
If w = w, then 2 = 2, = $ . Substituting these values in

equations (42), (43), (44), we obtain—
9 w2

Mg =g - (45).
9wl
M, = “128 (46).
| 12
- M= L . . (4D

We thus see that in a continuous girder of two equal spans
uniformly loaded, the maximum bending moment occurs over
the central pier, and is greater than the maximum bending
moment of the two spans in the proportion of 16 to 9.

Diagram.—The diagram of moments for the beam we have
just been considering is shown in fig. 56, and may be constructed
thus :—

A, B, is drawn equal to AB = 2;
AIDI = i l, DIEI = %l,.El Bl = *,l.
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H,, C,, K,, are the centres of A, D,, D, E,, and E, B, respec-
tively. Draw' H, H, and
K, K; vertically upwards,

9w
and. equal. to 198

stale of moments, and con-
struct the parabolic curves
A, H,;D,, and E, K, B, ; the
ordinates of these curves
will represent the moments
at the corresponding points

of AD and E B, and are all positive.. Next draw C, C; verti-
12

cally downwards, making it = %— onthe=zame scale of moments.

Draw the curves D, 0,, E, O;; the figure D, C, E, represents the
diagram of moments for the portion D E of the beam.

99. Bending Moments in a Continnous Beam of Two Equal
Spans, and of Uniform Strength throughout its Length.—In beams
of uniform strength the supporting forces are (see page 66)—

,on a.

P-Q-= wl
R= 4 wl
when loaded with a uniform load of w per unit of length.
2
Algo, z = o, = -3’1.

We, therefore, have for the bending moments at H, K,
and C—

+ My = 25 (48).
wl2

+ My 1B . : (49).

-m_ﬁ. L. (50).

In this case the bending moment at C is to that at H or K,
as 3 is to 1.

The diagram of moments for this beam may be constructed in
a precisely similar manner to that in the last case.

100. Girders of Uniform Strength.—As continuous girders of
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large span in actual practice are designed approximately of
uniform strength throughout (that is, the section of the different
parts of the flanges are made proportional to the stresses to
which they are exposed), it is evident that the solution just given
will be more applicable than that given for girders of uniform .
section. It must be borne in mind, however, that, owing to the
shifting position of the rolling load, the points of contrary flexure
and also the pressures on the supports vary, and the girder must
be so designed as to meet all these variations. If the piers sink
ever so little, the character and amount of the stresses will be
quite altered. Such being the case it is always advisable to
allow a considerable margin of strength in continuous girders
over and above that which theory indicates.

Ezample 22.—A girder of uniform section is continuous over
two spans of 100 feet each, and is uniformly loaded with 14 tons
per foot. What are the maximum positive and negative bending
moments of the girder and the pressures on the supports?

Here we have w = 1}, / = 100.

Pressure on abutments are (see Table XVI.)—

P=Q=—g—wl=gx % % 100 = 5625 tons.

Pressure on central pier—

o 4] 3
R=-4wl= 4 Xy 100 = 1875 toms.

Distance of points of inflexion from near abutment is

3
m=-4—l=75feet.

The positive maximum bending moments occur at a distance
of 375 feet from each abutment, and their values from equations
(45) and (46) are—

9 x g-x (100)2
M; = Mg = —lo8 = 198 = 10547 foot-tons.

The maximum negative moment occurs over the central pier,

and from equation (47) its value is

5 (100

= = 5 = 1875 foot-tons.
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Example 23.—If in the last example the girder be of uniform
strength throughout, determine the solution.

3
In this case =P Q = 3 = 3 = 50 tons.
4 4 3
R=3.wl=§ X g X 100 = 200 tons.

Distance of points of inflexion from near abutment is
2 1= 666 feet

The maximum positive bending moments occur at a distance
of 6—62—6- = 33:3 feet from each abutment, and their values are

from equations (48) and (49).

. 3(100)2
+ My =+ Mg = fls_ = ~—g— = 8333 foot-tons.

The maximum negative bending moment is, from equation (50),

S 2
on 300

6 6

Example 24.—Determine the positions of the points of con-

trary flexure and the bending moments of the beam in Example 11
Chap. V., and draw a diagram of the same.

w=2 w =3 l =050
P = 34375, Q = 59-375, R = 156°25.

The first thing to be done is to find the points of inflexion
These are determined from equations (39) and (40).

- M, =

= 2500 foot-tons

7w—‘w1 _7)(2—3 _ .
x = 8 A= 3 %9 x 50 = 34375 feet.

.z=7;352 x 50 = 3958 feet.

From equations (42), (43), and (44) we get the maximum
bending moments as follows :—
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wa? 2 (34-375)

+ Mg = 5 = 3 = 2954 foot-tons.

+ My = w,8a: » = 3 (3?5.58)2 = 5875 foot-;-tons.

- M; = wl(l2— a:). = 4 x 90 ; 15625 = 78125 foot-tons.
Also, - M, = “"”’2‘ z) _ 3 x 502" 1042 _ 78135 foot-tons,

which proves the correctness of the results.

Example 25.—In the last example determine the solution
when the beam is covered with a uniform load of 24 tons per
foot.

Here we have
w=w,=25, I="50.

P=Q=3x 25 x 50=46-875 tons,
R=£x25x50=15625 tons,
z=2,=4 x 50=375 feet.

9 x 2'5 (50)2
128

_Mc_" 5 (50)°_ 78125 foot-tons.

In this example the total load on the beam is the same -as in
the last, but differently distributed.
The distances of the points of inflexion from the abutments are

a mean of those in the last case, 80 also is the positive maximum
bending moment, while the negative maximum moment remains

the same.

My=M;=

= 4396 foot-tons,

\9

CHAPTER VII.
"BENDING MOMENTS FOR MOVING LOADS,

101 Definition.—A moving or travelling load on-a beam .is one
which occupies different positions.at different times. .The terms
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live load and rolling load are also used to designate this class of
loads. An example of a moving load on a bridge is a railway
train as 1t passes over it. The length of load may be equal to
or greater than the span of the bridge, or it may be less. In
the former case, at some moment the span will be loaded through-
out its entire length. A moving load affects a beam both
statically and dynamically. The latter plays an important part
in the case of bridges of small span, when the velocity of the
rolling load is great ; and its effect must be taken into account.
This will be treated of in Chapter XXIII. In the present chapter
the statical effect only of moving loads will be considered.

102. Beam supported at Both Ends, and exposed to a Uniform
Moving Load, less in Length than the Span.—In fig. 57 let the
beam A B be exposed to a uniform load moving over it. Each
section of the beam will
have a different bend-

ing moment according ﬁp . NP R e
to the different posi- ANy

tions which the load TR

occupies relatively to  jA --x---»fy-h-------I-x.-y------ _B.E:?
the section. An im- */ - '

portant case is to deter- Fig. 57.

mine what position of

the load will produce the maximum bending moment on any
particular section of the beam. This we will now proceed to
investigate.

Let ! =span of the beam,
a=length of the load,
w = weight of load per unit of length,
x = distance of section ¢ ¢ of beam from A,

y = distance of this section from the centre of gravity
of the load.

“The ‘totdl load =wwu, and its centre of gravity is K. As in
-previous chapters, P-and Q represent the reactions at the ahmt-

.ments
wa (l—-2-19)
B 1 ?

wa (v+Y)

Q= ]

P
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Considering the portion of the beam to the left of c¢, and
taking moments, we get—

w/a a
et (3-9) ()

Substituting for P, its value, we get—
M %2 (l-z-vy)

l
wazx wal w 2ax

This is the general equation for the bending moments. To
find the position of the load, so that this expression may be a
maximum, we must find the value of 3, which makes it so.

M, will be a maximum when the expression

(a_2aa:
A )3’

is a maximum, and this will occur when the two factors of this
expression are equal to each other, or when

w
~Z(a-2y)2
z 8(a 2 y)2

that is, when
y = _—9 l_' . . v (2).

This equation gives us the distance of the centre of the load
from ¢ ¢ when the bending moment at that section is greatest.
To find the maximum bending moment at ce¢, substitute the
value of ¥, given in equation (2), in equation (1), and we get,
by reducing,
wazx

M, = 72 (l-=)(2l-a) . : (3).

This is the equation of the maximum bending moments in
the beam during the passage of the load. The locus of these
moments, plotted graphically, may be shown to lie in & para-
bolic curve, the apex being above the centre of the span. The
maximum of these maxima occurs at the centre of the span,
and its value may be found analytically from equation (3) by

putting x = l Making this substitution, we get

5
Mo ==@l-a). . . ()
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The graphic representation of the maximum bending moments
of the beam, under consideration, may be found by erecting an

ordinate at the centre = z%‘-z (27 — a) and drawing a parabelic

curve passing through the end of this ordinate and the extremi-
ties of the beam.

Example 1.—An advancing load, 20 feet long, of 3 tons per foot,
comes on to a beam 50 feet span from the left abutment. What
are the maximum bending moments—(1) at 15 feet from the left
abutment, and (2) at the centre of the span! and what must be
the positions of the load to produce these moments?

0 = 3, =10 and x = 25, ! = 50, a = 20.

To find the positions of the load, which produce the maximum
bending moments, substitute the above values in equation (2),
and we find

_20(50 — 2 x 15)
Y= T x50
That is, the centre of the load is 4 feet to the right of the
section or 19 feet from the left abutment.
In the second case, putting # = 25 in equation (3), we get
y= 0, or the centre of the load is at the centre of the beam.
In the first case the maximum moment is, from equation (3),
3 x 20 x 15
Mis = =550y

In the second case, from equation (4), we get

3 x 20
Mm-':—s-—-

= 4 in the first cagse.

x 3D x 80 = 504 forot-tons.

(100 — 20) = 600 foot-tons.

Example 2.—A railway train, 200 feet long, weighing 1} tons
per foot, comes from the left on to a bridge 300 feet span consist-
ing of two main girders. 'What must be the position of the train
on the bridge to produce maximum bending moments on the
girders at sections 50 feet from the left abutment i

For each girder we have—

w = g, x = 50, ! = 300, a = 200.

Substituting these values in equation (2), we obtain—

200 x 200

Y=g 300 = 006 feet.
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The centre of the train must, therefore, be 666 feet to the left
of the centre of the girder, or 833 feet to the right of the left
abutment. There will be, therefore, only 1833 feet of the train
resting on the bridge, when the maximum bending moments
occur at the sections indicated.

103. Beam Supported at both Ends, and exposed to a Single
Concentrated Rolling Load.—A single concentrated rolling load
W passes over a beam of span /.

The maximum bending moment at any section of the beam,
whose distance from the left abutment = «, occurs when the
load rests on this section.

P=W_l_:‘_“’ "7

M,=Pw=Q(l-:.c)=W.a—:—(l—l_—x—) . ().

M, will be & maximum when x (! — «) is a maximum ; that is,

Q=W

whenz =1 - a,orx = -2£, which is at the centre of the beam.

The locus of the maximum bendiﬁg moments is a parabola,

the apex of which is above the centre of the span, and the central

\W/{

ordinate = e which value is obtained by substituting « = i in

equation (b).
Example 3.—A single load of 10 tons rolls over a girder 50

feet span. Determine the maximum bending moments at
intervals of 10 feet.

l=050; a=10,20,30,40; W = 10.

M, = 10 x ;g x 40 = 80 foot-tons,
M, = 10 x gg x 30 _ 120 foct-tons,
M, = 19> gg * 20 _ 120 foot tons,
M, = 22222 X 10 _ 80 foot.tons.
M, = 1—0—:—59 = 125 foot-tous.

104. Beam Supported at both Ends and exposed fo ‘a Rolling
Load consisting of two Concentrated and Equal Weights, at a
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fixed interval apart.—In fig. 58 the two equal loads, W, W, at a

fixed distance, a, apart

—resembling the wheels 7l%* Q
of a truck—pass over

the beam A B. The @ @
problem we give our- %A % ; 7. B
gselves to investigate is W ¥ TTUTTTTTmmooonoyndtaege
—What must be the

position of the loads on S 0'7,04.\—?

the beam in order to | P N

produce the maximum /£

bending moment on a / \
section b b, situated at a ! \
distance, z, from the left ] ) \
support ? A, _F QCc 00 € B

First consider the case Fig. 58.
when the left weight rests on b.

=‘-¥(2l—2:c—-a).

W
= T(2x + a).

M, - Pr= 22 (@l-22-a) . ()

If the load travel to the right, P diminishes, and consequently
the bending moment at b b; so that when one weight rests on b,
the bending moment at that point is greater than for any posi-
tion of this weight to the right of .

Next consider the weights to be moved to the left so that’ the
left weight is at a distance «; from b.

In this case we have

P=¥{2l-(2m-2xl)—a}.

