NEW YORK UNIVERSITY COLLEGE OF ENGINEERING RESEARCH DIVISION Department of Meteorology and Oceanography and Engineering Statistics Group

The DIRECTIONAL SPECTRUM of a WIND GENERATED SEA

As determined from data obtained by the Stereo Wave Observation Project

by

Joseph Chase
Louis J. Cote Wilbur Marks Emanuel Mehr Willard J. Pierson, Jr. F. Claude Rönne George Stephenson Richard C. Vetter Robert G. Walden

with the assistance of personnel from the following organizations:
David Taylor Model Basin
George Washington University Logistics Research Project
Naval Air Development Unit, N.A.S. South Weymouth, Mass.
Office of Naval Research
U. S. Navy Hydrographic Office
U. S. Naval Photographic Interpretation Center

Woods Hole Oceanographic Institution

NEW YORK UNIVERSITY COLLEGE OF ENGINEERING RESEARCH DIVISION Department of Meteorology and Oceanography
 and
 Engineering Statistics Group

The
 DIRECTIONAL SPECTRUM of a
 WIND GENERATED SEA

As determined from data obtained by the

STEREO

WAVE
OBSERVATION
PROJECT
by
Joseph Chase
Louis J. Cote
Wilbur Marks
Emanuel Mehr
Willard J. Pierson, Jr.
F. Claude Rönne

George Stephenson
Richard C. Vetter
Robert G. Walden
with the assistance of personnel from the following organizations:

David Taylor Model Basin
George Washington University Logistics Research Project Naval Air Development Unit, N.A.S. South Weymouth, Mass. Office of Naval Research
U. S. Navy Hydrographic Office
U. S. Naval Photographic Interpretation Center Woods Hole Oceanographic Institution

Prepared for
The Office of Naval Research under Contract Nonr 285(03)

THE DIRECTIONAL SPECTRUM OF A WIND GENERATED SEA
 AS DETERMINED FROM DATA OBTAINED BY THE STEREO WAVE OBSERVATION PROJECT

By

and members of the staff of the U. S. Navy Hydrographic Office.

JULY 1957

This report is a technical report prepared for limited distribution for the Office of Naval Research under contract Nonr 285(03) at the Research Division of the College of Engineering of New York University. Reproduction in whole or in part for any purpose of the United States Government is permitted.

 $2 \cdot 2 \cdot+1020$

sen if xitue
Part 1. INTRODUCTION 1
Willard J. Pierson, Jr.
Part 2. COOPERATING AGENCIES AND ORGANIZATION 3
Richard C. Vetter
Part 3. HISTORY 18
Wilbur Marks
Part 4. OPERATIONAL PROCEDURE 26
Wilbur Marks and F. Claude Ronne
Part 5. WAVE FORECASTS. 31
U. S. Navy Hydrographic Office
Part 6. PHOTOGRAMMETRIC EVALUATION OF PROJECT SWOP 40
U.S. Navy Hydrographic Office
Part 7. PRELIMINARY ANALYSIS, CHOICE OF GRID SPACING, AND DISCUSSION OF ALIASING 49
Willard J. Pierson, Jr., Wilbur Marks, and Joseph Chase
Part 8. EQUATIONS FOR LEVELING THE DATA, ESTLMATING THE SPECTRA, AND CORRECTING THE WAVE POLE RECORDS 58
Louis J. Cote and Willard J. Pierson, Jr.
Part 9. THE LEVELED DATA, THE NUMERICAL ANALYSIS, AND THE NUMERICAL RESULTS. 82
Emanuel Mehr and George Stephenson
Part10. ANALYSIS OF WAVE POLE DATA 134
Willard J. Pierson, Jr.
Part 11. THE STEREO PAIRS, AND THE INTERPRETATION AND ANAL YSIS OF THE DIRECTIONAL SPECTRUM IN TERMS OF WAVE THEORY 148
Willard J. Pierson, Jr.
Part 12. CONCLUSIONS AND RECOMMENDATIONS 253
Willard J. Pierson, Jr.
Appendix: THE DIMENSIONAL STABILITY OF PHOTOGRAPHIC FILMS. 257
Simeon Braunstein

LIST OF ABBREVIATIONS

Bu Aer	Bureau of Aeronautics, Washington, D. C.
DTMB	David Taylor Model Basin, Washington, D. C.
HYDRO	U.S. Navy Hydrographic Office, Washington, D. C.
NADC	Naval Air Development Center, Johnsville, Pa.
NADU	Naval Air Development Unit, South Weymouth, Mass.
NPC	Naval Photographic Center, Washington, D. C.
NYU	New York University, New York
ONR	Office of Naval Research, Washington, D. C-
SIO	Scripps Institute of Oceanography, La Jolla, Calif.
WHOI	Woods Hole Oceanographic Institution, Woods Hole, Mass.

 therg

 DEATS

 24M
 TJY析
 410
 Q18
 10 . W

ERRATA

Page 33, line 11: For $74^{\text {学 }}$ read 74°.

Page 104, Table heading: For Data Set 2 read Data Set 3.

Page 180, line 16: Following and 11.3 should be a parenthetical remark: (as drawn for the full set of data)

Part 1.

INTRODUCTION

On November 25, 1954, two aircraft rendezvoused with the R.V.ATLANTIS at a point in the North Atlantic. The aircraft made a sequence of passes over the ATLANTIS and flew back to base. Months of preparation went into the flight, months of thought went into the problem of what to do with the data obtained on the flight and by the ATLANTIS, and months of work went into the numerical processing of the data.

The results of the flight were stereo pairs of photographs of the sea surface. The ATLANTIS provided base line calibration and wave pole and visual observations. Two of the best pairs of photos were reduced to 5400 numbers on a rectangular grid. The wave pole records were reduced to a time series of discrete points of about 1,800 numbers each. The purpose was to take the two sets of 5400 numbers, estimate the directional spectrum of the waves on the sea surface and compare it with the frequency spectrum as estimated for the three sets of 1800 points read from the wave pole records as a check.

To go from the 10,800 siereo numbers and the 5,400 wave pole numbers to the desired spectra required a total of about $9,000,000$ multiplications and an equal number of additions. After the directional spectra were computed, the results obiained were inconsistent with the theoretical models, and the stereo data had to be carefully re-analyzed with the result that part of the data had to be discarded. The 5400 numbers were reduced to about 3500 numbers, and the computations were done over again.

This task has just been accomplished, and the purpose of this report is to tell how the operation was planned, how the data were obtained, and how the computations were made. Finally, the results obtained will be analyzed and interpreted. The original data, the reduced data, and the results of all computations are included in both pictorial and tabular form.

As this report is studied by its readers, it will become apparent that it would never have been written were it not for the combined efforts of a very large number of people with diverse talents and abilities. They represent a wide variety of U.S. Navy organizations and civilian research organizations. As many as possible have been mentioned and thanked in this report, but some who have helped immensely in this work remain anonymous because it is not possible to list them all. Our thanks are extended to all individuals who helped in this work and to all cooperating groups, and the hope is expressed that the final analysis of the results will prove of sufficient value to justify the tremendous effort expended on this task.

Paztt 2
 COOPERATING AGENCIES AND ORGANIZATION

This part concerns the arrangements, meetings, official lettexs, discussions and exchanges of ideas that went into brimging together the many diverse people and agencies who contributed to SWOP and without whose assistance SWOP would not have succeeded.

The problem as first presented in the fall of 1953 wes to doteir an acciarate represemtation of the directiomal properties of real ocean waves. The first job was to try to tind out whether or rot the proposed plan was feasible and to get and review the critical opinion of others as to wheter or not it needed doing. Marks had been studying waves by stereo techriques, but on a much reduced scale. By taking photographs from a bridge, he wes able to get useful data on the twodinensional wave spectrum for a wather limited fetch This, however, was quite a differeat thing from taking sterecontintos fwom airplanes far out in the open ocean. Latiers were writuen te pople duing weve research asking their opinion. In the replies there was gewevan agreersemt that a good statistical treatment of a whole area of the see suritace was Heceer (ary bexoretheart of understanding waves conld ke mucin advarned. Im a Ietsem to the anthor in February 1954, Walter Murk, of tre SIO, stetcad that ".... the two-dimensional analysis is cestainly tine essential problem now. In fiz: I have some serious doubts as to whether further extensive work on frequewer analysis of records taken at a simgle point is ever wortinw? If ome wses a spectral presentation of wares, one should really go all the wiy or wothtall."

Assured that the study was needed, the first of a long series of letters, official and otherwise, which helped bring together all the necessary people and components which were needed to make the plan succeed were written. In addition to the actual task of taking the photos under suitable wave conditions the data had to be analyzed on a stereo planigraph or similar instrument and facilities for the immense task of computing the required quantities with high speed digital computors had to be obtained.

The first piece of official correspondence on SWOP in the files is dated. November 9, 1953. It was a formal letter from the Chief of Naval Research to the Chief of Naval Operations outlining the reasons for the SWOP project and asking for certain services. Cameras, airplanes and a radio link for firing the cameras were requested. The letter went via the Bureau of Aeronautics for comment. It picked up a favorable endorsement recommending that the project be assigned to the Photographic Squadron VJ-62 in Sanford, Florida. To the practiced eye of our friends in CNO it was obvious that the proposed job was much more complicated than the letter indicated.

The Naval Photo Interpretation Center was asked by CNO to study the proposal and comment. As a result of the review, a number of critical prints were raised. There were problems of control of aircraft height, of control of distance between aircraft, of tilt and of simultaneous firing of the cameras. Establishing a pattern that was to become a routine method of solving the problems which arose, a conference of all concerned was called to discuss each point in detail. This conference which was held at the Naval Photom
graphic Interpretation Center, Anacostia, Maryland, on March 2, 1954 is described by Marks in Part 4 of this report.

It would have been useless, however, to proceed with plans and the construction of equipment for SWOP without some assurance that a vessel could be made available. The vessel would have to go to the target area some place in the North Atlantic and wait, no one knew exactly how long, for favorable meteorological conditions to occur. This assurance was given by WHOI. The ATLANTIS could be put at the disposal of SWOP given sufficient advance notice. Getting an oceanographic research vessel with a very heavy schedule of other "equally important" projects under such circumstances would have been extremely difficult without the enthusiastic and understanding cooperation of Dr. Columbus Iselin of WHOI.

The next item on our critical list was the weather. The Division of Oceanography, U.S. Navy Hydrographic Office was asked for advice concerning the best time and place for finding the desired wave conditions. A report on this aspect of the work is given in Part 6 of this report.

The errors which could be anticipated in the data had been estimated and it had been shown that significant results could be obtained in spite of these errors. By May of 1954 enough arguments had been mustered to permit another try through official channels to get the airplanes and cameras we had to have.

During a conversation with Cdr. James* about the possibility of using blimps to do the job, he suggested that NADU was the place to go for help. *ONR Air Branch

Fortunately, Cdr. Robert H. Woods, Commanding Officer of the Naval Air Development Unit, and Cdr. Hoel, also of NADU, were in Washington on some other business and the problem was discussed with them. They were both interested, even enthusiastic about our project. We talked about using two of NADU's blimps to do the job. Their stability, slow motion and freedom from vibration were particularly appealing. At last, operational people were interested in helping us. In the next few months the officers and men at NADU accepted each problem in the series of many to be overcome in our job as a challenge and made it a point to find the best answer in each case. It is impossible to give NADU too much credit for the magnificent job they did for us.

On 16 July 1954, an interoffice memorandum was written explaining the necessity of assigning a priority of " B " to our project with NADU. The stringent weather requirements we had to meet and the necessity of being able to plan well in advance in order to have the WHOI R/V ATLANTIS, the NADU airships, and the weather all be at the right place at the same time were outlined. The priority was granted and on 19 July a letter was sent from ONR to NADU setting up a project directive for the accomplishment of SWOP. An abstract of the project contained in this letter will provide some idea of the plans at this point:

[^0]in tre cemtero of the auget areamating zumerns and contimous wave observations ame providing a "ground comeroll for the
 the "Atlantis" anf? avaro Pexacamel feom tine Woods Hole Ocenoographic Institution will assist in installation of

The stabinaction of the citesins in the rergh weathex theg were apt to ex-
 gyrostabilizing the camere mommis.

 Burear of Aeromantics:

```
4 CA-B acxial recommissance cmmeres
2. Gyrostabilimimes mommics
8 molls of Topograntuc Base, Pamchromatic tilm
    91//2" }\times20\mp@subsup{0}{}{\prime
```

 equipmerat.

 organize NADU's Werticiantim f. SWOP. He, LGdw Champlin, Cdr Hoel

 of the comference aredescurity ky Macks in Pazt 4。 A most important
reault was the decision to change over from blimps to $P 2 V^{\prime}$ s.
A meeting on the 19 th of August marked another milestone in the step by step progress we were making. Marks. Rönne, Whitney and Walden from Woods Hole, Cdr. Leffen LCdrs. Finlayson, Docktor, and Price from NADC, two representatives from Hydro, Pierson from NYU, and myself from ONR attended, and Cdr. Wood, Cdr. Hoel. L Cdr. Champlin, L Cdr. Hollingshead and Lto jg Chandler acted as hosts at NADU. Thanks mainly to the staff at NADU, a detailed program for the accomplishment of the operation was worked out. The participants were assigned various tasks and dates were set up for tentative completion of various phases of the project.

As a result of the conference my tasks were to arrange for the development of the film at Bermuda and Anacostia, to get official authorization through BuAer for the installation of the cameras on the P2V's by the NADC and to get the necessary films and magazines (also through BuAer) sent to WHOI.

A date was set for the test flight, 27 September, and a target date for the actual photographs at sea, 1 October. Considering the many things that still needed doing and the arrangements that had to be made, this was pushing things just a bit. But to delay longer would have put us into the winter months with less chance of getting just the right meteorological conditions.

On 25 October a letter was written to the Naval Photographic Center, NAS Anacostia, asking them to develop our black and white and color film
obtained both during the test flights for SWOP and the actual project flights. We wanted immediate development of the test flight film in order to be able to check out the photographic system. The P2V's were to land at Anacostia immediately after flying the test hop so that the films could be developed at the NPC and inspected by someone from the Photogrammetry Division of the U. S. Navy Hydrographic Office for accuracy with a minimum of delay. The test flight was planned for the third week in September. The results of the analysis of the test data and of the data finally obtained are described by members of the staff of the Photogrammetry Division of the U.S. Navy Hydrographic Office in Part 6.

The flight check showed that one of the two cameras sent to Johnsville for installation was defective. Luckily we had originally asked for four cameras so we had spares to fall back on. The Photogrammetry Division at Hydro checked these cameras for us and were able to find two good cameras for us out of the four BuAer had originally sent.

On September 16 th a letter was sent from ONR to Hydro asking for their assistance in providing the required wave forecast. This request was made supplementary to the request for services from the Photogrammetry Branch and was intended to be part of the same project. Hydro, of course, agreed to provide these additional services. This aspect of the work is also discussed in Part 5.

On the 29 th the test flight was made. I was waiting at the field at Anacostia for the P2V's to arrive. It was slightly after the desk workers quit-
ting time when both planes touched down. The magazines were removed from both cameras and taken to the Navy Photo Center for development. Later that night the films had been inspected. Everything was fine except that the corners of the pictures taken from both cameras were blurred. The cameras had been mounted too high up in the fuselage of the aircraft so that part of the field of view was being cut off. Some minor surgery on the mounts was all that was required. By the 12 th of October everything was ready to roll and Marks issued detailed instructions to all parties outlining exactly what and how each was to do his part.

On the 15 th the Woods Hole Port Captain issued letter instructions to the ATLANTIS Captain to depart Woods Hole on or about the 17 th for latitude 39 N , longitude 63.5 W to the rendezvous with the waves, the weather and the P2V's. It was hoped that SWOP would be over and done with by the 25 th so that the ATLANTIS could be back at Woods Hole on the 27th as early in the day as possible.

When the right weather and cloud conditions finally occurred, the ATLANTIS was there after waiting for one week; the planes were there; the cameras were functioning; and on the 25 th of October the pictures were taken.

There remained the unexciting task of cleaning up after the operation. All the various items of borrowed equipment had to be returned. There was more correspondence back and forth piecing together some of the loose ends. Marks sent down a data sheet for the distance between the raft and the ATLANTIS in each pair of photographs. Prints of the best stereo pair according to the judgment of Hydro's Photogrammetrists were sent to him.

Details of the grid arrangement were wroked out. BuAer was notified that the operational part of SWOP was over and all comeerned were thanked for their help and cooperation. A simiyar levter was sent to NADU via their boss, the Commander, U.S. Navy Air Bases, Ist Naval District.

The firms expossd over the Nart Atientic were developed and sent to the Fydrograpkic Office. The Low light intexsity arailable during the SWOP flight threatened to produce negatives of marginal value, but careful development by the NPC at Anacostia saved the day.

Hydro looked over the stexeo patirs, picked one of the best and began contouring。

Further work came to a temparary hait while Hydro's presentation of the contours were sent to Pierson ard Marks for study. As was expected there was sometilt in the contouroing. The Photogrammetry people at Hydro did their best to level the stereopair before contompirg, but we all realized that with no estabiished reference wiane from which to work, perfect leveling would be impossible. The cnutours showed a range of heights from one foot to 24 feet while acturd ware pole measurements taken on the spot from the ATLANTIS geve a sigmifuert wave keight of about 7 feet. In addition to this tilt a somewhat closex look showed a ridge running almost exactly down the cemter of the $2,000^{\circ}$ x $4,000^{\prime}$ rectangle caused by the stereo-photos pawalleled by a trough about 500^{\prime} away. In order for this feature to be real, a wave witi a heught of at least 9 feet and a period of about 14 seconds world hizve beem in the azea photographed. No such wave
could have been generated by any known meteorological disturbance in the Atlantic area. We were forced to conclude that the contoured surface was not only tilted but warped int some sort of "barrel" shape with axis parallel to the long sides of the contoured rectangle. Fortunately, this barrel type of distortion was not present in other stereo pairs and the only real problem turned out to be that of rernoving tilt from the analysis and determining a zero reference plane.

The tilt was not too serious. Mathematical analysis could take most of the tilt out of the data。 After a discussion with Hydro, it was suggested by me that we have Fydro give us the data in the form of discrete elevations on 2 grid systern. They felt that such data would be more accurate and take less time than contouring. It looked as if it were about time for another small conference to see where we stood and determine just what should be done.

Dr. Pierson came down from NIU on the first of March and we had a vory profitable discussion with the people at Hydro's Photogrammetry liranch. He was finelly able to decide on a simple 30×30 foot grid systern with sides parallel to the photographs. Unfortunately, the sides of the photographs did not lime up with the direction of the surface waves as expected. The preluminary andysis of the data is described in Part 7 of this report.

The important thing, lowerer, was to have the grid system point in the same geometricill direction in each of the three pairs of photographs
which were to be processed for spot heights. By careful selection from the available prints, Hydro was able to come up with two good pairs with identical orientation and another which was only 5° different in direction from the other two. They set up the grid system in the third so that it was aligned in the same direction as in the first two. A grid system of 60×90 points was finally settled upon, and Hydro began the laborious task of grinding out 5,400 spot heights for each of three pairs of stereo photogyaphs of the sea surface.

Wich the data soon to be pouring out of Hydro, the next important problem was to get it analyzed. We turned again to the DTMB UNIVAC. By this time the demands for time on their computer had grown tremendously. They would, however, be willing to rum the analysis if it were first programmed. Dr. Pierson investigated the possibility of having the programming done at NYU. The Engineering Statistics group of the NYU Research Division, under the direction of Mr. Len Tick undertook to do the task in about two months. So, while Hydro was amassimg the tables of numbers that were so important, Mr. Einanuel Mehr wes working out the problems of telling a mass of vacuum tubes and wires (ike UNIVAC) what to do with the numbers we intended to feed it. By tre first of April. Hydro was beginning to grind out tile data and I went out to see now they were doing and talk witi them about the project. I was very much impressed with the careful and accurate job they were doing. They felt that their observations were accurate to pius or minus one foot and reproducibility to about $2 / 5$ ths of a foot. As a check, I.
picked out two spot heights whinch they had already determined and asked for a check. In both cases the operator came within 165 font of the previously recorded reading。 By the 21 st of April the first set of 5,400 spotheights had been completed and Hydro was proofreading the typed tables. These were forwarded to ONR on May 6, 1955. The second set of 5, 400 SWOP numbers came into my office from Hydro. By this time they were turning out work at a good rate and doing an even more accurate job. Their estimate was that tre second batran of data mas accurate to within plus or minus .5 feet.

By the first of Irivy Hodro and for-narded the Iast set of the three sets of data. This aiso was accirate to mitrin plus or mimus. 5 feet. Thus one phase of the SWOP operation came to a close. The extraction of the raw data from the stereo photographs had been completed.

The question of whetiner or rot me should have Hydro contour another set of photos in order to show wome of the fine structure which would be timinated from data taken from spot heights alone arose at this time. It was agreed that this should be done but at a later date wheri SWOP was farther along.

It remained to analyze this data carefully to elimimate the tilt which was known to be present in eack model and finally to subject the data to amalysis of an electroniccomputer. Our attemtions were now focused to the problem ofgetting a firm commiment from DIMB concerning use of their UNIVAC. It looked as if our orighaid estimate of the time required for the
analysis had been am order of magnitude too small. The workers att NYU worked out a method for leveling the data that would take about one and onehalf hours of UNIVAC time. We hoped to get this done on the DTMB UNIVAC. Later the job was done commercially at New York. While working out the details of the programming of the data Mehr upped the estimate of total UNIVAC time to over 20 hours.* This made things look a little dark for us as far as getting the job done at DTMB was concerned.

On 26th August our letter to DTMB asking them for UNIVAC time was
answered. The Model Basin wanted to program the analysis instead of having it done at NYU and wanted to examine the data to see whether or not it would be practical to do the work on their UNIVAC. Their desire to do their own programming was wnderstandable since an improperly programmed operation could run up the total time used by the UNIVAC considerably. However, Mehr had already done most of the programming at NYU. Another conference appeared to be in order, so on 19 September Dr. Polackek and Mr. Shapiro and Mr. St. Dexis of DTMB and Mr. Mekr of NyU and mya self met at DTMB to discuss the problem. Mr. Mekr had finished programming the analysis. All that remained to be done wras tn "dembug" his programming setup and then rum the analysis. He estimated trat about 20 good UNIVAC hours would be required for eack of the three sets of data. Considering their other kigh priority commitments for twe UNIVAC this was way out of line with what we hoped to get. I agreed to try to find funds to de-bug and run the first set of da今a commercially, o. the pian being tren to *For each set of data.
turn the rest of the data over to DTMB to have it run in bits and pieces as time became available. Additional funds were made available to NYU by ONR to perform the first part of this analysis, and I wrote an official letter to DTMB outlining our plan. We would have the analysis on the first set of data done commercially to provide an absolute check on the programming and then turn the remaining work over to DTMB.

From the beginning it had been our expectation that we would be able to use the UNIVAC computer at DTMB to perform the analysis of the SWOP data. That things did not turn out this way should not be taken as a reflection against DTMB or any of the people on its staff. Without the encouragement from DTMB, in particular, from Manley St. Denis, early in our planning stage concerning possible use of their computer, we might not have gone ahead.

Arrangements were finally made to have the work done on the "Jogistics Computer", ONR Logistics Branch. Thanks are due to Dr。Max Woodbury and Dr. Fred D. Rigby of the ONR Logistics Branch for assistance in making the Logistics Computer available and to Dr. William MarLow, Principal Investigator of the Logistics Research Project, and Mr. George Stephenson, Head of the LRP Computation Laboratory in Washington, D. C. Fortunately the Logistics Computer was able to make use of some of the programming already worked out for the UNIVAC. The theory for leveling the data, and determining the spectrum is described in Part 8 of this report and the numerical procedures and the actual data obtained are given.
in Part 9.
As one last check on the quality of our SWOP data we had one more contouring job done by Hydro. This time the reference level was determ mined by selecting points that had been leveled statistically. This leveled contoured model was forwarded in May 1956 along with an evaluation of the photogrammetric work. As mentioned before, the work done by the Photogrammetry Division of the U.S. Navy Hydrographic Office is described in Part 6 of this report.

And so, after 33 months and a correspondence file at ONR two and onehalf inches thick, as of June 1956 SWOP has been completed except for the task of interpreting resulis, drawing conclusions from them, and preparing this report.

For some years now the desirability of obtaining the two-dimensional sea spectrum has been explained in the literature (Pierson [1952] and St. Denis and Pierson [1953]). When most of the methods considered were found lacking, the technique of stereo-photography of the sea surface seemed most amenable to possible methods of analysis (Marks [1954a]).

Representatives of the Woods Hole Oceanographic Institution initiated the first steps necessary to convert the idea of aerial stereo-photography of ocean waves into fact, At a meeting in Washington, the requirements for such an undertaking were established, and, equally important, the Photogrammetry Division of the U.S. Navy Hydrographic Office expressed an interest in the job of reducing the photos to numerical data form. As a result of this discussion, the first formal plan for obtaining the stereo-pairs was set down (Von Arx [1952]). The basic requirements were as follows:

1. Two aircraft to fly parallel, 600 feet apart, at 1000 feet;
2. Each to have a CAs8 metrogon camera aimed vertically down and one long focus 35 mm camera aimed at companion aircraft to determine the length of the stereoobase line;
3. Cameras to be triggered within 10 milliseconds of each other by an FM pulse;
4. Smoke bomb pattern to provide ground control:
5. Upwind fight of planes with flaps down to reduce plane speed and
give better results:
6. Preliminary flight to determine best height and baseline suggested.

The stereo-photos were made three years after the date of this first meeting. Much thought, discussion, planning and revision took place in that irterval, and yet the final operational plan differed little in essence from thet set forth in the Von Arx note which is outlined above.

At this point, work on the problem ceased, and almost a year passed before interest was revived. Wave theory was advancing at a rapid rate, and W. J. Pierson, convinced that basic theoretical conclusious sinould be substantiated by experimental work, persuaded the Office of Naval Research to begin a project of aerial stereophotography. Shortly afterward, tie Woods Hole Oceanographic Institution agreed to help on the problem. De. Iselin, Senior Oceanographer, offered the services of the R V ATLANTIS to provide a horizontal scale factor and to obtain with a capacitance ware pole recorder a record of the sea surface as a function of time at a tixed point in order to determine the sea surface spectrum as a function ot tro quency. Since this frequency spectrum is the integral frith respect th direction) of a transformation of the two-dimensional spectrum to be oheni... ed by stereo-photography, it is the only method of testing the validisy at the directional spectrum.

As the mechanics of the project began to crystellize, the maltitind af "minor problems" associated with an air-sea venture of this sort becumat evident, and a meeting was sckeduled to coordinate the facilities availiane
at the moment and to provide general cognizance of the problems of the various groups involved. The U.S. Navy Photographic Interpretation Center (NPIC) was the host of a meeting at Washington, D.C. which was attended by representatives of New York University $|N Y U\rangle$, Woods Hole Oceanographic Institution (WHOI), the Office of Naval Research (ONR), David Tavlor Model Basin (DTMB) and the U.S. Navy Hydrographic Office (HYDRO).

The discussion was presided over by Mr. Richard C. Vetter (ONR). The resulvs and conciusions of this conference provided the first link in the chain of events which ended in the successful aerial stereo-photography of the sea surface on Ocober 25, 1954. The bighlights of this meeting are listed:

1. A justification for the mission was given by Professor Pierson through a description of the basic theory of sea spectra and a step-by-step elimination of other possible techniques.
2. HYDRO expressed ability and willngness to contour the stereophotos if they met certain photogrammetric specifications.
3. The sterenobaseline (distance between planes) is a vital factor in the contouring of the photos and will have to be resolved. Ploto graphy of one plane from the other was ruled out on grounds of measuring inaccuracy.
4. The necessiny for a horizontal unit of measurement four or five times the length of the ATLANTLS provided another unanswered question.
5. Mr. Vetter (ONR) agreed to act as administrator for trearise and to try to initiate the next link in the chain, which wes to permission for the use of two suitable aircraft.

As a result of this meeting the first operational plam was put os insu (Pierson [1954]) and the project achieved an air of respectebility eaname... by the eagerness exhibited by the participants. Altitudes and baselinos were defined. Sources of stereo-analysis error were given, and. exwor magnitudes were estimated. A flying procedure was suggested. The zuko ber of pairs of photos which would be needed was estimated, and the functions of the ATLANTIS were established.
 gear. A visit by WHOI to Dr. Claus Aschenbrenner of the Optical Resser Laboratory, Boston University was productive in two ways。 fys assirc...: as an expert photogrammetrist, that chances for success were why welcome ears. Of more immediate importance, his disclosure tiet the French had achieved success with an FM triggering device wes exter....... heartening because this was a critical point in the scherne. A rex en . Cruset ${ }^{*}[1951]$ describing the activities in Framce along these 1inms, studied carefully by R. G. Walden, head of the WHOI Electronic Divi. ., and it was concluded that his staff could match and perkazs imany....... French instrument with respect to differences in triggering time becorwer cameras.

The ground control problem was solved at WHOI writn the di.s:.......

[^1]of an additional use of the sonobuoy*. The sonobuoy would be placed on a raft payed out from the ATLANTIS about 1000 ft . downwind. A sound pulse would be released by a transducer on the ATLANTIS. The sonobuoy hydrophone would pick up the signal, which travels through water, convert it to an electromagnetic signal and retransmit it through air, at a given frequency, to be picked upp by a receiver on the ship. The echo-sounder would record the time of one round trip. The trip through water takes about 0.2 seconds (for 1000 ft), and the return through air takes 1.08×10^{-6} seconds. The time of the return trip is cansidered negligible, and if the rate or propagation of sound in water is known as a function of temperature and salinity, then the distance traveled by the signal can be computed.

In July, ONR enlisted the interest of the Naval Air Development Unit at the Naval Air Station, South, Weymouth, Mass, where a pair of blimps were available for the job, A request originated from ONR for the utilization of the NADU resources. At the same time, ONR ordered four cameras, two gyrostabilizing mounts and an abundance of film. WHOI was directed to set up and install the FM link, W. Marks (WHOI) was appointed field supervisor of the project.

As the pieces began to fall into place, certain difficulties became increasingly apparent,

1. The measurement of stereombaseline had not been resolved.
2. Since weather plays a prominant role in determining the desired

[^2]stationary sea state free from swelk，it was decided that an expert Wave－ieather forenating groug shond be asked to advise on the operation．The Dirision of Occazography of the U．S．Navy Hydro－ graphic Office was the lagical group．

3．The pilats at NADE womid tieve to be made a part of the operation as soon as possible。

The last item was perhaps the most urgent because the key to the feasi－ bility of the entire undertaking was in the hands of the pilots at NADU。A meeting was erranged for August，1954 at INADU，and WHOI and HYDRO pre－ sented the plan of operation。A day long discussion produced the following results：

1．The blimps were eliminaied by mutual agreement of WHOI and NADU becanse the cameri instalizwors mere inaccessible，there would be excessive fibrasious，formarion aying would be difficult and their radias of operation is restrinted by short range and low flying speed．

2．A pair of PZYre wis offered as aia alternative．The advantages were that they conld fiy mont winds up to gale force with a speed in ex－ cess of 150 kts ，that phntographic facilities were available，that they had mush greatex rane wit 14 has frying time，that formation flight was rot diffeult aad that tise necessary radio and power equipmen was available．

3．NADU Nas ibie to determine siereo－baseline by a gunsight technique． Wher the plawes are spaced a measured distance on the ground，the
lead plane fills a certain portion of the following plane's gunsight. If this condition is maintained in flight, then the baseline is known.
4. The Photogrammetry Division of HYDRO asked for a practice run over a specified course to provide an evaluation of the photography.
5. Two weeks was set as the maximum operating time once the field work started.
6. The cameras were to be sent to WHOI to facilitate preparation of the FM link.
7. The aircraft are committed to the use of an A-priority group and will not be forthcoming without the consent of this group.
8. A tentative meeting was scheduled at NADU for a final evaluation of plans after the planes were fully instrumented.

During the month of August, a U.S. Navy photographer first class was assigned to the project, ONR secured all the equipment asked for, and the Hydrographer committed the Photogrammetry Division to the stereo analysis job. The FM link was satisfactorily completed and installed, and a ground check was made. It was found that the FM link could trigger the cameras within one millisecond of each other (Walden [1955]). This was an improvement over the similar French instrument.

The final coordinating meeting was held at NADU on 19 August 1954. All of the mechanics were ironed out, and assignments were given to the various cooperating groups to be completed by the test date, tentatively set for 24 September. All groups received copies of the procedure for the test run and the actual exercise (Marks [1954b]).

Cruset, I., [1951]: Annales Frameaises de Chronometrie. Institut Geogrephic Netione1. 2 ni sexies, Volume XVII, pp. 105-115.

Cruset, J. . [1954]: Evolution of French photogrammetric equipment from 1949 to 1954. Photogrammetric Engineering, September.

Marks, Wo, [1954a]: The use of a filter to sort out directions in a shortcrested Gaussian sea surface. Transactions A. G. U. , v. 35, no. 5, pp. 758-766, October.

Marks, Wo, [1954b]: Operationa] procedure for stereo-photography of ocean waves. Woods Hole Oceanographic Insititution, unpublished manuscript, September。

Pierson, W.J., Jr., [1952]: A unified mathematical theory for the analysis, propagation and refraction of storm generated ocean surface waves. Parts I and IT. Research Division, College of Engineering, New York University, Department of Meteorology and Oceanography. Prepared for Beach Erosion Board, Department of the Army, and Office of Naval Research, Department of the Navy.

Pierson, W.J., Jro. [3954]: Operational specifications for a program for stereo-photography of waves. Unpublished manuscript.

St. Denis, Mo, and W.J. Pierson, Jro, [1953]: On the motions of ships in confused seas. Tramsatitons of the Society of Naval Architects and Marine Engineers, Vol. 61, pp. 280-357.

Von Arx, S.S., [1952]: A program of stereo-photography of waves. Woods Hole Oceanogrephic Institution, unpublished manuscript, October.

Walder, R. G_{0} : A maltiple activzting electronic synchronizer. Reference no. 55-15 Woods Hole Oceanographic Institution, unpublished manuscript.

OPERATIONAL PROCEDURE

It is worthwhile to explain briefly the technique used for making the aerial stereo-photographs。

It is first desired to have a stationary sea free from swell traveling at an angle to the sea so that the data collected could be most easily interpreted. To this end, the Wave Forecasting Brancl of the Division of Oceanography, U.S.Nary Hydrographic Office (HYDRO) was consulted. The area around $40 \mathrm{~N}_{3} 65 \mathrm{~W}$ was chosen as the most likely place to achieve such resuits and the ATLANTIS was designated to take tris position and advise periodically on weather.

HYDRO kept watch on the sea conditions, and at the appropriate time, some 24 hours in advance of the anticipated working time, notified WHOI which served as the coordinating center of field activity. NADU and the ATLANTIS were alerted, and when the wave situation persisted the planes were dispatched. As soon as possible, contact was made between the planes and the ATLANTIS. The wave pole and sonobuoy equipment were launched, and when the planes arrived on the scene preparation for the exercise was complete. Figure 4.1 shows the planes used in the operation. The planes took up positions in tandem and flew at 3000 ft (there was a layer of cumulus clouds directly above) upwind in a path suck that the ATLANTIS would appear in some of the stereo pairs. When the run began, the cameras were "simultaneously" triggered by the FM link (figure 4.2), and a series of ten

FIGURE 4.1 THE P2V's USED ON PROJECT SWOP
-27-

FIGURE 4.2

ONE OF THE MOUNTED CAMERAS

FIGURE 4.3
exposures were made at a recycling rate of 4 seconds. Ten such runs were made, and the end result was that each camera (figure 4.3) had taken 100 pictures. At the same time, the ATLANTIS was recording waves, and the variable distances between the sonobuoy and the ship.

At the conclusion of the program, the ship was secured, and the planes headed for NAS Anacostia where the film was processed at the U.S.Naval Photographic Center. The stereo-photographs were then turned over to HYDRO for preliminary analysis.

The success of the venture of 25 October 1954 is in no small part due to a practice test made some weeks earlier. The numerous "bugs" which Were exposed and corrected could each have meant certain failure if they had gone undetected. Photography of a jeep traveling at 40 mph on the NADU runway established the recycling rate of the cameras and the efficiency of the FM link. The photo hatch, in one plane, obscured the fiducial maxks on the photographs and the camera mount had to be modified. A run orer a prescribed route indicated that altitude and station keeping of the planes required more attention. The following week, a second test was made amd the results indicated that all gear was in good operating order. A detailed account of he operational technique appears in the literature, Marks and Rönne [1955] and Marks [1955].

References to Part 4

Marks, Wo, [1955]: Contouring the Seai Surface. Research Review, ppo 12-16, March.

Marks, W. and F.C. Rönne, [1955]: Aerial Stereo-Photography and Ocean Waves. Photog. Eng. V. 21, no. 1, 107-110, March.

Part 5

WAVE FORECASTS

Introduction

Operation SWOP came into being as a result of the establishment by ONR of a research project to be organized for the purpose of determining the two dimensional energy spectrum of a fully developed sea. One of the unsolved problems in present wave theory is that of the directional spectrum for a given sea condition. Since a vital part of the Pierson, Neumann, and James forecasting method [1955], now being published by the Hydrographic Office, is based on accurate knowledge of the directional spectrum, the project is one of considerable importance and interest. The presently assumed distribution of energy moving in the various directions in a fetch area is only approximated and the subject of considerable controversy. It is hoped that the successful conclusion of Operation SWOP will provide the desired information and result in improving the accuracy of our present wave forecasting techniques.

The Division of Oceanography of the U.S. Navy Hydrographic Office has participated in the project, both in selecting the site at which the operation was accomplished and in providing the wave forecasting service which made possible the aerial photography under the required conditions.

Preliminary Planning

The following conditions were specified as necessary for successful execution of operation SWOP: (I) fully developed sea with significant height of 12 feet or greater, (2) ceiling in excess of 3000 feet, (3) excellent visibility, and (4) proper illumination level for aerial plotography.

The request for selection of a site for SWOP, and prediction of occur. rence of situations where the specifications could be met, were made early in September 1954. The planes necessary to carry out the stereo-photography were made available to the SWOP project for a ten day period in October 1954. The original plans were to carry out the operation in the Bermuda area. An analysis of historical wind and wave data at the Hydrographic Office indicated that there was an extremely low probability that the required conditions could be met in October in the Bermuda area. It was recommended that the operation be carried out off the east coast of the United States in the general area of $40 \mathrm{~N}-65 \mathrm{~W}$. The statistics indicated that there was a high probability that at least one meteorological condition would occur during the ten day period in October with the potential of generating a 12 foot sea.

New plans for carrying our operation SWOP were formulated in accordance with the above recommendations. The photograpkic planes were now to be based at the NAS, South Weymorath, Mass. The WHOI ship ATLANTIS went to the area around $40 \mathrm{~N}-65 \mathrm{~W}$ to perform its functions in connection with the stereo-photographic project and to take wave obser-
vations for transmission to the U.S.Navy Hydrographic Office. The plan was that with the advent of predicted acceptable wave conditions, the ATLANTIS would steam toward the forecast point in order to arrive when wave conditions were favorable.