= ¥(2x — 2“’1"' a).
M. =Pz - W,

- X 2122425 -a) - Wa

0
=.yl—m(2l— 2z - a) w— Wx;(l ‘-:;E')'
= Mz - le (1 - glw> U . (7)'
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From this equation it will be seen that M, > M, if the expression
W o, (1 - glf) be positive, and this is the case so long as 1 > _2T:c’

that is, for all values of  which are less than L ; When z = -l,

2
M, = M,

From this investigation it will be apparent that, in & beam ex-
posed to a rolling load consisting of two equal weights placed at a
fixed distance apart, the maximum bending moment on any
section of the left half of the beam occurs when the left weight
rests on this section ; and the maximum moment on any section
of the right portion occurs when the right weight rests on the
section. .Also, the maximum bending moment at the centre of
the beam occurs when either weight rests on the centre, or when
one weight rests at one side of the centre and the second weight
on the other side. The general equation to the maxims bending

moments of the left half of the span is M, = 2 Vg a (l -z - %) :

The locus of these moments is a parabola with its axis vertical.
To find the apex of this parabola we must determine at what
point of the left half of the span the maximum of these maxima
bending moment occurs. In other words, what value of « will

make M, a maximum ? This will occur when (l - x - %’) is

greatest, and, as the sum of these two factors is constant, the
expression will be a maximum when both factors are equal to

each other, or z = ;— - %. A sgimilar result will be obtained for

the right hand half of the span. We have, therefore, the follow-
ing general rule :— :

When two equal concentrated loads, separated by a constant
distance, a, roll over a beam, there will be two points in the beam
where the bending moments will be a maxtmum ; these points are
sttuated at each side of the centre of the span, and at distances from
it equal to one fourth of the distance between the two weights.

In order to determine the value of these moments we must

substitute for z its value (lé - g) in the general equation (6),

and we obtain—

W
Mpee = g;31-afF . . . (8)
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To find the bending moment at the centre of the beam, sub-

stitute —;- for # in equation (6), when we get

\4
My = 5 (0-2a) . . . (9

105. Diagram.—When a = %, or a < %,
may be constructed thus:—Draw the horizontal line, A, B,
(fig. 58a) to any scale, equal in length to the beam. From its

centre, O, lay of 0 C=0D= g ; the maximum bending moments

will occur at C and D, and may be found by means of equa-
tion (8). Draw the verticals C C;, D D,, equal to these moments
on a scale of bending moments, and construct the parabolic curves
A, C,E and B, D, F, intersecting at the point O,; then A, C, O, D,
B, will represent the diagram of maximum bending moments for
the beam during the passage of the load. The maximum
moment at any point, such as G, is at once found by measuring
the ordinate G @, at this point.

Erxample 4,.—Two wheels of a loaded truck pass over a beam
30 feet span. If the load on each wheel be b tons, determine
the maximum bending moment on the beam, and also the bend-
ing moment at its centre, the wheels being 10 feet apart—

W =5, 1=230, a=10.

the diagram of moments

As a is less than ;—, the maximum moments occur at the two

points of the beam situated at a distance of 2:5 feet at each side
of the centre. Their values are found from equation (8), viz :—

W 5
_v —a\®—
Moee =57 2L -aF=g0

(2 x 30 - 10)2=52-08 foot-tons.

The maximum moment at the centre of the beam is found
from equation (9), viz. :—

M,,,,,=%'- (- a)=-g— (30 - 10) =50 foot-tomns.

Example 5—In the last example, determine the greatest
bending moment at a section 8 feet from the left abutment.
The greatest bending moment at this section will occur when
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the left wheel rests upon it, and its value is found from the
general equation—
M, = g_VlV_x (l - - -;), where 2 =8.

Substituting this and reducing, we find
M, =453 foot-tons,

106. Beam supported at Both Ends and Loaded with two Con-
centrated and Unequal Weights at a fixed interval apart, and
moving over the Beam.—If A B represent the beam, W, and W,
the two weights, and a = distance between them, then by
adopting the same process of reasoning as that given in the last
case, it may be shown that when both weights are on the beam
the bending moment at any section of the beam is greatest when
W, is over it, provided that the section is situated between

W, 1
A and F, WhereA.F—\‘-v'l—;-W;.

When BF:V—V‘;‘:—L\IX’_’ the maximum bending moment at any
1
section between F and B will occur when the weight W, rests
upon it.

1st. Suppose the section to lie between A and F; let x = its
distance from A ; then when W, rests upon it,

M,=5 {(Wi+ W) (l-2)-Waa}. . . . (10).

2nd. Suppose the section to lie between F and B; let #, = its
distance from A. The maximum bending moment will occur at
this section when W, rests upon it ; in which case

Q=2 (W,+ W, -T2

M,="7 (Wi+ W) (I-2,) - Wll T-=). . (1)

The loci of the bending moments, as represented by the two
equations (10) and (11), are two parabolas, the axes of which are
vertical and intersect the beam at two points, one at each side of
the centre. At these points the moments are greatest for each
half of the beam.
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The section where the greatest bending moment ocours in the
left half of the beam 1is situated at a distance to the left of the

centre = - W a
C2(W+ WY .
The section in the right half, where the bending moment is a

W, a
2(W, + W)
The distances x and z, of these points from A are—

l W, a

maximum, is at a distance from the centre =

T=g-gw, swy - - - (12
l W, a
Andz, = 5+ 3 W, + Wy . . (13).

The values of these maximum bending moments may be found
from equations (10) and (11) by substxtutmg for  and z, the
values given in equations (12) and (13).

An expression for the maximum bending at the centre of the

beam may be found by putting « = —; in equations (10) and (11).
We then get—

= (W, + W:) L \Véa . . (14),
or M (W, + Wz) 2 - Eég . ) (15).

according as W, or W, rests on the centre.

In the foregoing investigation the results arrived at are on the
assumption that both weights rest on the span. If W,> W,
the maximum moment near the end, A, of the beam will occur
when W, only is on the beam, the other weight resting on the
abutment.

Example 6.—A travelling load, concentrated on two wheels
10 feet apart passes over a beam of 40 feet span. If 2 tons rest
on the left wheel and 8 tons on the right, find the maximum
bending moment at the centre of the beam, and also determine
the section on the beam which has the greatest maximum
moment, and find its amount.

W,=2 W, =8, =40, a =10.

The bending moment at the centre will be a maximum when
the weight of 8 tons rests on it.
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From equation (15) we get—

40 2 x 10
Mew = (2 +8) x o - ==

-d

= 90 foot-tons.

The maximum moment on the whole beam occurs at a section
whose distance from the left abutment is found from equation (13),

40 2 x 10 _ a1,

AT T T aE v )
The section is, therefore, 21 feet from the left bearing, and the
amount of the bending moment is found from equation (11) by
putting &, = 21. Thus—

2 2
M, = ;(l—) x 10 x 19 - =% l;)ox 19 = 90-25 foot-tons.

The maximum bending moments at every 4 feet of the beam,
reckoning from the left abutment, are—

M, = 0, M, = 288, M, = 51:2, M,, = 70, M, = 84, M, = 90,
Mg‘ = 88, M” = 78’ Mn = 60, Lj.m = 34, LI‘O = O.

The values, M, and M, are those produced when only one
weight—rviz., 8 tons—rests on the beam, the weight of 2 tons
resting on the left abutment.

107. Graphic Method of Finding the Position of the Rolling
Load so as to produce the Maximum Bending Moment at any
Section.—A convenient method of finding by graphic construc-
tion what must be the position of the rolling load on the
beam, in order that the bending moment at any section may be
a maximum, is the fol-
lowing, which may be
made to apply to any
number of weights.

Let A B (fig. 59) re-
present a beam over
which passes a rolling
Joad consisting, say, of
four weights, W,, W, W,,
W, We wish to deter-
mine the position of
these loads on the beam
_ so as to produce the

Fig. 59. maximum bending at
any section, say at F.
Draw a vertical line through A and on it set off

Az, =W, x, %3 = W, 323 = Wy, 3y = W,
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Join 2, B. Through F draw F F, parallel to z, B, meeting the
vertical line through A at the point F;. The maximum moment
at F will occur when the weight, represented by the division in
which F, is situated, rests on F. In the figure F, lies in =z, z,,
which represents the weight W,, The maximum bending at F
will, therefore, occur when the weight W, rests upon it.

CHAPTER VIIL

SHEARING FORCES ON BEAMS.

Fixep Loaps.

108. Definition.—7'%e shearing force at any transverse section of a
beam 18 equal to the algebraic sum of all the external forces acting
upon either segment of the beam tnto which the section divides it.

We will illustrate this definition by a few simple examples.
Suppose A B (fig. 60) to be a beam loaded with a single weight
W placed at a distance @ from A, then the proportion of W
transmitted to the left abutment will be

P=W. A —l' Q

W, l_—l_a_ will, therefore, represent the shearing force throughout
the segment A C.

The shearing stress on the segment B C = -Vgg.

If W rest on the centre of p Q
the beam, the shearing stress
will be constant throughout w
and equal to Y % 5

2 a —oft— [o

Next take the case of a ' '
beam loaded with several
weights, as is shown in fig.
61.

Let W,, W, W; W, be
the weights resting on the
beam ; P and Q the supporting
forces.

Let the symbol F be used
to represent the shearing force,
so that
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make A, C,=A C. Draw the vertical line A, A, upwards on a
scale of forces = P, and the vertical line B, B; downwards = Q ;
the rectangle A, A, C; C, will represent the diagram of shearing
forces for the segment A C, and the rectangle B, C, C; B, will be
the diagram for C B; the former, being positive, is above the
line A, B,; and the latter, being negative, is below that line.
The shearing force on the segment A C is constant, and is
represented by the line A, A,; that on C B is also constant, and
i8 represented by the line B, B..

The shearing force diagram of the beam, shown in fig. 61, is
given underneath the beam, and the method of its construction is
the following :—As before, take the horizontal line A, B, = A B.
Draw the vertical A, A, upwards and equal to P. Draw the
vertical B, B, downwards and equal to Q. Draw A, a horizon-
tally, meeting the vertical through W, at a. Measure off agq,
=W,. Draw a,b horizontally, meeting the vertical through
W,in b. Measure off b b,=W,, and so on for the remainder of
the diagram. It will be seen that the shearing force changes
its sign at W, ; to the left of W, it is positive and to the right
negative. The ordinates of the diagram represent the shearing

w| wz Ys w4

Y

-di—J

R N

i

Fig. 62,

stresses at the corresponding sections of the beam. For example,
the shearing force between W, and W, is represented by ¢ ¢,, and
that between W, and W, by ¢, c,.

110. Purely Graphical Solution.—The solution just given is not
& purely graphical one, as it involves algebraic calculations.

Al
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The following is a solution of this nature:—In fig. 62 draw
the vertical line z, z;, and on it set off =, 2,=W,, 2, 23="W,;
x, £4=Wg, x,2,=W, Choose any pole, O; join O z,, O z,, &c.
Take any point, A,, in the vertical line through A, draw A, a
parallel to O z;, meeting the vertical through W, at a; draw a b
parallel to O x;, and so on as already explained. Join A, B,;
through O draw O O,, parallel to A, B,, then ; O, =P and 2,0, =Q.
Through O, draw the horizontal line O; O, O,. This may be
considered as a datum line; all parts of the diagram above
it representing positive shearing forces, and those below
negative shearing forces. Through ), z;, &c., draw horizontal
lines, meeting the vertical lines from the external forces on the
beam, and construct the diagram of shearing forces which is
represented by the sectioned portion of the diagram.

The figure A, a bc d B, is a graphic representation of the bend-
ing moments in the beam.

111. Beam supported at both Ends, and Loaded Uniformly over
its Entire Length.—In fig. 63 the beam A B, of span /,is uni-
formly loaded with w per foot. .

Total load on the beam = w/. l

w
P=Q-= o
The shearing force at any section at a distance x from A is

F,=z—?—)—l—wx=w<‘-§-—) . . (1)

ad

F, is positive when z 18 less than .

ol

p Q F, is negative when x is
1 l
greater than 3
i A F,is a maximum when

x=0 and when z=1.

In the former -case,
which is at the point A,
the shearing stress is posi-
tive

o, F,=2

]
| B~

Fig. 63. Fp= - -

A?

i
!
:

|
|

!

|

i |
In the latter case it is
| negative—




BEAM SUPPORTED AT BOTH ENDS. 125

F, becomes a minsmum when z = —;—, or at the centre of the

beam, in which case F, =0.

Dragram.—Draw A; A, upwards = ﬂ, and B, B, downwards

2
_w_l_ ; join A, B,, the sectioned figure represents the diagram

of shearmg forces ; the vertical distances between A, B, and
A; B, will give the shearing forces at the corresponding points
of the span.

Example 1.—A beam, 20 feet span, supports a load of 10 tons
at a pomt 2 feet to the left of the centre. 'What are the shearing
forces on the beam ?

Fou)e = P = 6 tODS,
Fstom = o= Q = - 4t_0ns.