In order to make SWOP a successful operation, it was necessary that all four specifications be met. A note of pessimism was injected into the selection of $40 \mathrm{~N}-65 \mathrm{~W}$ as a site because of the type of meteorological conditions expected to prevail at the time wave conditions would be favorable。 During the month of October in the area $40 \mathrm{~N}-65 \mathrm{~W}$, wave generation would be accomplished by low systems moving up the east coast, accompanied by precipitation and low ceilings. Such conditions would preclude the execution of operation SWOP even though acceptable wave conditions were present. The realization that favorable wave conditions would exist in conjunction with unfavorable meteorological conditions made additional planning necessary. It was decided to carry out the photography when the low system was moving out of the operational area and the ceiling began to rise, but before the wind waves began to subside. This required accurhte timing and a high degree of coordination between the Project Coordio nator W. Marks of WHOI, the Photographic Planes, the R. V. ATLANTIS, and wave forecasting personnel at the U.S. Navy Hydrographic Office. The general plan for communication between the cooperating agencies, as submitted by Mr. Marks, indicated that the necessary timimg could be accomplished, The wave forecasters at the Hydrographic Office were
reasonably confident that required sea conditions would be met and that they would be predicted with acceptable accuracy. In addition, it was felt that acceptable ceiling and visibility could be predicted.

There remained only one problem with which the forecasting personnel could not cope: this was concerned with the requirement that the illumination level be sufficiently high to carry out the arial photography. This requirement limits the operation to a daylight period of approximately six hours: and the sequence of increasing visibility, rising ceiling, with little or no decrease in wave height must necessarily occur during that time. Fortunately, these conditions did occur during daylight hours, with a decrease in wave height very shortly after the photography was accomplished. The careful preliminary planning, with consequent accurate timing, made possible the accomplishment of Operation SWOP.

Analysis of Meteorological Conditions*

The first significant wave height of over $5 \mathrm{I} / 2$ feet was observed on October 20 th at 1100 Z, at which time the R. V. ATLANTIS was on station near $38^{\circ} \mathrm{N} 68^{\circ} \mathrm{W}$. On the synoptic surface chart of 1230 Z of October 18 th, there was a quaslestationary front ortented NNESSW and extending from Labrador to the Bahamas. A wave developed on this front during the 19th. By the 20th at 1230 Z (fig. 5 , la) this wave was centered near $37^{\circ} \mathrm{N} 67.5^{\circ} \mathrm{W}$

[^3]

FIGURE 5.1 ESTIMATED FETCH AREAS FOR WEATHER SITUATION OF OCT. 21 l 1054
and had grown large enough to determine the wind pattern off the United States east coast. The position of the R。V。ATLANTIS is indicated by an A, and that portion of the wind field which generated waves that affected the R. V. ATLANTIS is outlined by the rectangle. The wind at the ship was nearly north while over the major part of the generating area it was northo easterly. The area of northerlies spread northward with the movement of the low.

By October 21st (figs. 5.1b and 5.1c) the frontal wave was well to the northeast leaving the ghip in a northwest flow with the fetch length limited to the distance to the coast. A cold front oriented $E-W$ is seen in eastern Canada (fig. 5.lb). This front moved southward passing the R.V.ATLANTIS during the morning of the 22nd. A small low which developed on this front is seen near the ship at 1230 Z of the 22 nd (fig. 5.ld). Later as this low moved northeastward a band of winds from the west-northwest moved southward to the ship. The flow was almost at right angles to the isobars and would have been difficult to forecast.

By 1230 Z of the following day, the frontal system of the twenty-first had moved well to the east leaving the ship in a northwesterly flow for the 12 hours preceding the observation of 1200 Z .

At 0030 Z of October 24th the flow was westerly in the area ahead of the cold front moving south from New England. As the front got closer and assumed a WNW-ESE orientation, the flow became westonorthwesterly as seen in the chart for $1230 Z$ (fig. 5.2a). The front passed the R.V.ATLANTIS

at about 1730 Z and the wind at the ship skifted to north-northwesterly (fig. 5. 2b).

The principal low of the area at this time was centered east of New foundland and was moving eastward. The R. V. ATLANTIS was moved eastward to $39^{\circ} \mathrm{N} 65^{\circ} \mathrm{W}$ during the 24 th and 25 th to retain moderate to fresh breezes.

On the 25 th, the day the aerial stereophotographs were taken, the wind was north-northwest, Beaufort force 5 at 1230 Z (fig. 5.2 c) diminishing to force 4 by 1830 (fig. 5.2d). The duration of wind up to the time of the wave observations was from $171 / 2$ to 26 hours, making the test period the longest period of consistent force and direction for the cruise.

For the entire period from October 20th to the 25 th there appears to have been little or no possibility of a contribution to the waves at the ship by wind fields in other parts of the North Atlantic. Therefore, the ship was essentially in the generating area at all times and no swell should be reforded.

Discussion of Predicted and Observed Wave Conditions

The first system with the potential of genexating the required wave height appeared during 20 and 21 October. The prediction was for the development of waves 12 feet in height. The R.V.ATLANTIS reported 12 feet gnificant height at 201300 Z and was the maximum reported for this storm: wave heights ranged from 9.5 to 12 feet during the day. Although sea conditions were ideal, low ceilings with rain and accompanying poor
visibility prevailed throughout the day. This condition was expected to continue into the 21 st with increasing ceiling and visibility but with slowiy decreasing wave height. At 1300 Z on the 21 st, the R.V. ATLANTIS reported nine feet with gradual decrease in height becoming a reported seven feet at 1700 Z . It was decided to take the stereo photographs on the morning of the 21 st with the expected improved ceiling and visibility, and while the wave heights would still be acceptable, although not the originally desired 12 feet. The photographic planes took off, but one of the planes developed. mechanical difficulties and was foreed to return. No further opportunity was available to take advantage of this wave situation.

The second situation was expected to develop during the 23 rd of October and carry into the 24 th, but it was not expected to be quite of the intensity experienced on the 20th. Wave heights of 8.5 feet were reported by the R. V. ATLANTIS on the 23rd and 24th; the planes, however, were not available until the 25 th. It was expected that the acceptable wave conditions would degenerate sometime during the 25 th. On the 24 th it appears that waves at least 7 feet in height would prevail during the night and early morning of the 25 th, with gradual decrease during the morning. There was, however a good possibility that waves of at least seven feet significant height would continue into the early afternoon. On the basis of this possibility, it was planned that the stereo-photography be accomplished on the 2.5 th. Fortunately acceptable wave heights continued into the early afternoon, and died down thereafter. Wave heights of seven to rine feet were reported by the R.V.ATLANTIS during the time the photography was accomplished.

Part 6

PITOTOGRAMMETRIC EVALUATION OF PROJECT SWOF

Introduction

Aerial photogrammetry is the science of ubtaining reliable horizontal and venticel measurements of all unobscumed natural and mammade features anpearing in aerial plotographs. Since the aerial photograph is a detailed and oermanent record of a given section of the carth's surface, it furmishes more compiefely then any other means the information required in the prew paration of raps and charts. Geometrically, all whotorraphs are perspective views and all maps are orthographic vievs of the earth's surface. The science of aerial photogrammetry is used to convert the perspective views of the aerial fiatograpin into the orthographic view of a max. and also to revard properly all the fhotographed information into a true max presentation.

For regular photogrammetric mapping purposes, aerial photogranhy obiained wifun the camera optical axis vertical, is accompliched in such a manner thet there is approximately 60 percent overlax between photographs in lineoforight, and approximately 30 percent sidelap Eetreen adjacent. strips of photugrephs. The 60 percent overlap provides at least two diflexent viers of all features photographed, and is necessary to achieve the stereascopic effect by which interpretation and measurements may be accomplished.

There are several types of photogrammetric instruments capable of utilizing aerial photography to plot topographic map manuscripts. All the first-order photogrammetricinstruments are precision mechanical-optical stereoscopic devices which re-create the three-dimensional view of the photographed area and permit the plotting of horizontal and vertical information of the terrain onto a map manuscript. The accuracy of this information is basically a function of the flying height of the photographic aircraft and the type of plotting instrument.

Application to Project SWOP

Photogrammetric techniques lend themselves to the solution of many non-mapping problems. Thus, the ocean wave data required for the complete fulfillment of Project SWOP are readily obtained by photogrammetric techniques. Because of the nature of the project, however, several unusual problems were introduced. Ordinarily, over the stable terrain, stereoscopic photo coverage is obtained by the proper exposure interval of the aerial camera during flight of a single aircraft. Since the sea surface is in constant motion, two photographic aircraft with synchronized cameras were required to "stabilize" the images in the stereoscopic photo coverage. Also, some known ground control is a requisite for accurate photogrammetric mapping. No such control exists on the sea surface: therefore, for SWOP, a vessel towing a raft at a known distance was necessary to establish tise "ground control". If all other factors are equal, greater final accuracy is obtained with lower flying height, and greater area coverage is obtined
with higher altitude. In order to conform with both the desired final accuracy and area coverage for the project, the optimum photographic cono ditions were determined and are shown in figure 6.1.

Test Flight

Of primary importance to the successful photographic accomplishment, was the ability to assure simultaneous exposure of the two aerial cameras. It was therefore necessary to build and check an electronic link to fire the two cameras. Oscillograph measurements made on the ground with the engines turned up, indicated that the cameras could be fired within one millisecond of each other, or better. To further substantiate this ability, a test flight was made over an airfield runway. Traveling in tandem at 160 mph , the two alrcraft continuously photographed a truck traveling in the opposite direction at 40 mph (the fastest wave speed anticipated). The photographs were made with varions delays installed in the cameras. That is, one camera was purposely fired 5 milliseconds after the other one. Then the delay was reversed. The result was that in no pair of photographs could it be visually ascertained that there was any change in finsition of the truck, Furthermore, the phntor were onlarged 25 tixnes and no difference could be measured that was greator than the measuring erxor itself.

Operation Procedure

The sea surface proseate a reldef pattern which is aiway moving and changing Its shape, and it offors no fixed marks which can be used as conso trol. However, as in the case of the rough sea required for this project,

FIG. 6.I SCHEMATIC REPRESENTATION OF OPERATIONAL PROCEDURE
there was a great deal of contrast between the foam and the water, and this contrast was utilized for the separation of tonal values in the photographs. The serious problem of reflection glare was overcome by taking the pico tures when the solar altitude was below 40°. This, however, reduced the light intensity and caused a reduction in image definition.

The operational procedure involved the use of two aircraft flying in tandem 2,000 feet apart and at an aititude of 3,000 feet. Each plane was equipped with a standard mapping camera (Navy CA-8) and the cameras were triggered simultaneously from the forward (master) plane by an FM radio link. The square 9 " x 9 " format of the aerial photography represents $74^{\prime \prime}$ side-to-side coverage from the camera lens. The planes flew directly into the wind, thereby eliminating crab and reducing the air speed.

To kelp establish the ground control, the research vessel ATLANTIS was stationed in the operational area. The vessel towed a target raft 500 feet bebind it. The distance between the raft and the sinip was continuously monitored by a sonar buoy on the raft which received a radio impulse through the air from the vessel, and retransmitted the signal to the vessel truough writer. The distance was recorded every two seconds.

The planes adjusted their altimeters to the barometer on the ship at the time the pictures were taken. The distance between the two planes Was maintinned at about 2,000 feet by means of a range finder located in the slare plane, and utilizing the wing span of the master plane as base line。

The ATLANTES was instrured by radio at the moment efoch pinotegraphic run started and assemark wos made on the recosd of the dize tance monitoring device. Ten pats of platographs were taken on eabis run which required about 36 seconds. A total of 100 stereo pairs was accomplished for the project.

Stereo Analysis

The stereophotogrammetric graphic results were prepared by the Photogrammetry Hrench of the is. S. Navy Nyarogranhe Offece A total of four scered pairs of zerial font graits wan seiected foz detailed analyo sis. They mere chosen on the tenis of footograzhic ruility and ziso be
 was the Zeiss Stereoplamiqraph, onstidered to ben armong the mast acurate of the firstorder photogrammerrin puthim instruments. The direutread ing abidity of this instrument is 0.01 mum.

The first moder (a model fs we rectangaiar overiafpirg portium uf two aeriai Jnotographs rhach can he viewed stereosurracaitl was contoured
 model the low point of a ty ugh was essumed zero eieration and the cuntour data throughout the modet was beseat on that datom。Each mode. repes amed a ground rectangie with siaes of anuroximeweyt 2700 feetand 2800 Ëeet. uro mearly 5 milizon surare feer un ocean sirface, at a scale of $2: 3,000$. This model ras used to determine the swowg to bu wsed on the soon reiget grito but it is not reproduced herein.

In order to determine the energy spectrum of the sea surface a grid of spot heights must be made. Accordingly, the next three models to be analyzed presented this spot height data. A total of 5612 spot heights per model were determined at 30 feet ground distances in a square grid pattern.

The above described graphics were forwarded to $N . Y$. U. for analysis and二 new vertical datum was derived analytically. * From this information eight spot leights were established along the model periphery. This information Wics forwarded to the Hydrographic Office and was used to re-establish a verticiti ditum on the final model set-up. This final model is shown in figure 6.2 . Of the elight spot heights, six were held photogrammetrically and two could not he heid. One of these was located in the left-center and had an error of $\mathbf{- 3 . 0}$ feft: the other was located in the lower-right corner and had an error of - 7.0 Fft, Tab"e II shows the (NYU) computed values, the instrument values, and the exroxs, for all eight points.

Table I. Final level values for the stereo wave data

Point $\mathrm{No}^{\text {a }}$	Computed Value (mm)	Instrument Value (mm.)	Error (mm)
G-31	0.00	0.00	0. 00
$\mathrm{C}_{\mathrm{G}}-68$	0.00	-0.30	-0.30
G-120	-0. 26	-0.25	0.00
P-120	-0.27	-0.25	0.00
BJ-120	-0.05	0.00	0.00
BS-70	+0.12	+0.10	0.00
BT-31	+0.01	$+0.05$	0.00
BT-120	+0.08	-0.60	-0.70

[^4]
PROJECT SWOP

(3)

vy Hydrographic
Pffice for the Office of Naval Research using stereophotogrammetric methods (stereoplanigraph). April 1956

CONTOUR INTERVAL 0.30 mm ($10 \mathrm{~mm}=9.8425 \mathrm{~m}$.)

SHEET NO. 2
Run No. 3, Model No. 6
Date of Photography: 25 Oclober 1954
TIme of Photography: IT28 GCT

FIGURE 6.2 GRAPHE FOR DATA SET No. 2

Accuracy of Results

Reconnaissance-type film was used erroneously in the aerial cameras instead of the more stable topo-base film. The film furnished this Office was not dimensionally stable, and made the recapturing of the precise instrument settings impossible when the last model was re-compiled. Therefore, the final photogrammetric solution could not match all the computed values. This explains the discrepancy in holding all eight points as described above. The computed values for the leveled data are more valid since they are substantiated by the leveled graphic analysis which shows about equal areas above and below sea level.

The final graphic forwarded to N. Y. U. exhibits both contour and spot-height information over the nearly 5 million square feet of ocean surface. The spot height accuracy is $\pm 0.05 \mathrm{~mm}$ (at $1: 3,000$ scale) or 4. 0.5 feet. The contour interval is 3 feet and is accurate to $\pm 0.2 \mathrm{~mm}$ 01 ± 2 feet. Tke relatively short distance represented by the ATLANTISraft combination is not adequate to assure a precise horizontal scale, and the horizontal accuracy is estimated to be ± 2 feet.

PRELIMINARY ANALYSIS, CHOICE OF GRID SPACING AND DISCUSSION OF ALIASING

Weather and Wave Pole Observations

Weather and wave pole observations were made prior to and at the time of the flight of the planes. A running graph of the wind direction and velocity and of the estimated significant wave heights and the dominant wave direction as observed on the R.V. ATLANTIS prior to and at the time of the wave pole and stereo observations is shown in figure 7.1. The times of the wave pole observations and of the two pairs of photos finally chosen for a complete analysis are also shown. The winds 6 hours prior to the time of the stereo observations averaged about 19 or 20 knots.

The significant heights of the uncorrected wave pole observations were computed at WHOI, and the results of these computations yielded the following values.

$$
\text { Table } 7.1
$$

Significant heights from uncorrected wave pole observations
Time Significant Height

1547 to 1610 Z	5.02 feet
1652 to $1715 Z$	5.04 feet
1756 to 1821 Z	5.12 feet

A paper by Marks and Chase [1955] summarizes theseresults and the way the visually observed values seemed to be quite a bit higher than the wave pole values and seemed to remain high for quite a while after the 19 to 20 knot

FIGURE 7-1 WIND AND VISUAL WAVE OBSERNATION DATA OBTAINED BY THE R.V. ATLANTIS
winds had died down. Note that the visual estimate of the significant k eigh was 7. 5 feet at 1800 Z。

Stereo Contour Data

The first data prepared by the Photogrammetry Division was in the form of a contour analysis of one of the stereo pairs. It was somewhat disconcerting because the expected waves with lengths of from 100 to 300 feet or so could not be seenin the contours and the range of contoured heights was far in excess of anything to be expected from a 20 knot wind.

The first hint of where the difficulty lay came from Woods Hole witere line sections of the contoured surface were drawn. These stowed ilmost a suratut linetilt along a givensection witt the waves we were laoking for superimposed thereon. A line section with arbitrary scale units from the lowor left to the upper right of the contoured surface is shown in figure 7.2. The unforesefn difficulty of determining a, true mean zero reference plane on the open orean with no known reference points had arisen.

It was also pointed out at this time that spot heights could be determined by Hydro with far greater accuracy than the contowns could be draun due to the nature of the techniques involved. The original plan bad been to choose an appropriate grid and read spot heights from the contoured datio. This now had to be revised, and it was now necessary to find an why to determine the true zero reference plane and to choose a grid, the desired numbex of points to be read, and the desired resolution and statistical reliability, all on the basis of the data then on hand.

Decision on Grid Interval and Nurnber of Points to be Read

Fortunately the theoretical aspects of the problam had been carried out to the point where the methods for the ongdimemsonat analyses of time series developed by Tusey［1949］had bean oxtontod to the twodimensional wave

 Part U．It was also realised fryat it was not esserficil to lieve the dominant wevo direction roughly parallel to the gides of tiza reçangular grid of points to be used．

The loveling problem was then studied and formulas were derived for determining the true zero reference plane thas assumed that the spot heights wauld be reported with reforence to some unknown arnitiony refer－ ence plane of the form $z=a_{i} x+y+c$ ．If h is the reported valua，then $n^{*}=\eta-a x$ ay $-c$ is the valuc with reference to a tue ze：口 reference plane， and $\Sigma \Sigma\left(n^{*}\right)^{2}$ will be a minimumn $+\frac{y}{}$ smandard least squares tecinicues，the values frem a, i and c can detormined，and the date can be leveled，The derivation and the procedurec need are descrfod in the fallowing two parts of this report。

Since leveling was no lonfer a probiem，tize probleme of statisticel ie－ liability，aliasinga and resolution wone stadoc，Suppose t゙ュat the spot heights are read at an interval of Arn feut on aguare grid．Then，due to the nature Of the methods of analysis scrie srectial components shorter then $2 \Delta x$ and all components shorter than $\sqrt{2}$ ．Win will akiased so that they appeax as
longer waves than they actually are. Suppose that m lags are to be used in the x and y directions of the rectangular grid. Then the E value contributed by the waves with lengths from infinity to $4 \mathrm{~m} \mathrm{\Delta x}$ will all be concentrated at the zero wave number of the spectral coordinate system. The next wave nuraber will correspond to a wavelength of $2 \mathrm{~m} \Delta \mathrm{x}$ and will actually cover a range from $4 m \Delta x$ to $4 m \Delta x / 3$. On a line at 45° to the grid system of the spectrum, it is necessary to shorten the above wavelengths by $\sqrt{2} / 2$. Finally, if N_{x} and N_{y} are the number of points on the grid system in the x and y directions, then the number of degrees of freedom is given by

$$
f=1.58\left(\frac{N_{x}}{m_{x}}-\frac{1}{2}\right)\left(\frac{N_{y}}{m_{y}}-\frac{1}{2}\right)
$$

where for purposes of symmetry it was decided to let $m_{x}=m_{y}$.
The significant wave heights reported by the wave pole observations corresponded to a wind of about 17 knots, and an attempt was made to choose a method of analysis such that a theoretical Neumann spectrum (Neumann [1954]) for 17 knots would be adequately resolved. Also since winds of 20 knots had occurred previously, it was decided to guard against wavelengths due to a wind of 20 knots in addition to those due to 17 knots.

It was estimated that periods from 2.25 to 10 seconds would be present and that approximately 10 percent of the energy would be at frequencies above 0.29 cycles per second (or a period of 3.45 seconds). A wavelength of 60 ft corresponds to this period, and hence a spacing of 30 feet between points would be needed to insure no more than 10 percent aliasing.

A grid of 30 feet was therefore chosen. Smaller values of Δx would require a. much greater m than that actually chosen and many more spotheints.

The winds at the surface varied from 17 to 20 knots just prior io the time of the observations and hence the values seemed consistent。 Spectri] periods as high as ll seconds might have been present in the waves due to the 20 knot winds. This period would correspond to a waveleagth of abowt 600 feet.

With a grid spacing of 30 feet, the area of the stereo analysis for ane pair of photographs was found to contain about 60 points on the short side and more than 90 points on the long side. This would imply the determinarin. of 5400 spot heights from each stereo pair.

Various lags were then tested and a value of m equaj to 20 was choseg for two reasons. The first was that there would be adequate resolurion, and the second was that there would be enough statistical reliabilsry.

With respect to resolution, wavelengths greater than 2400 feet would then show up at the origin ard since this corresponds to a period of n f $r 20$ seconds the energy at zero wave number should be entirely due to al:nsing and white noise reading error on the assumption that the Neumann sper: $\cdot \boldsymbol{a}$ m Was roughly correct. The next wave number would cover árage rierg. : from 2400 feet to 800 feet, and it would also not be expected to stor 7 an appreciable wave energy.

These rialues were also checked on the assumptior that ife pełk of ! ? spectrum would fall at an angle of 45 degrees to the coordinares of "e sper
trum. A wavelength of 1680 feet would still not be expected, and a wavelength of 560 feet would just barely be beginning to show up.

On the basis of the transformation needed to go from the theoretical Neurnanm frequency spectrum to the wave number spectrum, it was estimated that the peak in the spectrum would fall four or five wave numbers away from the origin, and that the range covered would adequately trace out the details of the shape of the spectrum. The full consequences of these decisions will be discussed in a later section.

With respect to statistical reliability, there are 16 degrees of freedom for each point estimated on the spectrum for each set of data. Fifty degrees of freedom are desirable so it was decided to do three pairs of stereo photos, since, with the same grid alignment of all three, the estimates for each set of data could be averaged to obtain final estimates with 43 degrees of freedom. One of the stereo pairs spot heighted by Hydro turned out to have serious "barrel" distortion in addition to tilt, and it had to be discarded so the final results will be based on 32 degrees of freedom.

A choice of a 60 by 90 grid and 20 lags (really 20 to the left, 20 up and 20 down plus all combinations such as, say, 5 to the left and 17 up) implies 861 points to be determined for the co-variance surface and 861 points for the final spectruma About $4,000,000$ multiplications and an equal number of additions are needed to get each of the comvariance surfaces, and about 720,000 multiplications and additions are needed to get each of the raw spectra.

Much the same considerations entered in the above choices as enter in
the choice of time interval, number of lags, resolution and degrees of freedom in the analysis of a wave record as a function of time at a fixed point (Pierson and Marks [1952]) except that far more data processing and numerical computation is necessary. As an example, to double the resolution with the same grid spacing and same number of degrees of freedom would require 40 lags and four times the number of spot heights. The covariance surface would then require about 48 million multiplications and additions. The time required would be more than twelve times greater than was actually used. To have reduced the aliasing by halving Δx, would have required four times the number of spot heights, 40 lags, and the above number of multiplications. Moreover, the total energy over $3 / 4$ of the area of the spectrum would have been only 10 percent of the total energy of the sea surface.

For these reasons, Hydro was requested to read spot heights on a square grid with 30 feet between intersections. Essentially all of the details of the analysis were decided by this one choice of grid interval.

References

Marks, W., and J. Chase [1955]: Observation of the growth and decay of a wave spectrum. Contribution No. 769, from the Woods Hole Oceanographic Institution.

Part 8

EQUATIONS FOR LEVELING THE DATA, ESTIMATING THE DIRECTIONAL SPECTRUM, AND CORRECTING THE WAVE POLE SPECTRUM
 Leveling the Data

The original spot height data reported by Hydro was reassigned a position code for computational purposes such that the points would fall in the first quadrant of a Cartesian coordinate system and such that the first column of 90 points would fall on the y-axis and the bottom row of 60 points would fall on the x-axis. For simplicity in writing the following equations, let the free surface, η, be represented by an N when a spot height is considered. The pattern of the points was as follows:

$$
\begin{aligned}
& \mathrm{N}_{0}, 89 \text {. } \mathrm{N}_{59} 89 \\
& \text { - } \\
& \text { • } \\
& \text { - } \\
& \text { • } \\
& \text { - } \\
& \text { - } \\
& \text { • } \\
& \text { - } \\
& \text { - } \\
& \text { - } \\
& \mathrm{N}_{0}, 3 \\
& \mathrm{~N}_{0},{ }^{2} \\
& N_{0,1} N_{1,1} \\
& \mathrm{~N}_{0,0} \mathrm{~N}_{1,0} \mathrm{~N}_{2,0} \ldots \ldots \ldots \quad \mathrm{N}_{59,0}
\end{aligned}
$$

and the general element will be designated by $\mathrm{N}_{j k^{\circ}}$
These 5400 points cover an extensive area of the sea surface such that G.ste a few waves are involved. Were they measured wath respect to a zero determined by the level of the water in the absence of the waves: they would average to zero and the sum of their squares would be a minimum. However they were read with reference to an arbitrary tilted plane instead of wht referm ence to the sea level.

The values desired with respect to zero level are given by equation (8. 1) where the unknown constants a, b, and c absorb the effects of the grid spacing.

$$
\begin{gather*}
N_{j k}^{* k}=N_{j k}-a j-b k-c \tag{8.1}\\
j=0, \ldots, n-1 \quad k=0, \ldots, m-1 \\
n=60
\end{gather*}
$$

Consider equation (8, 2).

$$
\begin{equation*}
V=\sum_{k=0}^{m-1} \sum_{j=0}^{n-1}\left(N_{j k}^{*}\right)^{2}=\sum_{k=0}^{m-1} \sum_{j=0}^{n-1}\left(N_{j k}-a j-b k-c\right)^{2} \tag{8,2}
\end{equation*}
$$

The value of V should be a minimum with reference to true sea level if the area covered by the points is large enough), and this can be accomplished if

$$
\begin{aligned}
& \frac{\partial V}{\partial a}=0, \\
& \frac{\partial V}{\partial b}=0
\end{aligned}
$$

$$
\text { and } \quad \frac{\partial V}{\partial c}=0
$$

Equations $(8,3)$ lead to equations $(8,4)$.

$$
\begin{aligned}
& \sum_{k=0}^{m-1} \sum_{j=0}^{n-1}\left(N_{j k}-a j-b k-c\right) j=0 \\
& \sum_{k=1}^{m-1} \\
& \sum_{k=0}^{n=0}\left(N_{j k}-a j-b k-c\right) k=0 \\
& m-1 \\
& \sum_{k=0}^{n-1} \\
& \sum_{j=0}\left(N_{j k}-a j-b k-c\right)=0
\end{aligned}
$$

(8.4)

The last equation simply states that the average of all the points in the plane when truly leveled should be zero. Points on a tilted surface could still average to zero, but V would not be a minimum; and thus the other two equations assure that V will be a minimum.

The indicated summations can be carried out, and the result is three simultaneous linear equations in the three unknowns, a, b, and c.

$$
\frac{m n(n-1)(2 n-1)}{6} \quad \frac{n(n-1) m(m-1)}{4} \quad \frac{m n(n-1)}{2}
$$

$\frac{n(n-1) m(m-1)}{4} \quad \frac{n m(m-1)(2 m-1)}{6} \quad \frac{n m(m-1)}{2}$

(8.6)

$$
\begin{aligned}
Q\left(x^{\prime}, y^{\prime}, t^{\prime}\right)= & \lim _{\substack{T \rightarrow \infty \\
X \rightarrow \infty}} \frac{1}{X \rightarrow T} \int_{-\frac{T}{2}} \int_{-\frac{X}{2}} \eta(x, y, t) \eta\left(x+x^{\prime}, y+y^{\prime}, t+t^{\prime}\right) d x d y d t \\
= & \frac{1}{2} \int_{-\pi}^{\pi}\left[\int_{0}^{\infty}[A(\mu, \theta)]^{2} \cos \left[\frac{\mu^{2}}{g}\left(x^{\prime} \cos \theta+y^{\prime} \sin \theta\right)-\mu t^{\prime}\right] d \mu d \theta\right. \\
= & \frac{1}{2} \int_{-\infty}^{\infty}\left[\int_{-\infty}^{\infty}[A *(\alpha, \beta)]^{2} \cos \left(\alpha x^{\prime}+\beta y^{\prime}-\sqrt{g}\left(\alpha^{2}+\beta^{2}\right)^{1 / 4} t^{\prime}\right) d \beta\right] d a
\end{aligned}
$$

In equation (8.6), $a=\mu^{2} \cos \theta / g, \beta=\mu^{2} \sin \theta / g, \mu=\sqrt{g}\left(a^{2}+\beta^{2}\right)^{1 / 4}$, and $\theta=\tan ^{-1}(\beta / \alpha)$. Also

$$
\begin{equation*}
[A *(\alpha, \beta)]^{2}=\frac{\sqrt{g}}{2} \frac{\left[A\left(\sqrt{g}\left(a^{2}+\beta^{2}\right)^{1 / 4} ; \tan ^{-1} \beta / \alpha\right)\right]^{2}}{\left[\alpha^{2}+\beta^{2}\right]^{3 / 4}} \tag{8.7}
\end{equation*}
$$

If x^{\prime} and y^{\prime} are chosen to be zero, then an average over time can replace an average over space and time, and the result is

$$
\begin{align*}
Q\left(t^{\prime}\right) & =\lim _{T \rightarrow \infty} \frac{1}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} \eta(x, y, t) \eta\left(x, y, t+t^{\prime}\right) d t \tag{8,8}\\
& =\frac{1}{2} \int_{-\pi}^{\pi} \int_{0}^{\infty}[A(\mu, \theta)]^{2} \cos \mu t^{\prime} d \mu d \theta \\
& =\frac{1}{2} \int_{0}^{\infty}[A(\mu)]^{2} \cos \mu t^{\prime} d \mu
\end{align*}
$$

The above is equivalent to observing the waves at a fixed point as a function of time, and all knowledge of the direction of travel of the waves is lost since

$$
\int_{-\pi}^{\pi}[A(\mu, \theta)]^{2} d \theta=[A(\mu)]^{2}
$$

The procedures for analyzing waves as a function of time at a fixed point have been described by Pierson and Marks [1952], and Ijima [1956] has carried out quite a number of such analyses in Japan with very interesting results. The same techniques are being used by Lewis [1955] to analyze the spectra of model waves and ship motions in a towing tank. The wave pole records will be analyzed using the methods described by Pierson and Marks [1952].

If t^{\prime} is chosen to be zero, then an average over space can replace an average over time and space and the result is

$$
\begin{align*}
Q\left(x^{\prime}, y^{\prime}\right) & =\lim _{\substack{X \rightarrow \infty \\
Y \rightarrow \infty}} \frac{1}{X} \frac{1}{Y} \int_{-\frac{X}{2}}^{\frac{X}{2}} \int_{-\frac{Y}{2}}^{\frac{Y}{2}} \eta(x, y) \eta\left(x+x^{\prime}, y+y^{\prime}\right) d x d y \tag{8.9}\\
& =\frac{1}{2} \int_{-\infty}^{\infty} \int_{\infty}^{\infty}\left[A^{*}(\alpha, \beta)\right]^{2} \cos \left(\alpha x^{2}+\beta y^{\prime}\right) d \beta d a
\end{align*}
$$

In equation (8.9) the same right hand side results if $-x^{\prime}$ and $-y^{\prime}$ are substituted for x^{\prime} and y^{\prime}, and therefore $Q\left(x^{\prime}, y^{\prime}\right)=Q\left(-x^{\prime},-y^{\prime}\right)$.

The above is equivalent to observing the waves at an instant of time over an area. Some knowledge of the direction of travel of the waves is lost. Consider, for example, a progressive simple sine wave observed at an instant
of time. A line parallel to the crests can be determined, and the direction of travel of the wave will be perpendicular to this line, but the direction can be either one of two directions, one the opposite of the other.

This indeterminancy is avoided in this analysis by considering a positive direction, x^{\prime}, to be the dominant direction of the wind and by assuming that the spectral components of the waves being studied are all traveling with an angle of $\pm 90^{\circ}$ to the wind. Then $\left[A\left(\mu^{\prime}, \theta^{\prime}\right)\right]^{2}$ would be zero for $\pi / 2<\theta^{\prime}<\pi$ and for $-\pi / 2<\theta^{\prime}<-\pi$, and $\left[A\left(\alpha^{\prime}, \beta^{\prime}\right)\right]^{2}$ would be zero for $-\infty<\beta^{\prime}<0$. (Note $\mu^{\prime}, \theta^{\prime}, \alpha^{\prime \prime}$ and β^{\prime} would have to be redefined with respect to the x^{\prime} direction.) When these assumptions are applied to the results to be obtained the directions will be completely determined.

Consider equation (8.9) again. One can form the indicated operation given by equation (8.10).
(8.10) lim

$=\lim _{\substack{M \rightarrow \infty \\ N \rightarrow \infty}} \frac{1}{2} \int_{-\frac{M}{2}}^{\frac{M}{2}} \int_{-\frac{N}{2}}^{\frac{N}{2}}\left[\int_{-\infty}^{\infty}\left[\int_{-\infty}^{\infty}[(\alpha, \beta)]^{2} \cos \left(\alpha x^{\prime}+\beta y^{\prime}\right) \cos \left(\alpha^{*} x^{\prime}+\beta^{*} y^{\prime}\right) d \alpha d \beta\right] d x^{\prime} d y^{\prime}\right.$

The term after the equals sign can also be written
(8.11) $\lim _{\substack{M \rightarrow \infty \\ N \rightarrow \infty}} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\frac{M}{2}}^{\frac{M}{2}} \int_{-\frac{N}{2}}^{\frac{N}{2}} \frac{1}{4}\left[A^{*}(\alpha, \beta)\right]^{2}\left[\cos \left[x^{\prime}\left(\alpha+a^{*}\right)+y^{\prime}\left(\beta+\beta^{*}\right)\right]\right.$

$$
\left.+\cos \left[x^{\prime}\left(\alpha=\alpha^{*}\right)+y^{\prime}\left(\beta-\beta^{*}\right)\right]\right] d x^{\prime} d y^{\prime} d \alpha \mathrm{~d} \beta
$$

$=\lim _{\substack{M \rightarrow 0 \\ N \rightarrow 0}} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty}[A *(\alpha, \beta)]^{2}\left[\frac{\sin \frac{N}{2}(\alpha+\alpha *) \sin \frac{M}{2}\left(\beta+\beta^{*}\right)}{\left(\alpha+\alpha^{*}\right)\left(\beta+\beta^{*}\right)}+\frac{\sin \frac{N}{2}(\alpha-\alpha *) \sin \frac{M}{2}\left(\beta-\beta^{*}\right)}{\left(\alpha-\alpha^{*}\right)\left(\beta-\beta^{*}\right)}\right] d \alpha d \beta$
When Dirichlet's formula is applied, the result is finally that equation
(8.12) is obtained.

$$
\begin{equation*}
\left[A *\left(x_{0}^{*} \beta^{*}\right)\right]^{2}+\left[A *\left(-\alpha *,-\beta^{*}\right)\right]^{2}=\frac{1}{\pi^{2}} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} Q\left(x^{\prime}, y^{\prime}\right) \cos \left(\alpha * x^{\prime}+\beta^{\prime} y^{\prime}\right) d x^{\prime} d y^{\prime} \tag{8.12}
\end{equation*}
$$

Note that substituting $-a *$ and $-\beta *$ for $a *$ and β^{*} leaves equation (8.12) unchanged.

Equations (8.9) and (8.12) are the x, y plane analogues of the classical time series equations which state that the covariance function is the Fourier transform of the power spectrum and conversely that the Fourier transform of the power spectrum is the covariance function. When applied to the problem of finding the directional spectrum of a wind generated sea from discrete data, the integrals have to be replaced by summations and formulas analogous to the Tukey formulas for time series have to be derived.

In deriving the equations used to determine the directional spectrum, the analogy to the one-dimensional case given by Tukey [1949] will be shown. The
theoretical equations in the one-dimensional case are given by
(8.13) $Q\left(t^{\prime}\right)=\lim _{t \rightarrow \infty} \frac{1}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} \eta(t) \eta\left(t+t^{\prime}\right) d t$
and
(8.14)

$$
[A(\mu)]^{2}=\frac{1}{\pi} \int_{-\infty}^{\infty} Q\left(t^{\prime}\right) \cos \mu t^{\prime} d t^{\prime}
$$

The equations due to Tukey [1949] are given by equations (8.15) to (8.17)
where $N_{1}, N_{2}, N_{3}, \ldots, N_{n}$ are given values equally spaced usually in time 。

$$
\begin{equation*}
Q(p)=\frac{1}{n-p} \sum_{k=1}^{n-p} N(k) N(k+p) \tag{8,15}
\end{equation*}
$$

$$
\mathrm{p}=0, \mathrm{I}, \ldots \ldots, \mathrm{~m}
$$

$$
Q_{o}^{*}=Q_{0}, Q_{p}^{*}=2 Q_{p},(p=1 \text { to } m-1), \text { and } Q_{m}^{*}=Q_{m}
$$

(8.16)

$$
L_{h}=\frac{1}{m} \sum_{p=0}^{m} Q_{p}^{*} \cos \frac{\pi p h}{m}
$$

$$
\mathrm{h}=0,1, \ldots \ldots, \mathrm{~m}
$$

Let $L_{-1}^{*}=L_{+1}^{*}$, and $L_{m-1}=L_{m+1}$.
(8.17)

$$
\mathrm{U}_{\mathrm{h}}=0.23 \mathrm{~L}_{\mathrm{h}-1}+0.54 \mathrm{~L}_{\mathrm{h}}+0.23 \mathrm{~L}_{\mathrm{h}+1}
$$

$$
\mathrm{h}=0,1, \ldots . \mathrm{m}_{\mathrm{l}}
$$

Define $U_{o}^{*}=U_{o} / 2, U_{h}^{*}=U_{h}\left(h=1\right.$ to 19), $U_{m}^{* *}=U_{m} / 2$.
In the above equations (8.15) is the discrete approximation to equation
(8.13). Also in equation (8.13), $Q\left(t^{\prime}\right)$ equals $Q\left(-t^{\prime}\right)$ and to obtain the
discrete approximation to $(8,14), Q(p)$ is expanded as a periodic even function about p equal to zero. Thus Q_{0} received a weight of one, Q_{1} through Q_{m-1} receive double weight, and Q_{m} received a weight of one.

The values of L are the discrete estimates of the Fourier coefficients of the even expansion of Q.

Due to the fact that the L's are only estimates of the spectrum since the series of readings is finite, they have to be filtered to recover a smoothed estimate of the spectrum in terms of the U's.