The shearing forces change from positive to negative at the
point of application of the load.

Example 2.—In the example No. 4 given in Chap. V1. deter-
mine the shearing forces in the beam.

P =174 tons, Q = 146 tons.
Foi01s = P = 17+4 tons,
Fi20m = P — 7 = 104 tons,
Fottoss = P — (7 + 12) = — 1:6 tons,
Fuwe = P — (T + 12 4 10) = — 116 tons,
Fowew =P - (7 + 12 + 10 + 3) = — 146 tons.

From this it will be observed that the maximum shearing
forces occur between the left bearing and the first load, and also
that the sign of the forces changes at 24 feet from the left
support.

112. Beam Supported at both Ends and Uniformly Loaded over
@ Portion of the S8pan.

Let & = length of load,
w = intensity of load per unit of length.
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Figs. 64 and 65 represent graphically the shearing stresses on
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Fig. 64.

the beam.

In fig. 64 the load com-
mences at the left abut-
ment, and in fig. 65 it
occupies an intermediate
position on the span.

In both cases there is
no shearing force at the
section of the beam where
the bending moment is a
maximum.

In fig. 64 draw the
horizontal line A, B, =
span of the beam, and
find n, the point where

the bending moment is greatest, as explained in Art. 82.

Draw the vertical A, A, = P and B, B; = Q.

Through n, the point of maximum bending moment, and N,
the extremity of the load, draw the verticals nn and N N,
meeting A, B, in n, and N,. Draw B,; N, horizontally, meeting
N N, produced in N, ; join n; Ay n, N,. The shaded figure will
represent the diagram of shearing stresses.

oL lons
2.2 !
C B‘E’
PN P PRI | TS P NN -
Adr— ! O
1, :i N .
'” e |
0 i D
l\,n il b A ‘w!;if T T B
TR TR TR RN TY
D, B,
Fig. 65.

The diagram in fig. 65 is constructed in a similar manner, so

that no description will be necessary.

1A

1 beyond the centre of the beam.
§:

’ yevere:
LAY il ‘YF‘!'H'I". i
1 .
!

TR
D,

Fig 66.

"+ -. y Fig. 66 represents the diagram when the load does not extend
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113. Beam Supported at both Ends and Loaded Uniformly over
two Segments with Different Intensities of Load.—In fig. 67—
Let @« and (! — a) repre- o
gsent the lengths of the o, (l-a)
loads, and w and w, the I N M ¢
intensities of loads.

Find 7, the point of
maximum bending mo-

ment, as explained in
Chap. V1., Art. 84.

Draw A, A; = P, and
B, B; = Q, also M, M. =
P-wa; join A, M, and
7, By; the shaded portion
will represent the diagram
of shearing stresses in the
beam.

114. Cantilever Loaded
with One or more Concen-
trated Weights.—/n a cantilever the shearing stress at any section
i8 equal to the sum of the weights between the section and the
free end of the cantilever.

In tig. 68 the cantilever, A B, is loaded with weights W,, W,,
and W, resting at the points

o RSN S o e .
AN R S L Y
> i 7u"\ e 2 “4 e, /4 y

L ‘el ’a'l 2 o Vi)

DI V¥, U

Fig. 67.

C, D, and B. 7 Wi W w
'The shearing stress on all a & Q
sections between A c D B

A and C = .“T1 + W’ + W;. x;ﬁ?-.,“- '30'

x|~ —De
CandD=W, + W, | ‘
xl . ;
Dand B=W, F P
A, '
Diagram.—The shearing force ©
diagram may be constructed Fig. 68.
thus :(—

Draw the horizontal line A; B, = A B; through the ex-
tremity A, draw a vertical line A, x;; set off on this line,
Az, =Wy 2, = Wy, 2,2y = W,

Through z,, =, x, draw horizontal lines, meeting the vertical
lines through B, D, C in B,, D,, and C, respectively. The shaded
figure will represent the shearing stress diagram of the canti-
lever. .

Example 3.—In example 10, Chapter VI.—What are the
shearing stresses on the different portions of the cantilever?
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Fows =8 + 7T+ 6 + 5= 26 tons,
Fyt1o=7+6 + b =18 tons,
Fiowie= 6 + 5 = 11 tons,
Fi61, 0= O tons.
. 116. Cantilever Uniformly Loaded over its entire Length.—In
g. 69—
Let ! = length of cantilever, A B,
w = load per unit of length.

The maximum shearing stress occurs
at A, and is

F, = wl

At any section at a distance, z,
from A—

F,=w({l-2x . : (2).

B, At the free end of the cantilever,
Fig. 69. & = [, and at this point the shearing
stress is zero.

Diagram.—Make A, A, = wl; join A, B,; A, A;B, will be
the diagram of shearing stresses.

Example 4.—A cantilever, 25 feet long, is uniformly loaded
with  ton per foot. What is the maximum shearing stress on
the beam? Find also the shearing stresses at the sections at
distances of 10 feet and 20 feet from the fixed end.

l =25, w=%, z = 0, 10, and 20.

From equation (2)—
Fm= wl = 12'5 tons,

F, =w(l-2)= —%(25 — 10) = 7°5 tons,

Fop = % (26 - 20) = 25 tons.

116. Cantilever Loaded with a Uniform Weight, and also with
Concentrated Weights at Fixed Intervals.—The shearing stress at
any section of a cantilever loaded with both a uniformly distri-
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buted, and a concentrated load is equal to the sum of the shearing
stresses of each load considered separately.

The diagram of shearing stresses is constructed by superposing
the diagram in fig. 68 on that in fig. 69.

Example 5.—A. semi-girder, 30 feet long, supports three wheels
of a locomotive whose distances from the fixed end are 8, 155,
and 23 feet. If the weights on these wheels be 4, 7, and 3 tons
respectively, find the shearing stresses at these points of applica-

tion; the uniform dead load of the girder being —Z— ton per foot.

3

w=z,

[=30, W, =4, W,=17, W,=3.
Fo=w(l-z)+ W, + W+ W;= 2(30—8)+4+7+3=30-5 tons,
¥, = %(30 ~155) + T + 3 = 20-875 tons,

Fy = (30 - 23) + 3 = 8:25 tons,

Fm:’g x 30 + 4+ 7 + 3 = 365 tons.

Example 6.—In example 8 (Chap. VI.), find the shearing
stresses at the two ends of the load, and determine, both analy-
tically and graphically, at what point on the beam there is no
shearing stress.

F,,=P =16 tons,
Fyg=P - 24 = —8 tons.

The minimum shearing stress occurs at the section where the
bending moment is a maximum, and this section, as has been
shown in Chap. V1., is 28 feet from the left abutment.

This may be verified thus :—

Let = distance of the section where the shearing stress
' is zero from the left abutment.
We have then

F.=P-(z-12)=16-(z-12)=0,;
or, = 28 feet.

Fig. 65, which is drawn to scale, gives a graphic representa-
tion of the shearing stresses on the beam. The diagram is
constructed thus ::—Draw A, A,=16 tons; B, B,=8 tons. Draw

9
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A, C,, B,D, horizontally, meeting the verticals through the
extremities of the load at the points C, and D,. Join C, D,. The
point O, where C, D, intersects A, B,, ‘gives the point where
there is no shearing stress. By scaling we find A, O=28 feet.
Its position may also be found geometrically thus—from similar

: C,0 C,C, . _
triangles D,0 = D,D; from which we find C;O0 =16 feet, or
A, O =28 feet.

SHEARING STRESSES FOR MOVING LOADS.

117. Beam supported at both Ends and subjected to a Concen-
trated Load moving in either Direction.—When a concentrated
rolling load, W,, passes over a beam, the shearing stress at any
gection of the beam varies with the position of the load.

At a section at a distance, z, from the left abutment, F,=P,
and is positive so long as W is to the right of the section. If W
be situated to the left of the section F,=(Q and is negative.

P increases as W moves towards the left abutment, and be-
comes a maximum when W rests directly over the abutment.
The maximum positive shearing stress on the beam occurs,
therefore, at the left abutment, when W rests at this point, in
which case it is equal to W. In the same manner it may be
shown that the maximum negative shearing stress occurs at the
right abutment when W rests at this point, and is equal to W.

The maximum positive and negative shearing stresses for any
section of the beam occur when the weight rests on that section,
in which case the positive and negative shearing stresses are
P and Q respectively.

Example T.—A concentrated load of 15 tons rolls across a
girder 40 feet span. What are the maximum shearing stresses
at intervals of 10 feet !

Example 8.—In the last example determine the maximum

shearing stresses if the dead weight of the girder itself be 10 tons
uniformly distributed.

Fy =F =15+ 5=20 tons,
Fiy=Fg=1125 + 2:56=13'75 tons,
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118. Beam supported at both Ends and subjected to a Rolling
Load, consisting of two or more Concentrated Loads.—Suppose a
beam be acted upon by a system of travelling loads, as is the
case where a locomotive passes over a bridge, and let the load
be supposed to pass from the right to the left. The shearing
stress at any section constantly varies with the position of the
load. The shearing force at any section increases as each Ioad
in succession approaches it, and when the load passes to the left
the shearing force suddenly diminishes by an amount equal to
the load. At each section, therefore, the positive shearing stress
is a maximum for the time, when each load is immediately to
the right of the section, and a minimum when immediately to
the left. In order to determine these maximum and minimum
values for each weight, let the load system be so placed that this
weight rests exactly over the section. Determine the reaction
of the left abutment for this arrangement of load, and from it
deduct the weights to the left of this particular weight; the
result will be the required maximum, and for the minimum
further deduct the weight itself.

The following rule is generally true in actual practice :—

When a system of loads roll across a girder, the greatest numer-
rcal value of the shearing stress at any section of the girder occurs
when the leading load (travelling from the further abutment)
arrives at that section.

If the leading load be small in comparison with the others,
this rule does not hold.

Example 9.—Three wheels of a locomotive (8 feet centres) pass
over a girder 40 feet span. The weights on the leading, driving,
and trailing wheels are §, 8, and 4 tons respectively. What are
the maximum shearing stresses on the girder at intervals of
5 feet, the locomotive travelling from right to left ?

The greatest shearing stresses at the sections, whose distances
from the left abutment are 0, 5, 10, 15, and 20 feet, occur when the
leading wheel (5 tous) rests immediately over the section. At the
sections distant 25, 30, 35, and 40 feet from the left abutment,
the shearing stresses will be a maximum when the trailing wheel
(4 tons) rests on them. In the former case the stresses will be
positive and equal to the reaction of the left abutment, and in
the latter they will be negative and equal to the reaction of the
right abutment.

Bearing these points in mind we get the following values for
the maximum shearing stresses at the different sections : —
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5x40+8x32+4?<24

F;, = 10 = 13'8 tons,
F, = 5x 35 + 8 :_027 + 4 x 19 _ 11675 tons,
Fm=5X30+8:O22+4x14=9'55tons,
F,, = 5 x 25 + 84x017 +4x9 _ 7-495 tons,
F”=§X2O+8:012+4X4=5'3t0!15,
F,,=4x25+84>2)17+5xg=7-025tons,
F”=4X30+8:022+5x14=9'15t0n8,
F, — 4 x 35 +_8_;<027 +5 x 19 — 11-275 tous,
F‘o=4x40+8:O32+5-X24=13'4t0ns.

119. Beam supported at both Ends and subjected to an
Advancing Distributed Load of Uniform Intensity.—In fig. 70
suppose an advancing load of w per foot to come on a beam from
the right. The maximum positive shearing stress on the section
at a distance, z, from the left abutment, occurs when the front of
the load is at this section, and the amount of this stress at x, and

)
all points to the leftof z, is, F, = P = 2 (’2 z %)
stress increases as z diminishes, and becomes a maximum
when 2 = 0, or immediately over the left abutment, where it
wl
o

-d

This shearing

equals

It is easy to see that the maximum shearing stress at the
section indicated must occur when the front of the load is just at
it, for if the load move to the right, the value of P will diminish,
and consequently the shearing stress. If, on the other hand, the
load move to the left of the section the value of P is increased
by a portion of the load to the left of the section, but the shearing
stress is less than the new value of P by the whole load to the
left of the section, and consequently it is less than the first
value of P. This will hold true whether the moving load is long
enough to cover the whole span or only a portion of it.
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In a similar manner it may be shown that the greatest
negative shearing stress occurs at any section when the tail of
the load rests over it and that the stress is equal to Q, the sup-
porting force of the right abutment for this position of the load.