There is, of course, another way to estimate the spectrum. The original series of points could be expanded in a Fourier series. Sine and cosine coefficients a_{n} and b_{n}, for periods of $n \Delta t / 1, n \Delta t / 2, n \Delta t / 3$, etc. would then be computed. The quantity $c_{n}^{2}=a_{n}^{2}+b_{n}^{2}$ is then a very unstable estimate of the energy at that particular frequency. A proper running weighted average of the values of c_{n}^{2} would then recover the spectrum as determined by the Tukey method. The number of degrees of freedom (f) is a measure of the number of values of $c_{n}{ }^{2}$ weighted in the average and of the shape of the weighting process. The U's have a Chi Square distribution with f degrees of freedom.

The values of U have the dimensions of (length) ${ }^{2}$, and U_{h} as given above is an estimate of the contribution to the total variance made by frequencies in the range from $2 \pi\left(h-\frac{1}{2}\right) / \Delta \operatorname{tm}$ to $2 \pi\left(h+\frac{1}{2}\right) / \Delta \mathrm{tm}$. $^{+}$

The theoretical equations in this two-variable problem are given by

[^5](8.18)
$$
Q\left(x^{\prime} y^{\prime}\right)=\lim _{\substack{X \rightarrow \infty \\ Y \rightarrow \infty}} \int_{-\frac{X}{2}}^{\frac{X}{2}} \int_{\frac{Y}{2}}^{\frac{Y}{2}} \eta(x, y) \eta\left(x+x^{\prime}, y+y^{\prime}\right) d x d y
$$
and
(8.19) $\left[A^{*}\left(\alpha *, \beta^{*}\right)\right]^{2}+\left[A^{*}\left(-\alpha *,-\beta^{*}\right)\right]^{2}=\frac{1}{\pi^{2}} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} Q\left(x^{\prime}, y^{\prime}\right) \cos \left(\alpha x^{\prime}+\beta y^{\prime}\right) d x^{\prime} d y^{\prime}$

The analogous summation formula for the covariance surface over the set of leveled readings $\mathrm{N}_{\mathrm{jk}}^{*}$ is given by

$$
\begin{align*}
& Q(p, q)=\sum_{k=0}^{m-1-|q|} \sum_{j=0}^{n-1-p} \frac{N_{j k}^{*}}{(n-p)(m-|q|)} \tag{8.20}\\
& \\
& p=0,1 \ldots, \ldots, 20 \\
& q=-20,-19,-18, \ldots,-1,0,1, \ldots 20
\end{align*}
$$

This determines the estimates of the covariance surface for the first and fourth quadrants of the q, p plane (really $\left.x^{\prime}, y^{\prime}\right)$. Since $Q(p, q)=Q(-p,-q)$, the results can be extended into all four quadrants of the q, p plane.

The function must now be extended into the entire q, p plane so that its Fourier coefficients can be determined, and the property that $Q(p, q)=Q(-p,-q)$ must be preserved. This is accomplished by simply translating the covariance surface parallel to itself to fill the whole plane.

As a consequence, the Q 's have to be redefined slightly in order to weight them properly. The definitions are that

$$
\begin{aligned}
Q *(p, q) & =2 Q(p, q) \\
\text { for } p & =1 \text { to } 19, q=-19 \text { to }+19
\end{aligned}
$$

that

$$
\begin{array}{ll}
Q *(0, q)=Q(0, q) & q=-19 \text { to }+19 \\
Q *(20, q)=Q(20, q) & q=-19 \text { to }+19 \\
Q *(p, 20)=Q(p, 20) & p=1 \text { to } 19 \\
Q *(p,-20)=Q(p,-20) & p=1 \text { to } 19
\end{array}
$$

and that

$$
\begin{aligned}
& Q *(0,20)=\frac{1}{2} Q(0,20) \\
& Q^{*}(0,-20)=\frac{1}{2} Q(0,-20) \\
& Q *(20,20)=\frac{1}{2} Q(20,20) \\
& Q *(20,-20)=\frac{1}{2} Q(20,-20) .
\end{aligned}
$$

Thus points on the q-axis have unit weight (but since $Q(0, q)=Q(0,-q)$, they could be considered as one set of values weighted twice). Points off the p-axis in the first and fourth quadrants are weighted twice due to extension into the $-p$ quadrants, points on the sides are weighted once, (really $1 / 2$ on four sides of the full expansion) and corner points are weighted one half (really 1/4 on the four corners).

The raw estimates of the spectrum are then found from equation (8.21).

$$
\begin{equation*}
L(r ; s)=\frac{1}{800} \sum_{q=-20}^{\sum} \sum_{p=0}^{20} Q *(p, q) \cos \left[\frac{\pi}{20}(r p+s q)\right] \tag{8.21}
\end{equation*}
$$

where

$$
\begin{aligned}
& r=0,1,2, \ldots, 20 \\
& s=-20,-19, \ldots,+20
\end{aligned}
$$

Note that $L(r, s)=L(-r,-s)$ and that the spectral estimates have the same property as equation (8,12).

A check of the computations can be made at this point by defining the quantities, L^{*}, as below. The sum of the 861 values of $L *$ thus obtained should equal $Q(0,0)$. Thus

$$
\begin{aligned}
& L^{*}(r, s)=L(r, s) \\
& \quad \text { for } r=1, \ldots ., 19, \quad s=-19 \text { to }+19
\end{aligned}
$$

and

$$
\begin{array}{ll}
L *(0, s)=\frac{1}{2} L(0, s) & s=-19 \text { to }+19 \\
L *(20, s)=\frac{1}{2} L(20, s) & s=-19 \text { to }+19 \\
L *(r, 20)=\frac{1}{2} L(r, 20) & r=1 \text { to } 19 \\
L *(r,-20)=\frac{1}{2} L(r,-20) & r=1 \text { to } 19
\end{array}
$$

and

$$
\begin{aligned}
& L *(0,20)=\frac{1}{4} L(0,20) \\
& L *(0,-20)=\frac{1}{4} L(0,-20) \\
& L *(20,20)=\frac{1}{4} L(20,20) \\
& L *(20,-20)=\frac{1}{4} L(20,-20)
\end{aligned}
$$

Also, in order to smooth on the line $r=0$ and on the edges, the
values of L are continued by the following equations.

$$
\begin{array}{ll}
L(-1, b)=L(1,-b) & a=0,1, \ldots,+20 \\
L(a, 21)=L(a, 19) & b=-20,-19, \ldots, 0, \ldots,+20 \\
L(a,-21)=L(a,-19) & \\
L(21, b)=L(19, b) \\
L(-21,-21)=L(-19,-19) \\
L(21,21)=L(19,19)
\end{array}
$$

The smoothing filter is atraightforward extension of the smoothing
filter used in the one-dimensional case as shown by the following scheme where the product of the two one-dimensional smoothing filters give the filter values over a square grid of nine points.

Table 8.1. The Smoothing Filter
0.23
0.54
0.23
0.23
0.053
0.124
0.053
0.54
0.124
0.292
0.124
0.23
0.053
0.124
0.053

The smoothed spectral estimates are finally obtained from equation (8.23).

$$
\begin{align*}
\mathrm{U}(\mathrm{r}, \mathrm{~s})= & 0.053[\mathrm{~L}(\mathrm{r}+1, \mathrm{~s}+1)+\mathrm{L}(\mathrm{r}+1, \mathrm{~s}-1)+\mathrm{L}(\mathrm{r}-1, \mathrm{~s}+1)+\mathrm{L}(\mathrm{r}-1, \mathrm{~s}-1)] \tag{8.22}\\
& +0.124[\mathrm{~L}(r, s+1)+\mathrm{L}(r, s-1)+\mathrm{L}(r+1, s)+L(r-1, s)] \\
& +0.292[\mathrm{~L}(r, s)]
\end{align*}
$$

where again $U(r, s)=U(-r,-s)$ and $r=1,2, \ldots, 20$

$$
s=-20, \ldots .+20 .
$$

The U's are estimates of that contribution to the total variance of the sea surface made by waves with frequency components between $2 \pi\left(r-\frac{1}{2}\right) / 60 \Delta x$ and $2 \pi\left(r+\frac{1}{2}\right) / 40 \Delta x$ in the r direction, and between $2 \pi\left(s-\frac{1}{2}\right) / 40 \Delta x$ and $2 \pi\left(s+\frac{1}{2}\right) / 40 \Delta x$ in the s direction. +

One diffirulty with estimating power spectra by these techniques is hat the operations on the original data described by the above equations do not guarantee that the spectral estimates will be positive, and yet in the theory they should be. This is because a term of the form

$$
\frac{\sin \alpha X}{X} \cdot \frac{\sin \beta Y}{Y}
$$

operates on the spectrum in the complete derivation when X and Y are kept Fexcept at the borders--see Part 11.
finite in equation (8,9). This term can have negative values which can make the L's and the U's come out negative. The L's in particular can be negative quite frequently because of the operation of the above term on the estimated spectrum. The purpose of the smoothing filter is in part to eliminate as much as possible some of the negative values: Usually the negative values are quite small and do not materially affect the analysis.

In time series theory in general, the spectrum is usually defined so that an integral over a given frequency band represents that contribution to the total variance of the process being studied made by the frequencies in that band. In ocean wave theory, another convenient way to define the spectrum is so that an integral over a given frequency band represents the sum of the squares of the amplitudes of those simple harmonic progressive waves which lie in that frequency band. This is the definition used by Pierson [1955] and Pierson, Neumann and James [1956]. The E value thus defined is equal to twice the variance of the process under study.

Equations $(8,6)$ through $(8,14)$ and equations $(8,18)$ and $(8,19)$ are derived with the definition of the spectrum used in ocean wave theory. Equations (8.15), (8.16), $(8.17),(8.20),(8,21)$ and (8.22), have been derived in terms of variance. To place all equations in terms of ocean wave theory equations (8.15) and (8.12) should be multiplied by 2 on the right hand side and then all results would be obtained in terms of E values.

In what follows, all results will be discussed in terms of variances and covariances as far as the directional spectra are concerned except that
when the U values for the two independently obtained estimates of the spectrum are added together to get the best final estimate, the results will be in terms of E values.

Degrees of Freedom

In the single variable case, each of the final spectral estimates has a Chi Square distribution with f degrees of freedom where f as given by Tukey is determined by equation $(8,23)$.

$$
\begin{equation*}
f=2\left(\frac{N}{m}-\frac{1}{4}\right) \tag{8,23}
\end{equation*}
$$

This result is obtained from rather complex considerations of all of the operations on the original time series which have led to the final values of the U's. In the case of an electronic analogue analyzer, the procedure is described by Pierson [1954], and the results depend on the shape of the smoothing filter.

In the two variable case under consideration here, the smoothing filter is known only at 9 points as given in Table 8.1.

The values of $U(r, s)$ for a particular r and s is a random variable with a Chi Square distribution with an as yet to be determined number of degrees of freedom. When U is considered as a random variable the degrees of freedom can be found from the following equation.

$$
\begin{equation*}
f=\frac{2(E(U))^{2}}{E\left(U^{2}\right)}=\frac{\left(\Sigma W_{K}\right)^{2}}{4\left(\Sigma W_{K}\right)^{2}} \frac{M_{X} M_{Y}}{m_{X} m_{y}} \tag{8.24}
\end{equation*}
$$

In equation (8.24), the W_{K} 's are given by Table $8.1_{,} M_{x}$ is the average number of x points, and M_{y} is the average number of y points used in computing a value of Q.

It can be shown that the average number of x points used in computing the Q values is $N_{x}-(m / 2)$ and the average number of y points is $N_{y}-\left(m_{y} / 2\right)$. All of the $Q^{\prime} s$ enter in each value of U. The number of x points used for the individual $Q^{\prime} s$ ranges by integer steps from N_{X} to $N_{X}-m_{x}$ with an average value of $\mathrm{N}_{\mathrm{x}}-\left(\mathrm{m}_{\mathrm{x}} / 2\right)$, and similarly for the y points.

The value of $\left(\Sigma W_{K}\right)^{2} / 4\left(\Sigma W_{K}{ }^{2}\right)$ is equal to 1.58 , and hence the final expression for the number of degrees of freedom is given by equation (8.25).

$$
\begin{equation*}
f=1.58\left[\frac{N_{x}}{m_{x}}-\frac{1}{2}\right]\left[\frac{N_{y}}{m_{y}}-\frac{1}{2}\right] \tag{8.25}
\end{equation*}
$$

Equation (8.25) may underestimate the number of degrees of freedom.
Instead of $\left(\frac{N}{m}-\frac{1}{4}\right)$ as in equation (8.23), it has the product of two terms $\left(\frac{N_{X}}{m_{X}}-\frac{1}{2}\right)$ and $\left(\frac{N_{y}}{m_{y}}-\frac{1}{2}\right)$ and instead of a factor of 2 it has a 1.58 . The values of Q near $Q(0,0)$ are much larger than the values of Q on the edges, and therefore values of $1 / 4$ instead of $1 / 2$ might weight them more properly in equation (8.25).

A Correction for the Wave Pole Spectrum

The wave pole used by the R.V. ATLANTIS was free floating, and its dimensions are shown in figure 8.1. Therefore it probably underwent a rather complex non-linear motion in heave, pitch and surge. If the motions can be linearized, the heaving motion is the most important, and the pitch
and surge can be neglected.
The heaving motion in response to simple harmonic waves of amplitude a_{o} can be described by equation $(8,26)$.

$$
\begin{equation*}
M \ddot{z}+f \dot{z}+\rho g A_{1} z=\rho g A_{1}[\phi(\mu)] a_{o} \cos \mu t \tag{8.26}
\end{equation*}
$$

where $\phi(\mu)$ is determined from the wave pressures on the horizontal areas of the wave pole, and M includes the added mass of the water set in motion by the moving wave pole.
$\phi(\mu)$ is given by equation $(8,27)$ 。

$$
\begin{equation*}
\phi(\mu)=e^{-\frac{8 \mu^{2}}{g}}+\frac{A_{2}}{A_{1}}\left(e^{-\frac{28 \mu^{2}}{g}}-e^{-\frac{8 \mu^{2}}{g}}+\frac{A_{3}}{A_{1}}\left(e^{-\frac{50 \mu^{2}}{g}}-e^{-\frac{30 \mu^{2}}{g}}\right)\right. \tag{8.27}
\end{equation*}
$$

where A_{1}, A_{2}, and A_{3} are the cross sectional areas of the top, middle, and bottom portions of the wave pole respectively.

Note that as μ approaches infinity $\phi(\mu)$ approaches zero and there is no force on the wave pole. As μ approaches zero (μ) approaches one and the wave pole follows the wave profile exactly.

For this particular wave pole as shown in figure $8.1,\left(A_{2} / A_{1}\right)=(6 / 2.5)^{2}$, and $\left(A_{3} / A_{1}\right)=(12 / 2.5)^{2}$. The function $\phi(\mu)$ is graphed in figure 8.2. Because of the greater magnitude of the areas of the larger submerged tanks and the rate of change of the wave pressure with depth, a wave crest actually produces a downward force instead of an upward force for most wave frequencies and this force is $5 \frac{1}{2}$ times greater than that which would have been produced by a very long wave acting on a pole of constant diameter A_{1}.

The wave pole was calibrated in still water by measuring the period of

FIGURE 8.1 capagtance wave pole used oy the r.v atlantis

oscillation and the damping. The resonant frequency was between $\mu_{o}=2 \pi / 41$ and $\mu_{o}=2 \pi / 42$ and the ratio of observed damping to critical damping was 0.16 . When these calibration values are used, equation $(8,26)$ can be put in the form given by equation $\{8,28\rangle$.

$$
\begin{equation*}
\frac{\ddot{z}}{\mu_{0}^{2}}+\frac{0.32}{\mu_{0}} z+z=a_{0} \phi(\mu) \cos \mu t \tag{8.28}
\end{equation*}
$$

in which μ_{0} is $2 \pi / 41$. The true resonant frequency works out to be $2 \pi / 41.5$ (a period half way between the two observed values) and the damping is 0.16 of critical damping.

The motion of the wave pole under the above conditions is given by equation (8, 29).

$$
\begin{equation*}
z(t)=\frac{\left[1-\left(\mu / \mu_{0}\right)^{2}\right] a_{0} \phi(\mu) \cos \mu t}{\left[1-\left(\mu / \mu_{0}\right)^{2}\right]^{2}+K^{2}\left(\mu / \mu_{0}\right)^{2}}+\frac{K\left(\mu / \mu_{0}\right) a_{o} \phi(\mu) \sin \mu t}{\left[1-\left(\mu / \mu \delta^{2}\right]^{2}+K^{2}\left(\mu / \mu_{0}\right)^{2}\right.} \tag{8,29}
\end{equation*}
$$

in which K equals 0,32 。
For μ corresponding to a period of ten seconds, the coefficient of the cosine is positive, and the sine term is small compared to the cosine term. Therefore the wave pole will move up as the crest of a wave passes and the height of the recorded wave will be less than the height of the actual wave. The forcing function tends to force the pole downward in a wave crest, but the left hand side of the equation is so far past resonance at the high frequency end that ar additional 180 degree phase shift is introduced, and the wave pole moves up in à passing wave crest.

The height of the water on the moving wave pole was recorded, and the spectrum of this function is to be obtained. What is desired is the spectrum of
the function tiat would have been obtained had the wave pole ieen stationayy. Let $\eta_{*}(t)$ be the recorded wave height and let $\eta(t)$ be the true wave height. Then equation (8.30) can be obtained.

$$
\begin{equation*}
\eta^{*}(t)=\eta(i)-z(t) \tag{3.30}
\end{equation*}
$$

It states that in the pole were stationary, $(z(\tau) \equiv 0), \eta *(t)$ would equal $\eta(t)$ and that if the wave pole followed the wave profile exactly, $(\eta(t)=\varepsilon(t)), \eta *(t)$ would be zero.

From equations (8.29) and (8.30) the result is that
(8.31) $\eta *(t)=\left[1-\frac{\left[1-\left(\mu / \mu_{0}\right)^{2}\right] \phi(\mu)}{D(\mu)}\right] a_{0} \cos \mu t-\left[\frac{\left[K\left(\mu / \mu_{0}\right)\right] \phi(\mu)}{D(\mu)}\right] a_{0} \sin \mu \mathrm{t}$ where $D(\mu)$ is the denominator of the terms in (3.28).

If the whero pole rospone is linear, and ir the tre 'urface can be represented by a wtationary Gaussian process with the apactrum $[\mathrm{A}(\mu)]^{2}$, it then follows that the spectrum of the recorded function is related to the spectrum of the waves by equation (8.32). The term in Wrackets is just the sum of the squares of the two coefficients in (8.31).

$$
\begin{equation*}
[A *(\mu)]^{2}=\left[\frac{\left[\left(\mu / \mu_{0}\right)^{2}-1+\phi(\mu)\right]^{2}+K^{2}\left(\mu / \mu_{0}\right)^{2}}{\left[\left(\mu / \mu_{0}\right)^{2}-1\right]^{2}+K^{2}\left(\mu / \mu_{0}\right)^{2}}\right][A(\mu)]^{2} \tag{8.32}
\end{equation*}
$$

 ator of chie expeasion is always less than the denominator. Therefore the waves recorded by the instrument will be too low and the spectrum computed from the wave iecord will have to be amplifind to get the correct apectrum. The final equation given that $[A *(\mu)]^{2}$ is kown permits one to find $[A(\mu)]^{2}$.

POLE SPE CTRUM.

$$
\begin{equation*}
[A(\mu)]^{2}=\left[\frac{\left[\left(\mu^{2} / \mu_{0}{ }^{2}\right)-1\right]^{2}+K^{2}\left(\mu^{2} / \mu_{0}{ }^{2}\right)}{\left[\left(\mu / \mu_{0}\right)^{2}-1+\phi(\mu)\right]^{2}+K^{2}\left(\mu / \mu_{0}\right)^{2}}\right][A *(\mu)]^{2} \tag{8.33}
\end{equation*}
$$

The form of the correction curve is shown in figure 8.3.
The spectrum actually determined will be discussed in a later past of the report. The authors are indebted to Professor B. V. Korvin-Kroukovsky of the Experimental Towing Tank at Stevens Institute of Technology, and Harlow Farmer of Woods Hole Oceanographic Institution for the derivations discussion and clarification of equation (8.26) and to Mr. Farmer again for calibration data. Prof. Korvin-Kroukovsky found from purely theoretical considerations using an added mass of unity that the resonant frequency should be near 38 seconds. Tucker [1956] has discussed the calibration of essentially the same wave pole except that the depth of submergence of the tanks is different, and the derivation follows his results. Tucker's results show that a change in the depth of submergence of the tanks by few feet one way or the other changes the results markedly.

References

Cox, C. andW.H. Munk [1954]: Statistics of the sea surface derived from sun glitter. Journal of Marine Research, v. 13, pp. 198-227.

Ijima, T, T. Takahashi, and K. Nakamura [1956]: On the results of wave observations at the Port of Onahama in August, September, and October 1955. (Measurements of Ocean. Waves VIII. Transportation Technical Research Institute, Minisiry of Transportation. In Japanese--summary in English.)

Lewis, E. V. [1955]: Ship model tests to determine bending moments in waves. TSNAME, vol. 62.

Na', agowa, M. and T. Ijima [1956]: "On Waves at Sakata Harbor." The First Sakata-Harbor Construction Office, Regional Harbor Construction Bureau and Transportation Technics Research Institute, Ministry of Transportation, Tokyo. (In Japanese.)

Pierson, W.J. [1954]: An electronic wave spectrum analyzer and its use in engineering problems. Tech. Memo. No. 56, Beach Erosion Board, Washington, D.C.

Pierson, W.J. [1955]: Wind Generated Gravity Waves in Advances in Geophysics, vol. 2. Academic Press, Inc.

Picrson, W. J. and W. Marks [1952]: The power spectrum analysis of ocen wave records. Trans. Amer. Geophys. Union, 33, no. 6.

Pierson, W.J., G. Neumann, and R. W. James [1955]: Practical methods for observing and forecasting ocean waves by means of wave spectra and statistics. H. O. Pub. No. 603, U.S. Navy Hydrographic Office.

Tuciscr: M. J. [1956]: Comparison of wave spectra as measured by the NIO shipborne wave recorder installed on the R.V. "Atlantis" and the Woods Hole Oceanographic Institution wave pole. NIO Internal Report No. A6.

Tukej, J.W. [1949]: The sampling theory of power spectrum estimates. Symposium on Applications of Autocorrelation Analysis to Physical Problems. Woods Hole, Mass.(Office of Naval Research, Washington, D. C.)

Part 9

THE LEVELED DATA, THE NUMERICAL ANALYSIS AND THE NUMERICAL RESULTS

The Leveled Daťa

The first numerical task was to level the data using the equations derived in Part 8. Missing data was a complicating factor. For the most part this was caused by 组e presence of the ATLANTIS. The missing coordinates are given below:

where j is the index running from 0 to 59 and k is the index running from 0 to 89.

With missing points in the data, there are two possible ways to level the data. One would be to minimize the sum of the squares of the deviations of the known values of the spot heights from an unknown tilted plane. The other would be to interpolate the unknown values from the known data; use them in the equations given in Part 8 ; and level tine data. The first
$0^{\prime t}$ the two procedures described above was employed, but it will also be shown A:at the second procedure is simpler and that it gives substantially the same results.

The original set of equations for the assumed complete set of data is given by the matrix equation (see Part 8);
$A X=B$
where A is the matrix:
$\left(\begin{array}{ccc}\Sigma j^{2} & \Sigma j k & \Sigma j \\ \Sigma j k & \Sigma k^{2} & \Sigma k \\ \Sigma j & \Sigma k & \Sigma 1\end{array}\right)$
and where Σ represents the double sum:

$$
\begin{equation*}
\sum_{k=0}^{89} \sum_{j=0}^{59} \tag{9.3}
\end{equation*}
$$

A calculation shows A to be:
(9.4) $\quad\left(\begin{array}{rrr}6,318,900 & 7,088,850 & 159,300 \\ 7,088,850 & 14,337,900 & 240,300 \\ 159,300 & 240,300 & 5,400\end{array}\right)$
B is defined as the vector:

$$
\Sigma j N_{j k}
$$

$$
\begin{align*}
& \Sigma k N_{j k} \tag{9.5}\\
& \Sigma N_{j k}
\end{align*}
$$

where Σ is defined by (9.3).
where a, b, and c determine the coesficients of the unknown tilted reference plane.

The equation for the leveled data is

$$
N_{j k}^{*}=N_{j k}-a j-i k-c
$$

The modified equations which take into account the missing data are given by eqn. (9.7) where the summations omit the missing points.
(9.7)

$$
A^{\prime} X=B^{\prime \prime}
$$

The numerical results for sets 2 and 3 are as follows:

Set 2
$A^{\prime} \quad\left(\begin{array}{rrr}6,312,334 & 7,081,560 & 159,138 \\ 7,081,560 & 14,329,800 & 240,120 \\ 159,138 & 240,120 & 5,396\end{array}\right) \quad\left(\begin{array}{rrr}6,307,157 & 7,072,663 & 159,033 \\ 7,072,663 & 14,313,780 & 239,892 \\ 159,033 & 239,892 & 5,393\end{array}\right)$

B' $\left(\begin{array}{r}767,640.680 \\ 1,184,012.640 \\ 26,618.730\end{array}\right)$
$\mathrm{X}\left(\begin{array}{r}-.010744 \\ -.000140 \\ +5.256144\end{array}\right)$

The final equations for the leveled data, $N_{j k}$, are given by:

$$
\begin{equation*}
N_{j k}^{*}=N_{j k}+.010744 j+.000140 k-5.256144 \tag{9.8}
\end{equation*}
$$

$$
\begin{equation*}
N_{j k}^{*}=N_{j k}-.001575 j+.003584 k+5.425500 \tag{9.9}
\end{equation*}
$$

The leveled data are given in Tables 9.1 and 9.2. Data at the missing points were determined by interpolating the leveled data at the neighboring points.

The preceding can be simplified by interpolating the data at the start for the missing points. It will be shown that this method yields the same results to at least five significant figures. From equation (9.8) the missing data in the second run are given by:
$(39,45): 4.830825$
$(40,45): 4.820081$
$(41,45): 4.809338$
$(42,45): 4.789590$
if $\mathrm{N}_{\mathrm{jk}}^{*}$ is assumed to be zero at the missing points. By interpolation at the neighboring points, one could assume the missing data to be given by:
$(40,45): 5.03$
$(41,45): 4.92$
$(42,45): 4.77$
If one were to start the leveling over again, with the missing data tabulated above under the assumption that $\mathrm{N}_{\mathrm{jk}}^{*}$ were zero at the missing points thus using the entire 5400 points and the matrix A, there would be no change in the results. This is a fundamental property of a least square
solution. However, if one were to level with the interpolated data, the results would be almost indistinguishable, because the vectors B for both casee \ddagger Sice to at least 5 significant figures. Fience the sulutions agree. Thus in a repetition of this problem, missing data could simply be averaged at the start. The column vector B for Set 2 for the case in which $N_{j k}^{*}$ is assumed to be zero is given by

$$
B=\left(\begin{array}{r}
768,420.609 \\
1,184,879.288 \\
26,637.989
\end{array}\right)
$$

and if the interpolated points are used, B for Set 2 is given by

$$
B=\left(\begin{array}{r}
703,440.13 \\
1,184,901.39 \\
26,638.49
\end{array}\right)
$$

The missing data for Set 3 under the assumption that $\mathrm{N}_{j k}^{*}$ is zero at each of the missing points is given by
$\frac{\vdots}{i} \frac{k}{(2,45)}: 5.26735$
$(39,50): 5.30770$
$(44,63): 5.26898$
$(45,63): 5.27056$
$(46,63): 5.27213$
$(45,62): 5.27414$
$(46,62): 5.27572$

By interpolation at the neighboring points one could assume the miss ing data to be given by

$(2,45): 5.15$
$(39,50): 5.11$
$(44,63): 5.28$
$(45,63): 5.39$
$(46,63): 5.59$
$(45,62): 5.43$
$(46,62): 5.53$

The column vector B for Set 3 for the case in which $N_{j k}^{*}$ is assumed to be zero is given by

$$
B=\left(\begin{array}{r}
348,825.093 \\
1,263,519.932 \\
28,687.267
\end{array}\right)
$$

and if the interpolated points are used, B for Set 3 is given by

$$
B=\left|\begin{array}{r}
848,856.34 \\
1,263,558.44 \\
28,687.81
\end{array}\right|
$$

The leveling equations for the two different ways of leveling each set of data were actually obtained. The greatest difference in the two sets of data between the two methods was -0.02 ft which was far below the level of accuracy in the original spot heights.

The preceding calculations were carried out on the Univac, a large
digital computer. The antal compuration mok only a few manures: Fowerer the clerical, workingolved in correctingerrors in the data and in the program consumed almost two hours. Were the problem to be done for a new set of data, only a few minuses of Univar time would be needed as the program already exists, and the data can be made ready by a card to tape converter.

Spertrum Computation by Means of the Univis

The computation of the covariance surface is an extremely long computation, involving many millions of multiplications. Thus it could be most speedily handled by the IBM 704, the NORC, or the LARC.

Programming the covariance surface on the Univac was especiaily difficult because of its limited memory. Since many numbers must be ayailable almost simultaneously, it was deemed ineff.itent 'o store the data on fane as tape time would add corsiderably to the program sunning time. Tre why out of this dilemma was :o break up the 90 by 60 array in'otreearravs: 44×60 : 2×60, and 44×60. There is considerable overlap. Since we want a lag of 20, the middle group must contzin 20 rows above and below thus 11 contains 42 rows in all. These data were packed 4 on a line. In this way, it was possible to park an entire section in the memorv, and sill have er.ough inm structions for the program. Since no room whs left for sign, a constant was added to all the data to make them positive. Tr reader mav perceive how these facurs added materially the length of tre computation run Every two numbers rad to be isolated by ar ingenious sys'em of srifts, then the same constart rad to be subtrated out. Onty then could the numbers be multiplied and the product accumulaten in a couner. Then the calculrtion.
of the covariance surface is accomplished by means of three programs yielding three 21×41 matrices. The sum of these three matrices equals $Q(p, q)(90-|q|)(60-p)$, and a division will obtain the required values for the covariance surface. Since the problem is quite long, procedures have been established in case of machine trouble. The program can be restarted by typing on supervisory control the initial desired two-dimensional lag. The computer will pick it up from that point. A flow chart for this program is given in figure 9.1.

The spectrum program did not present such difficulties because the entire data could be easily written in the memory.

These programs were compiled by means of Generalized Programming, a particular system of automatic programming developed by the Univac Division of the Sperry Rand Corp. These programs for a general array can be found in the G. P. Library under the call letters AUC2, and COSM. They are available at the Univac Division of Sperry Rand, Inc., 19th and Allegheny Avenue, Philadelphia, Pennsylvania.

To complete the program, an input-output routine must be added. This program has been written. It exists on tape at the College of Engineering, New York University. Further checking is deemed desirable before a production run is attempted.

The complete Univac procedure for determining the spectrum from leveled data has thus been set up. After further checking, it could be used given about twenty hours of Univac time for each set of data.

Fig. 9.1
FLOW CHART FOR UNNORMALIZED COVARIANT SURFACE
-90-

Spectrum Computation by Means of the Logistics Computer

The problem was eventually run on the Logistics Compurer, owned by the Office of Naval Research and operated by the George Washington University Logistics Research Project. Time was made available by ONR. This computer is a plugboard controlled electronic digital computer with a large internal drum memory of approximately 175,000 decimal digits. For this computation a word length of 12 decimal digits (in reality $111 / 2$, since negative numbers are represented by 9's complements) was used, providing over 14,000 words of memory, more than enough to store all the necessary data at each stage of computation.

The leveled data $N_{j k}^{*}$ were provided on punched cards for both data sets 2 and 3. A later computation was made on Data Set 2 A derived from Data Set 2 by the deletion of all jrom 50 to 59 and all k from 0 to 19 inclusive, providing a 50×70 array; and on Data Set $3 C$ derived from Data Set 3 by the deletion of all from 0 to 9 and 50 to 59 , inclusive, providing a 40×90 array. The $\mathrm{N}_{\mathrm{jk}}^{*}$ were converted from cards to paper tape. Conversion and input were checked by comparing $\sum_{j, k} N_{j k}^{*}$ on the drum with a check sum of the punched carcls. As eaci. value of $Q(p, q)(90-\mid q \|)(60-p)$ was computed, it was punched out on paper tape, ready for further input. Total computation time for Data Scts 2 and 3 was about 30 hours apiece, each computation involving 3,433,500 multiplications and 6,867,000 drum references. For Sets 2A and 3C the computation time was about 18 hours each. The computer was allowed to run overnight unattended without er countering too many difficulties. Due to lack
of time no check on the above computation was made for Sets 2 and 3 other than visual observation of the results for reasonableness. For Sets 2 A and 3 C , however, a check computation of $\sum_{p, q} Q(p, q)(90-\mid \phi(60-p)$ was made, two minor errors being discovered and corrected in the results for Set 3C. This check computation required about $61 / 2$ hours for each set and would have required about 11 hours for Data Sets 2 and 3. Since the Logistics Computer does not include division as a basic operation, this had to be subroutined in order to find the values of $Q(p, q)$, a matter of a few minutes. This division was checked by repetition of the program. The values of $Q(p, q)$ were converted from tape to punched cards for listing, the conversion being checked in the case of Data Sets 2A and 3C by comparing the sum of the $Q(p, q)$ on tape with the corresponding card sum.

The $Q(p, q)$ were fed back into the computer, being doubled before being stored. Each side of the resulting matrix was then multiplied by $1 / 2$, the cor: ner elements belonging to two sides, being multiplied twice. In this manner the covariance surface $Q *(p, q)$ was stored on the drum. $1.21095 \cos \frac{\pi j}{20}$ ($j=0,1, \cdots, 39$) were also stored on the drum. The factor 1.21095×10^{-7} was introduced to divide by 800 , to locate the decimal point (since, say, 0.311 was entered as 311), and to convert from the scale of the stereo planigraph to feet $(0.1016 \mathrm{~mm}=1$ foot). During the computation of the spectrum $r p+s q$ was reduced modulo 40 to the least non-negative residue. Because of the ranges of p, q, r, and s, resetting of $r p+s q$ at the limit of the range of any variable was quite easy. The total computation time for each spectrum was
about 7 hours. In the case of Data Sets $2 A$ and $3 C$ the $L(r, s)$ were punched into cards, the conversion from tape to cards being checked by summation. In the earlier computation of Data Sets 2 and 3, due to an error made with derivation of the equations in Part 8 , the values of $L *(r, s)$ were computed and punched into cards. As a check $\Sigma L *(r, s)$ was compared with $Q(0,0) /(1.016)^{2}$, to which it should be equal. This check was made by hand for Data Sets 2 and 3 and by machine for 2 A and 3C. In all cases there was agreement to four significant figures, the values for Data Sets 2, 3, 2A, and 3C being 4.614, 4.299, 4.105, and 4.049, respectively.

For Data Sets 2 and 3 the final smoothing was performed incorrectly, due to the above mentioned error, on the $L^{*}(r, s)$ matrix rather than the $L(r, s)$ matrix. This error was corrected by the time Data Sets 2 A and 3 C were run, and correct procedures are described in Part 8. The $L(r, s)$ matrix on the drum was bordered to provide the proper values for $r=-1,21$ and $s=-21,21$. A final computation of approximately 15 minutes per data set provides the $U(r, s)$. For Data Sets 2 and $3 U(r, s)$ (incorrect in the two outer columns and rows because of the use of $\left.L^{*}(x, s)\right)$ was punched on tape and converted to cards. Many of these values were checked by hand, and no errors were discovered. For Data Sets $2 A$ and $3 C U(r, s)$ (correctly computed from $L(r, s)$) was used to obtain $U^{*}(r, s)$ (the borders being multiplied by $1 / 2$), punched out on the tape, and converted to cards. For both of these sets as a check $\Sigma L_{k}(r, s)$ was compared to $\Sigma U^{*}(r, s)$, agreement being obtained to seven significant figures.

Although computation time was greater than it would have been on the Univac or other large machine, the problem as done on the Logistics Computer was conceptually simpler, because of the ability to store ultimately all data needed at any computation stage, and more economical (even if the problem had been chargedfor) due to the smaller cost per hour of this machine.

In conclusion, the authoxs would like to thank Louis Grey, Anatole Holt and William Turanski for the help and advice they have given in the Univac programming, Gordon J. Morgan of the Logistics Research Project, William W. Ellis and Bernard Chasin who helped with the IBM card operations needed to provide the tables in this report.

The original spot height data furnished by the U.S. Navy Hydrographic Office, the leveled data, the values of $Q(p, q), L *(r, s)$, and $U(r, s)$ for the original computations, and tie values of $Q(p, q), L(r, s)$, and $U(r, s)$ for the reduced data, are given in the following tables. (Note that in order to compute the $U(r, s)$ values, the $L(r, s)$ values must be $u s e d$, and not the $L *(r, s)$ values.) The tabulated values of $L *(r, s)$ should be doubled on all borders except at the cormers where they should be quadrupled to obtain the $L(r, s)$ values. These values are also available in a deck of IBM punched cards at the Research Division of the College of Engineering, New York University. The raw data and the leveled data are given in 540 cards per run, for Data Sets 2 and 3 and 350 and 350 cards for Data Se \vdots 2A and $3 C$, respectively; and the covariance surface, the spectrum, and the smoothed spectrum are given on 841 cards per run. Thus 11,882 cards are available in all. All Logistics Computer prow grams used are in the possession of George Stephenson.
Table 9.1 Leveled Spot Height Data for Data Set No. 2 98
Table 9.2 Leveled Spot Height Data for Data Set No. 3 103
Table 9.3 Covariance Surface for Data Set No. 2 108
Table 9.4 Covariance Surface for Data Set No. 3 109
Table 9.5 Table 9.3 plus Table 9.4 110
Table 9.6 L*(r, s) Values for Data Set No. 2 111
Table 9.7 L*(r,s) Values for Data Set No. 3. 112
Table 9.8 Spectral Estimates $U(r, s)$ for Data Set No. 2 113
Table 9.9 Spectral Estimates $U(r, s)$ for Data Set No。 3 114
Table 9.10 Table 9.8 plus Table 9.9. 115
Table 9. 11 Unleveled Raw Data for Data Set No. 2 116
Table 9. 12 Unleveled Raw Data for Data Set No. 3 121
Table 9.13 Errata Sheet for Table 9.8 126
Table 9. 14 Errata Sheet for Table 9.9. 127
Table 9.15 Covariance Surface for Data Set No. 2A. 128
Table 9.16 Covariance Surface for Data Set No. 3C. 129
Table 9.17 L(r, s) Values for Data Set No. 2A. 130
Table 9. $18 \mathrm{~L}(\mathrm{r}, \mathrm{s})$ Values for Data Set No. 3C. 131
Table 9. 19 Spectral Estimates $U(r, s)$ for Data Set No. 2A. 132
Table 9. 20 Spectral Estimates $U(r, s)$ for Data Set No. 3C. 133

Explanation of Tables

The decimal point is not shown in any of the tables. The units for each table are given below. Negative numbers in all tables are shown by an asterisk (${ }^{*}$).

Tables 9.1 and 9.2.
The value of $N(00,00)$ in Table 9.1 (the number in the upper left corner of the first page) can be read as -2.56 feet (approximately). To get feet exactly divide 2.56 by 1.016 . All other numbers can be similarly interpreted.

Tables 9.3, 9.4, 9.15, and 9.16.
The value of $Q(0,0)$ in Table 9.3 is $4.763(\mathrm{ft})^{2}$ (approximately). To get $(f t)^{2}$ exactly divide 4.763 by $(1.016)^{2}$.