It will also be apparent from this that the maximum shearing

stress at the centre will occur when the heam is loaded over

wl

one-half the span, and will be equal to 5

120. Diagram of Shearing Forces when the Length of the Load
is equal to, or greater than the Span.—In fig. 70 suppose a load of
uniform intensity of wper foot to pass
over the beam A B in the direction
from B to A. Draw the horizontal
line A, B,=A B. Draw A, A,

vertically at A,, and make it = t—;—l

Draw the parabolic curve A, C, B,;
B, being the vertex of the parabola.
This curve is the locus of the maxi-
mum positive shearing stresses at
the different sections of the beam.
This shearing stress is zero at B,
and occurs before any portion of the
load enters on the span. The posi- Figs. 70 and 70a.
tive shearing stress is a maximum

at A and is represented by A, A; = (%—I) and occurs when the

span i8 fully loaded. The maximum shearing stress at the centre
is C,C, = z%l’ and occurs when the right half of the beam is loaded.

By constructing a similar parabolic curve, A, C; B,, under-
neath A, B,, we get a diagram for the maximuin negative stresses
on the beam, these stresses being exactly the same in value as
the positive stresses. The shaded portion of the figure is the
diagram for the maximum numerical shearing stresses on the
beam during the passage of the load.

121. Diagram of Shearing Forces when the Length of the Load
is less than the Span.—The locus of the maximum shearing
stresses in this case is not a parabolic curve, but is made up of a
straight line and a parabolic curve. It may be drawn thus—

Let a = length of the load,
w = weight per lineal foot.
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Draw the parabolic curve, A; D, B,, fig. 70a, by making A, A,
wl

= -o-« Set off B, D = a; draw the vertical, D D,, meeting the

9"
cur]\)*e in D,. Through D, draw D, A, a tangent to the parabola
at

A practical method of drawing this tangent is to bisect D B, at
E, join E D,, and produce it. The locus of the positive maximum
shearing stresses on the beam is a line composed of the curve B, D,,
and the straight line Ag D,.

Lzxample 10 —A ra.llwa.y train weighing 2 tons per foot passes
over a brldge 200 feet span. What are the maximum positive
and negative shearing stresses on each of the two main girders
at intervals of 20 feet, the train being considered as a uniformly
distributed load and longer than the span, and the dead weight
of the bridge being neglected

! =200. w = 1 ton for each girder.
Dead load on each girder = 266 tons.

\50
TABLE XVII.
Dlstancefrom |yux Sirosfrom Max Stvestrom | §i00e from | Totsl Sree rom
Feoet. Tons. Tons. Tons. Tons.
0 100 0 75 175
20 81 . 1 60 141
40 64 I 4 45 109
60 ) 49 30 79
80 36 16 15 51
100 25 25 0 + 25
| 120 16 | 36 -15 ~ 51
140 9 ! 49 -20 - %9
160 4 | 64 -45 -109
180 1 81 - 60 - 141
200 0 100 -70 -178
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The maximum positive shearing forces may be calculated from
w(l — x)?
21

2
the equation, F, = % = Q, by giving to z its proper value.

the equation, F, =

= P, and the negative stress from

It will be seen that the maximum numerical value of the
shearing stress occurs at each abutment, and is equal to 100 tons,
while the minimum numerical value occurs at the centre of the
beam and is equal to 25 tons.

Example 11.—In the last example, what are the maximum
shearing stresses at the different sections of the girder during
the passage of the load if the dead weight on the girder, includ-
ing its own weight, be 150 tons equally distributed ?

The fourth column in the table gives the shearing stresses
arising from the dead weight alone, and the fifth column gives
the total maximum shearing arigsing from both the live and dead
loads. These latter stresses are obtained by adding those in
column 4 to the corresponding maximum numerical stresses in
columns 2 and 3.

Fig. 71
It will be seen from Table XVII. that whether the live or
dead loads, or a combination of them, be taken, the shearing
stresses on both halves of the girder are equal, though of opposite
sign.
Fig. 71 represents graphically the shearing stresses on the
girder for the different loads drawn to scale.

A B=span = 200 feet.
Aa=ab=bc, &c. =20 feet.
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Draw the ordinates, A A, and B B,, each = 75 tons.

Join A, B,; the two triangles, A A, C, BB, C, will conse-
quently represent the diagram of shearing stresses on the girder
tfor the dead weight alone.

Next, draw the ordinates, A A, B B,, each equal to 100 tons.
Construct the parabolic curves, A;C, B, B,C; A. The spaces
included between these curves and A B will give the diagrams
for the maximum positive and maximum negative shearing
stresses respectively, arising from the travelling load.

Next, by setting off on the ordinates through A, a,bd, ¢, &c.,
Ag A=A Aja,03=a a;, byby=0b,, &c., we get theline Ayay. . . C,,
which is the locus of the maximum positive shearing stresses
for both loads taken together.

In the same way we can construct BjAggs . . . C, which is
the locus for the maximum negative shearing stresses.

CHAPTER IX.

CENTRE OF GRAVITY AND MOMENT OF INERTIA OF
PLANE BSURFACES.

It will be seen in Chapter X. that, in order to determine the
transverse strengths of beams of solid section, it will be necessary
in the first instance to know the moments of inertia of the
sections of such beams with respect to axes passing through
their centres of gravity. It is advisable, therefore, that the
student be able to determine the centres of gravity and moments
of inertia of the sections of such beams as are usually to be
met with.

In ordinary language the terms ‘centre of gravity” and
“moment of inertia” have reference to the weight or mass of
solid bodies, and belong to the domain of rigid dynamics. As
used in this sense they do not concern us here; it is only in
their application to plane surfaces that we wish to consider them.

122, gentre of Gravity.—7%he centre of gravity of a plane simple
surface is tts geometrical centre. That of a circular surface, for
example, is the centre of the circle bounding the surface, while
that of a parallelogram is the point where its diagonals intersect
each other.
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The centre of gravity of a triangle is found by joining the
middle points of any two sides with the opposite vertices ; the
point where the two lines thus drawn intersect each other gives
the required centre.

The centre of gravity of the segment A C B of a circle whose

3
centre is O is at the point O, where O O, = T are(aa.AoIfs)segmenﬁ

The line O O, being drawn to bisect the chord A B.

In the case of a semi-circle the line
O O, ="4244 x radius. A

The centre of gravity of any four-
sided figure may be found thus— B

In fig. 72 draw the diagonals A C
and BD of the figure A B CD, inter-
secting each other at E ;set of AF =EC;
join FD and F B. Find O the centre
of gravity of the triangle BF D as ex- D c
plained. This point will be the centre Fig. 72.
of gravity of the whole figure.

123. Centre of Gravity of Section of Flanged Girder. — The
following is an important case :—Fig. 73 represents the section
of a cast-iron beam which is symmetrical with reference to the
vertical axis yy. The section is com-

posed of three rectangles—viz., A BCD PA -
and EF G H, which are the sections i R
of the top and bottom flanges respec- X
tively, and the rectangle which connects 1 v
them together, which is the section of ;;: E ?
the web, X-mammf -t -~
The centre of gravity, O, of the ]! !
whole section will lie in the line yy, . i i
and it will only be necessary to deter- .
mine its distance along this line from F ty a
some fixed point. Fig. 73.

Let a, =area of top flange A B C D,
a,=area of bottom flange E F G H,
ay =area of portion of web above X X,
a,=area of portion of web below X X,

z, = distance of O from centre of gravity of top flange,
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Let »,=distance of O from centre of gravity of bottom
flange,

z3=distance of O from centre of gravity of top por-
tion of web,

x,=distance of O from centre of gravity of bottom
portion of web.

From the principles of the centre of gravity, we get
A )+ Oy g =y Ty + By T, . (D

As a,, a,, a, a, are known, and as x,, 2, x, are known in terms
of z,, from this equation we can determine the value of 2,, which
gives us the position of the centre of gravity, O, from a known
point.

Example 1.—Find the position of the centre of gravity of the
cross-section of a cast-iron girder of the following dimensions—

Let 2 =distance of the centre of gravity O from the bottom edge
of the section.

Total depth of girder =14 inches.
Area of top flange=4 x 2=8 sq. in.
Area of bottom flange=6 x 4=24 |,
Area of top portion of web=2 (12 —z).
Area of bottom portion of web=2 (z - 4).

Distance of O from centre of gravity of—
Top flange=13 -,
Bottom flange =2 — 2.
12—
5
x-4
—5—

Top portion of web=

Bottom portion of web=

We get from equation (1)—

12 -2
2

Or =583 inches.

x—4
2

8(13-2)+2 (12 -2) x =24 (x—‘2)+2(a:-4)x
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advantage where great exactness is not required, as it often
saves an amount of laborious calculation.

MoOMENT OF INERTIA.

126. Definition.—7f a plane surface be considered to be composed
of a number of infinitesimally thin lamine, and if the area of each
lamina be multiplied by the square of its perpendicular distance from
a given line or axis, the sums of all these products s called the
geometrical moment of inertia of the surface with respect to that
axis.

The symbol I is used to express the moment of inertia by
most writers on the subject, and we shall adopt the usual nota-
tion in the following pages.

127. Moment of Inertia of a Rectangle.—A B C D (fig. 76) is

a rectangle; it is required to
e et find its moment of inertia with

A - T respect to the axis X X which
y l==—-—4—r\: passes through its centre of
D gravity, O, and is parallel to the
Yy X A
x £e) sides A B and D C.
. Let AB=5AD=d.
I = required moment

Fig. 76. of inertia.

The rectangle may be con-

sidered to be made up of a number of elemental areas or lamina
parallel to X X,

Let ¢ = thickness of one of these elemental areas,
y = its distance from X X.

Then, its area = b ¢, and its moment of inertia, with respect to
X X, from our definition = b ¢ Y2
The moment of inertia of the rectangle = sum of these, or
I==x3bty
The expression 2bty? is the sum of an infinite series and
8
its value, taking y between its proper limits is blc‘i)

* This summation is most conveniently effected by means of the integral

d
3 3
calculus, thus:—I = 2[‘6 yidy = blfif
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We have, therefore, for the rectangle

3
I= blc.l . . : . (3).
If 5 and d be both expressed in inches, I will be expressed in
inch-units.

If b=d we get— I= d4

TR . . . (4).
which is the expression for the moment of inertia of a square
whose side = d, and with respect to an axis passing through its
centre of gravity and parallel to a side.

If in the rectangle the axis is parallel to the side d, the expres-
sion for the moment of inertia becomes

I = —i 2—.

128. Moment of Inertia of Complex Figures.—It will frequently
be necessary to determine the moments of inertia of beams of
complex sections, made up of two or more simple sections. This
can readily be done when the moments of inertia of the simple
sections are known, by employing the following important
theorem :—

The moment of inertia of an area with respect to any axis s
equal to the moment of inertia of the area about a parallel axis
passing through its centre of gravity plus the product of the area
tnlo the square of the distance between the two axes.

To express this theorem by symbols,

Let I = moment of inertia of a surface about an axis pass-
ing through its centre of gravity ;

I, = moment of inertia of the same surface about a
parallel axis situated at a perpendicular dis-
tance, A, from the former;

A = area of the surface.

Then L=I+A% . . . (5

By means of this relationship the moment of inertia (I,) of
the rectangle shown in fig. 76 with respect to an axis passing
through the sides A B or D C, may be determined thus—

bdd d
I =95 b=y
we get then from equation (5)—
b dB d bds
h=qg+bdxgy="3
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If the axis passes through the sides A D or B C,

dbs
Il = ""3_'0

From this it will be apparent that the moment of inertia of a
rectangle, with respect to an axis passing through a side, is four
times that of the moment of inertia of the same rectangle with
respect to a parallel axis passing through its centre of gravity.

Ezrample 3.—A rectangular beam is 4" wide and 6” deep.
Determine the moment of inertia of its cross-section,

I1st. With reference to an axis passing through its centre
of gravity and parallel to the short side;

2nd. With reference to an axis passing through its centre
of gravity and parallel to the long side ;

3rd. With reference to an axis passing through one of its
longer sides;

4th. With reference to an axis parallel to a short side and
at a perpendicular distance of 2" from it.

3
1st. I = é—g)— = 72 inch-units;
3
ond. I = 6 () = 32 inch-units;

12
3rd. I =32 + 24(2)2 = 128 inch-units;

4th. I =72 + 24(1)2 = 96 inch-units.
129. Moment of Inertia of a Circular Disc.—In fig. 77,

Let I, = moment of inertia of the disc with reference to an
axis passing through its centre O and perpen-

dicular to its plane;
I = moment of inertia with reference to an axis A B

passing through its centre and lying in its plane.

The circular surface may be considered to be made up of
a number of circular laming,
Let t = thickness of one of these
B whose distance from O = .
The moment of inertia of such a
Fia. 77 lamina with reference to an axis per-
g 4 pendicular to the plane of the paper
= 2 =43 ¢, and the moment of inertia of the whole surface is

I! = V2¢yat.‘

o

>

]
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That of the small rectangle with reference to the same axis
b d® |

-1
The moment of inertia of their difference or the portion shown

1n section
1
—3 '1—2' (b da -_— bl d18) [ 4 ® (8).