Tables 9.6, 9.7, 9.17, and 9.18.
The value of $L(0,20)$ in Table 9.17 is $0.0013(f t)^{2}$. All other $L(r, s)$ values can be interpreted similarly. To convert the $L^{*}(r, s)$ values in Table 9.6 and 9.7 to $L(r, s)$ values, double all entries that have 20 as a coordinate, double the first column, and redouble the entries at the four corners.

Tables 9.8, 9.9, 9.19, and 9.20.
The value of $U(1,00)$ in Table 9.19 is $0.0302(f t)^{2}$. All other values can be interpreted the same way for Tables 9.19 and 9.20 in which the values of U are bordered.

Note Tables 9.13 and 9.14 in connection with Tables 9.8 and 9.9
in which the corrected values of $U(r, s)$ are not bordered.
Tables 9.11 and $9.12 \mathrm{~N}(0,00)$ is 50.0 feet approximately. To convert to feet exactly, divide by 1.016 . Other entries can be interpreted similarly.
 HMOgषt HW以 NOOOMMOHनONनOOHNNMNOOOHWHनOO－100000नOHMHOMNM HOM HOOM WOMHW以NO

 MMHOONनHONMNNOMNOMNMMOONHOOOMHOONNOOOHOONONNHHNHOOONMOHNMNOO

 ＊ H －

 नHनVMHONNOHOOO YOOOOOHONHनOONOHNTMMOHMNNNOOOOMMNOONOOVTNOONV


```
    HNONMOH#OHOOOOHMNOOOOMOHनOMNOHO& HNNHNNOHMNOMNOMOOWHONONHOON
```



```
C
\
#
```



```
    NHHOFONMOMNMNOHNHOOनMLNODNOOMOOHOOONNONサWMHMHHOMVWONनOOONGMO
```


 ** *

 OルMHNनOONOOHNOOOOOVMOOONONHOOONHनNHHHHVOHMNONHHVMNNOMNHNOON

 OHनNHMनHनMMOOOONMWNHFOOनNHOOHOMHMHOMMNOHONOOHNONMMनNNHOVNNOM


```
    OHनHOOHOOHनOOMMOOOOपOOनNनHMNOONMNHनOONOMNNOHNNONHOWMNNHNMHNन
```



```
    ONHनHननHNनMNOHOHनOHMMOOनHNOHOOMVMMMOOHNMLNOHVOONFNMwNNONNOOO
```



```
    MOHH#NOOOONOOONHनOHOONMONOOHOHNWMNOHनNNWMNHOHOOOHNNWHWHHOOOO
```



```
    *)
```



```
    NHOOHNOOFMOONONMFHNOOHनNHOMHONNFOOOHNNHHNHNOOHOHHOOVNMNMOOOO
```



```
    *)
```



```
        HNMNMONNMOHHONNHOOMMMNOOHNWOOOOMOOONHOOONHONWONOMOHNONOHVNON
```



```
On
```


 HOONOMMMOMMOHनNMNONFONOHOOOODOONNOHOONNHONNHOHOO NOOHHO

 OW以に以MOHNONHOOONOHOOHनHOOननHVHनOHNOOHMmmmOHHOOOOOMOHनNHOONON

 ONNNOONNFFMMNHनMV TOOONOHNHOMNOOOHOOONOMNOONOTMOOONMOOOONNNHO

 NMNNFONMNNOOHOHNWMHनHOONMHOMHOOOHNNOHHNNHनHONMMMONNOOOOHOOON

\qquad

 OOOOONOONYMOOONHTMVMनMMHONOOWNHONNOHFONOHNNOMHMNनMNनTVMOHनOO

 HOOONनOOOOनHOHMHनHNHMMFHONNNOHOOHनHNONNOOOOHनOOOHMMनHNNOOOHन

 Mためんに


```
    ONNNOOHNNVNOFONMMNONNHNONTNNONOHNHOFONOONHOHनOHNNWMNVOOOVNHO
    %
```



```
    ONHFMHOHMNONMNHMNHOOOONMOOHMNFNONHनOOMHनMMHFOHVNNMNOMMONHOHM
```



```
\hdashline-
```


 MHOOOOONOनMNनOOOOनHONMOOOOOMNOONHNOOOHMNOONNNNHNMHFONLNOMONH

 OMN OMOOFOOHनHNHFOOONQOHHHONOMONFHFOHOOOOONHOOOOMHFONMOMNOONNON

 HHONHOOOONVNVOOHMHOHOHOOONWNNOMONOOHMNOWOHHOOOHOONTONVHOMFHO

 HOHNNOOOONMNO甘 OONNननOOOVNषMHOHनOHनNNनHONNVनOHNNनMVMMNNNVVNE

 MHNMMMNOOFनOOHONOHHOVVOONMOOOVMMHNOHMHनNNNनMOनHMONNMVMNOMOHN

 MOOMWNWMHNNMOOHOMNOOOHOOHOWNMNQMFNNVMOHWMOOHOMHTOMV WNOOHHNN

 नOOOMNNNOVMNNNMHनNOHOOOOHनNMHOVMनOONOHOनODO甘HNMनMサMनNOOनVMNO

 जनONNONNOMNOMOMMMनMNOOOOHNNFOOHNOHONHONNONOMNONONNNHONOHV IOM

 नMMNOOHVननNOOHOHVOHOOOनHनHOMMMMHHOOMOHVMMNHOHHनOHOOMHOOOMONO

 नササNOOMNनONO甘OONHOOO HनOOHOनHNOOननHONONOOHनOONMOONONनOOनONONM

 OONHOMOMOHनOOONOHNनOMनOONNMMMMनMNMOMOOMOHOOननOOONननHनHNMOHON


```
    NHMNMNOOOOHMVHनHपपMHOHNNONVOOHनONNननपMOनOOनNHOOONMMVMM पON WN
```



```
    ONOONMONHNWNNNMOON HOOOOOHNHOMNOONHWNFIOHHनONMMNननOWUMNOHWMNO
```



```
    HOOONनHNOHMFWVNOHOOHनOOOONHNHMOHनHNNWMHOONOMVMMOONनMMNOननWMO
```



```
    HOONOHOOONMOMNMNHHOOMOOOORONOOOHNTNOLMOMMHOOONMHMOMNOOOOMNपN
```



```
    NWOHNOHMMVNNVOHOOMNOMHONOOनVNHनNHOOOOOMMOOOHHनOVNOOHOWNHOOHM
```


 R जmNがのmmaomooanabnco

 Kiono
－＊
 HMNTMHONNNHNONHFHONMOMHHWNHNHNMMNOOHMNOHOOOOONHONOOOHHOHNOON

 NTMMNOHOMNNONMOONOHOHNONNOOOOHNHOMNNNOMHOOONONMMHOOOHMMOMOMO

 नNOOOनHनHHONHOOMOOOOOHनHNOOOHNHNOHOMNHOMNOOOONMNHNOHONOHOMOC

 जNNHOMMNONUMNHMMOOOOOMMNOV MHONMHOOOO HNHNOHHOHNHHFHWOHOOHONO

> -

 FNन由MळOHNWQLOO

$\stackrel{\circ}{4}$

HOOHOOHONनHOHनOMNOOOOOMनNWMOOOOMV YनONNOMOMMMनNOHनONOOHNNMVM


``` NNMMMHMHOMMHNNOMOHNNONOONNOHOOOHOHOOOHOOHNMHOOMOHOMMHषNMOOH
```



``` NHMNNNNOHOMOOOOOMNOOHFOHOOOOHOHMOOONOOOONHFMMMOOONAONOMNGMOOO ज
```



```安
м mó on
```



```营
```



``` OMnNに 3
```


No． OHMNONOFONNNVMNHOHNOHNOONNOOOMOVHTHONNNOONMHNMFNOOOFOOMHMMHO

```


``` OOMNNMOOOOONVषHनOMOOHOHOHOOOHNONNMNONUHHOHNNMMHNHनOOOOHOONOO
```





``` NनHनONनHHनO NMOOOMNNHOOOOHMHHHOONHOMMLHMONMOOHHNNNHOHनHLNOHO
```







움
 00000000000000000000000000000000000000000




 00000000000000000000000000000000000000000


$$
\because *=0 \cdot \theta * O
$$


 00000000000000000000000000000000000000000

 00000000 HNNNNNHHOOHNUONFVNONHNMUTMNHUOOO
00000000000000000000000000000000000000000

$$
\pm \# \# * * *
$$

 0000000000000000000000000000000000000000000

 00000000000000000000000000000000000000000


 0000000000000000

*******
8
 0000000000000000000000000000 ORFUTNHH00000
 000000 200000000000000000000000000000000000000

$\infty$



-     * 

********



6



-     *         *             *                 *                     * 


 000000000000000000000 Hth H-1000000000000000



 $000000000000000007 C 0000000000000000000000$

 00000000000000000 HनH000000000000000000000

 00000000000000000 HनNNFOOO0000000000000000




8
omownrevorwameago
 0000000000000000000000000000000000000000 F

 0000000000000000000000000000 नुन 0000000 Hन －－－－＊
＊＊＊＊＊
－角色
$\infty$

 000000000000000000000000000000000000


म
 occoove0ceveco000c00000000000000000000000 ＊＊


 000000000000000000000000000000000000000 HN


 000000000000000000000000000000 NNNNNHFHFHN
 F－THNMM




 00000000000000000000000000000000000000000
$\because 6$
 000000000000000000000000000000000000000000

 OCcececcecocecoovecooccooccccooocooccecco

＊

 00000000000000000000000000000000000000000
*







 0000000000000000000000000000000000000


 MMMMMMNNNFHNNMVVHMFONWUNV NNFOOFHFNOOOOOOO


 00000000000000000000000000000000000000000









-     * 


#  













 0000000000000000000000000000000000000000

 HOOOONNFHOFINMMMFOOMDNOVM1SMONVFNNGOTMNHHN 00000000000000000000000000000000000000000

$$
\ldots
$$

-     -         *             *                 - 

H




 00000000000000000000000000000000000000000


 00000000000000000000000000000000000000000







 0000000000000000000000000 HHHNHH0000000000

$\infty$
 00000000000000000000000000000 HOOOOMMMNNN

 0000000000000000000 H 100000000000000000000
 - HOनNOOOHNN
 0000000000000 HनHन0000नHनHनHन0000000000000




 Nong 00000000000000 H नNNNनI ***
 H $-\infty \infty \infty \infty \infty$ ©


0 m






－－－- －
0．MOMMFOO
 00000000000000000000000000000000000000000 －＊＊
＊ज－
＊＊＊
－＊＊＊＊－
＊＊＊＊
$\stackrel{0}{n}$

 －\＃\＃\＃\＃ ＊＊＊
 $1000000000000000000000 \mathrm{HHOH0} 000000000000000$

-
＊＊
 00000000000000000000000000000000000000000
00000000000000000000000000000000000000000 －\＃－E．
＊＊＊

 00000000000000000000000000000000000000000




 100のサ0れ00れ000000000000000 00000000000000000000000000000000000000000

 00000000000000000000000000000000000000000
＊＊＊＊＊＊
©ヵ＂

 cevecerceiogo

 a $000000000000000 \mathrm{HOHFOHONOH1F} 00000000000000$










 000000000000000 H00HNVMWVMVNनHOOOOOOOOOOOO

 00000000000000000000400000000000000000000







 00000000000000 HNTONHVNMNNNOOOOOOOOOOOOOOO

 00000000000000000000000000000000000000000 80000000000000000000000000000000000000

 000000000000000000000000000000000000000000 .

 OO000000000000000000 000000000000000000000

 00000000000800000000000000000000000000000
目 00000000000000000000000000000000000000000 000000000 00000100000 NH 1000 HOO 000000000000

 సै $000000000000 \mathrm{HOHOOOOOH000न0न00000000000000}$ 00000000


 00000000000000000000000000000000000000000
 OOMONOHOMNUMONNUOTNMT ONनV FOFOLWM HNHOMONOO O OOOOOOOOOOOOHOHOOOOONOHOHOHOHOOOOOOOOOOOO c,0000000cco000000cco000000000cececoocooo


 - ***

 000000000000000 H00HHOHFOHOHOHOOOOOOOOOOOO * * * * * * * * *
 -00000000000000H0HHFHNNHOOOHनHOOOOOOOO0000
 000000000000 HOHOHONHVMNNHनHFOHOOOOOOOOOOO 00000000000000000000000000000000000000000
 00000000000000000 HनMMष O 00 MOHFO 00000000000 00000000000000000000000000000000000000000

 00000000000000000000470000000000000000000

 00000000000000 HMMnMHMHMHMNHOHOHOOOOOOOOOO - - *

 000000000000 HOONTHOOHONTMNNHHOOOOOOOOOOOO
 000000000000 HO HNNOMN WNMNHMHOFOOOOOOOOOOO

 00000000050000000000000000000000000000000
0000000000000000000000000000000000000000

 - 00000000000000000000000000000000000000000 00000000000000000000000000000000000000000

 00000000000000000006000000000000002000000
00000000600000000000000000000000000000000

 OOOOOQOOOOOOOOQOOOOOOOOOOOOOOOOOOOOOOOOO



 - 00000000000000000000000000000000000000000 - ** **


-     *         *             *                 * 

 n 0c000000000000000000000000000000000000000 00000000000000000000000000000000000000000



 ******
 10000000000000000000700000000000000000000
 Mivomtrrinamuncma 00000000000000000000 H00000000000000000000 00000000000000000000000000000000000000000 * \# \# \# \# \# \#

********
ceccocce co0

 cecccccccccccccecoccoccecoccecocooccerc

 00000000000000000000000000000000000000000


 ****** 000000000000000 Hन000000HHNH100000000000000




 00000000000000000000000000000000000000000


CCCCOOOOOOW000000000000000000000000000000

m 00000000m
mogoooogoo




00000000000000 NNNHOOHNTWNHHOOOOOOOOOOOOOO
0000000000000000000000000000000000000000
 000

 0000000000000000000000000000000000000000

 － 1000000000000000000000000000000000000000000

 00000000000000000000 N00000000000000000000
 ＊＊＊＊＊＊＊＊＊ －\＃＊＊ 00000000000000000000 NO 000000000000000000
 00000000000000000000N00000000000000000000 00000000000000000000000000000000000000000

 00000000000000000000NOOOOOOOOOOOOOOOOOOOO

 0000000000000300000070000000000000000000

 00000000000000000000000000000000000000000
 000000000000000 تn00000000000000000000



 00000000000000000000000010000000000000000


 －＊＊＊＊
＊＊＊＊＊



 000000000000000000 HNMMNHFHनH0000000000000
00000000000000000000000000000000000000000
 000000000000000000 NNWWNNNHNHOOOOOOOOOOOO
$\qquad$
 0000000 0000000月HFNNENL HVMFInH000000000000

 ceveceer ＊O゙も゙ ＊＊＊

 00000000000000000000000000000000000000000

 00000000000000 MनHOONVNMMNHFHOOOOOOOOOOOOO
00000000000000000000000000000000000000000






됴
 00000000000000 H17000 H1H000 H-100000000000000

9
 00000000000 HनHनHH00HNHOOHनHनHन00000000000 00000000000000000000000000000000000000000





 - * * *

- ***
****
$\underset{\sim}{0}$




 - - ** *
*     *         * 
*     *         *             * 

 0000000000 HनHHHHH00HNH00H1HFHHH0000000000
00000000000000000000000000000000000000
 $\qquad$ * * * ***

 00000000000000000000000000000000000000000 - *****

*     *         *             *                 * ***
 000000000 नH川नHनHन000000नHनHनHत10000000000 00000000000000000000000000000000000000000
 OOHनNNNOVNOMMYNQONHMONV DLOUNUMHN VONNNHFOO
 ** *

 0cceccceoocooocceeccoococcocoococccoocec






-     *         * 

*****



 0000000000 HनHFHनHनNNWQMMM甘MNHनHOOOOOOOOOO
00000000000000000000000000000000000000000 *******


 00000000000000000000070000000000000000000