Example 4.—What is the moment of inertia of the section of
a circular tube of which the external and internal radii are
12" and 10" respectively

(1) With reference to a diameter of the section ;

(2) With reference to the axis of the tube.

r=132; r, = 10.
(1) From equation (7)—
Tuem = 7 {(12)* - (104} = 8,432 inch-units;
2) I, =21, = 16864 inch-units.

- Example 5.—1In the last example find the moment of inertia
of the tube with respect to a tangent to its outside surface and
parallel to a diameter.

From equation (5)—
Lan. = Latgm. + & (72 — ) x 22,

I, = 8,432 + 19,905 = 28,337 inch-units.

Example 6.—What is the moment of inertia of the cross-section
of a hollow rectangular tube 6” x 4" outside dimensions, and of
a uniform thickness of 1'5 inches, with reference to axes passing
through its centre of gravity and parallel to its longer and
shorter sides?

Let I, = moment of inertia with respect to axis parallel to
longer side ;
I, = moment of inertia with respect to axis parallel to
shorter side. |

From equation (8), we obtain—
I _ 6 x (43 -3 x (1)
1= 12
4 x (6)* -1 x (3)8
- 12

= 31'75 inch-units ;

= 6975 inch-units.

I,
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131. Moment of Inertia of Beams of H-Section with Equal
Flanges.—Fig 80 represents the section of a beam where

d = total depth,
d, = depth of web,
b = width of each flange,

‘i:o_dl = thickness of each flange,

b, = thickness of web.

The moments of inertia of the section with respect to axes
X X and Y Y passing through its

centre gravity, are equal to the differ- be—bY -y
ence of the moments of inertia with : -
respect to those axes of the two rect- nE
angles whose areas are bd and (b - b,) d,. ; [
. X3 < g
Ixx=1—2—{bd3-—(b—bl)dl3} (9). !
1 =¥ J -
Tyy=g, {d53-d; (-} (10). e 50

If the web be thin in proportion to the other dimensions, its
moment of inertia may be neglected without introducing much
error; in such case, putting b, = 0, we obtain—

1
1

Ezample 7T.—Find the moments of inertia of the cross-section
of a 12" x 6” rolled girder, with reference to a horizontal axis
(X X)) and also with reference to a vertical axis (Y Y), both
passing through its centre of gravity, the thickness of the flanges
being 17, and that of the web 4”.

b=6, d=12, b, =5, d;, =10.
Substituting these values in equations (9) and (10), we get—

Tex = 15 {6 * (12)8(6-5) x (10)5} = 4056 inch-unita.

Iyy = 75 [12 x (65~ 10 {(6)%~(5)%)] = 36 inch-units.
!
10
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- FExample 8,—In the last example what are the moments of
inertia of the section if the web be neglected ?
From equations (11) and (12) we get—

Ty = 75 x 6 {(12)*~ (103} = 364 inch-units.

Xey = -1}2- x (6)® x 2 = 36 inch-units.

It will be observed that the amount of error in the moment of
inertia, by neglecting the web, is almost nil, when taken with
respect to the axis Y Y.

In calculating the moments of inertia of beams of H-section of
equal flanges, if the thickness of the flanges be small compared
with the depth of the beam, the flanges may be supposed to be
concentrated on their centre lines, without introducing much
error into the result.

Let d, = depth between the centres of the flanges,
a, = area of each flange,
a, = area of web.

Then, from the definition of the moment of inertia, we get
approximately—

d,> a.
I=-2°(a1+—6--). N O

where I is taken with reference to an axis passing through the
centre of gravity of the section and parallel to the flanges.
If the web of the girder be thin, and we neglect its moment of
inertia, equation (13) becomes
2
1-%.. . . .

Example 9.—Apply equations (13) and (14) to determine the
moment of inertia of the section of the beam given in example 7,
and show the amount of error introduced.

do=11, a1=6, a2=5.
From equation (13) we get—

'4
I-= 92-1_’. (6 + -2-) — 4134 inch-units.
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As the correct value of the moment of inertia = 4056 inch-
units, the error = 4134 — 4056 = 7-8 inch-units, or nearly 2
per cent. in excess, which is a trivial discrepancy.

Neglecting the web and applying equation (14) we get—

2
I— Q;l- % 6 = 363 inch-units.

The error in this case = 4056 — 363 = 426 inch-units, or
about 104 per cent. less than the true value.

In Chapter X. it will be seen that the transverse strength of
a beam depends upon the moment of inertia of its section, and
we may lay it down as a general practical rule for H-beams with
equal flanges—

1st. That when the flanges and web are thick, as is usually
the case with cast-iron girders, the value of I should be calculated
from equation (9).

2nd. When the flanges are comparatively thin, as is the case
with wrought-iron or steel-rolled girders (except those of small
section), it will be sufficiently accurate to determine I from
equation (13).

3rd. When both flanges and web are thin, as happens in
wrought-iron or steel-built or rivetted girders, I may be calculated
from equation (14).

Example 10.—Determine the moment of inertia of the section
of a cast-iron girder of the following dimensions, with respect to
an axis passing through its centre of gravity and parallel to the
flanges :—

The total depth of girder = 18".
Area of top flange = 6" x 2”7 = 12 square inches,
Area of bottom flange = 12" x 3" = 36 square inches,
Area of web = 13" x 27 = 26 square inches,
Total area of section = 74 square inches.

To effect this solution we must first determine the position of
the centre of gravity of the section.

Let z = distance of the centre of gravity from the outside
edge of the bottom flange ;

we have, therefore,

12(17 —2) + 2 (16 —2) x L2 =% > z-3

, =36(m—§)+2(x-3)x -2,
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Reducing this equation, we get, z = 68 inches.
To find the moment of inertia of the section, we must substitute
in equation (g), p. 1560, the proper values of the symbols, viz. :—

b=6, b =12, t=2, t,=3, d=113, d,=68, t,=2

T=3{6(112)— (8- 2) (112 - 2)8 + 12 (6:8)8 - (12— 2) (68 - 33}
= 2,846 inch-units.
Ezample 11.—In the last example, determine the moment of

inertia of the section with respect to a vertical axis passing
through the centre of gravity of the section.

I, =moment of inertia of top flange = 2 {g)s = 36,
L= . bottom,, =5 ‘1122)’=432,
I,= ” ' web T ,, = —131—(22~)s= 860,
I="_, ” the whole section

=1, +I; + I, =36 + 432 + 8:66 = 47666 inch-units.

Ezample 12.—Determine the moment of inertia of the section
of the girder, given in example 10, with respect to a horizontal
axis passing through its bottom edge.

From Art. 128 we find—
8
I, =moment of inertia of top flange = 6(2) +6x2(17)%

12
= 3,472 inch-units,

3
-1—2—1%)— +12 x 3(1'5)2

=108 inch-units,

8
I;= ’ ’ web =2—(—11—;3)—+ 13 x 2(9-5)*

=2,712'7 inch-units,

I,= ’ ’ bottom ,, =

I =required moment of inertia=1I, + I, + I;=6,292-7 ,,
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132. Moments of Inertia of Beams of Various Sections about
a Horizontal Axis passing through their Centres of Gravity.

-

- Beam of Solid Rectangular Section.

I=éif . . . (a).

12

Beam of Hollow Rectangular Section.

S __ 8
1=Ild_l_221i AN ()

Beam of Solsid Square Section.

bt
I = E . (6).

1= . . @

Beam of T-Section.

I=3{bd®+bd - (b - )3} (o)

Beam of H-Section with Equal Flanges.

I (bd8 - (b-8)d3} . (f).
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Beam of H-Section with Unequal Flanges.

{bds — (5= t)(d — 1P + bydy

-G =t (A -0} . ()

Beam of Cruciform Section.

I —{bd/ +2b,.d3) . (B).

Beam of Trapezoidal Section.

b2+ 45656, + b2

I=a*= 365, +b) - @)

Beam of H-Section of Equal Flanges, the Web
being neglected.

= LB@ -4y . . ()

Beam of Hexagonal Section.
I= °541‘§ bt , . . (k)

Beam of Parabolic Section.

bds
p—— sigis * - O
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Beam of Solid Cuirculur Section.
I=84R". . (m) -

Beam of a Hollow Circular Section.
I = -7854 (r — r%) . (n)

Beam of a Solid Semzcircular Section.

= 11 . . (o)
Beam of a Solid Elliptical Sectron.

I=-78546d° . . (p)

Beam of a Hollow Ellyptical Section.
I = 7864 (bd3 —5,d3) . (9)

CHAPTER X.
INTERNAL STRESSES IN BEAMS.

138. Theory of the Stresses on Loaded Beams.—The following
investigation, it must be borne in mind, is mainly a theoretical
one, and certain assumptions are made which are not altogether
warranted from a practical stand-point.

It is not surprising, therefore, that the results deduced do not
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in all cases accord with those derived from actual experiment.
But, however imperfect the theory may be, it is the best which
we possess, and the results deducible from it, when modified by
practical experience, are sufficiently accurate for all ordinary
purposes.

Fig. 81 represents a portion of a loaded beam, the section of
which is rectangular ; the investigation will apply, however, to
any beam whose section is symmetrical with reference to a
vertical axis, and it is assumed—though the assumption is not
accurate for most materials—that the material of which it is
composed is a perfectly elastic one.

YY is a vertical section passing through the centre of the
beam; M N, M N are sections at any other parts; the lines
MN, MN, YY all radiate towards the common centre of the
circle of curvature of the layers MM, O O, N N, &ec.

Before bending, the lines M N, M N were vertical, and the

layers M M; N N were of the same length. After bending, the
top layer N N becomes

Y shortened and the bot-
tom M M lengthened,
and there will beacertain
. layer O O intermediate
4 between these which 1s
\ neither lengthened nor

[V

shortened, but retains

its original length. This
latter layer which in a

O  beam of rectangular sec-
tion, or any section sym-
metrical with respect to
a horizontal axis, is in
v the centre of the beam,
Fig. 8l. and is called the neutral

surface of the beam.

All layers of the beam below O O will be lengthened, and will,
therefore, be exposed to a tensile stress, while all those above
O O will be shortened and exposed to a compressive stress; the
layer O O which is not altered in length will be exposed to no
stress whatever.

Consider any intermediate layer, P P, whose distance below
the neutral surface is equal to y. Then if r=radius of curvature
of the neutral surface OO, r+y will be the radius of the layer
P P. -

The original length of P P was equal to O O, s0o that PP-00
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represents its increase of length; and as the strain on any
layer is measured by its increase of length, the strain on PP
per unit of length is represented by its increase of length per

unit of length.
If { =this strain we get—

,_PP-00
~—o00 -

As the lengths of arcs of circles are proportional to their
chords, we get by similar triangles—

PP r+y | 1Tty W
00 . r r

From this it is seen that the strain, and consequently the stress,
on any layer of a perfectly elastic beam 18 proportional to its distance
Jrom the neutral surface.

This is practically true of beams of all materials, so long as
the material is not strained beyond a limit considered safe in
practice.

The layer at a distance y above the neutral surface is
shortened by the same amount as the layer P P is lengthened,
consequently the stress upon it is the same in amount, but of
opposite kind.

As the total stresses above and below the neutral surface are
equal in amount, it follows that the neutral surface must pass
through the centres of gravity of the different sections of the
beam, and the neutral axis X X must pass through the centre of

vity of its cross-section.

It will be gathered from the foregoing explanation, that in a
loaded beam of any section the external fibres at the top or
bottom may be strained to their breaking point, while those near
the neutral surface may be exposed to little or no stress. Beams
of a rectangular section which have a great deal of material close
to the neutral surface are, therefore, not economical, while those
of a circular section are still less so. On the other hand, flanged
beams of H-section, which have the bulk of the material at a
distance from the neutral surface, are best adapted for resisting
the longitudinal stresses of compression and tension.

The bending moment developed in each section of a beam has
to be resisted and held in equilibrium by its moment of resistance
with reference to the neutral axis, so that in all cases the bending
moment must be equal to this moment of resistance.
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Let x =moment of resistance to flexure.
M =bending moment.
Then in all cases w=M.

The expression w, in addition to being called the moment of
resistance to flerure, is also sometimes designated the moment of
the elastic forces, or the moment of stress.

134. We will now show how x may be determined for beams
of different sections.

Consider the cross-section, abcd, of the beam, shown in
fig. 81, to be made up of an infinite number of elementary
laming parallel to the neutral axis X X,

Let ¢=thickness of one of these lamine p p.

b =breadth » 1) )
y =its distance from X X,
J=I1ntensity of stress per unit on the lamina.

Then the total stress on the lamina=/£51.
The moment of this stress with respect to the neutral axis

=fbty . . . . . (1)-
Let 4, =distance of the extreme fibres at a b from X X.
hz = 9 1) de 2
J,=compressive unit-stress on the fibres a b.
Jo=tensile ” ” cd.
Then we have }7: IZ, or f —’kf;

Similarly we get f= hiz ¥.
2

Substituting these values in equation (1) we get moment of
stress on the elementary lamina p p

=£bzy2={;~fb¢yz.

Taking the sum of all these moments about the neutral axis,
we obtain the moment of resistance of the whole section.

p=l{lzbty’, orp="—’:2 bty
1 2
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We have seen in Chapter IX., Art. 126, that the expression
= b¢y® represents the moment of inertia of the section with
respect to the axis X X or 2b¢y% = L

S

Consequently ,:1.=%i I, or w=232.1.
1

hy

Of these two values of « the least should be taken in calculat-
ing the strength of the beam.
The general expression for the moment of resistance of the
section is—
s I

/£='];.

(2);

where f=unit-stress on the fibres at the distance 4 from the
neutral axis.
As =M (bending moment) we get—

S .
M=.I . . . . (@

This equation will enable us to determine the strength of any
beam, no matter how loaded.

If the bending moment at any section of a beam be known,
and also the moment of inertia of the section about its neutral
axis, the intensity of the stress on the fibres at a distance A from
the neutral axis may be found from the equation—

M
L L @,

which is derived from equation (3).
135. Beam of Solid Rectangular Section.—

Let b =Dbreadth of beam.
d=depth ”

In this case the neutral axis passes thrt;ugh the centre of the
gection so that— ;
@

d
A= I=13-

Substituting these values in equation (3) we get—

b
vl )



/

S

0
136. Beam of a Solid Square Section, One Diagonal being
Vertical—
Let b=side of square.
Then h= Tb/'——é‘.
b4

- 52
58
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If the section of the beam be a square, whose side is b, we get—

L )

And since I = 13"

Substituting in equation (3) we get—
SJ2 oS8

x.__.

M

137. Beam of a Solid Circular Section.—
Let r = radius, h=r
I = 7854 4,

M=-T84f% . . . . (8)

138. Beam of a Hollow Circular Section.—

Let » = external radius,
r, = internal radius,

= 7854 (4 - %),
rh — 4

M = 7854 f. " .. ()

If ¢ = thickness of the tube, then r, = r — 4.
Substituting this value of 7, in equation (9), we obtain—

—(r — $\
M = 854, =0 =Y

4938 - 6128+ 43 - th

r

— 1854 1.

If ¢ be small compared with 7, the expressions containing

5 *13"85 - - ()

.
" Y
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2, 3, and ¢ may be neglected without introducing much error,
and we get—

M=854f 2wt L (10)

139. Beam of Hollow Rectangular Section.—
Let d and d, = external and internal depths,
b and b, = external and internal breadths.

I - bd3-b,d,3
12
M=2L p#-243 (11)
6 X . : . .
If the beam be of a hollow square section
b=d, b, = d,.
M=L@-ay. . . Qo

If the square tube be of uniform thickness, ¢, throughout
d=d-2¢t.
ISubstituting this value of 4, in equation (12) and neglecting
all terms containing ¢, 3, and ¢4, we get—

M=§-.fd2t . . . (12a).

This . equation gives a sufficiently accurate result if ¢ be small
compared with d.
140. Beams of H-8ection with Equal Flanges.—

Let 5 = width of each flange,
d = total depth of beam,
d, = depth of web,
b, = thickness of web.

Then I = 7 {88 (5—b;) &2}
h = -g
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Substituting these values of I and A in equation (3), we get—
M-L pe-¢-s)dpy . . (13).

If the thickness of the flanges be small compared with the
depth of the beam, we obtain from equation (13), Chapter I1X.—

M = fd, (al + %) L. (1),

where d, = depth between centres of flanges,
a, = area of each flange,
a, = area of the web.

If the web of the girder be thin, it may be neglected without
introducing much error; in which case we find from equation (14),
Chapter I1X.—

M=/fdya . . . (15).

If the beam be placed so that its web is horizontal instead
of vertical ; its moment of inertia, with respect to a horizontal
axis passing through its centre of gravity, is from equation (10),
Chapter IX.—

=, BE-d)+ b2 dy),

where b, d, b,, d,, represent the dimensions already given. From
this we get—

b? d

2(d-d,)+-+ (16).

An adaptation of equatlon (15) may be used for determining
the strengths of most wrought-iron and steel-rivetted girders, as
in such cases the webs are thin, and for practical purposes the
strength which they add to the girder in resisting bending
moments may be neglected. In such girders, also, the thickness
of the flanges is small compared with the depth of the girder.

Let S = total stress on either flange of the girder in tons;
then B =saqa,
where f = unit-stress in either flange,
a, = sectional area of either flange in square inches.

Equation (15) may, therefore, be written
M = S X d * . ) (17),
where d = depth between centres of gravity of the flanges.

-
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For girders resting on two abutments of span / and supporting

a weight W at the centre, M = —V{-—l
Substituting in equation (17), we get—
W!
S = vk . . ‘ (18).
For girders supporting a distributed load W,
Wi
S = —S—d . . - . (19).
For a cantilever of length, /, with a weight, W, at the end,
Wl
S = —-2—d~ . . . . (20).
For a cantilever supporting a distributed weight, W,
Wl
S = T . . . » (21).

Example 1.—A cast-iron girder of H-section rests on two
supports 20 feet apart; what weight placed at its centre will
break it, the modulus of rupture being 12 tons; and the section
of the girder being—

Total depth d = 12 inches,
Depth of web d, = 9 inches,
Width of each flange b = 5 inches,
Thickness of web b, = 1 inch ?

The flanges are of equal thickness, viz., 14 inches,
S = 12 tons, ! = 240 inches.

Let W = required breaking weight in tons.
The maximum bending moment, M = 60 W.
Substitute in equation (13)

60 W = éf—} {bd3—(b—b,)d,?}

- 1215 x (12~ (5-1) x (9P}

W = 159 tons.
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Applying the approximate equation (14), we get—

60 W = 12 x 105 (7-5 + %)

or, W.= 189 tons.

141. Beams of H-Section with Unequal Flanges.—In cast-iron
girders of H-section, the section of the bottom flange is made
considerably larger than that of the top, as cast iron is much
stronger in compression than in tension.

The moment of resistance of the section of such a girder is
expressed by the general equation

_J
ﬂ'—_I;'I’

where I = moment of inertia of the section with respect to an
axis passing through its centre of gravity, and parallel to the
flanges.

J = unit-stress on the extreme fibres of the beam,
h = distance of extreme fibres from the neutral axis.

J may represent the unit-stress on the extreme fibres either at

the top or bottom of the beam, whichever gives to% its least

value,

For example, if the ultimate strength of cast iron in com-
pression = 40 tons per square inch, and the distance of the
extreme top fibres from the neutral axis = 8 inches, then

In the same beam, if the strength of theiron in tension = 8
tons per square inch, and the distance of the extreme bottom

fibres from the neutral axis = 2 inches, then 1;;: 5 = 4
As this second value of ';: is the smaller, it must be substituted

in the general equation in determining the strength of the beam.
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Let b = width of top flange,
¢ = thickness of top flange,
b, = width of bottom flange,
¢, = thickness of bottom flange,
¢, = thickness of web,
d distance of top of beam from the neutral axis,
) sy bottom ,,
fand f = umt—stresses at the top and bottom of the bea.m,

T = 2 (BB (b-4) (d- 0P + b, &3 - (b, - ) (- &)%)

See equation (g), page 150.
Substituting this value of I in equation (2) we obtain—

__-{bd3 ~(b-t)(d—-t3+b,d3—(b; —1,) (d; - )%} (22).
ho S

N
3 a. must be used in this case as ; 34, 3q

This is the complete expression for the moment of resistance of
the section. Several approximations may be made according to
the relative proportions of the different parts of the section.
For example, if the thickness of the flanges be small compared
with the depth of the beam, they may be supposed to be con-
centrated at their centre lines. In such case we get the follow-
ing approximate formula—

p.__{ 0+ %) dr+ (s + %*)dlz} . (23).

Where d = distance of centre of top flange above the neutral

axis,

d, = distance of centre of bottom flange below the
neutral axis,

@, = area of top flange,

a, = area of bottom flange,

a; = area of web above the neutral axis,

a, = area of web below the neutral axis,

J = stress on the extreme fibres at the top of the

beam,
J; = stress on the extreme fibres at the bottom of the

beam.
f

If=° 5 <cfl’{;1 must be taken as the multiple instead of y
11
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When the flanges of the beam are equal to each other, the
neutral axis passes through the centre of the web.

If dy = depth between the centres of the flanges,
a, = area of each flange,
a, = area of the web,

equation (23) may be written—

b=rdo (o + )

which agrees with equation (14), as already determined.
142. Beams of T-Section.

Let b, = width of flange,
Z = thickness of web,
d = distance of centre of gravity from edge of web,
d = ” ’ outside edge of flange,
dy = ’ ” inside ,,

Then since from equation (e), p- 149,

»”

T = 2 {bd+b,d3— (b ~B)ds%)
we have %= '3;1‘{6 d3+b, d® - (b, - 0)dy*},

or, - Bj‘:}; (B8d3+b,d3—(b,-b)dJ} . (24).

Where * = f = unit-stress on fibres at a distance d from the
neutral axis,

J1 = unit-stress on fibres at a distance d, from the
neutral axis.

The multiple 3‘2 3‘@ is to be taken, whichever is least.

143. Discrepancies between Theory and Practice in Determining
the Strength of Solid Beams.—The theory which has been given
for determining the strengths of beams cannot be rigidly applied.

Certain modifications have to be made to suit beams of different
sections.

For a beam of rectangular section—

b d2
w=J5
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If & weight, W, rests on the centre of such a beam whose span
18 ¢, we get—
Wi

| 4
Substituting this value of M in the previous equation, we get

(since p = M)—

Wi _bd? b d?
=S 2 or W= 3f.——— . (25).

If W be the breaking weight of the beam, f ought to repre-
sent the ultimate compressive or tensile strength per unit of
area of the extreme fibres; the strength of the beam, however, as
determined from expenment does not confirm this view.

We will explain this by means of an example.

Example 2.—What weight applied at the centre of a cast-iron
bar 1” square, placed on two supports 60" apart, will break it,
the tensile strength of the iron being 9 tons per square mch,
and its direct crushing strength 50 tons per square inch

This bar will fail by the fibres at the bottom tearing apart,
and, according to the theory propounded, this will take place
when the stress on them = 9 tons per square inch. Oonse-
quently we must put f = 9 tons, b = d = 1, ! = 60, in equation
(27) when we get—

2 9x1

W=3x 60 — tons = 2 cwts,

Now, if this bar be tested experimentally by applying gradually
increasing weights at its centre, it will (if sound) probably
support 500 lbs. before failure takes place. In other words,
its actual strength is between 2 and 3 times that found accord-
ing to the foregoing calculation. :

In the case of round bars, or square bars with one diagonal
vertical, the discrepancy between the theoretical and actual
results is still greater.

Various explanations have been given to account for these
discrepancies in the strengths of solid beams, but none of them
appear to be quite satisfactory. One explanation is that when
a beam is loaded transversely, the position of the neutral axis
which at first passed through the centre of gravity of the section
gradually shifted its position as the load was increased. This
- assumption does not seem improbable in the case of a material
like cast iron, in which the ultimate tensile and compressive
strengths differ materially from.each other,
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It is also probable that the lateral action between the different
fibres of solid beams, which are exposed to different stresses,
tends to equalise the stresses, and thereby accounts for the
discrepancy.

To illustrate the effect of this lateral action, let a, b, ¢, d (fig.
82) represent, say, a plate of iron, and suppose it be exposed to
a tensile stress close to the edge a 5. If the plate be a short one
the fibres which are exposed to the greatest stress will be those
close to the edge a b ; but these are not the only fibres strained,
for owing to the lateral adhesion between them, a portion of the
stress on those at a b will be communicated
to those next to them, and these in their
turn will communicate a portion of their
stress to their neighbours, and so on, until
the opposite edge d ¢ is reached, so that the
maximum stress will occur on the fibres at
@ b and the minimum stress on those at dc.

In the case of flanged girders with thin webs, the value of f,
as found by experiment, agrees very nearly with the ultimate
tensile or compressive strength of the material, whichever is
least ; but in beams of solid section it varies according to the
section.

Professor Rankine, instead of calling / the ultimate strength
of the fibres, calls it the modulus of rupture, and assigns to it
different values, according to the material and also to the section
of the beam. These values are given in Table XVIIIL, and by
using the proper value of f the various formul®e given may be
applied with confidence in determining the strengths of beams.

d

Fig. 82.