```
 *OONHNNHOOONMMNNNMNNMMDNODNMNWHFOOOOOOOOOO
```




```
 OOHनHMOHAGNNपNNMONNMNQVNMMNFONTHOMHFHOOOO
 M 00OOOOOOOONHMHNMUVNNNV MNLMNNHNHOOOOOOOOO


```

        0000000000000000000000HNHMN0000000000000000
    ******
    ```


2

\(E\)

\(\bumpeq\)

FMmめOルのトR

 FのOFनNNNON甘VサMनONनN

N
 ODDF

2

\(\approx\)

2

0

 - ©

\(\qquad\)

 4

范

5

in

＊

on

\＃न\＃Mbomanu
占

 ฟ

 F न゙

 を

 がMN゙

\section*{\％}

点

感

OHलM n

Table 9. 13
Errata Sheet for Table 9.8 (\(U\langle r, s\)) values for Data Set 2)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & Column 0 & Column 1 & Column 19 & Column 20 & & Row 20 & Row -20 \\
\hline 20 & -0011 & -0015 & -0014 & -0013 & 1 & -0016 & -0.011 \\
\hline 1.9 & -0006 & -0009 & -0010 & -0009 & 2 & -0012 & -0008 \\
\hline 18 & -0002 & -0001 & -0005 & -0004 & 3 & -0008: & -0005. \\
\hline 17 & 0003 & 0002 & -0002 & -0001 & 4 & -0010 & -0007 \\
\hline 1.6 & 0002 & 0005 & -0006 & -0004 & 5 & -0.012 & -0012 \\
\hline 15 & 0003 & -0004 & -0017 & -0016 & 6 & -0012 & -0013 \\
\hline 14 & 0002 & -0,006 & -0016 & -0017 & 7 & -0. 12 & -0010 \\
\hline 13 & 0009 & 0007 & -0002 & -0005 & 8 & -0014 & -0010 \\
\hline 12 & 0028 & 0028 & 0022 & 00.18 & 9 & -0014 & -0010 \\
\hline 11 & 0062 & 0058 & 0044 & 0041 & 10 & -0013 & -0010 \\
\hline 10 & 0081 & 0073 & 0058 & 0054 & 11 & -0013 & -0014 \\
\hline 9 & 0075 & 0070 & 0058 & 0056 & 12 & -0018 & -0016 \\
\hline 8 & 0074 & 0072 & 0057 & 0058 & 13 & -0017 & -0016 \\
\hline 7 & 0083 & 0083 & 0062 & 0064 & 14 & -0013 & -0015 \\
\hline 6 & 0122 & 0133 & 0073 & 0076 & 15 & -0014 & -0015 \\
\hline 5 & 0190 & 0231 & 0082 & 0084 & 16 & -0014 & -0016 \\
\hline 4 & 0204 & 0278 & 0070 & 00.70 & 17 & -0015 & -0016 \\
\hline 3 & 0131 & 0147 & 0021 & 0024 & 18 & -0015 & -0016 \\
\hline 2 & 0087 & 0032 & -0049 & -0049 & 19. & -0015 & -0016 \\
\hline 1 & 0143 & 0095 & -0081 & -0062 & & & \\
\hline 0 & 0202 & 0218 & -0052 & -0024 & & & \\
\hline -1 & 0143 & 0280 & -0064 & -0056 & & & \\
\hline -2 & 0087 & 0448 & -0048 & -0046 & & & \\
\hline -3 & 0131 & 0449 & 0022 & 0024 & & & \\
\hline -4 & 0204 & 0.280 & 0071 & 0071 & & & \\
\hline -5 & 0190 & 0202 & 0086 & 0088 & & & \\
\hline -6 & 0122 & 0136 & 0073 & 0077 & & & \\
\hline -7 & 0083 & 0093 & 0056 & 0060 & & & \\
\hline - 8 & 0074 & 0078 & 0052 & 0055 & & & \\
\hline -9 & 0075 & 0079 & 0055 & 0054 & & & \\
\hline -10 & 0081 & 0084 & 0052 & 0050 & & & \\
\hline -11 & 0062 & 0065 & 0041 & 0040 & & & \\
\hline \(-12\) & 0028 & 0029 & 0021 & 0021 & & & \\
\hline -13 & 0009 & 0007 & -0004 & -0004 & & & \\
\hline -14 & 0002 & 0004 & -0021 & -0019 & & & \\
\hline -15 & 0003 & 0.004 & -0020 & -0018 & & & \\
\hline -16 & 0002 & -0008 & -0010 & -0008 & & & \\
\hline \(-17\) & 0003 & -0001 & -0003 & -0004 & & & \\
\hline \(-18\) & -0002 & -0002 & -0004 & -0003 & & & \\
\hline -19 & -0006 & -0007 & -0010 & -0009 & & & \\
\hline -20 & -0011 & -0011 & -0016 & -0013 & & & \\
\hline
\end{tabular}

Table 9.14
Errata Sheet for Table 9.9
(\(U(r, s)\) values for Data Set 3)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & Column 0 & Column 1 & Column 19 & Column 20 & & Row 20 & Row-20 \\
\hline 20 & -0004 & -0004 & -0006 & -0006 & 1 & -0006 & -000\% \\
\hline 19 & -0002 & -0002 & -0003 & -0004 & 2 & -0.003 & -0001 \\
\hline 18 & -0006 & -0006 & -0008 & -0010 & 3 & 0002 & 0006 \\
\hline 17 & -0010 & -0009 & -0010 & -0011 & 4 & 0004 & 0006 \\
\hline 16 & -0013 & -0012 & -0011 & -0011 & 5 & 0000 & 0000 \\
\hline 15 & -0006 & -0007 & -0008 & -0007 & 6 & -0003 & .0003 \\
\hline 14 & 0000 & -0004 & -0007 & -0006 & 7 & -0005 & -0006 \\
\hline 13 & 0013 & 0010 & 0001 & 0001 & 8 & -0004 & -0005 \\
\hline 12 & 0026 & 0026 & 0016 & 0017 & 9 & -0004 & .0003 \\
\hline 11 & 0041 & 0033 & 0031 & 0029 & 10 & -0003 & -0003 \\
\hline 10 & 0076 & 0050 & 0346 & 0044 & 11 & -0003 & -0002 \\
\hline 9 & 0089 & 0075 & 0060 & 0059 & 12 & -0007 & -0004 \\
\hline 8 & 0094 & 0093 & 0071 & 0075 & 13 & -0010 & -0007 \\
\hline 7 & 0120 & 0100 & 0071 & 0073 & 14 & -0009 & -0008 \\
\hline 6 & 0152 & 0145 & 0077 & 0073 & 15 & -0006 & =0007 \\
\hline 5 & 0152 & 0204 & 0059 & 0057 & 16 & -0.007 & -0009 \\
\hline 4 & 0128 & 0183 & 0046 & 0046 & 17 & -0003 & \$0008 \\
\hline 3 & 0076 & 0097 & 0027 & 0026 & 18 & -0008 & -0007 \\
\hline 2 & 0165 & 0136 & 0028 & 0027 & 19 & -0006 & +0007 \\
\hline 1 & 0742 & 0386 & -0083 & -0084 & & & \\
\hline 0 & 1286 & 0872 & -0216 & -0230 & & & \\
\hline -1 & 0742 & 0651 & -0086 & -0094 & & & \\
\hline -2 & 0165 & 0337 & 0021 & 0020 & & & \\
\hline -3 & 0076 & 0361 & 0029 & 0028 & & & \\
\hline -4 & 0128 & 0266 & 0049 & 0049 & & & \\
\hline -5 & 0152 & 0163 & 0059 & 0058 & & & \\
\hline -6 & 0152 & 0152 & 0076 & 0073 & & & \\
\hline -7 & 0120 & 0125 & 0071 & 0074 & & & \\
\hline -8 & 0094 & 0096 & 0070 & 0074 & & & \\
\hline -9 & 0089 & 0087 & 0057 & 0056 & & & \\
\hline 10 & 0076 & 0075 & 0045 & 0042 & & & \\
\hline 11 & 0041 & 0049 & 0029 & 0026 & & & \\
\hline 12 & 0026 & 0030 & 0016 & 0014 & & & \\
\hline 13 & 0013 & 0018 & 0002 & 0002 & & & \\
\hline 14 & 0000 & 0001 & -0007 & -0007 & & & \\
\hline \(\cdot 15\) & -0006 & -0007 & -0011 & -0011 & & & \\
\hline 16 & -0013 & -0014 & -0013 & -0013 & & & \\
\hline . 17 & -0010 & -0007 & -0011 & -0011 & & & \\
\hline 18 & -0006 & -0005 & -0010 & -0011 & & & \\
\hline 19 & -0002 & -0002 & -0005 & -0005 & & & \\
\hline . 20 & -0004 & -0004 & -0007 127 & -0008 & & & \\
\hline
\end{tabular}

8

5

ی

 000

- ********** - Oñ NHOOHNMMNNHHNOOSOOHNTWOOOGDINMOMMMNNNODOHN **

- \#*****************

 000 *********************

 000

 000

 0000000000000000000 HHHF 000000000000000000

-
n

m

N

 0000000000000000 नHNनH00000000000000000000

 05000000000000000000000000000000000000000
 000 - 0 -0000000000000000000000000000000000000
 HNNHनOOOOOOOHNNHNTMMMNHOOOOOHNNNTITMMNNHO 000

 \(0-000000000000000000000000000000000000000\)

 000

 0000000000000 0000000000000000000000000000
 00000500000300000200000000000000000000000

 ******** * * * *
 HनOनHनNHNNHONMMNनODOOOनNNMNNMNNNHOOनHनOOO 000

 HOSOOO HNMMHOMMAMHOHNNOONMMVMNVNHHOOOHNNOO

 000 * * * * * * * * * * * *

00000000500050000000000000000000000000005

 An

 000

 00000000000000000 HNNNH0000000000000000000

 00000000000000000 HNN NHन

9

 \(\bigcirc 0000000000000000000000000000000090000\)

 I 00333300000033003030000000003000030350000

－000000NONONOHNOOMOHAMMMnOM00000N00000040 000而

\(=\)

 00
000000000000000000000000000000000000

 O．N020 00000000000000030000000000000000000000000
幺 3000830 N． ว）

 000

 00000000จ0000050000000000000030000000000000

 000

 \(0000000000000300707 N N 00 N 000000000008000080\)
0000000000000000000000000000000000

 000

n ว） วข000020ว00000ว005000000000000000000000000

 20000000000000N0

000
 000
 000
-
 000
000000000000000000000000000000000000000
 00000000000000000000000000000000ク00НNMNO 00000000000200000000000000000000000000000
 000000000000000000 Mn 00000000000000000000 000

 0000000000000000000000000000000000 H1H00000 000
 0.0. 00050000000000000000000000000000000000000

 ว००ว०००००००००००००००००००००००००००००००००००००

 000

 000
 - \(000000000000000000 H 74 \pi 0000070000000000000\) 000

 00

 000

- HoOOHrNNMMVN~NMM VNNDNMVOONUNNOVHNNMONOOM

 0000000000000000000000 HFO 000000000000000

 000
\(\qquad\)

 8 000 000

 000
 0000080000000000000000000000000000000000

 000
\(\leadsto\)
 000 000

4
N000

 อロロロロ \(000000000000100000000000000000000000 n 0000\)

－ 0080．

 000
 0HOOOOHHHOHHHNNMNTMMNHMMHMMMNNHHOHOOOOOO日

 000
 000000000000000000 HAHH000000000000000000 000
\(0000000000000000 \mathrm{mmH} m \mathrm{~m}=0000000000000000\)
000000000000000000000000000000000000000

 00 n
 000000000000000900NNNWNH1H000000000000000

\(n\)
 2000

 000
 000000000000000HMNHNNOHNMNO0000000000．000

 000000000000000000000 HtH 400000000000000000

 00002000090000900002m001000000000000000000

 000

 000

 000

 000

 00000500，0000000500000000000

 000

姩
－Hithrornnlligiormy

 O．00000000000000000 000

 00

 000

 000000000000000000 HNLn月グ100000000000000000
000

 0000000000000000 HनHNN00NVNन00000000000000
00

 000

 000

 000

－
 00000000020000000000000000000000000000000

\section*{ANALYSIS OF WAVE POLE DATA}

Determination of spectra and correction for wave pole motion
Three wave pole records were taken at the times shown in Part 7. The records had been read at an 0.2 second interval at Woods Hole for another purpose, and the numbers were made available to us by Harlow Farmer of Woods Hole. Every fourth point in the sequence was used in the determination of the spectrum, and the resule was that the first series had 1,758 points, the second had 1,686 points and the third had 1,764 points. Sixty points were estimated for each of the spectra. The formulas given by Tukey and described in Part 8 were used to compute the spectra. Since the points on the record were 0.8 seconds apart, and since 60 lags were used, the result was that the \(\Delta E\) values of the spectrum for frequencies between \(\mu=2 \pi\left(k-\frac{1}{2}\right) / 96\) and \(\mu=2 \pi\left(k+\frac{1}{2}\right) / 96\) would be estimated and plotted at the point \(\mu=2 \pi(k) / 96\) as \(k\) ranges from 0 to 60. Frequencies above \(2 \pi / 1.6\) would be aliased.

The values for the three spectra which were obtained were averaged after a study of the individual values showed no statistically significant variation at the 5 percent level from record to record。 Nevertheless, there may have been fluctuations from record to record due to variations in the wind field which would show up at a lower level of significance. The average was multiplied by the correction factor derived in Part 8 in order to obtain the true spectrum of the waves.

The result is shown in figure 10.1. The solid curve is the estimate of

the true wave spectrum. From the above lengths of record, one can compute that each spectral estimate has 174 degrees of freedom so that the dashed curves above and below the solid curve show the upper 95 percent and the lower 5 percent confidence bands for portions of the spectrum where it is not rapidly varying. The bounds are probably quite a bit broader at the point \(k=10\). Stated another way, the true spectrum would lie between the bounds shown for nine points out of ten, where it is not varying too rapidly, given that it could be determined from a much larger record under which conditions were stationary.

Comparison with the Neumann Spectrum
This spectrum was compared with the theoretical spectrum derived by Neumann [1954] in two different ways. The first was by plotting the theoretical Neumann spectrum against the observed spectrum, and the second was by computing the comcumulative spectrum.

The comparison of the spectrum was obtained by evaluating the Neumann spectrum with dimensions of \(\mathrm{ft}^{2}-\mathrm{sec}\) for a set of different wind speeds at the frequencies given by \(\mu=2 \pi k / 96\) and multiplying by \(2 \pi / 96\) with dimensions of \(\mathrm{sec}^{-1}\) to get an estimate of the \(\Delta E\) value with dimensions of \(f_{t}^{2}\) between \(\mu=2 \pi\left(k-\frac{1}{2}\right) / 96\) and \(\mu=2 \pi\left(k+\frac{1}{2}\right) / 96\). The quantities are thus directly comparable.

From Figure 10.1, one can see that the energy for frequencies less than \(2 \pi / 96\) is negligible and is probably due to such effects as a slow drift of the recording instrument and a tilting back and forth of the wave pole due to the varying pressures of the wind acting on it. The total \(E\) value for the spectrum (\(E\) equals twice the variance of the wave record, and it also equals the sum of the squares of the amplitudes of the spectral components) for frequencies equal to or greater than \(2 \pi 9 / 96\) is \(4.94 \mathrm{ft}^{2}\). When the upper and lower confidence bounds are taken into consideration, as will be explained shortly, one can conclude that the true value probably lies between \(5.28 \mathrm{ft}^{2}\) and \(4.59 \mathrm{ft}^{2}\). (See also Table 10.1.) Since
\[
\begin{equation*}
E=0.242\left(\frac{\mathrm{~V}}{10}\right)^{5} \tag{10.1}
\end{equation*}
\]
as given in Pierson, Neumann and James [1955], where \(E\) is in \(\mathrm{ft}^{2}\) and v is in knots, an \(E\) value of \(4.94 \mathrm{ft}^{2}\) implies a wind speed of 18.25 knots, and. \(E\) value of \(5.28 \mathrm{ft}^{2}\) implies a wind of about 18.5 knots, and an \(E\) value of \(4.59 \mathrm{ft}^{2}\) implies a wind speed of about 18.0 knots.

The Neumann spectra for 19.00. 18.5. 18.25, 18.00 and 17.5 knots were computed in order to cover the above range, and a little extra, and plotted against the observed spectrum. The results are
shown in figure 10.2 .
Figure 10.2 shows that no single theoretical curve for a particular wind velocity lies completely within the bounds of the 90 percent confidence bands. In general the values for the observed spectrum are too high for \(\mu=2 \pi(11) / 96\) and \(2 \pi(12) / 96\) and too low near \(\mu=2 \pi(15) / 96\).

However, it is also evident that at least one of the five points plotted for the five different theoretical spectra falls within the 90 percent confidence bands on the observed spectrum for all values of \(k\) between 10 and 30. A variation in wind velocity of \(\pm 5\) percent about a value of 18.25 knots is more than sufficient to explain the observed spectrum at each of these points.

At values above \(k=30\), the observed spectrum is a little above the theoretical spectrum. This may in part be due to a small amount of white noise.

An appeal to the meteorological turbulent variation of the wind speed and to the theory of wave generation and propagation must be made in order to clarify this point. The observations of the ATLANTIS as plotted in

figure 7.1 show that the wind speed have values of 22 knots, 17 nnots, 19 knots, 20 knots, 19 knots, 17 knots, 20 knots, and 17 knots between 0200 z and 1200 Z on the day of the observations. Thereafter the wind died down and fluctuated between 13 and 16 knots until after the observations were completed at 1800 Z .

The Neumann theory of wave generation requires a curatior oi 8.3 hours and a fetch of 55 NM in ouder to produce a fully developod sea at 18 knots, and a duration of 10 hours and a fetch of 7E NM to produce a fully developed sea at 20 knots. An average of the wind speeds from 0400 to 1230 , as read at half-hour intervals from the lines connecting the actual observaitons, gives an average wind speed of about 18.7 knots which compares favorakly with the values used above. The duration of 9 hours would be enough to p:oduce a fully developed sea at this wind speed, and it certainly seems plansisle that the fetch was at least 75 NM .

Over the ocean area upwind of the point of observation (a distance of about 250 NM) it can be stated that due to turbulent variations in the wind there should be areas of the dimensions of 50 to 75 NM where tinc mean wind speed would vary over a range from 17.5 to 19 knots as averaged over the nine or ten hours previous to the time that the winds died down at the

\section*{ATLANTIS station.}

Then, given a decrease in wind speed, each of the areas would gave to be treated according to the methods of Pierson, Neumann and James [1955] as if it were a Filter IV case and the spectrum at the point where the owervations were made reconstructed.

A frequency of \(2 \pi(10) / 96\) would still be present at tice point ol obsex゙ー vation if it had been produced by a 19 knot wind 150 NM upwind of the point of observation 6 hours prior to the time of observation. Were the fetch a little shorter, this would result in the low frequency cutoriand the sharp steep forward fact of the observed spectrum.

The spectrum which was observed could easily have resulted from a combination of these effects, although the sparsity of oceanograpine overvations makes it difficult to demonstrate the exact disposition of the generating area which would lead to the observed spectrum.

The figures given in Part 5 which describe the wind field were the operational maps for the project. Additional ship reports for the area were obtained by checking back through the data, and weather maps chowing these reports are plotted in figures 10.3 a through 10.3 h . The wind 20 : eported in knots is inserted in the feather of the arrow showing the wisd direction.

From a study of the winds upwind of the ATLANTIS, it is possille to conclude that the above argument is quite plausible and that therefore variations in wind speed from place to place explain the variation in the served spectrum.

> Comparison with the C.C.S. curves

If the sum of the \(\Delta E\) values for \(\mu=2 \pi k / 96\) to \(2 \pi: 60 / 96\) is computed, an estimate of the point on the co-cumulative spectrum curve for \(\mu=2 \pi\left(k-\frac{1}{2}\right) / 96\) is obtained. The estimates of the spectral curve cail bo

FIG.IO.3 WEATHER OBSERVATIONS FOR OCTOBER 24,1954

Fig \(10.3-F\)

25 OGT 1954 1830 Z

treated as if every other one was independent, and since they are distributed according to Chi Square with \(f\) degrees of freedom, the point on the CCS curve is approximately distributed according to Chi Square with
(10.2)
\[
\left.N_{k}=\frac{f}{2}\left[\frac{\left(\sum_{n=k}^{60} \Delta E_{n}\right)^{2}}{\left(\sum_{n=k}^{60} \Delta E_{n}^{2}\right.}\right)\right]
\]
degrees of freedom (see Pierson [1954]). Then the confidence bands according to Tukey for large \(N\) are approximately given by multiplying the point on the CCS curve by
\[
10^{+1 / \sqrt{\mathrm{N}}} \text { and } 10^{-1 / \sqrt{\mathrm{N}}}
\]

The observed CCS curve is shown in figure 10.4 as plotted on the theoretical family of curves given by Pierson, Neumann and James [1955]. The agreement for some CCS curve slightly in excess of 18 knots is tuite striking although the agreement is not perfect.

The CCS curve is too high at the frequency side of the scale. This may in part be due to the summation of white noise errors at high frequencies. Also if the pole surges back and forth in the long period waves, it may encounter shorter period chop while moving back in a trough in such a way as to falsely assign their height contribution to a higher frequency.

Fig 10.4 OBSERVED C.C.S. CURVE

\section*{Tabulation of Data}

The spectral data on which the above figures are based is given in Table 10.1. The frequency is determined by the formula \(\mu=2 \pi k / 96\), and the the entries are given in terms of \(k\). The first column gives the period (\(96 / \mathrm{k}\)) which corresponds to the appropriate frequency. The next three columns give the three spectra actually obtained in terms of the contribution to the total variance in (ft) \({ }^{2}\) of the record made by frequencies within the band. (The values should be doubled. to get \(\Delta E\) values.) The fifth column is the average of the three observed spectra. The sixth column gives the function \(\phi(\mu)\) as derived in Part 8, and the seventh gives the function (designated by \(H(\mu)\) by which the observed spectrum must be multiplied to obtain the corrected spectrum.

The next column gives the \(\Delta E\) values in \((f t)^{2}\) which are the estimates of the area under the spectrum from \(\mu=2 \pi\left(k-\frac{1}{2}\right) / 96\) to \(\mu=2 \pi\left(k+\frac{1}{2}\right) / 96\). The column fourth from the right gives the sum of the \(\Delta E\) values in the previous column from the given value of \(k\) to 60 and this estimates the point on the CCS curve given by \(\mu=2 \pi\left(k-\frac{1}{2}\right) / 96\). The column third from the right gives the value of \(2 \mathrm{~N}_{\mathrm{k}}\) (eqn. 10.2) for that point on the CCS curve just obtained. The last two columns give the upper 95 percent and the lower 5 percent confidence bounds on the \(\Delta E\) values.

The original series of points from which the spectra were computed are not reproduced in this report. They can be made available on request to the Department of Meteorology and Oceanography at N. Y. U.

Table 10.1. Spectram values from the wave pole data.

THE STEREO PAIRS: AND THE INTERPRETATION AND ANALYSIS OF THE DIRECTIONAL SPECTRUM IN TERMS OF WAVE THEORY

\section*{Introduction}

Of the one hundred stereospairs of photographs taken by the two aircraft, three were selected by the Photogrammetry Division for spot height readings on the basis of picture quality and lack of cloud shadow areas. After leveling, Data Set 1 was found to have a serious barrel distortion so it had to be abandoned, The original numerical analysis of the two remaining sets and the numerical analysis of the reduced data were described in Part 9. In this part, the diffis culties which were encountered in analyzing the original results, the way the decision was reached to use a smaller area of points \({ }_{p}\) and the results of the analysis of the modified data will be described,

\section*{The stereo pairs}

The two sets of stereo paịs chosen for analysis are shown in figures \(11.1(A), 11.1(B), 11.2(A)\), and \(11.2(B)\) where the lead plane picture is the first one of the pair. In order to be sure that the photographs chosen were not chosen, say, for high waves in the vicinity of the ATLANTIS, 10 photographs as taken from one of the planes were picked at random from the 100 photographs available and the wave patterns in the vicinity of the ATLANTIS were compared qualitatively with each other and the two photographs chosen for analy. sis. There was no apparent difference in wave heights or wave patterns, so that it seemed safe to assume that the two pairs chosen for numerical analysis were representative within usual sampling variation of the sea state.

\title{
FIG. II.I \\ STEREO PHOTOGRAPH FOR DATA SET No 2 \\ (LEAD PLANE.)
}

FIG. II.I

\section*{STEREO PHOTOGRAPH FOR DATA SET No 2 (FOLLOWING PLANE.)}

FIG. 11.2
STEREO PHOTOGRAPH FOR DATA SET No 3 (LEAD PLANE.)

FIG. 11.2
STEREO PHOTOGRAPH FOR DATA SET No 3 (FOLLOWING PLANE)

It should be noted that the exact pattern of the waves shown in figures 11.1 and 11.2 will never occur again and never occurred previous to the time of the photographs. However, patterns with the same statistical properties should occur every time the gross meteorological conditions are the same.

\section*{The leveled data}

The spot height data after leveling according to the procedure described previously was plotted on a grid 90 points high by 60 points wide. The values as given in mm (x 10) were then contoured. The contouring was done by interpolating to the contour value along the lines joining the points where the data were plotted and connecting the interpolated points by straight line segments. Figure 11.3 illustrates the procedure employed. The contours can be roughly interpreted in feet. To convert to feet exactly the values shown should be divided by 1.016

The contouring procedure illustrates the effect of the spot height readings. Any irregularities in the sea surface of shorter wave length than 60 feet are essentially undetectable. The exact position of the height contours cannot be determined, but if they could, they would wiggle all around about the straight line segments shown, break off into little closed contour patterns, and show a fine structure all the way down to the capillary level.

The contours for Data Set 2 are shown in figure 11.4. The contours for
Data Set 3 are shown in figure 11.5
The spot height readings are inaccurate by the very nature of the stereo process just as any system of obtaining data has inaccuracies in it. The contoured values and the values tabulated in the tables given before should be

FIGURE 11.3 EXAMPLE OF CONTOURING PROCEDURE

considered to be of the form
\[
\begin{equation*}
\eta_{j k}^{*}=\eta_{j k(\text { true })}+\epsilon_{j k} \tag{11.1}
\end{equation*}
\]
where \(\quad \eta_{j k}^{*}\) is the tabulated value; \(\eta_{j k(t r u e)}\) is the true value and \(\epsilon_{j k}\) is a random error picked according to some probability scheme to be discussed in detail later.

The values of \(\epsilon j k\) will turn out to be appreciable, and they have the effect of making the pattern shown fuzzy in detail. Due to the size of \(\epsilon_{j k}\), statistical evaluations of the patterns shown should be interpreted with considerable caution.

There are other errors of a more serious nature in the data as shown in figures 11.4 and 11.5 . These errors will be analyzed in the following paragraphs of this part of the report.

\section*{The covariance surfaces}

The covariances were computed according to the equations given in Part 8 and plotted on a square grid of points 41 points on a side. The covariance surface for Data Set 2 is shown in figure 11.6, the surface for Data Set 3 is shown in figure 11.7, and the average of the two is shown in figure 11.8. The units of the contours are \((\mathrm{mm})^{2} \times 100\). Shaded areas are negative. The figures show an estimate of the correlation (when each value is divided by the value at the center) of the sea surface with itself over distances of the order of 600 feet in any direction. Roughly the correlation is less than \(\pm 0.10\) in any direction at a distance of 600 feet. Again the effects of errors in the data have distorted the pattern. The covariances would have the dimensions of \((f t)^{2}\), if each number shown were divided by \((1.016)^{2}\).

\section*{The spectral estimates}

The spectral estimates \(U(r, s)\) are shown in figures 11.9, 11.10, and 11.11. Figure 11.11 is the average of figures 11.9 and 11.10 . The values plotted at the grid intersections should be divided by 1000 to put them in units of \((\mathrm{ft})^{2}\). The contours are correctly labeled in units of \((\mathrm{ft})^{2}\). As described in Part 8, the spectra have the property that the same value is obtained at \(U(-r,-s)\) as was obtained at \(U(r, s)\). If these figures are cut in half by a line through the origin, the sum of the \(U\langle r, s)\) values on one side of the line will equal the variance of the spot height data.

The contours do not give a true representation of the shape of the spectrum. As drawn, they represent an estimate of the volume under the true spectrum when integrated over a square of the size shown in the figure and centered at the contour position. Thus steep slopes in the spectral surface tend to be smoothed out.

These spectra due to the errors hinted at above also have errors in them. The region of analysis should be exactly square. The area shown is rectangular and in actuality the area analyzed should be as high as it is wide. Seven rows of numbers have been omitted from the top and bottom of the figures. At the top of the figure above the dash dot line and at the bottom of the figure below the dash dot line the omitted numbers were all slightly negative. Near the bottom and top edges they were of the order of \(\$ 002(\mathrm{ft})^{2}\). Moreover, near the left and right edges along the \(r\) axis of the figures there are considerable areas of negative values with some values of \(-0.024(f t)^{2}\).

Although it is not impossible to obtain a negative value in a power spectrum computed according to the techniques described, it is highly improbable that such consistent patterns of negative numbers should occur. Given that the computations are correct, one possible explanation of what occurred is that the original data have been distorted by some unknown and undetected source of error to such an extent that they no longer represent a sample from a stationary Gaussian process in two variables. (Another very disturbing possible conclusion is that the ocean waves cannot be satisfactorily approximated by a stationary Gaussian process in three variables.)

Moreover since the sum of all the values of \(U(r, s)\) must add up to the variance of the original data (in these figures), the negative values have the effect of adding erroneous positive values to the already positive estimates in the other parts of the figure.

A study of the figures and the data shows that the gross features of the analysis appear to be correct but that there seems to be a background distortion in the pattern which is difficult to define precisely.

\section*{Analysis of original results}

Various tests of the results were made at this point, and it soon became evident that there were serious discrepancies between the wave pole frequency spectrum and the average of the two directional spectra. The average of the sums of the values shown in the directional spectra (which in turn equals \(\left.\left[Q(00)_{2}+Q(00)_{3}\right] /\left[2(1.016)^{2}\right]\right)\) should give a number which when corrected for possible sources of error should be nearly the same as one half the \(E\) value
for the wave pole spectrum.
There were two possible sources of error considered in the stereo data. Even after their removal, there was still a considerable discrepancy.

The first possible source of error was what is called white noise reading error by Tukey [1949]* for the one dimensional case. It can be easily generalized to the two dimensional case. Let
\[
\begin{equation*}
\eta_{j k}=\eta_{j k(\text { true })}+\epsilon_{j}^{*}+\epsilon_{k}^{*}+\epsilon_{j k}^{*} \tag{11.2}
\end{equation*}
\]
where \(\eta_{j k}\) is the actual reading, \(\eta_{j k(t r u e)}\) is the reading that would be obtained from the stereo data with the stereo planigraph if there were absolutely no sources of photographic, machine or human error, and \(\epsilon_{j}^{*}, \epsilon_{k}{ }^{*}\) and \(\epsilon_{j k}^{*}\) are random errors.

More precisely, let \(\epsilon_{j}{ }^{*}\) be numbers picked at random from a normal population with zero mean with an unknown variance and added to every value of a column of \(\eta_{j k}\) (true) ; let \(\epsilon_{k}{ }_{k}^{*}\) be similar number with perhaps a different variance added to every row, and let \(\epsilon_{j k}^{*}\) be numbers picked at random from still a third different normal population with a zero mean and a different variance and added to the appropriate value of \(\eta_{j k(t r u e)}+\epsilon_{j}^{*}=+\epsilon_{k}^{*}\). The errors just described will be referred to as column noise, row noise, and white noise, respectively.

\footnotetext{
*
For a more recent and more readily available reference, see Press and Tukey [1957].
}

The effect of the random errors on \(Q_{p q}\) can then be determined under the assumption that the different types of errors are small and independent.
\[
\begin{equation*}
Q_{p q}=Q_{p q(t r u e)}+S_{o q}+S_{p o}+S_{o o} \tag{11.3}
\end{equation*}
\]
where \(S_{o q}=E\left(\epsilon_{j}^{*}\right)^{2}\) if \(p=0\) for any \(q\) and is zero if \(p \neq 0\);
\[
\begin{aligned}
& S_{p o}=E\left(\epsilon_{k}^{*}\right)^{2} \text { if } q=0 \text { for any } p \text { and is zero if } q \neq 0 \text {; } \\
& S_{o o}=E\left(\epsilon_{j k}^{*}\right)^{2} \text { if } p=0 \text { and } q=0 \text { and is zero if } p \neq 0 \text { and } q \neq 0
\end{aligned}
\]

The effect of a random error along a column of the data is thus to cause a constant error to be added to every value on the vertical axis of the coordinate system of the covariance surface; an error along a row adds a constant error to each value on the horizontal axis; and a random error over the whole plane is concentrated as a spike at the origin.

The values of \(L(r, s)\) can then be found from the values of \(Q(p q)\)
\[
\begin{equation*}
L(r, s)=L(r, s)(\text { true })+W_{o s}+W_{r o}+W_{r s} \tag{11.4}
\end{equation*}
\]
where \(W_{\mathrm{Os}}=\frac{1}{20} E\left(\epsilon_{j}^{*}\right)^{2}\) if \(r=0\) for any \(s\) and zero if \(r \neq 0\);
\[
W_{r o}=\frac{1}{20} E\left(\epsilon_{k}^{* *}\right)^{2} \text { if } s=0 \text { for any } r \text { and zero if } s \neq 0 ;
\]
and \(W_{r s}=\frac{1}{800} E\left(\epsilon_{j k}^{*}\right)^{2}\), for every value of \(r\) and \(s\).
Thus, random errors along columns in the original data show up as a constant error along the horizontal coordinate axis in the \(L(x, s)\) plane; errors along rows show up as a constant error along the vertical axis, and random errors show up as a constant error at each point in the spectral plane. Of course, since the data are really a finite sample, there will be fluctum ations from point to point in the \(L(x, s)\) plane.

Finally the computation of \(U(r, s)\) smooths the values of \(W_{o s}\) and \(W_{r o}\) into three rows or columns and assigns weights of 0.54 to the values given along to the axes and 0.23 to the row or column on either side of the axis. Random fluctuations in \(W_{r s}\) are smoothed out so that \(U(r, s)\) is more nearly a constant at every point and equal to \(1 / 800\) of the white noise variance.

The other source of error lies in the possibility of background curvature of the plane of the stereo data. It will be recalled that one set of data was so severely distorted by background curvature that it had to be abandoned. Although no curvature is detectable in figures 11.4 and 11.5 , a very slight amount of curvature would produce high values for the spectral estimates near the origin.

The effect of pure white noise can be estimated from the information given in Part 7. The accuracy of the spot height readings is considered to be \(\pm 0.5\) feet. Under the assumption that the errors are normally distributed this can be interpreted to mean that
\[
\begin{equation*}
\mathrm{P}\left(-0.5<\mathrm{H}_{\mathrm{T}}-\mathrm{H}_{0}<0.5\right)=0.5 \tag{11.5}
\end{equation*}
\]
which can be read that the probability is one half that the difference between the true height and the observed height lies between -0.5 and +0.5 feet.

This implies that
and that
\[
\begin{equation*}
\frac{1}{\sqrt{2} \pi \sigma} \int_{0}^{0.5} e^{-x^{2} / 2 \sigma^{2}} d x=0.25 \tag{11.6}
\end{equation*}
\]
\[
\begin{gather*}
\sigma^{2}=0.54 \text { (approximately) } \tag{I1.7}\\
168
\end{gather*}
\]

Thus the total variance of the white noise reading error is approximately \(0.54(\mathrm{ft})^{2}\), and the quantity \(0.54 / 800(\mathrm{ft})^{2}\) should be subtracted from each of the tabulated values of \(U(r, s)\) to correct for this effect.

Moreover the spectrum for data Set 3 at the origin definitely shows the effects of curvature. The average spectrum also shows an effect of curvature in the peak at the origin of the spectrum and in the distortion of the contours ne ar the origin. The magnitude of the effect can be estimated from the spectrum

There is a hint of column noise in both of the covariance surfaces and in the average covariance surface. There is a fairly strong ridge along the vertical axis of all three figures. However, these ridges do not produce the predicted effect of a ridge along the horizontal axis of the spectra. Thus if the column noise is present it is masked by some other more serious source of error.

White noise and curvature error both add positive quantities to the spectrum when they occur. Corrections to the total variance of the original data can be calculated from the above information and the results are tabulated in Table 11.1.

As seen from Table 11.1 the corrected variance of the combined data is \(3.80(f t)^{2}\). From the study of the wave pole spectrum, assuming correct calibration, confidence bounds on the \(E\) value were set and it can therefore be calculated (by taking half the value) that the range from \(2.23(f t)^{2}\) to \(2.64(f t)^{2}\) would enclose the true value of the variance of the wave pole data nine times out of ten. The true variances of the wave pole data and the stereo data should
Table 11.1. Corrections to variances of the original stereo data.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & Original value & White noise & Curvature & Lower 5 percent confidence value on corrected variance & Corrected for white noise and curvature & \begin{tabular}{l}
Upper \\
95 percent confidence value on corrected variance
\end{tabular} \\
\hline \(Q(00){ }_{2}\left[(\mathrm{~mm})^{2}(\mathrm{x} \mathrm{l} 100)\right]\) & 4.76 & 0.56 & 0.00 & & & \\
\hline \((\mathrm{ft})^{2}\) & 4.61 & 0.54 & 0.00 & 3.62 & 4.07 & 4.55 \\
\hline \(Q(00)_{3}\left[(\mathrm{~mm})^{2}(\mathrm{x} \mathrm{l} 100)\right]\) & 4. 44 & 0.56 & 0.26 & & & \\
\hline \((\mathrm{ft})^{2}\) & 4. 30 & 0.54 & 0.25 & 3.12 & 3.51 & 3.93 \\
\hline \(\bar{Q}(00)\left[(\mathrm{mm})^{2}(\mathrm{x} \mathrm{l00)}]\right.\) & 4.60 & 0.56 & 0.13 & & & \\
\hline \((\mathrm{ft})^{2}\) & 4.46 & 0.54 & 0.12 & 3.48 & 3.80 & 4.13 \\
\hline
\end{tabular}
be equal, and yet the estimates obtained from the samples are not. The variance of the stereo data is 1.54 times the estimated variance of the wave pole data and 1.48 times the upper confidence bound of the estimated variance of the wave pole data.

This result is not necessarily highly improbable. If the number of effective degrees of freedom of the 10,800 points in the stereo data is very low due to their correlation with each other, the result would be possible. Thus it is necessary to obtain an estimate of the degrees of freedom of the estimated variances of the ster eo data.

This can be done by applying a formula similar to the one used on the wave pole spectrum in Part 10 except that now every fourth point is truly independent and there are 16 degrees of freedom per point for each of the original spectra and 32 degrees of freedom per point for the average spectrum.

The total variance was found to have at least 800 degrees of freedom by means of a computation using the average spectrum and grouping data so as always to decrease the computed degrees of freedom. The variances of the individual data sets as a consequence have about 400 degrees of freedom. Additional entries in Table 11.1 give the upper 95 percent and lower 5 percent confidence bounds on the estimates of the variance based on the above degrees of freedom.

The lower 5 percent confidence bounds for the stereo data are greater than the upper 95 percent confidence bounds for the wave pole data. The hypothesis that the wave pole data and the stereo data are samples (free from any sources of additional error) from the population with the same variance must
therefore be rejected at least at the 5 percent significance levels and of course the probability that either variance would be obtained, given that the other is correct, is much less than 0.05 .

An application of the \(F\) test to the ratio of the two variances, that is, 1.54, with 1000 degrees of freedom for the wave pole data and 500 degrees of freedom for the stereo data, yields a rejection of the hypothesis that the variances are from the same population at the 1 percent significance level.

The directional spectra given in figures \(11,9,11.10\), and 11.11 therefore do not have gross properties which agree with independently determined data from the wave pole. If the wave pole data are assumed ta be correct since in the original planning the wave pole data were thought of as a primary source of calibration, it must then be concluded that the directional spectra are in error, Moreover, the directional spectra have negative values which is a definite indication of something wrong.

Of course, there would be one way to force the two spectra to agree. It would be to assume that the estimate of the white noise error was too low approximately by a factor of 4 . It would then be necessary to subtract about \(0.0025(f t)^{2}\) from each spectra estimate. The effect would be to increase the size of the negative areas. Such a solution would only serve to increase the error in the result due to the negative areas of the spectrum.

Various attempts were made to correct the results by making changes in the covariance surface and calculating their effect on the spectrum and making changes in the spectrum and calculating their effect on the covariance surface.

For example, quasi column noise whose effect would disappear at plus or minus ten lags in the vertical direction on the covariance surface could produce the negative areas in the spectra found on the horizontal axis,

However the attempts were in general unsatisfactory as the different types of corrections propagated very oddly from one system to another. No notable success was achieved by these attempts.

\section*{Detailed analysis of leveled spot height data}

The analysis of the data had reached an impasse. After a number of conferences with Leo Tick and Prof. Max Woodbury, Prof. Woodbury suggested that the original data be studied to see if they could be corrected. Such a procedure would involve recomputation of the results, but the use of the Logistics computer at George Washington University was assured, and the problem was deemed so important that the added effort to obtain a satisfactory solution should be made.

The ridge along the vertical axes of the covariance surfaces suggested some source of error in the vertical direction of the stereo data. Figures 11.4 and 11.5 and the leveled spot height values as tabulated were then studied very carefully to see if any discrepancies could be found.

In fig. 11v4, it had been noted that the diagonally oriented wave crestwave trough pattern on the left side and in the center of the figure changed to a vertical orientation on the right hand edge of the pattern. Very strong vertically oriented crests are especially pronounced in the lower right corner. This variation had been thought to be a possible perfectly natural variation in the data, but now this assumption was checked.

The ten columns of numbers on the far right of the figure and the twenty rows of numbers on the bottom of the figure were set apart from the main part of the figure, because of this tendency toward a vertical distortion, and divided into three groups with the rest of the data comprising a fourth group.

The breakdown was as follows:

The variances of the sub-areas were computed, and probability histograms were drawn. The variances of areas \(B, C\) and \(D\) were all greater than the variance of \(A\), and since it was known that the total variance of Data Set 2 had about 400 degrees of freedom, these 400 degrees of freedom were apportioned in the ratio of the total number of points in each area. It was then possible to apply the \(F\) test to the ratios of the variances. Table 11.2 shows the results which were obtained.
Table 11.2. Analysis of Sub Areas in Data Set 2.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Area & \(\Sigma N^{2}\) & No points & \[
\begin{aligned}
& \text { Variance } \\
& (\mathrm{mm})^{2} \\
& \times 100
\end{aligned}
\] & Ratio to A & \[
\mathrm{d} \text { of } f
\] & \(d\) of \(f\) used & \multicolumn{2}{|l|}{\(F\) test significance level
\[
5 \% \quad 1 \%
\]} & \multicolumn{2}{|l|}{Confidence factors
\[
5 \% \quad 95 \%
\]} & \multicolumn{2}{|l|}{Confidence bounds Lower Upper} \\
\hline A & 14,913 & 3500 & 4.26 & & 260 & & & & 0.865 & 1,155 & 3.68 & 4.92 \\
\hline B & 3,639 & 700 & 5.20 & 1.22 & 52 & \[
\frac{50}{200}
\] & 1.48 & 1.76 & 0.725 & 1.38 & 3.77 & 7.18 \\
\hline C & 1,982 & 200 & 9.92 & 2.30 & 15 & \(\frac{15}{200}\) & 2.10 & 2.92 & 0.484 & 1.67 & 4.80 & 16.55 \\
\hline D & 5,160 & 1000 & 5.16 & 1.21 & 73 & \[
\frac{70}{200}
\] & 1.40 & 1.62 & 0.762 & 1.31 & 3.93 & 6.76 \\
\hline Total & 25.704 & 5400 & 4.76 & & 400 & & & .. & & & & \\
\hline \(B+C\) & 5,621 & 900 & 6.26 & 1.47 & 67 & \(\frac{65}{200}\) & 1.42 & 1.64 & 0.755 & 1.32 & 4.73 & 8.25 \\
\hline D+C & 7,142 & 1200 & 5.95 & 1.39 & 88 & \(\frac{80}{200}\) & 1.38 & 1.57 & 0.782 & 1.28 & 4.65 & 7.62 \\
\hline \(B+C+D\) & 10,781 & 1900 & 5.67 & 1.33 & 140 & \(\frac{125}{200}\) & 1.31 & 1.46 & 0.825 & 1.21 & 4.68 & 6.85 \\
\hline
\end{tabular}

The variance of area A was \(0.50\left[(\mathrm{~mm})^{2} \times 100\right]\) less than the variance of the total area. The variance of area \(C\) was over twice as large as that of area A. The degrees of freedom actually used in the \(F\) test were less than the computed degrees of freedom, and yet at the 5 percent significance level the hypothesis that the sample of points from area \(C\) is from the same population as the sample of points from area A must be rejected.

The grid of points for the numerical analysis must be rectangular. Areas \(B\) and \(C, D\) and \(C\); and \(B, C\), and \(D\) were combined, and their combined variances were tested against area \(A\). In all combinations, the areas could be rejected at the 5 percent level. Moreover the lower confidence bounds on the variances of area \(C\), areas \(B+C, C+D\), and \(B+C+D\) were all greater than the upper confidence bound on area \(A\).

Figure 11.12 shows a comparison of the probability histograms (number of points in class interval divided by total number of points) from areas \(B\), \(C\), and \(D\), with the probability histogram from area A. Area \(C\) is quite a bit different from area A. Note also that the histogram for area \(A\) appears to be normal.

The spot heights for Data Set 3 were analyzed in a similar way. A study of the contours suggested that a tendency toward vertical instead of diagonal crest orientation existed on both edges of the area of analysis and the points in Data Set 3 were broken up into five areas as indicated below.

EMPERICAL PROBABILITY HISTOGRAMS FOR AREAS B,C, ANDD FOR DATA SET 2 COMPARED
WITH AREA A,TTO CONVERT TO FEET DIVIDE HORIZONTAL SCALE BY 1.OIG.)
\begin{tabular}{|c|c|c|c|c|}
\hline 89,0 & 89,5 ... 89,9 & 89,10... 89,49 & 89,50 . 89,54 & 89,55...89,59 \\
\hline & & & & \\
\hline AREA & AREA & AREA & AREA & AREA \\
\hline A & B & C & D & E \\
\hline 450 & 450 & 3600 & 450 & 450 \\
\hline points & points & points & points & points \\
\hline \(0,0,0,1, \ldots 0,4\) & 0,5, ... 0,9 & 0,10 ... 0,49 & 0,50... 0,54 & 0,55. 0,59 \\
\hline
\end{tabular}

The results of the analysis are shown in Table 11.3. Area C in this set of data had the smallest variance (a reduction of about \(0.24\left[(\mathrm{~mm})^{2}\right.\) (xl00)]) over the various points. However there is no significant discrepancy with any combination of areas at the 5 percent level.

The above results show something definitely wrong with Data Set 2 and suggest something wrong in Data. Set 3, especially since some spectral estimates are negative in Set 3. It was therefore decided to do the computations over again on a reduced portion of the data. The computations were performed on area A (with 3500 points) in Data Set 2, and on area C (with 3600 points) in Data Set 3. Some badly needed degrees of freedom were sacrificed by this procedure, but the results were quite encouraging. For example, the covariances actually became negative on the vertical axis of the covariance surface of Data Set 2, and there were no negative values in the smoothed spectral estimates for either data set. A discussion of the corrected computations will follow.
Table 11.3. Analysis of Sub Areas in Data Set 3.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Area & No points & \(\Sigma N^{2}\) & Variance & \begin{tabular}{l}
Ratio \\
to C
\end{tabular} & \(d\) of \(f\) & \begin{tabular}{l}
d of \(f\) \\
used
\end{tabular} & \(F\) tes signi 5 le & \begin{tabular}{l}
cance \\
el \\
1
\end{tabular} & Confid fact 5 & \begin{tabular}{l}
dence \\
tors \\
95
\end{tabular} & \begin{tabular}{l}
Confide \\
bounds \\
Lower
\end{tabular} & \begin{tabular}{l}
nce \\
Upper
\end{tabular} \\
\hline A & 450 & 2148 & 4.77 & 1.12 & 33 & \(\frac{32}{200}\) & 1,64 & 2.02 & 0.62 & 1.45 & 2.94 & 6.80 \\
\hline B & 450 & 2,408 & 5.35 & 1.27 & 33 & \(\frac{32}{200}\) & 1.64 & 2.02 & 0.62 & 1.45 & 3.30 & 7.75 \\
\hline C & 3600 & 15,124 & 4.20 & & 268 & & & & 0.87 & 1.15 & 3.66 & 4.83 \\
\hline D & 450 & 2,224 & 4.94 & 1.17 & 33 & \(\frac{32}{200}\) & 1.64 & 2.02 & 0.62 & 1.45 & 3.04 & 7.15 \\
\hline E & 450 & 2,072 & 4.60 & 1.09 & 33 & \[
\frac{32}{200}
\] & 1.64 & 2.02 & 0.62 & 1.45 & 2.84 & 6.66 \\
\hline Total & 5400 & 23,976 & & & & & & & & & & \\
\hline \(A+B\) & 900 & 4,556 & 5.06 & 1.20 & 66 & \(\frac{65}{200}\) & 1.42 & 1.64 & 0.75 & 1.33 & 3.80 & 6.73 \\
\hline D+E & 900 & 4,296 & 4.77 & 1.13 & 66 & \(\frac{65}{200}\) & 1.42 & 1.64 & 0.75 & 1.33 & 3.57 & 6.35 \\
\hline \(\mathrm{A}+\mathrm{B}+\mathrm{D}\) & 1800 & 8,852 & 4.92 & 1.17 & 132 & \(\frac{125}{200}\) & 1.31 & 1.46 & 1.82 & 1.23 & 3.68 & 6.05 \\
\hline
\end{tabular}

Before the analysis of the corrected results is made, a discussion of what went wrong with the original results is needed. The basic source of the difficulty can be traced back to a statement made in Part 6. The photographs were taken with reconnaissance type film instead of the more dimensionally stable topographic base film. The film magazines used in the cameras were labeled to contain the correct film but they had actually been loaded with the wrong film. Such a mistake would not be detectable until after the film had been developed. This dimensionally unstable film then underwent differential changes in areas (that is, small areas of the film shrank by greater amounts than others) which introduced a complicated error pattern in the spot height data. Fortunately most of the error (but possibly not all) appears to have been concentrated on the edges of the areas analyzed.

The question might be asked as to why the errors in the original leveled spot heights were not detected prior to making the laborious computations of the covariances and spectra given above. A close comparison figures 11. 1 and 11.3 suggests, since hindsight is always better than foresight, that the error in the spot heights might have been detectable simply on a comparison basis. To be really sure, however, computations similar to the ones given above would have had to have been made, and they could not have been made without a knowledge of the effective number of degrees of freedom of the subsamples. This effective number of degrees of freedom was estimated from the incorrect spectra. The use of theories valid for correct data on incorrect data to show that the data are incorrect is quite similar to pulling
oneself up by one＇s own bootstraps（with perhaps the bootstraps being broken in this case）．Thus all of the above analyses and comments serve only to sug－ gest the nature and source of the error and a possible way to remove it．What was done did remove the error，so in this sense the analysis of the error was correct．

All of the numerical results obtained in the original analyses of the full sets of stereo spot heights were kept in the tables along with the preceding figures in order that this report would be complete．They represent a wealth of data which can be used for additional analysis and study，This report is unique in that it is a study of a random process in a plane，and the complete set of original data and computations should be of value to geophysicists， statisticians and physicists。

\section*{\(\underline{\text { Re－analysis of reduced areas }}\)}

As stated above both spectral computations were carried out over again for reduced sets of spot height data．For Data Set 2 the area was area A as defined before as bounded on the four corners by the points 20,\(0 ; 20,49 ; 89,0\) ； and 89,49 ．In what follows these 3500 numbers will be called Data Set 2 A 。 Similarly for Data Set 3，area C（consisting of 3600 points）bounded by 0,10 ； 0,\(49 ; 89,10\) ；and 89,49 will be called Data Set 3 C 。

\section*{The covariance surtaces for the reduced data}

The covariance surfaces for Data Sets 2 A and 3 C and the average of the values for the two data sets are shown in figures \(11.13,11.14\) ，and 11.15 ． The patterns are bettex defined than they were for the surfaces given previously

183

in figures 11.6, 11.7, and 11.8. The negative areas are better defined. The ridge along the vertical axis is weakened although there is still a trace of column noise. For Data Set 2A, the covariance surface actually becomes slightly negative on the vertical axis. The covariance surfaces still need some minor corrections, but they will not be too difficult to make.

\section*{The spectra for the reduced data sets}

The spectra for Data Sets 2A and 3C (in terms of variance) and the sum of the values for the two (in terms of \(E\) value) are shown in figures 11.16, 11.17, and 11.18. There are no negative values! The numbers at the grid intersections should be divided by \(10^{4}\) to put them in units of (ft\()^{2}\). The contours are labeled in units of \((\mathrm{ft})^{2}\), and as mentioned before they should be interpreted as the integral over the spectrum on a square of the same size as the grid of the plotted numbers.

These spectra definitely show the effects of column noise. There is a strong ridge along the horizontal axis of the spectral coordinate system. The spectrum for Data Set 3C shows a decrease in the effect of curvature in producing high values at the origin.

In general the above two spectra appear consistent with each other. The 0.0100 and 0.0050 contours are in roughly the same positions on the two spectra. The peak in the spectrum for Data Set 2 A has a value of \(0.2052(\mathrm{ft})^{2}\) whereas the corresponding value in the spectrum for Data Set \(3 C\) is 0.079 .7 . The ratio of 0.2052 to 0.0797 is equal to 2.57 .

For Data Set 2A, the number of degrees of freedom is given by equation (11.8).

FIGURE II. 16 VARIANCE SPECTRUM FOR DATA SET \(2 A\)

Figure II.17 VARIANCE SPECTRUM FOR DATA SET 3C

Fig. 11.18
(11.8)
\[
\begin{aligned}
f & =1.58\left[\frac{50}{20}-\frac{1}{2}\right]\left[\frac{70}{20}-\frac{1}{2}\right] \\
& =1.58(6)=9.48
\end{aligned}
\]

For Data Set 3C, the number of degrees of freedom is given by equation (11.9).
\[
\begin{equation*}
F=1.58\left[\frac{40}{20}-\frac{1}{2}\right]\left[\frac{90}{20}-\frac{1}{2}\right] \tag{11.9}
\end{equation*}
\]
\[
=9.48
\]

Thus each individual spectral estimate is distributed according to a Chi* square distribution with slightly more than 9 degrees of freedom. A ratio as large as 2.57 for two variances so distributed is quite possible since at the 5 percent level of significance the ratio can be 3.18 , and therefore these values are not unusual. They simply represent sampling variation,

\section*{The plan for the analysis of the results}

The average of the two covariance surfaces as shown in figure 11.15 is the best available estimate of the covariance surface. The sum of the two independently determined spectra as shown in figure 11.18 is the best available estimate of the energy spectrum. This energy spectrum has only 19 degrees of freedom per spectral estimate. Also it obviously has some distortions in it caused by column noise (mainly) and curvature. It also has a white noise background due to the original spot height reading errors. The plan of the analysis of the dira as represented by figures 11.15 and 11,18 is to:
1. Remove the column noise from the directional spectrum.
2. Sum around cixcles of constant frequency in order to compare the
results of the wave pole spectrum with the stereo spectrum and verify the estimate of the amount of the white noise error.

3, Study the angular variation for bands of constant frequency.
4. Compute the confidence bounds for the bands of constant frequency and compare the frequency spectrum obtained from the directional spectrum with the wave pole spectrum and various theoretical spectra.
5. Remove the white noise from the directional spectrum and analyze the spectrum both in an unsmoothed and smoothed form.
6. Fit the angular variation for bands of constant frequency by means of a Fourier series approximation and determine a smoothed analytic form for the spectrum.
7. Correct the covariance surface for the effects of column noise and white noise.

\section*{Column noise correction}

The ridge along the horizontal axis of figure 11.18 is rather well defined especially for \(U(17,0), U(18,0)\) and \(U(19,0)\). A vertical line, say, along the values \(U(17,3), U(17,2), U(17,1), U(17,0), U(17,-1), U(17,-2)\), and \(U(17,-3)\) shows that there is a definite ridge produced by the values of \(U(17,1), U(17,0)\), and \(U(17,-1)\). The ridge is quite possibly due to column noise as given by the random error \(s, \epsilon_{k}\), and it has shown up in the final spectrum as the filtered effect of the contribution of \(W_{r o}\) to \(L(r, s)\) in equation (11.4). By inspection if \(0.0100(\mathrm{ft})^{2}\) is subtracted from each value of \(U(r, o)\) the central part of the ridge will disappear and become approximately equal to the value of \(U\) two rows above and below the horizontal axis.

This implies that
\[
\begin{equation*}
0.54 \mathrm{~W}_{\mathrm{ro}}=0.0100 \tag{11.10}
\end{equation*}
\]
and that
\[
W_{r o}=0.0185
\]

When \(W_{r o}\) is multiplied by 0.23 the result is 0.0043 . This quantity must be subtracted from each value of \(U(r, 1)\) and \(U(x,-1)\) as \(r\) varies from zero to 20 (before bordering).

A total of \(0.0186(\mathrm{ft})^{2}\) times 20 is subtracted from the total \(E\) value of the stereo data when this correction is made. The total reduction of \(E\) value is \(0.372(\mathrm{ft})^{2}\).

The reanalyzed spectrum for this correction is not shown in any figure. It was used however, in subsequent analyses, and the correction will be incorporated in subsequent plots.

This correction as made to the spectrum also implies that a correction must be applied to the covariance surface. The correction is to subtract 0,186 from \(Q(0, q)\) as \(q\) varies from +20 to -20 . This correction re* moves the effect of column noise from the covariance surface.

Comparison with the wave pole spectrum
The problem of transforming a spectrum of the form \([A(\alpha, \beta)]^{2}\) into the form \([A(\mu, \theta)]^{2}\) in order to integrate out \(\theta\) so that the direetional spec. trum can be compared with the wave pole spectrum is difficult. The \(\alpha^{\prime} s\) and \(\beta^{\prime}\) s are proportional to the square of the wave frequency. One sys. tem is in Cartesian coordinates and the other is in polar coordinates. The spectral estimates in both systems have considerable sampling variation.

One way to solve the problem would be to fit the directional spectrum by an analytic function of \(\alpha\) and \(\beta\) and carry out the transformation and integration formally so as to obtain the spectrum as a function of frequency. It was decided that this was too difficult so it was assumed that the directional spectrum was a constant over a unit square in the \(U(r, s)\) plane. Figure 11.19 illustrates schematically the assumed shape of the directional spectrum. The wave pole spectrum was determined in Part 10, and the \(\Delta E\) values for frequencies between \(2 \pi\left(\mathrm{~K}-\frac{1}{2}\right) / 96\) and \(2 \pi\left(\mathrm{~K}+\frac{1}{2}\right) / 96\) were found. A frequency of \(2 \pi\left(\mathrm{~K}-\frac{1}{2}\right) / 96\) corresponds to a period of \(96 /\left(\mathrm{K}-\frac{1}{2}\right)\) and this in terms of wavelength corresponds to a wave \(5.12\left(96 / \mathrm{K}-\frac{1}{2}\right)^{2}\) feet long. Consequently the circle with a radius \(R *\) given by equation (11.11) defines one boundary of that area in the \(U(r, s)\) plane which corresponds to a frequency bound of the wave pole spectrum.
\[
\begin{equation*}
R *=\frac{2 \pi\left(K-\frac{1}{2}\right)^{2}}{(96)^{2}(5.12)} \tag{11.11}
\end{equation*}
\]

The other boundary for a particular K is given by (11.12)
\[
\begin{equation*}
R *=\frac{2 \pi\left(K+\frac{1}{2}\right)^{2}}{(96)^{2}(5.12)} \tag{11.12}
\end{equation*}
\]

In the above, coordinates of the directional spectrum have been
u(rs)
FIGURE 11.19 ASSUMED SHAPE OF DIRECTIONAL SPECTRUM
(SCHEMATIC)
193
assigned the values
\[
0, \frac{2 \pi}{1200}, \frac{2 \pi(2)}{1200}, \frac{2 \pi(3)}{1200}, \text { etc. }
\]
on both the horizontal and vertical axes (1200=30×2×20).
A simpler system of notation will be used by assigning the values 0 , \(1, \ldots .\). etc. to the spectral coordinates just as the values of \(k\) were used in studying the wave pole spectrum.

Then \(R\) is given by \(R *\) times \(1200 / 2 \pi\), and it becomes
\[
\begin{align*}
R & =\frac{1200\left(k-\frac{1}{2}\right)^{2}}{(96)^{2}(5.12)} \tag{11.13}\\
& =0.025429\left(k-\frac{1}{2}\right)^{2}=C\left(k-\frac{1}{2}\right)^{2}
\end{align*}
\]

The values of \(R\) for \(k-\frac{1}{2}\) and \(k+\frac{1}{2}\) determine two concentric circles. The total contribution to the value of \(E\) of all estimates within the se two circles should correspond to the value determined from the wave pole spectrum except for residual errors of white noise and curvature. To estimate this, the value of one half of the area between the inner circle and the outer circle is needed.

The area of the inner circle is
\[
\pi\left[C\left(k-\frac{1}{2}\right)^{2}\right]
\]
and the area of the outer circle is
\[
\pi\left[C\left(k+\frac{1}{2}\right)^{2}\right]^{2}
\]

One half of the difference is the area of one half the circular ring as given by
\[
\begin{align*}
A & =\frac{\pi}{2} C^{2}\left[\left(k+\frac{1}{2}\right)^{4}-\left(k-\frac{1}{2}\right)^{4}\right] \tag{11.14}\\
& =\frac{\pi}{2} C^{2}\left[k^{4}+\frac{4 k^{3}}{2}+\frac{6 k^{2}}{4}+\frac{4 k}{8}+\frac{1}{16}-k^{4}+\frac{4 k^{3}}{2}-\frac{6 k^{2}}{4}+\frac{4 k}{8}-\frac{1}{16}\right] \\
& =\pi C^{2}\left[2 k^{3}+\frac{k}{2}\right] \\
& =20.315 \cdot 10^{-4}\left(2 k^{3}+\frac{k}{2}\right)
\end{align*}
\]

The values of \(A\) are tabulated in Table 11.4 for future reference. A value of \(k\) equal to 27 corresponds to the largest circle that can be drawn in the plane of the directional spectrum. The values of \(A\) increase slightly more rapidly than the cube of the values of \(k\). Also tabulated in Table 11.4 are the values of \(A\) divided by 36 for future reference.

A Cartesian coordinate grid was constructed by drawing heavy lines at the values of \(r\) and \(s\) corresponding to \(0.5,1.5,2.5, \ldots, 19.5\). This divided the plane of the spectrum into 741 squares assigned unit area, 116 half squares, and 4 quarter squares for a total of 800 full squares.

The radii given by setting \(k\) equal to \(1,2,3, \ldots\) and 28 in equation (11.3) were then computed and semicircles with these radii were superimposed on the grid.

The semi-circles divided the squares into pieces. The number and size of the pieces depended on the geometry of the system.

The areas of the pieces were then computed from geometrical considerations which depended essentially on differences between areas of sectors of circles and triangles. The squares along the \(r\) axis, the squares at \(45^{\circ}\) to the \(r\) axis and those in between out to the largest radius were the ones that were analyzed because all others could be obtained by reflection in either

Table 11.4, Half the areas of the circular rings associated with the different values of \(k\) 。
\begin{tabular}{|c|c|c|}
\hline k & A & A/36 \\
\hline 1 & 0.0051 & --- \\
\hline 2 & 0,0345 & --- \\
\hline 3 & 0.1127 & --- \\
\hline 4 & 0.2641 & --- \\
\hline 5 & 0.5130 & 0.0142 \\
\hline 6 & 0.8837 & 0.0244 \\
\hline 7 & 1.4007 & 0.0389 \\
\hline 8 & 2. 0681 & 0.0575 \\
\hline 9 & 2.9711 & 0.0825 \\
\hline 10 & 4.0732 & 0.1131 \\
\hline 11 & 5.4190 & 0.1506 \\
\hline 12 & 7.0331 & 0.1953 \\
\hline 13 & 8. 9396 & 0.2483 \\
\hline 14 & 11.1631 & 0.3100 \\
\hline 15 & 13.7279 & 0.3814 \\
\hline 16 & 16.6583 & 0.4628 \\
\hline 17 & 19.9788 & 0.5550 \\
\hline 18 & 23.7137 & 0.6586 \\
\hline 19 & 27.8874 & 0.7747 \\
\hline 20 & 32.5243 & 0.9033 \\
\hline 21 & 37.6488 & 1. 0458 \\
\hline 22 & 43.2852 & 1.2024 \\
\hline 23 & 49.4579 & 1.3738 \\
\hline 24 & 56. 1913 & 1. 5609 \\
\hline 25 & 63. 5098 & 1. 7642 \\
\hline 26 & 71.4377 & 1. 9844 \\
\hline 27 & 79.9995 & 2. 2222 \\
\hline
\end{tabular}
the \(r\) axis or the \(45^{\circ}\) line. The final result was that each piece of each square as cut up by the circles was assigned a percentage between zero and 100. The calculations depended on the difference between large numbers, and the results on summing around circles did not check with the results of Table 1.1.4. Small adjustments of the order of one or two percent were made to the various areas so that the sum around circles would check with Table 11.4.

The pattern employed, the values of the radii, and the numbers finally obtained are shown in figure 11.20 for a quarter sector of the full area of the directional spectrum. All other points can be obtained by symmetry. Note that half the values on the horizontal axis should be used on the vertical axis.

The values of \(U_{2 A}(r, s)+U_{3 C}(x, s)\) corrected for column noise were then entered in the corresponding squares. To determine \(U(k)\), the percentages of the squares falling between circles with radii corresponding to \(k \cdot \frac{1}{2}\) and \(k+\frac{1}{2}\) were multiplied by the \(\Delta \mathrm{E}\) values for the appropriate squares and all contributions for that particular semicircular ring were summed.

The results are shown in Figure 11.21. The values of \(\Delta E\) in \((f t)^{2}\) obtained upon summation are plotted as a function of \(k\) in the upper curve. The spectrum obtained from the wave pole data is also shown.

An additional correction is needed before the two curves can be compared. The effect of the white noise variance of \(0.54(f t)^{2}\) must be removed. Since this error variance is spread evenly over the entire plane of the directional spectrum each square in this analysis has an expected value of \(1.08 / 800(\mathrm{ft})^{2}\) assigned to it in terms of \(E\) value. When the entries in Table 11.4 are multiplied by \(1.08 / 800\) and subtracted from the values shown on the top curve in figure 11.21 the result is the middle curve which shows the frequency : spectrum corrected for the white noise estimate given previously. The effect of assuming that the white noise error variance is twice as great is shown by a third curve in the figure. Such a correction would be much too big.

FIG. 11.20
TRANSFORMATION FROM
RECTANGULAR TO POLAR COORDINATES.

The curve to use for further analysis then is the middle curve of the three curves for the directional spectrum. The agreement at first sight is not too striking since the only points that are close are \(k=11,23,24,25,26\), and 27. A further study of these results will be made later.

Table 11.5 shows the values obtained for different \(k\) by summing around the semicircular rings and the effect of applying the corrections due to white noise。

Table 11.5. \(\Delta E\) values as a function of \(k\) summed around semicircular rings in the directional spectrum.
\begin{tabular}{rlrl}
k & \(\Delta \mathrm{E}\) & \(\Delta \mathrm{E}\)-white noise & \(\Delta \mathrm{E}-2\) white n \\
\hline & & & \\
\(0,1,2,3,4\) & .0357 & .0351 & .0346 \\
5 & .0338 & .0331 & .0324 \\
6 & .0536 & .0524 & .0512 \\
7 & .0850 & .0831 & .0812 \\
8 & .1412 & .1384 & .1356 \\
9 & .2432 & .2392 & .2352 \\
10 & .3771 & .3716 & .3661 \\
11 & .5898 & .5825 & .5752 \\
12 & .7111 & .7016 & .6921 \\
13 & .7202 & .7081 & .6961 \\
14 & .6345 & .6194 & .6044 \\
15 & .5500 & .5315 & .5129 \\
16 & .4544 & .4319 & .4094 \\
17 & .3823 & .3553 & .3284 \\
18 & .3423 & .3103 & .2783 \\
19 & .3086 & .2710 & .2333 \\
20 & .2621 & .2194 & .1743 \\
21 & .2402 & .1894 & .1385 \\
22 & .2355 & .1771 & .1186 \\
23 & .2100 & .1432 & .0765 \\
24 & .1791 & .1032 & .0274 \\
25 & .1836 & .0979 & .0121 \\
26 & .1760 & .0796 & -.0169 \\
27 & .1817 & .0737 & -.0343
\end{tabular}

In order to study the angular variation of the spectrum, the results shown in figure 11.20 were employed. Radii at 5 degree intervals were superimposed on the figure by overlays. The plane of the directional spectrum was thus divided into small areas bounded by arcs of two circles and two adjacent radii. Two adjacent circles bounded 36 such small areas, and the areas are tabulated in Table 11.4. Since the effect of the circles in breaking the squares up into subareas had already been computed, it was not too difficult to compute the effect of the radii since each small area had to have a known value. The percentages which resulted were then multiplied by the appropriate \(U(r, s)\) values and summed for each small area. The number thus obtained is an estimate of the contribution to the total \(E\) value of the short crested sea for spectral components with frequencies between \(2 \pi\left(k-\frac{1}{2}\right) / 96\) and \(2 \pi\left(k+\frac{1}{2}\right) / 96\) and with directions between \(\theta\) and \(\theta+5^{\circ}\) as \(k\) varies from 11 through 27 and as \(\theta\) varies from \(-90^{\circ}\) to \(+85^{\circ}\). The results of this computation are shown in figure 11.22 . The white noise estimate has been removed by subtracting (A/36)(1/800)(1.08) from each value.

The curves are erratic, mainly due to sampling variation, but there is a rather definite indication of the presence of a swell for curves corresponding to \(k=11\) through 17. The swell was removed by estimating the shape that the curve would have had, had the swell not been there.

This estimate is shown by the dashed lines in figure 11.22. Tables 11.6 and 11.7 show the resolution of the data into frequency and direction intervals.

FIG. 11.22
ANGULAR VARIATION FOR A CONSTANT FREQUENCY IN THE DIRECTIONAL SPECTRUM.

Table 11.6. Resolution of directional spectrum into frequency, and direction intervals, swell, white noise and column noise removed.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Angle & 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 & 19 & 20 & 21 & 22 & 23 & 24 & 25 & 26 & 27 \\
\hline 87.5 & . 0025 & . 0035 & 034 & . 0047 & 0039 & . 0035 & . 0040 & 0031 & . 003 & . 0039 & . 0027 & . 003 & . 003 & . 0029 & . 003 & . 001 & . 0025 \\
\hline 82.5 & . 0017 & . 0028 & . 0025 & . 0033 & . 0030 & . 002 & . 0034 & . 0030 & . 00 & . 0048 & . 002 & 002 & 0026 & 28 & . 0023 & 01 & .0022 \\
\hline 77.5 & . 0011 & . 0018 & 016 & 002 & . 0020 & . 021 & . 002 & . 0026 & . 002 & . 0018 & 002 & . 0023 & . 0023 & . 0035 & 002 & . 0006 & . 0012 \\
\hline 5 & . 000 & . 0011 & . 0010 & . 001 & . 0011 & . 0012 & . 00 & . 002 & 002 & . 0019 & . 0016 & . 0015 & . 0017 & . 0020 & . 0007 & . 0005 & . 0010 \\
\hline 67.5 & . 0004 & . 0005 & . 000 & . 0007 & . 0006 & . 0008 & . 0015 & . 0019 & . 0018 & . 0013 & . 0008 & . 0006 & . 0007 & .000 & . 0010 & .00 & 0006 \\
\hline 62.5 & . 0002 & . 0001 & . 000 & . 0001 & .0002 & . 0008 & . 000 & . 001 & 003 & . 0009 & .000 & .000 & .000 & . 0012 & . 0022 & . 0017 & 0018 \\
\hline 57.5 & . 0001 & 0 & 0 & 0 & . 000 & . 0010 & .0004 & .001 & .001 & . 0010 & .0012 & . 0017 & . 00 & . 00 & . 00 & . 0012 & . 0011 \\
\hline 52.5 & 0 & . 000 & 0 & . 0003 & . 0006 & . 0014 & . 0004 & . 0025 & . 0014 & . 0012 & . 0018 & . 00 & . 0016 & . 00 & . 002 & . 00 & . 0008 \\
\hline 47.5 & . 0001 & . 001 & . 0003 & . 0008 & . 001 & . 001 & . 0006 & . 004 & . 0024 & 00 & . 0019 & . 0 & . 0022 & .00\% & . 003 & . 0018 & . 0041 \\
\hline 42.5 & . 0010 & . 0017 & . 0008 & . 0014 & . 001 & . 002 & . 001 & . 0039 & . 002 & . 0023 & . 0019 & .0025 & . 00 & - 0.19 & . 0022 & . 0019 & .0022 \\
\hline 37. & . 001 & . 002 & 002 & . 002 & 002 & . 0035 & . 0024 & . 0039 & . 00 & . 003 & . 002 & . 002 & .003 & . 002 & . 002 & . 002 & . 002 \\
\hline 32.5 & . 0026 & . 0038 & . 0028 & . 0037 & . 0036 & . 00 & . 002 & . 005 & . 005 & . 00 & . 003 & . 003 & . 00 & . 0033 & . 001 & . 0025 & 0037 \\
\hline 27.5 & . 0038 & . 00 & . 003 & . 005 & . 00 & . 0062 & . 00 & . 00 & . 00 & . 0 & . 0046 & . 00 & . 00 & . 003 & . 00 & . 0033 & . 00 \\
\hline 22.5 & . 004 & . 0083 & . 0058 & . 006 & .008 & . 009 & . 008 & . 0086 & . 007 & . 007 & . 007 & . 006 & . 00 & . 0035 & . 002 & . 0019 & . 003 \\
\hline 17.5 & . 005 & . 0087 & . 010 & . 009 & . 00 & . 0122 & . 011 & . 0102 & 00 & . 00 & . 00 & . 00 & . 00 & . 00 & . 00 & . 0023 & . 0031 \\
\hline 12.5 & . 005 & . 00 & . 0107 & . 01 & . 01 & . 01 & . 0131 & . 01 & . 01 & . 00 & . 007 & . 01 & . 00 & . 0082 & . 0055 & . 0045 & . 0035 \\
\hline 7.5 & . 0236 & . 021 & .018 & . 0134 & . 016 & . 017 & . 017 & . 019 & . 015 & . 009 & . 009 & .015 & .0100 & . 006 & . 007 & .005 & . 004 \\
\hline 2.5 & . 0265 & . 02 & . 033 & . 0246 & . 025 & . 02 & . 023 & . 0211 & . 0 & . 01 & . 013 & . 014 & . 008 & . 00 & 007 & . 0026 & .003 \\
\hline -2.5 & . 0265 & . 029 & . 0333 & . 0246 & . 026 & . 026 & . 0252 & .021 & .0196 & . 0169 & . 0154 & . 011 & . 009 & . 005 & . 0044 & . 0047 & . 00 \\
\hline - 7 & . 0287 & . 0342 & . 038 & . 0306 & . 02 & .0288 & . 0246 & . 0199 & . 01 & . 0142 & . 0121 & . 00 & . 00 & . 007 & . 003 & 00 & 00 \\
\hline -12.5 & . 0421 & . 0425 & . 0455 & . 0312 & . 0298 & . 0255 & . 0183 & . 0147 & . 0126 & . 00 & . 0074 & . 00 & . 00 & . 003 & . 0022 & . 0019 & . 0026 \\
\hline -17 & .0421 & . 045 & . 0443 & . 0306 & . 026 & . 0192 & . 0159 & . 0141 & . 011 & . 008 & . 0064 & . 005 & . 006 & . 0033 & . 0025 & . 0025 & . 002 \\
\hline -22.5 & . 0421 & . 0479 & . 03 & . 030 & . 0273 & . 0160 & . 0120 & . 0135 & . 0130 & . 005 & . 0088 & . 0055 & . 0047 & . 003 & .0038 & . 00 & . 00 \\
\hline -27.5 & . 0413 & . 0413 & . 0317 & . 0315 & . 0234 & . 0136 & . 011 & . 0123 & . 011 & . 010 & . 0094 & . 0058 & . 00 & . 0036 & . 004 & . 0027 & . 001 \\
\hline -32.5 & . 0 & . 04 & . 035 & . 0 & . 0224 & . 01 & . 0104 & . 0103 & . 0084 & . 00 & . 0073 & . 0067 & . 004 & . 003 & . 00 & . 0023 & . 001 \\
\hline -37.5 & . 0314 & . 0415 & .0347 & . 0300 & . 023 & . 0138 & . 0113 & . 009 & . 00 & . 004 & . 005 & . 00 & . 00 & . 003 & . 0029 & . 00 & 001 \\
\hline -42 & . 0308 & . 035 & . 035 & . 032 & . 02 & . 0167 & . 01 & . 010 & . 006 & . 004 & . 0039 & . 003 & . 003 & . 002 & . 0020 & . 001 & . 001 \\
\hline -47.5 & . 0306 & . 031 & . 035 & . 029 & . 025 & . 01 & . 015 & . 010 & . 00 & . 005 & . 003 & . 00 & .003 & . 00 & . 001 & . 00 & . 00 \\
\hline -52.5 & . 0285 & . 0341 & . 0333 & . 0255 & . 022 & . 013 & . 011 & . 010 & . 008 & . 005 & . 0043 & . 003 & . 003 & . 002 & . 002 & . 001 & 001 \\
\hline -57.5 & . 02 & . 034 & . 035 & . 025 & . 016 & . 01 & . 01 & . 006 & . 00 & . 006 & . 0043 & . 003 & . 0027 & . 001 & . 00 & . 001 & . 001 \\
\hline -62.5 & . 0165 & . 0324 & . 0235 & . 0209 & . 0146 & . 0100 & . 0089 & . 0091 & . 008 & . 005 & . 0039 & . 0019 & . 001 & . 001 & . 001 & . 001 & . 001 \\
\hline -67.5 & . 0135 & . 0169 & . 0222 & . 0167 & . 0121 & . 009 & . 008 & . 0083 & . 008 & . 0068 & . 0039 & . 001 & . 001 & . 001 & . 0025 & . 001 & . 001 \\
\hline -72.5 & . 0135 & . 0150 & . 0142 & . 0109 & . 011 & . 009 & . 0079 & . 0071 & . 006 & . 006 & . 0048 & . 0029 & . 0024 & . 001 & . 001 & . 0013 & . 001 \\
\hline -77.5 & . 0135 & . 0139 & . 0134 & . 0077 & . 0075 & . 0073 & . 0070 & . 0060 & . 0042 & . 0050 & . 0054 & . 0045 & .002? & . 0021 & . 0017 & . 0013 & . 001 \\
\hline -82.5 & . 0044 & . 009 & . 0095 & . 0075 & . 0073 & . 006 & . 0050 & . 0036 & . 0036 & . 0057 & . 0055 & . 004 & . 002 & . 0013 & . 001 & . 0016 & . 001 \\
\hline 87.5 & . 0029 & . 0040 & . 0053 & . 0060 & . 0054 & . 0052 & . 0043 & . 0034 & . 0040 & . 0055 & . 0042 & . 0032 & . 0031 & . 0024 & . 0013 & . 0017 & . 00 \\
\hline
\end{tabular}

Table 11. 7. Swell contribution to directional spectrum, white noise and column noise removed.
\begin{tabular}{llllllll}
87.5 & .0004 & .0005 & .0019 & -.0013 & -.0015 & -.0014 & 0 \\
82.5 & .0012 & .0011 & .0050 & -.0067 & -.0041 & -.0025 & 0 \\
77.5 & .0018 & .0036 & .0072 & -.0082 & -.0055 & -.0031 & 0 \\
72.5 & .0030 & .0047 & .0082 & -.0099 & -.0093 & -.0042 & 0 \\
67.5 & .0025 & .0060 & .0122 & -.0123 & -.0110 & -.0048 & -.0012 \\
62.5 & .0035 & .0075 & .0126 & -.0134 & -.0103 & -.0055 & -.0030 \\
57.5 & .0053 & .0077 & -.0108 & -.0132 & -.0097 & -.0065 & -.0050 \\
52.5 & .0048 & .0075 & -.0103 & -.0130 & -.0130 & -.0068 & -.0050 \\
47.5 & .0036 & .0068 & -.0110 & -.0115 & -.0076 & -.0057 & -.0047 \\
42.5 & .0027 & .0054 & -.0105 & -.0075 & -.0065 & -.0030 & -.0038 \\
37.5 & .0023 & .0032 & -.0055 & -.0042 & -.0034 & -.0010 & -.0015 \\
32.5 & .0020 & .0022 & -.0035 & -.0030 & -.0008 & -.0005 & -.0005 \\
27.5 & .0020 & .0010 & -.0022 & -.0015 & -.0003 & & \\
22.5 & .0010 & & -.0005 & & & &
\end{tabular}

Table 11.6 shows the local sea and Table 11.7 shows the disturbance from a distance. Corresponding values of Tables 11.6 and 11.7 add up the values graphed by the solid lines in figure 11.22. Table 11.6 corresponds to the solid. lines continued by the dashed lines where appropriate. The maximum value for a given \(k\) and the minimum value are underlined in Table 11.6. Note that the minimum continues quite smoothly into that region where the swell is not present.

\section*{Confidence bounds on the sums around circles}

Let the sums of the corresponding entries in Tables 11.6 and 11.7 be designated by \(D_{k \theta}\). Each value of \(D_{k \theta}\) can be thought to have \(19(A / 36)\) degrees of freedom if the variation between nearby values of \(U(r, s)\) is not too rapid. For example, if a square in the \(U(r, s)\) plane were cut in half, then each half would be assigned the value \(U(r, s) / 2\) and 19/2 degrees of freedom. The degrees of freedom of the sum of the two values would then be
\[
\frac{19}{2}\left[\frac{[(U(r, s) / 2+U(r, s) / 2))^{2}}{(U(r, s) / 2)^{2}+(U(r, s) / 2)^{2}}\right]
\]
or 19. and the sum of the two \(E\) values would again be \(U(r, s)\).
For the sum around a circular ring, this can be generalized to give the degrees of freedom for a \(\Delta E\) value corresponding to those frequencies between \(2 \pi\left(k-\frac{1}{2}\right) / 96\) and \(2 \pi\left(k+\frac{1}{2}\right) / 96\). The equation for the degrees of freedome is then given by equation (11.15).
\[
\begin{equation*}
f=\frac{19}{4} \frac{A}{36} \frac{\left[\Sigma_{\theta} D_{k \theta}\right]^{2}}{\left[\Sigma_{\theta} D_{k \theta}^{2}\right]} \tag{11.15}
\end{equation*}
\]

The factor of 4 enters in the denominator of equation (11.15) because only every fourth value of the spectral estimates is independent.

For a more strict analysis, the degrees of freedom should be computed from the data with the white noise still present since at each value it is also distributed according to Chi square with 19 degrees of freedom. The error made in the above computations is small for low values of \(k\), but for large \(k\) the variation in white noise may be falsely reflected into variation in spectral estimates because the white noise is a rather large proportion of the total contribution.

The degrees of freedom for low values of \(k\) are quite low. For \(k\) equal to 11 , there are only 22 degrees of freedom. Had all these stereo pairs been satisfactory for analysis and had there been no distortion at the edges of the stereo data, the 19 degrees of freedom for each value of \(U(r, s)\) actually obtained would have been raised to 50 degrees of freedom, and the 22 degrees of freedom for \(k=11\) would have been close to 50 degrees of freedom.

The number of degrees of freedom given by equation (11.15) can be combined with the entries in Table 11.5 to give the 90 percent confidence bounds on the estimates of \(\Delta E\) as corrected for white noise. The results are shown in Table 11.8. The values given at the 90 percent confidence bounds will enclose the true value of \(\Delta E\) nine times out of ten in repeated tests of this same type under the same conditions. Of course, for a given set of data, the true value either does or does not fall within the confidence bounds and one can never know whether it did or did not.

The entries shown in Table 11.8 can be combined with the entries in
Table 10.1 to compare the wave pole data and the stereo data. The result is
\begin{tabular}{|c|c|c|c|}
\hline k & Lower 5 pexcent confidence band & \(\triangle \mathrm{E}\) & Upper 95 percent confidence band \\
\hline 11 & . 3778 & . 5825 & 1.0387 \\
\hline 12 & .4510 & . 7016 & 1.2712 \\
\hline 13 & . 4853 & . 7081 & 1. 1.487 \\
\hline 14 & . 4478 & . 6194 & . 9402 \\
\hline 15 & . 3950 & . 53.15 & .7715 \\
\hline 16 & . 3279 & .4319 & . 6065 \\
\hline 17 & . 2744 & . 3553 & . 4862 \\
\hline 18 & .2435 & .3103 & . 4089 \\
\hline 19 & . 2235 & . 2710 & . 3384 \\
\hline 20 & . 1784 & .2194 & .1792 \\
\hline 21. & . 1555 & . 1894 & . 2379 \\
\hline 2.2 & . 1466 & . 1771 & . 2201 \\
\hline 23 & .1210 & . 1432 & .1732 \\
\hline 24 & . 0884 & . 1.032 & .1228 \\
\hline 25 & \(=0845\) & . 0979 & . 1153 \\
\hline 26 & .0695 & . 0796 & . 0925 \\
\hline 27 & . 0646 & .0737 & . 0852 \\
\hline
\end{tabular}
shown in figure 11.23. For \(k\) equal to \(11,12,13,22,23,24,25,26\), and 27 the agreemert is satisfactory, but for \(k\) equal to \(14,15,16\), and 21 the confidence bourds do not even overlap. The two results are therefore inconsistent.

Another way to show the lack of agreement in the lata is by means of the F test. The ratio of the stereo values to the wave pole values are tabulated in Table 11.9 along with the appropriate degrees of freedom for each estimate. At values of \(k\) equal to 15 and 21 there is less tha" one chance in 100 that the two values of \(\Delta E\) could have come from the sarre populatior..

Table 11.9. F test applied to wave pole and stereo spectra.
F test significance lovel
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline k & ddf & Stereo & Wave pole & Ratio & \(5 \%\) & \(1 \%\) & Conclusion \\
\hline 11 & 22 & . 5825 & . 5804 & 1.0036 & 1. 82 & 2. 38 & Accept at \(5 \%\) \\
\hline 12 & 21 & . 7016 & .6201 & 1.1314 & 1. 85 & 2.43 & Accept at \(5 \%\) \\
\hline 13 & 30 & . 7081 & . 4682 & 1.5124 & 1. 56 & 2.08 & Accept at \(5 \%\) \\
\hline 14 & 41 & .61 .94 & . 3530 & 1.7547 & 1. 56 & 1.89 & Reject at \(5 \%\) Accept at \(1 \%\) \\
\hline 15 & 50 & . 5315 & . 2838 & 1.8728 & 1. 49 & 1.77 & Reject at \(5 \%\) Reject at 1 \% \\
\hline 16 & 59 & .4319 & . 2611 & 1.6542 & 1. 45 & 1.69 & Reject at \(5 \%\) Accept at \(1 \%\) \\
\hline 17 & 68 & . 3553 & . 2562 & 1.3858 & 1.41 & 1.63 & Accept at \(5 \%\) \\
\hline 18 & 82 & . 3103 & . 2358 & 1.3159 & 1.31 & 1.58 & Reject at \(5 \%\) Accept at \(1 \%\) \\
\hline \(1 ?\) & 128 & .2710 & . 1924 & 1.4085 & 1. 32 & 1.48 & Reject at 5 \% Accept at \(1 \%\) \\
\hline 20 & 110 & . 2194 & . 1509 & 1.4539 & 1. 34 & 1. 51 & Reject at \(5 \%\) Accept at \(1 \%\) \\
\hline 21 & 122 & . 1894 & . 1252 & 1.5128 & 1.32 & 1.47 & Reject at \(1 \%\) \\
\hline 22 & 133 & .1771 & . 1320 & 1.3417 & 1.31 & 1.47 & Reject at \(5 \%\) Accept at \(1 \%\) \\
\hline 23 & 171 & . 1432 & . 1336 & 1.0719 & 1.26 & 1.41 & Accept at \(5 \%\) \\
\hline 24 & 203 & .1032 & .1137 & .9077 & 1.26 & 1.39 & Accept at 5 \% \\
\hline 25 & 227 & . 0979 & . 0979 & 1.0000 & 1.26 & 1.39 & Accept at \(5 \%\) \\
\hline 26 & 267 & . 0796 & .0815 & .9767 & 1. 26 & 1. 39 & Accept at \(5 \%\) \\
\hline 27 & 284 & . 0737 & . 0591 & 1.2470 & 1.26 & 1.39 & Accept at \(5 \%\) \\
\hline \multicolumn{8}{|c|}{208} \\
\hline
\end{tabular}

These results are made even more interesting by considering the values obtained by summing the columns in Table 11.6 where the effect of a disturbance from a distance has been removed. These values can be plotted against a Neumann spectrum for 18.7 knots and against the wave pole spectrum as shown in figure 11.24. One could not ask for much better agreement between theory and observation than is shown between the theoretical Neumann spectrum and the frequency spectrum obtained from the directional spectrum. The agreement between the wave pole spectrum and the theoretical spectrum is actually a little (but not much) better than shown because the contribution of the swell for \(k\) equal to 11 and 12 will reduce the sharp peak. One disadvantage of wave pole data is evidently that there is no way to see the swell if it has the same frequencies in it as the local sea.

Another question to be asked before entering into a discussion of the above results is what would the wave pole calibration have had to have been in order to provide agreement with it and both the theoretical Neumann spectrum and the directional spectrum. This result can be obtained by dividing the values for the directional spectrum, including swell, by the values for the wave pole spectrum before multiplication by the calibration curve. The result is shown in figure 11.25 . There is the possibility of some sort of amplified response in the wave pole, undetected by still water damping and resonance tests, as \(\mu\) equal to \(2 \pi(15) / 96\). The agreement between the two spectra would be fairly good if something like one of the dashed curves were used for calibration instead of the original theoretical curve.

FIGURE 1124 THEORETICAL NEUMANN SPECTRUM FOR AN 18.7 KNOT WIND COMPARED WITH

\section*{Discussion of wave pole, stereo and theoretical spertra}

If a physicist were to measure the acceleration of gravity at the same place by two different methods and obtain \(980 \mathrm{~cm} / \mathrm{sec}^{2}\) by one method and \(1400 \mathrm{~cm} / \mathrm{sec}^{2}\) by another method, he would be positive that there was sornething wrong with the second method. In this study one is not in so fortunate a position. There is no background of previous experience, and sampling variation must always be recognized as a source of any disagreement.

The results obtained so far are that:
(I) A frequency spectrum obtained from stereo wave data agrees with a theoretical curve derived by Neumann after correction for the presence of swell and the effects of white noise and column noise in the original data.
(2) A frequency spectrum obtained from a wave pole observation does not agree with either the one derived theoretically or obtained from the stereo data at two points at the one percent significance level. However, the wave pole spectrum does agree with the theoretical spectra given a one knot variation in the winds as pointed out in Part 10.

The following hypotheses are among those that could be advanced to explain the results:
(1) The agreement between the stereo spectrum and the theory is
fictitious. It has been obtained by choosing just the right weighted average of winds reported quite a few hours before the actual observations of the waves and by rather prejudiced choices of just the right amounts of noise and swell to get agreement. Also the reduced stereo data may still be distorted.
(2) Variability in the winds and background distortion in the stereo data is sufficient to explain the difference in the two different sets of observed values.
(3) Sampling variations at the 1 percent significance level have actually occurred.
(4) The wave pole calibration is incorrect.
(5) Weighted combinations of modifications of the above four hypotheses taken 2,3 , or 4 at a time such as, for example (2-3-4). The wave pole calibration is wrong by 30 percent at \(k=15\), sampling variation was at the 20 percent level and the variability in the winds explains the rest of the differences.