TABLE XVIII.—MobpuLl oF RUPTURE (/) oF BEAMS OF DIFFERENT
SECTIONS AND DIFFERENT MATERIALS,

Modulus of
MATERIALS, Rupture (1)
in Tons.
Cast Iron.
Small rectangular bars (not exceeding 1 inch in width), . 204
Large rectangular bars (3 inches wide), . . 135
Rectangular bars of Salisbury iron, U S.A. (not exceedmg

1 inch in width), . 240
Small round bars 1 inch dmmeter, . . . . 230
7y 'Y 2 in‘:hea ) . ) . * m.o
Beams of I-section, from, . . . . . 75

’s to . . . . . . 160
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TABLE XVIIL —Continued,
MATERIALS.

Wrought Ironm,

Rectangular bars, |

Rolled I-girders, ‘with ﬂa.nges of equal area., about

T-iron, with the flange above, about .
below, ”

Circular rivetted tubes of pla.te -iron, with transverse Jomts
double rivetted,

Steel Castings.

Rough cast bars, annealed and cooled in oil at first set,

at fmctnre, .
Cast b;:.lrs, planed and annealed whose deflection limits their
utilit

Cast bars, pla.ned a.nnealed, and cooled in oil, whose deflection
limits their utility, .

L ]

Wrought Steel.
Rectangular bars of hammered Bessemer steel for axles, rails,

&e., . .
’s rolled Bessemer steel ’
’e haménered crucible steel for a.xles tyres,
c .
’ rolled crucible steel for a.xles,
Trmber.
Ash,
Beech,
Birch,
Elm, .
Fir, Red Pine, .
s Spruce, . .
»s Loarch,

Oak, British and Russmn,
»» Dantzic, . .
s American Red,
Sycamore, .

Teak, Indian,
sy African,

Modulus of
Rupture ()
n Tons.

2390
270
240
230

19°5
408
912
270
324

o o
°e =]
e W
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Tables XIX. to XXIV. give the results of tests made by
Mr. Barlow to determine the transverse strengths of cast-iron
beams of square, round, and H-section. The last column, which
gives the value of f or modulus of rupture, I have added.

The bars were placed on supports at their extremities and
loaded at the centre by a weight gradually increased until

rupture took place.
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TABLE XIX.—SQUARE BaArs or CasT IRON BROKEN ON THEIR SIDES,
SpaN 60 INCHES.

Depth. Breadth. | Sectional Area. |  “Weln® Value ot £,
Inches. " Inches. S8q. Inches. Lbs, Lba.
101 102 1-030 " 505 43,689
101 1025 1:035 505 43,492
101 102 1030 561 48,5634
102 . 1-025 1045 533 45,004
100 102 1-020 533 47,030
g 1010 1020 1032 527 45,550

TABLE XX.—SQUARE Bars or Cast IRON BROKEN ON THEIR SIDES,
SPAN 60 INCHES.

Depth. Bresdth. | Sectional Ares. | Dpvai Value of /.
Inches. Inches. Sq. Inches. Lbs. Lba.
1985 2020 4010 3,303 36,7
1-990 2:015 4010 3,303 36,790
2-010 2-010 4040 3,443 38,160
2-000 1-990 3-980 3,863 43,806
g 1-996 2009 4010 3,478 38,856

The values of fin Tables XIX, and XX, are calculated from
the equation—

3 W!
=5 5
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TABLE XXI.—SQUARE BARS o Cast IRON BROKEN ON THEIR ANGLE,
SpaN 60 INcHES.

Depth. | Side of Squars. | Sectlonsl Ares. [  Himnies Valus of /.
Inches. Inches. S8q. Inches. Lbe. Lbs,
1442 1020 1040 449 53,045
1467 1-037 1-076 421 48,134
1450 1025 1-050 449 53,160
1°428 1-010 1-020 449 55,564
1-428 1-:010 1020 477 59,031
g 1443 1020 1-041 449 53,973

The values of f in Table XXI. are calculated from the
equation—

TABLE XXIL—SoL1D CYLINDRICAL BARS oF CasT IrRON -
SpaN 60 INCHES.

Mean Diameter. Sectional Area. Breaking Weight. Value of 7.
Inches. S8q. Inches. Lba. Lba.
1'145 1-030 519 52,860
1113 0-972 505 56,017
1115 0-976 449 49,611
1'118 0981 449 49,127
1120 0-985 449 48,840
Mean, 1°122 0989 474 51,271

The values of f in Tables XXII. and XXIII. are calculated
from the equation— Wi

Bl
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TABLE XXTIL—SoLp CYLINDRICAL BARS oF CasT IRON,
SpaN 60 INCHES.

t Mean Diameter. Sectional Area. Breaking Weight. Value of /.
Inches. Sq. Inches. Lbs. Lbs.
| 2:52 4-987 4,283 40,897
2:52 4-987 4,283 40,897
252 4°987 4,003 38,223
251 4-948 4,003 38,624
Mean, 2562 4977 4,143 39,635

TABLE XXIV.—Cast-IroN BEaM oF H-SecTION, WITH EQUAL FLANGES,
WEB VERTICAL, SPAN 48 INCHES.

Total ngc,:‘%%“ Depth of Wjﬂg‘ﬁ Of | 'Phickness| Sectional Breaking Val}z_e of

Depth. | Flange. Web. Fiange. | of Web. | Area. | Weight

Inches. Inch. Inches. | Inches. Inch. Sq. In. Lbs. Lbs.
1-97 495 ‘08 199 55 251 3,310 | 33,878

200 500 1-00 1-97 47 2-47 3,660 | 35,950
2-01 *505 1-00 202 48 2:52 3,735 | 36,366
208 565 97 207 63 2:81 3,910 | 34,005
207 03 1-01 202 52 267 4,628 | 40,784
2:07 51 105 204 47 2:57 4,563 | 41,5682
2:06 *52 1-02 209 63 271 4,423 | 40,060

< 204 51 100 2:03 50 260 | 4,004 | 37,512

The value of fin Table XXIV. is calculated from the equation—

3, Wal
T XF B (6-6,)d}




SOLID RECTANGULAR CANTILEVERS LOADED UNIFORMLY. 169

These experiments are instructive in showing how, in bars of
the same material, the modulus of rupture varies according to
the section. It will be noticed that the smaller the section the
greater is the modulus. Roughly speaking, with bars 1 inch
square broken on their sides the modulus is 20 tons, while with
those 2 inches square the modulus is only 17 tons. Again, with
1 inch square bars placed with a diagonal vertical, the modulus is
as high as 24 tons, and with circular bars 1 inch diameter it is
23 tons. When the diameter of the circular bars is increased to
24 inches, the modulus is found to be reduced to 18 tons. Asis
to be expected in those bars which have most material in the
neighbourhood of the neutral axis, the modulus is highest. For
example, comparing a circular bar, 1 inch diameter, and a beam
of H-section, 1 inch deep, the respective moduli are 23 and

16-75 tons.
144. Solid Rectangular Cantilevers Loaded Uniformly.—

Let W =load uniformly distributed,
[=length of semi-girder,
b =breadth of beam,
d=depth of beam.

. b a2
Moment of resistance u=f. 6

Maximum bending moment M = ‘—Z,—l.

ad

We, therefore, have —YZ)—Z =f. b—:—? ;

2
orW=f.%dT .. (26).

Example 3.—One end of a rectangular beam of oak, 10 feet
long, 4 inches wide, and 6 inches deep, is fixed in a wall; what
load distributed over its length will break it, the coefficient of
rupture of oak being five tons }

Here we have f = b tons, b = 4 inches, d = 6 inches,
! = 120 inches. |

Substituting these values in equation (26), we get—

b x 4 x(6)%
W= 37,190 =2 tons.

Example 4.—One end of a bar of cast iron, 4 inches square,
was firmly fixed, the projecting portion being 6 feet. Weights
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equally distributed were gradually applied until the bar broke.

Determine the moment of rupture of the bar, the breaking
weight being 4 tons.

From equation (26) we get by transposing—

S=Fa

Substituting the values given above in this equation, we
find—

_3x4x72

/=y

145. Solid Rectangular Cantilever loaded at the Free End.—
Adopting the usual notation we get—

?
p:f”sd, M=Wi

Equating these, we get—

= 13D tons.

2
wi=L2%

2
o, w=L28 L .
Example 5.—What weight suspended from the end of a
rectangular cantilever of wrought iron, 2 inches wide and 3
inches deep, will break it, the length of the cantilever being
b feet, and the modulus of rupture of the bar being 24 tonst
From equation (27) we have—

24 x 2 x (3)2
W="6x60

Bars of wrought iron of this section rarely actually break, but
they become so bent that their utility is destroyed, and for all
practical purposes they may be considered to be fractured.

Example 6.—A square bar of soft steel, 3 feet long, is fixed in
a cantilever form. What must be the section of the bar, 8o that
a weight of 2 tons hung from its end will just produce fracture,
the modulus of rupture being 36 tons?

Let d=side of the bar in inches.

From equation (27) we get—

6 W! 6 Wi\t

ds —F or d= 7

=12 tons,
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Substituting the values given in the example, we get—

6 x 2 x 36\#

%)

Example T.—In the last example, if the depth of the bar be

2 inches, what must be its width in order to support the weight %
From equation (27)—

b_6Wl_6x2x36

T TFdT T 36 x(2)

Ezxample 8.—If the bar in example (6) be 3 inches wide and

4 inches deep, what weight suspended at the centre of the canti-
lever, in addition to the 2 tons at the extremity, will cause

failure? Let W =required weight.
The maximum bending moment is

M=2x36+18x W,
Equating this to the moment of resistance of the section, we
obtain—
o J0d® 36x3x(4)?

6 6
o’ W= 12 tons.

146. Solid Rectangular Beams supported at both Ends and
Loaded at the Centre.—

d= =(12)#=2-3 inches nearly.

=3 inches,

18 W +7 = 288,

_fba? Wi
b = 6 . M - _4_ ’
2 b d2
= 3 N .f_l_— ' . . (28).
147. Solid Rectangular Beams supported at both Ends and
Loaded Uniformly.—
_fod oy _WI
6
4 b d2
= ;3‘ ® j—‘l— [ [] . (29).

Example 9.—A beam of cast iron, whose section is 5 inches
square, 18 placed upon two props 10 feet apart. What weight,
placed at its centre, will cause fracture, the modulus of rupture
being 14 tons?
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From equation (28)—

2 14 x 5 x (5)2

W=3*"1m%
Example 10.—In the last example, if the beam be placed so
that a diagonal of the cross-section is vertical, what is the break-

ing weight at the centre, the modulus of rupture being 16 tons?
In this case, since from equation (7),

= 9-7 tons.

_ S

- 85
) _ fb3__ 4 16 x (5)3 .
.\V—S.—é.'—l-—ggx 120 —‘i}t-OllS.

From equations (6) and (7) it is seen that the strength of a
beam of square section with a side vertical is to that of the same
beam with a diagonal vertical, as 85 : 6, on the understanding
that the moment of rupture (f) in both cascs is the same.
With some materials, however, notably cast irofi, the moment
of rupture in the latter case is somewhat greater than in the
former, on account of there being more material in the neigh-
bourhood of the neutral axis of the section, the proportion
of the moments of rupture in the two cases for small sections
being something like 10 to 9. This has the efivct of reducing
the relative strength of cast-iron bars with a side vertical to a
§62 to 86—5 X -19—0- or about h—_.)i.é In the
example just considered, this proportion is as 9-7 to 7-8%

Example 11.—A. beam of spruce, 6 inches wide by 9 inches
deep, rests on two supports 15 feet apart ; what weight per lineal
foot distributed over the beam will cause it to break, the moment
of rupture of spruce being 6 tons?

Let W = required weight per foot in tons.

From equation (29), we have—

\ ~ 4 5 x6x(9)?
‘VX].!)—‘_J. 180

diagonal vertical from

= 18 tons,

or W = 12 tons.

Ezample 12.—In the last example, what distance apart must
the supports be so that the beam may break by its own weight,
the weight of a cubic inch of spruce being 0185 lbs. !
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L.et I = required span in inches,
W = weight of the beam in pounds,
/= moment of rupture in pounds.

From equation (29), we get—
4 y 11200 x 6 x (9)* _ 7257600

S l

Also W = 6x9xIx018b =1

W =

Equating these two values of W, we get—

7257600
l

When the length of the beam, therefore, is 224-5 feet it will
break by its own weight.

Exzample 13.- -A square bar of cast iron, 3 inches by 3 inches,
rests on two supports 60 inches apart. A weight of 3 tons is
suspended from the centre of the bar. What additional weight
suspended at one foot from the centre will break it ?

/] =

, or I = 2,694 inches.

Let W = required weight in tons.

The maximum bending moment takes place at the centre of providina

the beam, and ¢quals (45 + 9 W) inch-tons.
The moment of resistance of the section of the bar is

o0~
o= .1.5_-2_“‘ = 67'0 inch-tons, the modulus of rupture being
taken at 15 tons per inch.

Equating these two expressions, we have—

OW + 45 = 675,

or W = 25 tons.

A weight of 2-5 tons, therefore (in addition to the central load
of 3 tons), placed at 1 foot from the centre of the bar, will cause
it to break at the centre.