The first hypothesis can be checked by study of the original data as tabulated. The fact that the histogram shown in figure 11.12 shows no effect of distortion in area \(A\) at least suggests that most of this effect has been removed. Also the uncorrected spectra come closer to agreeing with the theoretical Neumann spectrum than to agreeing with the theories of Roll and Fischer [1956] and Darbyshire [1955]. The analysis has only served to refine the results by what are in total rather small corrections, and the corrections appear to be logically justifiable in all cases. If agreement with the theoretical Neumann spectrum is not obtained, then the result would be that there is no adequate theoretical wave spectrum in existence.

In the light of these new results, the hypothesis of wind variability is much less attractive than it was in Part 10. The wave pole and stereo obseryations were simultaneaus in the sampling sense. The variation in the three
different wave pole spectra as originally tabulated shows no effect of wind variability at the 5 percent level, and the low value at \(k=15\) occurs in all three cases.

The third hypothesis is one that cannot be tested except by doing the same experiment over again using the same wave pole under similar meteorological conditions. It will be rejected as a working hypothesis solely because it cannot be tested. However, due to the possibility of this hypothesis combining with some of the others in part, the possibility of incorrectly rejecting it with a chance of more than 0.01 (say 0.15) must be borne in mind.

The fourth hypothesis is a very attractive one. If the wave pole calibration curve were more like the one shown by the dashed curves in figure 11.25 than the theoretical one, there would be agreement between both observed curves and the theory. It will therefore be assumed that this hypothesis is the dominant explanation for the discrepancies which have occurred.

This hypothesis can be tested by modeling the wave pole in a scaled down long crested Gaussian sea with the correct model frequencies present, and comparing the record it makes with a record made by a wave pole held fixed in position,

An irregular sea is suggested for the tests because a non-linear effect of considerable magnitude may be present. In Part 8 it was shown that the wave pole movies upward when the crest of a long period wave passes. The submerged tanks are therefore closer to the mean level in the crest of a long period wave, If the crest of a shorter period wave is present at the same
time by superposition, the calibration constants would be considerably modified due to the fact that the depth of the submerged tanks is less. This would cause the wave pole to move up in the crest of the shorter period wave even more than the theory would predict.

This effect is not compensated for by an equal and opposite effect when the trough of a short period wave is present on the crest of a long period wave due to the exponential behavior of these factors. Thus the response may be non-linear and the heights of the shorter period waves may be underestimated. For very short period waves such effects would again be negligible,

If the calibration of the wave pole fails to explain the discrepancy between the two sets of observations then the other possible explanations will have to be investigated. On the basis of the above considerations; a predic* tion is ventured that the wave pole calibration will explain the discrepancy.

If the above hypothesis is a correct one, then the study of ocean waves is in a very odd position. The wave pole data were to have been a primary calibration for the stereo data. The stereo data appear to have detected, to the contrary, a faulty theoretical calibration of the wave pole. The shipborne wave recorder developed by Tucker [1956 a] has been compared with the WHOI wave pole, and agreement was not obtained in this comparison either (Tucker [1956b]). This does not necessarily lead to the conclusion that the shipborne instrument is correctly calibrated. In fact, its response at high frequencies is known to be poor (Tucker [1956a]). Therefore at present, there is no primary instrument capable of measuring waves as a function of time at a fixed point in deep water.
H. G. Farmer in conversations with the author has described how he would modify the WHOI wave pole by putting the tanks at greater depths so as to improve the response of the instrument. This should certainly be a subject for further investigation and study both theor etically and by means of model studies.

\section*{Composite frequency specirum}

The results of the frequenoy analysia of the stereo data and the wave pole data, as given in Tables 11.5, 11.6 and 10.1, can now be combined to yield a composite frequency spectrum over a full range of frequencies. The spectrum for the stereo data is assumed to be correct for low frequencies, and the wave pole spectrum is surely quite reliable at high frequencies ex" cept perhaps for a small amount of white noise. As \(k\) varies from 0 to 10 the entries in the second colurn of Table 11.5 from the stereo data will be used. As \(k\) varies from 11 to 22 the sums of the columns in Table 11.6 will be used in order to rernove swell from the specirum. One can note small diffexences between the entries in Tables 11.6 and 11.5 due to roundoff errors at high frequencies. The errors are small compared to the variability in the sample. For from 23 to \(2 \%\) the stereo values and the wave pole values agree and an average weighted according to the computed number of degrees of freedom is used. For k greater than 27 . the wave pole values are used. This composite spectrum is given in Table 11.10.

Table 11.10. Composite frequency spectrum for the local sea determined from the wave pole and the stereo data.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline k & \begin{tabular}{l}
\[
\Delta \mathrm{E}
\] \\
stereo
\end{tabular} & \begin{tabular}{l}
\[
\Delta E
\] \\
wave pole
\end{tabular} & Combined & \[
\begin{aligned}
& \text { Degrees } \\
& \text { of } \\
& \text { freedom }
\end{aligned}
\] & k & \begin{tabular}{l}
\[
\Delta E
\] \\
stereo
\(\qquad\)
\end{tabular} & \begin{tabular}{l}
\(\Delta E\) \\
wave pole
\end{tabular} & Combined & \[
\begin{aligned}
& \text { Degrees } \\
& \text { of } \\
& \text { freedom }
\end{aligned}
\] \\
\hline 7 & 0.0831 & & & & 34 & & 0.0212 & & 174 \\
\hline 8 & 0.1384 & & & & 35 & & 0.0193 & & 174 \\
\hline 9 & 0.2392 & & & & 36 & & 0.0200 & & 174 \\
\hline 10 & 0.3716 & & & & 37 & & 0.0180 & & 174 \\
\hline 11 & 0.5496 & & & 22 & 38 & & 0.0160 & & 174 \\
\hline 12 & 0.6498 & & & 21 & 39 & & 0.0150 & & 174 \\
\hline 13 & 0.6208 & & & 30 & 40 & & 0.0140 & & 174 \\
\hline 14 & 0.5135 & & & 41 & 41 & & 0.0110 & & 174 \\
\hline 15 & 0.4545 & & & 50 & 42 & & 0.0100 & & 174 \\
\hline 16 & 0.3818 & & & 59 & 43 & & 0.0100 & & 174 \\
\hline 17 & 0.3272 & & & 68 & 44 & & 0.0090 & & 174 \\
\hline 18 & 0.3056 & & & 82 & 45 & & 0.0090 & & 174 \\
\hline 19 & 0.2656 & & & 128 & 46 & & 0.0080 & & 174 \\
\hline 20 & 0.2144 & & & 110 & 47 & & 0.0080 & & 174 \\
\hline 21 & 0.1894 & & & 122 & 48 & & 0.0080 & & 174 \\
\hline 22 & 0.1766 & & & 133 & 49 & & 0.0070 & & 174 \\
\hline 23 & 0.1373 & 0.1336 & 0.1354 & 345 & 50 & & 0.0060 & & 174 \\
\hline 24 & 0.1086 & 0.1137 & 0.1110 & 377 & 51 & & 0.0060 & & 174 \\
\hline 25 & 0.0984 & 0.0979 & 0.0982 & 401 & 52 & & 0.0050 & & 174 \\
\hline 26 & 0.0769 & 0.0815 & 0.0787 & 441 & 53 & & 0.0050 & & 174 \\
\hline 27 & 0.0785 & 0.0591 & 0.0711 & 458 & 54 & & 0.0050 & & 174 \\
\hline 28 & & 0.0491 & & 174 & 55 & & 0.0050 & & 174 \\
\hline 29 & & 0.0443 & & 174 & 56 & & 0.0050 & & 174 \\
\hline 30 & & 0.0395 & & 174 & 57 & & 0.0050 & & 174 \\
\hline 31 & & 0.0392 & & 174 & 58 & & 0.0050 & & 174 \\
\hline 32 & & 0.0420 & & 174 & 59 & & 0.0040 & & 174 \\
\hline 33 & & 0.0327 & & 174 & 60 & & 0.0040 & & 174 \\
\hline
\end{tabular}

The values for the composite spectrum are plotted against the family of theoretical Neumann spectra for various wind speeds in figure 11.26. The agreement is good for an 18.7 knot wind. Note that the family of theoretical spectra grows up to and then through the composite spectrum as the wind speed is varied.

\section*{Comparison with other families of theoretical spectra}

This composite spectrum can be compared with the families of theoretical spectra derived by Darbyshire [1955] and Roll and Fischer [1956]. In both cases the agreement between the computed spectrum and the theoretical spectrum is poor. There is no value for the wind speed which will give agreement between the theoretical curves and the numbers given in Table 11.10. These comparisons are discussed in greater detail by Neumann and Pierson [1957a] and Neumann and Pierson [1957b].

Removal of white noise from the directional spectrum
Upon summation around semicircles, the predicted effect of the white noise was verified and the original estimate of the error in the spot height readings as made by the Photogrammetry Division of the Hydrographic Office was verified. The total contribution of the white noise to the \(E\) value for the waves under study is thus about \(1.08(\mathrm{ft})^{2}\), and \(1.08 / 800(\mathrm{ft})^{2}\) must be subtracted from each value of the energy spectrum obtained from summing the values of \(U_{2 A}(r, s)\) and \(U_{3 C}(r, s)\), after correction for column noise. This amounts to \(0.00135(\mathrm{ft})^{2}\) per unit square in the spectral plane. Since only four significant figures were tabulated either 0.0013 or 0.0014 was subtracted from each particular square. Each of the above values was subtracted an equal number of times so as to even out the total effect to \(1.08(\mathrm{ft})^{2}\). A few very small negative values occurred due to extremes of sampling variation in the white noise where it was a large part of the total contribution. The negative values were removed by "borrowing" from nearby points.

Figure 11.26. Family of theoretical Neumann spectra versus composite spectrum. (The number
above each curve is the surface wind in knots.)

The heading of the airplanes taking the stereo data for Data Set 2 was \(330^{\circ}\). Since the planes flew one behind the other, correctly directed arrows with shafts parallel to the short sides of figure 6.2 will point toward \(330^{\circ}\). Since the buoy shown in figure 6.2 drifted generally downwind and since the wind was from \(330^{\circ}\), or so, as reported in Part 7, an arrow parallel to the short sides of figure 6.2 and pointing to the left will point toward \(330^{\circ}\). Due to the \(180^{\circ}\) indeterminancy in direction in the directional spectrum, this is equivalent to letting the positive \(r\) axis in the directional spectrum point toward \(150^{\circ}\). The peak in the directional spectrum indicates waves traveling toward \(180^{\circ}\) approximately.

With the direction fixed, the secondary peak in the spectrum indicates that the swell is traveling either toward \(90^{\circ}\) or toward \(270^{\circ}\). It is improbable that the swell is traveling toward \(90^{\circ}\) because there is no area where it could have been generated between the point of observation and the east coast of the United States.

The assumption that the spectral components are traveling within \(\pm 90^{\circ}\) of the direction toward which the wind is blowing is not correct for the swell and thus the final directional spectrum may have to have a range of more than \(180^{\circ}\) in direction.

The secondary maximum shown in figure 11.18 should be considered to be composed ot two parts. One part is the continuation of the local sea by means of the dashed lines of the energy as a function of direction as shown
in figure 11.22 and tabulated in Table 11.6. Temporarily let all of this energy be assigned to the first quadrant. The contribution from the swell as given in Table 11.7 then belongs in the third quadrant. Tables 11.6 and 11.7 were then recombined separately to provide estimates of each of these contributions to a square area in the \(U(r, s)\) plane. The values due to the swell were mapped by reflection through the origin into the third quadrant. The minima indicated in Table 11.6 were then assumed to be one extreme in the angular range of the sea. A line forming an angle of about \(30^{\circ}\) with the positive vertical axis could then be determined. Those values of \(U(x, s)\) between this line and the vertical axis were then transferred to the third quadrant.

The final spectral estimates in the \(U(r, s)\) plane are shown in figure 11.27. The values should be divided by \(10^{4}\) to put them in units of \((\mathrm{ft})^{2}\). The range of directions toward which the spectral components are traveling varies from \(80^{\circ}\) to \(320^{\circ}\). The sea has components traveling toward directions ranging from \(80^{\circ}\) to \(260^{\circ}\). The swell is traveling toward directions ranging from \(240^{\circ}\) to \(320^{\circ}\).

The quantities shown in this figure have been obtained by applying corrections for the effects of column noise and white noise to the original data and by expanding the spectrum to a range of more than \(180^{\circ}\) from considerations of the local wind direction and the geography of the area where the data were obtained. The effects of curvature do not seem to be very great. The values at the origin must be excluded, and perhaps the

Fig. 11.27
forward face of the spectrum should be somewhat steeper.
If the plotted numbers in figure 11.27, for the third quadrant, are transferred to the first quadrant, and if the column noise and white noise are added to the values obtained, the result would be essentially the numbers shown in figure 11.18 .

The sum of the numbers in figure 11.27 will equal the total \(E\) value of the sea plus the swell excluding a small circle near the origin. Strictly speaking, the values at the borders of the rectangular area formed by the data in the first and second quadrant before any reflections through the origin should be halved before summing. However, the values on the \(s\) axis of the \(U(r, s)\) plots are used only once in the direction of \(240^{\circ}\). The values at the outer edge are so small that only a minor error is made in not halving these values.

Contours drawn as precisely as possible for the numbers shown in figure 11.27 are shown in figure 11.28. The contours are not very smooth due to sampling variation. The contour analysis can be considerably smoothed when this sampling variation is taken into account.

Each of the original spectral estimates had 19 degrees of freedom. Due to the corrections made so far, the smaller values of the spectral estimates and the values for the transferred swell do not have 19 degrees of freedom, but values near the peak of the spectrum of the sea still have essentially 19 degrees of freedom. If a spectral estimate has 19 degrees of freedom, it can be multiplied by 1.88 and 0.63 . Then 9 times out of 10 the true spectral value, as might be obtained by taking a sample with many more degrees of freedom, will lie between these bounds. Similarly, if the spectral estimate is multiplied by

0.875 and 1.24 , the true value will lie between these bounds four times in ten.

The contours in figure 11.28 can be smoothed by taking these facts into consideration and by assuming that the true spectrum is basically a smoothly varying function, The resulting smoothed spectrum is shown in figure 11.29. An attempt to indicate the very steep forward face has been made. In order to obtain this smoothed version it was only necessary to go outside the 40 percent bounds about 10 times in the area where the estimates were greater than 0.0050 .

\section*{Analytic representation of the directional spectrum}

The curves shown in figure 11.22 and the data tabulated in Table 11.6 provide a way to find an analytic representation for the directional spectrum of the sea. The results of the frequency analysis show that the theoretical Neumann spectrum as a function of frequency fits the data as summed around semicircles quite well.

The spectrum as a function of frequency and direction can therefore be written as equation (II.16).
\[
\begin{equation*}
[A(\mu, \theta)]^{2}=\frac{\pi c e^{-2 g^{2} / \mu^{2} v^{2}}}{2} \cdot[f(\mu, \theta)] \tag{11.16}
\end{equation*}
\]
where \(c=3.05 \times 10^{4}\) and all values are in c.g.s. units.
The function, \(f(\mu, \theta)\) should have the property that it is zero over half the plane, that
\[
\begin{equation*}
\int_{-\pi / 2}^{\pi / 2} f(\mu, \theta) d \theta=I \tag{11.17}
\end{equation*}
\]
and that \(f(\mu, \theta) \geqslant 0\).

Fig. 11.29

Such a function is given by
\[
f(\mu, \theta)=\frac{1}{\pi}\left[1+\sum_{n=1}^{N} a_{n}(\mu) \cos 2 n \theta+b_{n}(\mu) \sin 2 n \theta\right]
\]
for \(\theta_{m}(\mu)-\pi<\theta<\theta_{m}(\mu)\), and zero otherwise if \(a_{n}\) and \(b_{n}\) can be so chosen that \(f(\mu, \theta) \geqslant 0\) and if \(\theta_{m}(\mu)\) is the angle in the first quadrant where \(f(\mu, \theta)\) is a minimum as a function of \(\mu\).

If the values of the entries in Table 11.6 are divided by the sum for each column, \(k_{0}\) and called \(F(k, \theta)\), then
\[
\begin{equation*}
\underset{\theta}{\sum F\left(k_{v}, \theta\right)=1} \tag{11.19}
\end{equation*}
\]
and
\[
\begin{equation*}
f\left(\frac{2 \pi k}{96}, \frac{\left(m+\frac{1}{2}\right) \pi}{36}\right) \cdot \frac{\pi}{36} \cong F\left(k, \frac{\left(m+\frac{1}{2}\right) \pi}{36}\right) \tag{11.20}
\end{equation*}
\]

If the Fourier series given by equation (11.18) is truncated at some particular N as indicated, the effect is to smooth out some of the sampling variation in the data under the assumption that the spectrum is not too complex a function. Since there are only 36 points to fit for a given \(k\), for \(N\) large enough a perfect fit within the resolution of the data could be obtained.

The coefficients, \(a_{n}(\mu)\) and \(b_{n}(\mu)\), in equation (11,18) can be computed for a given \(\mu_{k}=2 \pi k / 96\), by equations (11.21) and (11,22).
\[
\begin{align*}
& a_{n}(k)=2 \sum_{m=-18}^{+17} F\left(k, \frac{\left(m+\frac{1}{2}\right) \pi}{36}\right) \cdot \cos \left(\frac{2 n\left(m+\frac{1}{2}\right) \pi}{36}\right) \tag{11,21}\\
& b_{n}(k)=2_{m=-18}^{+17} F\left(k, \frac{\left(m+\frac{1}{2}\right) \pi}{36}\right) \cdot \sin \left(\frac{2 n\left(m+\frac{1}{2}\right) \pi}{36}\right)
\end{align*}
\]

A measure of the variation in \(F(k, \theta)\) is given by
\[
\begin{equation*}
M_{T}=\frac{36}{k} \sum_{\theta}[F(k, \theta)]^{2} \tag{11,23}
\end{equation*}
\]
and since
\[
\begin{equation*}
M_{N}=\int_{-\pi / 2}^{\pi / 2}[f(\mu, \theta)]^{2} d \theta=\frac{1}{\pi}\left[1+\frac{1}{2} \sum_{n=1}^{N}\left[\left(a_{n}(k)\right)^{2}+\left(b_{n}(k)\right)^{2}\right]\right] \tag{11.24}
\end{equation*}
\]
the closeness of the fit for a given \(N\) is given by
\[
\begin{equation*}
\mathrm{R}_{\mathrm{N}}=\mathrm{M}_{\mathrm{N}} / \mathrm{M}_{\mathrm{T}} \tag{11.25}
\end{equation*}
\]

If \(\mathrm{R}_{\mathrm{N}}\) is one, the fit is perfect for the available data.
Equation (11.18) can also be put in the form of equation (11.26).
\[
\begin{equation*}
f(\mu, \theta)=\frac{1}{\pi}\left[1+\sum_{n=1}^{\mathbb{N}} c_{n}(\mu) \cos \left(2 n\left(\theta-\gamma_{n}\right)\right)\right] \tag{11,26}
\end{equation*}
\]
for \(\theta_{m}(\mu)=\pi<\theta<\theta_{m}(\mu)\), where
\[
\begin{equation*}
c_{n}(\mu)=\left[a_{n}^{2}(\mu)+b_{n}^{2}(\mu)\right]^{1 / 2} \tag{11.27}
\end{equation*}
\]
and
\[
\begin{equation*}
\gamma_{n}(\mu)=\frac{1}{2 n} \tan ^{-1} \frac{b_{n}(\mu)}{a_{n}(\mu)} \tag{11.28}
\end{equation*}
\]

The values of \(c_{n}{ }^{*} \gamma_{n}\). and \(R_{n}\) for \(n\) equal to \(1,2,3,4\), and 5 were computed by means of the IBM 650 for each \(k\) in Table 11.6. The results are given in Table 11.11. The values of \(c_{n}\) and \(\gamma_{n}\) areplotted as a function of \(k\) in figure 11.30.

The values of \(c_{1}\) and \(\gamma_{1}\) show a fairly smooth variation with \(k\) as do also the values of \(c_{2}\) and \(\gamma_{2}\) " The values of \(c_{3}, c_{4}\), and \(c_{5}\) are low and somewhat erratic, and the values of \(\gamma_{3}: \gamma_{4}, \gamma_{5}\) are highly variable

Figure 11.30
\(C_{n}\) AND \(\gamma_{n}\) AS A FUNCTION OF \(k\) 229

Table 11.11. Fourier coefficients, phases and goodness of fit for the analysis of the angular variation.
\begin{tabular}{llllllllll}
k & 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 & 19 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \(\mathrm{C}_{1}\) & 1.29 & 1.24 & 1.21 & 1.16 & 1.10 & 0.97 & 0.93 & 0.85 & 0.82 \\
\hline \(\gamma_{1}\) & \(-28.3^{\circ}\) & \(-30.2^{\circ}\) & \(-29.8{ }^{\circ}\) & \(-29.7^{\circ}\) & \(-25.7^{\circ}\) & \(-19.60\) & \(-18.6^{\circ}\) & \(-14,2^{\circ}\) & \(-13.7^{\circ}\) \\
\hline \(\mathrm{R}_{1}\) & . 951 & . 969 & . 963 & . 983 & . 975 & . 934 & . 911 & . 934 & . 917 \\
\hline \(\mathrm{C}_{2}\) & 0.32 & 0.24 & 0.16 & 0.17 & 0.17 & 0.29 & 0.37 & 0.31 & 0.36 \\
\hline \(\gamma 2\) & \(-23.4{ }^{\circ}\) & \(-27.2^{\circ}\) & \(-21.5^{\circ}\) & \(-26.6^{\circ}\) & \(-13.0^{\circ}\) & \(+0.3^{\circ}\) & \(+1.8^{\circ}\) & \(+2.1{ }^{\circ}\) & \(+4.3{ }^{\circ}\) \\
\hline \(\mathrm{R}_{2}\) & . 978 & . 985 & . 970 & . 991 & . 985 & . 960 & . 954 & . 967 & . 963 \\
\hline \(\mathrm{C}_{3}\) & 0.14 & 0.12 & 0.21 & 0.08 & 0.13 & 0.24 & 0.26 & 0.23 & 0.24 \\
\hline \(\gamma_{3}\) & \(-10.9^{\circ}\) & \(-10.0^{\circ}\) & \(-4.0^{\circ}\) & \(-3.2{ }^{\circ}\) & \(-1.7^{\circ}\) & \(-8.3^{\circ}\) & \(2.1{ }^{\circ}\) & \(-1.6^{\circ}\) & \(-1.3^{\circ}\) \\
\hline \(\mathrm{R}_{3}\) & . 983 & . 988 & . 982 & . 993 & . 990 & . 979 & . 976 & . 985 & . 982 \\
\hline \(\mathrm{C}_{4}\) & 0.09 & 0.10 & 0.17 & 0.11 & 0.13 & 0.19 & 0.20 & 0.12 & 0.06 \\
\hline \(\gamma_{4}\) & \(+10.1^{\circ}\) & \(+8.3^{\circ}\) & -8,00 & \(-7.1^{\circ}\) & \(-4.3{ }^{\circ}\) & \(-3.10\) & \(-2.8{ }^{\circ}\) & -0.1 \({ }^{\circ}\) & \(-4.7^{\circ}\) \\
\hline \(\mathrm{R}_{4}\) & . 985 & . 991 & . 991 & . 997 & . 995 & . 990 & . 988 & . 990 & . 984 \\
\hline \(\mathrm{C}_{5}\) & 0.02 & 0.02 & 0.08 & 0.03 & 0.06 & 0.13 & 0.15 & 0.10 & 0.13 \\
\hline 85 & \(+4.4^{\circ}\) & \(-5.7^{\circ}\) & \(+8.6^{\circ}\) & \(+8.8{ }^{\circ}\) & \(+9.0^{\circ}\) & -7.70 & \(-5.40\) & \(2.5^{\circ}\) & \(5.7{ }^{\circ}\) \\
\hline \(\mathrm{R}_{5}\) & . 985 & . 992 & . 993 & . 997 & .996 & . 995 & . 995 & . 993 & . 989 \\
\hline
\end{tabular}

Table 11.11 (Cont.)
\(\begin{array}{lllllllll}\mathrm{C}_{1} & 0.66 & 0.76 & 0.78 & 0.70 & 0.56 & 0.54 & 0.55 & 0.53\end{array}\)
\(\gamma_{1}+14.9^{\circ}-11.8^{0}-3.3^{\circ}=5.3^{\circ} \quad 0.2^{0}+2.2^{0}-0.6^{\circ}+10.4^{\circ}\)
\(\begin{array}{llllllll}\mathrm{R}_{1} & .974 \quad .885 & .847 & .910 & .879 & .859 & .906 & .854\end{array}\)
\(\begin{array}{lllllllll}C_{2} & 0.45 & 0.45 & 0.48 & 0.37 & 0.32 & 0.25 & 0.22 & 0.37\end{array}\)
\(\begin{array}{lllllllll}\gamma_{2} & +3.8^{\circ} & 2.1^{\circ} & 4.9^{\circ} & 6.5^{\circ} & 2,3^{\circ} & 3.5^{\circ} & 3.5^{\circ} & 5.5^{\circ}\end{array}\)
\(\begin{array}{lllllllll}R_{2} & .949 & .955 & .928 & .961 & .918 & .882 & .925 & .905\end{array}\)
\(\begin{array}{lllllllll}C_{3} & 0.15 & 0.08 & 0.19 & 0.05 & 0.19 & 0.15 & 0.05 & 0.14\end{array}\)
\(\gamma_{3} \quad-5.5^{\circ} \quad-6.1^{\circ}+9.8^{\circ} \quad 6.3^{\circ}-12.3^{\circ} \quad 7.5^{\circ} \quad 3.4^{\circ}-4.9^{\circ}\)
\(\begin{array}{llllllll}R_{3} & .956 & .957 & .940 & .962 & .932 & .891 & .926\end{array}\) \(\begin{array}{lllllllll}\mathrm{C}_{4} & 0.12 & 0.15 & 0.34 & 0.23 & 0.06 & 0.29 & 0.16 & 0.27\end{array}\) \(\gamma_{4}-2,6^{\circ}+6.1^{\circ}+6.3^{\circ}-1.7^{\circ}+3.1^{\circ}+6.0^{\circ} 4.9^{\circ}-1.8^{\circ}\) \(\begin{array}{lllllllll}R_{4} & .962 & .964 & .978 & .980 & .933 & .923 & .936 & .938\end{array}\) \(\begin{array}{lllllllll}C_{5} & 0.13 & 0.11 & 0.16 & 0.08 & 0.11 & 0.32 & 0.10 & 0.07\end{array}\) \(\gamma_{5} \quad-0.4^{0}-3.0^{0} \quad-5,9^{\circ} \quad-4.5^{0} \quad 7.1^{0} \quad 8.0^{0} \quad-7.5^{0}+5.1^{0}\) \(\begin{array}{lllllllll}R_{5} & .967 & .969 & .986 & .982 & .937 & .962 & .940 & .940\end{array}\)
especially when one notes the way in which \(\gamma_{n}\) is defined.
The values of \(R_{1}\) range from 0.983 to 0.847 and the average value is 0.918 . Thus over 90 percent of the angular variation on the average is explained by the values of \(c_{1}\) and \(\gamma_{1}\). The values of \(R_{2}\) range from 0.991 to 0.882 and the average value is 0.955 . Over 95 percent of the angular variation is explained, on the average, by the values of \(c_{1}, \gamma_{1^{2}} c_{2}\) and \(\gamma_{2}\). The erratic behavior of the other coefficients is explained as an attempt to fit the sampling variation of the data.

The graphs of \(c_{1}, \gamma_{1}, c_{2}\), and \(\gamma_{2}\) do not vary as a function of \(k\) very rapidly. It would not be difficult to express them as some what smoothed functions of \(k\) (and hence \(\mu\)) over the range of \(k\) from 11 to 27 . The result would then be given by equations (11.29): (11.30), (11.31) and (11.32).
\[
\begin{equation*}
c_{1}=c_{1}^{*}(\mu) \tag{11.29}
\end{equation*}
\]
\[
\begin{equation*}
\gamma_{1}=\gamma_{1}{ }^{*}(\mu) \tag{11.30}
\end{equation*}
\]
\[
\begin{equation*}
c_{2}=c_{2}^{*}(\mu) \tag{11.31}
\end{equation*}
\]
\[
\begin{equation*}
\gamma_{2}=\gamma_{2}^{*}(\mu) \tag{11.32}
\end{equation*}
\]

The directional spectrum could then be defined analytically as a function of frequency and direction by equation (11.33) in which precautions would have to be taken to insure that the square bracket on the right was always positive.
\[
\begin{align*}
{[A(\mu, \theta)]^{2}=\frac{\pi}{2} \frac{c e^{-2 g^{2} / \mu^{2} v^{2}}}{\mu^{6}} } & \cdot \frac{1}{\pi}\left[1+c_{1}^{*}(\mu) \cos \left(2\left(\theta-\gamma_{1}^{*}(\mu)\right)\right)\right. \tag{11.33}\\
& \left.+c_{2}^{2^{*}}(\mu) \cos \left(4\left(\theta-\gamma_{2}^{*}(\mu)\right)\right)\right]
\end{align*}
\]

Also \(f(\mu, \theta)\) would have a. minimum in the first quadrant as a function of \(\theta\)
for a fixed \(\mu\). Let this minimum be \(\theta_{\mathrm{m}}^{*}(\mu)\). Then \((11,33)\) would be defined as above for
\[
\theta_{m}^{*}(\mu)-\pi<\theta<\theta_{m}^{*}(\mu)
\]
and by zero otherwise.
The analytic expression determined as outlined above could then be transformed to Cartesian coordinates in the \(\alpha, \beta\) plane as described in Part 8. If the function \([A(\alpha, \beta)]^{2}\) so obtained were integrated over a square of the area of one of the squares in the U(r,s) plane the resulting number would then be quite close to the computed values of \(U(r, s)\) and it would certainly agree within possible sampling variations with the computed number. However, such an analytic expression would still reflect certain features of the observed data and the wind field which generated the waves which would be difficult to generalize to other cases. In what follows this point will be discussed in more detail and a simpler analytical expression derived for wave forecasting purposes.

\section*{Properties of the directional spectrum}

By means of the data tabulated and graphed so far, in particular by means of Tables \(11,6,11,10\), and 11,11 and by means of figures \(11,22,11,26\), 11.27, and 11.29 , certain properties of the sea generated by the local winds in the area where the data were obtained can be summarized.

These properties are (1) that the integral over direction of the direcs tional spectrum agrees remarkably well as a function of frequency with the theoretical spectrum derived by Neumann for an 18.7 knot wind, (2) that the angular spectrum is concentrated over narrower angular range for long waves
(low frequencies) and spread out over a wider range for short waves (high frequencies) and (3) that the integrated spectrum continues as predicted into higher frequencies as determined by the wave pole data. The properties should be expected to be the same for other spectra obtained for other conditions at other times.

There are other properties of the particular spectrum studied which are in part probabiy due to sampling variation and in part due to the particular local wand f.eld which generated the waves. The values of \(\gamma_{1}\) show that the peak in the angular variation of the spectrum shifts from what corresponds to \(180^{\circ}\) in figure 11.29 to \(140^{\circ}\) as the frequency increases from \(2 \pi(11) / 96\) to \(2 \pi(27)\) i96. Also a secondary peak a.t frequencies corresponding to \(2 \pi(16) / 96.2 \pi(3) / 96,2 \pi i 18) / 96\) : and perhaps even for higher frequencies, is indicated in figure 11.22, and by the high values of \(c_{2}\) and the values of \(\gamma_{2}\) in figure 11 . 30. This secondary peak causes the graphs in figure 11.22 to have the property that they are not even functions about some central value of the direction. The change in \(\gamma_{1}\) can be explained partly by sampling variation and partly by the fact that the local wind direction was reported to be from \(330^{\circ}\) and the winds further to the north were from \(360^{\circ}\). Possibly the winds to the north were the ones which generated the longer waves. The skewness of the curves for the angular variation may or may not be real in the sense that it would still show up in a spectrum with a larger number of degrees of freedom. However, it should also be noted that there is a wind shear present over the area of wave generation with the property that the
wind speed increases from east to west across the area under study. A possible effect of the shear would be to produce the skewness in the angular variation as indicated. At some future time it may be possible to extend the concepts of wave theory to permit a representation of the local wave spectrum as a function of wind velocity and wind direction locally and as a function of the change of wind direction up wind and the shear in wind velow city cross wind. To do this would require a greater number of degrees of freedom than this study has obtained, several different spectra for different wind conditions, and a very detailed study of the wind fields.

\section*{An idealized directional spectrum}

For the present purpose, however, it is desirable to attempt to idealize the results obtained so as to reflect the three results pointed out above and so as to eliminate sampling variation and the effects of changing wind direction and wind shear. It will therefore be assumed that. \([A(\mu, \theta)]^{2}\) is an even function about the local wind direction and that its peak value falls at \(\theta=0\). The values of \(c_{1}(\mu)\) as tabulated above thus determine the amplitude of the \(\cos 2 \theta\) term and \(\gamma_{1}(\mu)\) is assumed to be zero. (This implies a rotation of \(-30^{\circ}\) for the axes in the figures given above if it is desired to approximate the peak of the spectrum.)

After considerable subjective curve fitting and trying a number of possible functions which did not do as well, it was found that \(c_{1}\) could be approximated by the following function of frequency and wind speed where the values are in c. g.s. units and \(v\) is \((18.7 \times 51.5) \mathrm{cm} / \mathrm{sec}\).
\[
\begin{equation*}
c_{1}=0.50+0.82 e^{-(\mu v / g)^{4} / 2} \tag{11.34}
\end{equation*}
\]

The function \(f(\mu, \theta)\) can then be given by
\[
\begin{equation*}
f(\mu, \theta)=\frac{1}{\pi}\left[1+\left(0.50+0.82 e^{-(\mu v / g)^{4} / 2}\right) \cos 2 \theta+c_{2} \cos 4 \theta\right] \tag{11.35}
\end{equation*}
\]
for \(-\pi / 2<\theta<\pi / 2\).
Since the values of \(c_{1}\) are greater than one for small \(\mu, f(\mu, \theta)\) becomes negative for \(\theta\) near \(\pm \pi / 2\), and this is not permissible. To avoid this, \(c_{2}\) must be chosen so as to make \(f(\mu, \theta)\) everywhere positive.

\section*{Since}
\[
\begin{equation*}
\cos 2 \theta=2(\cos \theta)^{2}-1 \tag{11.36}
\end{equation*}
\]
and since
\[
\begin{equation*}
\cos 4 \theta=8(\cos \theta)^{4}-8(\cos \theta)^{2}+1 \tag{11.37}
\end{equation*}
\]
equation (11.35) can be rewritten as equation (11.38).
\[
\begin{align*}
f(\mu, \theta) & =\left[1-0.50-0.82 e^{-(\mu v / g)^{4} / 2}+c_{2}\right] \tag{11.38}\\
& +\left[1.00+1.64 e^{-(\mu v / g)^{4} / 2}-8 c_{2}\right](\cos \theta)^{2}+8 c_{2}(\cos \theta)^{4}
\end{align*}
\]

In order to keep the term independent of \(\theta\) always positive, the smallest possible value of \(c_{2}\) is given by
\[
\begin{equation*}
c_{2}=0.32 e^{-(\mu v / g)^{4} / 2} \tag{11.39}
\end{equation*}
\]

The function, \(f\{\mu, \theta)\) can then be written in two alternative forms as equations (11.40) and (11.41),
(11.40) \(f(\mu, \theta)=\frac{1}{\pi}\left[1+\left(0.50+0.82 \mathrm{e}^{-(\mu \mathrm{v} / \mathrm{g})^{4} / 4}\right) \cos 2 \theta+\left(0.32 \mathrm{e}^{-(\mu \mathrm{v} / \mathrm{g})^{4} / 4}\right) \cos 4 \theta\right]\)
(11.41) \(f(\mu, \theta)=\frac{1}{\pi}\left[0.50\left(1-e^{-(\mu v / g)^{4} / 2}\right)+\left(1.00-0.92 e^{-(\mu \mathrm{v} / g)^{4} / 2}\right)(\cos \theta)^{2}\right.\)
\[
\left.+\left(2.56 \mathrm{e}^{-(\mu v / g)^{4} / 2}\right)(\cos \theta)^{4}\right]
\]

A value of \(c_{2}\) greater than 0.33 would make the coefficient of \((\cos \theta)^{2}\) in (11.41) negative for small \(\mu\) with the accompanying possibility of negative values for \(f(\mu, \theta)\).

The curves for \(c_{1}\) and \(c_{2}\) are graphed against the observed values of \(c_{1}\) and \(c_{2}\) in figure 11.31. The fit is fairly good for \(c_{1}\); and for \(c_{2}\) for frequencies corresponding to k equal to 11 through 15 , the fit is not too bad. The extension of the curves outside of the region where data are available is quite arbitrary. For the longer waves the value of (11.38) has little total effect on the spectrum because the energy is very low there. For the shorter waves if \(c_{1}\) became less than 0.50 , the effect would be even greater angular spreading. Note that in figure \(11.30 \gamma_{1}\) and \(\gamma_{2}\) are close together for \(k\) equal to 11 through 14 , and that in a sense the value of \(c_{2}\) used above is only the in-phase part of \(\cos 4 \theta\) with respect to the original data when k is larger.

A possible functional form for the directional spectrum of a wind generated sea is finally given by equation (11.42) if the wind is uniform in direction and speed over the area of wave generation and if the sea is fully developed.
(11.42) \([A(\mu, \theta)]^{2}=\frac{\pi}{2} \frac{c e^{-2(g / \mu v)^{2}}}{\mu^{6}} \cdot \frac{1}{\pi}\left[1+\left(0.50+0.82 \mathrm{e}^{-(\mu \mathrm{v} / \mathrm{g})^{4} / 2}\right) \cos 2 \theta\right.\)
\[
\left.+\left(0.32 \mathrm{e}^{-(\mu \mathrm{v} / \mathrm{g})^{4} / 2}\right) \cos 4 \theta\right]
\]
for \(-\pi / 2<\theta<\pi / 2\), and zero otherwise.

This idealized directional spectrum still comes fairly close to agreeing with the curves in 11.22. After proper angular rotation, the \((\cos \theta)^{4}\) term will give good agreement with the curves for low frequencies. Agreement with the higher frequencies is also good. The secondary peak and the skewness at intermediate frequencies is missed.

Caution is recommended in the use of equation (11.42). Within the limitations mentioned above it comes close to describing the sea observed for a wind near 18.7 knots. For higher or lower values of the wind speed, however, it may not work although as a working hypothesis it may lead to useful results. Since only one spectrum was observed the variation in \(v\) of \(f(\mu, \theta)\) as fitted cannot be tested. One could on the basis of the available data put \(v=18.7\) knots inside the square brackets of equation (11.42) and say that variation in \([A(\mu, \theta)]^{2}\) as a function of \(v\) is caused solely by the occurrence of \(v\) in the first term.

However, there are two additional points that can be made in favor of equation (11.42) as written. They are that it would appear to give more realistic swell forecasts than previously used formulas, and that the mean square slope of the sea surface still varies linearly with wind speed as observed by Cox and Munk [1954].

A previously given equation for the directional spectrum of a wind generated sea [Pierson, 1955] is shown in equation (11.43).
\[
\begin{equation*}
[A(\mu, \theta)]^{2}=\frac{c e^{-2(g / \mu v)^{2}}}{\mu^{6}}(\cos \theta)^{2} \tag{11.43}
\end{equation*}
\]
for \(-\pi / 2<0<\pi / 2\), and zero otherwise。

Equation (11.42) can also be written as equation (11.44).
\[
\begin{gather*}
{[A(\mu, \theta)]^{2}=\frac{c e^{-2(g / \mu v)^{2}}}{\mu^{6}}\left[0.25\left(1-\mathrm{e}^{-(\mu v / g)^{4} / 2}\right)+\left(0.50-0.46 \mathrm{e}^{-(\mu v / g)^{4} / 2}\right) \cdot\right.} \tag{11.44}\\
\left.(\cos \theta)^{2}+\left(1.28 \mathrm{e}^{-(\mu v / g)^{4} / 2}\right)(\cos \theta)^{4}\right]
\end{gather*}
\]
for \(-\pi / 2<\theta<\pi / 2\), and zero otherwise.
If \(\mu\) is small, the angular term in \((11.44)\) becomes \(0.04(\cos \theta)^{2}+1.28(\cos \theta)^{4}\)
which shows that the spectrum is more peaked at low frequencies than had been assumed in (11.43). Conversely if \(\mu\) is larger, the angular term in (11.44) becomes \(0.25+0.50(\cos \theta)^{2}\) which shows that the spectrum is more evenly spread out at high frequencies than had been assumed previously.

The angular spreading factor used in Pierson, Neumann and James [1955] can be derived from equation (11.43) and it is given by equation (11.45).
\[
\begin{equation*}
F(\theta)=\frac{1}{2}+\frac{\theta}{\pi}+\frac{\sin 2 \theta}{2 \pi} \text { for }-\pi / 2<\theta<\pi / 2 \tag{11.45}
\end{equation*}
\]

The angular spreading factor from equation (11.42) can be written as equation (11.46).
(11.46) \(\quad F(\mu, \theta)=\frac{1}{2}+\frac{\theta}{\pi}+\frac{\left(0.50+0.82 \mathrm{e}^{-(\mu \mathrm{v} / g)^{4} / 2}\right) \sin 2 \theta}{2 \pi}+\frac{\left.0.32 \mathrm{e}^{-(\mu \mathrm{v} / \mathrm{g})^{4} / 2}\right) \sin 4 \theta}{4 \pi}\) for \(-\pi / 2<\theta<\pi / 2\).

The curves for \(f(\theta)\) as given by (11.45) and for \(F(\mu, \theta)\) with \(\mu=0\) and \(\mu=\infty\) as given by (11.46) are given in figure 11.32. Equation (11.43) is seen to be a compromise between the two extremes indicated by equation (11.42).

The new results, if correct, indicate that long period swell will be higher on a line through the center of the generating area parallel to the wind direction than it would be using the methods of Pierson, Neumann and James [1955] and that the short period waves which follow later would be lower. Stated another way, the long period components of the spectrum are more concentrated in

Fig. 11.32
the direction of the wind and hence in general they should be observed at a greater distance than the short period components which spread angularly over a wide area outside of the generating area. These results are thus another reason, apart from possible effects of wiscosity, why swell has a higher period than the waves in the area of generation and why short period swell is seldom observed.

It should be noted that \(\mu \mathrm{v} / \mathrm{g}\) is just another way to write \(\mathrm{v} / \mathrm{c}\) where c is the phase velocity of the spec ral component, and it will not be too difficult to write a brief modification of Clapter 3 of H. O. Pıb. 603 which will employ a family of angular spreading diagrams as a function of \(\mathrm{v} / \mathrm{c}\) and permit better swell forecasts.

Cox and Muni: [1954] have found that the variance of the slope of the sta surface increases linearly with the wind velocity and that the theoretical spertrum of Neumann [1954] correctly predicts the total slope variance of the gravity wave part of the spectrum.

The upwind slope variance is given by equation (11.-47) and the orosswind slope variance is giver by equation (11.48). (See Pierson, [1955].)
\[
\begin{align*}
& \sigma_{x}^{2}=\int_{0}^{\infty} \int_{-\pi / 2}^{\pi / 2}[A(\mu, \theta)]^{2} \frac{\mu^{4}}{g^{2}}(\cos \theta)^{2} d \theta \operatorname{di} \tag{11.47}\\
& \sigma_{y}^{2}=\int_{0}^{\infty} \int_{-\pi / 2}^{\pi / 2}[A(\mu, \theta)]^{2} \frac{\mu^{4}}{g^{2}}(\sin \theta)^{2} d \theta r \mu
\end{align*}
\]

When equation (11.42) is substituted into equation (11.47) the result can be simplified to the form of equation (11.49) where \(v\) is in meters/sec.
\((11.49) \sigma_{\mathrm{x}}^{2}=1.59 \times 10^{-3} v\left[0.50+0.125+\frac{0.205}{2} \int_{0}^{\infty} e^{-a^{2} / 2 \cdots 8 / a^{4}} d a\right]\)

The contribution of the integral to equation (11.49) is quite small and the value of \(\sigma_{X}^{2}\) can be given by equation \((11,50)\) where \(v\) is in metexs per second.
\[
\begin{equation*}
\sigma_{x}^{2}=0.99 \cdot 10^{-3} \mathrm{v} \tag{11.50}
\end{equation*}
\]

Similarly \(\sigma_{y}^{2}\) can be found to be equal to
\[
\begin{equation*}
\sigma_{y}^{2}=0.60 \cdot 10^{-3} \mathrm{v} \tag{11.51}
\end{equation*}
\]

These values of the upwind and crosswind slope contributions are in better agreement with the observations than those which result from equation (11.43) although Cox and Murk found \(\sigma_{x}^{2}\) and \(\sigma_{y}^{2}\) to be nearly equal. Perhaps the discrepancy can be explained by the nature of the site at which they obtained their observations.*

If the ratio: \(\mu v / g\), used in deriving equation (11.42) had been of the form \(\mu v_{o} / g\) where \(v_{o}\) is a constant equal to the wind observed at the time of the observation, then the integral over \(a\) would be a function of \(v\) such that the exponent would be \(\left(-a^{2} / 2-8 /(v a)^{4}\right)\). For a surface wind of \(15 \mathrm{~m} / \mathrm{sec}\) there would be a tendency toward a greater contribution to \(\sigma_{x}^{2}\) than observed by Cox and Munk, and similarly a. smaller contribution to \(\sigma_{\mathrm{y}}^{2}\).

Barber [1954] has studied the angular variation of waves with a period near two seconds in Waitemata Harbour, Auckland, He found an angular variation somewhat like \([\cos \theta]^{4}\). However, his results cannot be compared with these results as he writes that "the wind was about 15 knots and 2 sec waves * See also the end of this chapter.
were dominant; but because the fetch in the wind direction was much greater than elsewhere, it is not expected that the [results] will apply to open water."

\section*{Aliasing in the directional spectrum}

As shown in figure 11.26 the computed wave pole spectrum at high frem quencies is a little high compared to the theoretical Neumann spectrum. The computed energy at \(f{ }_{f}\) equencies greater than a value corresponding to a \(k\) of 27.5 is \(0.57(\mathrm{ft})^{2}\). Some of this energy is aliased in the directional spectrum back into longer wavelengths. The amount aliased is certainly less than 0.57 because part of the above value is probably white noise and part is correctly located in the corners of the rectangular area of the directional spectrum analysis. Only about \(0.37(\mathrm{ft})^{2}\) lies above \(k\) equal to 31 and hence some part of \(0.20(\mathrm{ft})^{2}\) is correctly located. Thus as a very crude estimate something of the order of \(0.25(f t)^{2}\) is actually aliased over the directional spectrum. When spread out over a wide frequency and angular range, this aliased energy is undetectable because of the sampling variation in the higher unaliased values.

\section*{Correction to the covariance surface}

The covariance surface given in figure 11,15 still has errors due to