Example 14. -A round bar of cast iron is placed upon two
supports 6 feet apart. A weight of 2 tons hung from a point
2 feet 6 inches from one of the bearings is just sufficient to
fracture it. What must be the diameter of the bar if the
modulus of rupture = 20 tons per square inch ?

I.et » = radius of the section of bar.

W(STO\\;
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From equation (8),
M = 7854 f 3.

The weakest part of the bar, or the point where the maximum
bending moment occurs, is at the point of application of the
weight. At this point

M = 35 inch-tons,
consequently
‘7854 f 13 = 35,

‘7854 x 20 x 23 = 35, or r = 13 inches,
which gives the diameter of the bar = 2-6 inches,

Example 15.—A timber bridge crossing a rivulet 20 feet wide
is supported by two main beams of ash 14 inches square. The
dead weight of the bridge i1s 4 tons. WWhat is the maximum safe
concentrated load it would be advisable to roll across the centre

of the bridge? .
The moment of rupture for ash is about 6 tons. One-sixth of

this, or 1 ton, may be taken as a safe working load, so that if—
W = breaking weight, then FVG' = required load.

Dead load (distributed) on one beam = 2 tons.

The breaking live load (concen-] W
trated) on one beam — 9

The maximum bending moment on the beam occurs at its -

centre when W rests on the centre of the bridge, in which case

M =260+ 30W,
M being expressed in inch-tons. Moment of resistance of the
beam .
= 'ig_s- = 6 x é14) = 2,744 inch-tons,

we get, therefore,
60 + 30 W = 2,744, or W = 894 tons;

and required safe load

= —%—4 = 149 tons.
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Example 16.—A hollow tube of mild steel, 12 inches external,
and 11 inches internal diameter, is placed upon two supports
15 feet apart. What weight placed at its centre will cause it
to collapse, the tube being properly stiffened

The ultimate strength of mild steel is about 30 tons per
square inch.

f=380, r=6, 1~ =>5%, !=180 inches.

W =required breaking weight.
The maximum bending moment is M =45 W inch-tons,
Substituting this in equation (9) we have—

45 W= 22X Bigpe_ (55} =1,496,

or, W=23324 tons.

The breaking weight may be found approximately from
equation (10), by putting ¢="5 inch, thus—

45 W =3-1416 x 30 x (6)2 x 5= 1,696,
or, W =377 tons.

A result which is somewhat greater than that previously found.
Example 17.—What must be the thickness of a wrought-iron

tube, 12 inches external diameter, and properly stiffened, in order

to carry with safety a load of 5 tons placed centrally between

two supports 8 feet apart, the safe working load of the iron
being taken at 4 tons per square inch ?

Maximum bending moment, M = 120 inch-tons.
From equation (10) we get—

M 120 .
= e FIdI6 x dx (Gp 027 ineh.

Ezxample 18.—A tube of cast iron, 9 inches square, outside
measurement, and # inch thick, rests on two props 12 feet apart.
What is the greatest distributed load it will carry, so that the
maximum stress on the fibres may not exceed 2 tons per square

inch ?
d=9, d,=8, [f=2, [I=144.
Let W =required distributed load in tons.

Maximum bending moment, M = EV—S—Z =18 W.

¢
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Substituting this in equation (12), we obtain—

18 W = ej“:z (@4 -dy})=5 f 5 () =8)},

or, W =507 tons.
The result, as found by the approximate formula (12a), is—

4 1
lSW;—gx 2 x (9)2x2,
or, W =0 tons.

Example 19.—In the last example, if the tube be of wrought
iron, what must be its thickness in order to support weights of
4 tons and 6 tons placed at distances of 6 and 8 feet respectively
from the left support, without producing a greater stress than
5 tons to the square inch on the extreme fibres of the tube?

f=5, d=79, ¢t =required thickness in inches.
The maximum bending moment occurs at all sections between
the points of application of the weights, and its value is M = 288

inch-tons.
From equation (12a)—

=3 M
—Z . f deo
Substituting the above values, we get—
3 288 :
t=z BT——(9)2=0 53 inch.

Example 20.—A wrought-iron rivetted girder of H-section .
rests on two abutments placed 60 feet apart, and is uniformly
loaded with 1 ton per lineal foot, including the weight of the
girder ; the sectional area of the top flange=11 inches, and that
of the bottom 9 inches net. 'What is the stress per square inch
on the flanges, if the depth of the girder =10 feet ?

f W=60tons, (=60 feet, d=10 feet.
If 8 = total stress on either flange, from equation (19), we find—
60 x 60
8 x 10

Stress per square inch on top ﬂa.nge=%= 4-1 tons.

Stress per square inch on bottom flange == %5 =) tons.

S = =45 tons.
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Example 21.—A steel solid-web girder, 50 feet span and 5 feet
deep, supports a distributed load of # ton per foot and two con-
centrated loads of 5 tons each, placed at a distance of 5 feet at
each side of the centre. Determine the maximum stress on the
flanges, and state convenient sections for the top and bottom
flanges, if they are exposed to stresses of 6 tons and 7 tons
respectively. ‘

The maximum bending moment occurs at the centre of the
girder.

Bending moment at the centre for

the d%stributed load = 234375 foot-tons,

Bending moment at the centre for] _ ;44

the concentrated loads , -

Total bending moment at the centre =334-375 »

Flange stress at the centre of girder=§i;i7—§= 66-87 tonms,

6

Net section of bottom flange at} _ 66-87

centre of girder = 965 sq. ins.

Gross section of top flange at centre 66-87 . .
of girder } =—7—=11'14 sq. ins.,

The following sections may be used—
[ 1 plate, . . 12x4= 6 sq. ins,

2 angles, . . 3x3Ixi= 565 ’

Top flange, . .

L Total area of flange, . 115 ,,
(1 plate, . . 12xy= 6756 ,,
2 angles, . . 3xX3x4= b6 '

Bottom flange, . < 1225 ,,
Allowance for rivet-holes, 2625 ,,

\ 9625 ’”

These sections of flanges should occur for at least 15 feet at
the centre of the girder. If great economy be desired, the flange
plates for the remainder of the girder may be made %" or §” in
thickness. Practically, however, there is not much gained by
this, and in girders of this section it will generally be found

12
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advisable to continue the thicker section of plate to the ends of
the girder. Theoretically the flanges for a considerable distance
towards the ends would be strong enough with the angles alone
without any plate, but a girder of this kind looks unfinished,
and is deficient in lateral stiffness, and for other reasons it is
not advisable to dispense with the plate.
The maximum shearing stress on the web occurs at the edge
of each abutment, and =23-75 tons.
If the maximum shearing stress per square inch of gross
sectional area be taken at 3 tons, the section of the web at the
2375
abutments theoretically should be 23 3‘—9 =8 square inches, and
as the depth of the web=60 inches, its thickness would be

8 = *133 inch. In solid plate web girders the thickness of

60

the web, however, is seldom taken less than ;% inch. If less
than this, it would have comparatively little stiffness, and would
be liable to bulge with compressive stresses. Even at this and

greater thickness, it will be found necessary to introduce vertical

stiffeners to keep the web straight and to give lateral rigidity to
the girder. Another objection to using thin webs is that in the
course of time their strength is materially affected by corrosion.

Example 22.—In the last example, with the sections of flanges
given, what extra weight placed at the centre of the girder will
break it, the nltimate tensile strength of the steel being 32 tons,
and its ultimate compressive strength being 28 tons per square
inch

The top flange will be crushed with a total stress of 115 x 28
=322 tons.

The bottom flange will be torn with a total stress of 9625 x 32
= 308 tons.

The bottom flange theoretically will, therefore, fail before the
top one and when the stress at the centre =308 tons.

We have seen in the last example that the distributed load
and two concentrated loads produce a stress of 66-87 tons at the
centre of each flange. The question, therefore, resolves itself
into this—What weight placed on the centre of the girder will
produce a flange stress at the centre equal to 308 — 66-8 =241-2
tons 1 |

Let W =required weight in tons.

From the well-known equation (18), we get—

w228 ;iS; or W==4t z 55x0241.2=96'5 tane.
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Ezxample 23.—A. railway bridge, 150 feet span, carrying a
double line of rails, is supported by two main wrought-iron
lattice girders 15 feet deep. If the dead weight of the structure
between the abutments =400 tons and the weight of each train
of carriages =14 tons per foot, what must be the sections of the
booms of the girders at their centres, allowing a factor of safety
of 4 for the dead load and 5 for the live load, the ultimate

strength of the iron being 20 tons per square inch ?

Total dead load on one girder =200 tons distributed,
Total live load on one girder =225 tons distributed.

Let 8 and 8, represent the flange stresses produced by these
loads respectively at the centre of the girder.

_ 200 x 150

S= 815 = 250 tons,
225 x 150
Sl= —8x—°-—1—5— =281 tons.
. 250 . :
The dead load requires 5 = 50 square inches of sectional

area at the centre of the flange.

The live load requires gg—l-= 70-25 square inches.

The total sectional area of each flange, therefore, at the centre
of the girder must be 120-25 square inches.

If the stress be computed on the net sectional area of the
flange, the section of boom given in fig. 83 would be a suitable
one for this girder. It will be noticed
that it is arranged for a box girder, the
vertical plates being for the purpose of
connecting the lattice bars to the booms.
It must be understood that the 15 feet
given as the depth of the girder means the
distance between the centres of gravity of ¥ ¥ 7
the sections of the booms, the actual depth Fig. 83.
of the girder being somewhat more than this.

The net section of the boom may be computed as follows : —
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6 horizontal plates 32" x 4" = 96 sq. ins.
2 vertical plates 18" x§" =27
4 angles 4" x 4" x §” = 184 ,,

141:4 total gross area.
Allow for 1” rivet-holes, 180

1234 total net area.

This allows a slight margin in excess of the area required.

RoLLED GIRDERS.

Rolled girders are made of wrought iron and also of mild steel;
those made of the latter material being much stronger and not
much more costly, are coming very much into favour.

In the Table (XXV., p. 186) the ultimate tensile strength of
the wrought iron is assumed to be 20 tons per square inch, and
that of the steel 30 tons. The moment of inertia given is that
taken with respect to a horizontal axis passing through the
centre of gravity of the section, and as the top and bottom
flanges are equal, this point will be in the centre of the web.

In order to explain the Table, we will go through the process
of calculating the moments of inertia and resistance, and the
breaking weight for No. 1 section.

The formula for the moment of inertia of a H-section with
equal flanges with respect to an axis passing through its centre
of gravity and parallel to the flanges is (see Chap. IX.)—,

1
I =15 {bd-(b-5) d*}.
Applying this to the girder under consideration we have

d = 20, d, = 18-06,
b= 826, b, = 76,
80 that

T= g5 {826 (20)°~7'5 (1806)} = 18251 inch-units.
Next, to find the moment of resistance of the section ().

This"is found from the general equation x = —’;: x I; and as

h=10, I=1,825, f = 20 and 30 tons for wrought iron and steel
respectively, by substituting these valves, we get—
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 (for wronght iron)= 2] x 1,825 = 3,650 inch-tons,
30 .
w (for steel) =10 > 1,825 = 5,475 inch-tons.

Lastly, to find the breaking load on a girder of 1 foot span.
If W =required breaking load in tons distributed, the maximum
bending moment of the girder is—

Wx12 3 ..
5 =3 W inch-tons,

and as M =, we obtain—

M=

.g_ W =3,650, or W =2,433 tons for iron,
;’ W =5,475, or W = 3,650 tons for steel.

Knowing the breaking load for a span of one foot, the breaking
load for any other span may be found by dividing the former
load by the span in feet.

For example, the breaking load of the girder under considera-
tion for a span of 20 feet is—

2 : .
Breaking load in tons= 333 = 1216 tons for iron girder.
”» 2 = 3330 = 1825 tons for steel girder.

If the ends of the girders be fixed by being built into a wall
or otherwise, their strengths will be greater than those given by
the table. The amount of extra strength imparted to them by
thus fixing their ends altogether depends on the efficacy with
which it is done. If the ends be firmly fixed, their strengths
will be theoretically doubled, as shown in the chapter on bending
moments. Practically, however, this is rarely the case; the
ratio, as found by experiment, between beams with fixed and
unfixed ends, is not often more than 3 to 2, and this is only
when the fixing is properly done. With independent girders
(as used in warehouses for supporting walls and floors), it is
always best to ignore this addition of strength, and to consider
them as if their ends were entirely free.
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The allowance usually made for the load on floors is—

Public buildings, . . 1
‘Warehouses, . . 2

»n b}

to 3 » R

Ezample 24.—It is required to construct a floor to a ware-
house to be carried by steel-rolled girders. The span between
the side walls is 20 feet; the main girders are to rest on these
walls and to be placed 10 feet apart. On these girders are to
rest smaller girders running transversely with 