white noise and column noise in it. The correction for white noise is to sub\(\operatorname{tract} 0.56\left(\mathrm{~mm}^{2} \times 100\right)\) (that is, \(\left.0.54 \times 1.032\right)\) from \(\mu(0,0)\) and 0.191 from the central column (\(0.186 \times 1.032\)). The result is the estimated covariance surface of the sea plus the swell as shown in figure 11,33. The major effects are to reduce the peak at the center, and hence increase the correlation of the edges with

FIGURE 11.33 CORRECTED COVARIANCE SURFACE
the center, and to push the zero contour more realistically to the left along the -q axis.

It would not be too difficult to remove the effect of the swell from the covariance surface and to obtain an estimated covariance surface for the sea. However, as Tukey and Hamming [1949] have pointed out the covariance estimates are subject to even more erratic sampling variation than the smoothed spectral estimates and this sampling variation is not well understood.

For example, Tukey [1951] has shown covariance functions computed from portions of the same time series. They were markedly different and yet the spectra computed from the different covariance functions were very similar.

For many types of problems in which knowledge of the covariance function is needed, it has been found that reinverting the smoothed spectral estimates will yield a more reliable covariance surface. Also for simpler problems the simplified spectrum given above which is symmetrical about \(\theta=0\) would give a more tractable covariance surface.

\section*{Alternate procedures for determining directional spectra}

A number of alternate procedures for determining directional properties of waves have been proposed and attempted.

The methods used by Barber [1954], essentially directional antenna arrays, are by far the simplest and most economical if fixed positions for the wave poles can be maintained. The effects of refraction and perhaps bottom friction and percolation, however, make it difficult to generalize to open sea conditions and study the full range of components in the spectra.

Another way is to take wave records from a moving ship by means of the shipborne wave recorder as described by Cartwright[1956]. The ship is run on courses corresponding to an \(n\) sided polygon and the shift in frequency of the spectral components is studied. With enough degrees of freedom per spectral estimate, it should be possible (in principle) to resolve the spectral estimates into a directional spectrumby the inversion of some simultaneous linear equations in an appropriate number of unknowns somewhat along the lines of the method described by Pierson[1952]. However, if the response of the instrument to the waves is different for different headings due to the presence of the ship and if the records are too short so that sampling variation from record to record is pronounced, then the difficulties to be encountered will be even greater than those encountered in this report. Although some of the data reduction might be eliminated by analogue methods, the procedure would have essentially the same degree of complexity as the one used in this report.

The latest proposed procedure for determining directional spectra is given by Longuet-Higgins [1957]. The records from an airborne altimeter capable of measuring \(\eta(x, y)\) and \(\partial \eta(x, y) / \partial t\) are assumed at the starting point, and then by computing various moments from the data as determined by such quantities as the average distance between successive zeros at various headings and the velocity distribution of zeros, the moments of the spectrum are obtained. Then by an inversion technique the spectrum is deduced.

Pierson [1952] proposed the use of anairborne altimeter to determine the directional spectrum. The method of analysis involved the study of the
spectra obtained at different headings and the solution of a set of simultaneously linear equations.

From the results of this present study, it can be stated that the method proposed by Longuet-Higgins[1957] is not likely to be successful, especially with respect to a sea. Since the data are taken at different times at different headings, each record has a different sampling variation for each spectral estimate. The various moments thus have wide sampling variation.

Moreover, eighth moments are required to give any sort of definition to the spectrum. For the true sea surface the eighth moment is entirely determined by the capillary waves on the water. Some sort of filtering action would be needed in the recording instruments to maintain pure gravity wave conditions otherwise a problem in resolution would arise due to the extreme range of wavelengths covered. The effect of such filters would have to be incorporated in the theory.

Even with the capillary waves filtered out there would be high frequency error noise of some sort or another present in the data. In computing an eighth moment, this noise would blow up beyond all recognition and completely obviate the value of the estimated moment.

In contrast the methods used in this study effectively suppress high frequencies whether real or due to errors in the data. Also various sources of error which will undoubtedly be present in any method of recording waves were isolated and removed.

The very valuable results of Longuet-Higgins [1957] on the statistical
properties of a random moving surface can most efficiently be applied by using the moments computed from the corrected spectrum obtained in this study and allowing for the effects of the white noise and column errors.

\section*{Winds}

The winds as observed by the R.V. Atlantis were measured by means of a three cup anemometer and a wind vane. The three cup anemometer and the vane were mounted at the end of the main boom above the upper laboratory of the Atlantis at a height of 15 to 18 ft above sea level. The dial of the anemometer was read visually to get the wind speeds. The winds as observed might have been a little high compared to undisturbed measurements over open water due to the presence of the ship.

The theory of the Neumann spectrum is based on observations of the wind at a height of about 25 feet above the sea level. If a logarithmic wind profile is used with a roughness coefficient of 0.75 cm (Neumann [1948]), and if 15 feet is used for the anemometer height of the Atlantis, the 18.7 knot wind becomes a 20 knot wind at 25 feet. It becomes a 19.5 knot wind if 18 feet is used.

The theoretical spectra for 19 and 20 knots are also shown in figure 11.26. On consideration of the confidence bands of the composite spectrum, especially near the peak where there are only 22 degrees of freedom, the variability of the winds during the time when the 18.7 knot average was obtained, and the compensating effects of the presence of the ship and the cor-
rection to a greater height, it is only possible to conclude that the agreement is satisfactory within the range of possible variation of wind speed and true spectral values, and that there is certainly no justification for changing the constant in the Neumann spectrum.

\section*{Added notes on the results of Farmer}

Farmer [1956] has made further measurements of wave slopes on the windward side of Bermuda. He therefore had an unlimited fetch of open water over which the sea was generated in contrast to the results of Cox and Munk [1954] in which some islands may have interfered with the fetch as pointed out by Darbyshire [1956].

Farmer [1956] found essentially the same total slope variance as Cox and Munk [1954]. The ratios of upwind downwind to total slope variance found by Farmer were \(0.57,0.60\), and 0.77 , and these compare quite favorably to the theoretical value of 0.625 given by equation (11.49).

\section*{References to Parts 10 and 11}

Barber, N. F., [1954]: Finding the direction of travel of sea waves. Nature, v. 174, p. 1048.

Cartwright, D.E., [1956]: On determining the directions of waves from a ship at sea. Proc. Royal Soc., A, 234, 382-387.

Cox, C., and W.H. Munk [1954]: Statistics of the sea surface derived from sun glitter. Jour. of Marine Research, 13(2), pp. 198-227.

Darbyshire, J., [1955]: An investigation of storm waves in the North Atlantic Ocean. Proc. Royal Soc. . A, v. 230, pp. 560-569.

Darbyshire, J., [1956]: An investigation into the generation of waves when the fetch of the wind is less than 100 miles. Q.J. R.M.S. , v. 82, Oct. 1956, pp. 461-468.

Farmer，H．G．［1956］：Some recent observations of sea suriace elevation and slope．Woods Hole Oceanographic Institution，Ref．No．56－37， （unpublished manuscript）．

Longuet－Higgins，M．S．［1957］；The statistical analysis of a random moving surface．Phil．Trans．Roy．Soc．Ser．A，no．966，v．249，pp． 321－387．

Neumann，Go，［1948］：Über den Tangentialdruck des Windes und die Rauhigkeit der Meeresoberfläche．Zeit。Meteorol。，H7／8，193－203．

Neumann，G．，［1954］：Zur Charakteristik des Seeganges．Archiv．f． Meteorol．Geophysik und Bioklimat．，ser．A，v．7，pp．352－37．7．

Neumann，Go，and W．J．Pierson，［1957a］：A comparison of various theo－ retical wave spectra．To appear in＂Proceedings of a Symposium on Ship Motions in Irregular Seas．＂Ned．Scheepsbouwkundig Proef－ station，Haagsteeg 2，Wageningen，Netherlands．

Neumann，G．and W．J．Pierson，［1957b］：A detailed comparison of various theoretical wave spectra and wave forecasting methods． （In preparation，to be submitted to Deut．Hydrogr．Zeits．）

Pierson，W．J．，［1952］：A unified mathematical theory for the analysis， propagation and refraction of storm generated ocean surface waves． Parts I and II．Research Division，College of Engineering，New York University，Department of Meteorology and Oceanography． Prepared for the Beach Erosion Board，Department of the Army， and the Office of Naval Research．

Pierson，W．J ，［1954］：An electronic wave spectrum analyzer and its use in engineering problems．Tech．Memo．No．56，Beach Erosion Board，Washington，D．C．

Pierson，W．J．。［1955］：Wind Generated Gravity Waves．In Advances in Geophysics，vo 2，Academic Press，Inc．，Publishers，New York，N．Y．

Pierson，W．J．，G．Neumann，and R．W．James，［1955］：Practical methods of observing and forecasting ocean waves by means of wave spectra and statistics．H．O．Pub．603．

Press，H．，and J．W．Tukey，［1956］：Power spectral methods of analysis and application in airplane dynamics．Flight Test Manual，Vol．IV， Instrumentation NATO Advisory Group for Aeronautical Research and Development，edited by E．J．Durbin．Part IVc，pp．ivc－l to ivc－41．

Roll, H. U., and G. Fischer, [1956]: Eine kritische Bemerkung zum Neumann-Spektrum des Seeganges. Deut. Hydrogr. Zeits., Band 9, Heft 1.

Tucker, M. J., [1956a]: Comparison of wave spectra as measured by the N. I. O. shipborne wave recorder installed in the R. V. Atlantis and the Woods Hole Oceanographic Institution wave pole. N.I.O. Internal Report No. A6.

Tucker, M. J., [1956b]: A shipborne wave recorder. Trans, of the Institution of Naval Architecture, v. 98, pp. 236-250.

Tukey, J.W., [1949]: The sampling theory of power spectrum estimates. Symposium on Applications of Autocorrelation Analysis to Physical Problems. Woods Hole, Mass., June 13-14 (Office of Naval Research, Washington, D.C.).

Tukey, J.W., [1951]: Measuring noise color. Bell Telephone Laboratories in Murray Hill, N. J. Prepared for distribution at a meeting of the Metropolitan Section Institute of Radio Engineers, 7 Nov. 1951.

\section*{Acknowledgments}

The help of Mr. Raymond Stevens, Mr. Rudolph Hollman, and Mr.
Roy E. Peterson in the preparation of this part of the work is greatly appreciated.

\section*{RECOMMENDATIONS AND CONCLUSIONS}

\section*{Conclusions}

The directional spectrum of a wind generated sea has been determined from stereo data after correcting the data for differential shrinkage, column noise, white noise and the presence of a swell. This spectrum shows a single peak and the contributions from different wavelengths cover a wide range of wavelengths and directions. When transformed to a frequency spectrum, with directional effects eliminated, the results are remarkably close to the theoretical spectrum derived by Neumann. The longer waves in the spectrum are concentrated over a narrower range of angles about the wind direction than the shorter waves.

The actual spectrum reflects some effects of sampling variation, wind shear, and changing wind direction upwind which are difficult to isolate because of the nature of the wind data and the sampling variation. When these are removed by simplifying assumptions, it is possible to obtain an analytic representation for the spectrum which appears consistent with known properties of swell and sea surface slopes.

The analytic representation which has been obtained rests upon somewhat shaky foundations as far as angular effects are concerned. However, for forecasting it would appear advisable to incorporate these results into the forecasting method without awaiting further verification. Certainly the results on which such a revision would be based are on firmer theoretical ground
than the results on which the original material was based.
The spectrum computed from the wave pole data does not agree with the spectrum computed from the stereo data nor with the corresponding theoretical Neumann spectrum. Variability in the spectrum due to wind variation of the order of one knot would explain the discrepancy. However, a more likely reason for the discrepancy appears to be in the calibration of the wave pole.

The numerical results which have been obtained provide valuable data on a wind generated sea for a fairly low wind speed. It will be particularly useful in studying the topography of the sea surface and in problems connected with seaplanes and small vessels.

\section*{Recommendations}

The use of stereo photographs to determine the directional spectrum of a sea has proved feasible. Due to attrition, an originally desired 50 degrees of freedom per spectral estimate was reduced to only 19. The computations were lengthy and difficult, but nevertheless results of considerable value were obtained.

It is difficult to generalize the results obtained to higher wind speeds, and one determination of a directional spectrum is not enough to provide comprehensive details on fully generated seas for a range of wind speeds.

It is therefore recommended that an experiment similar to the one described in this report be repeated for a fully developed sea at at least one higher wind speed. A wind of 24 knots, a fetch of 130 NM and a duration of

14 hours should not be too difficult to find. For these conditions the significant wave height would be nearly double and the \(E\) value would be nearly four times those observed for the 18.7 knot wind according to the results of Neumann.

If such distorting effects as differential shrinkage and column noise could be eliminated by proper choice of film and preliminary studies of their causes it would then be possible to allow a four-fold increase in the white noise variance without seriously affecting the results. This would permit the planes to fly higher, thus covering a larger area in one stereo pair and providing better resolution and more degrees of freedom. An appendix written by Simeon Braunstein, the Research Division photographer at New York University, follows these recommendations and conclusions. In it is given a discussion of the stability of different types of film bases and of film processing methods which should eliminate the effects of differential shrinkage.

In such an experiment more careful attention should be paid to the wind field, and winds should be recorded at least every hour for as long a time as possible prior to the observations. A decrease of wind speed in the wind field should be avoided. The winds, if possible, should be measured at several heights.

Moreover, now that a fairly good method of analysis for the results has been developed, it should be possible to program additional operations on the spectrum to carry out in just a few minutes all the computations made in Part 11.

As mentioned in Part ll, a calibration study of the wave pole is recommended, but for a new stereo study, it is recommended that the design of the wave pole be altered along the lines suggested by H. G. Farmer.

At or near the same time that the stereo and wave pole data are taken, it might be advisable to takerecords with an airborne altimeter as developed at the U.S. Navy Hydrographic Office and with shipborne wave recorders installed on several different types of vessels. The airborne altimeter could be flown at a number of different headings and the ships could be operated both hove to in head seas and on polygonal patterns as described by Cartwright. This would require an advance for ecast of a stationary state for at least four hours, but this should not be too difficult to achieve.

The wave pole data at the present time appear to be the only data capable of reproducing the higher frequencies correctly, and such data would still be needed. With stereo data, wave pole data, airborne altimeter data, and shipborne recorder data it will be possible to make exhaustive cross checks of the calibrations and responses of all the instruments and to study the relative utility of each.

With such exhaustive measurements of the sea state, additional data of interest to naval architects and electrical engineers could also be obtained at the same time. This would permit their theories and calculations to be based on a firm foundation consisting of adequate knowledge of the state of the sea at the time of their observations.

\title{
APPENDIX \\ The Dimensional Stability of Photographic Films
}

\section*{Abstract}

The dimensional stability of several photographic film bases to relative humidity, temperature, processing, handling, and storage is discussed. Permanent and temporary size changes are outlined. Recommendations for the choice, processing, and storage of film intended for photogrammetric use are made.

\section*{Sources of errors in stereo-photogrammetry}

In addition to optical factors, platform stability, camera tilt, etc., the inherent dimensional instability of flexible photographic film bases may contribute to error in measurements made from aerial stereo photographs. In order to minimize error due to the last cause, care must be taken in the choice of film, storage before and after exposure, processing, and handling.

Dimensional changes in photographic films may be classified under two headings: temporary and permanent. There are two factors involved in temporary changes: temperature and relative humidity.

\section*{Temperature effects}

The thermal coefficient of expansion of most common film bases (1944) is approximately \(5 \times 10^{-5}\) inches per inch per degree \(F\), or about 0.05 percent per \(10^{\circ} \mathrm{F}\). Table I shows the effect of temperature, as well as relative humidity and processing, on several film bases (Fordyce, Calhoun, and Moyer, 1955). The expansion is generally 10 to 40 percent greater in the widthwise than in the lengthwise direction. This is the result of the partial orientation of the molecules in the base in the machine direction. It is evidently easier, under these conditions, to increase the distance between them, either by thermal agitation, or by the introduction of moisture, in a direction perpendicular to this alignment.

\section*{Humidity effects}

The humidity coefficient of linear expansion of common films varies from a low of \(1.0 \times 10^{-5}\) for DuPont "Cronar" to about \(10 \times 10^{-5}\) inches per inch per 1 percent relative humidity change, for standard cellulose acetate. This effect is essentially linear between 20 and 70 percent relative humidity, and somewhat greater below 20 percent and above 70 percent. Photographic films exchange moisure with the air continually. The moisture content of a film is determined almost solely by the relative humidity of the air with which it is in equilibrium.

Table I. Average Processing Shrinkage, Humaidity Expansion and Thermal Expangen of Current Eastman Motion Picture Films.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Film} & \multirow[t]{2}{*}{Base} & \multicolumn{2}{|l|}{Processing shrinkage, \% (Tray development)} & \multicolumn{2}{|l|}{\begin{tabular}{l}
Humidity expansion per \(10 \%\) R.H., \% \\
(Range: \\
\(20 \%-70 \%\) R.H.)
\end{tabular}} & \multicolumn{2}{|l|}{Thermal expansion per 10 F, (Range \(0-100 \mathrm{~F}\))} \\
\hline & & Length & Width & Leugth & Width & Length & Width \\
\hline \multicolumn{8}{|l|}{Black-and-White} \\
\hline Negative and & & & & & & & \\
\hline Eastman Color & Triacetate & . 06 & . 07 & . 07 & . 08 & . 03 & . 035 \\
\hline Negative & & & & & & & \\
\hline \multicolumn{8}{|l|}{Black-and-White} \\
\hline Positive and & Triacetate & . 05 & . 05 & . 05 & . 06 & . 03 & . 035 \\
\hline Sound Recording & & & & & & & \\
\hline Eastman Color Print & Triacetate & . 07 & . 08 & . 06 & . 07 & . 03 & . 035 \\
\hline Kodachrome Films (16 mm) & Acetate propionate & . 09 & . 10 & . 08 & . 10 & . 035 & . 04 \\
\hline
\end{tabular}

\section*{Cronar}

A new polyester film support, "Cronar", is now being produced by the Photo Products Division of E. I. Du Pont de Nemours and Company. At present, it is being coated only with the slow, high contrast "photolith" emulsion. Reference to Tables II and III, and Figures 1 and 2, will indicate that "Cronar" shows considerable improvement in dimensional stability over other flexible film supports, in regard to temperature, relative humidity, and processing. There is reason to hope that when "Cronar" is available in larger quantities, it will be coated with an aerial emulsion, in addition to the litho emulsion now available.

\section*{Permanent changes}

There are three principal causes of permanent dimensional changes in film supports. The first, and most important, is the gradual loss of volatile chemicals (plasticizer and solvents). Film base is cured for about five hours, which eliminates about 96 percent of the volatile chemicals. The subsequent loss of the remaining 4 percent causes shrinkage and related troubles. Shrinkage from this cause is accelerated by heat and moisture, and reduced by preventing free access to air. As with temporary changes in dimension, shrinkage is greater in the widthwise direction.

The compressive force of the emulsion upon the base results in a certain amount of plastic flow or permanent shrinkage. Dimensional changes from this cause are increased by heat, because of increased film plasticity at high temperatures. Moisture also increases base plasticity but inhibits the contraction of the base, and the latter has the greater effect. Thus, an increase in relative humidity, at constant temperature greatly decreases this type of shrinkage. Plastic flow of the base may also be the result of stretching in handling and processing -- resulting in extension lengthwise. Such changes are increased by heat, moisture, amount of tension applied, and the duration of the tension.

\section*{TABLE II}
\begin{tabular}{|c|c|c|c|}
\hline Base Typ & & \begin{tabular}{l}
Humidity \\
Coefficient \\
(length \\
change in inches/inch of length/ \(1 \%\) RH change)
\end{tabular} & Size change example of a 30 " litho negative with a \(20 \%\) increase in RH, using the mid'point of the Humidity-Coefficient Range \\
\hline \[
.0042^{\prime \prime}
\] & "'Cronar" based Рнотоитн & 1.0 10 \(2.0 \times 10^{-5}\) & \(+.009^{\prime \prime}\left(1.5 \times 10^{-5}\right)\) \\
\hline \[
.0058^{\prime \prime}
\] & Standard cellulose acetate based Рнотоитн & 8.0 to \(10.0 \times 10^{-5}\) & \(+.054^{\prime \prime}\left(9.0 \times 10^{-5}\right)\) \\
\hline \[
.0058^{\prime \prime}
\] & Litho sensitized high acetyl cellulose acetate base & \(5.0107 .0 \times 10^{-5}\) & \(+.036^{\prime \prime}\left(6.0 \times 10^{-5}\right)\) \\
\hline \[
.0055^{\prime \prime}
\] & Litho sensitized polystyrene base & 1.0 to \(2.0 \times 10^{-5}\) & \(+.009^{\prime \prime}\left(1.5 \times 10^{-5}\right)\) \\
\hline \[
.0120^{\prime \prime}
\] & Litho sensitized vinyl base & \(1.0102 .0 \times 10^{-5}\) & \(+.009^{\prime \prime}\left(1.5 \times 10^{-5}\right)\) \\
\hline \multicolumn{4}{|l|}{(Coefficient \(x\) film length in inches \(x \%\) RH change \(=\) film size change in inches.)} \\
\hline
\end{tabular}

TABLE III

\section*{Efloct of Tomperature Changes on Film slze}

These average temperature coefficients indicate the relative temperature stability of various photographic supports and can be used to calculate negative size change with varying temperatures at constant humidity.
\begin{tabular}{|c|c|c|}
\hline Unsensitized Base & Temperature Coefficient (in./in. \(/ 1^{\circ} \mathrm{F}\).) & Size change example of a 30 " litho negative with a \(\mathbf{2 0}^{\circ}\) rise in 1 \\
\hline "Cronar" base & \(2.0 \times 10^{-8}\) & \(+.012^{\prime \prime}\) \\
\hline Standard cellulose acetate base & \(3.4 \times 10^{-3}\) & \(+.020^{\prime \prime}\) \\
\hline High acetyl cellulose acetate base & \(2.3 \times 10^{-3}\) & +.014" \\
\hline Vinyl base & \(3.8 \times 10^{-3}\) & +.023" \\
\hline Polystyrene base & \(3.5 \times 10^{-5}\) & +.021" \\
\hline Glass & \(0.5 \times 10^{-5}\) & +.003" \\
\hline Aluminum & \(1.4 \times 10^{-5}\) & +.008" \\
\hline
\end{tabular}
(Coefficient \(x\) film length in inches \(x\) temperature in \({ }^{\circ} \mathrm{F}=\) film size change in inches.)
dard cellulose acetate film would shrink. 018 ", and "Cronar" based films would shrink .003". Size change of larger negatives can be quickly calculated from this \(10^{\circ \prime}\) information. as the extremes of low, and high humidity are approached, since their humidity coefficients are not linear functions. However, this chart will serve as a convenient guide in estimating average dimensional performance over a wide range
of conditions. of conditions.

relative humidity change
To use this chart in estimating film size changes, establish the relative humidity change that will be encountered
(say a \(20 \%\) RH drop) and locate the corresponding point on jo sejues eyt of Kilסכ!
 and then read horizontally from this intersection to the left change of a \(10^{n}\) negative. In this example, a \(10^{\prime \prime}\) high acetyl
cellulose acetate base film would shrink about \(.012^{n}\), a stancellulose acetate base film would shrink about . \(012^{\text {n }}\), a stan-
WII 0 HII7 ،0I \(\forall 10\) S3HONI NI S39N甘HO 3ZIS

ro tis hor
in degrees Fahrenheit (say a \(35^{\circ} \mathrm{F}\) drop) and locate the corres-
ponding point on the base line \(\left(-35^{\circ}\right)\). Now read vertically
to the line that corresponds to the base in use, and read hori change) scale which directly indicates the size change of a

The third cause of permanent dimensional change is release of strain, or recovery from deformation. If film base is stretched during manufacture under conditions which do not permit reorientation of the molecules, deformation, or creep, occurs, resulting in lengthwise extension and widthwise contraction. Rapid cooling retards recovery of the deformation (primary creep) due to "freezing in of strain". This strain may be released at some time during the life of the film, with consequent lengthwise shrinkage, and widthwise expansion. Where such a strain exists, the rate of recovery is increased by both heat and moisture.

Table IV shows the effect of temperature on the rate of shrinkage of an earlier film base, EK 16 mm safety reversal. Shrinkage was measured in the lengthwise direction, on processed film strips exposed freely to air at the indicated temperatures, and 20 percent relative humidity.

TABLE IV
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{ \% ShrInkage } \\
\hline TIME (months) & \(70^{\circ} \mathrm{F}\) & \(90^{\circ} \mathrm{F}\) & \(120^{\circ} \mathrm{F}\) \\
\hline & & & \\
0 & 0 & 0 & 0 \\
1 & 0.18 & 0.36 & 0.76 \\
2 & 0.30 & 0.50 & 1.00 \\
4 & 0.37 & 0.52 & 1.02 \\
5 & 0.39 & 0.60 & 1.06 \\
6 & 0.40 & 0.62 & 1.08 \\
\hline & 0.41 & 0.63 & 1.20 \\
\hline
\end{tabular}

Films swell during development, and shrink again during drying. Most films undergo a small permanent shrinkage during processing. However, if the film is not brought to equilibrium with air at the same relative humidity after development as it was before, the permanent processing may be completely masked by the temporary expansion or contraction due to change in relative humidity.

Table V shows the effect of processing on several film bases. Values are given for materials conditioned 4 hours before and after processing at 20 percent relative humidity, 50 percent relative humidity, and 70 percent relative humidity, all at \(70^{\circ} \mathrm{F}\).

\section*{Effect of Processing on Litho FIlm Sizo}

Representative sensitized films were measured before and after processing to determine processing stability. Values are given
for materials conditioned 4 hours before and after processing at \(20 \% \mathrm{RH}, \mathbf{5 0} \% \mathrm{RH}\) and \(70 \% \mathrm{RH}\), all at \(70^{\circ} \mathrm{F}\).

TABLE V
\begin{tabular}{|c|c|c|c|c|}
\hline & & N \% & & \\
\hline & & Relative H & es Before & Processing \\
\hline & & 20\% RH & 50\% RH & 70\% RH \\
\hline .0042" & "Cronar" base & <.01\% & <.01\% & < \(0.01 \%\) \\
\hline .0058" & Standard cellulose acetate base & -.05\% & <.01\% & +.01\% \\
\hline .0058" & High acetyl cellulose acetate base & +.01\% & <.01\% & -.02\% \\
\hline .0120" & Vinyl base & +.01\% & -.01\% & -.04\% \\
\hline .0055" & Polystyrene base & <.01\% & <.01\% & <.01\% \\
\hline \multicolumn{5}{|c|}{(All films were developed \(21 / 2 \mathrm{~min}\). in Du Pont 7-D Developer, rinsed 20 sec . in clear water, fixed 3 min . in Du Pont 20-F Fixer and washed 10 min., dried below \(100^{\circ} \mathrm{F}\). and reconditioned at the indicated RH of \(70^{\circ} \mathrm{F}\).).} \\
\hline
\end{tabular}

As indicated in Table IV, photographic film shrinks during storage. This shrinkage is accelerated by high temperatures and by free contact with air. Table VI illustrates shrinkage of EK nitrate MP film (no longer used) in the lengthwise direction for various periods, under three storage conditions, all at \(70^{\circ} \mathrm{F}\) and \(50-65\) percent relative humidity. Fig. 3 shows the shrinkage rate of the newer triacetate base.

Du Pont literature states that "Cronar" polyester photographic film base is chemically inert, and contains no plasticizer or solvents to be lost gradually as it ages. Normal storage studies, it is added, have given no indication of base change or deterioration, and forty day accelerated storage tests at \(100^{\circ} \mathrm{C}\) have caused no significant change in processed film properties. Hence, it is expected that this base will remain substantially unchanged over long periods of time.

TABLE VI. Shrinkage of EK Nitrate MP Film.
\begin{tabular}{|l|c|c|c|c|}
\hline & \begin{tabular}{l}
\% Shrinkage \\
10 weeks
\end{tabular} & \begin{tabular}{c}
\% Shrinkage \\
20 weeks
\end{tabular} & \begin{tabular}{c}
\% Shrinkage \\
30 waeks
\end{tabular} & \begin{tabular}{c}
\% Shrinkage \\
40 weeks
\end{tabular} \\
\hline \begin{tabular}{l}
Rolls in \\
taped cans \\
Rolls in \\
untaped cans \\
Strips open \\
to air
\end{tabular} & 0.08 & 0.12 & 0.12 & 0.14 \\
\hline
\end{tabular}

Fig. 3. Shrinkage va, age for triacetate and nitrate prints scrapped afte normal theater use. Measurements made at 70 F and \(50 \%\) R.H.

Fig. 4. Average rate of ahrinkage of processed triacetate 35 mm motion-picture positive film at 90 F and \(90 \%\) R.H. Controlled tests on strips freely exposed to circulating air; all measurements made after reconditioning at 70 F and \(50 \%\) R.H.

Kodak aerial films are now coated on two bases. Kodak Aerographic films, (Type lA) are made on low shrink topographic base, suitable for use in accurate mapping work. Regular Safety Aero base is used for Kodak Ektachrome Aero film, and Recon film. The latter has somewhat higher shrinkage characteristics than the Type 1A. A comparison of dimensional changes in the two bases is shown in Table VII.

Since 1941, Type IA (topographic) film base has been made from cellulose acetate butyrate. Between 1938 and 1941, it was made from cellulose acetate propiomate. Both these bases have substantially lower humidity expansion coefficients than cellulose acetate, used prior to 1938.
APPROXIMATE SHRTNKAGE CHARACTERISTICS OF KODAK MATERIALS
USED IN AERIAL PHOTOGRAPHY (Safety Base)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline All Tests Made on Film in the Form of Flat Strips & \multicolumn{3}{|l|}{Kodak Aerographic Film (Topographic) Military Type 1A} & \multicolumn{3}{|l|}{Reconnaissance-base Film Kodak Aerial Reconnaissance Film and Kodak Ektachrome Aero Film (Non-Topographic) Military Type 18} \\
\hline Direction of Test* & L. & W. & & L. & W. & D. \\
\hline Humidity Coefficient of Linear Expansion per \(1 \%\) R.H. \(x 10^{5}\) & & 9.0 & 0.5 & 5.5 & 7.0 & 1.5 \\
\hline Thermal Coefficient of Linear Expansion per Degree F \(\times 10^{5}\) & 4.2 & 4.4 & 0.2 & 3.0 & 3.8 & 0.8 \\
\hline Processing Shrinkage, \% & & . 06 & . 01 & . 06 & . 08 & . 02 \\
\hline Accelerated Aging Shrinkage, \% (7 days at 120F-20\% R. H.) & . 13 & . 14 & . 01 & . 15 & . 20 & . 02 \\
\hline Long-Time Aging Shrinkage, \% (1 year at \(78 \mathrm{~F}-60 \% \mathrm{R} . \mathrm{H}_{0}\)) & & . 12 & . 01 & . 30 & . 35 & . 05 \\
\hline \multicolumn{7}{|l|}{\begin{tabular}{l}
The Aging Shrinkage includes processing shrinkage in case of photographic materials. The Accelerated Aging Test is the same as that required by Military Specification: \\
"Film, Photographic, Aerial, Black-and-White, " MIL-F-26010 (USAF), dated 2 May 1956. \\
*L \(=\) Length \\
W - Width \\
D = Difference
\end{tabular}} \\
\hline
\end{tabular}

Shrinkage of photographic film is extremely complex. Several different processes are going on at once, and each is affected in a different manner by heat and moisture, and other factors. It is not always easy to predict how a given film will react when subjected to unknown conditions of storage and handling.

\section*{Recommendations}

Film choice.
The film which shows the least amount of processing and storage change should be used. This, at present, is the Type A, cellulose acetate butyrate base. When it becomes available for aerial film, Du Pont "Cronar" should show some improvement over other bases.

The two rolls intended for stereophotography should be chosen from the same emulsion lot.

\section*{Making the photographs}

Dimensional errors in aerial negatives caused by humidity or thermal expansion may be reduced by printing (or measuring the negatives) in an air conditioned laboratory, preferably at about \(70^{\circ} \mathrm{F}\), and 50 percent relative humidity, and by thermostating the cameras at the same temperature. Ideally, the negative should be in equilibrium with air of the same temperature and relative humidity at the time of printing or measurement as at the instant of exposure. Film is in equilibrium with air at approximately \(55-60\) percent relative humidity when packed in air-tight (taped) cans, and will change very little in the camera if exposures are made in rapid succession; however, temperature changes inside the camera cannot be prevented except by some method of automatically controlled heating. Completely air-conditioned cameras, which provide both temperature and relative humidity control, have been used quite successfully, in the recent past. Dimensional errors have been reduced considerably by this method, as well as markings by static electricity.

\section*{Processing}

Film should be processed at normal temperatures \(-68-70^{\circ} \mathrm{F}\). It should be subjected to as little tension as possible, especially while wet, and should be dried at a relative humidity of about 50 percent, and temperature not in excess of \(85^{\circ} \mathrm{F}\).

\section*{Handling}

Film should be handled gently, and, insofar as possible, both rolls intended for stereo photography should receive identical treatment.

\section*{Storage}

Since access to air increases shrinkage -- "Cronar" possibly excepted-film should be stored in sealed cans before and after use and processing. Heat also speeds shrinkage; therefore film should be stored in a cool place. Both rolls of a stereo pair must be stored under identical conditions, both before and after processing.

\section*{REFERENCES}
1. Calhoun, J. M., 1948: The physical properties and Dimensional behavior of motion picture films. Journal of the Society of Motion Picture Engineers, October.
2. Fordyce, Calhoun, and Moyer, 1955: Shrinkage behavior of motionpicture film. Journal of the Society of Motion Picture and Television Engineers, February.
3. Eastman Kodak Company, 1956: Kodak Materials for Aerial Photography.
4. E. I. Du Pont de Nemours and Co.: "Technical Data on Experimental "Cronar" Polyester Film Base Sensitized with Du Pont Photolith Emulsion."

1 Assistant Secretary of Defense Research and Development
Attn: Committee on General Sciences Pentagon Building Washington 25, D.O.

\section*{Navy}

5 Office of Naval Research Geophysics Branch (Code 416) Washington 25, D.C.
1 Air Branch, Attn: Flodil
1 Amphibious Branch, Attn: Iaj. Crownover

Chief of Naval Research
Washington 25, D.C.
1 Armament Branch (Code 463)
1 Undersea War fare Branch (Code 456)

1 Commanding Officer Office of Naval Research 346 Broadway
New York 13, I.Y.
1 Commanding Officer
Office of Naval Research 495 Sumaer Street Boston 10, Mass.
1. Commanding Ofiricer Office of Naval Research Tho John Crerar Library Blảg. 86 E. Randolph Strect Chicago I, IIIInois

1 Commanding Officer Office of. Naval Research 1030 East Green Strcet Pasadena I, Calif.

7 Commanding Orficer Office of Navel Resecreh Br.Office Navy \#100, Fleet Post Office New York, N. Y.

6 Director, Naval Research Lab. Attn: Tochnical Servicos
Information Officer Washington 25, D.C. Attn: Mr. Brodzinski

\section*{Navy}

Chief, Burcau of Ships
Navy Department
Washington 25, D.C.
1
1
1
1
1
320
531
814
845
U.S. Nary Hydrographic Off.

Washington 25: D.C.
10 Division of Oceanography
5 Photogrammetry Division
Chief, Bureau or Aeronatics Navy Departmont Washington 25, D.C.
1 AY-3
1 Attn: Winik
Chiof of Naval Operations
Navy Dopartment
Washington 25, D.C.
1 Attn: Op-533 Navy Aerology
1 Chicf, Bureau of Yards and Docks
Navy Department
Washington 25, D.C.
3 Director
Navy Electronies Laboratory San Diogo 52, Calif. hittn: 2230

1 Commander
Noval Or Anance Laboratory
White onir
Silver Spring 19, Maryland
5 Commanding Officor
U.S. Nivy wine Countermeasure Staticr
Psnama City, Florida
1 Commanding Officor
U. S Na, Yy Tharwater Sound Laborntory
Now London, Conn.

1 Project Arowa
U.S. Naval fir Station

Building R-48
Norfolk, Virginia
I Superintendent
U.S. Naval Acadomy

Annapolis, Marylend
2 Department of Aerology
U.S.Naval Post Graduate School

Monterey, Calir.
20 David Taylor Model Basin
Washington 7, D.C.

\section*{Air Force}

1 Comanding Genoral
Research and Development Div.
Department of the dir Force
Washington 25, D.C.
1 Chief, air Weather Sorvice Dopartment of the Air Force Washingt on 25, D.C.

1 Commanding Officer
Cambridgo Field Station
230 AIbany Stroct
Cambridge 30, Nass.
attn: CRHSL

\section*{Army}

1 Comanding General
Rescarch and Development Div.
Department of the Arny
Washington 25, D.C.
1 Chiof, Armed Forces
Special Weapons Project
P.O. Box 2610

Washington , D.C.
20 U.S.Army Beach Erosion Board 5201 Little Falls Road, I.T.T. Washington 16, D.C.

I U.S.Watervays Experinent Sta. Vicksburg, Miss.

\section*{Othor U.S.Government Agencies}

1 Office of Technical Services Department of Cormerce Washington 25, D.C.
25 Armed Services Tochnical Infornation Center
Documents Sorvice Conter Knott Building Dayton 2, Ohio

1 National Research Council
2102 Constitution Avenue
Washington \(\check{5}\), D.C.
Attn: Comi. on Undersca Varfare
1 Comandant (0,10)
U.S. Coast Guard

Washington \(25, ~ D . C\).
1 Director
U. S.Coast and Gecactic Survey

Deportmont of Comerce
Washington 25, D.C.
2 Chior, U.S.Woather Bureau
2400 il Strect IT. 7.
Washington 25, D.C.
Attn: Dr. II. Woxler
30 Director
Woors Holo Occanographic Inst. Woods EoIe, Mass.

1 Project Officor Laboratory of Oconnography Woods Hoje, llass.
1 Direrto:
Narraganctt Marino Laboratory Kingston, Rhoca Islond

1 Bingham Ocennographic Labs. Yale Univorsity Wow Hatur, Conn.

75 Dopersmat of lietoor and Occan.

NOW Xuri上 5 , No.
1 Dircctor
Lamont Gcological Observatory Torrey Clife Palisades, iv. Y.

Research Labs.
1 Hudson Laboratories
Columbia University
145 Palisacies Street
Dobbs Ferry, New York
I Dr. F.B. Berger
Goneral Procision Laboratory
Pleasantville, NTew York
1. Dr. L. Goldmuntz

Technical Research Group
56 \%. 45 th St.
New York 36, IV. V.
2 Director
Chosapeake Bay Institute
Johns Hopkins Jniversity
Baltinoro 18, Maryland

I Dr. C/.I. Beard
Applied Physics Laboratory
Johns Hopkins University
8621 Goorgia Avenue
Silver Sprine, Maryland
1 Mr . Henry D. Simnons, Chief
Estuaries Section
Watorways Experiment Station
Corps of Engincers
Vicksburg, Mississippi
1 Director
Marine Laboratory
University of Miami
Coral Gables, Florida
1 Hued, Dept. of Oceanography
Tuxas A and M College
Colloge Station, Texas
5. Director

Scripps Institution of OccanLa Jolla, Calif.
1 Allan Hancock Foundation
University Park
Los ingeles 7, Colif.

1 Department of Encincering
University of California
Borkeley, Calif.
1 Dr. Wayne V. Burt
Oregon State College
Corvallis, Oregon
1 Fiead, Dept. of Oceanorraphy Univorsity of Washington
Seattle 5, Washington
1 Diroctor
Arctic Research Laboratory Bex 1070
Fairbanks, Alaska
1 Geophysical Institute of Univ. of haska
Collego, ilaska
20 Society M Naval Rrchitects and Marine Engincers
74 Trinity Place New York, N.Y.

1 Nr. Richardi Time
Mational Marinc Consultants, Inc Administration Building
Santa Barbara Airport Goleta, Calif.

1 Pror. M.S. Uberoit
Dcpt. Acronautical Engincering University of Michigan Ann Arbor, Michigan
1 Gonercl Dynanics Corp. Convair Division 3765 Pautic Hi Smilus, 72, Colif. Attn: in , EA Brooke

1 The Glenn Io Martin Co. Baltinore 3, Mryyland attn: IIr. \(\because\). Puarson
1 Gruand :reent Engineering Co

\(I\) EDO Corporation Colloge Point, IT.Y. Attn: Vir. S. Fenn

1 Attn: Mr. J. Pearson Dr. C. E. Carver, Jr.

1 Grumman Aircraft Engineering Co. Bethpage, L.I., New York

1 Edo Corporation
College Point, N.Y.
Attn: Mr. S. Fenn
1 Dynamic Developments Corp. St. Marks Lane
Islip, L.I., New York
Attn: Mr. W. Carl
1 Mr. Joseph Chadwick Sperry Marine Division Garden City, L.I., N. Y.```

[^0]: "The Naval Air Development Unit will make one flight consisting of two aircraft (equipped with trimetrogon cameras and an FM radio link for the purpose of triggering the two cameras simultaneously) to a target area approximately 300 to 400 miles out over the North Atlantic. The Woods Hole Oceanographic Institution research vessel "Atlantis" will be

[^1]: *See also Cruset [1954], in the references which follow.

[^2]: *Sonobuoy Instruction Manual ANwSS Q2.

[^3]: *Extracted from "Observations of the Growth and Decay of a Wave Spectrum" by Wilbur Marks and Joseph Chase, Woods Hole Oceanographic Institution, Woods Hole, Mass.

[^4]: *See Part 7.

[^5]: For $h=0$ and $h=m$ the values of U must be halved since one of the frequencies defined above is not applicable.

